
Experiences and lessons learned from implementation of TNAs and links to the NDCs: Bahamas

Dr. Adelle Thomas

Director, Climate Change Research Centre, University of Bahamas Senior Research Associate, Climate Analytics

The Bahamas: National Context

- Over 20 inhabited islands
- 80% of land mass within 1m of mean sea level
- Affected by tropical cyclones
 ~ every 2 years
- Salinization of water tables
- Reliant on fossil fuels for:
 - Energy
 - transportation
 - reverse osmosis water generation

The Bahamas' NDC

Key Technologies Included

- Renewable energy
 - 30% RE by 2030
- Reverse osmosis
 - High usage of energy
- Energy efficiency

Benefits

- Increase energy security
 - Reduced reliance on imported fuels
- Increase resilience from disasters
 - Quicker access to energy after hurricanes; distributed grid
- Reduced costs for consumers
 - Currently highest electricity costs in the region

Technologies Implemented: Focus on RE

- National Stadium
 - 925kW solar system
 - Charging for electric vehicles
 - Completed March 2019
- School RE Systems
 - 250kW solar system
 - Energy efficiency measures

Clear Need for TNA and TAP

- Holistic approach to identifying and planning for technologies
 - Adaptation and mitigation
- Build on identification of technology needs identified in NDC
- Bahamas part of TNA Phase IV by GEF