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I. Background 

1. As per Activity A.4.1 of its rolling workplan (2023–2027), the TEC is exploring the 

role of artificial intelligence (AI) and applied machine learning as enablers of climate 

solutions. 

2. At TEC 28, the TEC considered a draft concept note for the development of a 

technical paper on AI for climate action and requested the open-ended activity group on 

digital technologies to revise the concept note to reflect the discussion at the meeting and 

to prepare a draft technical paper for consideration at TEC 29. 1  The activity group, 

supported by UNIDO and the secretariat, developed a draft technical paper and conducted 

a peer-review process to solicit expert views on the draft and to identify case studies on the 

use of AI for adaptation and mitigation action in developing countries, in particular in 

LDCs and SIDS.  

3. At TEC 29, the TEC considered the draft technical paper and requested the activity 

group to revise the draft technical paper for further consideration at TEC 30, taking into 

account comments provided by TEC members including on:2 

(a) Using the TEC information note on AI for climate action3 as an introductory 

chapter to the technical paper; 

(b) Making the technical paper more concise and balanced in terms of the 

opportunities, risks and challenges of using AI for climate action; 

(c) Aligning the language of the paper with other TEC technical papers; 

(d) Reflecting the outcomes of the TEC AI Innovation Grand Challenge.4 

4. At TEC 30, the co-leads of the activity group, supported by a consultant, will present 

the revised draft technical paper contained in the annex. 

II. Scope of the note 

5. The annex to this note contains the revised draft technical paper on AI for climate 

action. 

 
1 TEC/2024/28/19, paragraph 20 (a). 
2 TEC/2024/29/25, paragraph 18 (b). 
3 Available at: https://unfccc.int/ttclear/tec/AI4climate.html#infonote. 
4 Information available at: https://unfccc.int/ttclear/events/2024/2024_event04. 
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III. Expected action by the Technology Executive Committee  

6. The TEC will be invited to consider the revised draft technical paper contained in 

the annex and provide guidance to the activity group with a view to finalizing the draft after 

TEC 30.  
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Executive Summary 

Climate change is one of the most pressing challenges of the 21st century, requiring rapid and coordinated action 

across communities, sectors, approaches, and technologies to mitigate greenhouse gas (GHG) emissions and enhance 

adaptation to climate impacts. It disproportionately affects developing countries, including Least Developed 

Countries (LDCs) and Small Island Developing States (SIDS), which are highly vulnerable to significant 

consequences of climate change, including rising sea levels, extreme weather events, and shifting agricultural 

conditions. These threats jeopardize socio-economic stability and environmental sustainability in these regions, 

making climate adaptation and mitigation strategies essential.  

 

This technical paper, prepared by the Technology Executive Committee (TEC) under the Technology Mechanism 

Initiative on AI for Climate Action (#AI4ClimateAction Initiative), offers a comprehensive overview for 

policymakers, practitioners, and researchers navigating opportunities, challenges, and risks of the use of AI for 

climate action in developing countries, with a focus on LDCs and SIDS as these countries face unique vulnerabilities 

to climate change. AI-driven solutions can become potential enablers for adapting to climate impacts and reducing 

GHG emissions. However, risks and challenges also exist, which need to be addressed for the effective and 

sustainable use of AI in climate action. 

 

In mitigation AI can enable the reduction of energy waste and the optimization of energy consumption and 

distribution; scale the identification of emission hotspots and optimize industrial processes while tracking their 

carbon footprint. AI-driven renewable energy management systems can enhance energy grid efficiency, forecast 

power demand, and optimize solar and wind energy deployment. AI tools can be also used to analyze data from 

transportation systems to reduce fuel consumption through traffic optimization and route planning. The integration 

of AI into emission reduction strategies can accelerate progress toward decarbonization and help nations meet their 

climate commitments. 

 

In the context of adaptation, AI can enhance early warning systems by predicting extreme weather events such as 

hurricanes, floods, and droughts, enabling proactive disaster risk management. AI-driven urban resilience tools can 

be used to support infrastructure planning by identifying vulnerabilities and optimizing land use. Additionally, AI-

assisted resource and ecosystem management solutions can help improve biodiversity conservation, sustainable water 

use, and land restoration efforts when coupled with satellite imagery. 

 

Despite its potential, AI adoption in developing countries presents numerous challenges. Many developing countries, 

and in particular LDCs and SIDS, face digital infrastructure limitations, including unreliable internet connectivity, 

inadequate computing power, and a lack of skilled professionals to develop and deploy AI systems. The digital divide 

hinders their ability to adopt AI-driven climate solutions and addressing this divide requires significant investment 

in digital transformation and capacity-building programs. Furthermore, the availability and accessibility of high-

quality climate data remain significant barriers as many developing countries lack comprehensive and reliable 

datasets for AI-driven decision-making. Without robust data-sharing frameworks and cybersecurity measures, AI 

applications outputs may be unreliable or prone to exploitation. Moreover, bias and inequity in AI systems can 

perpetuate social disparities if algorithms are not designed with inclusivity in mind. Therefore, a proper governance 

framework is needed to mitigate these potential risks and digital divide. Also, increased energy and water 

consumption and carbon footprints can have negative consequences and pose threats to global climate goals. The 

resource intensity of AI, including its energy and water consumption, raises concerns about sustainability, particularly 

in regions with limited natural resources, and these have to be taken into account when considering AI as an enabler 

for climate action. 
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To ensure AI serves as an enabler of climate resilience in developing countries, in particular LDCs and SIDS, 

policymakers and stakeholders must prioritize capacity-building initiatives, strengthen digital infrastructure, and 

establish inclusive governance frameworks. By fostering collaborations between governments, academia, and the 

private sector, developing countries can build AI expertise and ensure responsible AI deployment. Creating regional 

AI research centres and knowledge-sharing platforms can further enhance local capacity and facilitate AI adoption 

tailored to the specific needs of each country. 

 

The technical paper concludes with a set of recommended priority actions, to be used to realize the potential of AI in 

climate action: (a) addressing the digital divide should focus on expanding digital infrastructure and investing in AI 

capacity-building programs to empower developing countries to leverage AI effectively for climate action; (b) 

enhancing data availability and access requires stronger climate data collection efforts and the promotion of open-

data initiatives to support AI model development and deployment; (c) strengthening AI governance under the 

UNFCCC involves creating regulatory frameworks to ensure AI transparency, fairness, and accountability, 

preventing bias and misuse while fostering ethical AI adoption; (d) addressing gender bias and social inequalities by 

designing AI models with inclusive approaches to prevent discrimination and ensure equitable climate benefits is 

important; (e)  managing the energy and water consumption of AI should be taken into account, encouraging the 

development of energy-efficient AI systems and promoting sustainability in AI operations; (f) enhancing global 

collaboration for AI in climate action is necessary, strengthening cooperation between governments, UN agencies, 

and private-sector actors to facilitate responsible AI adoption and address existing regulatory gaps. 

 

Implementing these recommendations will allow developing countries, especially LDCs and SIDS, to harness AI as 

a strategic tool to implement climate action at scale. Addressing lack of infrastructure, sustainability concerns, data, 

and governance gaps, will not only strengthen local capacities but also create opportunities for innovation and 

collaboration, ensuring these countries actively participate in global climate efforts while addressing their unique 

climate challenges. 
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1. Introduction 

Countries are increasingly recognizing the potential of AI as an enabler to aid climate action and as a tool to 

achieve their climate change targets. An analysis of the 169 Nationally Determined Contributions (NDCs) showed 

that by February 2024, 57 developing countries mentioned applying digital technologies to support their NDCs, 

including five of them that directly referred to AI. AI-enabled systems show the potential to support both climate 

change mitigation and adaptation, ranging from forecasting natural disasters to optimizing food production to 

enhancing energy system efficiency (UNFCCC, 2024c). 

 

This technical paper positions itself as a document to provide comprehensive information on AI for climate action, 

by exploring its opportunities, challenges, and risks with a particular focus on LDCs and SIDS vulnerable context. 

An extensive literature review and collection of case studies have been exercised to provide holistic and balanced 

information on this issue. 

1.1. Aim and Objectives of the Technical Paper 

This technical paper aims to outline the major roles, opportunities, and challenges of AI in climate action. The 

following objectives serve as a guide to addressing the complex interplay between AI technologies and climate 

change mitigation and adaptation, particularly in the context of developing countries, LDCs, and SIDS: 

● Explore AI's role as a technological tool to advance and scale up transformative climate solutions for 

mitigation and adaptation in developing countries, with a focus on LDCs and SIDS. 

● Address the challenges and risks posed by AI, particularly those relevant to Climate Action, including 

concerns about energy consumption and its environmental impact, data security, gender bias, the digital 

divide, and harmful practices. 

● Showcase the opportunities and challenges associated with existing AI applications in developing countries, 

particularly LDCs and SIDS, in addressing climate change and improving environmental outcomes. 

● Provide recommendations to policymakers on leveraging AI as a technological tool to advance and scale up 

transformative climate solutions while overcoming identified risks and challenges. 

1.2. Defining Artificial Intelligence 

Artificial Intelligence is the discipline focused on the research and development of mechanisms and applications of 

AI systems. AI systems are engineered systems that generate outputs such as content, forecasts, recommendations, 

or decisions for a given set of human-defined objectives (ISO/IEC 22989:2022(E)) by leveraging sophisticated 

algorithms, computational resources, and reliable and comprehensive datasets. The escalating availability of data, 

coupled with advancements in computational power, machine learning algorithms, and cloud computing, are some 

of the key drivers behind the renewed interest in AI over recent years. In order to work efficiently and in real-time, 

AI applications rely on an optimal Internet connection, without which data transmission would be impaired.  

The AI stack can be described with a five layers structure: 

● Hardware: The complete CPU/GPU design and production chain, from raw materials and rare earth elements 

to advanced microelectronics manufacturing. 
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● Cloud Infrastructure: Data centers providing computing power, data storage, and platforms, encompassing 

energy supply, cooling, security, and redundancy. 

● Internet Infrastructures: Physical networks (cables, towers, servers, exchange points) and end-user devices 

enabling internet connectivity and data transfer. 

● Software & Libraries: AI frameworks and development tools. 

● Applications and Services: AI-based solutions in areas such as computer vision, language processing, 

robotics, finance, agriculture, manufacturing, energy, media, healthcare, transportation, and education. 

Machine Learning (ML) is the process of optimizing model parameters through computational techniques, such that 

the model's behaviour reflects the data or experience.  ML algorithms can be applied in various use cases and domains 

thanks to their capacity for pattern recognition. However, effective application depends on the size, quality, and 

representativeness of the available data, as well as the appropriateness of the ML algorithm selected for the problem, 

which often requires testing multiple models to achieve the best predictions. A training-validation split is typically 

used when the dataset is sufficiently large and robust. In this approach, the training set helps the algorithm learn 

patterns from features and labels, while the test or validation set measures accuracy and generalization. After testing, 

model parameters are adjusted to address errors and enhance performance. 

1.3. The Specificity of Least Developed Countries and Small Island Developing States in the Climate Change 

Context 

While climate change poses challenges globally, its impacts are disproportionately severe for Least Developed 

Countries (LDCs) and Small Island Developing States (SIDS). SIDS and LDCs, due to their high exposure and 

fragility, are among the most vulnerable to climate change and the least emitting. Notably, SIDS and LDCs contribute 

minimally to, or bear almost no responsibility for, climate change, yet their specific geographical and socioeconomic 

conditions make them exceptionally susceptible to its adverse effects (Mohan 2023). Although the Paris Agreement 

endorses that developed countries should lead in providing assistance and establishing a framework for finance, 

substantial funding is still necessary for SIDS and LDCs to meet their climate objectives (Mohan, 2023). 

LDCs and SIDS face heightened vulnerability to the adverse effects of climate change due to their limited capacity 

or resources to implement adaptive and mitigation measures. They are particularly exposed to climate risks such as 

rising sea levels, increased frequency, and intensity of extreme weather events, and changing precipitation patterns, 

as well as shifts in agricultural conditions. These shifts, driven by changing temperatures, rainfall, and growing 

seasons, threaten food security and necessitate agricultural adaptation strategies like crop diversification and efficient 

water management. Moreover, these countries face significant challenges in reducing emissions or transitioning to 

low-carbon economies due to a reliance on inexpensive fossil fuels, limited renewable energy infrastructure, and the 

degradation of critical blue carbon ecosystems, such as mangroves and seagrasses, which play a key role in carbon 

sequestration. Addressing these challenges requires adaptation and mitigation strategies tailored to their unique 

contexts and needs (Havukainen et al., 2022; Leal Filho et al., 2020, 2021; Tokunaga et al., 2021).  

1.4. Artificial Intelligence as a Driver of Adaptation and Mitigation in Vulnerable Regions 

In SIDS and LDCs, AI-driven technologies are being leveraged to improve early warning systems for natural 

disasters (Albahri et al. 2024; Kuglitsch et al. 2022), providing more timely and accurate alerts to vulnerable 

populations. Beyond disaster preparedness, AI tools are being leveraged in LDCs to optimizing agricultural practices, 

enabling regions to better adapt to shifting climate conditions by improving crop resilience and water resource 
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management (Chen et al. 2023; Jain et al. 2023; Leal Filho et al. 2022) and strengthen climate communication 

channels in coastal regions facing extreme weather events (Chakravarty, 2023). Furthermore, there are several 

examples of AI systems used to assist in the reduction of GHG emissions, advancing renewable energies, and 

improving environmental modelling and climate predictions (Bibri 2024; Kaack et al. 2022; Sandalow et al. 2023; 

Zhao et al. 2024). 

1.5. Risks and Challenges of AI in Climate Action 

Integrating AI into climate action is challenging both in developed and developing countries. Concerns span its 

potential environmental, ethical, and societal impacts, including its high energy and water consumption (e.g., Brevini 

et al. 2021; IEA 2024a; Ligozat et al. 2021; Luccioni 2023; Raman et al. 2024; Yokoyama et al. 2023), data quality, 

security and privacy risks (e.g., Ansari et al. 2022; Habbal et al. 2024; Jada and Mayayise 2024; Paracha et al. 2024; 

Wazid et al. 2022), biases, including gender bias (e.g., Lima et al. 2023; Nadeem et al. 2020, 2022; Nazer et al. 2023; 

Patón-Romero et al. 2022), spread of misinformation (e.g., Galaz et al. 2023; Chu-Ke and Dong 2024; Rojas et al. 

2024; Treen et al. 2020), and the digital divide (e.g., Bentley et al. 2024; Celik 2023; Lutz 2019; van der Zeeuw et 

al. 2019). While AI systems have significant potential to address climate challenges, these risks highlight the need 

for careful governance, ethical frameworks, and sustainable practices to ensure that the benefits of AI are fully 

realized without exacerbating existing inequalities or causing unintended harm. 

Environmental costs are growing as AI models—especially Deep Learning (DL) and Generative AI (GenAI)—are 

highly resource- and energy-intensive, requiring substantial computational power and large-scale data processing. 

This energy consumption must be carefully evaluated since it can offset the potential climate benefits these 

technologies offer if not effectively managed (Dolby, 2023; Kumar and Davenport, 2023; Deeb and Garel-Frantzen, 

2023; Saenko, 2023). 

Security concerns are also a challenge in deploying AI, especially in critical areas like climate action and 

environmental monitoring. Being per se software, each AI system is vulnerable to cyber-attacks, data breaches, and 

malicious manipulation of algorithms, which can compromise data integrity and decision-making (Ansari et al., 2022; 

Wazid et al., 2022). The integration of AI and ML introduces new security vulnerabilities, necessitating robust 

security measures and protocols to safeguard data integrity and privacy, including encryption, regular audits, and the 

use of secure infrastructure (Goldblum et al. 2022; Paracha et al. 2024; Rosenberg et al. 2021), ensuring AI 

applications remain trustworthy and effective in their intended use. 

Without adequate data, the potential for ML applications remains constrained, particularly in addressing climate 

change. Data scarcity, especially in developing countries, reflects a broader issue of unequal access to key resources 

like AI, a challenge inadequately explored in current literature (Walsh et al. 2020). For instance, essential digital 

data—such as localized climate projections and weather forecasts, which are critical for optimizing farming 

practices—remains sparse in many regions (Balogun et al., 2020). Tackling data availability and access is essential 

for successfully implementing AI and ML-driven solutions to mitigate climate impacts. 

 

AI can exacerbate inequalities without careful design, mainly through biases in algorithm development, data 

collection, and geographic coverage (McGovern et al., 2022). Gender and demographic biases, inadequate 

infrastructure, and limited digital literacy hinder AI adoption in LDCs and SIDS (Ozor et al., 2023; UNFCCC, 2023). 

Bridging these gaps requires investment in capacity-building, improved data collection, and infrastructure. Because 

ML models rely heavily on large, reliable datasets—often sparse in developing countries—combining rule-based, 

physics-informed, and domain-informed ML approaches can alleviate data constraints. Additionally, misinformation 

about climate change can spread faster than fact-checkers can respond (Rojas et al. 2024), undermining trust in 
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policies and delaying action. These disparities and risks need to be addressed for equitable AI-driven climate 

solutions. 

1.6. Artificial Intelligence and International Climate Frameworks and Resolutions 

AI is increasingly being recognized in global climate governance as a tool to enhance climate action, improve 

decision-making, and strengthen transparency and accountability. While AI is not explicitly mentioned in the Paris 

Agreement or the 2030 Agenda for Sustainable Development, its applications directly support the achievement of 

climate and sustainability goals, including through Nationally Determined Contributions (NDCs), climate finance 

mechanisms, and capacity-building initiatives. 

 

In March 2024, the United Nations General Assembly (UNGA) adopted a landmark resolution on AI, emphasizing 

the need for safe, secure, and trustworthy AI systems (United Nations News 2024). Backed by over 120 member 

states, the resolution underscores AI’s potential to accelerate progress on the Sustainable Development Goals (SDGs) 

while ensuring human rights protections across the AI lifecycle. It also calls for global cooperation to bridge the 

digital divide, enhance digital literacy, and support equitable access to AI technologies, particularly in developing 

countries. This resolution establishes a foundational international framework for integrating AI into climate action, 

particularly by reinforcing ethical and responsible AI deployment for climate monitoring, adaptation, and mitigation. 

 

Beyond this resolution, global efforts are underway to regulate and standardize AI applications, ensuring they align 

with climate objectives, and discussions on AI governance and sustainability are emerging within international 

climate institutions, focusing on AI’s role in monitoring emissions, optimizing renewable energy systems, supporting 

early warning systems, and improving carbon market integrity.  

 

In November 2023 at COP 28, Parties noted the Technology Mechanism Initiative on AI for Climate Action and 

requested the Technology Executive Committee (TEC) and the Climate Technology Centre and Network (CTCN) to 

implement the initiative and enhance awareness of AI and its potential role and impact.  

 

Altogether, these initiatives signal a growing international consensus on the need for AI to complement efforts in 

addressing climate goals.  

1.7. Structure of the technical paper 

This paper is structured as follows: Section 2 introduces and describes the key concepts underlying AI and its 

applications in climate action. Section 3 outlines the methodology employed in this paper.  Section 4 delves into AI 

for climate action in developing countries, presenting case studies and best practices, and providing detailed insights 

into their impacts and the lessons learned, which can benefit other developing countries. Section 5 explores the role 

of AI in implementing the Technology Mechanism Joint Work Program and TNA outcomes. Section 6 discusses the 

risks and challenges associated with AI deployment for climate action in developing countries. Section 7 presents 

policy options for leveraging AI as a tool for advancing and scaling transformative climate solutions in developing 

countries while addressing the identified challenges and promoting sustainable development. Section 8 provides 

conclusions and recommendations, summarizing the key findings of the paper and offering actionable steps for 

policymakers, as well as researchers and practitioners. Section 9 is a call to action for these stakeholders to 

collaborate and harness AI technologies in driving climate action and sustainable development.  
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2.  Conceptual Definitions and Discussions: Artificial Intelligence for Climate Action 

This section provides an overview of AI, its subsets, models, methods, paradigms, and applications in the context 

of climate actions. Understanding these AI concepts is crucial for designing informed policy frameworks and 

governance mechanisms for responsible and effective AI-driven climate action.  

 

AI is the discipline focused on the research and development of mechanisms and applications of AI systems. AI 

systems are engineered systems that generate outputs such as content, forecasts, recommendations, or decisions for 

a given set of human-defined objectives (ISO/IEC 22989:2022(E)). AI systems can be used for different purposes 

and be engineered in a way that makes them capable of updating the parameters in the model from the new data they 

are exposed to over successive updates or iterations (Sharifani and Amini 2023; Shinde and Shah 2018; Verma et al. 

2024). 

 

ML models can be effectively utilized across various paradigms, including supervised learning, unsupervised 

learning (including GenAI) and reinforcement learning (Donti and Kolter 2021; Naeem et al. 2023). In supervised 

learning, models are trained on labeled data, making them ideal for tasks such as classification and regression, where 

specific outcomes are known in advance. Unsupervised learning, on the other hand, does not rely on labeled data and 

is used to identify patterns and structures within datasets, such as clustering or anomaly detection.  Reinforcement 

learning involves training models through trial and error, where an agent learns to make decisions by receiving 

feedback from the environment, making it particularly useful for applications requiring sequential decision-making, 

such as robotics or game-playing. Each of these paradigms provides unique capabilities and approaches to solving 

complex problems, enabling the development of versatile and powerful ML applications. Now, it suffices to point 

out that supervised learning is particularly effective for climate-impact forecasting, while unsupervised methods 

excel in identifying novel climate patterns, and reinforcement learning optimizes resource allocation and decision-

making under climate uncertainty. 

 

Deep Learning (DL) is a subset of Machine Learning (ML) that utilizes Artificial Neural Networks (ANNs). While 

inspired by simplified models of biological neurons, ANNs function in a fundamentally different way from the human 

brain, as they lack the dynamic adaptability, biochemical signaling, and complex interconnectivity of biological 

neural systems. They are formed by nodes, arranged in units, in turns distributed in a series of layers. The number of 

units for each layer depends on the complexity of the task the ANNs have been conceived to solve and may vary 

from a few dozen to millions. The learning process of an ANNs involves updating the connection strength (weight) 

of a node. By using the error between the predicted value and the correct, the weight in the network is adjusted so 

that the error is minimized and an output closer to the target is obtained (Su-Hyun, 2018). These layers are particularly 

effective in recognizing patterns for handling various tasks including predictive modeling and adaptive control. For 

this reason, they offer promising applications in climate research such as analyzing satellite imagery to detect 

deforestation patterns and track ice sheet melting, enhancing extreme weather forecasting through more precise 

modelling of atmospheric conditions, and optimizing renewable energy management by predicting solar and wind 

power output based on meteorological data.  

 

The recent development of complex neural networks has unlocked various applications in the field of Computer 

Vision (CV) by enabling high accuracy image classification and target detection. CV significantly enhances 

adaptation strategies by automating the monitoring of climate-induced changes such as coastal erosion or habitat 

degradation, informing timely interventions. This is particularly useful for processing a vast number of satellite 

images with a plethora of applications from monitoring the evolution of coastal erosion or marine oil spills detection.  
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The application of ML to NLP has recently gained momentum for representing and analyzing human language 

computationally. The field of NLP is related with different theories and techniques that focus on the interaction 

between computers and humans through natural language. NLP is essential for analyzing climate-related policy 

documents, facilitating climate education, and enhancing public engagement through clear, actionable 

communication. NLP methods enable AI systems to understand and process human language data from scientific 

reports, policy documents, or social media to gauge public sentiment and disseminate information about climate 

change effectively. This capability aids in synthesizing information, generating insights, and enabling decision-

making for climate action. While still in development, GenAI can simulate climate models to predict future scenarios 

and develop adaptive strategies based on individual or regional climate data.  

 

GenAI systems are mostly trained using self-supervised learning, a paradigm where the system optimizes its model 

to predict part of its input from other parts of its input without the need of manual labelling of the training dataset as 

text, images, audio, or code as outputs in response to prompts, based on learned patterns. By enabling the creation of 

general-purpose services on text, image and audio creation companies developing those tools, using a freemium 

business model, enabled wide access to GenAI. Large Language Models (LLMs) are specifically developed to excel 

at word-in-context prediction tasks such as machine translation, automated text summarization, and question-

answering systems. LLMs are specialized for tasks like text generation, summarization, translation, and question-

answering, excelling at producing coherent and contextually relevant text. ML includes models like Linear 

Regression for predicting continuous variables, Logistic Regression for binary classification, and Decision Trees for 

both regression and classification tasks.  DL features models such as Convolutional Neural Networks (CNNs) for 

image recognition, Recurrent Neural Networks (RNNs) for sequential data, and Transformers for NLP. 

 

In the realm of CV, models like You Only Look Once (YOLO) enable real-time object detection, while Faster R-

CNN is valuable for object detection and image recognition.  NLP leverages models like BERT (Bidirectional 

Encoder Representations from Transformers) for text classification and sentiment analysis and LSTM (Long Short-

Term Memory) for language modelling and sequence prediction.  

 

 

 

Figure 1. Artificial Intelligence and its subfields or domains 

 

This adaptability is particularly beneficial in addressing climate change mitigation and adaptation challenges. For 

example, ML models are frequently used to solve optimization problems.  
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3. Methodology 

The methodology of the paper includes a thorough literature review to assess the landscape of AI's benefits, risks, 

and challenges, coupled with case study inputs provided by stakeholders involved in AI for climate action in 

developing countries to gather diverse insights and experiences. These case studies aimed to identify practical and 

impactful AI applications and capture a range of perspectives relevant to ongoing efforts. In addition, the TEC 

facilitated a rigorous peer review process involving multidisciplinary expertise to ensure the paper reflects diverse 

expert opinions and is aligned with the challenges faced by developing countries, particularly SIDS and LDCs.  

3.1 Justification of 2017-2024 Timeframe  

The timeline from 2017 to 2024 was based on several key factors. First, there have been rapid technological 

advancements in AI, ML, and related fields during this period. Also, the proliferation of AI research specifically 

targeting climate action has been particularly notable since 2017. Moreover, global awareness and urgency regarding 

climate change have increased during 2017-2024 

3.2. Literature Review 

A comprehensive literature review was conducted to provide an overview of the current state of play regarding the 

utilization of AI for climate action in developing countries. Regarding the latter, the review included recent theoretical 

and empirical studies that addressed these regions in the context of AI for climate change, along with the existing 

best practices and lessons from developed countries that they can adopt to maximize positive outcomes and overcome 

difficulties or obstacles in implementing AI solutions for climate action. The methodological approach to the 

literature review encompassed the following steps: 

 

Defining search criteria: This initial step involved setting precise search criteria to ensure a comprehensive and 

targeted review of relevant literature. Keywords and phrases were carefully chosen to capture a wide array of 

publications pertinent to the application of AI in climate action in developing countries. The search criteria were 

aligned with the thematic focus of the paper, which includes exploring current AI applications in climate mitigation 

and adaptation strategies, analyzing case studies from LDCs and SIDS, and evaluating the benefits and challenges of 

AI adoption, with the aim of providing recommendations for policy-makers and stakeholders to enhance AI's role in 

advancing climate strategies in these regions. 

 

Selecting databases: A selection of key academic databases was made to source relevant scholarly articles, research 

papers, and reports. The databases chosen include Web of Science (WoS), Scopus, ScienceDirect, SpringerLink, and 

Google Scholar. These databases were selected for their comprehensive coverage of multidisciplinary literature on 

AI applications in climate action. The literature review specifically prioritized studies conducted in developing 

countries, including LDCs and SIDS, aligning with the thematic scope of this technical paper. 

 

Inclusion and exclusion criteria: Publications from 2017 to 2024 were selected to ensure the review reflects the 

most recent developments in the field. The focus is on peer-reviewed articles, research papers, and reports that 

directly address the opportunities, applications, challenges, and risks of AI in climate action. Peer-reviewed sources 

were prioritized. Non-peer-reviewed sources and publications outside this timeframe were excluded.  

 

Search and selection: Relevant publications were identified through a comprehensive search across selected 

databases using specific keywords and phrases related to AI applications in climate action. The search included terms 

such as ‘artificial intelligence for climate mitigation/adaptation’ and ‘machine/deep learning for climate change’, 
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among others. These publications were subsequently scrutinized based on their abstracts and alignment with the 

research objectives. 

 

Detailed Analysis: A comprehensive review of selected scholarly articles, research papers, and reports was 

conducted to extract nuanced insights into AI’s benefits, risks, and challenges for climate action in developing 

countries, with particular emphasis on LDCs and SIDS. Relevant information—spanning AI applications, observed 

outcomes, challenges, geographical variations, and policy implications—was systematically extracted and 

categorized according to predefined themes. Each source underwent critical evaluation based on factors such as peer-

reviewed status, methodological transparency, relevance to the research objectives, and consistency of findings, 

ensuring methodological rigor and credibility for a robust synthesis of findings. 

 

Synthesis of Findings: Insights from the analysis were then consolidated to create a cohesive overview of AI’s role 

in climate action across developing countries. This integrated perspective identifies key patterns and relationships, 

serving as the foundation for subsequent sections of the technical paper and informing discussions on strategies to 

optimize AI-driven climate solutions. 

3.3. Call for Case Study Submissions 

A call for case study submissions was asked to a range of stakeholders actively involved in AI for climate action 

activities in developing countries, specifically targeting those engaged in research or the implementation of AI-related 

projects pertaining to SIDS and LDCs. The call was extended to academic researchers, practitioners, industry 

professionals, and policy makers who are directly involved in the deployment and management of AI technologies 

in various domains. These submissions were instrumental in gathering in-depth insights and firsthand accounts of the 

opportunities and challenges associated with AI projects. The primary goal of these discussions was to unearth 

relevant case studies that could be detailed in the thematic chapters of the paper, thereby providing concrete examples 

of how AI is being applied in real-world settings in developing countries, particularly SIDS and LDCs. This approach 

ensured that the paper was grounded in actual experiences and practices, enhancing its practical value to stakeholders 

in similar contexts.  

3.4. Peer Review 

A peer-review group was established to provide specific suggestions for improvements to the draft technical paper. 

The composition of the peer-review group reflects a strategic effort to include diverse knowledge and perspectives 

on AI for climate action. This group was comprised of 13 experts from academia, industry, NGOs, governmental 

bodies, and international organizations who are recognized for their work in AI, climate science, policy 

implementation, and related issues. The peer review of the draft technical paper was conducted in July 2024. Key 

aspects of their involvement included: 

● Validation of content: They scrutinize the draft to verify the scientific accuracy and relevance of the content, 

ensuring that it reflects the latest advancements and understandings in the field. 

● Inclusion of case studies: Members propose additional case studies that illustrate successful applications or 

ongoing initiatives of AI in climate action, particularly those that are pertinent to the challenges faced by 

SIDS and LDCs. 

Structural feedback: They provide critical feedback on the structure and presentation of the paper to improve its 

readability, impact, and ability to communicate key messages effectively to policymakers as well as practitioners 

and researchers.  
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4. Artificial Intelligence for Climate Action in Developing Countries 

This section offers a comprehensive analysis of existing literature and empirical evidence, focusing on how AI 

algorithms have been leveraged in addressing climate challenges across different global contexts, including both the 

benefits and risks associated with AI adoption in LDCs and SIDS while examining the regulatory landscapes that 

influence AI deployment. The case studies have been selected from inputs provided through the call for case study 

submissions and various literature, including the CTCN knowledge product on AI technologies used in developing 

countries in the Asia-Pacific region (CTCN & NIGT 2024). 

4.1. Early Warning Systems 

AI and ML algorithms have been used for the following: 

● Flood warning systems: AI systems that use rainfall data, river levels, and weather patterns collected by IoT 

sensors to predict flood events have been effectively implemented in several regions, providing communities 

with timely alerts and enabling proactive measures to minimize damage.  

● Food security early warning system: AI systems that use data from weather stations, satellite imagery, and 

soil sensors have provided harvest management insights and predictions helping farmers optimize planting 

and harvesting times, manage resources more efficiently, and anticipate potential issues such as pest 

infestations or adverse weather conditions.  

● Hurricane prediction models: Combining satellite and remote sensing data with AI-driven analysis improves 

the prediction of hurricane paths and intensity, enhancing disaster preparedness and evacuation planning. AI-

enhanced early warning systems have led to improvements in forecast accuracy, longer lead times for 

warnings, and better resource allocation for emergency response, as seen in recent hurricane seasons. 

● Wildfire detection: Integrating data from IoT sensors on temperature, humidity, and wind speed with AI 

algorithms has improved the ability to detect and predict wildfires. This early detection allows for timely 

deployment of firefighting resources, minimizing the destruction caused by these fires. 

 

Case Study: UN Early Warnings for All Initiative (EW4All) 

 

Country: LDCs and SIDS - Ethiopia 

Entities involved:  Microsoft, Planet Labs, University of Washington Institute for Health Metrics and 

Evaluation (IHME), United Nations Office for Disaster Risk Reduction (UNDRR) 

 

Brief description 

The Early Warnings for All initiative, co-led by the World Meteorological Organization (WMO) and the 

United Nations Office for Disaster Risk Reduction (UNDRR), with collaboration from the International 

Telecommunication Union (ITU), and the International Federation of Red Cross and Red Crescent Societies 

(IFRC), is a high-level initiative to help to ensure that everyone on Earth is protected from hazardous 

weather, water, or climate events through life-saving early warning systems by the end of 2027. With 

human-induced climate change leading to more extreme weather conditions, the need for early warning 

systems is more crucial than ever. Systems that warn people of impending storms, floods or droughts are 

not a luxury but a cost-effective tool that saves lives and reduces economic losses. 

 

Early warning systems have helped decrease the number of deaths and have reduced losses and damages 

resulting from hazardous weather, water or climate events. But major gaps still exist, especially in SIDS and 

LDCs. The United Nations Secretary-General, António Guterres, in 2022 called for a global effort to ensure 

that early warning systems protect everyone on Earth by 2027. 
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Climate Change Mitigation and/or Adaption Impacts and Results 

Microsoft, Planet Labs and the University of Washington Institute for Health Metrics and Evaluation 

(IHME), are employing AI, satellite imagery, and predictive modeling to accurately estimate the population 

sizes of communities that are at greatest risk from climate change, as well as tracking population growth 

over time. Gaining a clear understanding of where people live is foundational to taking preparatory measures 

and providing essential resources. 

 

In collaboration with UNDRR and other partners under the Early Warnings for All initiative, Ethiopia’s 

Ministry of Irrigation and Lowland and the Ethiopian AI Institute are utilizing AI-driven methods to identify 

communities at risk of disaster impacts. This initiative is expected to expand to additional Early Warnings 

for All priority countries, addressing evolving disaster preparedness needs. 

 

Previous applications of AI and satellite imagery have demonstrated potential in identifying at-risk 

communities. In collaboration with our non-profit partner SEEDS in India, we apply AI and high-resolution 

satellite imagery to pinpoint homes that are vulnerable to destruction in cyclone-prone areas. This enables 

SEEDS, their partners, and local governments to focus their disaster preparedness and response outreach 

efforts on the most high-risk regions, thereby saving lives and reducing damage.  

 

Recent catastrophic events in Libya and Morocco have also underscored the critical importance of swiftly 

comprehending the magnitude and specifics of affected populations and regions. Time is of the essence in 

such situations. Recent applications of high-resolution satellite data from Planet Labs PBC, combined with 

AI, have shown potential in assisting affected communities. The initiative aims to support response and 

recovery efforts by sharing this valuable information. 

 

Challenges and Lessons Learned regarding Development and Implementation  

The journey of developing and implementing the EW4All initiative is associated with several key challenges 

and also provide valuable lessons: 

The Importance of Comprehensive Global Mapping: One critical lesson learned from this project is the stark 

realization that, in the Global North, there exists an illusion that the maps are up-to-date and fully 

representative of where people reside. However, the 2023 earthquake in Afghanistan revealed a significant 

gap: a majority of those affected in rural areas were not accounted for on any existing maps. This 

underscored the urgent need to ensure that every individual on the planet is mapped, a goal that has now 

become more attainable using AI and thanks to the availability of Planet’s daily satellite data. This capability 

represents an innovative step towards achieving comprehensive global mapping, which is crucial for 

effective disaster response and resource allocation. 

 

The Challenge of Accessible AI Tools in Disaster Response: Another key lesson from this project pertains 

to the accessibility of AI tools in disaster response scenarios. The project highlighted that the tools required 

to run AI models in disaster-affected areas remain too complex for end-users, particularly those in 

organizations that need mapping data but lack in-house software development expertise. This gap was a 

primary driver behind the development of Project HASTE (High-speed Assessment and Satellite Tracking 

for Emergencies). Project HASTE is an open-source tool designed to eliminate the need for advanced 

software development skills, enabling a broader range of users to leverage AI for rapid and effective disaster 

response. This innovation is anticipated to enhance the efficiency and inclusivity of disaster management 

efforts worldwide. 
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Case Study: AI4SIDS 

 

Country: SIDS 

Entities Involve: The University of the West Indies, St. Augustine Campus, as part of the AI for Climate 

Research Cluster within the TTLAB Data Science Group.  

 

Brief Description  

The AI-Driven Climate Resilience Platform for SIDS (AI4SIDS) aims to enhance disaster preparedness and 

resilience in SIDS through AI-driven solutions. By integrating real-time data, predictive analytics, AI-driven 

models including Large Language Models (LLMs), and IoT technologies, it provides actionable insights for 

governments and communities, enabling more effective disaster risk management with minimal human 

intervention. This transformative platform, leveraging advanced AI technologies like GPT-4 for real-time 

data analysis and OpenAI’s Whisper for speech-to-text conversion, AI4SIDS provides localized weather 

alerts, educational tools, and predictive analytics that empower communities to act before disaster strikes. 

This project led by a female leader was the winner of the AI Innovation Grand Challenge hosted by the 

Technology Executive Committee in partnership with Enterprise Neurosystem. 

 

Climate Change Mitigation and/or Adaptation Impacts Results: 

AI4SIDS is currently under development, and it aims to integrate cutting-edge technologies to offer 

comprehensive solutions, including: 

• Real-time Data Collection: Autonomous processing of data from IoT sensors, social media, weather 

forecasts, and more. 

• Predictive Analytics: Advanced algorithms powered by GPT-4 predict climate events, allowing 

governments and communities to prepare in advance. 

• Localized Alerts: Multi-channel alerts delivered via mobile, SMS, TV, and radio in local languages. 

• Educational Resources: Tailored materials to raise community awareness and improve disaster 

readiness. 

• Automated Feedback Loops: Enables governments to refine and optimize disaster response strategies. 
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Case Study: Early Warnings System for Crop Phenotyping and Food and Nutrition Security  

 

Country: Kenya 

Entities Involved: Local Development Research Institute (LDRI), Deutsche Gesellschaft für Internationale 

Zusammenarbeit (GZ) - FAIR Forward 

  

Brief Description 

The cooperation between LDRI and GIZ’s FAIR Forward enables smallholder farmers to use AI technology 

for crop yield prediction and monitoring in Kenya. The AI Early Warning System developed by LDRI, and 

FAIR Forward enhances harvest management for smallholder farmers by delivering timely and accurate 

crop yield predictions. By integrating data from weather stations, satellite imagery, and soil sensors, the 

system provides precise, localized information, enabling farmers to anticipate adverse conditions and 

implement proactive measures. This results in reduced crop losses due to climate variability and optimized 

resource use. The system incorporates local languages, including KiEmbu, Luhya, Kikuyu, and Kiswahili, 

to enhance accessibility for diverse farming communities, thereby broadening its potential impact. 

 

Climate Change Mitigation and/or Adaption Impacts and Results 

The Early Warning System enables farmers to make informed decisions, thereby minimizing crop losses 

and optimizing resource use in the face of climate variability. By offering precise, localized information, 

the system helps farmers anticipate and mitigate potential climate threats. For instance, monitoring 400 

farms across 6 agro-ecological zones in Kiambu and Embu counties has demonstrated the system's 

capability to accurately predict crop yields and identify potential crop failures. The integration of local 

languages—such as KiEmbu, Luhya, Kikuyu, and Kiswahili—ensures that the system's advice is accessible 

and actionable for a diverse range of farmers, increasing its effectiveness across different linguistic 

communities. Additionally, the project has created two open, quality datasets, including a land-use/farm 

boundary estimation dataset and a temporal image-based dataset, which enhance the system's ability to 

provide actionable insights. The development of algorithms for analyzing earth observation data further 

supports crop-specific early warning mechanisms and predictive climate-change recommendations. 

 

There are ongoing discussions to expand the system to Uganda and Tanzania, with adaptations for new 

crops and regions, further supporting the agricultural community across East Africa. This initiative 

addresses both immediate agricultural needs and contributes to long-term food security and economic 

stability in the region. 

  

Challenges and Lessons Learned regarding Development and Implementation 

Challenges encountered during the implementation of the initiative included ensuring data accuracy from 

diverse sources, integrating AI models with local agricultural practices, and addressing language barriers. 

The project highlighted the importance of community involvement, continuous adaptation to local 

contexts, and robust evaluation metrics. Expanding to new regions and crops required careful planning and 

collaboration with local stakeholders. Extreme drought tendencies caused acute food insecurity for 4.2 

million people in Kenya, particularly in the Arid and Semi-Arid Lands (ASALs). Farmers mistrusted 

inconsistent weather predictions and relied on indigenous signs. Involving farmers in data collection has 

built trust and ensured data accuracy. Training and equipping Village Based Advisors (VBAs) with 

smartphones and the ODK application was critical for efficient data collection. 

4.2. Earth Observation   

Through the use of satellites, EO data provide unequivocal evidence of the changes taking place on Earth by 

monitoring parameters such as temperature, sea levels, atmospheric gases, ice, and forest coverage. This scientific 

data supports the understanding of how the complex Earth system works and aims to provide decision makers with 

hard evidence of the need for putting forward adaptation and mitigation plans. 

 

In this context AI algorithms present a wide range of applications including transforming a satellite image to a street 

map, cloud detection in order to reduce the volume of data to be downlinked to the ground, autonomous detection, 
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and classification of maritime vessels, as well as forest monitoring and anomaly detection. The following areas 

highlight the key applications in this regard: 

 

4.2.1. Examination of Sea Level Rise and Coastal Transformations 

 

The accurate prediction and monitoring of sea level rise are important for the protection of coastal areas and the 

planning of risk mitigation strategies. Various AI-based methods have been developed to address this complex issue, 

significantly enhancing the accuracy and efficiency of sea level predictions.  Techniques like hybridization, ensemble 

modeling, data decomposition, and algorithm optimization are identified as key strategies for enhancing sea level 

predictions. DL, in particular, has shown superior performance due to its ability to automatically extract features and 

store memory, making it more effective than traditional ML models. 

 

The use of AI in monitoring sea level rise has been critical for SIDS like the Maldives, where rising waters pose a 

significant threat to infrastructure and communities (UNFCCC 2023). AI models enhance the accuracy of sea level 

predictions by analyzing satellite imagery and oceanographic data in real time, allowing policymakers to develop 

proactive coastal defense strategies and disaster preparedness measures.  

 

Balogun and Adebisi (2021) integrate a broad range of ocean-atmospheric variables to predict sea level variations 

along the West Peninsular Malaysia coastline using LSTM models. Their findings suggest that atmospheric processes 

significantly influence prediction accuracy and that combining oceanic and atmospheric variables significantly 

improves model performance. The LSTM model, which incorporates both types of variables, demonstrates the 

highest accuracy in most locations or regions, underscoring the importance of considering multiple influencing 

factors in sea level prediction. 

 

Ishida et al. (2020) develop an hourly-scale coastal sea level estimation model using LSTM network. The model 

includes the effects of gravitational attractions, seasonality, storm surges, and global warming. Results show that the 

LSTM model accurately reconstructs these effects and improves prediction accuracy when incorporating long-term 

duration temperature data, demonstrating the robustness of DL in sea level forecasting. 

 

Case Study: Safeguarding Coastal Ecosystems: Solomon Islands' ICZM with AMAP 

 

Country: Solomon Islands 

Entities involved: Government of the Solomon Islands, CTCN 

 

Brief Description 

The degradation of coastal ecosystems, such as mangroves, poses a significant threat to the country's 

biodiversity, food security, and resilience to climate change. Mangroves play a crucial role in coastal 

protection, providing a natural barrier against storms and erosion. To address these challenges, the 

government os the Solomon Islands, with support from the CTCN’s technical assistance project, has 

implemented ecosystem-based adaptation solutions for mangrove protection. The development of Artificial 

intelligence-based Mangrove Adaptive mapping tools in Pacific Island regions (AMAP), the output of the 

CTCN TA, represents a significant step in this direction. 

 

AMAP processes satellite images, filtering out those with excessive cloud cover and removing clouds from 

the remaining images. It then calculates a mangrove-specific index to facilitate mangrove detection. The U-

Net deep learning algorithm is employed to classify mangroves based on the mangrove-specific index. This 

enables the generation of detailed maps illustrating mangrove distribution, aiding in conservation, 

restoration, and management efforts. AMAP leverages historical climate data and climate change scenarios 

to develop models using various machine learning algorithms. These models are then combined through an 

ensemble approach to predict changes in vegetation species, including mangroves.  
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Climate Change Mitigation and/or Adaptation Impacts and Results 

Improved Monitoring: AMAP facilitates the assessment of mangrove health and distribution over time, 

supporting the identification of areas requiring protection or restoration.  

Enhanced Management: The system equips managers with the information needed to make informed 

decisions about conservation and adaptation strategies, ensuring the sustainable management of mangrove 

ecosystems.  

Climate Change Adaptation: AMAP's ability to predict future habitat distributions under different climate 

change scenarios supports the development of proactive adaptation measures to protect mangroves and the 

communities that depend on them.  

Resource Optimization: By automating the analysis of satellite imagery and providing detailed mangrove 

maps, AMAP saves valuable time and resources, allowing for more efficient and effective conservation 

efforts 

 

 

4.2.2. Detection of Deforestation and Forest Degradation 

 

Deforestation is a critical global environmental challenge with far-reaching implications for biodiversity, climate 

change, and livelihoods. Satellite imagery and IoT sensors, combined with AI algorithms, enable the detection and 

monitoring of deforestation and forest degradation. AI models analyze high-resolution optical and laser-based 

satellite images, often coupled with ground-truth data, to identify changes in forest cover, detect illegal logging 

activities, and monitor forest health over time. They can aid in mitigating climate change by implementing efficient 

and precise sustainable forest management practices to decrease deforestation (Liu et al. 2021). They can distinguish 

between different types of vegetation and land cover, making it possible to accurately track the extent and rate of 

deforestation. Haq et al. (2024) explored the application of AI, IoT, and remote sensing in addressing deforestation. 

These technologies facilitate real-time monitoring, early detection, and intervention in activities like illegal logging, 

plant diseases, and forest fires. By analyzing the strengths and limitations of IoT, satellite imagery, drones, and AI 

algorithms, the study underscores their potential in forest conservation.  

 

Nguyen-Trong and Tran-Xuan (2022) focused on improving forest cover change detection using AI-based remote 

sensing techniques in Viet Nam. Traditional methods, such as multi-variant change vector analysis (MVCA) and 

normalized difference vegetation index, rely heavily on domain knowledge to set threshold values, limiting their 

applicability. The study proposed a new method utilizing multi-temporal Sentinel-2 imagery and a U-Net-based AI 

segmentation model to detect coastal forest cover changes. This approach minimizes the need for extensive domain 

knowledge by harnessing available datasets and ground-truth labels. The results showed a high accuracy of 95.4% in 

detecting forest changes and outperformed the traditional MVCA method by 3.8%, highlighting its effectiveness in 

forest resource management and planning in Viet Nam.  

 

In Project Guacamaya (Elliott 2024) in Colombia the CinfonIA Research Centre, the Instituto Sinchi and Microsoft’s 

AI for Good Lab are using best-in-class AI models to monitor deforestation and protect the biodiversity of the 

ecosystem. This project combines satellite imagery, camera traps, and bioacoustics data to monitor and analyze 

deforestation patterns rapidly and accurately reducing the time required to identify deforestation hotspots, enabling 

quicker response and intervention. The initiative supports conservation efforts and aids in the creation of precise 

maps and data crucial for reforestation and carbon capture projects.  

Dominguez et al. (2022) utilized a dense neural network for spatial data modeling and an LSTM for temporal data 

on deforestation to forecast incremental deforestation and deforestation rates in the Amazon rainforest. By comparing 

prediction results and continuously retraining the model with new data, the authors were able to estimate future forest 
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loss rates, enabling proactive measures. Their approach effectively produced deforestation risk maps, which were 

validated in study areas in Madagascar and Mexico and demonstrated the techniques' reliability.  

Recent AI initiatives by World Resources Institute (WRI) have made open, high-resolution global remote sensing 

datasets available for the first time. These maps provide a valuable basis for monitoring and protecting forests 

worldwide, especially under newly introduced deforestation regulations, such as the EU Deforestation Regulation 

(European Commission 2023) that require accurate forest monitoring for traceability. Lang et al. (2023) created a 

global canopy height map with a 10 m ground sampling distance, utilizing a probabilistic DL model that combines 

GEDI LiDAR data with Sentinel-2 optical imagery. This approach improves canopy-top height retrieval, quantifies 

uncertainty, and enhances the mapping of tall canopies with high carbon stocks, which are critical for effective carbon 

and biodiversity modeling. According to this map, only 5% of the global landmass is covered by trees taller than 30 

m, and only 34% of these tall canopies are located within protected areas. This approach can support ongoing forest 

conservation efforts and foster advances in climate, carbon, and biodiversity modeling. 

However, there remains a need for more precise local adaptation and validation, particularly through the integration 

of ground reference data collected through direct on-site observation, as this enhances the accuracy of AI models by 

correcting biases, refining predictions, and ensuring alignment with real-world environmental conditions. These 

ground reference data are crucial for improving the accuracy and relevance of remote sensing data and ensuring that 

local conditions and community needs are adequately considered. Such validation is important for the development 

and refinement of existing AI approaches and global maps in the field of forest monitoring and protection. For 

example, in Côte d'Ivoire and Ghana, where cocoa cultivation is a significant driver of forest loss, integrating ground 

reference data, such as field-based deforestation assessments and satellite-derived land cover classifications, has 

proven important for accurate mapping and understanding of the impact of agricultural expansion (Kalischeket al. 

2023). Similarly, in Southeast Asia, where commodity-driven deforestation affects carbon stocks and biodiversity, 

an automated approach using DL for canopy height estimation from GEDI LIDAR and Sentinel-2 imagery has been 

developed. This method provides high-resolution maps of canopy top height with an accuracy of 86%, classifies High 

Carbon Stock forests and degraded areas and has produced the first high carbon stock map for Indonesia, Malaysia, 

and the Philippines (Lang et al, 2021). The combination of ground-based validation and AI-driven modeling in such 

applications strengthens the precision of local adaptation strategies, demonstrating how AI can enhance forest 

monitoring and protection through improved accuracy and classification of at-risk areas. 
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Case Study: AI for forest conservation: AI-generated Indicative High Carbon Stock Maps in 

Indonesia and India 

 

Country: Indonesia 

Entities Involved: Deutsche Gesellschaft für Internationale Zusammenarbeit (GZ) - FAIR Forward, JKPP 

(Network for Participatory Mapping), ETH Zürich Ecovision Lab, High Carbon Stock Approach (HCSA) 

foundation, Indonesian government agencies, incl. Bappenas (Indonesia's National Development Planning 

Agency). 

 

Brief Description 

In Indonesia, the FAIR Forward initiative has collaborated with JKPP (Network for Participatory 

Mapping), HCSA and Bappenas to create an AI-driven, large-scale indicative map of high carbon stock 

(HCS) forests. This project involves comprehensive field data collection (Figure 3) across key regions 

such as Sumatra, Kalimantan, and West Papua. Biomass data are collected from ground forest plots and 

validation points to ensure accurate mapping. The project utilizes remote sensing technology and ML to 

identify and classify HCS areas, which include primary forests, regenerating forests, and mixed 

agroforestry landscapes. The HCS approach is currently being scaled to India with the government of Goa 

to build forest fire maps and accurate biomass maps. The project will create open-source AI based tools 

for early forest fire detection and monitoring through community engagement and volunteering. Given the 

global relevance of this subject, the open tools will utilize remote sensing and ML to potentially create a 

global carbon stock map.  

    

 
 

Figure 3. The field plot data collection 

 

Climate change Mitigation and/or Adaptation Impacts and Results 

The HCS maps developed through this initiative are crucial for Indonesia’s climate change mitigation 

strategies by providing detailed carbon stock data that enhances carbon accounting and conservation 

planning. For example, in Kalimantan, the project has leveraged field plot data and remote sensing 

technologies to delineate extensive high carbon stock forest areas. This approach not only aids in effective 

conservation planning but also fortifies climate change mitigation strategies by prioritizing the protection 

of both primary and regenerating forests. 

 

The integration of Free, Prior, and Informed Consent (FPIC) alongside indigenous knowledge enriches the 

conservation process, ensuring that local rights are respected and that conservation strategies benefit from 

local expertise. This approach fosters trust and collaboration between communities and conservationists, 

leading to more sustainable and culturally sensitive outcomes.  

 

Additionally, the open-access nature of these datasets facilitates global research and promotes 

international cooperation. By making data available for public use, the initiative supports a broader 

understanding of forest dynamics and climate change impacts. Collaboration with national and regional 

agencies ensures that this data is effectively incorporated into land use planning frameworks, including 

Indonesia's new forest conservation policy. This policy uses HCS maps to guide sustainable land use and 

forest protection, demonstrating the project’s impact on shaping national strategies for climate resilience 

and forest conservation. 

 

Challenges and Lessons Learned regarding Development and Implementation 
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The project faced several key challenges: Ensuring data accuracy across diverse landscapes required tailored 

approaches and extensive field validation, highlighting the need for collaboration with local experts to 

address landscape-specific issues. Integrating traditional knowledge with advanced biomass data proved 

crucial yet challenging, underscoring the importance of engaging local communities to enrich the contextual 

understanding of forest ecosystems. Navigating the complexities of Free, Prior, and Informed Consent 

(FPIC) and managing data sharing with local communities involved addressing varied cultural, legal, and 

ethical considerations. This demonstrated the necessity of a robust FPIC process, continuous community 

engagement, and transparent data governance to build trust and ensure ethical data use. Logistical challenges 

in field data collection, including coordinating with local partners and managing activities in remote areas, 

emphasized the importance of careful planning and strong partnerships. Additionally, the implementation 

of advanced technologies like GIS and ML required significant capacity building among local stakeholders, 

revealing that training and support are crucial for effective technology use. Overall, the project highlights 

the need for a collaborative approach that integrates technology with local knowledge while ensuring ethical 

and effective data practices. 

 

 

4.2.3. Detection of Pollution Sources 

 

In addition to harming human health, pollution hinders sustainable ecological growth. AI and ML algorithms applied 

to the analysis of satellite imagery and IoT data, can streamline the identification and monitoring of pollution and its 

sources by analyzing the spectral signatures of various pollutants and chemicals.  

 

Remote sensing, in particular historical aerial photographs, have been useful in monitoring and documenting changes 

at hazardous sites over time, providing reliable data for pollution detection and mitigation (Popescu et al. 2024; 

Mertikas et al. 2021). Jia et al. (2021) developed a new modeling method to forecast soil arsenic levels using high-

resolution aerial imagery (HRAI). This method employs cameras mounted on aircraft to capture high-resolution (0.1–

0.5 m) images of large areas. Four different ML algorithms were constructed to predict arsenic risk levels, with the 

Extreme Random Forest (ERF) algorithm achieving higher level prediction and accuracy. Remote sensing and aerial 

imagery provide continuous spatial data which, when combined with ML models, produce highly accurate maps of 

hazardous substances in the environment—something that standard geostatistical techniques could not achieve 

(Popescu et al. 2024).  

 

One notable application of AI in environmental monitoring is the use of electronic nose (E-nose) technologies. These 

technologies employ olfactory algorithms to analyze sensor data and detect hazardous chemicals by their unique 

chemical signatures, allowing for immediate response to potential threats (Jeong and Choi 2022; Popescu et al. 2024). 

E-nose technologies have diverse applications, including monitoring urban air quality, detecting industrial leaks, and 

identifying hazardous materials (Jeong and Choi 2022) including. volatile organic compounds (VOCs), methane and 

emissions from industrial activities.  

 

Challenges remain, such as ensuring the accuracy and reliability of these sensors and finding optimal methods to 

integrate them at scale into current environmental monitoring systems. 

 

4.2.4. Biodiversity Monitoring and Assessment 

 

Ecosystem biodiversity plays an important role in countering climate change, and AI systems can support its 

monitoring and assessment by helping identify various species and habitats from satellite images, providing data on 

species distribution and habitat health, usually a task that would require manual data annotation and extensive time 

consumption without the support of AI. 
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Numerous examples demonstrate the growing use of AI in enhancing biodiversity monitoring and conservation 

efforts. Rule-based systems like Artificial Intelligence for Ecosystem Services (ARIES) are among the most common 

and popular tools for modeling ecosystem services (see, e.g., Bibri 2024; Nishant et al. 2020). Empirical studies 

further validate these applications (Domisch et al., 2019; Sharps et al., 2017; Willcock et al., 2018). As noted by 

Death (2022), ARIES integrates multiple ML models to understand complex ecological relationships, thereby 

improving the accuracy and effectiveness of biodiversity conservation strategies.  

 

In addition to ARIES, other AI algorithms play a significant role in biodiversity and ecosystem health. CNNs are 

used to analyze and classify high-resolution images for species identification and habitat mapping, providing critical 

data for conservation efforts (Christin et al. 2019). Random Forest (RF) algorithms are employed to model species 

distribution and predict biodiversity patterns by integrating various environmental variables (Cutler et al. 2007). 

Moreover, Bayesian Networks (BN) aid in understanding complex ecological interactions and predicting the impacts 

of environmental changes on ecosystem health (Marcot et al. 2006).  

 

Case Study: Using ML to Identify Priority Sites for Integrating Mangrove Restoration with 

Sustainable Aquaculture Intensification 

 

Country: Indonesia and the Philippines 

Entities Involved: This project brought together experts from academia, conservation organizations, and 

the tech industry, including Arizona State University, Conservation International, Konservasi Indonesia, 

and Thinking Machines. Funding was provided by the Climate Change AI Innovation Grants program, 

with support from the Quadrature Climate Foundation, Schmidt Futures, and the Canada Hub of Future 

Earth. 

 

Brief Description 

In this example of an AI-powered climate solution applied in LDCs, a diverse team of academics, 

conservation practitioners, and tech industry experts developed a rapid assessment tool, powered by AI 

and earth observation data, to identify and validate priority sites in Indonesia and the Philippines for 

deploying loans to shrimp farmers to improve shrimp production and restore mangroves in a program 

called Climate Smart Shrimp (CSS). 

 

Shrimp aquaculture has grown 100-fold over the last 40 years, from an estimated 74,000 metric tons in 

1980 to 7.5 million metric tons in 2022. This rapid growth has come at the cost of critical coastal 

ecosystems, especially mangroves. While deforestation rates have decreased from 0.21% (1996-2010) to 

0.04% (2010 to 2020), at least 35% of global mangroves were deforested in the late twentieth century, and 

the ecosystem services and climate benefits they provided remain lost. 

 

Conservation International’s CSS program supports communities' livelihoods and food security while also 

improving coastal resilience and adaptation to climate change. The initiative provides resources for small- 

and medium-sized farmers to sustainably intensify production on a portion of their farm in exchange for 

mangrove restoration on the remainder of the farm. This enables smaller farms to be more competitive 

within the global commodity shrimp market while providing sustained funding and opening available 

parcels for coastal mangrove restoration. But not all aquaculture farms are suitable for such an approach. 

This project used ML and earth observation data to identify and classify aquaculture farms that are 

abandoned or low productivity. The team then combined this information with open data on sea level rise, 

flood risk, infrastructure access, historical mangrove cover, and other attributes to identify viable sites for 

CSS. Identifying a pipeline of optimal sites accelerates CI's ability to engage farmers, industry, and 

communities, and scale CSS. 

 

Climate Change Mitigation and/or Adaptation Impacts and Results 

The site assessment tool enables CI and its project partners to apply CSS more efficiently and effectively 

in shrimp aquaculture geographies to support livelihoods and food security while providing climate 

mitigation, climate adaptation, and coastal resilience benefits for coastal communities. 
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While the tool was designed to streamline the implementation of CSS, it can also guide conservation 

practitioners on where to focus other nature-based solution approaches. The tool can identify areas that are 

suitable candidates for restoring mangroves to increase forest cover and are also viable for intensifying 

shrimp aquaculture to contribute towards food security and support local livelihoods. 

 

While the tool in its current form helps CI to rapidly evaluate the hundreds of thousands of potential 

hectares where CSS might be implemented and find optimal locations, slight updates or changes to the 

scoring criteria could make this tool applicable in a wide range of coastal restoration applications. 

 

Challenges and Lessons Learned Regarding Development and Implementation 

In development and implementation of the tool, we encountered several challenges and learned an 

important lesson, namely: 

● Public data on aquaculture production in LDCs are not available, restricting the use of potential AI 

approaches. We spent substantial resources developing training datasets for ML. 

● Spatially explicit data on land cost and land tenure are also not available for many LDCs. As CI has 

developed more CSS sites, it has become clear that these two variables are critical determinants of 

project viability. We attempted to use proxy data related to land value and ownership, but we did 

not have sufficient resources to develop robust datasets. 

 

AI tool developers need to consider unintended uses prior to product development. 
 

 

The study by Hirn et al. (2022) investigated the complex patterns of species coexistence in diverse ecological 

communities using GenAI. Understanding these patterns is crucial for biodiversity conservation, yet traditional 

experimental approaches struggle with the complexity caused by indirect interactions among species. To address this 

challenge, the authors applied cutting-edge ML techniques, specifically Generative Adversarial Networks (GANs) 

and Variational Autoencoders (VAEs), to predict species coexistence in vegetation patches. 

The GANs were highly effective in reproducing realistic species compositions and identifying species' preferences 

for different soil types. Similarly, the VAEs demonstrated high accuracy, achieving above 99%. The study revealed 

that high-order species interactions tend to suppress the positive effects typically seen in simpler interactions. By 

analyzing artificially generated data, the researchers could identify pioneer species capable of promoting greater 

biodiversity in distinct patches. The findings highlight the potential of GenAI in advancing ecological research by 

overcoming the limitations of traditional methods and offering new insights into species coexistence and community 

assembly. This approach opens opportunities for deeper exploration of biodiversity maintenance in complex 

ecosystems. 

 

4.2.5. Nuanced Land Use Alterations 

 

Land and climate interact in complex ways through multiple biophysical and biochemical feedback. Changes in land 

use patterns significantly impact climate dynamics through alterations in carbon storage, GHG emissions, and 

ecosystem resilience. AI-powered analysis of satellite imagery can speed-up the detection of subtle changes in land 

use, such as urban expansion, agricultural activities, and infrastructure development across different spatial and 

temporal scales. By comparing these datasets, spatial land planning becomes more efficient, enhancing the rationality 

and feasibility of planning schemes (Chen et al., 2023). Moreover, aerial imaging analysis to identify physical surface 

materials or human land use highly advance urban land use investigations, providing substantial cost and time savings 

(Chen et al., 2023). AI systems can be leveraged to enhance land classification by making it possible to analyze a 

vast quantity of data, recognizing patterns and so facilitating decision-making. Kerins et al. (2020) demonstrated the 

viability of automated urban land use/land cover mapping using ML models and satellite imagery. The researcher 

developed customized models for 11 cities in India and used these models to generate comprehensive maps of the 



TEC/2025/30/6Rev 

 33 

corresponding cities at multiple points in time. By tracking these changes over time, AI systems aid in understanding 

the impacts of human activities on the environment and in planning sustainable land use practices.   

 

Dousari et al. (2022) utilized SVM and ANN to evaluate and predict changes in land use and cover in Kuwait. Nguyen 

et al. (2021) proposed a method for openly accessing existing data and Sentinel-2 satellite imagery through ML 

algorithms, subsequently using land use maps to study the impact of land use changes on sustainable development 

through both local and global indicators. Recent studies underscore the growing role of ML in environmental 

management in land-use classification. Talukdar et al. (2020) focused on the application of ML classifiers for 

satellite-based land-use and land-cover classification, highlighting the technology's ability to enhance accuracy and 

efficiency in monitoring changes in terrestrial ecosystems. Nonetheless, DL models are highly effective for 

categorizing land cover or land use and can achieve high accuracy in classifying different types of habitations (Alem 

and Kumar 2022). CNNs, which excel in many images classification tasks, outperform SVMs, RF, and k-nearest 

neighbors (KNN) in land cover and land use classification (Carranza-García et al. 2019). 

 

A recent empirical study by Guzder-Williams et al. (2023) proposed a ML method to automate the production of 

intra-urban land use maps using Sentinel-2 imagery, which is particularly beneficial for developing countries, as well 

as LDCs and SIDS. The novel neural network architecture created for this task produced 5-meter resolution land use 

maps for a global sample of 200 cities, spanning 78 countries and various population sizes. The model reduces 

computational resources. The main results showed high accuracy, with tier-1 and tier-2 achieving 86% and 79% 

accuracy, respectively, and tiers 3 and 4 achieving 75% and 71%. Additionally, a roads-only model compared 

favorably with existing datasets, and an Informal Settlement Classifier accurately classified 87% of informal 

settlements. These findings demonstrate the potential for regularly updated, global intra-urban land use maps at a 

fine resolution to support urban planning and policymaking in resource-limited regions. 

 

Another empirical study by Bindajam et al. (2021) investigated the dynamics of land use and land cover (LULC) 

changes and their impact on ecosystem services value (ESV) from 1990 to 2028 in Abha-Khamis, Saudi Arabia. 

Using support vector machine (SVM) classification, they mapped LULC for 1990–2018 and analyzed changes using 

a delta change method and a Markovian transitional probability matrix (TPM). The authors found that urban areas 

increased by 334.4% from 1990 to 2018. The TPM indicated that built-up areas were the most stable LULC type, 

while agricultural land, scrubland, exposed rocks, and water bodies were increasingly converted into urban areas. 

The study also predicted future LULC for 2028 using an artificial neural network-cellular automata model, indicating 

significant urban expansion at the expense of natural ecosystems. 

 

4.2.6. Monitoring of Carbon Dioxide and Methane Emissions 

 

AI algorithms can also be leveraged to enhance the analysis of vast amounts of data on carbon dioxide (CO2) and 

methane emissions collected by remote sensing technologies. By providing real-time insights they could be beneficial 

in verifying compliance with emission reduction commitments, understanding emission sources, and guiding policy 

decisions to address climate change effectively. Das et al. (2020) proposed a robot designed for deployment in 

unknown and uneven environments, capable of recognizing hazardous gases such as CO2 and liquefied petroleum 

gas with an average accuracy of 98%. The robot is equipped with AI to avoid collision obstacles, detect the presence 

of humans, and map the locations of detected gases in real-time using a GPS module. Jualayba et al. (2018) designed 

a monitoring and warning system equipped with sensors for hydrogen, liquefied petroleum gas, and methane. This 

system uses color-coded indicators to display safety statuses based on detected gas levels. When a medium level of 

gas is detected, an exhaust fan is activated. At dangerous levels, an alarm buzzer is triggered to alert people about 

the gas leakage and the need to reduce the concentration of the detected gas. 
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Li et al. (2021) focused on the optimization of internal combustion engine performance using a novel approach that 

couples ANN with GA. Their method, targeting the direct dual fuel stratification (DDFS) strategy, improved the 

accuracy and stability of performance predictions and was more efficient than traditional methods. The ANN-GA 

approach achieved higher fuel efficiency and lower nitrogen oxide emissions while reducing computational time 

significantly—by over 75% compared to the conventional Computational Fluid Dynamics-Genetic Algorithm (CFD-

GA) methods. This efficiency stems from the ANN's lower computational demands and its ability to manage large 

datasets and variable parameters effectively, highlighting its potential to enhance engine performance optimization 

further. Overall, the ANN-GA method demonstrates superior accuracy, efficiency, expandability, and flexibility in 

optimizing the DDFS strategy. 

 

ML is increasingly being applied to enhance various CO2 management processes. Indeed, the increasing urbanization 

and industrial activities in metropolitan areas have escalated air pollution levels, necessitating advanced air quality 

prediction and monitoring systems. Schürholz et al. (2020) developed a context-aware air quality prediction model 

using LSTM DNN, integrated with data from pollution sources and users' health profiles. This model, implemented 

through the My Air Quality Index (MyAQI) tool in Melbourne, demonstrated high precision (90-96%) in predicting 

air quality, displaying its adaptability to individual health conditions. Similarly, Sowmya and Ragiphani (2022) 

proposed an air quality monitoring system leveraging IoT devices and AI tools to manage air pollutants effectively. 

Their system employs sensors to measure harmful gases and utilizes SVM algorithm for future air quality predictions. 

This approach aims to enhance public awareness and enable proactive measures to maintain indoor air quality. 

Almalawi et al. (2022) employed linear regression, support vector regression (SVR), and gradient boosting decision 

trees to develop a model for analyzing the air quality index using sensor data. Alimissis et al. (2018) utilized ANN 

and multiple linear regression, discovering that ANN offer computational advantages, especially when the density of 

air quality monitoring networks is limited. 

 

Furthermore, can contribute to achieving carbon neutrality by reducing GHG emissions and mitigating climate 

change (Jahanger et al. 2023; Sahil et al. 2023). This entails optimizing energy use, improving efficiency in various 

sectors, and enhancing the deployment of renewable energy technologies. AI applications can also help in monitoring 

and managing carbon footprints in industries, cities, and across energy systems, making processes more sustainable 

and less carbon intensive. Additionally, AI systems can predict the behavior of CO2 in storage sites and monitor these 

sites to ensure the permanent trapping of the gas underground (Kushwaha et al. 2023). Furthermore, AI's ability to 

develop innovative carbon storage methods, such as creating promising materials for sustainable CO2 management, 

represents another significant strength (Zhang et al. 2022). 

 

The main challenges and risks that can be encountered while deploying AI systems for the use cases presented in 

Section 4.2 are: 

● Data scarcity: Sparse sensor networks and limited historical data can reduce the accuracy of analyses and 

early-warning systems. 

● Technical and Financial Constraints: High costs for satellite data or advanced computing hardware/software 

can be prohibitive. 

● Connectivity & Power Reliability: Unreliable internet or electricity limits the real-time transfer and 

processing of EO data. 

● Capacity Gaps: Shortage of local experts who can interpret data and maintain analytical systems. 



TEC/2025/30/6Rev 

 35 

4.3.  Climate Simulation and Prediction 

Machine learning (ML) can be leveraged to improve climate modeling by enhancing the accuracy of weather 

predictions and understanding climate change impacts. It helps identify patterns in climate data, aiding decision-

making and policy development. With the vast data from Earth Observation satellites, AI and ML have become 

essential for weather forecasting and disaster response. These advanced algorithms predict extreme weather events 

like hurricanes and floods by analyzing historical and real-time data, highlighting the importance of improved 

observational techniques.  

 

4.3.1. Climate Modeling 

NASA and IBM Research have collaborated to develop the Prithvi-weather-climate foundational model, an AI-

powered tool designed to improve weather and climate forecasting at both regional and global scales (Barnett 2023). 

This model leverages NASA’s extensive datasets, such as MERRA-2, and uses AI to detect patterns that can be 

applied across various weather and climate scenarios. The model is part of NASA's strategy to produce actionable, 

high-resolution climate projections that can inform decision-making for communities, organizations, and 

policymakers. The Prithvi model enhances applications like severe weather detection, localized forecasts, and 

improving spatial resolution in climate models. Developed in collaboration with IBM, Oak Ridge National 

Laboratory, and other partners, the model is designed to scale across regions while maintaining resolution and 

capturing complex atmospheric processes even with incomplete data. Prithvi-weather-climate is one of several 

models in the Prithvi family, aligning with NASA’s open science principles to democratize access to scientific data. 

It will be available later this year on Hugging Face, a platform for ML and data science. This initiative is a step 

forward in making NASA’s vast Earth observation archives more accessible and impactful for the global community. 

AI's capabilities in data processing and collection enhance the accuracy of digital model predictions, bridging the gap 

between these models and real-world conditions, thus leading to more accurate forecasts of future outcomes 

(McGovern et al. 2017). High-quality climate predictions are important for understanding the impacts of various 

GHG emission scenarios and for developing effective strategies to mitigate and adapt to climate change (Bonan and 

Doney 2018). 

 

AI systems can aid in mitigating climate change by improving the prediction of extreme weather events. Weather 

forecasting is fundamentally a data issue, and as the volume of data analyzed by AI increases, its accuracy will 

improve, thereby reducing the impacts of extreme weather events (Chen et al. 2023). By analyzing vast amounts of 

historical weather data, AI models can identify patterns and anomalies, enabling the development of more accurate 

forecasting models. These improved predictions help in better preparing for and responding to severe weather, 

ultimately reducing potential damage, and enhancing resilience. Indeed, advanced ML and DL techniques are being 

widely applied to identify complex patterns and correlations that may not be immediately apparent to human analysts. 

For example, ML techniques such as RF and SVM can be used to analyze climate data to predict weather patterns 

and extreme events. DL techniques, including CNNs and RNNs, are particularly effective in processing large volumes 

of data and capturing intricate temporal and spatial dependencies, which are essential for accurate climate modeling 

and prediction, thereby improving early warning systems. To do so, they process data from a variety of sources, 

including satellite imagery, weather station records, and ocean buoys, to generate comprehensive datasets.  Evidence 

suggests that incorporating big data mining and neural networks into the weather prediction workflow can enhance 

the accuracy of forecasts (Shultz et al. 2021). This revolves around whether DL approaches could entirely replace 

current numerical weather models and data assimilation systems. Integrating AI with numerical climate simulation 

data can effectively bridge observation data gaps, thereby reducing uncertainty and bias in climate predictions 

(Kadow et al. 2020). Existing weather forecasting technologies based on physical and numerical models are often 
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inaccurate and limited, as they do not account for variables like global warming, whereas AI technologies can predict 

long-term climate change and short- to medium-term extreme weather events more effectively (Jeon and Kim 2024). 

 

Lopez-Gomez et al. (2023) focused on improving extreme heat forecasts using neural weather models (NWMs) with 

convolutional architectures. Trained on historical data, these models predicted surface temperature anomalies 

globally for up to 28 days. The study found that using custom loss functions tailored to emphasize extremes 

significantly improved heatwave prediction accuracy. This method also maintained general temperature prediction 

skills and showed better performance than existing models overall lead times. 

 

From an empirical perspective, real-world implementations of AI and ML techniques are increasingly proving their 

value in enhancing climate prediction and disaster preparedness. Kagabo et al. (2024) developed a precise rainfall 

forecast model using ML techniques, specifically LSTM networks, to predict extreme rainfall events in Rwanda. The 

study analyzed extensive historical rainfall data and found that LSTM outperformed other algorithms such as CNNs 

and GRUs, achieving up to 99.8% accuracy. The research emphasized LSTM's ability to handle data irregularities, 

significantly improving forecast results and enhancing disaster preparedness and risk mitigation efforts in Rwanda. 

Similarly, AI is being leveraged through a United Nations initiative in Africa to support communities vulnerable to 

climate change in countries such as Burundi, Chad, and Sudan (WEF 2024). The IKI Project employs AI technology 

to forecast weather patterns, enabling communities and authorities to better prepare for and adapt to climate change 

impacts. 

 

4.3.2. Climate Scenario Simulations and Adaptation Strategies 

 

AI drives significant improvements in the simulation of climate scenarios, offering robust tools for evaluating 

adaptation strategies and providing decision-makers with actionable insights. By harnessing advanced ML algorithms 

and data analytics, AI systems enhance the accuracy and efficiency of climate models by processing vast amounts of 

climate data, identifying complex patterns, and predicting future climate conditions under various scenarios. These 

capabilities enable researchers to explore potential impacts of different environmental policies and practices, thereby 

aiding in the development of effective and responsive climate action plans. Moreover, AI-driven simulations facilitate 

a deeper understanding of regional climate changes, aiding in tailoring adaptation measures to local contexts and 

improve resilience against climate-related risks. 

 

Bonan and Doney (2018) examined recent advancements in ESM that incorporate both terrestrial and marine 

biospheres. These models effectively capture the interactions between the physical and biological components of the 

Earth System (ES), providing valuable insights into climate impacts on critical societal issues such as crop yields, 

wildfire risks, and water availability. However, despite these advances, further research is needed to address model 

uncertainties and improve the translation of observations into abstract model representations.  

In the study by Bowes et al. (2019), LSTM networks and RNNs were used to forecast groundwater table responses 

to storm events in Norfolk, Virginia. Similarly, Jeon et al. (2018) utilized deterministic and decision support models 

to evaluate the performance of BMPs under various climate scenarios, refining BMPs for future conditions. In urban 

settings, Skiba et al. (2017) used artificial neural networks to model the economic dependence between urban policy 

and energy efficiency, offering insights for energy-efficient urban development. 

Van der Woude et al. (2024) introduced an innovative application of ANN to forecast biocapacity and ecological 

footprint, specifically focusing on forest land indicators in Latin America and the Caribbean until 2030, aligning with 

SDGs. By forecasting these indicators, the study sought to aid in strategic planning and decision-making processes 

that enhance environmental sustainability and support climate change adaptation efforts in the region. It serves as a 
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key blueprint for other developing regions seeking to strengthen their environmental sustainability and climate 

mitigation efforts. 

 

While many arid regions are found in less developed countries, where the challenges of water scarcity and harsh 

living conditions can exacerbate developmental issues, it is important to note that arid regions can exist in both 

developing and developed countries. Adhikari et al. (2021) evaluated and compared the effectiveness of three 

prominent AI-based approaches—CNNs, LSTM, and Wavelet decomposition functions combined with the Adaptive 

Neuro-Fuzzy Inference System (WANFIS)—in forecasting floods and droughts in arid and tropical regions. The 

study measures fluvial floods by the runoff change in rivers and meteorological droughts using the Standard 

Precipitation Index (SPI). The findings reveal that the CNN model excels in flood forecasting, while the WANFIS 

model shows superior performance in meteorological drought forecasting, irrespective of the climatic region. 

Additionally, the CNN model demonstrates enhanced accuracy in applications with multiple input features. 

 

Case Study: Fortifying Ethiopia's National Parks: Building Resilience Against Wildfires and Extreme 

Weather  

 

Country: LDC, Ethiopia 

Entities involved:  This project includes a wide range of stakeholders: national meteorological and 

hydrological services in target countries and regions; NGOs “on the ground,” such as the Red Cross Climate 

Centre, civil society bodies, civil protection authorities and first responder organizations, local communities, 

academic institutions; and research organizations, national and regional governments, private sector and 

dedicated lighthouse stakeholders such as African Union, UNEP, UNDP, ESA. All these stakeholders will 

benefit from MedEWSa’s objective of translating complex climate information into actionable knowledge. 

  

Brief Description  

 Natural hazards, such as extreme weather events, are exacerbated by anthropogenic climate change. As a 

result, emergency responses are becoming more protracted, expensive, frequent, and stretching limited 

available resources. This is especially apparent in rapidly warming regions. The MedEWSa (Mediterranean 

and pan-European Forecast and Early Warning System against natural hazards) project addresses these 

challenges by providing AI-powered novel solutions to ensure timely, precise, and actionable impact and 

finance forecasting, and early warning systems that support the rapid deployment of first responders to 

vulnerable areas.  

  

A specific pilot in Ethiopia focuses on three national parks of high biodiversity and tourism relevance: Simien, 

Bale Mountains, and Gambella National Park. A holistic wildfire management approach based on monitoring 

and forecasting tools benefits the preparedness, response, and recovery in hugely different contexts: high/low 

capacity, densely/sparsely populated areas, and focus on protecting human life/ecosystem services. 

MedEWSa will deliver a sophisticated, comprehensive, and innovative pan-European Mediterranean–African 

solution comprising various complementary services. Building on existing tools, MedEWSa will develop a 

fully integrated impact-based multi-hazard EWS.  

  

Climate Change Mitigation and/or Adaption Impacts and Results 

 Through eight selected pilot sites (areas in Europe, the southern Mediterranean, and Africa with a history of 

being impacted by natural hazards and extreme events with cascading effects), four MedEWSa twin sites 

will be created:  

 

1. Twin #1: Greece (Attica) – Ethiopia (National Parks): wildfires and extreme weather events (droughts, 

wind)  

2. Twin #2: Italy (Venice) – Egypt (Alexandria / Nile Delta): coastal floods and storm surges  

3. Twin #3: Slovakia (Kosice) – Georgia (Tbilisi): floods and landslides  

4. Twin #4: Spain (Catalonia) – Sweden (countrywide): heatwaves, droughts, and wildfires.  
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The twins will bridge areas with different climatic/physiographic conditions, yet subject to similar hazards, 

and are well positioned to deliver long-term bi-directional knowledge transfer. They will demonstrate the 

transferability and versatility of the tools developed in MedEWSa. 

  

Challenges and Lessons Learned Regarding Development and Implementation 

 MedEWSa will improve the current Decision Support Data System by:     

• Automatizing the process-chain from identification of active fire to real-time simulations, to assessing 

high risk areas, to producing alerts, and consequently optimizing the response-time.      

• Enhancing the spatiotemporal information by improving the spatial resolution especially in the urban-

rural interface and developing indicators at the sub-seasonal to seasonal time scales.   

• Advancing models and systems regarding the fire spread capability for large scale domains (mixed wind 

scenarios, simulation time optimization), and the forest fire danger rating system. 

• Standard Operating Procedures and update of the Forest Fire Bulletin to trigger early actions, (patrolling 

areas at risk) and rapid deployment of FRs, mitigation measures (prescribed burnings), and preparedness 

activities. 

 

Table 1 presents an overview of various adaptation strategies facilitated by AI. It details themes, AI applications, 

specific aims, findings, and contributions of various studies related to AI-driven climate adaptation strategies. It 

includes a wide range of applications and scenarios that highlight the potential of AI in climate action. The strategies 

assessed range from AI-driven agricultural practices to advanced disaster response systems. The integration of AI 

with IoT has been indicated as AIoT. 

 

Theme  AI Applications Objectives Key Contributions Citations 

Groundwater table 

forecasting 

LSTM Networks, 

RNN 

To model and 

forecast 

groundwater table 

response to storm 

events in a coastal 

city. 

LSTM networks 

outperformed RNNs in 

predictive accuracy; 

effective for real-time 

forecasting of 

groundwater table 

levels. 

Bowes et a. 

(2019) 

Best management 

practices (BMP) 

performance in 

agricultural 

watershed 

Deterministic 

Models (SWAT), 

Decision Support 

Models (NSGA-

II) 

To evaluate changes 

in BMPs on total 

phosphorus loads 

under different 

climate change 

scenarios. 

SWAT and NSGA-II 

helped refine BMPs 

for future climate 

scenarios; highlighted 

the need for adaptive 

BMPs. 

Jeon et al. (2018) 

Climate change 

impact on crop 

yield 

Statistical 

Downscaling, GA 

To predict climate 

change impacts on 

pearl millet yield 

using genetic 

algorithms. 

Demonstrated 

potential for energy-

efficient renovations in 

urban settings using 

neural networks. 

Skiba et al. 

(2017) 

Flood analytics AIoT, CNN To advance flood 

analytics using 

AIoT in flood 

situational 

awareness and risk 

assessment. 

AIoT prototype 

improved flood 

warning and 

situational awareness; 

successfully tested 

during hurricane-

driven floods. 

Samadi (2022) 
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Drought forecasting ANN, ANFIS, 

SVM 

 

 

To compare ANN, 

ANFIS, and SVM 

models in drought 

forecasting. 

SVM model provided 

the highest accuracy in 

drought forecasting 

compared to ANN and 

ANFIS. 

Mokhtarzad et 

al. (2017) 

Crop yield 

prediction 

DNN, 

Semiparametric 

To model and 

predict crop yields 

under different 

climate change 

scenarios using ML 

methods. 

ML approach showed 

less severe negative 

impacts on corn yield 

than traditional 

methods, especially in 

warmest scenarios. 

Crane-Droesch 

(2018) 

Urbanization and 

climate impact 

Dynamic 

Simulation, 

Weather Research 

and Forecasting 

Model (WRF)  

To investigate the 

impact of future 

urbanization on 

local climate under 

different climate 

change scenarios. 

WRF simulations 

indicated significant 

warming and public 

health risks due to 

urbanization and 

climate change by 

2030. 

Yeung et al. 

(2020) 

 

Table 1:  Studies on adaptation strategies using Artificial Intelligence models  

Table 1 serves as a valuable tool for decision-makers to compare the most viable AI-supported adaptation strategies, 

ensuring informed and strategic planning in mitigating the impacts of climate change in LDC and SIDS. 

4.3.3. The Role of Artificial Intelligence in Decreasing Energy Consumption in Climate Modeling 

 

Significant energy savings can be achieved by creating software frameworks and libraries tailored to minimize energy 

consumption in AI. Techniques such as optimized runtime scheduling, sparse modeling, ensemble modeling, task 

parallelization, and resource-aware programming can enhance software performance while reducing energy 

demands. These optimizations not only benefit the environment but also lead to more cost-effective and scalable AI 

solutions. 

For example, sparse modeling techniques focus on identifying and utilizing the most relevant variables and data 

points, thus simplifying the models. This leads to reduced computational complexity, faster simulations, and efficient 

data processing. By focusing only on key variables, sparse models require less computational power, thus conserving 

energy. Simplified models run faster, reducing the time and energy needed for simulations. In addition, sparse models 

streamline data handling, minimizing the energy required for data storage and analysis. Given the complexity of 

climate and its varied impacts on populations, Grames and Forister (2024) employed a Bayesian sparse modeling 

approach to select from 80 climate metrics. They applied this method to 19 datasets covering bird, insect, and plant 

populations. For phenological datasets, mean spring temperature often emerged as a key climate driver. This climate 

variable selection approach is valuable for identifying relevant climate metrics, especially when there is limited 

physiological or mechanistic information, and is applicable across different studies on population responses to 

climate. Overall, sparse modeling makes climate simulations more efficient, leading to significant energy savings. 

Žust et al. (2021) presented an ensemble DL method for forecasting sea levels in the Adriatic Sea, which surpasses 

traditional ocean circulation models in terms of both accuracy and computational efficiency. By using a diverse set 

of models, researchers can identify and prioritize the most accurate and efficient ones, reducing the need for extensive 
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runs of less effective models. More accurate predictions reduce the need for repeated simulations, saving 

computational energy. 

Enhancing efficiency in AI research will reduce its carbon footprint and make it more accessible, ensuring that DL 

studies are not limited to those with the largest financial resources (Schwartz et al. 2020). The AI community has 

recently started to address the environmental impacts of ML/DL programs. Research highlights the energy 

consumption and carbon footprint associated with training DL, NLP, and GenAI models alike. The concept of Green 

AI or Computing was proposed to encourage more environmentally friendly AI practices (Raman et al. 2024; 

Schwartz et al. 2020). Green AI denotes “AI research that yields novel results while taking into account the 

computational cost, encouraging a reduction in resources spent” (Schwartz et al. 2020). Researchers are focused on 

optimizing algorithms, hardware, and data center operations to lower energy consumption and minimize the carbon 

footprint of AI systems (Wheeldon et al. 2020). 

The recent comprehensive study by Raman et al. (2024) focused on Green AI, utilizing thematic analysis and 

BERTopic modeling to explore this field. The study identified significant advancements in Green AI, particularly in 

the areas of energy optimization and sustainable computational practices. It highlighted three main thematic clusters: 

responsible AI for sustainable development, advancements in Green AI for energy optimization, and big data-driven 

computational advances. Among these, the study emphasized the importance of sustainable neural computing and 

cognitive AI innovation, showcasing how AI technologies can be optimized for energy efficiency and reduced 

environmental impact. These findings underscore the critical role of Green AI in promoting environmental 

sustainability within the AI research community, providing valuable insights for future research and policymaking 

aimed at integrating sustainability into AI research and development, including climate modeling. 

Furthermore, the AI community has developed various tools to evaluate the energy consumption of ML models. For 

example, Anthony et al. (2020) highlighted the energy consumption and carbon footprint associated with training 

NLP models. Henderson et al. (2020) underscored the need for systematic reporting of the energy and carbon 

footprints of ML practices. The authors introduced a framework that facilitates this reporting by providing a simple 

interface for tracking real-time energy consumption and carbon emissions, along with generating standardized online 

appendices. This framework is utilized to create a leaderboard for energy-efficient reinforcement learning algorithms, 

aiming to incentivize responsible research in this field and serve as a model for other areas of ML. Based on case 

studies using this framework, the authors propose strategies for mitigating carbon emissions and reducing energy 

consumption. Lacoste et al. (2019) proposed methods to quantify the carbon emissions of ML, while Lannelongue et 

al. (2020) introduced the concept of Green Algorithms to measure the carbon emissions of computational tasks. These 

impacts are primarily expressed in terms of energy consumption and associated greenhouse gas (GHG) emissions. 

The main challenges and risks that can be encountered while deploying AI systems for the use cases presented in 

Section 4.3 are: 

● Model Bias: Models trained on global datasets may not capture local climate nuances, leading to inaccurate 

regional forecasts. 

● Computational Demands: Running complex climate models often requires high-performance computing 

infrastructure, which can be lacking. 

● Lack of Local Data: Insufficient regional data inputs, such as rainfall patterns or sea-level measurements, 

reduce model accuracy. 
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● Dependence on External Providers: Reliance on foreign institutions for modeling expertise can result in 

limited local capacity-building. 

4.4. Resource Management 

Effective resource management is important for sustainable development and directly impacts climate change 

mitigation and adaptation efforts. AI-enabled interventions have shown significant promise in optimizing the 

management and preservation of natural resources. AI systems can be leveraged to improve resource management 

practices across various domains and contribute to broader climate resilience strategies by integrating advanced data 

analytics, ML, and real-time monitoring.  

4.4.1. Artificial Intelligence Interventions in Fisheries Management and Marine Life Preservation 

 

Human activities pose considerable threats to marine ecosystems, making effective management and conservation 

crucial. AI technologies have advanced the ability to monitor and manage fish stocks and marine protected areas 

(MPAs). The application of AI and automation can improve marine conservation efforts, particularly in safeguarding 

marine ecosystems and defining MPAs (Şeyma 2023). ML algorithms analyze data from satellite imagery, sonar, 

and other remote sensing technologies to track fish populations and their movements. This allows for more accurate 

assessments of fish stock levels, which is key to sustainable fisheries management. Marine life preservation would 

benefit also blue carbon strategy in LDCs and SIDS that utilizes coastal ecosystems for carbon sequestration. 

AI research has improved marine resource management, encompassing water pollution monitoring, pollutant tracing, 

pollution reduction and prevention strategies, acidification mitigation, and habitat and species protection through 

various AI models and techniques (Bibri et al. 2023). These include ML, DL with CNNs and RNNs, GA, ML-based 

Species Distribution Models (SDMs), and time series forecasting, in addition to Autonomous Underwater Vehicles 

(AUVs), and Remotely Operated Vehicles (ROVs), nano satellites, drones, and robots (Bakker 2022; Ridge 2020; 

Seyma 2023) For example, ML techniques can be employed to analyze underwater photographs, enabling the 

identification and categorization of marine species (Moniruzzaman et al. 2017). Also, Watanabe et al. (2019) 

determined that an autonomous monitoring system utilizing optimally controlled robots is necessary. They employed 

a DL algorithm known as YOLOv3 to detect underwater sea life and floating debris on the ocean surface, achieving 

sensitivities of 69.5% and 77.2%, respectively. 

AI techniques can be integrated into Decision Support Systems (DSS) to enhance decision-making. These rely on 

various data sources, analytical models, and user interfaces to help users make informed decisions in the context of 

environmental sustainability and climate change. This includes assessing ecosystem services, species conservation, 

water chemistry and quality, and hydro-meteorological forecasting (Nishant et al. 2020). When DSS include ML, 

FL, NLP, they can provide more advanced and intelligent support. Automating and leveraging AI enhances the 

management of maritime resources by developing AI-based decision support systems that effectively manage 

fisheries and improve the establishment of MPAs (Seyma 2023). Automation and AI have the potential to transform 

marine research by introducing new perspectives and enhancing data collection and processing (Ditria et al. 2022; 

Addison et al. 2018).  

Villon et al. (2018) developed and evaluated a CNN for identifying fish species in underwater images, comparing its 

performance to human abilities in terms of speed and accuracy. Using a diverse dataset of 900,000 images, the CNN 

was trained to recognize 20 different fish species, including whole fish bodies, partial fish bodies, and environmental 

elements such as reef bottoms or water. The CNN's accuracy was tested against human performance on a test set of 

1,197 images representing nine species. The results showed that the CNN achieved a correct identification rate of 

94.9%, higher than the human accuracy rate of 89.3%. The CNN was particularly effective at identifying fish partially 
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obscured by corals or other fish, and in processing smaller or blurrier images, while humans were better at identifying 

fish in unusual positions, such as twisted bodies. Worth pointing out is that efficient monitoring of marine biodiversity 

is instrumental to understanding and mitigating the impacts of climate change on marine ecosystems, as it helps track 

species distribution shifts, detect changes in population dynamics, and assess the health of marine habitats affected 

by warming oceans, acidification, and other climate-related changes. 

Illegal fishing is closely related to climate change in several significant ways. Climate change can lead to shifts in 

ocean temperatures, currents, and ecosystems, causing fish populations to move to new areas, which can result in 

overfishing in some regions and underfishing in others, driving some fishers to engage in illegal fishing practices to 

maintain their catch levels. Moreover, climate change impacts, such as ocean acidification and changes in sea 

temperature, can stress fish populations and reduce their numbers, leading fishers to resort to illegal methods to 

compensate for declining stocks. Since the onset of the Industrial Revolution, the acidity of surface ocean waters has 

risen by approximately 30% (NASA 2024). This increase is attributed to higher CO2 emissions from human activities, 

which lead to its greater absorption by the ocean. Moreover, economic pressures play a role, as communities reliant 

on fishing for their livelihoods may face increased economic strain due to the effects of climate change on fish 

availability and distribution, prompting some to turn to illegal fishing as a means of survival. Furthermore, climate 

change can damage critical marine habitats like coral reefs and mangroves, which are essential for the life cycles of 

many fish species. The destruction of these habitats forces fish to migrate, creating new challenges for legal and 

sustainable fishing practices and potentially increasing illegal fishing activities. 

Case Study: AI for real-time coral reef monitoring and conservation 

 

Country: Fiji, the Maldives, Palau, Solomon Islands and Vanuatu 

Entities involved: Australian Institute of Marine Science  

 

Brief description 

ReefCloud's AI utilizes advanced algorithms trained on the Australian Institute of Marine Science (AIMS)’s 

Long-Term Monitoring Program data to identify and classify coral reefs from images automatically. This 

allows for rapid and accurate assessment of reef health, standardizing collected data with 80-90 percent 

accuracy and analyzing coral reef composition at a speed 700 times faster than traditional manual methods. 

ReefCloud employs a cloud-based platform that enables users to upload, access, and share data from 

anywhere in the world. This facilitates collaboration among researchers and managers and supports the 

processing of large image datasets. ReefCloud Analytics processes millions of quality-controlled point 

annotations to identify trends and patterns in coral reef health data and offer the possibility to visualize reefs 

in 3D. This informs conservation and management decisions by providing detailed insights into reef 

composition and condition over time. 

 

Climate Change Mitigation and/or Adaptation Impacts and Results 

Improved Monitoring: ReefCloud provides a rapid and accurate way to assess coral reef health, helping to 

track changes over time and identify areas that need protection. 

 

Enhanced Management: The system provides managers with the information needed to make informed 

decisions about conservation and restoration efforts. 

 

Resource Optimization: By analyzing coral reef composition with 80-90 percent accuracy and 700 times 

faster than traditional manual assessment, ReefCloud saves weeks to months of labor, freeing up precious 

reef management resources 

 

Challenges and Lessons Learned Regarding Development and Implementation 

For the successful deployment of AI monitoring systems in a global community, it is important to ensure a 

user-friendly platform and standardized data collection. 
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Appana et al. (2020) focused on combating IUU fishing by developing an edge technology-based AI system for 

MPAs. The system utilizes low-cost, solar-powered edge computing devices on buoys equipped with video cameras 

and processors to detect illegal fishing through AI-based image recognition. The results showed that the system 

effectively detects, and monitors vessels engaged in illegal activities, reducing overfishing. The edge devices process 

data locally and a stealth drone collects and reports the data, providing continuous 24/7 surveillance. This technology 

offers real-time alerts of illegal fishing activities to governments and NGOs, supporting the protection of MPAs. 

 Cheng et al. (2023) investigated the use of AI in analyzing fishing vessel behavior to enhance management practices, 

prevent illegal fishing, identify fishing grounds, and assess the impact of harvesting on fishery resources. With the 

development of advanced vessel-tracking systems, a wealth of real-time data on fishing vessels is now available, 

allowing for detailed analysis of their behavior. To effectively handle this large volume of data, AI algorithms are 

increasingly applied. Various sources for studying fishing vessel behavior are covered, along with AI methods used 

to monitor and extract behavioral patterns, and research on the physical, ecological, and social factors affecting these 

behaviors is synthesized.  

Backker (2022) examined an innovative approach to digitally driven earth system governance in marine biodiversity 

conservation: Artificial Intelligence-enabled, mobile marine protected areas (MMPAs). This form of ocean 

governance operates in real-time and can potentially cover vast oceanic areas, utilizing digital hardware that gathers 

data from various sources such as nano-satellites, drones, environmental sensor networks, digital bioacoustics, marine 

tags, and deep-sea UAVs. The collected data are then analyzed using ML algorithms, CV, and ecological informatics 

techniques. Scientists and regulators are increasingly advocating for the use of these AI-powered systems in global 

ocean management due to their ability to provide adaptive, real-time responses to environmental changes and 

disturbances. By enhancing the monitoring and protection of marine environments, MMPAs can detect and respond 

to illegal activities and overfishing in real-time, ensuring more effective enforcement of conservation regulations.  

Samaei and Hassanabad (2024) focused on the intersection of marine industries, seas, and AI within the framework 

of sustainable development. Key findings include the successful implementation of AI for autonomous navigation, 

predictive maintenance, marine traffic management, environmental monitoring, intelligent port operations, and smart 

aquaculture. AI technologies, such as reinforcement learning, ML, neural networks, GA, and IoT sensors, have 

significantly improved efficiency, accuracy, and 24/7 operational capabilities.  

4.4.2 Artificial Intelligence Interventions in Farming Management 

 

AI is revolutionizing farming management by providing data-driven insights and adaptive strategies that enhance 

agricultural productivity and sustainability, while enabling farmers to navigate changing climate conditions more 

effectively. 

AI and applied ML techniques are being leveraged to enhance agricultural practices. By integrating advanced 

algorithms and real-time data analysis, AI tools empower farmers with critical information to make informed 

decisions. This technological advancement is significant for addressing the challenges posed by climate change and 

the increasing demand for food production.  

Nath et al. (2024) focused on the innovative potential of AI in the agricultural and food processing industries, 

emphasizing its implications for sustainability and global food security. They highlighted the increasing integration 

of AI technologies, such as ML, DL, and neural networks, in these sectors to enhance various farming processes, 

including crop yield optimization, herbicide use, weed identification, and fruit harvesting. The study concluded that 

AI boosts the efficiency, sustainability, and productivity of agri-food systems and underscored the need for expand 
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its application across the agri-food supply chain, thereby contributing to global food security and addressing key 

agricultural challenges.  

Precision farming technologies use AI to analyze data from various sources, such as satellite imagery, drones, and 

sensors to monitor crop health, soil conditions, pest infestations, optimal planting times, air quality, and weather 

patterns. These data-driven approaches and actionable insights enable precise resource management, leading to 

increased yields and reduced environmental impact. AI-driven precision agriculture, combined with genome analysis 

and editing techniques, can produce crops that are well-suited to the land and optimize plant production (Joseph et 

al. 2021).  

Rustia et al. (2022) addressed the main bottleneck in Integrated Pest Management (IPM), which is the lack of reliable 

and immediate crop damage data. To tackle this issue, they developed an Intelligent and Integrated Pest and Disease 

Management (I2PDM) system. This AIoT-based system uses edge computing devices to automatically detect and 

recognize major greenhouse insect pests, such as thrips and whiteflies, and to measure environmental conditions like 

temperature, humidity, and light intensity. The results showed that the system significantly supported farm managers 

in IPM-related tasks, leading to a substantial yearly reduction in insect pest counts, with decreases as high as 50.7%. 

The study concluded that the I2PDM system represents a significant advancement in IPM through automated, long-

term data collection and analysis. This innovative approach opens up new possibilities for sustainable and data driven 

IPM, encouraging collaboration among farm managers, researchers, experts, and industries to implement more 

effective pest management practices. 

Dheeraj et al. (2020) explored the role of AI and IoT technologies in mitigating climate change by creating 

environmentally friendly and high-performing systems. By integrating IoT and AI, data collected from field sensors 

are analyzed to monitor various environmental factors such as soil moisture, weather conditions, fertilization levels, 

soil composition, temperature, and irrigation systems. The results indicate that this integration helps increase crop 

production, leading to higher incomes for farmers. 

Among the climate change challenges related to agriculture are altered growing seasons, increased pest and disease 

pressures, and extreme weather events. AI systems can help farmers develop adaptive strategies to navigate these 

challenges. Precision agriculture utilizes these systems to identify pests, accurately and rapidly detect crop diseases, 

predict yields, and optimize fertilizer and pesticide use using ML, DL, and CV (Chen et al. 2023). Herbicides or other 

chemical residues can be left on plant products due to chemical spray transfer, often caused by wind blowing tiny 

droplets of spray solution onto nearby crops or fields (Creech et al. 2015). Precision spraying technology addresses 

this issue by drastically reducing the quantity of herbicide required and applying it only where weeds are present. 

This targeted application can significantly lessen the environmental impact, lower costs, reduce crop damage, and 

minimize excessive chemical residues (Balafoutis et al. 2017), thereby adapting agricultural practices to changing 

environmental conditions. 

Additionally, Swaminathan et al. (2023) reported that robots equipped with AI and CV for monitoring and spraying 

weeds could reduce chemical usage on crops by 80% and cut herbicide costs by 90%. In precision fertilization, a 

fertilizer application model calculates the required fertilizer input, which is then applied using a variable rate 

applicator after assessing the soil’s nutrient levels and dividing the field into a grid (Elbeltagi et al. 2022). 

ML models can predict the impacts of climate change on crop yields and recommend adaptive measures, such as 

changing planting dates, selecting resilient crop varieties, and implementing water-saving technologies. Du et al. 

(2021) developed a high-efficiency water and fertilizer control system for cotton cultivation that uses soil 

conductivity thresholds to optimize the use of water and fertilizer. This system, which monitors soil conductivity and 

moisture content, resulted in a 10.89% reduction in resource usage. Moreover, accurately calculating reference 
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evapotranspiration is important for meeting crop water needs, providing essential data for effective water 

management and sustainable agriculture.  

Elahi et al. (2019) estimated the target values of agrochemicals for rice farms while maintaining current yield levels 

in the Hafizabad and Sheikhupura districts. The authors found that pesticide inputs could be reduced by 52.6% and 

pure nitrogen fertilizer inputs by 43.6%, leading to a favorable and significant impact.  Putra et al. (2020) modeled 

the storage and release of nutrients through fertilizer application to simulate the availability and loss of nutrients in 

oil palm cultivation. This approach helps determine and maintain the nutrient balance at specific sites by adjusting 

fertilizer application accordingly.  

4.4.3.  Artificial Intelligence for Water Resource Management 

 

AI applications in water resource optimization have garnered significant research attention in recent years. These 

applications aim to enhance the conservation and efficient use of water resources. AI systems play a role in optimizing 

water resource management. AI and ML algorithms analyze data from sensors, satellite imagery, and weather 

forecasts to predict water demand and supply, optimize irrigation schedules, and detect leaks in water distribution 

systems. These technologies help in conserving water, improving water use efficiency, and ensuring the sustainable 

management of water resources.   

Among the major AI models used in water resource management are ANNs, SVM, decision trees (especially random 

forests), multiple regression, autoregressive moving average models (ARMA), and spline regression, with genetic 

algorithms (GA) also being widely utilized (Bibri 2024; Bibri et al. 2023; Nishant et al. 2020). Widely used ML 

models often combine ANN, including adaptive neuro-fuzzy inference systems (ANFIS). For instance, ANNs and 

ANFIS can be used to predict streamflow and analyze water quality parameters. In the study by Rashid and Kumari 

(2023), these two techniques were utilized to predict velocity and pressure in the Gadhra (DMA-5) water distribution 

network in Jharkhand, India. For predicting velocity, flow rate and diameter were used as independent variables, 

while for predicting pressure, elevation and demand were the independent variables. The dataset was split with 80% 

used for training, testing, and validation, and 20% for evaluation. Sensitivity analysis was conducted with ANN-LM 

to explore the relationships between variables. 

Sharma et al. (2024) focused on modeling the stage–discharge relationship, which is important for accurate discharge 

estimation needed in reservoir operations, hydraulic structure design, and flood and drought control. It compared a 

conventional stage–discharge rating curve (SRC) method with three data-driven techniques: ANN, ANFIS, and 

SVM. The results showed that the ANFIS model using the Gaussian membership function outperformed the SRC, 

ANN, and SVM models. Given the importance of precise groundwater level estimation for crop cultivation, daily 

life, and sustainable growth, Jithendra and Basha (2023) developed prediction models using hybrid techniques that 

integrate ANN, ANFIS, and an Improved Reptile Search Algorithm (IRSA) to help prevent resource depletion. IRSA 

was used to optimize the parameters of ANN and ANFIS, enhancing the forecasting models' effectiveness. 

Comparisons between ANN-IRSA, ANFIS-IRSA, traditional ANN, and ANFIS on the same datasets showed that 

the ANFIS-IRSA model performed best. 

Adaptive intelligent dynamic water resource planning, a streamlined approach that utilizes AI technology, enhances 

water efficiency, and sustains the water environment in urban areas (Xiang et al., 2021). Liu et al. (2019) improved 

the stability and reliability of the projection tracking water quality evaluation model by adding dynamic inertia 

weights to the moth flame algorithm, thereby enhancing regional water environment evaluation accuracy. Afzaal et 

al. (2020) employed RNNs and LSTM to address the dynamic inputs of climate change in Prince Edward Island, 

Canada.  
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Case Study: Artificial Intelligence for Water Management in the Red River Delta 

 

Country: Viet Nam 

Entities Involved: Brescia University (Italy) and Thuyloi University (Viet Nam), supported by Climate 

Change AI 

 

Brief Description 

This project focuses on the use of AI techniques for the water management of the Red River Delta area in 

Viet Nam (Figure 2). In this area, the complex river network is characterized by the presence of a system of 

dams designed to address sometimes conflicting objectives: (i) generating hydropower to foster the local 

economy and social activities, (ii) regulating the flood events occurring downstream during the rainy season, 

(iii) supplying water for agriculture in the low flow season and (iv) contrasting Sea Water Intrusion (SWI) 

in the estuaries of the rivers. Constraints are the need to ensure the dam's safety by not exceeding a maximum 

or minimum water level. 

 

 
 

Figure 2. The Red River Delta area in Viet Nam 

 

With the aim of developing adaptive water management systems, this work studies the feasibility of using 

AI techniques to identify policies for the current and projected climatic conditions. In particular, our project 

focuses on optimizing water supply for agriculture and energy production in the low-flow season while 

contrasting SWI in the Red River Delta. We aim to use optimization methods like Genetic Algorithms (GAs) 

and AI planning algorithms to automatically generate control policies for water resource management of the 

Hoa Binh reservoir, the first hydroelectric reservoir on the Da River while considering different criteria and 

constraints. 

 

Climate Change Mitigation and/or Adaptation Impacts 

The project aims to enhance water management systems to address climate change, urbanization, and 

population growth, focusing on both mitigation and adaptation. Efficient water management will reduce 

water stress and ensure a reliable supply for agriculture, industry, and domestic use, which is crucial as 

climate change exacerbates scarcity. It will also mitigate sea-level rise effects and saline intrusion into 

freshwater sources by controlling water releases and storage, maintaining balance in river deltas and 

estuaries. Additionally, the project enhances renewable energy production by optimizing water usage for 

hydropower, reducing reliance on fossil fuels, and lowering carbon emissions. It supports local economies 

by ensuring a steady water supply for various uses, fostering social development, and reducing vulnerability 

to climate-induced economic disruptions. 

 

Challenges and Lessons Learned 

The process of data analysis is challenging due to the non-homogeneity in the collected data, such as 

variations in recording time intervals and the presence of missing data on certain days. Consequently, prior 

to utilization, a data screening and correction procedure must be executed to rectify any inconsistencies or 

irregularities. Moreover, the complexity of the irrigation system in the Red River Delta, consisting of 

approximately 30 irrigation areas, requires precise determination of water requirements. This necessitates a 

dedicated research effort to ensure accuracy and reliability, which is beyond the scope of this research. In 

this context, the demand indicated in Decision 50, issued by the Vietnamese government in 2023 was 

https://www.climatechange.ai/
https://www.climatechange.ai/
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selected as the reference framework. This strategic choice facilitates alignment with authoritative mandates 

and provides a robust foundation for subsequent analyses. The available models of the Red River Delta are 

data-driven approximations of its dynamics rather than precise descriptions of the system’s physical 

evolution, increasing the reliance on good-quality data. 

The main challenges and risks that can be encountered while deploying the AI use cases presented in Section 4.4 are: 

● Data Integration Challenges: Resource data (e.g., for agriculture or fisheries) may be fragmented or outdated, 

impairing AI’s effectiveness. 

● Inadequate Monitoring Infrastructure: Limited deployment of sensors or monitoring equipment can hamper 

real-time resource tracking. 

● Socioeconomic Inequities: If AI tools are only accessible to a privileged few (e.g., large-scale commercial 

entities), smallholder farmers or local fishers may be sidelined. 

● Regulatory & Policy Gaps: Weak governance structures can lead to mismanagement or uneven distribution 

of benefits (e.g., water allocation). 

4.5. Energy Management 

Energy management is a critical component in the fight against climate change, where optimizing the generation, 

operation, distribution, transmission, and consumption of energy can lead to substantial reductions in greenhouse gas 

(GHG) emissions. Enhancing energy efficiency, developing renewable energy, and increasing its contribution to 

decarbonizing each of its end-users are crucial strategies for tackling or mitigating climate change. 

 

4.5.1. Real-time Energy Management 

 

AI algorithms, such as neural networks and ML, are used to analyze vast amounts of data from smart grids, allowing 

for real-time adjustments that enhance energy efficiency (Farghali et al. 2023). Predictive analytics help in forecasting 

energy demand, reducing wastage, and balancing supply and demand dynamically. As climate change challenges 

intensify, AI is increasingly recognized as one of the key solutions to mitigate these challenges. AI can be seamlessly 

integrated with IoT and renewable energy systems, enhancing energy supply, optimizing decision-making, and 

enabling autonomous control, thereby acting as a significant driving force in the energy sector (Bibri 2024; Rane et 

al. 2024). Indeed, AI has the potential to innovate the energy sector, presenting new opportunities for improving 

energy efficiency and achieving sustainable development objectives (Baysan et al. 2019; Farghali et al. 2023). 

 

AI systems can be leveraged to enhance the distribution and transmission of energy by optimizing the grid planning 

for reducing losses. AI techniques can be applied to develop smart grid systems that adapt to changes in energy 

demand and supply in real-time, ensuring efficient energy distribution and minimizing transmission losses. In the 

energy sector, the integration of AI can enhance energy utilization efficiency by predicting energy demand, 

optimizing production and consumption, and enabling intelligent control systems (Chen et al. 2023; Shoaei et al. 

2024). These advancements lead to reduced energy costs, decreased environmental pollution, and promote 

sustainable development (Ahmed et al. 2021; Khalilpourazari et al. 2021; Lee and Yoo 2021). For example, AI 

applications in smart meters and home automation systems provide consumers with insights into their energy usage 

patterns, helping them reduce consumption and lower energy bills. AI-driven demand response systems can shift or 

reduce power usage during peak times, thus flattening the demand curve and avoiding strain on the grid. Moreover, 

AI systems can provide early identification of maintenance needs for grid elements and generating facilities, and 
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propose optimized preventive maintenance roadmaps, resulting in reduced equipment downtime and favoring 

reliability. 

 

Furthermore, Ding et al. (2024) explored the potential of AI to enhance energy efficiency and reduce carbon 

emissions in medium-sized office buildings in the United States. They developed a methodology to assess emissions 

reductions by focusing on equipment, occupancy influence, control and operation, and design and construction. By 

evaluating six scenarios across different climate zones, the researchers found that AI systems could reduce energy 

consumption and carbon emissions by 8% to 19% by 2050. Moreover, they can lower cost premiums, increasing the 

adoption of high energy efficiency and net zero buildings. When combined with supportive energy policies and low-

carbon power generation, they could potentially achieve a 40% reduction in energy consumption and a 90% reduction 

in carbon emissions compared to business-as-usual scenarios by 2050. This study highlights AI's significant potential 

to transform energy efficiency and carbon emission reductions in commercial buildings. 

 

AI integrated with IoT have been increasingly utilized to improve energy efficiency, optimize energy management 

systems, and support Sustainable Development Goals (SDGs), especially SDG 7 and hence SDG 13. The examined 

studies in Table 2—empirical studies, experimental studies, case studies, and reviews—focus on these applications, 

detailing their themes, objectives, AIoT techniques applied, application areas, and key findings. Table 3 provides a 

comprehensive overview and comparative analysis, offering insights into the diverse ways AIoT are being leveraged 

to tackle energy challenges and transform energy management practices. 
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Research 

Description 
Objectives 

AI or AIoT 

Techniques 

Application 

Areas 
Key Findings References 

AI in smart 

power system 

transient 

stability 

To review AI 

applications in 

addressing transient 

stability issues in 

smart power grids. 

ML, DL, Big 

Data 

Smart power 

grids 

AI improves transient 

stability assessment and 

control in smart grids, 

enhancing reliability 

and efficiency. 

Guo et al. 

(2023) 

AI and digital 

technologies in 

the energy 

sector 

To analyze the 

adoption and impact 

of AI and digital 

technologies in the 

energy sector. 

AI, Big Data, 

IoT, Robotics, 

Blockchain 

Energy sector 

AI systems enhance job 

skills, firm 

performance, and 

energy sector 

innovation. 

Lyu and Liu 

(2021) 

IoT and AI for 

energy 

efficiency 

To develop a system 

architecture for 

centralized energy 

efficiency using AI 

and IoT. 

IoT, ML 

Energy 

management 

systems 

AI and IoT technologies 

improve scalability, 

automation, and 

efficiency in energy 

management, beneficial 

for smart industry and 

homes. 

Tomazzoli et 

al. (2020) 

AI in smart 

buildings for 

energy 

management 

To review AI 

applications in smart 

buildings for 

enhancing energy 

efficiency. 

ANN, ML, Big 

Data 

Smart 

buildings 

AI systems reduce 

energy consumption, 

improves control, 

reliability, and 

automation in smart 

buildings, enhancing 

efficiency. 

Farzaneh et 

al. (2021) 

AI for thermal 

comfort 

prediction and 

control in 

buildings 

To evaluate AI 

methods for 

optimizing thermal 

comfort and energy 

use in buildings. 

ML 

Building 

energy 

management 

AI systems optimize 

energy use while 

maintaining occupant 

thermal comfort, 

improving energy 

efficiency in buildings. 

Ngarambe et 

al. (2020) 

AI in 

prediction, 

optimization, 

and control of 

thermal energy 

storage 

systems 

To assess AI 

techniques in 

optimizing thermal 

energy storage 

systems. 

Particle Swarm 

Optimization 

PSO, ANN, 

SVM, ANFIS 

Thermal 

energy 

storage 

AI systems improve 

design and performance 

of thermal energy 

storage systems, 

demonstrating 

significant accuracy. 

Olabi et al. 

(2023) 

Applicability 

of ML 

techniques in 

agriculture and 

energy sectors 

To explore ML 

techniques' 

applicability in smart 

agriculture and 

energy production. 

ML algorithms 
Agriculture, 

energy 

ML enhances predictive 

accuracy and efficiency 

in smart farming and 

energy production, 

addressing key 

challenges. 

Arumugam 

et al. (2022) 

AI and ML for 

energy 

consumption 

and production 

in emerging 

markets 

To review AI and 

ML applications in 

optimizing energy 

consumption and 

production in 

emerging markets. 

AI, ML 

Emerging 

energy 

markets 

AI and ML techniques 

optimize energy 

consumption, 

production, and grid 

management, 

addressing issues in 

developing countries. 

Mhlanga 

(2023) 

Table 2: Artificial Intelligence applications in energy management 
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Case Study: Optimizing household Energy Consumption: India’s Tata Power EZ Home 

 

Country: India 

Entities Involved: Tata Power (Indian company) 

 

Brief Description 

Electricity distributors face the complex challenge of balancing supply and demand across millions of 

households, each with unique consumption patterns. As India integrates more renewable energy sources into 

its grid, this balancing act becomes even more intricate. The variability of solar and wind power generation, 

combined with the diverse and often unpredictable nature of household energy consumption, creates a 

significant challenge for energy management. This challenge is further complicated by the fact that 

household energy consumption is largely driven by individual behaviors and routines. Factors such as 

weather conditions, work schedules, holidays, and even major events can significantly influence electricity 

usage. Traditional methods of forecasting and managing household energy consumption often fail to capture 

these nuances, leading to inefficiencies and potential grid instability. Recognizing these challenges, Tata 

Power, one of India's largest integrated power companies, has developed the EZ Home platform. This AI-

powered solution leverages machine learning and Internet of Things (IoT) technologies to optimize 

household energy consumption, control appliances, and enhance overall energy efficiency. By integrating 

smart home automation features, EZ Home aims to provide a seamless and energy-efficient living 

experience. EZ Home uses IoT technology to allow users to operate, schedule, and monitor household 

appliances, including lighting, fans, air conditioners, and more, via smartphone applications or voice 

commands. AI-Powered Motion Sensors: The system includes AI-powered Passive Infrared (PIR) Motion 

Sensors that can control attached appliances based on human presence. Energy Management Analytics: EZ 

Home provides end-users with data on their actual and predicted consumption at various levels (product, 

room, and home), helping them manage their energy use more effectively. Seamless Integration: The EZ 

Home devices are designed for easy installation and offer backward compatibility, allowing for integration 

into existing home setups without extensive rewiring. 

 

Climate Change Mitigation and/or Adaptation Impacts and Results: 

Reduced Energy Waste: By optimizing energy consumption and distribution, EZ Home reduces the need 

for overproduction and minimizes energy loss during transmission and distribution.  

Enhanced Energy Efficiency: The platform promotes energy-saving practices and technologies, contributing 

to overall energy efficiency at the household level. 

Lowered Carbon Footprint: By reducing energy waste and promoting efficient energy use, EZ Home directly 

contributes to lowering greenhouse gas emissions at the household level. 

 

 

4.5.2. Artificial Intelligence for the Efficient Use and Deployment of Renewable Energy Technologies 

 

AI models can be used to accurately predict the output of renewable energy sources (El-Abbadi and Elyoubi 2023; 

Rane et al. 2024), such as solar and wind, thereby enhancing energy production and handling transmission and 

distribution congestions. Accurate prediction helps in integrating renewable energy into the grid more effectively, by 

reducing the needs of spinning reserves in the power system and optimizing the connection on back-up generation 

just on time, ensuring a stable supply and reducing reliance on fossil fuels. The integration of AI can optimize the 

performance of renewable energy systems by adjusting parameters in real-time. For example, reactive power 

contribution from renewable generators can anticipate consumption patterns towards guarantee appropriate voltage 

levels without further equipment or contribution of non-renewable generators. 

 

In addition, the integration of AIoT in the renewable energy sector is driving significant advancements in how 

sustainable energy is generated, managed, and optimized, thus becoming increasingly crucial for advancing 

sustainable energy solutions. Rane et al. (2024) explored the synergy between AI, IoT, and edge computing in 

renewable energy applications. IoT devices facilitate real-time data collection, which, when combined with AI and 

ML, enhances system responsiveness and efficiency. Data connections and IoT sensors are integral to distributed 
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energy resources (DERs), generating extensive data that can enhance system efficiency and add value beyond simple 

monitoring thanks to AI techniques (El Himer et al. 2022). By integrating AI with IoT, new opportunities arise in the 

energy sector for optimizing performance and creating additional benefits. 

 

The examined studies in Table 3—empirical studies, experimental studies, case studies, and reviews—focus on AI 

applications in renewable energy, examining their themes, objectives, AI or AIoT techniques applied, application 

areas, and key findings. These studies cover various aspects, from energy generation prediction and storage 

optimization to the integration of renewable sources into power grids. Table 3 presents a detailed overview and 

comparative analysis to understand the impact and potential of AI and AIoT in enhancing the efficiency, optimization, 

and reliability of renewable energy systems.  

 

Research 

Description 

(Theme) 

Objectives AI/AIoT 

Techniques 

Application 

Areas 

Key Findings Citations 

AI and 

numerical 

models in 

hybrid 

renewable 

energy systems 

(HRESs) 

To review AI 

applications in 

optimizing HRESs 

integrated with 

fuel cells. 

GA, PSO, 

Simulated 

Annealing, RF, k-

NN, SVM, ANN 

Solar 

photovoltaic

, wind 

energy, fuel 

cells 

AI-based modeling 

identifies conditions for 

maximum power 

production, predicting 

drawbacks during 

unexpected load peaks. 

Al-Othman 

et al. (2022) 

Bio-inspired 

algorithms in 

maximum 

power point 

tracking for PV 

systems 

To review bio-

inspired 

algorithms for 

maximum power 

point tracking in 

PV systems under 

partial shading. 

ANN, FL Control, 

Bio-inspired 

algorithms 

Photovoltaic 

systems 

Bio-inspired algorithms 

effectively track the 

global maximum power 

point, outperforming 

traditional methods 

under partial shading. 

Guiqiang et 

al. (2018) 

AI-based solar 

radiation 

prediction 

model for green 

energy 

utilization 

To develop AI-

based models for 

accurate solar 

radiation 

prediction. 

ANN, SVM, RF Solar energy 

systems 

AI models, especially 

ANN, show superior 

performance in 

predicting solar 

radiation, improving 

energy management 

and planning. 

Alassery et 

al. (2022) 

AI support for 

integrating 

variable 

renewable 

energy sources 

To evaluate AI's 

potential in 

managing 

integration costs of 

variable renewable 

energy sources. 

AI, Data-intensive 

technologies 

Variable 

renewable 

energy 

sources 

AI systems reduce 

integration costs of 

VREs, enhancing 

system value and 

efficiency. 

Boza and 

Evgeniou 

(2021) 

Large-scale 

renewable 

integrations for 

carbon 

neutrality 

To analyze AI 

techniques for 

large-scale 

renewable energy 

integrations and 

carbon neutrality 

transition. 

AI techniques Multi-

energy 

systems, 

renewable 

energy 

AI techniques optimize 

operational control and 

effectiveness of large-

scale renewable 

integrations, aiding in 

carbon neutrality. 

Liu et al. 

(2022) 

ML for high-

temperature 

reservoir 

To optimize high-

temperature 

reservoir thermal 

ANN, GA Thermal 

energy 

storage 

ML techniques 

optimize HT-RTES site 

selection and 

performance, aiding in 

Jin et al. 

(2022) 
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thermal energy 

storage 

energy storage 

using ML. 

renewable energy 

storage. 

AIoT for 

renewable 

energy systems 

To explore AIoT 

applications in 

enhancing 

renewable energy 

systems. 

AIoT Solar, wind 

energy 

systems 

AIoT improves 

efficiency and 

performance of 

renewable energy 

systems through 

enhanced data 

utilization. 

El Himer et 

al. (2022) 

AI for 

predictive 

maintenance of 

renewable 

energy systems 

To assess AI-

assisted predictive 

maintenance in 

renewable energy 

systems. 

AI techniques Wind farms AI assistance improves 

maintenance efficiency 

and fault detection in 

wind farms. 

Shin et al. 

(2021) 

Hybrid AI and 

IoT model for 

renewable 

energy 

generation 

To develop an 

IoT-based system 

for renewable 

energy generation 

using AI models. 

ANN, Adaptive 

Network based 

Fuzzy Inference 

System (ANFIS) 

Household, 

industrial 

energy 

systems 

AI models enhance 

renewable energy 

generation efficiency, 

with ANN 

outperforming ANFIS. 

Puri et al. 

(2019) 

Comparison of 

AI methods for 

solar radiation 

estimation 

To compare 

various AI 

methods for 

estimating daily 

global solar 

radiation. 

Group Method of 

Data Handling 

(GMDH), 

Multilayer Feed-

Forward Neural 

Network 

(MLFFNN), 

ANFIS, ANFIS-

PSO, ANFIS-GA, 

ANFIS-ACO 

Solar energy 

systems 

GMDH model 

outperforms others in 

predicting global 

horizontal irradiance. 

Khosravi et 

al. (2018) 

AI for 

optimizing 

thermal energy 

storage systems 

To explore AI 

applications in 

optimizing thermal 

energy storage 

systems. 

PSO, ANN, SVM, 

ANFIS 

Thermal 

energy 

storage 

systems 

AI techniques optimize, 

predict, and control the 

performance of thermal 

energy storage, 

enhancing efficiency 

and reliability. 

Olabi et al. 

(2023) 

AI in renewable 

energy systems 

To review AI 

applications in 

renewable energy 

systems. 

ANN, LSTM, 

RNNs, CNNs, GA, 

PSO 

Renewable 

energy 

systems 

AI and ML techniques 

significantly improve 

modeling and 

optimization of 

renewable energy 

systems. 

Shoaei et al. 

(2024) 

AI for energy 

storage in 

hybrid 

renewable 

energy sources 

To optimize 

energy storage 

systems in hybrid 

renewable energy 

sources. 

Group Method of 

Data Handling 

(GMDH), 

Multilayer Feed-

Forward Neural 

Network 

(MLFFNN), 

ANFIS, ANFIS-

PSO, ANFIS-GA, 

ANFIS-ACO 

Hybrid 

renewable 

energy 

sources 

The proposed AI 

technique optimizes 

ESS for hybrid 

renewable energy, 

outperforming recent 

methods. 

Banu et al. 

(2022) 
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Adaptive 

artificial neural 

network for 

renewable 

energy 

generation 

prediction 

To propose a novel 

adaptive neural 

network for 

renewable energy 

prediction. 

Mode Adaptive 

Artificial Neural 

Network 

(MAANN), 

Advanced Particle 

Swarm 

Optimization 

(APSO), Jaya 

Algorithm, Fine-

Tuning 

Metaheuristic 

Algorithm (FTMA) 

Solar and 

wind energy 

systems 

The proposed algorithm 

significantly reduces 

prediction errors 

compared to 

conventional methods. 

Zamee and 

Won (2020) 

AI in off-grid 

hybrid 

renewable 

energy system 

optimization 

To find optimal 

design for off-grid 

hybrid renewable 

energy systems. 

Bonobo Optimizer 

(BO), Big-Bang–

Big-Crunch 

(BBBC), Crow 

Search (CS), 

Genetic Algorithm 

(GA), Butterfly 

Optimization 

Algorithm (BOA) 

Off-grid 

hybrid 

renewable 

energy 

systems 

BO technique achieved 

optimal solutions with 

the lowest annualized 

system cost and quick 

convergence. 

Farh et al. 

(2022) 

AI for managing 

renewable 

power 

curtailments 

To minimize 

renewable power 

curtailments using 

AI. 

DL, Gated 

Recurrent Unit 

(GRU) 

Wind and 

solar energy 

systems 

AI methods 

significantly reduce 

curtailments, with 

AWEs outperforming 

BESSs in cost and 

operational efficiency. 

Shams et al. 

(2021) 

Optimal sizing 

of hybrid 

renewable 

energy systems 

To propose 

optimal sizing of 

hybrid renewable 

energy systems 

using AI. 

GA, ABC PV/battery 

and 

PV/wind 

turbine/batte

ry systems 

Heuristic algorithms 

outperform 

deterministic 

algorithms in finding 

optimal solutions for 

HRESs. 

Demolli et 

al. (2021) 

AI for 

improving 

performance of 

renewable 

energy 

conversion and 

storage 

To enhance 

performance of 

solar water heaters 

using AI. 

ANN Solar water 

heaters 

ANN optimizes 

performance of PV-

powered solar water 

heaters, improving 

efficiency and 

reliability. 

Asiri et al. 

(2022) 

Comprehensive 

analysis and 

synthesis of AI 

and ML 

applications in 

renewable 

energy. 

Examine AI and 

ML applications 

across renewable 

energy for 

efficiency, 

reliability, and 

sustainability. 

AI, ML, IoT, 

Blockchain and 

Edge Computing 

 

 

Renewable 

energy 

forecasting, 

smart grids, 

energy 

managemen

t, energy 

storage 

systems 

AI and ML techniques 

enhance efficiency, 

reliability, and 

sustainability in 

renewable energy 

systems through precise 

forecasting, optimized 

energy production and 

distribution, and 

predictive maintenance. 

Rane et al. 

(2024) 

 

 Table 3: Artificial Intelligence and Artificial Intelligence of Things Applications in renewable energy 
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While the application of AI in domains, such as thermal comfort prediction and control, fault detection and diagnosis, 

energy storage optimization, and demand response, has shown promising results in enhancing energy efficiency, 

reducing waste, and promoting sustainable development (Chopra et al., 2022; Fang et al., 2023; Rane et al. 2024), its 

effectiveness is an ongoing process that heavily relies on the accuracy of input data and the appropriate selection of 

AI algorithms (Arumugam et al., 2022; Ouadah et al., 2022). Moreover, the lack of accessible data and skilled AI 

experts poses a significant barrier to its widespread application in energy efficiency (Chai et al., 2022). Nevertheless, 

the integration of AI and AIoT in energy systems has demonstrated substantial potential in enhancing energy 

conservation, optimizing renewable power deployment and generation, and supporting sustainable development 

goals, making renewable energy technologies more broadly suitable and reliable, towards a complete energy 

transition.  

The main challenges and risks that can be encountered while deploying AI systems for the use cases presented in 

Section 4.5 are: 

● High Initial Costs: Procuring and maintaining AI-driven energy optimization systems can be too expensive 

for smaller utilities and governments. 

● Grid Instability: Frequent power outages or inconsistent energy supply disrupt AI systems that rely on 

continuous data streams. 

● Limited Technical Skills: Shortage of trained engineers and data scientists undermines the long-term 

sustainability of AI solutions. 

● Risk of Lock-In: Dependence on proprietary software or external vendors can constrain local autonomy and 

innovation. 

4.6. Transport Management 

As the global population continues to urbanize and industrial activities expand, the efficiency of transportation 

systems becomes increasingly critical. AI has emerged as an innovative or a beneficial technology in transport 

management, offering solutions to optimize operations, enhance safety, and reduce environmental impacts.  

 

4.6.1. Artificial Intelligence Interventions in Transport Management 

 

AI-driven technologies can enhance the development of smarter and more sustainable transportation networks, which 

is crucial for mitigating greenhouse gas emissions. The transportation sector accounts for nearly one-third of global 

emissions (Solaymani 2019), making it essential to reduce these emissions as part of climate change initiatives. AI 

optimizes routes considering traffic patterns and weather, improving fuel efficiency, and decreasing travel times 

(Chavhan et al. 2020). By enhancing transportation systems, AI offers promising solutions for reducing the carbon 

footprint (Fatemidokht et al. 2021). 

 

AI-powered traffic management systems use real-time data from sensors and GPS to monitor traffic flow and 

dynamically adjust signals, reducing idling and unnecessary detours. These systems can greatly enhance efficiency 

and result in significant cost savings and reduced emissions (Chen et al. 2023). Moreover, the integration of AI with 

sustainable transportation methods, like bicycle-sharing schemes, has been shown to improve urban mobility through 

better data management using technologies like IoT (Puri et al. 2020). AI also enhances public transit by optimizing 

scheduling and encouraging lower-emission transportation modes (Nikitas et al. 2020; Olayode et al. 2020). This 
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involves analyzing data to predict demand and adjust routes, accordingly, promoting more sustainable options (Chen 

et al. 2023). 

 

The rise of autonomous vehicles (AVs) represents a significant transformation in transportation. AVs can reduce 

accidents and emissions by improving fuel efficiency and traffic patterns (Tyagi and Aswathy 2021). Furthermore, 

the concept of Shared Autonomous Electric Vehicles (SAEVs) offers benefits by alleviating congestion and reducing 

greenhouse gas emissions (Ahmed et al. 2023). Studies show that adopting SAEVs could lower emissions and costs, 

providing substantial environmental and economic advantages compared to privately owned vehicles (Jones and 

Leibowicz 2019). 

 

4.6.2. Artificial Intelligence for Industry Production 

 

AI can enhance the efficiency of logistics and supply chain operations, reducing costs and emissions. They can also 

improve load management, predict maintenance needs, and optimize routes by utilizing data-driven insights, leading 

to more efficient and reliable freight transportation systems. The integration of AI in these sectors enhances 

operational efficiency and contributes to environmental sustainability and climate change mitigation by minimizing 

the adverse effects of industrial activities and freight transport.  

 

AI has the potential to transform supply chain management by enhancing decision-making processes and automating 

various tasks to reduce supply bottlenecks. AI systems can monitor and identify issues with specific food products, 

aiding supply chain management during large-scale food supply can forecast demand more accurately, helping to 

adjust storage needs and prevent overstocking or shortages. This ensures that perishable goods are sold while still 

fresh, reducing waste (Lutoslawski et al. 2021). AI systems also enhance livestock supply chains by aiding in 

production planning, quality control, and predicting maintenance needs before they arise (Helo and Hao 2022).  

Within storage facilities, AI combined with IoT sensors can continuously monitor and adjust conditions, such as 

temperature and humidity, optimizing the lifecycle of perishable goods while minimizing waste and energy 

consumption (Wang et al. 2022). Furthermore, AI is used to optimize food distribution routes and vehicle loads, 

which helps reduce carbon emissions from the food supply chain (Yaiprasert and Hidayanto 2023). 

 

Moreover, Cohen et al. (2019) noted that pre-component production necessitates significant data analysis. They 

emphasized that if component data problems arise during modeling, it can lead to waste and reduce the enterprise’s 

productivity, ultimately causing resource waste. Cioffi et al. (2020) focused on intelligent manufacturing, 

emphasizing a fully integrated and collaborative production system. This system is designed to respond in real time 

to evolving conditions within the factory, supply network, and according to customer needs. Dwivedi et al. (2021) 

indicated that AI systems enhance efficiency by integrating management methods, such as combining AI with lean 

production. This approach allows each production link to calculate its efficiency, thereby reducing waste of raw 

materials due to idleness and helping enterprises optimize their production lines. The primary role of AI in this 

context is as a tool for data analysis, enabling the interpretation and evaluation of results to improve energy and 

resource management. The extensive use of fossil fuels in manufacturing processes is a major contributor to 

significant CO2 emissions (Yue and Gao 2018). 

 

Various studies have explored different facets of AI applications, highlighting their practical implications and the 

significant challenges they present. Liu et al. (2024) provided a comprehensive analysis and synthesis of AI 

applications in the modular construction industry. Their systematic exploration underscores the advancements in AI 

technologies, such as ANNs and ML, which enhance production efficiency, optimize logistics, and improve 

operational management. Yang et al. (2021) proposed a new model for intelligent manufacturing in the process 

industry. This model emphasizes the deep integration of industrial AI and the Industrial Internet, leveraging AI for 
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optimal decision-making, autonomous control systems, and improved operational management. The study highlights 

AI's effective role in traditional process industries through enhanced decision-making and control systems. 

Plathottam et al. (2023) offered a detailed analysis of AI/ML technologies, identifying key areas where AI can 

improve efficiency, such as predictive maintenance, quality assurance, and process optimization. However, the 

authors highlight significant challenges, including data acquisition, security risks, and trust issues, which must be 

addressed to fully leverage AI's potential in manufacturing.  

 

Furthermore, recent studies highlight the significant potential of AI in enhancing global economic dynamics and firm 

performance. Liu et al. (2024) focused on the broader impact of AI on the Global Value Chain (GVC) position of the 

manufacturing industry. Using extensive panel data from 61 countries, their findings reveal that AI improves the 

GVC position by enhancing production efficiency, boosting technological innovation, and reducing trade costs. The 

study is particularly insightful for policymakers, emphasizing AI's more pronounced impact in developing countries 

and various manufacturing sectors, thereby promoting global competitiveness. 

  

The main challenges and risks that can be encountered while deploying the AI use cases presented in Section 4.6 are: 

● Inadequate Infrastructure: Poor Road networks and limited public transport options reduce the potential 

impact of AI optimization. 

● Connectivity Constraints: Unstable communications infrastructure can disrupt real-time tracking and data-

sharing. 

● Uneven Benefits: Improvements in transport logistics may serve only well-connected urban areas, leaving 

out rural regions. 

● Privacy & Security Concerns: Collecting mobility data without strong data protection regulations can expose 

citizens to misuse. 

4.7. Disaster Risk Reduction 

Disaster risk reduction involves strategies to minimize the damage caused by natural and human-made disasters. AI 

systems play an important role in enhancing both preparedness and recovery efforts. 

 

The International Organization of Migration (IOM) reports that climate has now become the leading driver of internal 

displacements (more than conflict). Migration induced by environmental factors such as climate change or natural 

disasters is on the rise, and only expected to increase. IOM is a leading organization on climate mobility, working at 

community and national levels to support prevention, preparedness, response, and recovery. Early action and disaster 

risk reduction are key pillars in IOM interventions to support millions of women, men and children, especially in a 

world of growing climate-related humanitarian emergencies.  In 2020, 30.7 million people were internally displaced 

by disasters; a number three times greater than those displaced by conflict and violence (9.8 million people). Of those 

displaced by disasters, 98 percent faced weather and climate hazards. Climate and weather-related disasters have 

affected a further 1.7 billion people globally during the past decade. These numbers are expected to rise as the 

frequency, duration and intensity of natural hazards worsen. However, Microsoft is partnering with the IOM so they 

can use AI and analytics capabilities to better understand the impact of climate-induced migration and improve their 

humanitarian efforts. 
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4.7.1. Predictive Analytics Shaping Evacuation Planning 

 

AI models aid in shaping evacuation planning through predictive analytics. AI systems can predict the potential 

impact of disasters, related to floods, hurricanes, earthquakes, and heatwaves, by analyzing historical data and real-

time inputs. Indeed, advancements in AI for processing climate big data enable the identification of more 

comprehensive future climate change scenarios and the development of intelligent early warning systems (Leal Filho 

2022). Climate change predictions enable authorities to identify high-risk areas and develop effective evacuation 

routes and strategies. For instance, AI models can simulate various disaster scenarios and assess their potential 

outcomes, providing valuable insights into the best evacuation practices. AI can also be used to determine the ideal 

placement of traffic sensors to avoid bottlenecks during such evacuations (Gazzea 2023). This predictive capability 

ensures that evacuation plans are timely and tailored to the specific dynamics of an impending disaster, thereby 

enhancing the safety and efficiency of evacuations.  

 

In the context of extreme weather disasters, AI applications enhance public engagement in climate issues and 

stimulate collective action by accurately predicting and visualizing climate change risks (Alemany et al. 2019; Walsh 

et al. 2020). These AI-driven insights aid decision-support efforts through real-time monitoring, thereby improving 

situational awareness and enabling timely interventions (Anbarasan et al. 2020; Booth 2018; Samadi 2022; Walsh et 

al. 2020). AI can contribute to climate change mitigation by enhancing the prediction of extreme weather events 

(McGovern et al. 2017; Shultz et al. 2021).  Huntingford et al. (2019) highlighted the potential of ML in climate 

change preparedness in terms of its ability to provide enhanced warnings of extreme weather events. AI models are 

adept at identifying complex patterns and correlations, allowing them to forecast the likelihood and potential severity 

of extreme weather events with greater accuracy. This predictive capability improves intelligent early warning 

systems, providing timely alerts and enabling proactive measures to reduce the impact of these events (Leal Filho 

2022; Rolnick et al. 2012). 

 

Anbarasan et al. (2020) proposed a flood detection system integrating IoT, big data, and Convolutional Deep Neural 

Networks (CDNN) to enhance flood prediction accuracy. Their system pre-processes data to eliminate redundancies 

and applies CDNN for classification, outperforming ANN and DNN. Samadi (2022) introduced the Flood Analytics 

Information System (FAIS), which combines AI, big data, and IoT to provide real-time flood monitoring and 

situational awareness. FAIS successfully integrates crowd intelligence, ML, and NLP to improve flood risk 

assessments and response strategies. Khalilpourazari and Pasandideh (2021) presented a robust optimization model 

for flood evacuation planning, leveraging AI to optimize shelter locations and helicopter routes, significantly 

improving rescue rates and cost efficiency. 

 

During disasters, the coordination of response efforts is critical to minimizing harm and ensuring a swift recovery. 

AI systems facilitate this coordination by integrating data from multiple sources, including satellite imagery, sensor 

networks, and social media feeds. AI models can significantly aid disaster relief efforts by mapping floods, locating 

refugee camps using satellite data (Logar et al. 2020), as well as identifying the populations most in need of assistance 

(Omdena and WFP 2020). This integration provides real-time situational awareness (Abid et al. 2021; Samadi 2022), 

allowing responders to understand the scope and scale of the disaster as it unfolds. Furthermore, AI systems optimize 

resource allocation by analyzing the availability and location of emergency resources such as medical supplies, 

personnel, and equipment. This real-time optimization ensures that resources are deployed where they are most 

needed, enhancing the overall effectiveness of the disaster response.  

 

Lee and Chien (2020) explored AI and IoT in robotic disaster response, highlighting the potential of AIoT in 

coordinating robotic swarms for search and rescue operations, thus improving the efficiency and effectiveness of 
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disaster response. Swarna and Bhaumik (2022) explored the integration of AI and IoT devices to enhance the 

prevention, response, and recovery phases of disaster management. The study focuses on developing a platform that 

combines multiple AI components, IoT devices, and data sources into a unified system to improve disaster 

management practices. The study resulted in the creation of an integrative AI platform designed to oversee real-time 

data collection and analysis through IoT devices. Two use cases in disaster prevention were highlighted, 

demonstrating the platform's capability to implement predictive monitoring and efficient response strategies.  

 

Raza et al. (2020) focus on enhancing communication infrastructure in disaster-affected areas using AI and social 

media platforms to form resilient communication networks. The researchers propose a user-centric approach to create 

communication networks in areas where the infrastructure has been compromised due to natural disasters related to 

floods, earthquakes, and storm surges. The proposed solution involves forming ad hoc clusters to enable emergency 

communications, utilizing a novel cluster formation framework that supports both single and multi-hop 

communication. Their innovative approach maximizes communication throughput and accurately classifies disaster 

impact areas, thereby facilitating better coordination and response. The ML techniques used to classify disaster-prone 

areas showed promising results, suggesting that this approach could effectively restore communications and provide 

situational awareness during disasters.  

 

Saleem and Mehrotra (2022) examined the emergent use of AI and social media for disaster management. The 

primary aim is to highlight how AI systems can process disaster-related content from social media to aid disaster 

response organizations in making effective decisions. The research underscores the importance of timely and relevant 

information, which social media provides during disasters, offering real-time insights from affected communities. It 

also presents case studies demonstrating new approaches for disseminating and acquiring time-sensitive information 

during disasters. The findings underscore the potential of AI-based systems to exploit social media data for improved 

improving the efficiency and effectiveness of disaster management strategies. 

 

4.7.2.  Post-Disasters Risk Assessment: A Multi-faced Approach 

 

AI-driven risk assessment tools help identify vulnerable areas and populations, enabling targeted interventions before 

disasters strike (e.g., Kuglitsch et al. 2022). Authorities can enhance their preparedness strategies by harnessing the 

power of AI, ensuring more effective and timely interventions during disasters. Ghaffarian et al. (2023) examined 

the role of Explainable AI (XAI) in enhancing Disaster Risk Management (DRM) by improving decision-making 

processes. The authors identified various types of hazards and disasters, risk components, and AI and XAI methods. 

The findings indicate a significant increase in the use of XAI techniques for DRM, underscoring the growing 

importance of transparency and interpretability in AI applications. The study highlights the need for multi-hazard 

risk analysis, the integration of XAI in early warning systems, and the incorporation of causal inference methods to 

enhance DRM strategy planning and effectiveness.  

 

Sun et al. (2020) emphasize the increasing damage and socioeconomic losses caused by natural hazards. The study 

reviews AI applications across the four phases of disaster management. In the mitigation and preparedness phases, 

AI techniques assist in risk assessment, early warning systems, and community education to enhance disaster 

readiness. The response phase sees the highest concentration of AI applications, leveraging real-time data processing, 

optimizing resource allocation, and improving situational awareness. In the recovery phase, AI systems aid in damage 

assessment and efficient resource allocation for rebuilding efforts. Additionally, the study identifies challenges such 

as data quality, system integration, and ethical considerations, aiming to inspire further research and advancements 

in AI to address these issues effectively. 
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Exploring the potential of AI in disaster risk management, Velev and Zlateva (2023) emphasize the numerous 

challenges in applying AI to this field. These challenges include the necessity for high-quality and diverse data, 

ensuring compatibility with existing systems and technologies, addressing ethical and social implications, and the 

need for continuous research and development. Additionally, they underscore the critical importance of data privacy 

and security, given that AI applications in disaster management often involve handling sensitive information. The 

study aims to analyze these challenges to ensure that AI systems are developed and utilized in ways that are fair, 

equitable, and effective in mitigating the impacts of disasters. Similar topics are addressed in the technical reports of 

the ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management (ITU 2024). 

 

Salluri et al. (2020) utilized CNN for object detection in disaster scenarios, focusing on floods and earthquakes. Their 

study demonstrated high accuracy with pre-trained models like VGG-19, aiding in efficient disaster recovery 

operations. Equipped with AI algorithms, these technologies can analyze vast amounts of visual data to identify and 

quantify damage to infrastructure, homes, and natural landscapes. Zhang et al. (2023) proposed a hybrid learning 

approach combining AI and crowdsourced data to improve the generality of disaster damage assessment models, 

demonstrating substantial improvements over traditional methods. Sun et al. (2020) highlighted the importance of AI 

in disaster response and recovery, showcasing its ability to enhance the assessment of damage and socioeconomic 

losses resulting from natural hazards and prioritization of recovery efforts. The authors concluded that, in the recovery 

phase, AI is key to swiftly assessing damage and efficiently allocating resources for rebuilding efforts. Abid et al. 

(2021) highlighted AI's important role in enhancing recovery operations by facilitating rapid data analysis and 

visualization, enabling governments to make quicker and more informed decisions in the aftermath of a disaster. By 

analyzing large volumes of data from various sources, ML models can quickly identify the most affected areas and 

prioritize them for immediate action. This enhances the overall efficiency and effectiveness of recovery operations 

and streamlines the reconstruction process. Khajwal et al. (2022) focused on the reliability of automated post-disaster 

building damage classification using AI and multi-view imagery. Current AI applications in post-disaster damage 

assessment often lack detailed classification of damage levels and are based on limited aerial or satellite imagery. To 

address these limitations, the authors propose using comprehensive visual data from multiple ground and aerial views 

of buildings. A Multi-view Convolutional Neural Network (MV-CNN) architecture is employed to combine 

information from different views, providing a spatially aware damage prediction model. The model is trained and 

validated on a dataset of geotagged, expert-labeled images of buildings affected by Hurricane Harvey. The findings 

demonstrate that the proposed model achieves reasonably good accuracy in predicting damage levels, offering a more 

reliable tool for AI-assisted disaster management. 

 

Archie et al. (2020) focused on identifying critical sub-events after large-scale disasters using unsupervised learning 

on social media data. Their method effectively filtered and ranked relevant information, enhancing emergency 

responders' ability to manage crises. The findings demonstrate that their unsupervised learning framework effectively 

identifies and ranks important sub-events, thereby aiding emergency responders in making informed decisions for 

resource allocation and response planning. This post-disaster analysis is validated through quantitative experiments 

on data from Hurricane Harvey and the 2015 Nepal Earthquake, showing its effectiveness over baseline methods. 

 

The initiative led through national and international cooperation and partnership highlights the use of DL techniques 

and aerial imagery to improve climate resilience in the Caribbean housing sector (Tingzon et al. 2023; World Bank 

2023). This approach leverages advanced AI methods to generate critical housing stock data rapidly, aiding disaster 

risk management and supporting climate adaptation efforts in SIDS. 
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Case Study: Mapping Housing Stock Characteristics from Aerial and Street View Images using DL 

for Climate Resilience in the Caribbean 

 

Country: Dominica, Saint Lucia, Grenada 

Entities Involved: The World Bank, Global Facility for Disaster Reduction and Recovery (GFDRR), 

Government of the Commonwealth of Dominica (GoCD), and Government of Saint Lucia (GoSL) 

 

Brief Description 

The Caribbean region is among the most vulnerable globally to climate risks due to the increasing frequency 

and severity of natural hazards like tropical cyclones, landslides, and floods. SIDs often sustain the highest 

levels of damage, particularly in the housing sector. Accurate and up-to-date information on the spatial 

distribution and characteristics of buildings is crucial for effective vulnerability assessment and disaster risk 

management. However, traditional house-to-house surveys are expensive and time-consuming, creating 

significant obstacles. 

 

To address this, a project was initiated to develop a workflow that rapidly generates critical baseline housing 

stock data using high-resolution drone images and DL techniques. Leveraging CV, particularly the Segment 

Anything Model and CNNs, this project automates the generation of exposure data maps. The goal is to 

enable government agencies to identify damaged buildings following a disaster swiftly and cost-effectively 

and proactively detect at-risk structures before a disaster occurs. This initiative, under the Digital Earth for 

Resilient Housing and Infrastructure in the Caribbean, seeks to improve the climate resilience of the housing 

sector in small island developing states in the Caribbean. Future expansions of this methodology are planned 

for countries in Asia and the Pacific. 

 

Climate Change Mitigation and/or Adaptation Impacts and Results 

The project has produced building footprint and roof type classification maps for Dominica (see example in 

Figure 4), Saint Lucia, and Grenada, which are essential for climate risk and vulnerability assessments. 

Additionally, building characteristics such as material type, completeness, and condition have been 

extracted from street-view photos to further support these assessments.  

 

 

Figure 4. An AI-generated map of building footprints in Salisbury, Dominica. Drone image is taken from 

OpenAerialMap 

 

 

 

Figure 5 illustrates the sequence of roof material classification and changes in a Caribbean housing sector 

pre- and post-disaster in Colihaut, Dominica. The four images provide a comparative visual analysis that 

highlights the impact of disasters on roof materials and the effectiveness of the classification approach in 

both pre- and post-disaster contexts. 
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Figure 5. Pre- and post-disaster roof material classification maps in Colihaut, Dominica 

 

Challenges and Lessons Learned Regarding Development and Implementation 

One of the initial challenges was identifying the exposure data gaps in the target regions and defining the 

relevant building characteristics that could feasibly be extracted from drone and street view images. This 

project underscored the critical importance of extensive stakeholder engagement for the successful adoption 

of AI technologies. 

 

This work also highlighted the necessity of building local capacity within government agencies and the 

importance of democratizing capacity through open-source tools and datasets. Bridging the gap between 

data, action, and impact requires robust collaboration among technical experts, social scientists, government 

stakeholders, and local communities. 

 

The main challenges and risks that can be encountered while deploying AI systems for the use cases presented in 

Section 4.7 are: 

● Incomplete Hazard Data: Limited historical records of disasters (e.g., cyclones, storm surges) weaken AI-

based risk assessments. 

● Failure of Critical Systems: When disasters strike, power and connectivity may go down, rendering AI-driven 

warning systems inoperable. 

● Unequal Access to Warnings: Without widespread mobile or internet coverage, communities in remote areas 

may miss alerts. 

● Over-Reliance on Tech: AI systems might overshadow local knowledge or traditional coping mechanisms, 

potentially eroding community resilience. 

4.8. Emerging Large Language Model Applications 
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LLMs represent a promising new frontier in climate action, offering game-changing potential, especially in 

developing countries where resources and expertise are often limited. Despite the considerable excitement 

surrounding these technologies, it is important to acknowledge that many LLM applications are still in the early 

stages of development, and research in this area remains in its infancy. However, the accessibility and affordability 

of LLMs will provide a unique opportunity for these regions to leverage cutting-edge technology and innovative 

solutions that can enhance climate resilience and sustainability. 

The introduction of ClimateGPT, a model family of domain-specific LLMs, marks a significant leap in applying AI 

to climate science (Thulke et al. 2024). ClimateGPT synthesizes interdisciplinary research on climate change, 

designed to provide in-depth, accurate, and accessible insights across various aspects of climate science. The family 

includes multiple model sizes, such as ClimateGPT-7B, 13B, and 70B, each tailored to address different facets of 

climate-related information needs. In the spirit of transparency and collaboration, all versions of ClimateGPT are 

made publicly available. This openness facilitates widespread access and use, encouraging further research, 

development, and innovation in AI-driven climate solutions. 

For developing countries, particularly SIDS and LDCs, LLMs can serve as powerful tools to overcome barriers 

related to resource constraints and technical expertise. By tapping into the capabilities of LLMs, these regions can 

gain access to advanced predictive modeling, data analysis, and decision-making tools that were previously out of 

reach. The potential impact of LLM applications in these areas is significant, as they can drive meaningful 

improvements in various sectors critical to climate action. 
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Case Study: AI Enabler for Climate Solutions 

  

Country: China 

Entities Involved: CLIMIND  

  

Brief Description 

Climind is an AI platform designed to tackle the complexities of climate change by leveraging the power of 

LLMs and Retrieval-Augmented Generation (RAG). It offers an array of features that enhance decision-

making and efficiency in climate action through advanced NLP capabilities. Key functionalities include 

Climind Ask, which provides expert search capabilities, Climind Read with indexed search, and AI-driven 

analysis of regulatory documents. By integrating comprehensive corporate climate data with mitigation 

measures (Figure 6), Climind enables precise report generation, carbon pricing insights, climate risk 

assessments, and carbon trading information. 

 

Climate Change Mitigation and/or Adaption Impacts and Results 

Climind, an AI-powered climate co-pilot, has significantly impacted climate change mitigation and 

adaptation efforts. By providing access to a comprehensive actionable climate data infrastructure, Climind 

enables precise climate policy/news search, comprehensive climate risk assessments, and beyond. Climind's 

AI-driven insights support sustainable finance initiatives, guiding companies in reducing their carbon 

footprints and improving energy efficiency. Additionally, Climind aids policymakers in developing 

effective climate strategies, contributing to the global transition towards a low-carbon economy. 

  

Challenges and Lessons Learned Regarding Development and Implementation 

The development and implementation of Climind faced several challenges. One major issue was the lack of 

authentic and real-time climate data, as the general AI models are primarily trained on internet data. 

Structuring this data to be useful for climate applications proved to be time-consuming and costly. 

Additionally, the slow adoption of AI within the climate sector posed a significant hurdle. Despite these 

challenges, it became evident that accelerating the industry's adoption of AI is crucial. Climind's potential 

application in time-consuming tasks, such as ESG reporting and the development of IPCC literature review, 

highlighted the need for efficiency and speed in climate science. This experience underscored the 

importance of continuous innovation and the integration of advanced technologies to enhance climate 

action. 

LLMs are indeed becoming increasingly accessible due to the availability of pre-trained models (e.g., GPT, BERT) 

through APIs and platforms, which smaller organizations and startups in developing countries can leverage without 

needing to train them from scratch. This increased accessibility and affordability offer new opportunities for these 

organizations to implement and scale AI-driven solutions that address climate challenges more effectively.  

The emerging applications of LLMs (Table 4) hold promise for LDCs and SIDS, focusing on use cases that are highly 

relevant to these regions and could significantly enhance their climate resilience and sustainability efforts. 

Application Area Use Case 

Knowledge Access and 

Capacity Building 

• Multilingual climate information chatbots providing localized climate data 

and adaptation strategies  

• AI-powered educational platforms offering personalized climate change 

curricula  

• Interactive policy guides helping local officials understand and implement 

climate regulations  

• Virtual assistants supporting climate scientists and researchers in data 

analysis and literature review  

• Language translation services facilitating access to global climate research 

for non-English speakers 
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Climate-Resilient Agriculture 

• Conversational AI systems providing farmers with crop management 

advice and market information  

• LLM-powered apps interpreting weather forecasts and satellite imagery 

for local agricultural planning  

• Virtual agronomists assisting with pest identification and management 

strategies  

• AI-driven systems for documenting and sharing traditional ecological 

knowledge  

• Chatbots helping smallholder farmers access climate-smart agriculture 

techniques 

Disaster Preparedness and 

Response 

• Multilingual early warning systems delivering personalized emergency 

instructions  

• AI assistants supporting disaster response coordinators in resource 

allocation and logistics  

• Chatbots providing mental health support and coping strategies during 

climate-related disasters  

• LLM-enhanced systems for rapid damage assessment and needs analysis 

post-disaster  

• Virtual agents assisting in the development and updating of local disaster 

preparedness plans 

Climate Migration 

• Climate and Natural hazard early warning systems  

• Migration early warning for early action and disaster risk reduction to 

human and economic loss  

• Climate change and natural disaster monitoring  

• Monitoring and predictive analysis of human mobility and migration to 

address prevention, preparedness, response, and recovery 

Climate Finance and Project 

Development 

• AI-powered proposal writing assistants for climate project funding 

applications  

• LLM systems supporting the development of nationally determined 

contributions (NDCs)  

• Virtual consultants assisting in climate risk assessments for infrastructure 

projects  

• Chatbots guiding small businesses through green certification processes  

• AI assistants supporting the monitoring, reporting, and verification (MRV) 

of climate projects 

Policy Analysis and Decision 

Support 

• LLM-based systems analyzing and summarizing climate policy 

documents for decision-makers  

• AI-driven scenario analysis tools for climate adaptation planning  

• Virtual policy advisors assisting in the development of climate-resilient 

regulations  

• Sentiment analysis tools gauging public opinion on climate policies from 

social media data  

• LLM-enhanced stakeholder engagement platforms for participatory 

climate planning 

Clean Technology Adoption 

• AI assistants guiding users through the installation and maintenance of 

renewable energy systems  

• Chatbots providing energy-saving tips and personalized recommendations 

for households  

• Virtual technicians supporting the troubleshooting of clean energy 

technologies  

• LLM-powered platforms facilitating knowledge sharing on locally-

appropriate clean technologies  

• AI systems assisting in the adaptation of clean technologies to local 

contexts and needs 
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Biodiversity Conservation 

• LLM-enhanced citizen science platforms for species identification and 

ecosystem monitoring  

• AI assistants supporting indigenous communities in documenting and 

preserving biodiversity knowledge  

• Virtual rangers providing information on protected areas and conservation 

guidelines  

• Chatbots educating tourists about responsible eco-tourism practices  

• LLM systems assisting in the analysis of biodiversity data for 

conservation planning 

Climate Communication and 

Awareness 

• AI-driven personalized climate communication tailoring messages to 

individual concerns and values  

• LLM-powered fact-checking tools combating climate misinformation  

• Virtual climate educators providing interactive lessons on climate science 

and action  

• Sentiment analysis tools helping climate communicators refine their 

messaging strategies  

• Chatbots engaging citizens in local climate initiatives and volunteer 

opportunities 

Table 4. Emerging applications of Large Language Models in Enhancing Climate Resilience and Sustainability for 

LDCs and SIDS 

While LLMs (Large Language Models) are becoming more accessible, significant barriers remain for developing 

countries, particularly SIDS and LDCs. High computational demands, costs of fine-tuning, and deployment 

challenges limit access in resource-constrained regions. The extensive infrastructure and expertise required for 

effective training are typically available only to large tech companies in developed nations, rendering LLMs out of 

reach for many organizations in developing areas. In contrast, smaller AI/ML models with lower computational needs 

are often more practical in these contexts. Most major LLMs are trained primarily on English-language data, reducing 

their effectiveness in non-English-speaking regions and exacerbating the digital divide. The centralization of LLM 

development by companies like OpenAI, Google, and Meta further limits the influence of smaller players from 

developing countries. This disparity has implications for knowledge representation and inclusivity in AI systems, as 

these models often overlook diverse global perspectives. Overall, while LLMs are accessible on certain platforms, 

their practical use is largely restricted to well-resourced entities, making smaller, specialized AI/ML models more 

feasible for developing countries. Addressing these challenges requires initiatives for democratizing AI resources, 

including multilingual training data and adaptable AI models. 

The main challenges and risks that can be encountered while deploying the AI use cases presented in Section 4.8 are: 

● Language and Cultural Bias: Many LLMs are trained on data primarily from dominant languages and 

cultures, overlooking local dialects and contexts. 

● High Computational Requirements: LLMs demand significant processing power, often placing them out of 

reach for institutions lacking infrastructure. 

● Risk of Misinformation: LLMs can generate plausible sounding but factually incorrect information if not 

carefully curated and verified. 

● Data Privacy & Sovereignty: Using external LLM services might involve sending local data to remote 

servers, raising sovereignty and confidentiality issues 
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4.9. Education and Community Engagement 

Education and community engagement are critical components in the global effort to combat climate change. AI 

systems offer innovative tools and approaches that can enhance these efforts by making climate information more 

accessible, engaging, and actionable. There are various ways in which AI systems can support education and 

community engagement and contribute to empowering communities to take informed actions towards a sustainable 

future. 

 

4.9.1. Raising Awareness of Climate Change through the Use of Artificial Intelligence 

 

AI systems can play a critical role in raising awareness about climate action by providing powerful tools for data 

visualization, predictive modeling, and scenario analysis. These tools can help illustrate the impacts of climate 

change, highlight the benefits of mitigation and adaptation strategies, and demonstrate the urgency of taking action.  

 

At COP 28, Parties emphasized the need to raise awareness about the potential roles and impacts of AI in advancing 

the outcomes of technology needs assessments and the joint work program of the Technology Mechanism for 2023–

2027. The Technology Mechanism Initiative on AI for Climate Action provides a platform for policy discussions, 

raises awareness about the potential of AI for climate action, facilitates knowledge exchange among stakeholders, 

and supports capacity-building efforts to harness AI and develop locally-led climate solutions.  

 

Public awareness campaigns can utilize AI to personalize messages and reach a broader audience through social 

media and other digital platforms, and AI systems can help identify and target key demographics in this process, 

ensuring that climate action messages resonate with diverse audiences.  

 

 

In reference to "Visualizing the Future: Artificial Intelligence in Climate Action" (UNDP 2024), an educational 

session demonstrated the power of images in raising awareness by using GenAI in scenario planning and citizen 

participation, where participants interacted with AI through their mobile phones, gaining new insights and 

contributing unique perspectives. This approach made climate change more tangible and urgent, fostering greater 

engagement from the audience and showing how this methodology can enhance citizen involvement, anticipate 

climate risks, and support inclusive, effective policy-making (UNDP 2024). The next subsection will document how 

other AI-powered educational tools can contribute to raising awareness of AI for climate action. 

 

4.9.2. Artificial Intelligence-Powered Tools for Climate Change Education  

 

AI-powered educational tools can improve climate change education by providing interactive and engaging learning 

experiences. For instance, AI-driven simulations and virtual reality environments can allow students to explore the 

effects of climate change in immersive ways. Intelligent tutoring systems can offer personalized learning pathways, 

adapting to each student's knowledge level and learning style. These tools can also provide real-time feedback and 

assessments, helping educators tailor their instruction to meet the needs of their students. Moreover, AI systems can 

curate and recommend up-to-date educational content, ensuring that learners have access to the latest scientific 

findings and resources.  

 

Recent studies have explored the potential of Virtual Reality (VR) technology to enhance awareness of climate 

change. Thoma et al. (2023) aimed to determine whether VR visualization impacts climate change awareness and 

environmental attitudes more effectively than traditional media. Using a model of the Aletsch glacier melting over 

220 years, the study found that environmental awareness increased significantly only in VR conditions, suggesting 
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VR's potential to foster attitude change, regardless of the sophistication of the VR environment. Dhunnoo et al. (2023) 

conducted a case study with urban planning professionals to assess the effectiveness of IVR in raising climate change 

awareness. Utilizing mobile LiDAR technology to create navigable urban models, participants could interact with a 

simulated inundated environment. Feedback indicated that IVR is a valuable educational tool, enhancing 

understanding of climate change impacts and the necessity of building resilient environments. Xu et al. (2022) 

focused on developing a VR application to simulate sea level rise and its effects on local scenery by 2100. This study 

highlighted VR's potential as a high-quality educational tool, offering a more immersive experience than traditional 

media. The ongoing work includes porting the system to Augmented Reality (AR) and further evaluation of the tool's 

effectiveness. 

 

AI systems can analyze vast amounts of climate data, creating more accurate and dynamic VR simulations that reflect 

real-time changes in the environment. AIoT integrates AI systems with connected devices, allowing for real-time 

data collection and updates to VR environments, making simulations more interactive and responsive (Bibri 2023). 

These technologies can provide personalized and context-specific information, improving the educational impact of 

VR and AR applications. AI tools enable VR experiences to become more engaging and informative, ultimately 

fostering greater awareness and proactive behavior towards climate change mitigation and adaptation. AI has 

demonstrated significant importance in processing vast troves of data to enhance immersive experiences and enable 

human-like intelligence in virtual agents using ML, DL, NLP, among others (Huynh-The et al. 2023). This capability 

can enhance AI-powered tools for climate change education by providing more engaging and interactive learning 

environments. With these advanced AI techniques, educational tools can simulate complex climate scenarios, provide 

personalized learning experiences, and offer real-time feedback, thereby improving understanding and fostering 

proactive responses to climate change challenges. 

 

Furthermore, understanding the factors influencing AI acceptance is important for effectively integrating AI-powered 

tools into educational settings, particularly for enhancing climate change education. Osman and Yatam (2024) 

highlighted the importance of perceived usefulness, ease of use, and technological innovativeness in shaping the 

acceptance of AI and its enabled transformations. Among these factors, perceived ease of use is identified as the most 

influential, highlighting the necessity for user-friendly interfaces and streamlined processes. Practical implications 

for higher education institutions include the need for targeted interventions to boost technological innovativeness and 

foster a positive organizational climate conducive to innovation. 

 

4.9.3. Artificial Intelligence Powered Tools for Promoting Sustainable Practices  

 

AI systems can support the promotion of sustainable practices by providing insights into individual and collective 

behaviors and suggesting actionable steps to reduce environmental impact. For example, AI-powered apps can track 

energy consumption, waste production, and carbon footprint, offering tailored recommendations for improvement to 

citizens, communities, businesses, and organizations. These tools can also facilitate community initiatives by 

identifying local sustainability challenges and opportunities.  

 

Maria Kasinidou (2023) focused on the growing necessity for public AI literacy due to the growing role of AI in 

daily life. This project sought to understand public perceptions of AI across different demographics, including 

children and adults, and to promote AI literacy through an open course tailored to various groups, such as educators, 

adults, the elderly, and children. Key findings revealed that after a short course on AI, participants gained a better 

understanding of AI, recognized its positive and negative aspects, and acknowledged the importance of educating 

both children and adults about AI. These findings can be extended to raise awareness of AI's role in climate change 

by incorporating climate-focused AI education in public literacy programs. Enhancing public understanding of AI's 

applications in environmental contexts can drive more informed support for AI-driven climate initiatives. 
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Table 5 provides a comparative analysis of various studies, offering insights into how AI systems contribute to 

sustainability and showcasing the diverse applications of AI across different sectors in fostering sustainable practices. 

 

Research 

Theme 

Applied 

Methods 

Type of 

Sustainable 

Practices 

AI 

Application 

Areas 

Key Findings Citations 

AI in 

promoting 

green HRM 

practices 

AI, data 

analytics 

Energy 

optimization, 

waste reduction 

Human 

resource 

management 

AI systems enhance efficiency 

in recruitment, reduces bias, 

and promotes eco-engagement 

among employees. 

John and 

Pramila 

(2024) 

AI in adopting 

green HRM 

practices 

AI 

Organizational 

sustainability, 

green 

environment 

Human 

resource 

management 

AI systems aid in adopting 

green HRM practices, shifting 

focus from profit maximization 

to sustainability. 

Gupta 

(2021) 

AI in 

sustainable 

Finance 

AI, ESG 

Environmental 

problem-

solving, 

financial 

stability 

Financial 

management 

AI systems help recognize 

environmental issues, supports 

sustainable finance, and 

enhances decision-making. 

Rani and 

Singh 

(2024) 

The 

convergence 

of business 

intelligence 

(BI), AI, and 

sustainability 

BI, AI, IoT, ML, 

Big Data, 

Blockchain, 

Edge Computing 

Resource 

efficiency, 

environmental 

footprint 

reduction 

BI, 

sustainable 

development 

Integration of BI, AI, IoT, ML, 

and Big Data improves 

operational efficiency and 

minimizes waste. 

Rane et al. 

(2024) 

AI and ML 

for green 

shipping 

AI, ML 

Emission 

reduction, 

environmental 

stewardship 

Maritime 

industry 

AI-driven technology improves 

vessel operations, decreases 

emissions, and promotes 

sustainability. 

Nguyen et 

al. (2024) 

AI and AR in 

fashion 

industry 

AI, AR, 

ORESTE 

Waste 

mitigation, 

return reduction 

Fashion 

industry 

Consumers prefer AI-powered 

mobile applications for camera-

assisted measurements and 

synchronized suggestions. 

Karadayi-

Usta (2024) 

AI in real 

estate for ESG 

 

 

AI, ML (RF) 

Energy 

efficiency, 

sustainable real 

estate 

Real Estate 

industry 

AI algorithms assess energy 

efficiency and other attributes, 

impacting property prices and 

promoting informed decision-

making. 

Walacik 

and 

Chmielews

ka (2024) 

AI in 

sustainable 

education 

AI 

Environmental 

responsibility, 

resource 

efficiency 

Education 

AI systems enhance 

sustainability education through 

personalized learning, 

curriculum development 

Harish et al. 

(2023) 

 

Table 5:  Artificial Intelligence powered tools for promoting sustainable practices  

 

4.9.4. Artificial Intelligence-Powered Tools for the Engagement of Local Communities in Climate Action  

 

Engaging local communities in climate action is of value for driving grassroots change. AI systems can enhance 

community engagement by providing platforms for collaboration and communication. For instance, AI-driven social 

media analysis can identify influential community members and organizations based on carefully selected criteria, 

helping to amplify their voices and mobilize support. AI systems can also facilitate participatory decision-making by 
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analyzing community feedback and integrating it into policy development. Furthermore, they can support local 

climate initiatives by providing tools for monitoring and reporting progress, ensuring transparency and 

accountability.  

 

Investigating the societal impact of AI from a human-centered perspective has become an important area of study 

(Shneiderman 2020). Previous works in citizen science have identified various methods of utilizing AI to engage the 

public in research. These methods include maintaining participant engagement, ensuring data quality, classifying and 

labeling objects, predicting user interests, and interpreting data pattern (Ceccaroni et al. 2019; Franzen et al. 2021; 

Lotfian et al. 2021; McClure et al. 2020). While these works investigated the challenges of designing AI systems that 

enable citizens to participate in research projects on a large geographic scale in a generalizable way, an area that has 

received little attention is how scientists can co-create AI systems with local communities to address context-specific 

concerns and influence a particular geographic region. Therefore, Hsu et al. (2022) investigated how AI can be 

leveraged to engage and empower local communities in addressing societal and environmental issues. They 

emphasized the importance of integrating hyperlocal, context-specific community data and knowledge into AI 

systems. Participatory design and ethnographic methods ensure that AI systems are tailored to the specific needs of 

local communities. The authors argue for a community citizen science (CCS) approach, where local people are treated 

as collaborators rather than mere participants. This approach helps create AI systems that are more aligned with 

community needs and expectations. However, it also requires continuous adaptation of these systems to account for 

the dynamic nature of community issues and long-term social changes. The CCS framework, a subset of citizen 

science, is advantageous for co-creating solutions and generating social impact with communities dedicated to 

pursuing the Sustainable Development Goals (Fritz et al. 2019). 
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Case Study: Community Innovation Labs for Climate Resilience (Co_LABS Project) 

 

Country: Indonesia  

Entities Involved: Deutsche Gesellschaft für Internationale Zusammenarbeit (GZ) - FAIR Forward, 

Common Room Networks Foundation 

 

Brief Description 

The Community-based Innovation Lab for Climate Resilience (Co_LABS) Project addresses climate change 

challenges in Indonesia, particularly in rural and remote areas like Pulo Aceh and Maros, Indonesia. This 

initiative establishes community-based innovation labs that serve as collaborative platforms for local 

engagement in climate resilience. These labs integrate local knowledge with advanced technologies such as 

AI and IoT to develop and implement sustainable practices. Key activities include conducting baseline 

studies, enhancing local capacity, and creating AI-driven solutions and remote sensing applications tailored 

to the needs of the blue economy. The project also emphasizes the integration of local traditional knowledge 

with modern technological tools to address climate adaptation and mitigation effectively. 

 

Climate Change Mitigation and/or Adaptation Impacts and Results 

The Co_LABS Project was kicked-off by planted 500 mangrove seedlings in Maros, which directly 

contributes to coastal protection and carbon sequestration. This action not only addresses climate change 

directly but also enhances biodiversity and resilience of coastal ecosystems. The integration of AI and IoT 

technologies has led to improved environmental monitoring and management. In Maros, the use of IoT 

sensors has optimized fish farming operations, increasing efficiency and sustainability. Capacity-building 

workshops, conducted in Bandung and planned for Pulo Aceh and Maros, have empowered local 

communities with the skills needed to manage and operate these technologies effectively. These workshops 

are crucial for ensuring that technology adoption leads to long-term climate resilience and sustainable 

development. 

 

Challenges and Lessons Learned regarding Development and Implementation  

One significant challenge was integrating advanced technologies, like AI and IoT, with traditional 

community practices. For example, ensuring that the IoT sensors developed were user-friendly and met the 

local needs required adapting technology to fit the context of small-scale fish farms in Maros and subsistence 

agriculture in Pulo Aceh. Extensive capacity-building efforts were necessary to make these technologies 

accessible and understandable for community members. The project also encountered difficulties in 

fostering active community engagement. This challenge highlighted the importance of ongoing support and 

training to build trust and involvement. Clear communication strategies and the involvement of local leaders 

were essential to address this issue. Lessons learned include the need for adaptable technology solutions that 

align with local conditions and practices, as well as the importance of continuous training and development 

of local leadership to sustain project outcomes and ensure the technologies’ long-term success. 

 

Incorporating indigenous knowledge (IK) into local AI models can enhance climate action strategies by integrating 

traditional ecological wisdom. AI can document and analyze IK, preserving it for broader climate solutions, such as 

mapping traditional land-use practices and predicting outcomes. Collaboration with indigenous communities is vital 

to ensure respectful representation. 

 

In the specific context of climate change, Chakravarty (2023) proposed the integration of AI and ML with Indigenous 

Knowledge Systems (IKS) to enhance climate communication channels, particularly for extreme weather events in 

coastal regions. They found that blending AI/ML with IKS can improve the accuracy and timeliness of climate 

predictions and mitigation strategies. AI models can, by harnessing local knowledge, be finely tuned to the specific 

contexts of indigenous communities, demonstrating a practical application of how AI can be enriched with traditional 

ecological wisdom to foster climate resilience. Akanbi and Masinde (2018) developed a rule-based drought early 

warning system using IK. Their research demonstrated that local IK could be effectively integrated into AI models 

to forecast drought conditions. The system enhances the accuracy and relevance of drought predictions and emphasize 
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the importance of incorporating IK into AI to address environmental challenges more effectively. Balehegn et al. 

(2019) documented the indigenous weather and climate forecasting knowledge of Afar pastoralists. They found that 

traditional methods, when combined with modern AI systems, offer dynamic and accurate weather predictions.  

 

Molino (2023) explored interreligious perspectives on AI and IK for environmental preservation, emphasizing the 

ethical dimensions required for sustainable practices. Overall, leveraging traditional wisdom alongside advanced 

technology can lead to more robust and culturally sensitive climate action strategies, improving predictive capabilities 

and resilience. Continued collaboration between indigenous communities and tech experts is essential for accurately 

representing IK and benefiting both local and global ecosystems. 

The main challenges and risks that can be encountered while deploying the AI use cases presented in Section 4.9 are: 

● Digital Literacy Gaps: Low levels of computer and internet literacy hinder the effective use of AI-based 

educational tools. 

● Unequal Access: Communities without stable internet or sufficient devices can’t benefit from AI-driven 

educational platforms or apps. 

● Cultural Relevance: Educational AI tools often lack localized content or language support, limiting their 

impact in diverse settings. 

● Sustainability & Maintenance: Once external funding ends, ongoing updates and technical support for AI-

based education programs may lapse. 

4.10. An Overview of Artificial Intelligence Applications in Key Areas for Climate Action in Developing 

Countries 

Drawing on insights from the comprehensive set of reviewed studies addressing the critical areas of climate change 

mitigation and adaptation, Table 6 outlines AI applications organized by core topics such as climate resilience and 

adaptation, sustainable energy access and transition, sustainable land use and biodiversity, climate finance and 

economic resilience, and governance and capacity building. Highlighted areas of particular importance for LDCs and 

SIDS underscore the unique challenges and opportunities these regions face in their efforts to combat climate change 

and achieve SDGs. 

 

Category  Sub-Category  Details  

Climate 

Resilience and 

Adaptation  

Agricultural 

Resilience and Food 

Security  

- AI-powered mobile apps for localized crop 

recommendations and weather forecasts to smallholder 

farmers  

- Drought-resistant crop variety development using ML  

- Precision agriculture for small-scale farming  

- Early warning systems for pests and diseases  

- Smart irrigation systems for water optimization  

 
Water Resource 

Management  

- AI-enhanced flood prediction and early warning 

systems  

- Automated water quality monitoring with AI analysis  

- Groundwater mapping and sustainable extraction 

using ML  

- Rainfall harvesting optimization  

- AI-assisted transboundary water planning and conflict 

resolution  
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Category  Sub-Category  Details  

 
Public Health 

Systems  

- Vector-borne disease prediction and control using AI 

and local data  

- AI-driven heat wave impact mitigation and alert systems  

- Air quality monitoring and improvement for urban 

areas  

- Healthcare resource allocation optimization  

- AI-powered telemedicine for remote areas  

 
Climate-Resilient 

Infrastructure  

- AI-assisted vulnerability assessment for high-risk 

infrastructure  

- Designing climate-resilient buildings and roads using AI 

simulations  

- Predictive maintenance for critical infrastructure  

- Urban planning tools for climate adaptation  

- AI-optimized disaster-resistant energy systems  

 Climate Migration 

- Climate and Natural hazard early warning systems 

- Migration early warning for early action and 

disaster risk reduction to human and economic loss 

- Climate change and natural disaster monitoring 

- Monitoring and predictive analysis of human mobility 

and migration to address prevention, preparedness, 

response and recovery 

Sustainable 

Energy Access 

and Transition  

Renewable Energy 

Integration  

- AI-optimized microgrid systems for rural 

electrification  

- Solar and wind resource assessment using satellite data 

and ML  

- Energy demand prediction for grid stability  

- Smart energy storage management  

- AI-driven demand-side management in energy-scarce 

contexts  

 Energy Efficiency  

- Building energy management systems for tropical 

climates  

- Industrial process optimization for key industries  

- Smart city energy solutions for urbanizing areas  

- AI-powered improved cookstove technologies  

- Energy-efficient transportation for urban centers  

 
Clean Technology 

Localization  

- AI-assisted adaptation of clean technologies to local 

needs  

- Supply chain optimization for local manufacturing  

- AI-driven technology needs assessment  

- Skill development using AI-enhanced learning platforms  

- AI tools for local innovation ecosystems  

Sustainable Land 

Use and 

Biodiversity  

Deforestation 

Prevention and 

Reforestation  

- Real-time satellite-based forest monitoring and alert 

systems  

- AI-driven reforestation planning  

- Illegal logging detection with drone imagery and ML  

- Community-based forest management tools  

- Agroforestry optimization for small-scale farmers  

 
Biodiversity 

Conservation  

- Species distribution modeling under climate change  

- AI-powered acoustic monitoring systems  

- Ecosystem health monitoring with remote sensing and 

ML  

- Wildlife corridor planning with climate projections  

- AI-assisted marine ecosystem management  
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Category  Sub-Category  Details  

 

Sustainable 

Agriculture and 

Land Management  

- AI-powered precision agriculture tools  

- Soil health monitoring with low-cost sensors  

- Crop rotation and intercropping optimization  

- Sustainable livestock management in arid regions  

- AI-assisted erosion control and land restoration planning  

Climate Finance 

and Economic 

Resilience  

Access to Climate 

Finance  

- AI-driven project proposal development and funding 

matching  

- Climate risk assessment tools for vulnerable sectors  

- AI-enhanced monitoring of climate project outcomes  

- Blockchain-based systems for climate finance tracking  

- AI-powered microinsurance solutions  

 
Economic 

Diversification  

- AI-assisted market analysis for climate-resilient industries  

- Skills matching platforms for green job transitions  

- Supply chain resilience planning tools  

- Circular economy optimization  

- AI-powered eco-tourism development planning  

 
Disaster Risk 

Financing  

- AI-enhanced parametric insurance models  

- Automated damage assessment tools using satellite 

imagery  

- Risk pooling mechanisms optimization  

- Early warning systems linked to automatic payouts  

- AI-enhanced catastrophe modeling for data-scarce 

environments  

Governance and 

Capacity 

Building  

Climate Data 

Management and 

Analytics  

- Low-cost, AI-enabled sensor networks for 

environmental monitoring  

- Data quality improvement techniques  

- AI-powered climate services for local decision-makers  

- Participatory sensing platforms for community-level data 

collection  

- Knowledge management systems for South-South 

learning  

 
Policy Support and 

Decision-Making  

- Climate policy impact simulation tools  

- Multi-criteria decision analysis systems  

- AI-assisted stakeholder engagement tools  

- Compliance monitoring systems  

- AI-supported development and tracking of NDCs  

 
Technology Transfer 

and Localization  

- AI-driven technology needs assessment and matching  

- South-South cooperation platforms  

- Localized capacity building programs  

- AI solutions for rapid prototyping  

- Intellectual property management tools for climate 

technologies  

 
Ethical AI and 

Digital Inclusion  

- AI solutions optimized for low-resource environments  

- Tools for identifying and mitigating AI bias  

- Data privacy and security frameworks  

- Gender-responsive AI systems  

- AI governance frameworks for LDCs and SIDS  

 

Table 6. Artificial Intelligence applications in key areas for climate action in developing countries 
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5. Artificial Intelligence for the Implementation of the Technology Mechanism Joint Work Program and 

Technology Needs Assessment Outcomes 

The potential of AI to bolster climate action strategies is outlined in the Technology Mechanism Joint Work Program 

(2023-2027) and TNAs outcomes for SIDS and LDCs. This section reviews the thematic areas covered by the 

aforementioned framework and identifies opportunities where AI-powered solutions can enhance their 

implementation.  

The #AI4ClimateAction Initiative is strategically aligned with the Technology Mechanism Joint Work Programme, 

highlighting the collaborative efforts of the TEC and the CTCN. The initiative emphasizes six priority areas: national 

systems of innovation, water-energy-food systems, energy systems, buildings and resilient infrastructure, business 

and industry, and technology needs assessments. Each of these areas is central to addressing the intersection of AI 

and climate action, focusing on both mitigation and adaptation strategies. 

The initiative also directly supports the rolling workplan of the TEC (2023-2027) and the CTCN Program of Work 

(2023-2027), which outline comprehensive strategies for advancing climate technologies in developing countries, 

with particular attention to LDCs and SIDS. Through these work plans, the #AI4ClimateAction Initiative will guide 

the development and deployment of AI technologies that align with global climate goals, ensuring that they are 

scalable, context-specific, and inclusive of local needs and conditions. 

More specifically, activities under the #AI4ClimateAction Initiative are designed to align with the objectives of the 

TEC of enhancing innovation, scaling up technology transfer, and providing policy recommendations to foster the 

effective deployment of climate technologies. The Initiative will support capacity building, facilitate knowledge 

sharing, and contribute to policy development, helping countries integrate AI into their national climate strategies. 

The joint work with the CTCN further strengthens this effort by focusing on technology deployment and technical 

assistance, offering a pathway to practical implementation in countries that need it most. This integration ensures that 

AI applications are not only technologically advanced but are also socially and environmentally sustainable, helping 

to bridge the gap between technology innovation and on-the-ground impact in climate-vulnerable regions. 

By effectively utilizing AI within these focus areas, the #AI4ClimateAction Initiative aims to accelerate progress 

towards the Sustainable Development Goals (SDGs), with special emphasis on SDG 13 (Climate Action), while also 

aligning with the broader objectives set forth by the Paris Agreement.  

By drawing on insights from Section 4, which explores AI applications across various domains of climate action, the 

following subsections highlight the relevant thematic areas. 

5.1. Artificial Intelligence for the Implementation of the Technology Mechanism Joint Work Program (2023-

2027) 

The Technology Mechanism Joint Work Program outlines strategic priorities and key thematic areas where AI can 

play an important role in enhancing climate resilience and sustainability in developing regions. Based on the findings 

of Section 4, the following sub-chapters detail how AI-powered solutions can support these initiatives and bolster 

their implementation. 

 

5.1.1. National Systems of Innovation 

 

AI systems can advance National Innovation Systems (NIS) by facilitating more efficient and effective research, 

development, and deployment of new technologies tailored to local climate challenges.  
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AI itself reflects as a co-evolution of corporate and NIS. Lundvall and Rikap (2022) evaluated China's progress in 

AI and underscored the co-evolution of corporate innovation systems and China's national innovation system. 

Furthermore, Kouakou and Szego (2024) found that higher NIS performance enhances AI integration, suggesting 

that policies aimed at improving NIS performance can positively impact the integration of AI technologies in 

innovation activities. Key dimensions of NIS performance, such as technological diversification, knowledge 

localization, and originality, significantly boost AI integration, showing similar marginal effects. Moreover, the study 

highlighted an inverted-U shaped relationship between the cycle time of technologies and the level of AI integration 

in innovation activities. 

 

Developing countries can improve their innovation ecosystems, foster collaboration among research institutions and 

industries, and streamline the commercialization of new technologies. Strengthening national innovation systems is 

of high relevance for developing countries, particularly LDCs and SIDS, to create their own AI solutions. Relying 

solely on importing AI applications from the Global North can lead to increased debt and dependency, which can be 

detrimental to their economic stability and sovereignty. Developing indigenous AI capabilities allows LDCs and 

SIDS to reduce their reliance on foreign technologies, which often come with high costs and can exacerbate national 

debt. These countries can develop cost-effective and contextually relevant AI solutions tailored to their specific needs 

and challenges by investing in local innovation and research. This approach promotes economic independence and 

sustainability, fostering a more resilient and self-sufficient economy. 

 

AI applications developed in the Global North may not always be suitable for the unique socio-economic and 

environmental conditions of LDCs and SIDS. Local innovation systems can create AI solutions that are better suited 

to address specific issues such as agricultural productivity, climate resilience, healthcare, and disaster management. 

These countries can ensure that the solutions are more effective and impactful by focusing on locally relevant AI 

technologies. 

 

Investing in national innovation systems also involves building local capacity and expertise in AI and related fields. 

This investment can lead to a more skilled workforce capable of developing, implementing, and maintaining AI 

systems. Moreover, it encourages knowledge transfer and fosters a culture of innovation and technological 

advancement. Educational institutions and research centers play a role in this process, offering training and 

development programs to nurture local talent. 

 

Developing homegrown AI solutions can create significant economic opportunities and jobs within LDCs and SIDS. 

This development can stimulate the local economy, providing employment in research, development, 

implementation, and maintenance of AI technologies. It can also lead to the growth of tech startups and industries, 

further enhancing economic diversification and resilience. 

 

By developing their own AI solutions, LDCs and SIDS can help bridge the digital divide that often exists between 

developed and developing countries. Local innovation can lead to more affordable and accessible technologies, 

ensuring that a larger portion of the population can benefit from AI advancements. This inclusivity is crucial for 

achieving broader social and economic development goals. 

 

However, there are challenges in building robust national innovation systems, including limited financial resources, 

lack of infrastructure, and insufficient technical expertise. International cooperation and support from developed 

countries, international organizations, and private sector stakeholders can support in addressing these challenges. 

Initiatives such as technology transfer, funding for research and development, and collaborative projects can help 

build the necessary infrastructure and capabilities. 
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5.1.2. Water-Energy-Food Systems 

 

AI-powered solutions can address the interconnected challenges of water, energy, and food systems by optimizing 

resource use and improving efficiency. 

  

Indeed, the interconnected nature of water, energy, and food systems demands integrated approaches facilitated by 

AI. Advanced algorithms and sensor networks enable real-time monitoring and predictive analytics, optimizing 

resource management and enhancing resilience against climate-induced stresses. Case studies from developing 

countries underscore successful implementations of AI in enhancing agricultural productivity, sustainability 

practices, and water management strategies. 

 

5.1.3. Energy Systems 

 

AI has the potential to transform energy systems by improving efficiency and reliability in production, distribution, 

and consumption, while promoting renewable technologies. Efficient energy systems are crucial for sustainable 

development. AI enables predictive maintenance, optimizes energy distribution, and integrates renewable sources. 

By forecasting weather patterns, AI can enhance the operation of wind, solar, and thermal energy, maximizing output 

and grid stability. It also monitors energy grids to detect anomalies, prevent outages, and balance supply and demand 

in real-time. AI-driven smart grids facilitate the integration of distributed resources, fostering a decentralized and 

resilient energy system. Additionally, case studies highlight AI's effectiveness in boosting energy efficiency and 

lowering GHG emissions in developing countries. 

 

5.1.4. Buildings and Resilient Infrastructure 

 

By leveraging AI applications in building management systems, significant improvements can be made in energy 

efficiency, structural resilience, and maintenance processes, all of which support climate-resilient infrastructure 

development. 

 

Energy efficiency and building management: AI systems optimizes various aspects of building management, 

including heating, ventilation, air conditioning (HVAC), lighting, and other operational systems. By analyzing real-

time data, they can adjust these systems to reduce energy consumption and enhance occupant comfort. For instance, 

they can predict the optimal times to heat or cool a building based on weather forecasts and usage patterns, leading 

to substantial energy savings. 

 

Predictive maintenance: AI-driven predictive maintenance is another key application. AI systems can predict 

potential failures before they occur, allowing for pre-emptive repairs by continuously monitoring the health of 

infrastructure assets. This extends the lifespan of assets and reduces maintenance costs and prevents unexpected 

downtime. Predictive maintenance uses data from various sensors and historical performance records to identify signs 

of wear and tear, ensuring timely interventions. 

 

Resilient infrastructure design and construction: AI systems support the design and construction of resilient 

infrastructure by analyzing environmental data and simulating the impacts of various hazards, such as floods, 

earthquakes, and extreme weather events. These simulations help engineers and architects design buildings and 

infrastructure that can withstand such events, thereby enhancing resilience. AI systems can model different scenarios 

and their potential impacts, providing valuable insights that inform better disaster preparedness strategies and 

building practices. 
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Sustainability: AI systems contribute to sustainability in the construction and operation of buildings by promoting 

the use of eco-friendly materials and energy-efficient technologies. They can assess the environmental impact of 

different building materials and construction methods, recommending the most sustainable options. During the 

operational phase, they continuously optimize energy and resource use, contributing to lower carbon footprints and 

more sustainable living environments. 

 

5.1.5. Business and Industry 

 

AI-powered analytics help minimize environmental footprints, optimize supply chains, and meet regulatory 

standards, leading to lower costs and improved innovation. In business operations, AI automates routine tasks, 

analyzes large datasets for insights, and optimizes logistics, resulting in reduced errors and better decision-making. 

It aids in demand forecasting, inventory management, and waste reduction, enhancing service delivery. In 

manufacturing, AI can enhance production through predictive maintenance, which anticipates equipment failures, 

and real-time quality control that identifies defects, ensuring consistent product quality. Data analytics and machine 

learning further optimize production schedules and resource allocation, improving efficiency and reducing energy 

consumption.  

 

5.1.6. Emerging and Transformational Adaptation Technologies 

 

Emerging adaptation technologies require innovative approaches driven by AI to effectively mitigate the evolving 

risks and impacts of climate change and other global challenges. AI technologies offer innovative solutions for 

climate adaptation, significantly enhancing adaptive capacity and resilience across various domains. 

 

AI systems play a critical role in improving early warning systems by analyzing extensive environmental data to 

predict extreme weather events and issue timely alerts to vulnerable communities. This predictive capability is 

instrumental in minimizing the human and economic toll of climate-related disasters, enabling proactive measures 

and swift responses. 

 

In ecosystem monitoring and nature-based solutions, AI systems optimize site selection and monitors project progress 

in initiatives such as reforestation and wetland restoration. By enhancing ecosystem resilience and promoting carbon 

sequestration and biodiversity conservation, these AI-driven interventions contribute significantly to sustainable 

environmental management. 

 

Moreover, AI-driven innovation facilitates the development of new technologies resilient to climate impacts. These 

advancements bolster infrastructure durability but also promote sustainable practices essential for long-term 

adaptation and mitigation strategies. AI systems contribute to building climate-resilient communities and enhancing 

overall societal resilience by fostering the adoption of resilient technologies. 

 

Furthermore, AI systems empower community engagement by facilitating participation and awareness through 

educational tools. These initiatives empower local populations to actively engage in climate adaptation efforts, 

fostering a sense of ownership and collective action towards building resilient communities. 

 

In terms of policy and governance, AI systems support evidence-based policymaking by analyzing comprehensive 

datasets on climate impacts, adaptation strategies, and societal vulnerabilities. This analytical capability aids 

governments in developing effective climate policies and regulations that address local challenges and promote 

SDGs. 
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Overall, AI's integration into emerging adaptation technologies underscores its instrumental role in advancing climate 

resilience strategies. Developing countries can leverage AI's capabilities to enhance their resilience to climate change 

impacts while fostering sustainable development and environmental stewardship. 

 

In summary, AI-powered solutions offer significant potential to support the implementation of the Technology 

Mechanism Joint Work Program across various thematic areas. From enhancing NSI and optimizing water-energy-

food systems to revolutionizing energy systems, buildings, and infrastructure, AI technology can drive efficiency, 

sustainability, and resilience. It can play a central role in achieving the objectives of the joint work program and 

advancing the global goals of sustainable development by addressing the unique challenges and opportunities in 

business and industry, as well as fostering the development of emerging adaptation technologies. 

5.2. The Role of the CTCN in Technical Assistance and Capacity Building-Projects  

The CTCN has already initiated several technical assistance and capacity-building projects that align with AI's 

potential. It has been actively supporting countries in deploying digital technologies and innovative solutions to 

address climate change challenges. By facilitating the exploration and integration of emerging digital tools, including 

AI and IoT, CTCN assists countries in building resilience and enhancing climate adaptation efforts. Table 7 

showcases examples of CTCN’s technical assistance initiatives across various countries, highlighting the outcomes 

and impacts of these digital interventions in diverse climate contexts (CTCN 2023). 
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Examples of the CTCN 

Technical Assistance 
Country Outcome and Impacts 

Exploring emerging digital 

technologies and piloting digital 

tools: CTCN supports countries 

in exploring the climate 

potential of emerging 

technologies such as AI, IoT, 

cloud computing, blockchain, 

and open data, while developing 

and piloting locally-adapted 

digital solutions to drive climate 

adaptation and increase 

resilience in communities. 

Cambodia: Climate risk assessment for subnational adaptation and 

establishment of a local climate information system (LISA) for climate 

change adaptation.  

 

Eswatini: Strengthening the National Disaster Management Agency’s 

(NDMA) application of UAV and remote sensing technology for 

vulnerability assessments and response planning.  

 

Georgia: Building up integrated monitoring and early warning forest fires 

detection system in the Borjomi-Kharagauli National Park by innovative 

remote sensing tools.  

 

Nepal: Customized weather and climate information system for climate-

resilient agriculture.  

 

Samoa: Development of a framework and methodology to measure carbon 

sinks from the forestry sector using Earth observation.  

 

South Africa: Tree monitoring for climate adaptation in the City of 

Mbombela.  

 

Sudan: Soil erosion valuation to support climate-resilient agriculture and 

food security. 

 

Table 7. Examples of CTCN Technical Assistance Initiatives on Emerging Digital Technologies for Climate Action 

 

CTCN's technical assistance efforts have laid a foundation for digitalization in climate action, incorporating various 

innovative tools and platforms. While AI has not yet been a primary focus within these projects, elements related to 

AI, such as ML for predictive analytics and the use of IoT for real-time data collection, have been integrated. These 

aspects represent a starting point that could be expanded to include more AI-driven applications explicitly. Future 

initiatives could harness AI's potential more strategically to support comprehensive climate action, leveraging its 

ability to process vast amounts of data, improve decision-making, and optimize climate-related interventions. 

The existing groundwork laid by the CTCN through its digitalization efforts creates promising opportunities for the 

integration of AI into climate action in developing countries. CTCN can significantly advance climate resilience and 

adaptation strategies in LDCs and SIDS by enhancing current projects with more AI-driven tools and technologies. 

Expanding these initiatives will be crucial for scaling AI's role in tackling the diverse and evolving challenges posed 

by climate change globally. 

Initiatives like CTCN’s capacity-building programs aim to support the adoption of AI in climate technology by 

providing training and resources to local stakeholders. These programs also offer technical assistance, such as 

developing digital platforms for climate data management and early warning systems powered by AI. Additionally, 

CTCN has facilitated technical assistance projects focused on integrating digital tools into climate adaptation and 

mitigation efforts. For instance, AI-driven tools have been developed in collaboration with local governments and 

institutions to enhance agricultural resilience, improve water resource management, and optimize energy systems. 

These efforts align with the objectives of the Technology Mechanism, demonstrating AI’s relevance in supporting 

capacity-building and technical assistance in LDCs and SIDS. 
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Expanding on these examples highlights how AI applications are already being explored and applied within the 

context of the Technology Mechanism Joint Work Program. This integration ensures that AI is positioned as a key 

enabler for achieving the technology and capacity-building goals set out by the TEC and CTCN, ultimately enhancing 

the effectiveness and scalability of climate actions in developing countries. 

5.3. Artificial Intelligence for the Implementation of TNA Outcomes 

TNAs provide a roadmap for technology deployment aligned with national climate priorities. The implementation of 

TNAs is essential for developing countries to identify and prioritize their technology needs for effective climate 

action. These assessments encompass a range of thematic areas, including energy, agriculture, water management, 

infrastructure, and industry, among others. Each TNA identifies specific technology needs and proposes action plans 

to integrate these technologies into national climate strategies. The main focus is on how AI-powered solutions can 

support and enhance the implementation of TNA outcomes across the following thematic areas, including technology 

action plans and capacity-building initiatives, drawing on insights and findings from Section 4 of the technical paper, 

which explores AI applications in climate action across diverse domains. Among the key opportunities identified, 

AI-powered solutions can support the implementation of TNA outcomes in energy sector, agriculture and food 

security, water management, infrastructure and resilient construction, industry and manufacturing and disaster risk 

reduction. Effective AI implementation aligned with TNA outcomes depends, however, on international cooperation, 

targeted policy frameworks, and strategic investments in digital infrastructure and local expertise. 

5.4. Artificial Intelligence-Powered Solutions Supporting Sustainable Development Goals 

AI has the potential to accelerate the achievement of SDGs by providing innovative solutions to some of the most 

pressing global challenges. In the context of climate action and sustainable development, AI systems can support the 

implementation of TNA outcomes by enhancing efficiency, improving decision-making, and fostering resilience. An 

outline of specific SDGs and targets is presented in Table 8. where AI-powered solutions can make a substantial 

impact, demonstrating how AI can be strategically leveraged to promote sustainable development and climate 

resilience. 

 

SDG Target AI-Powered Solution 

SDG 2: Zero 

Hunger 

Target 2.3: Double the 

agricultural productivity and 

incomes of small-scale food 

producers 

• AI-powered precision agriculture: Using AI to provide 

real-time advice on crop management, pest control, and 

efficient irrigation techniques to smallholder farmers, 

thus increasing productivity and sustainability. 

SDG 6: Clean 

Water and 

Sanitation 

Target 6.4: Increase water-use 

efficiency and ensure sustainable 

withdrawals and supply of 

freshwater 

• AI for water management: Utilizing AI to optimize 

water distribution, monitor water quality, and predict 

water scarcity issues, enhancing sustainable water use 

and management. 

SDG 7: 

Affordable and 

Clean Energy 

Target 7.2: Increase the share of 

renewable energy in the global 

energy mix 

• AI in renewable energy optimization: Implementing 

AI-driven systems to optimize the integration and 

operation of renewable energy sources like solar and 

wind, improving efficiency and reliability. 

SDG 9: 

Industry, 

Innovation, and 

Infrastructure 

Target 9.4: Upgrade 

infrastructure and retrofit 

industries to make them 

sustainable, with increased 

resource-use efficiency 

• AI in smart infrastructure: Designing AI-based 

solutions for developing climate-resilient infrastructure, 

predictive maintenance, and optimizing resource use in 

industries. 

SDG 11: 

Sustainable 

Target 11.5: Reduce the adverse 

effects of natural disasters 

• AI for disaster risk management: Deploying AI-

powered early warning systems and decision support 
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Cities and 

Communities 

tools to enhance disaster preparedness and response, 

minimizing the impacts of extreme weather events. 

SDG 13: 

Climate Action 

Target 13.1: Strengthen resilience 

and adaptive capacity to climate-

related hazards and natural 

disasters 

• AI in climate resilience: Using AI to develop adaptive 

strategies, improve disaster response, and enhance the 

resilience of communities to climate impacts. 

SDG 14: Life 

Below Water 

Target 14.2: Sustainably manage 

and protect marine and coastal 

ecosystems 

• AI for marine ecosystem management: Implementing 

AI technologies to monitor marine biodiversity, predict 

climate impacts on marine life, and support sustainable 

fisheries management. 

SDG 15: Life 

on Land 

Target 15.1: Ensure the 

conservation of terrestrial and 

freshwater ecosystems 

• AI in biodiversity conservation: Utilizing AI to monitor 

and protect biodiversity, manage conservation areas, and 

detect illegal logging and poaching activities. 

SDG 17: 

Partnerships 

for the Goals 

Target 17.6: Enhance 

international cooperation on and 

access to science, technology, and 

innovation 

• AI for global collaboration: Facilitating international 

cooperation and knowledge sharing through AI 

platforms, supporting global climate initiatives, and 

ensuring equitable access to AI technologies. 

 

Table 8. AI-powered solutions aligned with SDG goals and targets for promoting sustainable development and 

climate resilience 
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6. Risks and Challenges of Using AI for Climate Action in Developing Countries 

Even though the main risks and challenges have been highlighted in each subsection of Section 4, this section takes 

a more structured approach by delving deeper into the primary challenges and risks associated with the deployment 

of AI in SIDS and LDCs. The selection of these topics—Energy and Water Consumption, Data Security, Digital 

Divide, Biases, and Youth Misrepresentation—is based on their criticality to AI adoption in these contexts. Energy 

and water consumption are particularly pressing due to infrastructure constraints in SIDS and LDCs, where high 

resource demands could limit AI deployment. Data security was prioritized over data availability due to the 

heightened vulnerability of digital infrastructures in these regions. Many LDCs and SIDS lack strong data protection 

policies, cybersecurity frameworks, and institutional capacity to manage digital risks, making AI systems particularly 

susceptible to data breaches, cyberattacks, and manipulation. These vulnerabilities not only threaten sensitive 

information but can also undermine trust in AI-driven climate initiatives, hindering adoption and scalability. The 

digital divide remains a major obstacle to AI accessibility, affecting equitable participation in AI-driven climate 

solutions. Biases in AI models disproportionately affect marginalized communities, reinforcing structural 

inequalities. Lastly, youth misrepresentation is crucial given the demographic trends in many LDCs, where young 

populations play a pivotal role in future innovation but face systemic exclusion from decision-making, financing, and 

capacity-building opportunities. These five dimensions, therefore, represent key barriers that require targeted 

interventions to ensure inclusive and responsible AI deployment in climate action. 

6.1. Energy and Water Consumption 

AI systems, particularly high-computation models, require significant amounts of energy for training and operation, 

and in many LDCs and SIDS, energy resources are already constrained or heavily reliant on fossil fuels. Additionally, 

water consumption is a key sustainability concern, as cooling AI data centers and infrastructure can strain limited 

freshwater supplies, particularly in water-scarce island nations.  

The lifecycle of AI technologies—including their development, deployment, use, application, maintenance, and 

disposal—systematically stresses energy supplies and contributes to GHG emissions. These impacts are categorized 

into direct, indirect, rebound, and systemic effects, which pose varied risks to environmental sustainability (Bibri et 

al. 2023). Direct effects include not only the energy-intensive processes involved in training and running AI models, 

which contribute to GHG emissions, but also the energy demands of data storage, cooling systems, and data 

transmission associated with these technologies. They are especially significant when AI relies on data centers 

powered by non-renewable energy sources. 

Indirect effects involve the secondary impacts of widespread AI adoption, such as driving up overall electricity 

demand, increasing water usage for cooling systems, and accelerating the depletion of natural resources. The indirect 

effects also include the increased demand for the production of hardware components and infrastructures that support 

AI, which require significant energy and resources. 

Rebound effects occur when efficiency improvements or innovations inadvertently lead to higher overall 

consumption, counteracting intended energy savings. In the case of AI, enhanced model performance and efficiency 

can increase demand, thereby expanding AI applications in ways that raise total resource consumption. 

Systemic effects go beyond these direct, indirect, and rebound consequences by capturing the broader, 

interconnected, and long-term impacts of AI technologies on the environment and society as a whole. Systemic 

effects can involve the following: 
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● The way AI-driven processes influence societal behaviors, such as increased reliance on energy-intensive 

technologies. 

● The cumulative and compounding impacts of widespread AI adoption on infrastructure, resource extraction, 

and waste production. 

● The creation of feedback loops where AI ecosystems might reinforce unsustainable practices, thereby 

exacerbating environmental degradation. 

In the context of AI and climate change, systemic effects highlight the interconnected and cascading consequences 

of AI adoption across multiple layers of society and the environment. These effects are often difficult to predict and 

can lead to unintended ripple effects that extend beyond immediate energy consumption. Addressing these challenges 

requires comprehensive strategies that integrate sustainable development, optimize resource use, and ensure 

responsible AI governance to mitigate these cascading impacts. Recognizing these challenges and proactively 

addressing them enables society to leverage AI in paving the way for a sustainable future. In this context, proactive 

measures include accelerating the decarbonization of electric grids, fostering markets for low-carbon materials, and 

promoting the development of energy-efficient hardware. Optimizing AI algorithms and encouraging sustainable 

practices in AI development are also critical steps toward reducing the environmental footprint of AI.  

The International Telecommunication Union (ITU 2024b, c) underscores the impact of the ICT sector on 

environmental sustainability, with a special emphasis on the role of AI, as part of its Green Digital Action Initiative. 

While the ICT sector provides unparalleled opportunities for advancing sustainability, such as optimizing energy 

systems, implementing smart grids, enhancing industrial efficiency, and offering valuable insights into climate 

change patterns, it also poses substantial environmental challenges, including increased energy and water 

consumption, GHG emissions, and the demand for critical raw materials. The Green Digital Action initiative focuses 

particularly on AI's impact in this broader context emphasizing the need to address the environmental implications 

of AI to ensure sustainable AI development by enhancing the energy efficiency of AI systems and promoting the use 

of renewable energy sources for powering data centers.  

 

6.1.1 Quantify the Artificial Intelligence Carbon Footprint 

 

AI depends on data centers that require significant energy to compute, analyze, and categorize data (Brevini et al 

2021). Training DL models requires substantial computation time and resources, as they learn a comprehensive 

representation for better data analysis, with costs increasing further if they engage in continuous learning. Anthony 

et al. (2020) introduced Carbon tracker, a tool designed to monitor and forecast the carbon footprint associated with 

training DL models. The tool aims to provide insights into the environmental impact of AI training processes by 

accurately tracking energy consumption and resulting carbon emissions (Anthony et al. 2020). A study published in 

2019 attempted for the first time to quantify the energy consumption of running AI programs and found that a typical 

AI training model in NLP can emit over 284 tonnes of CO2 equivalent (Strubell et al., 2019). 

 

With the growing adoption of AI, the energy consumption of data centers is increasingly under scrutiny, highlighting 

the need for more accurate data collection and improved assessment practices. The report published by IEA (2024a) 

points out significant uncertainties regarding the electricity demand of data centers, influenced by factors like the 

pace of AI deployment, the variety of AI applications, and the potential for advances in energy efficiency. As stated 

in the executive summary of the report (IEA 2024b), electricity consumption from data centers and AI systems is 

projected to double by 2026. Today, data centres account for around 1% of global electricity consumption, and annual 

electricity consumption from data centres globally is about half of the electricity consumption from household IT 
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appliances, like computers, phones and TVs. By 2026, their total electricity consumption could surpass 1,000 

terawatt-hours (TWh). However, when considered in a broader context of total electricity consumption growth 

globally, the contribution of data centres is modest. Global aggregate electricity demand grows by 6 750 TWh by 

2030. While growing digitalization, including the rise of AI, is one factor, continued economic growth, electric 

vehicles, air conditioners and the rising importance of electricity-intensive manufacturing are all bigger drivers.  

 

At the same time, the IEA emphasizes that the increasing integration of AI into data center operations could contribute 

both to higher energy demand and potential efficiency gains. Advancements in energy-efficient cooling technologies, 

AI-driven energy optimization, and workload distribution strategies have been identified as crucial factors in 

mitigating consumption increases. Furthermore, regional disparities in data center electricity demand remain an area 

of concern, with certain locations experiencing greater grid strain due to high concentrations of AI-driven workloads. 

To mitigate this substantial rise in energy consumption, updated regulations and technological advancements, 

especially focused on efficiency improvements, will be essential. Additionally, the IEA underscores the importance 

of enhancing monitoring mechanisms to refine projections and enable proactive energy planning. To accurately track 

historical developments and better predict future trends, enhanced monitoring and detailed electricity usage data for 

the data center industry will be critical (EAI 2024a). 

 

Numerous studies have assessed the energy consumption required for producing and training GenAI models. 

Researchers estimated that the development of GPT-3 consumed approximately 1,287 megawatt hours of electricity 

and generated 552 tons of CO2 equivalent (Saenko 2023). In addition to the direct energy consumption, there are 

significant environmental costs linked to the production and operation of AI models. These include the extraction of 

rare minerals for graphics processing units (GPUs) and the vast amounts of water required to cool large data centers 

(Luccioni 2023). Data centers, which are integral to AI operations, consume massive amounts of both energy and 

water, primarily for air conditioning systems. Notably, training the LaMDA language model is estimated to have 

used around one million liters of water (Dolby 2023). Moreover, there are location-specific variables that influence 

the energy and water usage of LLMs. For example, Microsoft reported that its data centers in Asia are significantly 

less water-efficient than those in the Americas (Dolby 2023). Seasonal factors also play a role, as hotter summers 

lead to greater water consumption due to the increased need for cooling and higher evaporation rates (Dolby 2023). 

These studies collectively highlight the multifaceted environmental impact of GenAI models, extending beyond 

energy consumption to include broader resource use and location-dependent inefficiencies.  

 

Researchers estimate that training a model like GPT-4 generates approximately 300 tonnes of carbon for its entire 

training process (Kumar and Davenport 2023; Deeb and Garel-Frantzen 2023). As AI technology advances, this 

carbon footprint is expected to grow because the increasing complexity of models and the larger datasets they require 

will demand even more energy (An et al. 2023). On the user side, a GenAI query has been found to produce four to 

five times more carbon emissions than a typical Google search or other search engine query (Saenko 2023). Although 

the energy consumption per query is less than that of training the model, the sheer volume of queries contributes to 

significant energy use, accounting for up to 90% of the total energy consumed by GenAI (Kumar and Davenport 

2023). In addition to energy demands, GenAI models also have notable water consumption impacts. For instance, it 

is estimated that interacting with ChatGPT for 20 to 50 queries could require the equivalent of a 500-milliliter bottle 

of water, depending on where the electricity powering the interaction is generated (Dolby 2023). Overall, the 

electricity demand for training LLMs like GPT-4 and operating AI systems can lead to substantial carbon emissions, 

depending on the energy mix of the data centers involved. Notably cutting-edge rapidly evolving developments in 

ultra-low-power consumptions integrated circuits hold a potential to scale down both the data centers and 

computational energy of AI algorithms. 
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According to Luers et al. (2024), AI currently contributes a small fraction of global GHG emissions—in the order of 

magnitude of 0.01%—and even with rapid growth rates, its operational footprint is not expected to be a significant 

contributor to GHG emissions in the foreseeable future. The sector’s rapid evolution makes it nearly impossible to 

reliably predict the energy and resource implications of AI technologies beyond a few years. Some studies simply 

extrapolate past trends in AI electricity use, but these projections often overlook critical social, economic, and 

technological factors, leading to significant forecasting errors (Masanet et al., 2020; Chen et al. 2024). Moreover, 

taking an overly simplistic view of the indirect emissions linked to AI risks underestimating its potential to drive 

climate solution breakthroughs, such as rapidly advancing battery technology or optimizing renewable energy 

systems (Luers et al., 2024). 

 

To accurately assess AI’s environmental impact, there is a need for holistic scenarios that explore alternative futures, 

considering factors like resource use, technological advancements, and economic shifts (Luers et al.,2024).  

 

6.1.2 Green Computing and Alternatives 

 

The ongoing research in green AI, or generally green computing, is dedicated to creating AI technologies that are 

environmentally sustainable. This burgeoning field aims to reduce the carbon footprint and energy consumption 

associated with AI development and deployment (Lannelongue et al. 2020; Verdecchia et al. 2022; Wheeldon et al. 

2020; Yokoyama et al. 2023). Researchers strive to minimize the environmental impact of AI systems by optimizing 

algorithms, enhancing hardware efficiency, and improving data center operations as AI systems can achieve similar 

performance with lower energy use. Green AI initiatives often include developing metrics and standards to evaluate 

and promote the sustainability of AI technologies (e.g., Schwartz et al. 2020; Raman et al. 2024). 

 

From a different perspective, in the rapidly evolving landscape of GenAI, Small Language Models (SLMs) are 

gaining attention as a resource-efficient alternative to the traditionally large and energy-intensive models like LLMs. 

SLMs offer a more sustainable approach by leveraging fewer parameters, which results in reduced computational 

and energy demands.  

 

Instead of the trillion-parameter LLMs that consume considerable resources, SLMs are emerging as smaller-scale, 

lightweight models that can leverage energy and compute resources more efficiently for specific, purpose-built 

functions. This shift is particularly important as AI models become increasingly integrated into various sectors where 

energy efficiency and accessibility are critical.  

 

Additionally, in the energy-intensive pre-training phase, even the power savings differential between SLMs is 

significant. The Llama 2 7B SLM generated 30.22 tCO2EQ of carbon emissions, while the larger Llama 2 70B SLM 

generated a significantly larger 291.42 tCO2EQ in emissions. This stark difference highlights the potential of SLMs 

to contribute to more sustainable AI practices, especially as energy consumption becomes a growing concern in the 

tech industry. In theory, SLMs may eventually be less prone to bias, as they train on smaller, more tightly managed 

datasets. 

 

Furthermore, software defined storage, an emerging technology, enables dynamic scaling of memory resources in a 

virtual (cloud-based) AI infrastructure architecture. This flexibility enables more efficient use of resources, 

particularly during intensive AI tasks. Once the task is complete, these memory resources can be efficiently scaled 

down, and physical memory can be spun down when larger AI workloads are no longer in operation. This approach, 

already employed by the SWIFT global financial system for real-time AI anomaly detection, significantly reduces 

data center power consumption in AI applications and offers similar benefits for Edge AI use cases. 
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While AI has the potential to drive significant advancements in climate action, its deployment in developing countries 

must be carefully managed to avoid exacerbating energy and water resource challenges. In many developing 

countries, including LDCs and SIDS, the growth of data centers remains limited, often due to infrastructure 

constraints and high operational costs. Consequently, a significant portion of AI-related data processing for these 

regions occurs in data centers located in more developed regions, where electricity consumption and water usage are 

not substantial concerns.  

6.2. Data Security 

Many LDCs and SIDS lack strong data protection policies, cybersecurity frameworks, and institutional capacity to 

manage digital risks. This makes AI systems particularly susceptible to data breaches, cyberattacks, and 

manipulation, which can undermine trust in AI-driven climate initiatives. 

 

Data security is paramount worldwide. Handling large datasets raises significant privacy and cybersecurity 

concerns—particularly in regions with weak regulatory frameworks—where sensitive information can be misused or 

exposed to cyber threats. AI systems, as all the software, also remain vulnerable to data poisoning and other 

adversarial attacks, underscoring the need for secure data-handling practices. 

 

Recent studies (Paracha et al. 2024; Rosenberg et al. 2021; Goldblum et al. 2022) discuss critical risks like adversarial 

ML, data poisoning, and backdoor attacks, offering strategies to enhance resilience. Implementing comprehensive 

data protection laws, clear data governance guidelines, and effective enforcement mechanisms is vital to ensure 

public trust and participation in AI initiatives. Moreover, as AI applications in climate action integrate diverse 

datasets, maintaining consistent security and privacy standards is essential for safeguarding both the technology and 

the data it relies on. 

 

AI security management involves adopting measures and practices designed to protect AI systems and the data they 

process from unauthorized access, breaches, and malicious activities. This includes threat identification (Kumar and 

Kumar 2023), access control (Song 2020), and security awareness and training (Solomon, 2022), as well as 

continuous monitoring and updates to security protocols to adapt to emerging threats. Cybersecurity involves 

protecting digital systems, including computers, servers, networks, and related data, from malicious attacks. It 

safeguards internet-connected information and communication systems from malicious attacks and threats (Li and 

Liu 2021). 

 

Incorporating comprehensive threat identification methods can help detect potential risks, such as data breaches, 

unauthorized access, adversarial attacks, and insider threats (Rosenberg et al. 2021; Goldblum et al. 2022), which are 

critical for maintaining the integrity of AI systems. Moreover, implementing robust access control mechanisms 

ensures that only authorized individuals can interact with AI systems and their data, further enhancing security. To 

achieve this, continuous security awareness and training programs are crucial to equip stakeholders with the 

knowledge to recognize and mitigate security threats. By integrating these security measures, organizations can create 

a resilient AI infrastructure capable of withstanding various threats and ensuring the ethical use of AI technologies. 

Managing and mitigating the potential harms caused by the malicious use of AI is a serious concern in the 

development and deployment of AI technologies. 

 

The impact of AI on cybersecurity is dual-sided, presenting both negative and positive aspects. On the positive side, 

AI-driven automation using ML algorithms has successfully prevented attackers from using traditional attack 

methods on systems. This has enhanced the efficiency and effectiveness of cybersecurity measures, allowing for real-

time responses to emerging threats. Integrating cybersecurity with ML encompasses two main aspects: ensuring the 
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cybersecurity of environments where ML is deployed and leveraging ML to enhance cybersecurity measures (Wazid 

et al. 2022). This integration offers multiple benefits, such as providing increased security for ML models, improving 

the performance of cybersecurity methods, and enabling the effective detection of zero-day attacks through the use 

of techniques such as anomaly detection. Jada and Mayayise (2024) found that while AI can influence cybersecurity 

across its entire lifecycle, providing advantages such as automation, threat intelligence, and enhanced cyber defense, 

it can introduce challenges like adversarial attacks and the necessity for high-quality data, which could result in 

inefficiencies. Liu and Zhang (2023) found that employing DL technology for computer network security detection 

enhances security performance. This approach is characterized by high safety performance, a high detection rate, and 

a low false alarm rate. It enables timely monitoring of network vulnerabilities and effectively detects security attacks 

on the computer network.  

 

Within the context of AI Trust, Risk, and Security Management, data security holds particular significance. The 

increasing reliance on AI systems brings emerging concerns related to risk, trust, and security. The AI TRiSM 

framework is a theoretical approach to implementing AI in organizations and (Habbal et al. 2024) included five 

illustrative scenarios that highlight its effectiveness.  

6.3. Digital Divide and Equitable Access to Artificial Intelligence for Climate Action 

In SIDS and LDCs access to electricity and ICT infrastructure is often limited, restricting the ability of end-users to 

benefit from AI solutions and hindering the local AI ecosystem to develop relevant localized applications. In many 

rural and remote areas, unreliable electricity and poor internet connectivity can make it difficult to deploy and 

maintain AI technologies. For example, farmers in remote areas may not be able to access AI-driven agricultural 

advice due to lack of internet access, limiting their ability to benefit from advanced farming techniques. In developing 

countries, satellite internet emerges as a promising solution to bridging the digital divide, nevertheless, especially in 

rural and remote areas where traditional broadband infrastructure is either lacking or entirely non-existent. 

 

Since the emergence of ICT, the digital divide has highlighted significant disparities in access to and use of digital 

resources and technologies among different user groups or populations. This divide, originally framed around access 

to and use of computers and the internet, has evolved with technological advancements. The advent of AI exacerbates 

these inequalities due to the high demand for computational resources, context-specific AI training and testing data, 

access to pre-trained models, specialized knowledge, and advanced infrastructure, which are often concentrated in 

more developed regions and among more privileged groups. In this context, infrastructure entails the foundational 

systems and services required to deploy and support AI technologies effectively. This includes physical hardware 

such as data centers, network connectivity, and cloud computing resources needed for processing large datasets and 

running complex AI models. It also encompasses software infrastructure like platforms for AI development, 

databases, and APIs, as well as organizational structures that support AI operations, such as technical support and 

maintenance teams. 

 

The prevailing economic landscape of ML as a technological domain suggests a trend toward a natural monopoly, 

presenting complex challenges and implications across various sectors. Research has addressed how this 

concentration within the AI market impacts broader dimensions, highlighting the need for a critical reassessment of 

AI development and deployment strategies in the context of global digital equity and local solution generation. Based 

on the literature, some machine-learning-based applications may exhibit the traits of a natural monopoly (Narechania 

2021). This market concentration leads to numerous economic, social, and political issues, such as reduced innovation 

and quality, the potential for bias and misinformation, safety risks due to single points of failure, and a lack of 

democratic oversight and digital sovereignty. Moreover, market concentration and the current structure of the AI 

(research) ecosystem drive an AI monoculture, which incentivizes the development of marketable and profitable AI 
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systems, without considering the public interest and maximizing society’s wellbeing (Ahmed et al. 2023). This 

pertains specifically to fields where market gaps and market failures prevail, such as last-mile services in global 

majority countries. As a core feature of policy-making, education, and training programs for AI and climate change, 

governments should prioritize addressing the global digital divide, which currently leaves billions worldwide without 

internet access (Sandaw et al. 2023) and skilled professionals without the opportunity to develop meaningful 

localized solutions due to prevailing data poverty and the compute divide (Besiroglu et al. 2024). 

 

It is particularly important to note that data scarcity greatly affects the efficacy of AI-driven climate change initiatives, 

especially in SIDS and LDCs. These regions often face challenges that exacerbate the digital divide, affecting their 

ability to implement advanced AI solutions for climate action. This includes fewer weather stations, limited access 

to advanced satellite imagery, and sparse sensor networks, which are key to gathering the comprehensive 

environmental data needed to train AI models, restricted access to global data sets due to high costs or licensing 

restrictions. 

 

Unequal access to both physical and digital resources is an aspect that remains inadequately explored in current 

literature (Walsh et al. 2020). 

 

6.3.1 Closing the Data Divide 

 

Addressing this gap involves improving data collection infrastructures and advocating for open data initiatives, as 

well as fostering international collaborations to ensure equitable access to AI technologies and climate data.  

 

These efforts are complemented by training programs for local personnel in data management and analysis. 

Furthermore, open data initiatives that promote the sharing of climate data enhance accessibility and utility, especially 

in regions with limited resources. Synthetic data generation also plays a role where real data are lacking, enabling 

the training of more adaptable AI models. Moreover, collaborative AI development that integrates input from local 

stakeholders and international experts ensures the creation of tailored solutions that address specific regional 

challenges and enhance climate resilience effectively. Additionally, data-poor contexts can especially benefit from 

the development of novel approaches to making AI training more efficient (Gunasekar et al. 2023) and research 

focusing on smaller, task-specific models (Varon et al. 2024). These advancements are often driven by open-source 

AI, which has played a role in democratizing access to AI tools and enabling innovation, particularly in resource-

constrained environments. 
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Case Study: Closing the Climate Data Divide in the Global South 

 

Country: LDC or SIDS 

Entities Involved: Microsoft AI for Good Lab, Planet Labs PBC, African Development Bank, African Risk 

Capacity, African Climate Foundation 

 

Brief Description 

Access to reliable climate data is essential for governments and decision-makers in the Global South to 

mitigate the worst effects of climate change. Efforts to democratize access to climate data align with broader 

global initiatives to accelerate progress toward the 17 Sustainable Development Goals (SDGs), adopted by 

UN member states in 2015 as part of the 2030 Agenda for Sustainable Development. High-quality climate 

data can unlock adaptation and resilience projects, ensuring that available resources are directed to areas 

where they can have the greatest impact, both before and in the aftermath of climate-related disasters. 

However, the Global South faces a significant gap in both reliable climate data and the availability of data 

scientists to analyze and apply it. Research indicates that for every data scientist in the Global South, there 

are approximately five in the Global North, creating disparities in the ability to translate climate data into 

actionable insights. In Africa, this gap widens further, with one data scientist for every 14 in the Global 

North. This imbalance contributes to what has been termed the climate data divide—a challenge that 

ongoing initiatives seek to address. 

 

Microsoft is working to help close that climate data divide through the AI for Good Lab and new 

partnerships underway across the Global South to accelerate action. The AI for Good Lab applies AI, ML, 

and statistical modeling to tackle climate-related challenges in partnership with leading nonprofits, research 

institutions, NGOs and governments as part of its portfolio to help solve humanity’s biggest challenges. By 

offering our technology and expertise, we are helping advance the local development of scalable solutions. 

In 2022, the Lab announced its expansion to Nairobi, Kenya. where a team of world-class data scientists 

works to improve climate resilience across Africa. 

 

Climate change Mitigation and/or Adaption Impacts and Results 

It is a challenging time for planet earth and no nation is immune from the risks and perils faced by the 

ongoing impacts of climate change. There is additional complexity in that the consequences of this 

existential threat to our planet’s survival are unevenly distributed amongst the world’s countries, with a 

greater burden falling on the Global South. The Global South has contributed far less than the Global North 

to the actual causes of climate change, yet they have been disproportionately impacted by extreme climate 

events including droughts, floods, storms and heatwaves, which contribute to other problems like food 

insecurity and exacerbate existing challenges like poverty. Between 2008-2018, there were 2.2 billion 

people in the Global South that were under high climate risk. 

 

In September 2022, a collaboration with Planet Labs PBC and The Nature Conservancy led to the 

development of the Global Renewables Watch—a first-of-its-kind living atlas designed to map and measure 

all utility-scale solar and wind installations on Earth using AI and satellite imagery. The Global Renewables 

Watch provides data that helps both researchers and policymakers understand current renewable energy 

capacities and assists decision-makers in search of effective options for renewable energy development. 

Access to high-quality data is critical to enabling measurement and realization of the SDGs. 

 

Challenges and Lessons Learned regarding Development and Implementation 

Addressing and mitigating the effects of climate change requires collaboration across industry, government, 

academia, and civil society. During initial discussions with Kenyan stakeholders on the expansion of climate 

AI initiatives, it was emphasized that an ideal outcome would involve African researchers leading projects 

that benefit Africa within Africa. To support this approach, collaborations have been established with 

organizations such as the African Development Bank, African Risk Capacity, and the African Climate 

Foundation, focusing on improving climate resilience through data and AI. These partnerships aim to 

facilitate the generation of additional climate data and drive continued research. In addition to these 

partnerships, cooperation has been initiated with the Kenya Red Cross Society, PATH, the Institute for 

Health Metrics and Evaluation (IHME), and the Integrated Food Security Phase Classification (IPC) to 

enhance the translation of climate data into actionable insights. 
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Case Study: EMPIRIC_AI: AI-Enabled Ensemble Projections of Cyclone Risk for Health 

Infrastructure in Pacific Island Countries and Territories 

 

Country: Pacific Island Countries including Fiji, Tonga, Vanuatu, and Solomon Islands 

Entities Involved: Dr. Michelle McCrystall, Dr. Chris Horvat, Dr Liz McLeod, Dr Berlin Kafoa, Dr Craig 

McClain, Dr Eileen Natuzzi, Dr Subhashni Taylor, Dr Callum Webster 

 

Brief Description 

Pacific Island Countries (PICs), such as Fiji, Tonga, and the Solomon Islands are among the most susceptible 

to devastating tropical cyclones and climate change impacts yet lack robust climate-specific data. The region 

comprises 10,000 islands and atolls, but many of these are too small to be accurately represented in large-

scale global climate models. As these climate models are used to project future climate change demonstrated 

in IPCC climate assessment reports, the inability to effectively represent these islands means that future 

climate change projections are limited across the region. 

Around 10 tropical cyclones form in the South Pacific every year. Limited data and infrequent storms require 

the construction of resilient health care facilities in PICs. The EMPIRIC_AI (EMulation of Pacific Island 

Risk to Infrastructure from Climate) project addresses these issues using new statistical modeling and AI 

techniques. Thousands of observationally-constrained synthetic tropical cyclones tracks using a statistical 

model, and a modified U-net is employed to emulate the pan-Pacific impacts of these storms. This network 

allows for a rapid sampling of possible future states and developing a statistical range of impacts of tropical 

cyclones at different hospital sites across PICs such as potential number of landfalls, wind and rainfall. By 

leveraging these data, health governing bodies can make informed decisions regarding future healthcare 

infrastructure planning. 

Climate Change Mitigation and Adaptation Impacts 

The primary aim of this project is to give site-specific projections of climate change impacts on different 

health facilities across the Pacific Island Countries. These insights can identify hospital sites at the highest 

risk from future tropical cyclones and extreme weather events and can inform mitigation or adaptation 

measures that might be needed for those specific sites, including preparation for flooding events or potential 

relocation of hospital sites to limit continuing climate change impacts on the health capacity of each region. 

 

Challenges and Lessons Learned 

A key challenge in the EMPIRIC_AI project involves navigating the intersecting domains of policy, 

healthcare, climate science, and data science. This multifaceted challenge arises because each discipline 

poses distinct questions and often operates with asymmetric knowledge bases. Specifically, the climate 

metrics that impact individual Pacific hospitals are uniquely detailed, and comprehensive qualitative data at 

the sectoral, national, or Pacific-wide level is hard to come by. Addressing this issue requires a nuanced 

approach to contextualizing climate data and adapting AI tools for stakeholders, which is being tackled 

through in-depth qualitative surveying and collaborative efforts. 

 

Much of the progress made in AI research in recent years was realized thanks to open-source and open science 

practices. Open-source AI, in particular, has played a role in democratizing access to cutting-edge tools and 

frameworks, enabling broader participation in AI development and innovation. However, the rapid growth of open-

source AI has also led to a complex and sometimes chaotic landscape, with numerous projects, standards, and 

approaches emerging independently.  

 

In response, new open-source standards and alliances are emerging to bring order to this complexity. Organizations 

such as the Linux Foundation's LF AI & Data, the Open Neural Network Exchange (ONNX), and the AI Open 

Network are working to establish common frameworks and guidelines that promote interoperability, transparency, 

and collaboration. These efforts are crucial in ensuring that open-source AI remains a cohesive and accessible 

resource, particularly for data-poor contexts where proprietary solutions may be out of reach. These initiatives are 
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helping to unlock the full potential of AI across diverse applications and settings by fostering a more structured and 

unified open-source ecosystem. Moreover, to strengthen local AI ecosystems and enable skilled professionals to 

develop localized AI solutions, access to open AI training data and open-source models is paramount, in addition to 

reliable infrastructure (Gimpel 2024).  

 

6.3.2 Right to Development  

 

The digital divide is also intertwined with the gender divide and thus it impairs the right to development of vulnerable 

populations and, at a broader scale, the ability of SIDS and LDCs to fully engage in climate action and sustainable 

development. As AI technologies become increasingly relevant for climate mitigation and adaptation, disparities in 

digital infrastructure and literacy risk excluding developing nations from the benefits of AI-driven climate solutions. 

 

Bentley et al. (2024) explored the implications of the digital divide on how people interact with AI technologies. The 

authors highlight that unequal access to digital technologies and disparities in digital literacy can deepen societal 

inequities and limit the ability of communities to engage with AI-powered climate adaptation measures. They 

introduced the concept of "digital confidence," which encompasses awareness, familiarity, and competence in using 

digital technologies, and surveyed 303 individuals to assess how these factors influence attitudes toward AI. The 

study found that digital confidence is significantly affected by demographic factors such as gender, age, income, and 

access to technology. Women, older individuals, people with lower incomes, and those with less access to digital 

tools reported lower levels of digital confidence. This lack of digital confidence could hinder participation in AI-

based climate resilience initiatives, such as AI-powered early warning systems, precision agriculture, and smart water 

management solutions. 

 

Lutz (2019) addressed inequalities in access to digital technologies, extending this discussion to emerging 

technologies like IoT and AI-powered systems. The author highlights disparities in digital skills and technology 

usage, linking these to new work forms such as the gig economy and the sharing economy. In the context of climate 

action, unequal digital access can also limit participation in global carbon markets, AI-driven disaster risk reduction, 

and climate-smart supply chain management. Ensuring digital inclusivity is essential to empower developing nations 

to harness AI for climate adaptation, resilience-building, and sustainable economic transitions. 

 

This is not just about improving technical skills or increasing access to technology, but also about gaining control 

over data and AI governance. This can help prevent scenarios where data from these countries are used to feed 

algorithms that primarily benefit companies and economies elsewhere. Moreover, developing local AI solutions can 

stimulate local economies, spur innovation, and provide more relevant technological solutions that address local 

needs effectively. It is important that these efforts go beyond just setting up infrastructure. Comprehensive strategies 

should include developing competencies to allow individuals to engage with and benefit from AI technologies fully.  

 

Moreover, public investment in AI infrastructure aimed at public interest projects can increase accessibility for 

communities with lower incomes. Subsidies, public-private partnerships, and other innovative financial mechanisms 

can reduce the cost of AI technologies, making them more accessible and promoting equitable technological 

advancements. These multifaceted approaches are important for closing the digital divide and enhancing the capacity 

of communities worldwide to leverage AI for sustainable development. Capacity-building programs are key to 

ensuring that local populations have the knowledge to develop and maintain AI solutions. Training programs for 

local engineers, data scientists, and policymakers can help build a sustainable ecosystem for AI development in 

developing countries.  

 

Critical perspectives on this issue suggest examining the intricate layers of how technology is not just a tool for 

progress but also a potential instrument of power that can reinforce or challenge existing global inequalities. The 
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dialogue around digital sovereignty and local AI ecosystem development is therefore deeply tied to broader 

discussions about economic independence, cultural integrity, and equitable growth within the global technological 

landscape and thus with the Right to Development. In that context, AI governance must ensure that SIDS and LDCs 

have the agency to implement AI-driven climate strategies that align with their specific needs and development 

pathways. 

6.4. Biases 

In the context of AI applications for climate action, it is important to acknowledge the impacts of spatial and temporal 

biases in the training data on algorithmic bias. Spatial biases arise when the geographic distribution of the training 

data is uneven, potentially leading to AI models that perform well in certain regions but poorly in others. Temporal 

biases occur when the training data does not adequately capture the variability over time, which can result in models 

that are less robust to future changes or anomalies. These biases can significantly affect the reliability and fairness of 

AI predictions and interventions, necessitating careful consideration during the model development and training 

phases. For instance, training an AI model to predict urban heat requires careful selection of spatial resolution, as a 

low resolution might average out extreme values in smaller neighborhoods and overlook critical hotspots, while a 

higher resolution can reveal these peaks but potentially introduce noise (McGovern et al. 2022). 

 

McGovern et al. (2022) emphasize the critical need for ethical and responsible implementation. It dispels the 

misconception that the environmental sciences are immune to AI's unintended societal impacts, such as those seen 

in criminal justice and finance systems. The study presents examples showing how AI can introduce similar biases 

and negative consequences in environmental contexts, despite the perceived objectivity of data and algorithms. By 

stimulating discussion and research, the authors aim to prevent the environmental science community from repeating 

mistakes made in other fields. They advocate for precautionary measures to ensure AI is used responsibly, harnessing 

its potential to address climate and environmental injustices. While focusing on weather and climate, the study's 

conclusions apply broadly across all areas of environmental science. 

 

Furthermore, bias can exacerbate inequalities if AI systems are not meticulously designed and managed, leading to 

unfair outcomes that disproportionately affect marginalized groups. For example, AI-powered climate prediction 

models may underrepresent regions with sparse data, leading to inadequate disaster preparedness measures in 

vulnerable communities. Similarly, biases in AI-driven carbon credit markets could disproportionately benefit 

wealthier nations, reinforcing existing disparities in global climate finance. Therefore, ensuring accessible AI 

technologies involves creating tools and systems that are user-friendly and widely available and ideally developed in 

a co-creative manner with diverse communities (The Collective Intelligence Project 2024).  

 

Promoting climate-specific digital and algorithmic literacy is essential to empower users to engage with AI-driven 

climate applications critically and effectively. For instance, if AI-based early warning systems rely on biased training 

data, they may fail to provide timely alerts to remote or marginalized populations, leaving them disproportionately 

exposed to climate hazards. Unbiased AI outcomes are necessary to ensure fairness and equity in climate adaptation 

and mitigation efforts, which requires rigorous testing and validation processes to detect and mitigate biases. 

Moreover, AI system providers must ensure that development is conducted with a human-rights-based approach, 

emphasizing the protection of human rights. In the climate domain, this means ensuring that AI-driven resource 

allocation, emissions tracking, and sustainability assessments are equitably applied across regions and populations.  

 

Effective regulation is needed to establish standards and guidelines that promote equitable access and use of AI 

technologies in climate action and address market concentration. The UN and EU have launched significant initiatives 

to regulate AI development, with growing attention to ensuring its responsible use in climate governance. Addressing 
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these factors allows for progress towards a more equitable AI landscape where AI-driven climate action benefits all 

sectors and contributes to sustainable and inclusive development. 

 

In addition, biases in AI-powered climate modelling, emissions tracking, and environmental monitoring can lead to 

skewed results, undermining the effectiveness of AI solutions. Incomplete or biased data can/will perpetuate existing 

inequalities and result in climate policies that do not address the needs of underrepresented populations. For example, 

if AI-based deforestation monitoring is trained primarily on satellite imagery from temperate regions, it may fail to 

accurately detect land degradation in tropical forests, leaving critical ecosystems unprotected. Similarly, if AI-driven 

energy transition models prioritize developed nations' infrastructure, they may overlook viable renewable energy 

solutions for LDCs and SIDS. 

 

Governments and organizations need to implement stringent data protection laws, establish clear guidelines for data 

handling, and ensure that there are enforcement mechanisms in place to prevent bias in AI-driven climate 

assessments. Moreover, transparency in data collection processes and the involvement of local communities in AI-

based environmental monitoring can help build trust and ensure that the data collected is representative and useful 

for climate action and available to benefit local communities. 

 

Risks related to the deployment of AI systems encompass equity and inclusion issues related to environmental 

injustice and social inequality. These challenges stem from systemic discrimination and deep-rooted prejudices 

against specific groups, communities, or regions. Misuse of AI systems can perpetuate and even exacerbate existing 

inequalities if they reinforce these entrenched biases. Previous AI models have demonstrated biased predictions when 

applied to racial minorities, leading to harmful and potentially serious consequences (Columbia University 2024). 

Therefore, it is crucial to design and implement AI with a conscious effort to address and rectify these long-standing 

issues to ensure fair and equitable outcomes for all. As concluded by UNESCO (2020), “Algorithmic failures are 

ultimately human failures that reflect the priorities, values, and limitations of those who hold the power to shape 

technology. We must work to redistribute power in the design, development, deployment, and governance of AI if 

we hope to realize the potential of this powerful advancement and address its perils.” Ensuring AI fairness in climate 

decision-making requires a conscious effort to address systemic biases and empower historically disadvantaged 

communities to participate in AI-driven climate governance. 

 

The broader issue of representation bias in AI extends beyond gender bias and is a significant concern, particularly 

in developing countries. This bias arises from the data scarcity and digital divide prevalent in these regions, which 

can lead to AI systems trained on existing datasets that fail to accurately represent local realities. The lack of 

comprehensive and diverse data results in AI models that may not be fit for purpose, as they often lack the necessary 

contextual understanding to address specific challenges faced by communities in developing countries.  

 

To overcome this limitation, it is essential that efforts to build AI solutions for these regions occur in tandem with 

targeted data collection initiatives. These initiatives should aim to equip AI tools with the appropriate context, 

ensuring that they can effectively solve local problems and contribute to meaningful development. AI systems can 

be better tailored to address the nuanced challenges these areas face by incorporating diverse datasets that reflect the 

unique socio-economic, cultural, and environmental conditions of developing countries, ultimately leading to more 

equitable and impactful outcomes. 

 

Especially, gender bias in AI poses a significant challenge to its effective use for climate action in both developed 

and developing countries. AI systems can perpetuate and even exacerbate existing gender inequalities if not carefully 

designed and implemented. This bias can manifest in various ways, such as underrepresentation of women in data 

used for training AI models or gender-insensitive design of AI applications. Addressing gender bias requires a 
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conscious and deliberate effort to include diverse perspectives in the development and deployment of AI 

technologies. Ensuring that AI solutions for climate action are gender-responsive can help promote more inclusive 

and equitable outcomes. 

 

The UNFCCC report titled "Progress, Good Practices, and Lessons Learned in Prioritizing and Incorporating Gender-

Responsive Adaptation Action" (2023) offers an in-depth analysis of how gender-responsive strategies are being 

integrated into climate change adaptation efforts worldwide. It underscores the necessity of involving both women 

and men in the formulation and execution of these strategies to address gender-specific climate impacts, i.e., the 

importance of equitable gender representation in decision-making processes, demonstrating effective practices and 

lessons from various countries. It identifies existing gaps and challenges, such as the need for more gender-

disaggregated data and increased funding for gender-responsive projects and provides recommendations to enhance 

resilience and promote gender equality in adaptation initiatives. 

 

As AI-driven climate solutions become more widespread, integrating gender considerations into AI-based adaptation 

planning is critical to ensuring inclusive and effective climate action. AI models used for early warning systems, 

resource allocation, and climate-smart agriculture must account for gender-specific vulnerabilities to avoid 

reinforcing existing inequalities. For example, AI-powered disaster response systems should ensure that data 

collection processes incorporate gender-disaggregated information to prioritize the needs of women, who are often 

disproportionately affected by climate-induced displacement and resource scarcity. 

 

Table 9 summarizes the approaches and outcomes of gender-responsive climate adaptation strategies from several 

LDCs and SIDS from the UNFCCC report. 

 

Country Gender-responsive actions Challenges addressed Outcomes/Benefits 

Burkina 

Faso 

Outlined women's 

vulnerabilities, promoted 

precipitation harvesting 

techniques, and addressed water 

scarcity. 

Women are more 

dependent on affected 

resources, less access to 

agricultural inputs and 

land, longer distances for 

water. 

Enhanced resilience of women 

farmers, improved water 

management, and reduced 

vulnerability to extreme weather 

events. 

Fiji 

Ensured women's participation 

in decision-making and access to 

economic resources and 

financial services, recognized 

women's social roles. 

Limited recognition of 

women's contributions in 

adaptation activities. 

Increased women's involvement in 

adaptation activities, empowered 

women through economic 

opportunities, and promoted 

sustainable resource use. 

Saint 

Lucia 

Committed to gender equality, 

collected gender-disaggregated 

data, conducted gender 

assessments, and developed 

gender-responsive strategies. 

Lack of gender-

disaggregated data on 

adaptation needs. 

Better understanding of gender-

differentiated impacts, informed 

decision-making, and inclusive 

adaptation strategies. 

Guatemal

a 

Developed a gender strategy for 

NDC, implemented ecosystem- 

and community-based 

adaptation actions with women's 

participation. 

Ensuring women's 

participation and reducing 

vulnerabilities. 

Empowered women through 

participation in restoration and 

conservation projects, enhanced 

resilience of ecosystems and 

communities. 

Guinea-

Bissau 

Developed gender action plans, 

used gender-sensitive budgeting, 

and trained women in food 

safety and entrepreneurship. 

Allocating resources for 

gender equality and 

women's empowerment. 

Strengthened resilience of 

vulnerable coastal areas, improved 

climate information systems, and 

enhanced women's economic 
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opportunities and food safety 

knowledge. 

 

Table 9. Gender-responsive climate adaptation strategies in LDCs and SIDS 

 

These case studies highlight how LDCs and SIDS are tackling the gender-specific impacts of climate change to 

promote gender equality and women's empowerment through tailored adaptation strategies. To maximize the 

effectiveness of these approaches, AI can play a role in improving gender-responsive adaptation strategies by 

ensuring that climate risk assessments, financial assistance programs, and resilience-building initiatives are informed 

by equitable and unbiased data. AI-driven climate models must be trained to recognize gender-specific vulnerabilities 

to prevent reinforcing biases in climate planning and policy implementation. 

 

The report calls for ongoing support to ensure that gender-responsive measures are integrated into national adaptation 

plans. The analysis of gender bias in the use of AI for climate action in developing countries relates to the thematic 

areas addressed in Section 4, as follows: 

 

Early Warnings and Disaster Risk Reduction: AI can reinforce male-dominated perspectives, overlooking 

women’s specific vulnerabilities in disaster response and risk reduction (Varona et al., 2021). Social and economic 

inequalities, such as restricted mobility and limited access to information, further heighten these risks. 

 

Resource Management: AI-driven systems for resources management in water, agriculture, fisheries, and forests 

often neglect women’s critical roles, leading to inefficient resource allocation and conservation efforts.  

 

Energy Management: AI in energy systems can deepen gender inequalities by ignoring women's reliance on 

traditional biomass, while men have greater access to modern energy sources. 

 

Transport Management: AI-driven transport systems that prioritize efficiency over safety may fail to consider 

women’s security needs, limiting their safe mobility. 

 

Education and Community Engagement: AI tools that disregard gender disparities in technology access can widen 

the digital divide, restricting opportunities for women. 

 

Various international organizations have made recommendations for integrating gender perspectives into public 

policies and educational programs to address gender biases in AI. Studies have begun to explore the intersection of 

AI and gender equality under the UN SDGs; research has identified societal roots and technical factors contributing 

to gender bias in AI.  

 

The Paris Agreement acknowledges that when taking action to address climate change, Parties should respect, 

promote and consider gender equality and empowerment of women. Gender considerations are increasingly being 

prioritized in climate funds and funding mechanisms (Schalatek 2022). In addition to gaining access to climate 

finance and capacity building, developing countries—primarily LDCs and SIDS—have advocated for enhanced 

technology transfer to aid their climate change adaptation efforts and ensure gender inclusivity.  
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6.5. The Role of AI in Accelerating Fossil Fuel Extraction and Exploitation, Spreading Climate 

Misinformation, and Promoting Consumerism 

While AI holds significant promise for driving positive change, it also carries risks when applied in ways that conflict 

with environmental sustainability objectives. For instance, AI has been widely deployed to enhance fossil fuel 

exploration and extraction, increasing efficiency and profitability in an industry responsible for nearly 90% of global 

CO₂ emissions (IEA, 2023). This widespread use of AI in fossil fuel operations risks extending the economic viability 

of carbon-intensive industries, directly contradicting global efforts to transition to renewable energy. Moreover, AI-

driven targeted advertising fosters consumerism and unsustainable behaviors, driving demand for products and 

services that contribute to environmental degradation. These AI-enabled systems influence consumption patterns on 

a massive scale, shaping global markets and intensifying resource depletion.  

 

Additionally, AI systems are increasingly being exploited to generate and disseminate climate misinformation at 

unprecedented scales, undermining evidence-based policy discussions. For example, AI-powered disinformation 

campaigns have been found to manipulate public perception by downplaying climate risks, delaying regulatory 

action, and fostering distrust in climate science (Galaz et al., 2023). The rapid evolution of AI-generated content, 

combined with opaque social media algorithms, creates a landscape where false climate narratives spread faster than 

fact-based discourse. 

 

Eremin and Selenginsky (2023) focused on the application of AI methods in oil and gas production, illustrating how 

AI technologies have become critical in optimizing processes from planning and complication prevention to drilling 

and production capacity enhancements. Their study emphasizes the use of AI models in predicting reservoir 

properties, such as permeability and porosity, using log and seismic data. These accurate predictions allow engineers 

to better manage hydrocarbon recovery. Additionally, AI systems, trained on extensive datasets from real 

experiments, simulations, and field logs, can predict potential complications and emergencies. Overall, AI contributes 

to improving efficiency and boosting hydrocarbon recovery in the oil and gas industry. In some cases, AI systems 

have increased production levels by up to 5%, with projections indicating that AI could generate up to $425 billion 

in value for the sector by 2025 (ICLR 2024). 

 

Galaz et al. (2023) and Treen et al. (2020) describe the role of AI-driven misinformation in shaping public opinion, 

emphasizing the need for regulatory measures and interdisciplinary strategies to counteract its impact. Chu-Ke and 

Dong (2024) highlight the dangers of AI-generated disinformation, calling for strengthened ethical AI development, 

regulatory oversight, and public AI literacy initiatives. 

 

Treen et al. (2020) further demonstrate how AI-driven misinformation exacerbates skepticism and polarization, 

particularly on social media platforms, which amplify confirmation bias and echo chambers. All three studies stress 

the urgency of addressing misinformation through a multi-pronged approach, integrating policy, education, and 

technology-based solutions. While the perspectives differ, they all stress that the evolution of AI and digital platforms 

poses significant challenges that must be addressed through collaboration, governance, and cross-disciplinary 

research. The integration of ethical AI practices, improved literacy, and interdisciplinary efforts will be crucial in 

mitigating the adverse impacts of misinformation and promoting more accurate and reliable climate communication 

 

However, AI can be also leveraged to address the growing threat of climate change misinformation on social media, 

which is outpacing the capacity of human fact-checkers. For example, Rojas et al. (2024) developed a two-step 

hierarchical machine learning model to detect and classify climate misinformation, improving the accuracy and 

efficiency of content moderation. The study introduces the Augmented Computer Assisted Recognition of Denial 

and Skepticism (CARDS) model, specifically designed to categorize climate-related claims on Twitter. By analyzing 
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five million climate-themed tweets over a six-month period in 2022, the study found that more than half of contrarian 

climate claims involved attacks on climate actors. These spikes in misinformation were driven by four main stimuli: 

political events, natural events, contrarian influencers, and convinced influencers. The findings emphasize the 

potential of automated tools to help detect and mitigate the spread of climate misinformation in real time, providing 

valuable insights for combating online disinformation. This model offers a new direction for leveraging ML to tackle 

climate change denial and skepticism, which has significant implications for both policy and public discourse. 

 

Moreover, micro-targeting ML techniques can be leveraged for digital nudging in order to foster more sustainable 

habits and behavioral changes shift, (Bartmann, 2022) as presented in section 4.8.3 
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7. Policy Options for the Use of AI as a Technological Tool for Advancing and Scaling Up Transformative 

Climate Solutions for Mitigation and Adaptation Action in Developing Countries 

7.1. Deploy AI tools for Climate Change Mitigation and Adaptation Strategies 

Policymakers could consider the promotion and use of AI tools and systems on proven cases of AI for climate action 

included in this paper such as on early warning systems for disaster risk reduction (UN Early Warnings for All 

Initiative), AI-driven crop monitoring to enhance food security (Early Warnings System for Crop Phenotyping and 

Food and Nutrition Security in Kenya), and AI-based environmental monitoring for ecosystem protection (AMAP 

Mangrove Mapping in the Solomon Islands). 

7.2. Develop Inclusive and Sustainable Artificial Intelligence Policies 

Energy efficiency: Formulate policies that promote the development and deployment of energy-efficient AI 

technologies. Encourage innovations in green computing to reduce the environmental footprint of AI systems. This 

includes incentivizing research into energy-saving algorithms and hardware, supporting the transition to renewable 

energy sources for data centers and communication networks, and setting standards for energy efficiency in AI 

applications. Implement policies that require a lifecycle assessment of AI systems to evaluate their environmental 

impact from development to deployment. Encourage the development of cooling technologies that minimize water 

usage. 

 

Data security: Implement robust data protection laws that ensure the security of data used in AI applications. 

Enhance cybersecurity measures to protect sensitive data and implement strict protocols for data access and 

management. This includes establishing guidelines for data collection, storage, and sharing, ensuring that data 

governance frameworks are in place to address concerns about unauthorized access, data breaches, and misuse of 

information. Policies should also mandate regular security audits and compliance checks, promote the use of 

encryption technologies, and foster a culture of transparency and accountability in data handling practices. Moreover, 

enhancing public awareness about data security issues is key to building trust in AI systems. 

 

Digital divide: Invest in digital infrastructure to improve access to AI technologies in developing countries, with a 

focus on LDCs and SIDS. This includes expanding internet connectivity, enhancing computing capabilities, ensuring 

a reliable power supply, and making essential AI development resources available as digital public goods. Develop 

strategies to bridge the digital divide by ensuring equitable access to electricity, ICT infrastructure, datasets and 

models, and AI skills. This involves investing in AI research relevant to developing countries with a focus on LDCs 

and SIDS, public infrastructure for AI development, digital literacy programs, particularly in remote and underserved 

areas, and providing training on AI technologies. Incorporate bias detection and mitigation techniques in AI model 

development. Policies should also focus on making AI tools and resources openly accessible and affordable to all 

communities, thereby fostering inclusive growth, innovation, and quality. Develop ethical frameworks that govern 

the use of AI, ensuring that AI applications are free from biases, thus promoting fairness and equity in AI deployment 

and enabling benefit-sharing with local communities. 

7.3. Integrate Indigenous Knowledge and Gender-Responsive Approaches 

Incorporate Indigenous Knowledge: Indigenous knowledge systems provide localized environmental insights that 

have been refined over centuries and can enhance the effectiveness of AI applications in specific climate contexts. 

However, their integration should be targeted and relevant, ensuring that AI solutions respect, validate, and 

complement traditional knowledge rather than replace or misrepresent it. To ensure meaningful integration of 

indigenous knowledge in AI systems, policies should: 
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● Engage Indigenous Communities in AI Co-Design – Ensure participatory approaches in AI model 

development where local knowledge is applicable, avoiding nominal inclusion. 

● Develop Ethical Practices – Establish clear data-sharing agreements that respect indigenous values over 

environmental data and avoid misappropriation of traditional knowledge. 

● Incorporate Cultural Context in AI-Driven Climate Communication – Ensure AI-powered climate advisory 

platforms use culturally appropriate language, narratives, and risk perception frameworks for effective 

decision-making in local communities.  

 

Gender-responsive AI policies: Ensure that AI policies and programs are inclusive and address gender and 

demographic disparities. Promote the active participation of women in AI-related fields through targeted education, 

training programs, and career opportunities.  

7.4. Promote Socially Inclusive Artificial Intelligence Development 

Inclusive AI development: Ensure that AI development and deployment processes are inclusive, considering the 

needs and perspectives of marginalized communities, including women and indigenous groups, and low-income 

populations, as well as the youth. Develop policies that promote equitable access to AI technologies, focusing on 

affordability, infrastructure development in underserved areas, and the reduction of digital illiteracy barriers. This 

includes fostering capacity-building initiatives to enable meaningful participation in AI-driven climate solutions.  

 

Community Engagement in AI-Driven Climate Solutions: Community engagement is most relevant in AI 

applications where local knowledge, risk perception, and contextual adaptation are critical to implementation. This 

includes:  

● Early Warning and Disaster Preparedness – AI-based early warning systems for floods, cyclones, and 

droughts must incorporate community-level participation to ensure that alerts reach vulnerable populations 

through accessible communication channels, such as radio, mobile alerts in local languages, or community 

leaders as trusted messengers. 

● Climate-Resilient Agriculture – AI applications that provide precision agriculture recommendations should 

integrate local farming knowledge to ensure AI-driven advisories align with traditional farming techniques 

rather than imposing one-size-fits-all solutions. Engaging smallholder farmers in training and feedback loops 

ensures the usability of AI tools.  

● Sustainable Land and Resource Management – AI applications in deforestation monitoring and biodiversity 

conservation should involve local stakeholders in validating AI-generated insights and ensuring that AI-

driven policy decisions do not conflict with customary land rights or sustainable resource use practices.  

● Energy Access and Electrification – When AI models are used to optimize renewable energy distribution in 

remote or off-grid areas, engagement with local communities ensures that deployment strategies prioritize 

energy needs and do not exacerbate existing inequalities in energy access.  

7.5. Foster International Cooperation, Capacity-Building, and Knowledge Sharing 

Establish collaborative frameworks: Strengthen international partnerships and cooperative frameworks to facilitate 

knowledge exchange, technology transfer, and capacity-building, in line with the provisions of the UNFCCC and the 
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Paris Agreement. Partnerships should involve international organizations, multilateral climate finance mechanisms, 

and private sector stakeholders, fostering a global, inclusive effort to tackle climate change. 

 

Capacity-building programs: Implement training programs and workshops to build local expertise in AI and 

climate science This can be achieved through partnerships with educational institutions, international organizations, 

and the private sector to provide training and education. Targeting government officials, technical experts, and 

community leaders will enhance their understanding and application of AI in climate action, empowering local 

communities to leverage AI technologies effectively. 

 

Open data platforms and digital public goods: Promote the use of open data platforms and registering datasets and 

models to enable countries to share climate-related data and models. This facilitates collective learning and 

innovation, allowing for transparent exchange and access to valuable climate information, which can enhance the 

accuracy and applicability of climate predictions. Open data platforms standardize data collection methods, ensure 

consistency, and foster regional and global cooperation, ultimately accelerating the development and deployment of 

effective climate action strategies tailored to specific needs. The Digital Public Goods (DPG) registry provides open-

source software, open data, open AI models, open standards, and content that adhere to privacy and other applicable 

laws and best practices, do no harm, and help attain SDGs. A DPG registry would typically catalog such resources 

to promote access, facilitate sharing, and encourage the development and use of these tools in various sectors, 

including education and climate action. This kind of registry aims to support global development by making high-

quality digital solutions widely accessible and promoting international cooperation in the digital space, particularly 

in supporting under-resourced areas or communities. By leveraging DPG in the form of open data and open-source 

AI models, countries can improve the accuracy and applicability of climate predictions and enhance their overall 

resilience to climate impacts. 

7.6. Establish Robust Monitoring and Evaluation Frameworks 

Impact assessment: Develop monitoring and evaluation frameworks to assess the impact and effectiveness of AI 

applications in climate action. This includes setting performance metrics and regularly reviewing progress to ensure 

AI solutions are effective and aligned with climate goals. Use these assessments to refine policies and strategies 

continuously. 

 

Transparency and accountability: Ensure transparency in AI initiatives by making data, methodologies, and 

findings publicly accessible to stakeholders. This openness fosters trust and enables independent verification of 

results, ensuring that AI applications in climate action are transparent and reliable. Establish mechanisms to track the 

progress of AI projects, identify areas for improvement, and address any issues that arise. Regular reporting and 

feedback loops are important to maintain accountability and ensure that AI-driven climate solutions meet their 

intended goals effectively. 

7.7. Invest in and Foster Artificial Intelligence Research, Development, and Innovation  

Localized AI solutions: Prioritize funding for AI research and development projects that are tailored to local 

contexts and address specific climate challenges faced by developing countries, with a focus on LDCs and SIDS. 

Encourage innovation in AI research and applications that can directly benefit these regions. 

 

Interdisciplinary and applied Research: Promote interdisciplinary and applied research at the convergence of 

computer science and climate science. Establish pathways for enhancing the technical maturity of AI applications 

in climate change mitigation and adaptation through targeted research, development, and demonstration initiatives. 
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Support for startups and innovation Hubs: Create supportive environments for startups and innovation hubs 

focusing on AI for climate action. Provide grants, tax incentives, and incubation support to foster innovation in the 

private sector. 
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8. Conclusions and Recommendations 

8.1. Conclusions  

AI's Role in Advancing Climate Solutions: AI and ML can support adaptation and mitigation efforts by improving 

disaster risk preparedness, energy efficiency, sustainable mobility, resource management and industrial 

transformation. The application of AI in agriculture and fisheries can optimize crop yields, manage fish stocks, 

combat illegal fishing, and protect marine ecosystems. Likewise, integrating AI into transport networks, and 

industrial operations can accelerate the transition to low-carbon economies. 

 

Predictive and Adaptive Capabilities for Climate Resilience: AI-powered forecasting, integrated with real-time 

data from Internet of Things (IoT) sensors, can be leveraged to enhance early warning systems and strengthen 

resource management. These predictive capabilities are particularly relevant in geographically vulnerable regions 

such as SIDS and LDCs where climate-induced extreme weather events pose significant risks. By leveraging AI-

driven models, governments and local communities can enhance adaptive capacity to disasters and safeguard 

infrastructure, livelihoods, and ecosystems. 

 

Optimizing Resource Use Through AI: AI-driven solutions in agriculture, fisheries, energy grids, transportation, 

and industrial processes contribute to emissions reduction and bolster sustainability. However, maintaining and 

scaling AI-driven systems in developing contexts requires enhanced capacity-building efforts and investment in 

digital infrastructure to ensure long-term effectiveness. 

 

Embedding Cultural and Local Context in AI Solutions when relevant: Tailoring AI tools to incorporate 

indigenous knowledge, local languages, and culturally sensitive approaches on (please explain the cases when this 

has to happen) fosters inclusive climate action. By integrating traditional knowledge with modern AI applications, 

technology solutions become more equitable and relevant to local contexts.  

 

Enabling AI Deployment: The successful deployment of AI for climate action in developing countries with a focus 

on SIDS and LDCs requires an enabling environment that includes: 

● Infrastructure Development: Reliable electricity, broadband connectivity, and access to cloud computing to 

support AI deployment. 

● Skill Development: Strengthening technical expertise through capacity-building programs to ensure the 

effective customization and maintenance of AI systems. 

● Financial Support: Securing investments from developed countries, other Parties that provide it voluntarily 

and climate finance mechanisms such as the Green Climate Fund (GCF), the Adaptation Fund, the Global 

Environment Facility (GEF), the Least Developed Countries Fund (LDCF) and the Special Climate Change 

Fund (SCCF) to scale AI-driven climate technologies. 

● Governance and Policy Frameworks: Establishing legal mechanisms that promote responsible AI use, protect 

data privacy, and encourage open-source AI solutions. 

 

Challenges and Risks in AI-Driven Climate Action: Despite its potential, AI adoption for climate action faces key 

barriers, including: 
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● High Costs and Limited Resources: Many developing countries and in particular SIDS and LDCs lack the 

capital to invest in AI infrastructure and sustain advanced digital technologies. 

● Data Scarcity and Quality Issues: AI models require large, high-quality datasets to function effectively, yet 

many regions lack sufficient localized data. 

● Digital Divide and Exclusion Risks: Connectivity gaps and low digital literacy levels may marginalize 

vulnerable populations, limiting equitable access to AI solutions. 

● Security and Privacy Concerns: Weak data protection frameworks could lead to data misuse, unauthorized 

access, or cyber vulnerabilities. 

● Bias and Equity Challenges: AI models trained on data from high-income countries may overlook local 

realities, potentially reinforcing inequalities in climate response strategies. 

 

Opportunities for Inclusive and Equitable AI Adoption 

● Open-Source and Shared Platforms: Encouraging global collaboration while respecting local data 

sovereignty to ensure AI applications are accessible and tailored to regional needs. 

● Hybrid Approaches: Combining rule-based systems with machine learning techniques to enable effective AI 

deployment in data-limited environments. 

● Targeted Funding and Partnerships: Leveraging climate finance instruments and forging partnerships with 

universities, NGOs, and technology firms to develop AI solutions adapted to specific regional challenges. 

● Inclusive AI Design: Engaging underrepresented groups—including youth, indigenous communities, and 

women—in AI development to ensure diverse perspectives shape climate solutions. 

8.2. Recommendations 

● Promote open-source AI applications in climate change mitigation and adaptation strategies in developing 

countries, ensuring their deployment when they are the most suitable tool for the task. 

● Encourage the use of AI for climate action by promoting supportive policies, local training, and resources to 

empower stakeholders in using AI for GHG emissions reduction and resilience building.  

● Integrate AI technologies into national and regional climate strategies where they can enhance areas such as 

early warning systems, optimization of resource allocation, and data-driven decision-making in climate 

adaptation and mitigation efforts. 

● Strengthen global partnerships and knowledge sharing by fostering international cooperation and developing 

capacity-building programs to enhance the skills and capabilities of local stakeholders, promoting 

knowledge-sharing and collaboration to maximize AI's potential in climate strategies. 

● Develop inclusive and sustainable policies and establish governance approaches, enabling data-driven 

decision-making and access to climate regulatory frameworks and state-of-the-art research. 
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● Address AI energy consumption and carbon footprint, data security, gender bias, and the digital divide by:  

- Implementing energy-efficient algorithms, promoting the use of Small Language Models (SLMs), and 

adopting renewable energy sources for AI infrastructure to reduce the carbon footprint; 

- Developing robust data governance frameworks to ensure privacy, security, and ethical use of data, 

protecting against unauthorized access and breaches; 

- Applying inclusive design practices to mitigate gender bias by using diverse datasets and establishing 

gender-responsive policies, particularly in climate-related areas; 

- Investing in infrastructure development and capacity-building initiatives in developing countries to 

promote equitable access to AI technology and resources. 

● Invest in AI research, development, and innovation tailored to local contexts and priorities by: 

- Collaborating with local communities, governments, and organizations to identify specific climate 

challenges and priorities; 

- Supporting research initiatives that create AI solutions aligned with the unique environmental, social, and 

economic conditions of different regions; 

- Allocating funding for local AI innovation hubs to foster relevant and sustainable homegrown solutions; 

- Expanding access to AI resources for climate solutions by facilitating the availability of AI tools, data, and 

technical expertise to support effective, locally relevant AI-driven climate responses at local and national 

levels in regions facing significant climate challenges. 

● Enable AI deployment for climate action in developing countries with a focus on SIDS and LDCs by 

facilitating relevant Infrastructure and Skills Development, Financial Support and the establishment of 

Governance and Policy Frameworks. 

● Integrate indigenous knowledge and gender-responsive approaches in AI by: 

- Engaging indigenous communities to incorporate their traditional knowledge into AI models used for 

climate action in areas where local environmental expertise, historical climate patterns, and ecosystems-

based adaptation strategies can enhance AI-driven decision-making. This is particularly relevant in sectors 

such as land management, disaster preparedness, and biodiversity conservation, where indigenous insights 

complement AI-generated predictions. 

- Ensuring that AI systems are gender-responsive by involving women and gender experts in all phases of 

design, development, and implementation; 

- Developing AI tools that bridge traditional knowledge with modern technology, enhancing the 

effectiveness of climate adaptation and mitigation strategies; 

- Promote inclusivity by considering the needs and perspectives of women, indigenous people, and local 

communities throughout AI development and deployment in contexts where social and economic 

disparities limit access to climate technologies or where historically marginalized groups are 

disproportionately affected by climate change. This is especially relevant in climate adaptation policies, 

disaster resilience planning, and AI applications for sustainable agriculture and water resource 

management. 

● Establish robust monitoring and evaluation frameworks to assess the impact, effectiveness, and ethical 

implications of AI applications in achieving climate goals by: 

- Developing clear metrics and indicators to evaluate the impact of AI on environmental, social, and 

economic outcomes pertaining to climate goals; 

- Implementing regular monitoring processes to adjust AI interventions based on their effectiveness; 
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Establishing ethical review boards to oversee AI projects, ensuring adherence to ethical guidelines and preventing 

the exacerbation of inequalities or environmental challenges.  
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