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Today's agenda

Global consensus on the relevance of storage — key results from our joint
RD&D survey with the Technology Executive Committee

Why early planning on storage pays off
Overview of storage technologies for power and heat
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UN Climate Change & FCA
Joint Survey:

e |nstitutional barriers as major roadblocks to
advancing breakthrough climate technology.

« The public sector plays a crucial role.

* Energy storage emerges as the most urgent Future Needs in Research

technology for emissions reduction. Development and
Demonstration Report

Future RD&D needs survey results

February 2024
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The importance of energy storage

Ranking Roadblocks

(according to respondents) (according to respondents)
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» Ranked #1 priarity for 2030 + 2035 . B
= #1 even when excluding storage

sector respondents [ | O
» Thermal Energy Storage highlighted

in particular

Legislation (chosen by 51%)

Political Support (chosen by 49%)

Bureaucracy (chosen by 49%)

Demand (chosen by 26%)
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-arly stage technology priorities:
Developed vs developing economies

Developing Economies M 2030 W 2035 Developed Economies

Storage
Industrial processes
Clean electricity generation
Zero Carbon Fuels
CCUS

CDR
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Why early planning on storage pays off
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The Clean Electricity Challenge: Solar and Wind Fluctuate

Solar and wind energy will
grow to be the backbone of
global power systems.

Global electricity generation under a net-zero scenario
(thousand TWh/year)
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Wind and solar energy fluctuate over time, requiring daily-to-seasonal flexibility

GW GW
50 ~ 50 -

| Surplus il
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Projected

Projected
clean sources

10 clean sources
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1T week 1 year

fcarchitects.org Sources: Spanish electrical grid (ree.es), FCA's modelling



Uncertainty means we should be prepared to build a lot of LDES

Required storage capacity

hours The importance of
1000 - Seasona,/ flexibility tools
100 -
10 - Hours
1- Exponential trend:
— ,  thelast chunk matters
. . ] , . . , , | , a lot — dispatchable
0 20 40 60 80 100

clean power can help
Share of electricity from wind and solar (%)
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Supply Flexibility Demand

Storage

Clean Firm Power
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A holistic approach is essential for designing the future energy system

What we need heat for

“a
* Anecosystem-based strategy to both £ i
develop and decarbonize the power sector v @ i
. . . G‘aSS seestsssnssstesetssarssatssacsstesntrnnenny
* Investin resilient, no-regrets infrastructure .
ﬁ sintering = 1500
industrial decarbonization plans A
Ammonia
(fertilizer)
. Methanal
Cooking, pulp
and paper

#*= Buildings and
"" water heating

Cooling and
freezing
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Key storage technologies
vou should consider
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Four families of Long Duration Energy Storage

electrolyzer

Redox flow
Sodium
Metal-air

Tech examples
(non exhaustive)

\d
® intra-day

(discharge)
Sensible heat 9’ intra-day
Latent heat

Thermo-chemical H multi-day
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Storage technologies with various readiness levels and discharge capabilities

Readiness level

Mature

6 hours

10 hours

1 day 5d

Pumped hydro storage (PHS)

ays 1 month

Commercial

Demonstrator

Early stage
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6 hours

Sensible heat

Flow battery

‘ Advanced compressed air {A-CAES)

Metal anode

Liquid air (LAES)
Liquid CO,

New flywheel
\

10 hours

Metal air

Thermo-chemical heat

Intra-day

1 day

Multi-day

Discharge duration

5 days

Seasonal

1 month

Nominal Possible
duration duration

Mechanical

{

Thermal

Electro-chemical

A

Chemical
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Adding Heat Generation to the Equation

Heat accounts for 50% of
global final energy use.

Global emissions (Gt CO, ,/year)

*Mostly from traditional biomass usage
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Electricity
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Compensating intermittency with long duration storage
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I I Variable  Electric heat Thermal heat supply
electricity =~ generator energy

supply (e.g. heat pump storage

i
» 4 or resistive
i . . heating)
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(e.g. hot water or
high pressure
steam)
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Key types of thermal energy storage

There is more to storage than electric: the potential of thermal energy

storage

Technology

Temperature range

Storage
duration

Example
application

Temperature change materials (sensible heat)
Liquid tanks Solid tanks Underground

Heat in

l
!

Heat out

liquid

Antifreeze & Water
cryogenics <0°C 100°C

v hd

4+ &
Thermal oil Molten salts
300°C 550°C

¢ u

Hours — Days

=

Steam generation

Heatin

matrix

Gravel, bricks, sand
<0°C - 1500°C

v
-~

Concrete
400°C

¢ d
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by

High-temperature
industrial heat

Pit reservoirs

Heat in Heat out Heat in Heat out
) N ) N
Soil Water reservoirs

<0°C-90°C

v v

=

Weeks — Months

Domestic heating

80°C

v
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Weeks — Months
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Seasonal
district heating

Phase change
materials

Heatin Heat out

Chemical heat
storage
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0~ 0

Liquid  Solid
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1000°C
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Seasonal high-temp
heat storage

fcarchitects.org



Coming soon: our toolbox for policymakers

Get an overview of
/ cleantech policy tools

Stay up to Date @

Understand best practice
/ use cases and limits

|dentify relevant instruments
for the sector you target on \

B X
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