

IEA Energy Technology Collaboration:

Multilateral technology cooperation and the role of joint projects

Workshop of the Technology Executive Committee:

Strengthening national systems of innovation in developing countries

Bonn, Germany, 13–14 October 2014

Jean-François Gagne
Energy Technology Policy Division Head
International Energy Agency

www.iea.org

IEA Overview

www.iea.org

Founded in 1974

 Formed in wake of 1973 oil embargo with mission to promote member country energy security -- autonomous agency of the Organisation for Economic Cooperation and Development (OECD)

29 member countries

- Asia Pacific: Australia, Japan, Republic of Korea and New Zealand
- North America: United States, Canada
- <u>Europe</u>: Austria, Belgium, Czech Rep, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey and United Kingdom
- European Commission also participates in the work of the IEA
- Chile is in the process of accession to become a member of the IEA

Headquarters: Paris

Decision-making body: Governing Board

- Consists of member country representatives
- Under the Governing Board, several committees are focusing on each area

Secretariat:

• Staff of around 240, mainly energy experts and statisticians from its member countries

The 3 'E's of Sound Energy Policy

- Energy security
- Economic growth
- Environmental sustainability

And a fourth 'E'

- Engagement worldwide
 - Fundamental global shifts in energy demand
 - Common challenges energy security and climate change
 - Sharing and transparency

IEA Worldwide Engagement

www.iea.org

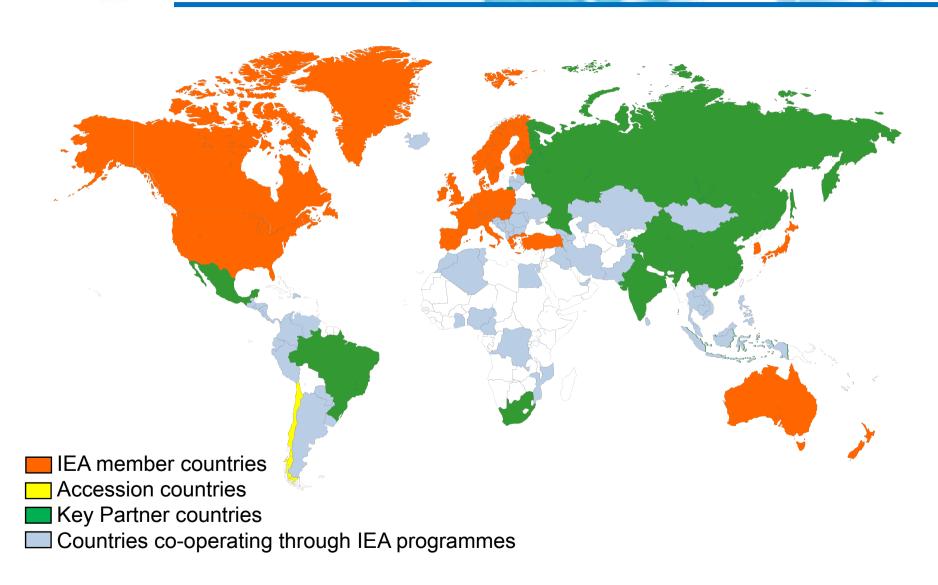
The IEA has strengthened close cooperation with its key Partner countries as more than half of global energy consumption now takes place outside the IEA region.

Brazil

Cooperation on the Global Hydropower Roadmap and 2013 World Energy Outlook Special Focus on Brazil have greatly contributed to deepening bilateral relations.

China's cooperation with the IEA has deepened with close collaboration on publications such as the China Wind Roadmap and recommendations to China's gas market report.

China



© OECD/IEA 2014

IEA Global Reach

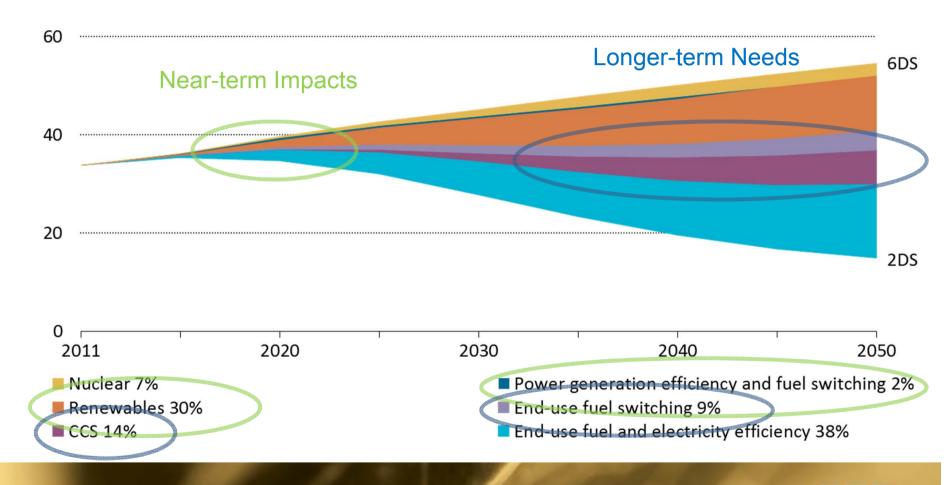
www.iea.org

IEA Energy Technology Activities

www.iea.org

Where do we need to go?

Where are we today?


How do we get there?

Energy Technology Perspectives

A transformation is needed...

...and we to have the tools to develop a strategy and be proactive.

ETP 2014

Tracking Clean Energy Progress

We are not on track...

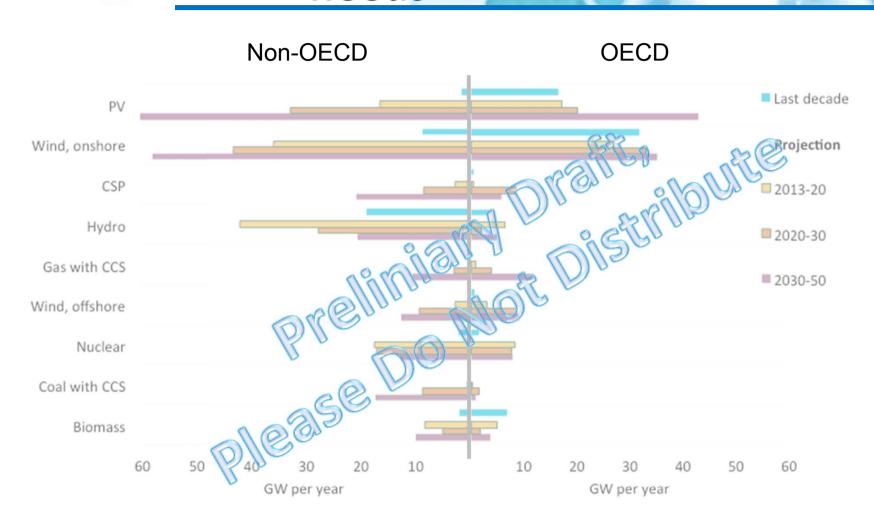
1	Renewable power
	Nuclear power
	Gas-fired power
	Coal-fired power
1	Carbon capture and storage
	Industry
	Transport
	Biofuels
	Electric and Hybrid electric vehicles
	Buildings
概	Smart grids
	Co-generation and district heating and cooling

...The political will to make meaningful progress at a global scale has yet to be demonstrated

ETP 2014

ETP Publication Programme

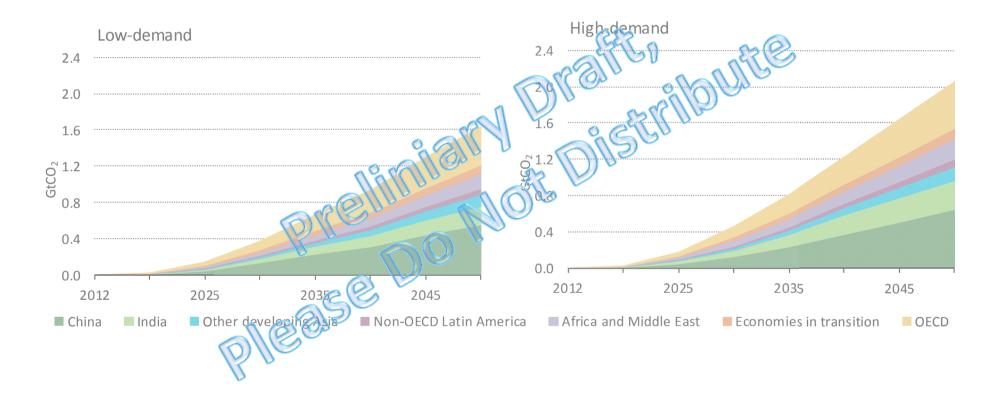
ETP 2014	ETP 2015	ETP 2016						
Part 1. Setting the Scene Global Outlook, Tracking Clean Energy Progress								
Part 2. Driving the Change (Thematic Focus)								
The age of electrification	Energy Technology and Innovation impacts on Climate change mitigation	Urban Energy Systems						
Partner Country								
India	China	Mexico						


ETP 2015: Proposed Content

- Part 1: Setting the Scene
 - Global Outlook
 - Tracking Progress
- Part 2: Innovating a Sustainable Future
 - Linking Energy Innovation to Climate Negotiations
 - Renewable Energy: From Innovation Support To Innovative Markets
 - CCS: Short-term Actions for Long Term Objectives
 - Industrial Innovation for Global Change
 - International Cooperation: Reframing Technology Transfer
 - China's Innovation, Energy, Climate Nexus

Scale of Innovation capacity needs

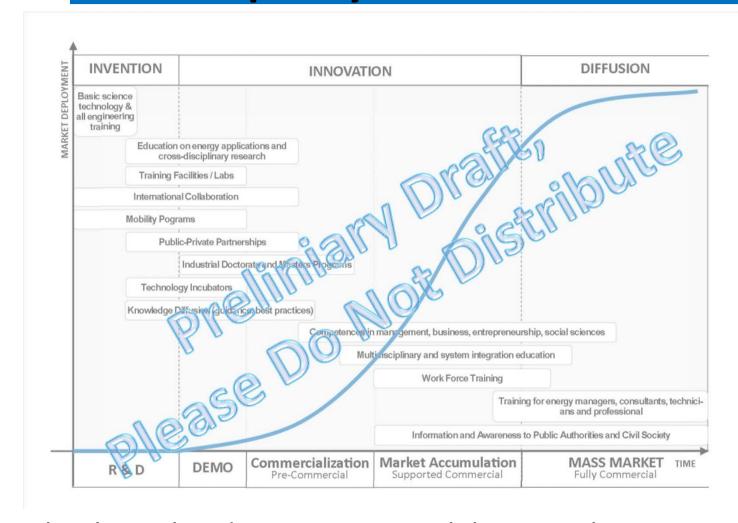
www.iea.org



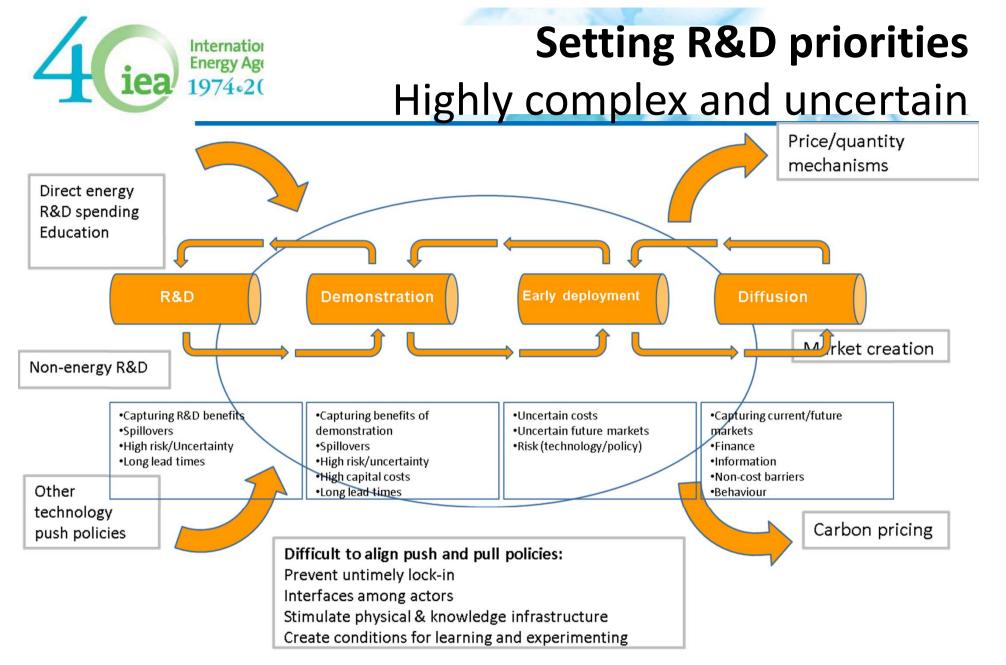
Non-OECD countries will represent the majority of capacity expansion in the next decades

Shifting landscape of Innovation

www.iea.org

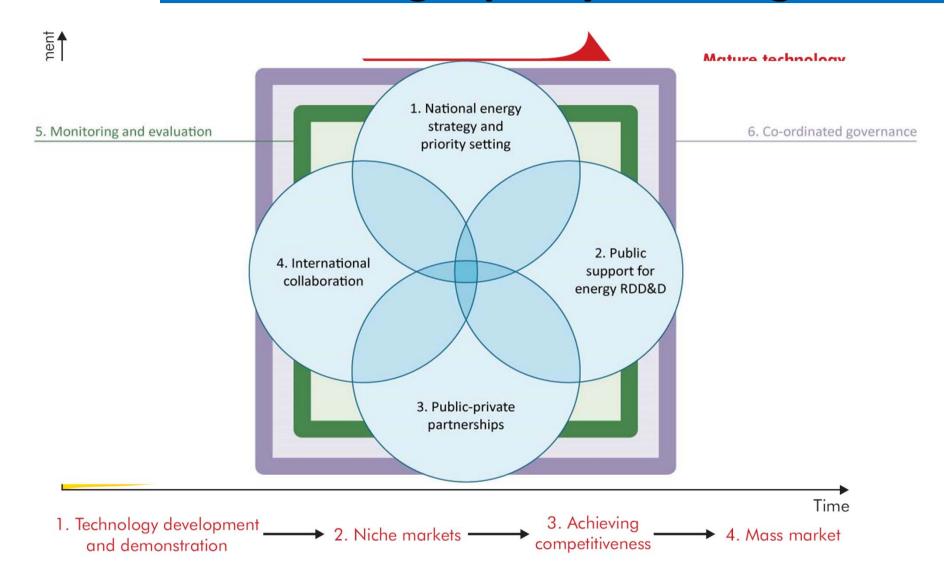


Non-OECD countries will need capacity to deploy large amounts of new technologies and processes

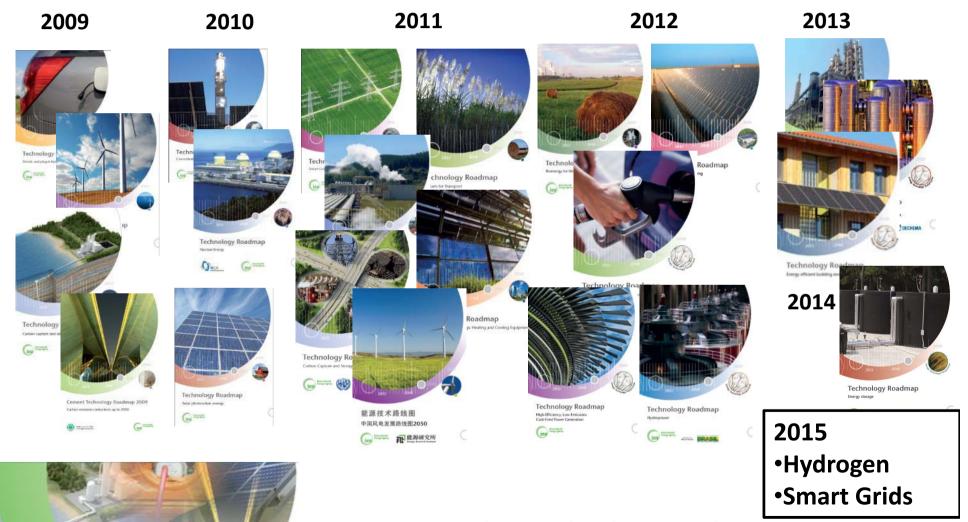


Building local Innovation capacity

www.iea.org


technological and innovative capabilities on the recipient side are a condition for successful technology transfer

A complex system where inputs and outputs are difficult to measure.


Supporting Energy Innovation: The right policy at the right time

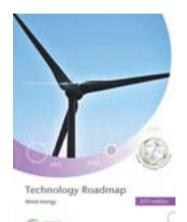
IEA Technology Roadmaps

Mapping where we need to go ...

Low-Carbon Technology Roadmaps

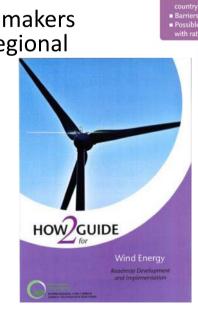
... By building consensus among all stakeholders

- Goal to achieve
- Milestones to be met
- Gaps to be filled
- Actions to overcome gaps and barriers
- What and when things need to be achieved



How2Guides principles

www.iea.org



IEA Global Roadmap

Engages with public and private stakeholders to establish the barriers to technology deployment and the policies needed

IEA Technology Platform How2Guide

Provides practical information for policy makers and planners to establish a national or regional technology-specific roadmap

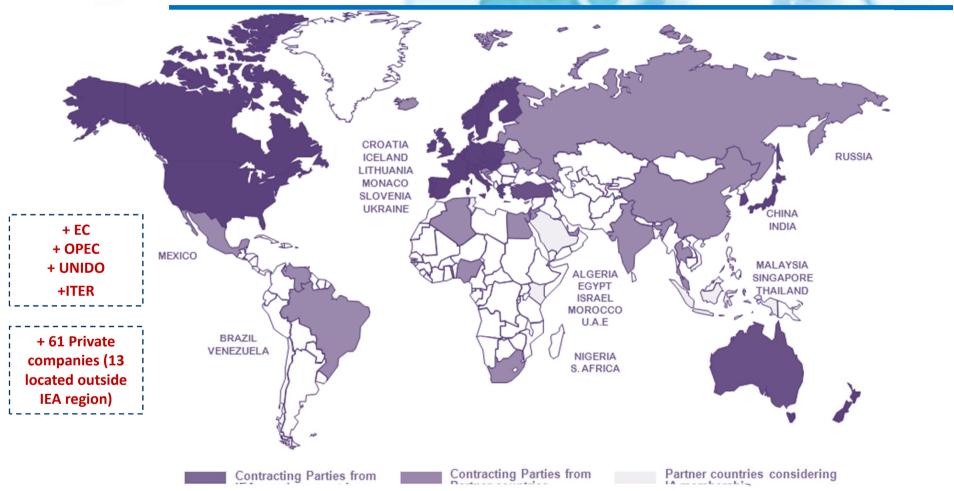
ind energy in the country
ary of the baseline research

for deployment of wind energy
nario or set of scenarios for wind deployment in the
ntry by an identified time frame
iers to achieving that vision
sible response actions and selected actions,
trationale for those choices

Implementing the vision for wind energy: actions and time frames

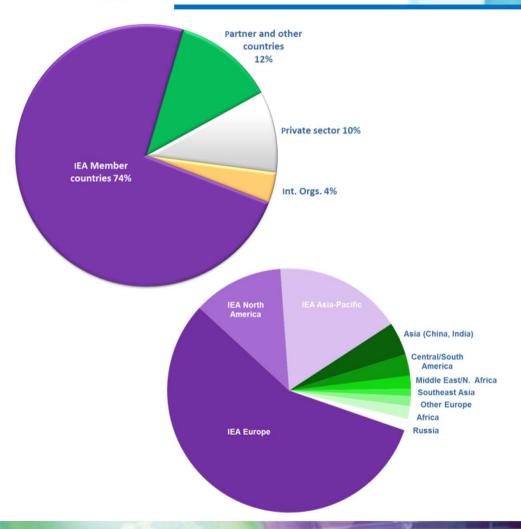
I dentified actions with corresponding milestone dates
to achieve them, identifying responsible parties, and the cost
and benefits of those actions

This section may have sub-headings such as wind technology
development, system integration, policy, finance, public
acceptance and/or international collaboration


Monitoring and adjusting this roadmap
Agreed approaches to monitoring progress,
with specific metrics where possible
Identified parties tasked with monitoring implementation

IEA's Energy Technology Network

www.iea.org



More than 6,000 scientists and experts
Representing 500 government agencies, research organisations, universities, energy companies, industries, businesses, and consultants

Over 1,400 projects completed to date

Broad spectrum of collaborators... On a broad spectrum of topics

SCOPE AND PORTFOLIOS

		Basic science ¹	Applied science ²	Demonstration and deployment ³	Socio-economic issues ⁴
Cross-cutting	Climate Technology Initiative			✓	✓
	Energy Technology Data Exchange			✓	✓
	Energy Technology Systems Analysis			✓	✓
End-use: buildings	Buildings and Communities		✓	✓.	✓.
	District Heating and Cooling		✓.	✓	✓.
	Energy Efficient Electrical Equipment		✓.	✓.	✓.
	Energy Storage		✓.	✓.	✓.
	Heat Pumping Technologies		✓	✓	✓
End-use:	Demand-Side Management		✓	√	√
electricity	High-temperature Superconductivity		✓	✓	√
_	Smart Grids		✓	✓	✓
End-use:	Emissions Reduction in Combustion	✓	✓	✓	✓
industry	Industrial Technologies and Systems		✓	✓	✓
	Advanced Fuel Cells		✓	✓	✓
End-use:	Advanced Motor Fuels		✓.	✓.	✓.
transport	Advanced Transport Materials	✓	✓	✓	✓
	Hybrid and Electric Vehicles		✓	✓	✓
	Clean Coal Centre		✓	✓	✓
	Enhanced Oil Recovery		✓.	✓.	
Fossil fuels	Fluidized Bed Conversion		✓.	✓.	
	Greenhouse Gas R&D		*	√	✓
	Multiphase Flow Sciences	✓	✓	√ √	√
	Environmental, Safety and Economy Fusion Materials	,	,	v	· ·
	Nuclear Technology Fusion Reactors	· /	· /		
	Plasma Wall Interaction	· /	√		
Fusion power	Reversed Field Pinches	1	· /		
	Spherical Tori	· /	· /		
	Stellarator-Heliotron Concept	1	· /		
	Tokamaks	1	· /		
	Bioenergy	-	✓	✓	✓
	Concentrating solar		✓	1	
	Deployment		✓	✓	✓
Renewables and hydrogen	Geothermal		✓	✓	
	Hydrogen		✓	✓	
	Hydropower		✓	✓	
	Ocean		✓	✓	
	Photovoltaics		✓	✓	
	Solar Heating and Cooling		✓	✓	
	Wind Energy Systems		✓	✓	✓

Multiple facets of IA collaboration From early stage of research...

Researchers with the Hydropower IA retrieving a methane trap from a hydropower reservoir (Wohlen, Switzerland).

Participants in the Geothermal IA study logging (testing) a geothermal well to determine how to reduce costs.

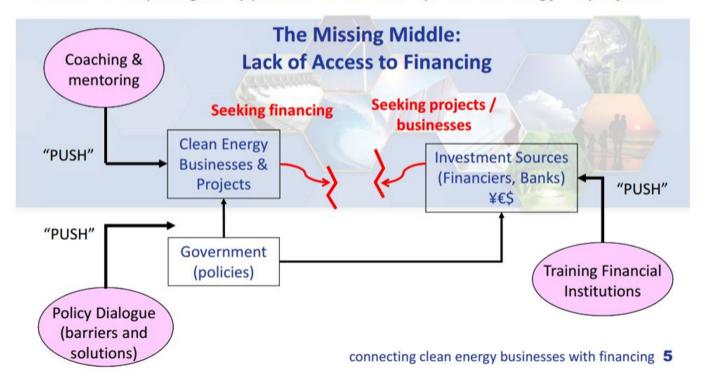
Multiple facets of IA collaboration

...to building adoption capacity...

Computer software to support urban planning during the first stages of planning energy-efficient district concepts

The Lifecycle of an Energy Savings Certificate in the New South Wales Energy Savings Scheme²⁰

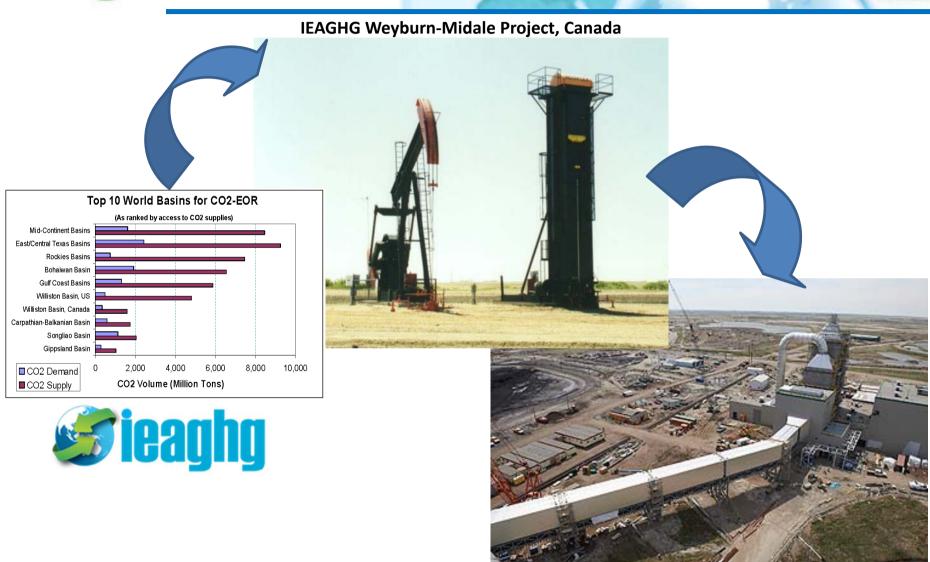
Cost savings from EE policy instruments through the design and implementation of energy efficiency obligation (EEO) schemes


Multiple facets of IA collaboration

... to removing diffusion barriers

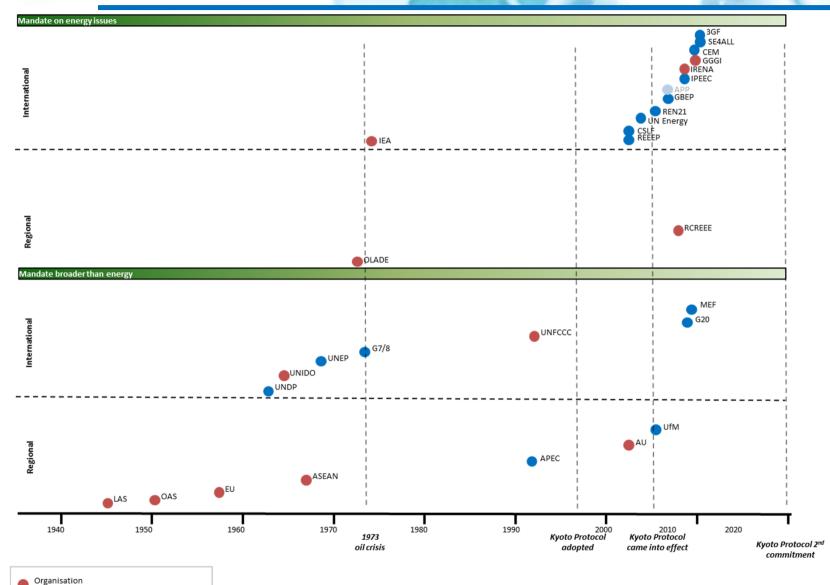
CTI PFAN – Objectives

How a multi-pronged approach can scale up clean energy deployment



Collaboration leading to action

www.iea.org



SaskPower's Boundary Dam, Canada

Forum or platform

Linking Multilateral Collaboration Initiatives on Low-Carbon Energy Technologies

IEA worldwide engagement

www.iea.org

2013 IEA Ministerial: Continued global dialogue

- Delegations from all 28 member countries, seven partner countries and two accession countries
- Joint declaration on Association

- Energy Security
- Environmental Protection
- Economic Growth
- Engagement Worldwide

IAs – Sharing Information

www.iea.org

IEA OPEN Bulletin

- News of IA developments
 - Project results
 - Publications, workshops, interviews
- 18,000+ subscribers
- New design IEA website

www.iea.org/openbulletin

