

Republic of Rwanda

TECHNOLOGYACTIONPLANSFORCLIMATECHANGEMITIGATIONandADAPTATION

November, 2012

Supported by:

TAP report

Disclaimer

This document is an output of the Technology Needs Assessment project, funded by the Global Environment Facility (GEF) and implemented by the United Nations Environment Programme (UNEP) and the UNEP-Risoe Centre (URC) in collaboration with the Regional Centre ENDA for the benefit of the participating countries. The present report is the output of a fully countryled process and the views and information contained herein is a product of the National TNA team, led by the Ministry of Natural Resources.

CONTENTS

TABLE OF CONTENTS	2
LIST OF ACRONYMS	6
LIST OF TABLES	7
FOREWORD	9
EXECUTIVE SUMMARY	9
1. Technology Action Plans for the Energy Sector	10
2. Technology Action Plans for the Agriculture Sector	14
CHAPTER I: TECHNOLOGY ACTION PLAN FOR THE ENERGY SECTOR	17
1.1 Actions at Sector Level	17
1.1.1 Sector description	17
1.1.2 General barriers and proposed measures	24
1.2 Action Plans for Small Hydropower SHP Technology	25
1.2.1 About the SHP technology	25
1.2.2 Targets for SHP transfer and diffusion	26
1.2.3 Barriers to diffusion of Small hydropower (SHP)	27
1.2.4 Proposed action plan (TAP) for SHP	29
1.3 Technology Action Plans for the Kivu Methane CCGT with CCS	35
1.3.1 About the CCGT with CCS technology	35
1.3.2 Targets for transfer and diffusion of Kivu methane CCGT with CCS	36
1.3.3 Barriers to diffusion of Kivu methane CCGT with CCS	36
1.3.4 Proposed action plan for Kivu methane CCGT with CCS	39
1.4 Action plan for geothermal power technology	44
1.4.1 About geothermal-to-electric power technology	44
1.4.2 Targets for Geothermal transfer and diffusion	44
1.4.3 Barriers to diffusion of geothermal technology	45
1.4.4 Proposed action plans for geothermal technology	47
1.5 Action plans for the PHEV technology	53
1.5.1 About the PHEV technology	53
1.5.2 Targets for PHEV transfer and diffusion	54

Technology Needs Assessment for Mitigation and Adaptation to Climate Change	in Rwanda
1.5.3 Barriers to diffusion of PHEV	55
1.5.4 Proposed action plans for the PHEV technology	58
1.6 Action plan for large solar PV technology	63
1.6.1 About the large solar PV	63
1.6.2 Targets for large solar PV transfer and diffusion	64
1.6.3 Barriers to diffusion of large solar PV	65
1.6.4 Proposed action plans for Large Solar PV	68
CHAPTER 2: TECHNOLOGY ACTION PLAN FOR THE AGRICULTURE	SECTOR 73
2.1 Actions at Sector Level	73
2.1.1 Sector description	73
2.1.2 Current technology profile, employment level and future targets	
2.1.3 General barriers and proposed measures	79
2.2 Action Plan for Seed and Grain Storage	
2.2.1 Technology description	81
2.2.2 Targets for seed and grain storage transfer and diffusion	
2.2.3 Barriers to seed and grain storage diffusion	
2.2.4 Proposed action plans for seed and grain storage	
2.3 Action Plan for Agro forestry	87
2.3.1 Technology description	87
2.3.2 Targets for agro forestry	88
2.3.3 Barriers to agro forestry diffusion	88
2.3.4 Proposed Action Plans for Agro forestry	90
2.4 Action Plan for Radical Terraces	
2.4.1 Technology description	
2.4.2 Targets for radical terraces	
2.4.3 Barriers to radical terraces diffusion	
2.4.4 Proposed Action Plans for Radical Terraces	
2.5 Action Plan for Drip Irrigation	101
2.5.1 Technology description	101
2.5.2 Targets for drip irrigation	101
2.5.3 Barriers to drip irrigation diffusion	101
2.5.4 Proposed Action Plans for Drip Irrigation	103

Technology Needs Assessment for Mitigation and Adaptation to Climate Change in Rwanda
2.6 Action Plan for Rainwater Harvesting 107
2.6.1 Technology description
2.6.2 Targets for rainwater harvesting
2.6.3 Barriers to rainwater harvesting diffusion 107
2.6.4 Proposed Action Plans for Rainwater Harvesting 109
3. STAKEHOLDERS CONSULTATION 112
References 113
Annex 117
Annex 1: List of Involved Stakeholders 117
Energy sector
Agriculture sector

LIST OF ACRONYMS

ABFD: Abu Dhabi Fund for Development
AfDB: African Development Bank
APH: Air Preheated Exhaust gases
BADEA: Arab Bank for Economic Development in Africa
BRALIRWA: Brasserie et Limonaderie du Rwanda
BSP: Biomass-fired Steam Power
BTA: Biogas Thermal Applications
CC: Climate Change
CCGT: Combined Cycle Gas Turbine
CCGT: Combined Cycle Gas Turbine
CCI: Cross Cutting Issues
CCS: Carbon Capture, Storage and Sequestration
CH ₄ : Methane Gas
CO: Carbon Monoxide
CO ₂ : Carbon Dioxide
CSP: Concentrated Solar Power
CTB: Cooperation Technique Belge
ESMAP: Energy Sector Management Assistance Programme
EU: European Union
EWASA: Energy, Water and Sanitation Authority
GEF: Global Environmental Facility
Gg: Gigagrams
GHG: Green House Gases
GIZ: Germany International Cooperation
GoR: Government of Rwanda
GWh: Gigawatt hour
HRSB: Heat Recovery Steam-Gases Boiler
IGCC: Integrated Gasification Combined Cycle
IRENA: International renewable energy agency
JICA: Japan International Cooperation Agency
KOICA: Korea International Cooperation Agency

KWh: Kilowatt hour

MINAGRI: Ministry of Agriculture and Animal Resources

MINECOFIN: Ministry of Economic Development and Finance

MINEDUC: Ministry of Education

MINICOM: Ministry of Commerce

MININFRA: Ministry of Infrastructure

MINIRENA: Ministry of Natural Resources

MWh: Megawatt hour

MWP: Mini Wind Power

N₂O: Nitrous Oxide

NOx: Oxide Nitrogen

PHEV: Plug-in-hybrid Electric Vehicles

PSH: Pumped Storage Hydropower

PV: Photovoltaic

RAB: Rwanda Agriculture Board

RDB:Rwanda Development Board

REMA: Rwanda Environmental Management Authority

RENGOF: Rwanda Environmental NGOs Forum

RNRA: Rwanda Natural Resources Authority

RURA: Rwanda Utility Regulatory Agency

SHP: Small Hydropower

SNC: Second National Communication on Climate Change under the UNFCCC

SONARWA: Société Nouvelle d'Assurance du Rwanda

SOx: Sulphuric Oxides

TNA: Technology Needs Assessment

UNEP: United Nations Environmental Programme

UNFCCC: United Nations Framework Convention on Climate Change

URC: UNEP Risoe Centre

WB: World Bank

LIST OF TABLES

Table 1: General barriers and proposed measuresTable 1: Main economic and financial barriers for SHP

TAP report

- Table 2 : Non financial barriers for SHP
- Table 4: Technology Action Plan for SHP technology
- Table 5: Economic and financial barriers for Kivu methane CCGT with CCS
- Table 6: Non Financial barriers for Kivu methane CCGT with
- Table 7: Technology Action Plan for Kivu methane CCGT with CCS
- Table 8: Economic and financial barriers for geothermal
- Table 9: Non financial barriers for geothermal
- Table 10: Technology Action Plan for geothermal technology in Rwanda
- Table 11: Main barriers for PHEV technology
- Table 12: Non financial barriers for PHEV technology
- Table 13: Technology Action Plan for PHEV technology
- Table 14: Economic and financial barriers for large solar PV
- Table 15: Non Financial Barriers for large solar PV
- Table 16: Technology Action Plan for Large Solar PV
- Table 17: List of existing laws, policies and strategies in the agriculture sector
- Table 18: Current technology profile, employment level and future targets
- Table 18: Detailed action plan for the transfer and diffusion of seed and grain storage
- Table 19: Detailed action plan for the transfer and diffusion of agro forestry
- Table 20: Detailed action plan for the transfer and diffusion of radical terraces
- Table 21: Detailed action plan for the transfer and diffusion of drip irrigation
- Table 22: Detailed action plan for the transfer and diffusion of rainwater harvesting

FOREWORD

Technology transfer has been under focus since the Rio Summit in 1992, where issues related to technology transfer were included in Agenda 21 as well as in the United Nations Framework Convention on Climate Change.

Technology Need Assessment (TNA) project in Rwanda was intended to produce four main reports notably TNA, Barrier Analysis & Enabling framework, National Technology Action Plans (TAPs) and Project Ideas for each prioritised technology.

The review of the four reports was carried out at different levels. At the national level, the reports were reviewed by the TNA Steering Committee, National TNA Team members and other different stakeholders from the energy and the agriculture sectors. At the internationally level, the review was carried out by experts from Environment et Développement du Tiers Monde (ENDA) and UNEP Risø Centre.

The ultimate goal of these reports is to guide political decision makers and national planners on selected economic sectors with highest vulnerability characteristics to the effects of climate change. They further highlight most appropriate technologies which would support these sectors and the country in general, to mitigate or adapt to the effects of climate change.

On behalf of the Government of Rwanda, I thank all stakeholders from public and private sectors who participated in different consultation and validation meetings held to evaluate the selection and prioritization of the sectors and technologies. Their inputs were invaluable and deeply appreciated. Lastly, I extend my gratitude to the Global Environmental Facility (GEF) for providing financial support. I also thank the UNEP Division of Technology, Industry and Economics, the UNEP Risoe Centre and ENDA for their technical support and guidance.

EXECUTIVE SUMMARY

1. Technology Action Plans for the Energy Sector

With reference to the national energy policies and development priorities, the milestones projected for the energy sector in Rwanda are particularly in line with climate change mitigation actions. Currently about 57% of consumed primary energy comes from direct use of wood fuels against 23% from charcoal, 11% from petroleum products and 4% from electricity. By the year 2030, the contribution to the energy sector from the biomass (charcoal, wood fuels), methane gas and electricity will be respectively about 29%, 60% and 11%. Such a target is achievable through strategic actions like replacement of imported petroleum fuels used for electric power generation in Rwanda, wider use of renewable energy resources, exploitation of geothermal resources to generate at least 310 MWe of electric power before the end of year 2017, effective development of Kivu methane gas to provide liquefied gas for industrial and domestic purposes (100 million of Nm³ of methane every year, in addition to an electricity production of about 100 MWe by the end of year 2013.

As a positive result of applying appropriate climate change mitigation programs, the GHG emissions will be limited to 6460 Gg CO₂.eq, 3304 Gg CO₂-eq, and 669 Gg CO₂.eq respectively from households ,transport and industries instead of 9122 Gg CO₂-eq ,6021 Gg CO₂-eq and 710 Gg CO₂-eq in case of a business-as-usual scenario. Through the Energy Sector Strategic Plan, a component framework of the EDPRS economic growth for the period 2008-2012, key measures were set up: diversification of energy sources, reduction of cost of energy supply, increase of access to electricity, enhancing energy security, establishing the environmental sound sustainable systems of energy production, and promotion of efficient use of energy. However, there exist barriers which may hamper the implementation of identified technologies. They include:

- Limited number of qualified technicians and experts in energy sector, low involvement of private sector in the energy business in general, including development and diffusion of technologies,
- High interest rates (about 18%), short periods of loans reimbursement, difficult terms and conditions and heavy guarantees,
- Limited information on facilities regarding grants and opportunities of the carbon credit market,

- Missing preliminary phase regarding the pilot projects for new technologies,
- Limited access to loans and leasing programs,
- Missing regulations for renewable energy resources

Proposed measures to overcome main barriers include:

- Set up an appropriate unit for research and training related to the issues of the energy sector to overcome the limited number of qualified technicians and experts in energy sector;
- Enact a law on incentives (feed-in tariffs, exemption of overall taxes and fees for mitigation technologies) and provision of subsidies for promotion of renewable energy technologies in order to enhance the involvement of private sector in the energy business through the development and diffusion of technologies;
- Introduction of specific soft loans for the mitigation technologies and lowering the loan interest rate(below 10 %), instead of the current high interest rates (about 18%), increase loan-reimbursement periods , introduce fair terms and conditions and reasonable guarantees ;
- Effective provision and use of grants and low-carbon credits for contributing to the promotion and diffusion of renewable energy- based technologies in Rwanda; further increasing benefits from the non-carbon funds;
- Provision of subsidies for setting up and installing pilot projects for the R&D and demonstration purposes, especially for the case of new technologies;
- Set up a special fund for promoting investment in energy development and attracting the private sector;
- Establishment of legal and regulatory frameworks for concessions and exploitation of renewable energy resources such as large solar options and geothermal.

Specific actions proposed for the small hydropower SHP technology are in line with the identified 333 sites including 109 pico/micro-hydropower sites for which a preliminary design was tendered in March 2012.

Therefore there is a need for:

- The Formation of a network of small size companies in hydropower subsector;
- Setting up a particular insurance for handling the hydrological risks;
- Setting up a research unit for establishing a map and database for un-gauged rivers;

- Establishment of a databank on the base-flow of rivers and streams;
- Delivering incentives and subsidies to the promoters of the small hydro and new instream hydrokinetic systems;
- Setting up an appropriate unit of training and capacity building with a link to other renewable energy resources;
- Collaboration with the IRENA and ADFD for access to soft loans.

The Proposed action plans for Kivu methane CCGT with CCS will be guided by the following specific solutions: Set up a network of stakeholders; Law on applying the CCS option; Law of shared Kivu methane; Control of evolution of methane resources extraction; Subsidies for combining CCS with CCGT; incentives for the liquefaction of Kivu methane; Regular training and capacity building in CCGT and CCS technology; Award to innovative options of efficient exploitation of Kivu methane.

A list of suggested action plans for the development of geothermal power technology will be linked to the implementation of the following measures: Setting up an industrial association of private promoters; linking to the international geothermal networks; making available a framework for subsidies and incentives for interested private investors ; establishing a law on the geothermal extraction and use; monitoring the geothermal resources and providing information on identified potential sites and reservoirs; installing the pilot projects for R&D;; technical assistance mainly in preliminary investigation and exploration for geothermal resources.

Action plans proposed for the PHEV (the Plug-in Hybrid Electric Vehicles) technology will be influenced by particular conditions of introducing such a new transport option in Rwanda. Appropriate actions are mainly the set up of an industrial network for converting old vehicles into PHEV options; a law on bonus schemes; a law on incentives to the PHEV sub-sector; mechanisms for the investment in infrastructure for PHEV innovation (recharging stations); delivery of subsidies to suppliers; exemption for taxes and fees; leasing programs; grants to local industrial units for PHEV components; promotion of CDM and low carbon market credits to PHEV developers.

Proposed action plans for the Large Solar PV are expected to result in installing PV plants connected both to the EWSA grid and to mini-grids. Implementation of the following actions will be required: creation of networks of all key players in solar energy; a law and regulation on long term incentives and taxes exemption; reviews of tariffs and access to grid networks; access to subsidies, soft loans and leasing programs are required before reaching the stage of economy of scales/to handle the high initial capital cost; a centre for training and research applied to solar and renewable energy exploitation; benefits from carbon market credits and awards for innovations in deployment of solar products for large scale scenarios in Rwanda.

All actions are expected to be funded mainly by the GoR (Government of Rwanda), partners such as the GEF, the African Development Bank, the World Bank and particularly the private sector benefiting from soft loans and other facilities through the local banks. Costs have been estimated from existing documentation with link to energy projects and data established by ESMAP through their analysis of different feasible energy technologies.

2. Technology Action Plans for the Agriculture Sector

In Rwanda, agriculture is the most important sector as it sustains the life of the majority of the Rwandan population. In 2009, the population engaged in agriculture was estimated at 80% of the total population which was 9, 5 million at the time. The agriculture contribution was 34% to GNP and 71% to export revenues. In addition, it is the main source of revenues for 87% of the population and it is thus considered to be the country's economic-growth engine. The same sector being the most vulnerable to adverse effects of climate change, five technologies have been selected in order to assist the country in general and the agriculture sector in particular to adapt to those effects. Selected technologies include: Seed and grain storage, Agro forestry, Radical terraces, Drip irrigation and Rainwater harvesting.

General barriers to transfer and diffusion of selected technology options and measures to overcome them have also been identified. They mainly include: Existence of gaps and/or lack of technical skills and knowledge, high cost of technology implementation and limited access to funds and limited awareness about the benefits of the technologies and limited rural infrastructure.

Proposed measures to overcome these barriers are: The creation of awareness among farmers about technology benefits, provision of technical skills and knowhow for technology diffusion and deployment including installation and maintenance, rural infrastructure development, tax exemption, subsidies, incentives, reduction of interest rates and facilitation to access funds by creating agriculture funding institutions. Action plans have been designed for all five technologies. Details are provided for objectives, activities, legal and institutional framework, timeframe, source of funds which have similarities for all the five technologies. The budget is also estimated and success indicators are proposed for each technology.

Seed and grain storage

Objectives are: Increase awareness, improve local expertise and reduce initial investment cost. Related activities include: Selection of sites and construction of demonstration seed and grain storage systems, Organizing and directing training sessions on the installation and maintenance of seed and grain storage systems, mobilization of local manufacturers, Creation of new rural feeder roads and improvement of existing ones.

The budget is estimated at \$ 80 100 000 with local and international funding. Success indicators include: One demonstration site per rural province (4 in total) is constructed, 400 technicians are well trained about the function, installation and maintenance of seed and grain storage systems, existence of at least one local manufacturer of component of modern seed and grain storage system and at least 50 km of new rural feed roads are developed and 500 km of existing roads are improved.

Agro forestry

Objectives are: Improve local expertise, raise awareness and reduce initial investment. Related activities include: Production of training materials and awareness- raising materials, organizing and directing training sessions for agro extension agents, provision of support to the rehabilitation of existing agro forestry research sites, installation of agro forestry demonstration sites, organizing and directing farmers study tours, creation of tree seed stands in every district and production of seedlings.

The budget is estimated at \$ 4 950 000 with local and international funding. Success indicators include: Training and awareness-` raising materials are available, 1 agro extension agent per sector is trained on the development and functions of integrated agro forestry systems, at least three existing agro forestry research sites are rehabilitated, existence of at least one well developed agro forest demonstration site per province (5 country wide), all farmers associations/cooperative leaders have at least visited one successful agro forestry site, existence of one tree seed stands in every district, existence of one agro forestry nursery per sector in rural sectors.

Radical terraces

Objectives are: Reduce initial investment, improve local expertise, and increase acceptability of radical terraces within communities. Related activities include: Mobilization of local manufacturers, provision of compost, organizing and directing technical training for extension agents, farmers associations' leaders, preparing and directing awareness campaigns.

The budget is estimated at \$ 2 300 000 with local and international funding. Success indicators include: Existence of at least five manufacturers of basic tools, 8000 ha of newly established radical terraces are treated with compost, at least one agro extension agent per sector is trained, farmers and all farmers' associations/cooperatives leaders are trained on radical terraces preparation and maintenance, farmers are aware about benefits of radical terraces.

CHAPTER I: TECHNOLOGY ACTION PLAN FOR THE ENERGY SECTOR

1.1 Actions at Sector Level

1.1.1 Sector description

With reference to the national energy policies and development priorities, the milestones projected for the energy sector in Rwanda are among others in line with climate change mitigation actions. The targets listed below are considered as essential for further sustainable development of energy sector. Among others, exploitation and use of methane gas is expected to result in a new figure for energy for cooking: by the year 2030, contribution by biomass (charcoal, wood fuels), methane gas and electricity will be respectively about 29%, 60% and 11%. Such a target is achievable through strategic actions like:

- Replacement of imported petroleum fuels contributing to electricity generation in Rwanda;

- Wider use of renewable energy resources like exploitation of geothermal resources to generate at least 310 MWe of electricity before the end of year 2017;

- Effective development of Kivu methane gas to produce liquefied gas for industrial and domestic purposes (100 million Nm³ of methane every year) in addition to electricity production expected to rise from the actual 3.6 MWe by the pilot project to about 100 MWe by the end of year 2013.

Focussing on the cross-cutting nature of climate change mitigation, a number of additional specific objectives have been planned. One can mention among others the restoration of destroyed sections of forests of Gishwati,Virunga park and Nyungwe park for further sustainability of natural carbon sinks and sequestration of CO_2 from different sources.

Given that the transport sub-sector is one of key development priorities in Rwanda, mitigation approaches such as the combined technology of PHEV based on using both electric motors and efficient internal combustion engines are also targeted. Indeed such an interesting option will require a wider development of renewable energy resources-to-electric power projects backed among others through the low carbon credit market. This can/will include the small and large hydropower, geothermal, conventional solar, concentrating solar and waste-to-energy options within the context of the current 25 projects under the CDM (Clean Development Mechanism) program in Rwanda.

In fact and with reference to official documents, the rate of access to electricity services within the context of climate change mitigation projected to the year 2030 is expected to be at least 60% in rural areas (i.e. 36% of the total Population) and 100% in urban areas. The urbanization rate will reach 60% for a population estimated to be 18.5 million; the number of households is expected to be about 3 522 000. As a successful result of applying appropriate climate change mitigation programs, the GHG emissions will be limited to 6460 Gg CO₂.eq. 3304 Gg CO₂-eq, and 669 Gg CO₂-eq respectively from households ,transport and industries instead of 9122 Gg CO₂-eq ,6021 Gg CO₂-eq and 710 Gg CO₂-eq in case of a business-as-usual scenario (MINIRENA, 2011).

The implementation of the objectives above requires specific policies and actions under the responsibilities of ministerial departments, public agencies and private sector. Existing public agencies are mainly EWSA (energy, water and sanitation agency) with a specific role of implementation of the energy objectives but also RURA (Rwanda utility regulatory authority) as a regulator for key issues like energy prices, licenses to energy developers, providers and investors and capacity-building for more expertise, design, elaboration of project proposals, audits, management and planning of finances and evaluation of energy projects.

In addition to such institutions, the RDB (Rwanda Development Board) plays an important role. It encourages private investors to form public-private partnership (PPP) to gain support through finance, economic incentives and subsidies availed to the private sector as an energy user and developer. Particular issues regarding environmental and climate change impacts due to energy development are handled by REMA.

More recently updated frameworks and policies have been established. The Rwanda Vision 2020 is focusing on a long term development program in addition to the VUP (vision 2020 "Umurenge" program), an EDPRS flagship component. Regional cooperation in energy sector is channelled through existing energy master plans of the EAC (East African Community), COMESA (common market in east and southern Africa), NELSAP (Nile Equatorial Lakes Subsidiary Action Plan, a component of the NBI, i.e. Nile Basin initiative) EGL ("Energie des Grands Lacs", a unit of CEPGL, i.e. Communauté Economique des Etats des Grands Lacs) and SINELAC ("Societé Internationale d'Electricité des Grands Lacs").

In addition to the above brief description of the energy sector in Rwanda and with reference to the document on national energy policy and strategy, we present below the five prioritized technologies through this third stage of the TNA project.

Name	Year or period	Main content
EDPRS(economic	2008-2012	Through the Energy Sector Strategic Plan, a component framework of the
development and poverty reduction		EDPRS economic growth for the period 2008-2012, key measures were set
strategy)		up: diversification of energy sources, reduction of cost of energy supply,
		increase of access to electricity, enhancing energy security, establishing
		environmentally sound sustainable systems of energy production, promotion
		of efficient use of energy.
EPS(national Energy	2012-2017	The national Energy Policy and Strategy is a new instrument through which
Policy and Strategy)		energy sector will be periodically reviewed and updated accordingly within
		Rwanda's long term plans and strategies aiming at creating sustainable
		environment for the provision of reliable and affordable energy supplies for
		all Rwanda needs and to all population, both in rural and urban areas.
Rwanda Vision 2020	2005-2020	More recently updated frameworks and policies have been established. The
		Rwanda Vision 2020 is focusing on a long term development program in
		addition to the VUP (vision 2020 "Umurenge" program), an EDPRS flagship
		component.

 Table 1: Relevant laws, policies and strategies in the energy sector

Table 2:	Summary	of energy	technology	targets
----------	----------------	-----------	------------	---------

Technology	Current orientation	Targets
SHP	Small hydropower opportunities have been	There is also a short-term development plan for five mini-
	inventoried, showing a high number of potential	hydropower projects which will be installed for up to a total
	sites: about 333 including 109 pico/micro-	power capacity of about 17.4 MWe during the period 2013-
	hydropower sites for which a preliminary design	2015 as follows:
	was tendered in March 2012 and for a capacity of	By the end of the year 2013, Rukarara II for an output of
	9.3MWe by April 2013(EWSA, 2012).	2MWe; in the year 2014, RukaraIV for 5 MWe but also Ntaruka
		II for 2MWe and Giciye for 4.5MWe ;
		By the end of 2015, Akanyaru for 3.9MWe .
		These projects will be jointly funded by the Government and the
		private sector (MININFRA, 2011).
Kivu	A number of companies are interested in investing	Other projects are targeted for effective implementation before
methane	in the sub-sector of the Kivu methane gas:	the end of year 2017 for a total of 310 MW_e : Not only electricity
CCGT with	RIG (Rwanda investment Group), Israel Africa	is projected, but liquefaction and distribution of gas for heat use
CCS	Ltd, Locally the private sector is expected to be	are also planned (MININFRA, 2011).
	sponsored by the Government of Rwanda with	The application of Kivu methane CCGT with CCS technology is
	support by international institutions. An	suggested for an efficient performance meeting mainly the
	agreement has been signed by the private investors	climate change mitigation requirements.
	for a 100 MW _e project.	
Geothermal	The case of geothermal is particularly different	A 10MWe pilot electric power plant will be installed soon
	from the above two prioritized technologies.	before the end of 2013 in the area of the Volcano Karisimbi.

	Its development has not yet started.	Then over the period 2013-2017, four geothermal-to-electric
		power projects are targeted for a 75MWe capacity each
		(MININFRA, 2011).
PHEV	The PHEV (plug-in hybrid electric vehicles) is a	With reference to the strategies towards the application of
	potential pilot technology selected for a further	climate change mitigation scenarios for the sub-sector of road
	contribution in reducing the GHG emissions by	transport in Rwanda, electric vehicles and more efficient
	the road transport sub-sector in Rwanda. It is a	gasoline and diesel engines have been suggested (REMA, 2010).
	well known mitigation option, but due to a number	Recharging the batteries is a process expected to be achieved
	of strategic reasons, its diffusion and deployment	through stations connected to an electric grid preferably using
	have not yet reached a sufficient degree of	electricity generated by renewable energy resources.
	penetration in the market of any country. It is	Therefore, geothermal, solar and hydropower options will be the
	hence a coming new option for Rwanda. into the	most appropriate solutions to such a requirement for deploying
	rotation energy, is about 75%.	the PHEV technology in Rwanda.
Large solar	Regarding the technology relying on Large Solar	New targets for the solar PV are especially the large scale
PV	PV systems, lessons learnt from countries where	option. In fact where the small solar PV products are popular,
	solar systems are connected to electric utility grids	the diffusion of large scale options is potentially facilitated,
	prove that such an option is commercially new on	mainly due to the modular character of the PV systems.
	the energy market.	For instance a large 5 MWe solar PV plant can be assembled by
	Recently, large solar PV plants have been installed	use of modular units of 73 kWe each. The required land surface
	mainly in USA, Canada, and Europe: the electric	is about 532 m^2 for a PV efficiency at least equals 14%, an
	capacity for each plant ranges between 9MWe and	inverter efficiency of 85% (DC to AC), a total incident radiation
	143MWe.	of 526 MWh/year, i.e a total incident solar global radiation of

Т	The large scale solar PV technology is not yet	about 55 MWh/year (ESMAP, 2007).
in	ntroduced in Rwanda even though small solar PV	
sy	systems are familiar to a wide range of particular	
er	end-users, such as schools and health centres.	

1.1.2 General barriers and proposed measures

A summary on general barriers and specific measures to remove the barriers hindering the development and diffusion of prioritized mitigation technologies is presented below in table1 and table2.

Barriers	Measures
Limited number of qualified technicians and	Set up an appropriate unit for research and training related to the issues of the
experts in energy sector	energy sector
Low involvement of private sector in the	Enact a law on incentives (feed-in tariffs, exemption of overall taxes and fees
energy business in general, incuding the	for mitigation technologies) and provision of subsidies for promotion of
development and diffusion of technologies	renewable energy technologies
High interest rates (about 18%), short period	Introduction of specific soft loans for the mitigation technologies and reduction
of loan reimbursement, difficult terms and	of the loan interest rate: below 10 %
conditions and heavy guarantees	
Limited information on facilities regarding	Effective provision and use of grants and low-carbon credits aiming at
grants and opportunities of the carbon credit	contributing to the promotion and diffusion of renewable energy- based
market;	technologies in Rwanda;
Missing preliminary phase regarding the pilot	Provision of Subsidies for setting up and installing pilot projects for the R&D
projects for new technologies	and demonstration purposes especially for the case of new technologies
Limited access to loans and leasing programs	Set up a special fund for promoting investment in energy development and

	attracting the private sector
Missing regulations for renewable energy	Establishment of legal and regulatory frameworks for concessions and
resources	exploitation

1.2 Action Plans for Small Hydropower SHP Technology

1.2.1 About the SHP technology

In addition to conventional hydropower systems the new option of the in-stream hydrokinetic turbine (HKT) is also possible especially for the sites presenting small head drops or streams and rivers crossing the flat lands: case of Akanyaru, Nyabarongo and Akagera river basins along some areas in Rwanda.

The design is based on the Kaplan or Francis Turbine, a self excited induction for the pico-hydropower systems, the lifespan of about 15 years and 30 years respectively for the pico and micro scales, and the capacity factor i.e. operational time duration per day of about 60%.

The SHP technology is quite a suitable renewable energy-based and affordable solution; the estimated capital costs (ESMAP, 2007) are as follows for the SHP technology based on the pico/micro scales: in the year 2015, about 1 470 USD/kWe, 2 550 USD/kWe and 2 450 USD/kWe respectively for the capacity of 0.3 kWe, 1 kWe and 100 kWe; these, against 1 560 USD/kWe, 2 680 USD/kWe and 2 600 USD/kWe in the baseline year 2005.

In case of a mini-hydroelectric power system of 5 MWe, the capital cost was about 2 370 USD/kWe in the year 2005 and will slightly decrease down to 2 250 USD/kWe by the coming year 2015.

Probable generating costs for a 100 kWe power plant is expected to be about 11 US cents/kWh (with 13% for O & M costs and 87% for adjusted capital cost) in coming year 2015 (ESMAP, 2007).Compared to a 5 MWe mini-hydropower (7 US cents/kWh), the generating cost is higher for the Pico/micro-hydropower; but the SHP option has an advantage of presenting a high number of potential sites within the rural areas. The progressive development of the SHP technology in such areas will result in a decreased dependence on fossil fuels, diesel engine power generators and on wood fuels (to some extent).

There are also some social and economic benefits; for instance, as the rural population gets motivated to resettle in the grouped villages and Umudugudu-based settlements, modern facilities like charging phones, internet and TV access are expected to become available due to a wider diffusion of small hydropower systems in rural areas. This has the potential to stem the exodus from rural to urban areas. Due to such promotion of wider exploitation of water resources for the electric power generation, small scale business and factories will follow and increase incomes towards a better GDP. In addition, it will result in increased rate of access to electricity services and creation of jobs in small villages and towns.

1.2.2 Targets for SHP transfer and diffusion

With reference to the national energy policy and strategy (MININFRA, 2011), targets projected for the diffusion of the SHP technology are mainly as follows:

- Promotion of private sector participation in hydropower production at large and small scales;
- The delivery of licenses for small hydropower projects;
- Exploitation of higher number of small hydropower sites so that additional power of 75
 MWe can be installed between 2011 and 2017;
- Promoting the legal and regulatory frameworks of micro-hydropower and mini grids under the monitoring of EWSA ;
- Financing and investing through IPP (Independent Power Producers) negotiation between EWSA and local promoters and community–based associations or cooperatives.

1.2.3 Barriers to diffusion of Small hydropower (SHP)

Barriers	Elements of	Presentation and dimension
	barriers	
Limited	High cost of	Due to absence of local industry for electronics and
financial	equipment	machinery, equipment for hydro plants is imported.
facilities	Limited financial	The number of private investors in energy sector and
	capacity of	particularly in power production, supply and distribution
	private sector	is still low due to their limited financial capacity
	High cost of	Due to among others the morphology, topography and
	construction and	land slope, construction of small hydropower plant is
	installation	expensive; it seems to be the case for instance for new
		project of Rukarara (8 Megawatt) in the southern
		province and Keya (2.2 Megawatt) in Northern-West
		Rubavu district.
	Low access to	High interest rates, often exceeding 18%;
	loans	Short period of loan reimbursement ;
		Difficult terms and conditions and heavy guarantees

 Table 3: Main economic and financial barriers for SHP

Barriers	Elements of	esentation and dimension				
	barriers					
Limited	Seasonal shortage	Small Hydropower do not have dams and reservoirs				
Knowledge	of designed	for storage and regulation;				
for design	discharge	During dry period, only the base flow component is				
and		available in river and stream flow;				
management		Records and historical data for small rivers are not				
		available.				
	Limited expertise	Design of hydro plants require a multidisciplinary				
	for training the	team;				
	local trainees	Difficulty in design for rivers with unknown water				
		levels and streams; unknown tools for modeling and				
		estimating data				
	Seasonal floods	In addition to seasonal decrease in water resources				
	and damage of	(example in year 2004 for Mukungwa and Ntaruka				
	installed	power plants), floods and landslides damaged the				
	components of	hydropower plants (case of Keya plant where the river				
	power plant	Sebeya is often flooding and has started to destroy the				
		structure of fixed penstock pipe of one kilometer				
		length)				
Low	Incentives for	Mechanism and frameworks for delivering the				
participation	developers are	incentives are selective				
of private	missing					
sector						

 Table 4 : Non financial barriers for SHP

1.2.4 Proposed action plan (TAP) for SHP

Table 4: Detailed action plan for the transfer and diffusion of small hydropower technology

Measure	Justification	Respons	Activities	Time	Estimat	Sources of	Success	Risk
		ible		fram	ed cost	funds	indicators	indicators
				e	(USD)			
A1. Formation of a	Opportunities of	Private	-Inventory of all	5	900,000	GoR;		Established
network of small	local	sector;	companies	years		GTZ;CTB		network is set
size companies in	development of	MINIC	involved in					alone and
hydropower	industry and	OM;	hydropower					companies are not
subsector	manufacture of	EWSA	-Seminar and					meeting;
	some		formation of an					Local developers
	components of		industrial					are not buying
	hydropower		association					local products;
	plants		-Installation of a					
	:generators,		unit for assembly					
	turbines, electro-		and production of					
	mechanics		hydropower					
			components and					
			machinery.					

A2. Set up a	With link to	MINER	Negotiation with	5	400,000	GoR	Financial	Insurance
particular insurance	climate change	ENA;	SONARWA and	years			facilitation for	companies not
for hydrological risk	and variability ,	MINIC	any other				compensating	paying in case of
	seasonal floods	OM;	insurance				any damage	damages by
	can damage	MINEC	company;				are delivered	climate extreme
	infrastructure	OFIN	Negotiation with				to recipients	events;
	while shortage of		the central bank					
	water can result		(BNR) for a					
	in lowering the		provision of funds					
	performance of		to above					
	hydropower		companies;					
	plants(case of		Advertisement and					
	shortages of		information to					
	production in		SHP developers					
	year 2004)		and to their					
			association and					
			external partners					
A3. Set up a research	-a high number o	EWSA;	Elaboration of	5	400,000	GoR	A map	-Models for un-
unit for establishing	streams and	REMA;	terms of reference;	years			including	gauged rivers are
a map and database	small rivers	National	negotiate a				estimated data	not properly
for un-gauged rivers	remain un-	Universi	multidisciplinary				for un-gauged	applied;
and streams;	gauged	ty of	team of				river	Non updated

A4.Establishment of	-need of tools in	Rwanda	consultants at the					database
information and	modeling and		National					
database on base-	forecasting;		University of					
flow of rivers and	-understanding		Rwanda;					
streams	the impact of		development of a					
	climate change;		design model for					
	During the dry		non gauged rivers;					
	periods, only		validation of					
	underground		results of research;					
	flow provides		set up a database;					
	water to		large share and					
	hydropower		dissemination of					
	turbines;		the results;					
	therefore, a							
	database							
	(regularly							
	updated) on such							
	resources is							
	required.							
A5.Deliver of	-particular small	MININF	Contact	10	2	World	-A map river	-only a small
incentives and	hydropower	RA;	international	years	million	Bank;	and a	amount of
subsidies to	plants based on	MINIC	financial			Gor	databank are	subsidies are

promoters in Pico	in-stream	OM;	institutions and				distributed to	distributed;
hydro and new in-	hydrokinetic	MINEC	negotiate soft				interested	-
stream hydrokinetic	require a special	OFIN	loans;				stakeholders	
systems	support at		establish a				and investors	
	Rwanda market;		particular				-number of	
	-in rural areas,		regulation for				new installed	
	off-electric grids		incentives and				small hydro	
	are required;		subsidies;				plants	
	- subsidies and		distribution of					
	incentives are		subsidies to					
	key tools for a		inventoried sites					
	significant		eligible to					
	attraction of new		installation of the					
	investors in		off-grids					
	small							
	hydropower							
A6.Set up an	Skilled expertise	MINED	-installation of a	10	1.8	GoR;	Number of	Long- period
appropriate unit of	is required for	UC;	joint and shared	years	million	Koica;	staff and	training resulted
training and capacity	hydropower	EWSA;	department of			GTZ	technicians	into
building in	studies and	Universi	Energy				trained	unemployment;
hydropower	design ;such	ties and	Engineering and					A department of
operations	actions require in	Colleges	Management					energy is closed

	fact		(EEM)					due to lack of
	multidisciplinary		- distribution of					candidates
	teams and more		special grants to					
	availability of		students					
	local experts							
A7.Collaboration	Opportunities of	MININF	Nomination of		600,000	GoR	Soft loans are	Banks readjusted
with the IRENA(accessing	RA;	focal persons in	10			made	and changed the
International	technical	EWSA	charge of a	years			accessible	rates of loans
Renewable Energy	assistance and		permanent link					before the end of
Agency) and others	soft loans (2 up		with international					contact;
partners	to 6% of interest		institutions dealing					
	loan) from		with the renewable					
	ADFD (Abu		energy facilities;					
	Dhabi Fund for		Inventory of such					
	development)		institutions and					
	via IRENA;		negotiations for					
	access to AfDB		specific					
	(African		agreements and					
	Development		access to funds					
	Bank) financial							
	support							

Above actions are feasible even though some risks are possible: poor maintenance and management of installed projects, limited number of private developers to cover the high number of potential SHP sites in Rwanda. A particular risk is linked to the lack of local market for the potential industry of hydropower equipments.

The hydropower systems at any scale are governed by the variability in hydrological regimes and climate change. The design for un-gauged rivers and streams is not easy. Thus and in addition to the hydropower atlas/map published recently, a more detailed database on integrated water resources and river/ stream sub-basins have to be established. Behavior in drier seasons and information on the minimum base-flow for key representative streams and rivers has also to be investigated and published. For more sustainability of installed hydropower projects, a particular insurance regarding the hydrological risk related to climate change impacts and variability in water resources is required and has to be initiated. Due to the absence of a local industry for electronics and and machinery, all equipments for construction and maintenance of hydropower plants are imported; therefore, there is a need promoting basic units for manufacturing (steelelectrical components like transformers generators, turbines). pipes, and water

1.3 Technology Action Plans for the Kivu Methane CCGT with CCS

1.3.1 About the CCGT with CCS technology

The current Kivu methane power pilot project at Rubona / Gisenyi / Rubavu district is based on the simplified technology of internal spark combustion of methane gas; therefore any future investors can consider the improved option of CCGT technology based on both use of the (GT) gas turbine and the (ST) steam turbine. A unit of carbon capture and storage (CCS) for sequestration of undesirable GHG emission from the CCGT plant can be installed in order to optimize the mitigation scenarios. Therefore, the description presented below is in line with such an improved technology based on a complex system of the GT, the ST and the CCS. Once the CCS components associated to CCGT system are installed, the CO₂ emissions are separated and captured from the flue gases emitted by the CCGT power plants. Then the CO₂ gas is compressed before being transported through a pipelines' network towards a geological reservoir or an ocean or a lake. Note that the storage of CO₂ is cheaper in case of geological options.

The efficiency rate of reduction of CO_2 emissions i.e contribution to GHG mitigation is about 79% (IPCC, 2005). Therefore environmental benefits from use of CCGT with CCS are important. In fact, the GHG emissions produced by methane-based technologies are as follows: about 110 mg/Nm³ of NO_x i.e lower than the emission standard rated at 125 mg/Nm³, about 400 mg/kWh of CO₂ by a CCGT option against 600 mg/kWh in case of a GT system taken alone (ESMAP, 2007).

1.3.2 Targets for transfer and diffusion of Kivu methane CCGT with CCS

Based on the results of surface exploration and the successful 3.6 MWe Kivu methane pilot project plant operational since November 2008, milestones are as follows:

- Negotiate and establish agreements with private sector and international investors for funding projects of 20 MWe to 50 MWe,

-Installation of about 300 MWe by the end of the year 2017 mainly by private promoters under support by the government agencies and donors,

-Negotiation between the governments of RD Congo and Rwanda for developing a joint 200 MWe power plant ¹based on methane gas,

-Liquefaction of methane gas for further replacement of biomass and diesel fuels used in households and industry sector².

1.3.3 Barriers to diffusion of Kivu methane CCGT with CCS

(temperature : 168°C

below zero)

Table 5. Econor	line and imaneial barrie	is for Kiva methane CCOT with CCS
Barriers	Elements of barriers	Presentation and dimension
High cost of	High cost of	The preliminary steps of methane gas from lake Kivu
methane	extracting methane	are expensive, installation of appropriate equipment is
production	gas	expensive also; Biogas generation from householders
		and cooperatives is done in separate sites;
	Additional cost of	Elimination of associated CO ₂ is also an additional
	storage of CO_2 and	cost (especially it is up to 80% of gross mixed gases).
	H_2S	It is also the case for H_2S
	High cost of	Transport of gas from production units requires
	liquefaction	liquefied gas; (it is also the case of use of gas for

Table 5: Economic and financial barriers for Kivu methane CCGT with CCS

South-West of the country.

cooking and for industry purpose as planned by

EWSA for the most important consumers like

BRALIRWA in North-West and CIMERWA in

¹ Modalities for such a regional joint venture is yet to be discussed and negotiated through among others the CPGEL (Communauté Economique des Pays des Grand Lacs i.e. Burundi,RD Congo and Rwanda)

² Liquefied methane gas (in addition to biogas, solar water heaters, biofuels, electricity) is greatly expected to contribute in reducing biomass use from 555 to 3000 kg-oil –equivalent, respectively from year 2008 to 2020.(MININFRA; 2012).

High cost	of	The CCS is yet an expensive technology due to the
sequestration	of	main stages : separation ,compression ,transport
exhaust gases		through pipelines and design of geological storage
		reservoir

Barriers	Elements of Barriers	Presentation and dimension
Unfamiliar	Technical and skill	The CCGT is complex and requires highly qualified
new	limitation	managers , both gas turbine steam and recovery
technology		system are combined for increasing efficiency
	Limited gas production	CCGT requires enough preliminary production of
	and distribution	methane gas from Kivu lake, and biogas from
		different regions and companies ;
		Problem of collection and transport of gas is critical
		and is hindering the development of CCGT
		technologies in Rwanda.
Conflict with	Kivu gas is an abundant	Even though the methane fuel is not highly pollutant
the green	energy resource and a	like the petroleum fuels, its exploitation and use
policy	relatively clean energy	require additional and specific actions of sequestration
	compared to the type of	of exhaust gases
	more pollutant fuels that it	
	can replace	

Table 6: Non Financial barriers for Kivu methane CCGT with CCS

1.3.4 Proposed action plan for Kivu methane CCGT with CCS

Table 7: Technology Action Plan for Kivu methane CCGT with CCS technology

Measure	Justification	Respon sible	Activities	Timef rame	Estimat ed cost (USD)	Sourc e of funds	Success indicators	Success indicators
B1.Set up a	Coordination	MININ	Organization of a seminar	5	200,000	GoR	Reports on joint	Low level of
network of	among interested	FRA	for all interested investors	years			meetings;	lessons learnt from
stakeholders	investors and	and	in Kivu methane;				The number of	the visits of
	companies	private	Visits to external existing				joint ventures	existing CCGT
	candidates to Kivu	sector	CCGT and CCS				created;	and CCS, due to
	methane		installations and				Number of	non-similarity
	exploitation; share		negotiations for joint				visits done	with the case of
	of information on		ventures;				abroad and on	Lake Kivu
	new options like the		Set up a preliminary				local Kivu	
	CCS and the double		network between EWSA				methane units	
	use of gas and		and the companies already				and plants	
	steam turbines		involved in extraction of					
			gas from lake Kivu					
-B2-Establish	-Necessity of	REMA	Organization of	5	400,000	GoR	Published laws	Non operational
a law on	combining CCS to	and	campaigns for proving the	years			in Rwanda	joint the venture;

applying the	CCGT for reducing	EWSA	role of using the CCS				official gazette	Law on sharing
CCS option	GHG emissions		technology;					Kivu methane not
- B3-Law of	-Need of promoting		Campaigns showing how					easily operational
shared Kivu	joint ventures		the efficiency is improved					for the countries;
methane	between DRC and		when the gas and steam					The CPEGL is
	Rwanda		turbines are combined;					ended while it
			Negotiations and					was expected to be
			discussion through the					a good tool for
			CPGL for a potential joint					negotiations and
			200 MWe plant					application of laws
B4-Control	-Sustainability and	EWSA;	Establishment of a	20	2.6	SIDA-	Published	-Stratification and
of evolution	variability of	universi	research unit in charge of	years	million	SARE	reports on	stability of the
of methane	renewable	ties	monitoring the methane			C;	evolution of	layers of the lake
resources and	resources		resource and stability of			EU;	extracted	are affected;
extraction	- avoidance of risk		the lake ;			GoR	methane gas	A sudden volcanic
	of disturbance of		Regular records of data				and on	eruption at the
	stratification of		and update of the database				renewability of	bottom of the lake;
	Lake						resources of	
							methane gas in	
							lake Kivu	
-B5-	-make more	World	- Negotiate access to the	10	24		Financial	The World bank
Subsidies for	affordable these	bank;	carbon-credit facilities and	years	millions		impacts and	and other donors

combining	options	EWSA	funds for promotion of				amount of	stop the funding
CCS to			replacing the petroleum				subsidies	once the
CCGT	-Attract the		fuels;				delivered;	liquefaction and
	investors to		-Installation of a mini				Number of	use of gas in
-B6-	distribute methane		CCGT/CCS pilot plant;				companies	industries are
incentives for	to industries		- updating the installation				which benefited	considered as
the			of a gas-to-liquid pilot				from subsidies	relatively pollutant
liquefaction			plant near the				and incentives;	fuel;
of Kivu			BRALIRWA (brasseries				Amount of	
methane			et limonaderie du				electric power	
			Rwanda) in Rubavu				capacity added	
			district;				to the existing	
			- Awarding and				capacity	
			distributing subsidies and					
			incentives to all					
			companies developing this					
			technology					
B7-Regular	CCGT and CCS are	Univers	-Organization of an	10	400,000	GoR;	Annually	Technicians
training and	complex option	ities;	annual training session in	years		GTZ	number of	continue to
capacity	requiring highly	REMA;	techniques of CCGT and				certificates	consider that the
building in	qualified managers	EWSA	CCS;				awarded to	CCS is very
CCGT and	and technicians		-A two-years- visit to				technicians	complex

CCS			external CCGT and CCS				,stakeholders	technology;
technology			installations				and staff;	Foreign units of
							Number of local	CCGT and CCS
							experts who	not accepting to
							participated in	share their
							abroad	experience and
							workshops	keeping hidden
								their knowledge
B6-Award to	There is a great	UNDP;	-A two-year (day) -	10	2	EU;	Number of new	
innovative	need in applying	World	seminar for presenting the	years	millions	JICA;	types of CCS	
options of	CCS presenting	bank;	updated options and			GoR	technology	
efficient	lower costs	REMA	innovative CCS options;				elaborated and	
exploitation			-Visit to pilot plants by				successfully	
of Kivu			potential developers;				tested	
methane			- Distribution of awards					

The proposed measures for the Kivu methane CCGT with CCS technology are especially influenced by the process of combining the steam turbine to the combustion gas turbine and capturing the CO_2 emissions before reaching the storage site (a natural or artificial reservoir/lake/geological). Due to the high level of the initial capital cost, appropriate subsidies are required in order to attract the local private sector and the external partners. We have to mention that this technology will succeed in Rwanda if the risk of unfunded component of the CCS is avoided. In fact without the CCS, the Kivu methane looses the eligibility to renewable category and the carbon credits.

Implementation of different phases for such a technology based on the methane gas extracted from deep layers of the Lake Kivu will require a huge budget. Therefore a special fund and grants with link to the low-carbon credit market for covering the particular costs of CCS components can be delivered for further developers and interested investors. Given that the Kivu methane CCGT with CCS technology is complex, its implementation in Rwanda will required both specific incentives (feed-in tariffs, exemption taxes of imported equipments...), organization of regular training and seminars aiming at increasing the number of qualified technicians and managers, a particular law for a future regulation and evaluation of such a shared resource.

1.4 Action plan for geothermal power technology

1.4.1 About geothermal-to-electric power technology

A steam turbine driven by the fluid is connected to an electric generator. A system of conventional condenser and cooling tower fulfills the properties of thermodynamic cycle. Finally, the underground geothermal field is recharged through a reinjection at about 1 km from the position of the drilled hole wells.

For a 200 kWe geothermal binary unit, the capital cost is projected to a probable value of 6 410 USD/kWe in the year 2015 against 3 730 USD/kW in case of a binary 20 MWe plant (ESMAP, 2007). Initial capital costs are among others influenced by an optimal design and choice between the alternatives of an atmospheric exhaust plant and of a condensing plant (UNESCO, 2003).

Regarding the projection for the total average adjusted cost (energy generation cost) for the year 2015, expectations are 14.2 US cents/kWh and 6.3 US cents/kWh respectively for a binary 200 kWe, and a binary 20 MWe (ESMAP, 2007).

Binary plants are elaborated for commercial purposes in small modular units which can hence be assembled into higher capacity units of up to about 110 MWe; Temperature required for the geothermal water brine is about 120 °C to 170 °C for 200 kW up to 20 MWe; lower temperatures are also possible using the working heat fluids which have lower boiling points i.e below 100°C.

1.4.2 Targets for Geothermal transfer and diffusion

- Assessment of geothermal resources mainly in volcanic northern areas and along the whole portion of Rift Valley from the north to the south-West of the country;
- Installation of a pilot project plant of 10 MWe ;
- Generation of about 310 MW of electric power by the end of year 2017;
- Identification of private investors and partners for further financial support.

1.4.3 Barriers to diffusion of geothermal technology

Barriers	Elements of barriers	Presentation and dimension						
Cost of	Cost of preliminary	Required various studies(geological, chemical,						
preliminary steps	investigation	physical, location of wet aquifers and dry hot rocks)						
and information on		are expensive;						
potentialities		Potential sites in Rwanda are in the extreme North-						
		West and extreme South-West regions						
	Limited incentives	Investment in new technology like geothermal has to						
	and subsidies	be associated with wide support for covering the						
		initial capital cost;						
		The initial step of the pilot project is not yet						
		undertaken.						
	Cost of validation of	Unless a number of measures and incentives are						
	result of exploration	openly made applicable and available, private						
	studies; cost of large	investors will continue to hesitate and avoid any						
	campaigns for	involvement in geothermal exploitation and						
	geothermal	implementation.						
	High capital and	The newer the technology, the higher the cost;						
	maintenance costs	regional experience from Kenya and Ethiopia is not						
		sufficient for projecting any comprehensive costs of						
		production and maintenance in Rwanda.						

 Table 8: Economic and financial barriers for geothermal

Barriers	Elements of Barriers	Presentation and dimension
Stability of	Risk of damage by	Installation of geothermal power plants
infrastructure	earthquake and other	is expected along the Rift Valley and
	hazardous events	high lands in western branch, i.e.
		volcanic zone and regions with high
		frequency of earthquake occurrences.
Limited Human	Insufficient expertise	Given that a critical mass of skilled
resources	and skilled technicians	local expertise in geothermal process
		and exploitation is missing, transfer
		and deployment phases are weakened.
Limited involvement of	Information on potential	Only surface studies have been
private sector	resources is not	achieved;
	available;	The planned pilot project of 10 MW is
	Hesitation of private	still awaited
	investors	
Conflict with owners of	Very high density of	Areas expected to host the geothermal
land	land occupation by	plants are those which are under
	anthropogenic activities	intensive agricultural activities.

Table 9: Non financial barriers for geothermal

1.4.4 Proposed action plans for geothermal technology

Table 10: Technology Action Plan for geothermal technology

Measure	Justification	Respon	Activities	Timef	Estimat	Sourc	Success	Risk
		sible		rame	ed cost	e of	indicators	indicators
					(USD)	funds		
-C1-Set up an	Benefitting from	Private	-Visits to among	10	400,000	GoR;	Reports on	-The Rwandan
industrial	experience of owners	sector;	others Kenyan and	years		EU;	visited	geological
association of	of geothermal plants	EWSA	Ethiopian			JICA	geothermal	conditions are found
private promoters	in the region and in		geothermal plants;				plants for	different from that of
-C2-Links to	Europe, Asia and		-Participation in				instance in	Countries from
international	America will be		summits on				Kenya ,Ethiopia,	where experience on
geothermal	fruitful		geothermal energy				Ireland, Italy	geothermal is more
network							and Philippines	fruitful
-C3-Make	-Any new technology	MININ	-Identification of	10	40,000	GoR	Published laws	-Geothermal
available a	requires particular	FRA;	potential financial	years			in official	resources are found
regulatory	governing laws	EWSA;	partners and				gazette;	insufficient after
framework for	-Provision of	MINA	investors;				Special laws on	process of drilling;
subsidies and	subsidies and other	LOC	-Publish a law for				geothermal	- Promised subsidies
incentives for	facilities can result in		establishing a				exploration are	are released;
interested private	a positive		special fund for				published;	
investors	involvement of		subsidies;					

C4-Establishment	private sector toward		- Elaboration of a					
of law on	a geothermal		law and regulatory					
geothermal	deployment in		framework for					
extraction and for	Rwanda		concessions					
concessional								
agreements								
C5-Monitoring	-Up to now , only	EWSA;	-Set up a research	20	4	- GoR;	Availed map on	More interesting
the geothermal	surface studies have	Univers	and technical team	years	million		geothermal	reservoirs are found
resources and	been achieved	ities;	for establishing a				resources;	in volcanic and
providing	-Sustainability of		geothermal map;				-Updated	vulnerable areas;
information on	resources, once		- Assessment of				information and	-Inexistence of deep
identified	proven, is an		potentialities for				databank on	large reservoirs;
potential sites	attractive factor for		exploration;				geothermal	
	public private		-Validation of the				resources;	
	investors		predicted power					
			capacity 700MWe;					
			-Carry out studies					
			for options of low					
			temperature					
			geothermal-to-					
			electric power					
-C6-Installation	-Awareness and	EWSA;	In addition to the	5	30	AfDB;	Two pilot	-lessons leant from

of pilot projects	confidence in	REMA;	power pilot project	years	million	BADE	projects installed	pilot projects are not
-	geothermal business	FRSP	at Karisimbi in the			A;EU;	in Bugarama	conclusive;
	can be increased		north west,			GoR	(South –west of	- destruction of pilot
	through RDD pilot		Construction of a				country) and in	projects by a sudden
	plant projects		pilot project in				Rubavu district(earthquake event;
			Bugarama for				north-west);	Soft loans are not
			direct thermal use				-The number of	provided.
	-Particular financial		by				investors in	
C7-Special fund	facilities are required		CIMERWA(comp				geothermal	
and subsidies to	in order to face the		any for cement				sector is	
private investors	high costs of both		production, in				sufficient the	
	initial capital and		Rusizi				power capacity	
	maintenance		district/southern				of 300 MWe is	
			west);				operationalby the	
							year 2017.	
			-Negotiation for					
			special funds and					
			subsidies					
C8-Organization	In current context of	MIFOT	-Participation of	5	340,000	GoR	20 local experts	Newly trained local
of regular training	human capacity in	RA;	about 4 students in	years			are available by	staff are not
and seminars for	Rwanda, there is a	REMA	training in Italy at				2017 annually	employed due to
technician and	need in increasing the		Larderelo,				about 4 trained	lack of experience;

policy makers	number of skilled		- A 3 months				technicians and	Preference is
	staff and policy		practical training				stakeholders	oriented to
	makers for further		and visits to				deliver a report	international experts
	deployment and		geothermal plants				after the abroad	
	diffusion of		in Kenya;				sites' visit	
	geothermal							
	technology							
C9-Technical	International	REMA;	-Negotiate a	5	35	EU,C	Reports on joint	
assistance mainly	cooperation will	MINAF	partnership and	years	million	TB,	studies;	
in preliminary	result in technical	ET	joint exploration			GoR	Published	
investigation and	assistance from		with Kenyan and				geothermal map	
exploration	countries where		Ethiopian				and updated	
	geothermal is		geothermal				information on	
	historical operational		companies;				related	
			-Under the				geological and	
			umbrella of				volcanic events	
			international					
			cooperation like					
			JICA, negotiate a					
			particular technical					
			assistance mainly					
			in the process of					

assessment and		
exploration		

Regarding the geothermal technology, measures to remove specific barriers will be facilitated due the coming 10 MWe pilot project which is expected to be installed near the volcano Karisimbi. Preliminary studies (geological, chemical, physical, location of wet aquifers and dry hot rock) for investigation and identification of all underground reservoirs of hot water are targeted and have to be conducted and achieved especially in the North-West and extreme South-West regions. A geothermal database and map have to be produced. Appropriate incentives and subsidies have to be openly made applicable and available for attracting the private investors. In fact some key steps of geothermal technology are quite expensive and prohibitive. The regional experience and lessons from Kenya and Ethiopia is not sufficient for projecting any comprehensive costs of production and maintenance in Rwanda.

The installation of geothermal power plants is expected along the Rift Valley and high lands in the Western branch, i.e. volcanic zone and regions with high frequency of earthquake occurrences. Therefore, particular attention and orientation have to focus on the following measures: a special fund for geothermal initiatives, access to carbon credits, installation of a training and research unit for monitoring the geothermal resources and dissemination of lessons learnt from the coming 10 MW pilot project expected in the Karisimbi area.

But it is important to mention that geothermal action plans will probably face the risk of uncertainties in the sustainability of resources and the reservoirs 'capacity: even when the pilot projects are conclusive. In essence, what it is available and sustainable at Karisimbi site in the north -west may not necessary be similar to the situation in the Bugarama area in the south-west. The mitigation potential and reduction rate for GHG emissions are interesting. In fact, replacing the imported oil fuels for the thermal power plants by the expected geothermal option can result in a reduction rate of about 74%. In case of geothermal resources reaching a temperature of 180 °C and a pressure equals to 8 atmospheres , the geothermal steam is directly passed through the steam turbine; once condensed, water is re-injected into ground for the purposes of recharging the geothermal sources. Such an avoidance of use of the heat exchanger and the hydrocarbon working fluids makes the geothermal technology cleaner in the matter of GHG emissions. Generating electricity energy through such a promotion of exploiting local and reliable green energy resources is considered as a great socio economic benefit for the country. With regards to different planned electricity generation projects, the country could become a medium term of exporter electricity.

1.5 Action plans for the PHEV technology

1.5.1 About the PHEV technology

A plug-in hybrid electric vehicle (PHEV) is equipped with a conventional internal combustion engine and an electric motor. A battery rechargeable through any electric power outlet runs the electric motor while the combustion engine depends on fossil fuels or bio-fuels. In case of fossil fuels, efficient gasoline option is more recommended. For a technology combining such two sources of energy, the amount of CO_2 emissions is lowered due to the decreased amount of fossil fuel consumption.

The source of electricity to which the battery plug is connected for recharging is expected to be a grid preferably based on hydropower, solar, wind and any other non carbon technology. For a recharging frequency of at least 2 times per day, PHEV consumes about 3 liters per 100 km against 4 liters in case of frequency of one charging per day. The overall efficiency of the system "Battery-Electric motor-Wheels" transforming the chemical into mechanical through electrical is about 75%. The efficiency of an internal combustion engine is about 15% in urban areas and 25% in rural or highways.

The initial cost of a PHEV is higher than the conventional vehicles; in fact the PHEV are still limited on international market. However, the operational costs are affordable:

- The cost of the "gasoline-electric" fuel for the PHEV options is 2 times lower than the cost of the conventional petroleum fuel used for common gasoline vehicles;
- The maintenance cost for common gasoline vehicles is about 1.5 times more expensive than the PHEV maintenance.

The expected mitigation potential (Reduction of GHG Emissions) is as follows:

- The amount of CO₂ emissions is about 0.11 kg/km for PHEV against about 0.44 kg/km by usual non efficient gasoline vehicles in urban areas;
- In rural areas and highways, CO₂ emission are respectively 0.09 kg/km and 0.26 kg/km for PHEV and usual gasoline vehicles

The introduction of these new vehicles on the local market entails some social benefits. It will stimulate industrialization in setting up local units for manufacturing components of PHEV and their maintenance. This will create more wealth including new jobs.

The economic benefits will come from the increased use of renewable resources and a decrease in importing gasoline and diesel fuels for vehicles. In addition to the potential manufacturing benefits; other economic benefits are linked to the fact that the cost of electricity is lower than the cost of fossil petroleum fuels.

Environmental benefits will be realised from the increased use of such vehicles running on electricity and liquid fuel. This will be considered as an innovative contributor to a significant decrease in GHG emissions from the road transport sub-sector.

1.5.2 Targets for PHEV transfer and diffusion

- Increasing the capacity of transport sector ;
- Substituting imported petroleum fuels by methane gas converted into liquid fuels;
- Developing a market based on efficient gasoline cars;
- Introducing the green transport through the use of biodiesel and deployment of electric vehicles.

1.5.3 Barriers to diffusion of PHEV

Туре	Barriers	Elements of barriers	Presentation and dimension
Economics	High cost	Limited purchasing power of	GDP is low : about 275 USD per
and	of	Rwandans	capita and per year
Financial	purchasing		
	a PHEV	Inexistent incentives for	Banks , Micro-finances institutions,
		promoting new vehicles in	government agencies for transport
		compliance with GHG mitigation	sector are not yet sensitized to
			facilitation for electric vehicles
		Insufficient rates of taxes and	Market for second hand vehicles is
		fees to conventional pollutant	largely developed in Rwanda
		vehicles and second hand	
		vehicles	
		Inexistent local manufacturing	Only the process of importation of
		units of components for	vehicles fully ready for driving is in
		assembling vehicles	place
		Inexistent special externalities	A lot of trucks and relatively old
		applicable against vehicles	mini-bus are highly pollutant and
		consuming non efficient gasoline	often emitting gases resulting from
		and diesel	uncompleted combustion

 Table 11: Main barriers for PHEV technology

Туре	Barriers	Elements of barriers	Presentation and dimension
Non	Market	Monopoly of conventional	Only a very small number of
Financial	imperfection	gasoline and diesel vehicles	electric motorcycles are available
			and optional
		Affordable second hand	Purchase cost of a new vehicles is
		vehicles	almost 2 times more important
		Pilot projects for	PHEV vehicles are not yet present
		demonstration are not yet	in Rwanda
		developed	
		Unexpected competitiveness	Not possible to benefit from
		for PHEV options	inexistent PHEV market;
			economies of scale don't work
		Inexistent demand for PHEV	Absence of infrastructure for
		options	PHEV battery stations; absence of
			first steps-actions and promoters
	Legal	Only regulation and laws	GHG emissions from vehicles are
	framework	governing conventional	not controlled along the road even
		gasoline and diesel are	when exhaust gases are visibly
		operational	observed
		Penalties and removal of old	Hesitation in destroying old
		vehicles are missing	vehicles is still predominant
	Network of	Private sector participation in	PHEV technology remains
	actors	innovation for transport sub-	unknown and unfamiliar to public
		sector is limited	potential purchasers and promoters
			of distribution of such vehicles
		Limited communication and	PHEV options are not considered
		share of opportunities	and only conventional vehicles are
		between PHEV manufacturers	imported from Europe and Asia
		and local importers for a step	mainly.
		towards introduction of	

Table 12: Non financial barriers for PHEV technology

		PHEV in the country	
1	Human an	d Limited technical and skilled	PHEV, technology susceptible of
1	Institution	human resources	resulting in GHG emission
C	capacity		mitigation is not yet understood;
			very limited number of technicians
			sufficiently skilled in such a
			technology
		Insufficient institutional	Campaign for promoting PHEV
		capacity	options is not organized;
			discussion about the PHEV
			benefits is not undertaken
		Dilemma: non starter , no	Nobody is ready to introduce
		demand	PHEV
5	Social an	d Low confidence in PHEV	Resistance to change and to
	Cultural	alternatives	replacement of conventional
			vehicles by PHEV ones is
			potentially hindering the
			deployment of new transport
			scenarios
1	Research an	d Absence of transfer of	Development of research and
C	development	knowledge and PHEV	development facilities is missing
		technology from producer -	while GHG emission from the fuel
		countries to local potential	combustion for road transport are
		consumers in Rwanda	the highest in energy sector
		Limited focus on replacing	Impacts of imported fossil fuels on
		fossil fuels by local renewable	energy bill are highly negative
		energy resources	

1.5.4 Proposed action plans for the PHEV technology

Table 13: Technology Action Plan for PHEV technology

Measure	Justification	Activities	Responsi	Time	Estimat	Sources	Success	Risks
			ble	frame	ed cost	of funds	indicators	indicators
					(USD)			
Set up an	Collaboration	Feasibility study	Private	10	1	GoR;	Numbers of	-Converted
industrial	between promoters	on conversion of	sector;	years	million	JICA	swapped vehicles	vehicles have a
network for	of PHEV options	old vehicles into	MININFR				and number of	small lifespan;
converting	and the owners of	PHEV;	А;				new PHEV units	- Lack of
old vehicles	conventional	-Installation of	MINICO					enough
into PHEV	vehicle is crucial	an industrial unit	М					customers
options		for conversion						
-Law on	Contribution to	- Investigation	MININFR	10	40,000	GOR	Published laws in	Established
bonus	policy on GHG	on lessons and	А;	years			Rwanda Official	laws are not
schemes	emission mitigation	experience from	REMA;				gazette	properly
-law on	in transport	abroad existing	MINICO					applied
incentives to		PHEV practices;	М					
PHEV sub		elaboration of						
sector		the laws;						
Mechanism	There is a great	-Installation of	MININFR	5 years,	800,000	GEF;	The number of	-Some

of investment	need in installing	50 pilot stations	A;			WB;	new stations	installed pilot
in	new stations for	for recharging	REMA;			AfDB	installed for	stations do not
infrastructure	recharging batteries	batteries of	Private				recharging the	get sufficient
for PHEV	and in having a grid	PHEV;	sector				batteries of the	PHEV to be
innovation (supplied with						PHEV electric	recharged;
changing	renewable energy						motors	
stations)								
-Subsidies'	-Encouraging	-Negotiate and	MINECO	5 years	20	WB;GE	Number of	Amount of
deliver to	suppliers and	establish a	FIN;		million	F;EU;G	imported PHEV	subsidies are
suppliers;	promoters of PHEV	special fund for	REMA;			oR	units every year;	covering just
-application	-Encouraging the	subsidies and	MINICO				number of	the first phase
of exemption	importation of	bonus;	М				consumers to	of the activity;
for taxes and	PHEV on a large	-Organizing a					whom the bonus	-people are not
fees for only	scale	progressive					facilities have	importing
the end-users	-Bonus to PHEV	ending of					been delivered;	enough
of the PHEV;	promoters,	importation and						number PHEV;
-delivering	consumers and	use of						Preference to
bonus and	increased taxes to	conventional						use moto-
subsidies to	those purchasing	vehicles						cycles, an
purchasers/en	classic vehicles							transport
d-users	result in an							option very
	combined important							popular in

	factor for							Rwanda
	promoting the							
	PHEV							
-Loans	The purchase	-Negotiate the	RRA;	10	60	BADEA	Number of	-in other
-leasing	channel process for	carbon credits	MININFR	years	million	;	consumers,	countries at
programs	new technology	facilities, the soft	А;			AfDB;	suppliers and	regional level,
-grants to	like PHEV requires	loans, grants and	MINECO			GEF;	companies which	other units of
local	particular grants	leasing	FIN; local			GoR	benefited from	PHEV
industrial	and soft loans	programs;	financial				grants and	industries are
units for		-Installation of a	institution				subsidies every	installed
PHEV		unit for	s and				year	
components		producing or	banks;					
		assembling	REMA;					
		locally the	MINICO					
		PHEV	М					
Seminars and	The deployment of	-Organization of	REMA;	5years,	300,000	GoR	Reports on	Trained staff
workshop for	such a new	short training	MIMINF				seminars and	and technicians
the capacity	technology requires	sessions for	RA;				capacity building	are not fully
building in	a sufficient number	technicians and	RURA;				sessions;	integrated in
PHEV	of local technicians	stakeholders;	MIFOTR				Annually number	the job system;
	to deal with the	distribution of	А				of technicians and	
	PHEV technology;	brochures on					stakeholders	

		PHEV advantage; use of local media					trained; Number of policymakers trained	
-Promotion	Development of	-Setting up a	REMA;	5 years	2	GEF;	The amount of	The process of
of CDM and	PHEV project	service for the	RDB;		million	WB;	CDM projects	carbon credits
low carbon	through carbon	carbon credits;	EWSA			EU	initiated and	is suddenly
market	market is part of	-Inventory of all					implemented	stopped due to
credits to	obligations for	projects eligible						reasons linked
PHEV	GHG mitigation	to the carbon						to any
developers	and it is	credits						misunderstandi
	important to access							ng between
	such facilities							partners and
								donors

The transfer and diffusion of PHEV technology in Rwanda will require a set of stages including a key phase of RDD (research- development and demonstration) but also an installation of battery stations using preferably electricity generated through renewable energy resources. The risk of poor exploitation and low contribution of renewable energy resources to electricity subsector has to be carefully considered. Therefore it will be important to consider the following factors before implementing the specific measures to remove the identified barriers:

- Due to the low Income per Capita (about 275 USD) ,the financial capacity of potential purchasers of the PHEV new vehicles, instead of the most affordable second hand vehicles, is obviously limited;
- The Banks and Micro-finances institutions are not yet sufficiently sensitized to potential facilitation in delivering loans and leasing programs for promotion of electric vehicles;
- A lot of trucks and relatively old mini-bus highly pollutant i.e. often emitting GHG gases resulting from uncompleted combustion cannot be easily swapped with PHEV options;
- Purchase cost of a new vehicles is almost 2 times more important;
- The PHEV is a new technology and not yet introduced in Rwanda;
- Resistance to change and to replacement of conventional vehicles by the PHEV ones is potentially hindrance to the deployment of new transport scenarios.

A set of specific measures are hence required: incentives to encourage suppliers and promoters of PHEV, consumers, and manufacturing units; increased taxes for generic and second hand vehicles; deliver of bonus for PHEV options; provision of subsidies for any local production of equipments like electric motors and other key spare parts; installation of a sponsored unit for a potential conversion of conventional vehicles into PHEV options.

1.6 Action plan for large solar PV technology

1.6.1 About the large solar PV

The costs remain very high: for instance a 5 MWe of PV had its initial capital cost of 7 060 USD/kWe during the baseline year 2005 against the projections for the year 2015 of about 5 000 USD/kWe .The generating costs are projected, for the year 2015, to about 29 US cents/kWh against an average of 42 US cents/kWh in the year 2005 (ESMAP, 2007). The potential installation of remote mini-grids but also the direct connection to the national EWSA grid are appropriate for reducing the costs; avoidance of use of batteries is also a positive factor of the large solar PV.

Another scenario for reducing the capital cost is the use of the optional concentrated solar photovoltaic cells which are in fact characterized by less size of solar modules in line with the coefficient rate of concentrating the direct normal component of solar radiation. The mitigation potential (Reduction of GHG Emissions) is one the highest with regard to other technologies. In fact the solar PV is a non carbon technology and the batteries are not required in case of grid-connected option.

Replacing the existing thermal oil power plants by the large solar PV will result in a reduction of GHG emissions by about 79%. In fact the emission factor of solar PV grid is about 155 kg / MWh against 750 kg/MWh. Another alternative: the development of the solar PV technology on a large scale in Rwanda will result in reducing or avoiding the use of peat resources (GHG emissions of about 1075 kg/MWh) for generating electricity. Finally and in addition to above environmental issues, expected economic benefits are quite significant:

- Promotion of exploitation of local natural resources for electric power generation
- Reduction of exodus from rural to urban areas
- Small scale business and factories are created to generate more wealth.
- Increased rate of access to electricity services, resulting in healthier economy growth.
- Creation of jobs.

1.6.2 Targets for large solar PV transfer and diffusion

- Development of a national strategy for operation and maintenance of large solar PV system
- Exempting all types of solar equipments and components from import duties;
- Basic electrification of all schools, all health centers and all administrative offices in remote rural areas;
- Based on lessons learnt from the 250 kWe pilot plant installed in Kigali at Mount Jali, replication and installation of solar PV connected to the national EWSA grid;
- Development of guidelines on sizing and tender for provision of solar systems with high quality³ standards.

³ Such adequate procurement can also take in account of new solar products more efficient like concentrated solar photovoltaic (CPV)

1.6.3 Barriers to diffusion of large solar PV

Barriers	Elements of	Presentation and dimensions
	barriers	
high cost of	High Initial Capital	The Photovoltaic systems, compared to other commercial
investment	Cost	energy technologies remain very expensive;
and		Subsidies and low taxes have not yet resulted in larger
equipments		diffusion of PV modules in Rwanda;
		Only some institution(Schools, Health Centers) can just
		afford an installation of about 3kW for mainly lighting
		purposes;
		EWSA installed just only a small plant with a capacity of 250
		kWe in Rwanda, near Kigali.
	Limited access to	Acquisition of solar modules is limited by the initial capital
	loans from banks	cost which has to be paid cash;
	and leasing	Lack of access to credit is limiting both investors and end
	programs	users to small scale size of solar products.
	Limited	Poor knowledge in PV sector results in buying non tested
	information and	solar modules ; ,very often second hand products are taken
	network to different	for new on local market; new equipment remain expensive
	manufacturers	In addition, imported products from Europe, China, USA or
		Japan to Rwanda,(a landlocked country) are quite expensive
		due to transport .
	High cost installing	Absence of decentralized mini-grid for distribution of electric
	private grids	energy is limiting deployment and diffusion of large solar
		PV system

 Table 14: Economic and financial barriers for large solar PV

Barriers	Elements of	Presentation/ and dimensions
	barriers	
Imperfection	Non-existent local	An initiative of assembling the solar modules was set up
of solar	industry for solar	before 1993 in Kabgayi headquarters of Catholic Church; it is
market		no longer operational while it was expected to play a key role
		in making solar cells for local deployment.
	Unfamiliarity with	Design, preparation and implementation of solar PV,
	solar PV	especially for larger scales, require more skilled labor and
	technology	expertise which are currently minimal in Rwanda ; among
		others, more special skills in setting up local mini-grids are
		limited; all phases of installation, operation and maintenance
		lack accurate information on solar resources (variability
		within the year)
	Low	From schools and universities to stakeholders' relative low
	competitiveness	awareness to solar PV technology, especially for large scale
		size, is noted; this option is found useful only for very small
		application of lighting just like the option of simple batteries
		charged at any available station.
		Compared to ordinary supply of energy from EWSA, the
		solar PV supply is negligible 1 in the context of power
		generation while its cost of acquisition is relatively high.
	Access to enough	Due to the limited efficiency of converting solar light into
	land	electricity, required land area where to install a large solar PV
		is also too large for a country with the highest population
		density in Africa
Human and	Limited skilled	Technicians trained for designing and installing the large
institutional	expertise	solar PV plants are very few in Rwanda
capacity	Non-existent centre	Knowledge and expertise are limited
	for promoting solar	
	application	

 Table 15: Non Financial Barriers for large solar PV

Social	and	Resistance	to	Different promoters and developers of solar are still limiting
cultural		change	and	their business to standalone solar systems
behavior		investing	in large	
		solar		

1.6.4 Proposed action plans for Large Solar PV

Table 16: Technology Action Plan for Large Solar PV

Measure	Justification	Activities	Respons	Timef	Estimated	Source of	Success	Risks indicators
			ible	rame	cost (USD)	funds	indicators	
Creation of	Opportunity	-Inventory of all	MINIC	10	8 million	GoR	-Reports on joint	-Industrial unit
network of	of developing	solar companies	OM;	years			ventures and actions;	set for solar
all key	a local	and investors in	Private				-Reports on visits	doesn't attract
players in	industry and	Rwanda;	sector				done at local level	local purchasers;
solar	reduce cost of	- Setting up units					and international	
energy	relevant	for assembling					large solar plants	
	equipment	solar modules;					sites;	
		- Formation of an					-A solar industrial	
		solar association					unit is operational	
		with to IRENA						
Law and	To handle the	-Elaboration of	MININF	5	63,000	GoR	-Published laws in	- Laws are
regulation	high cost of	road map for the	RA;	years			official gazette;	established but
on long	conventional	development of	EWSA;				- A published road	incentives are
term	solar	the large scale	RFPS				map	not influencing
incentives	components	solar PV;	(FRPS)					the diffusion
and taxes		-Elaboration of						
exemption		laws and						

		regulatory						
		frameworks						
Reviews of	Need of	-Elaboration of	RURA	10	63,000	GoR	Number of new	-Grid-solar
tariffs and	agreement	regulatory	and	years			developers and	connection
access to	between	framework for	EWSA				companies added to	option is
grid	EWSA and	tariffs, feed-in-					the list of promoters	providing ;
networks	developers of	tariffs;					of solar PV systems	- Saturation of
	large solar PV	- Inventory and					connected to EWSA	the EWSA grid
		feasibility study					electric grid	and a temporal
		of potential grid-						un-ability to buy
		connected PV						solar electricity
		systems						
-Subsidies	-Required	- Negotiate the	MINEC	10	18 million	GEF;	-Annually added	-change in
-Soft loans	before	access facilities to	OFIN;	years		EU;	power capacity	interest rate;
and leasing	reaching the	subsidies and	MINIC			WB	generated by solar	- inflation ;
programs;	stage of	carbon credits;	OM;				PV subsector;	-Carbon credits
benefits	economy of	-Set up a fund for	Local				- The number of	limited to small
from the	scale	soft loans and	Banks;				promoters	scale solar
carbon	-To handle the	leasing programs;	Internati				benefitting from	
credits	high initial	- Establish the	onal				financial facilities is	
	capital cost	CDM projects	financial				significant	
			institutio					

			ns;					
			REMA					
Set up a	Need of well	-Elaboration of	EWSA;	5	200,000	GoR	-Number of	- Uncertainties
unit for	skilled	design models for	MINED	years,			technicians awarded	and climate
training	technicians	solar systems;	UC;				every year;	variability
and	and experts	- Establish a	MIFOT				-Number of jobs	affecting the
research	for	monitoring model	RA;				created; -Number of	direct normal
applied to	installation	of solar resources	Universi				new local experts	radiation and
solar	and	'variability and	ties and				involved in setting	efficiency of
exploitation	maintenance	solar components	colleges				up new large solar	concentrators;
and solar	of grid and						PV projects	- in Rwanda: low
hybrids	solar							values of wind
	components							for solar hybrids

In addition to the relative familiarity with scale solar PV product on Rwanda market, potential developers of large solar PV technology, if facilitated, will be easily involved in local diffusion of such a technology; therefore the following factors have to considered:

- Existing subsidies and lowered taxes and fees have not yet significantly induced a larger diffusion of solar PV systems in Rwanda; only some institution(Schools, Health Centers) can just afford an installation of about 3kW for mainly lighting purposes;
- The Photovoltaic systems, compared to other commercial energy technologies, remain very expensive, especially the cost of equipment;
- It is important to mention that a private company in close collaboration with EWSA has installed a small solar PV plant with a capacity of 250 kWe directly connected to national electricity grid. Such an approach of grid-connected plants driven by renewable energy resources is quite an interesting step towards the anticipated development of large scale solar PV technology;
- Absence of decentralized mini-grid for distribution of electricity limits deployment and diffusion of large solar PV system;
- An initiative of assembling the solar modules was set up before 1993 in Kabgayi headquarters of Catholic Church; it is no longer operational while it was expected to play a key role in the process of the solar systems development and diffusion in Rwanda;
- Design, preparation and implementation of solar PV, especially for large scales, require more skilled labor and expertise which are currently limited in Rwanda; among others, more special skills in setting up local mini-grids are minimal; all phases of installation, operation and maintenance lack accurate information on solar resources (variability within the year).

Specific consideration of energy storage is required. It is further necessitated by the potentially high risk of poor diffusion due to a possible poor design and availability limited by the stochastic (random) character of solar energy resources in a cloudy equatorial zone..

Specific measures to remove barriers hindering the diffusion of the Large Solar PV technology in Rwanda are mainly as follows: enactment of agreements for connections to the national electric grid; application of the feed-in tariffs; establishment of an updated solar map including the direct beam normal component used as an input i.e. ingredient for the optional concentrated photovoltaic(CPV);provision of subsidies to the developers of the solar mini-grids; Setting up a

partnership between stakeholders for a local solar industry promotion towards mainly an assembly plant ; Set up a pilot project of large scale solar PV plant; Introduction of f payment for equipment in installments instead of paying cash (leasing programs); Promotion of solar modules installed on buildings; subsidies for an introduction of the CPV and CSP (concentrated solar thermo-electric power) products in Rwanda.

CHAPTER 2: TECHNOLOGY ACTION PLAN FOR THE AGRICULTURE SECTOR

2.1 Actions at Sector Level

2.1.1 Sector description

In Rwanda, agriculture is the most important sector as it sustains the life of the majority of the Rwandan population. In 2009, the population engaged in agriculture was estimated at 80% of the total population which was 9, 5 million at the time. The agriculture contribution was 34% to GNP and 71% to export revenues. In addition, it is the main source of revenues for 87% of the population; it is thus considered to be the country's economic growth engine.

Rain-fed agriculture as being practiced in Rwanda is highly sensitive and vulnerable to the effects of climate change.. In fact, food crops and industrial crops growers have a very high degree of sensitivity especially during seasons of frequent and prolonged droughts as well as heavy rains. Indeed, large farmers and rural business people also show a high degree of sensitivity to seasonal prolonged droughts. Nonetheless, they are relatively less vulnerable due to having easy access to financial means and relying on past experiences dealing with and adapting to climate hazards.

Given the fact that agriculture is among the high priority sectors in the country's development plans and programs, several policies and strategies have been put in place to facilitate the sectors' development. Table 17 provides a list of existing laws, policies and strategies in the agriculture sector.

Name	Year	Main contents
National Agriculture	2004	The National Agriculture Policy is a policy which aims at
Policy		integrating the agriculture sub sectors into the country's
		development priorities. Considered sub-sectors include: crops
		production, animal husbandry, and soil and water conservation.
		The policy categorizes priority commodities to be intensified for
		crops and animal production.
Strategic Plan for the	2009	The Strategic Plan for the Transformation of Agriculture in
Transformation of		Rwanda-Phase II is the second phase of a series of strategies
Agriculture in		aiming at transforming the agriculture sector through components
Rwanda-Phase II		analysis. It presents current situation and future development
		targets. The strategy also links the millennium development goals
		to their agriculture-related targets.
National Seed Policy	2007	The National Seed Policy is a policy which mainly promotes the
		role of the private sector in seed production and marketing
		activities; Mechanisms of doing research and variety
		development; Seed production and conditioning; Seed marketing
		and constitution of seed security stock; promotion of seed use;
		financing the private sector; Seed quality control; Seed import
		and export; Coordination and implementation of the seed policy.
National Post-Harvest	2011	The National Post-Harvest Staple Crop Strategy is a policy
Staple Crop Strategy		framework that assists the agriculture sector with
		Strengthening the harvesting, post-harvest handling, trade,
		storage, and marketing within staple crop value chains in
		Rwanda, in an effort to improve markets and linkages for
		farmers, and reduce postharvest losses. The Strategy's
		fundamental vision is to reduce food insecurity through an
		efficient post-harvest private sector system delivering staple
		foods to the people of Rwanda. It mainly contains; its vision,
		objectives, guiding principles and strategic axes of intervention.

 Table 17: Relevant laws, policies and strategies in the agriculture sector

National Agricultural	2009	The National Agricultural Extension Strategy is a strategy
Extension Strategy		established to develop agricultural extension methods, present
		characteristics of new orientations as regard to new decentralized
		extension, the role of different actors in agricultural extension
		system, functional relationship between the agencies of the
		Ministry of Agriculture and local administration entities
		(districts).
Irrigation Master Plan	2009	The Irrigation Master Plan is a national reference irrigation plan
		which partitions the country into six irrigation domains. Each
		domain is defined by the category, availability and accessibility
		of a given water resource vis-à-vis the biophysical and climatic
		features that influence its mode of abstraction and utilization.
Environmental	2005	The environmental Organic Law is a law that regulates the
organic law		protection of Environment in Rwanda. It sets out the general legal
		framework for environment protection and management in
		Rwanda. It also constitutes environment as one of the priority
		concerns of the Government of Rwanda.
		Under the fundamental principle on National Environmental
		Protection Policy, this law develops national strategies, plans and
		programs, aiming at ensuring the conservation and use of
		sustainable environmental resources.
Environmental policy	2003	The environmental policy is a national policy with overall
		objective of improving the population's wellbeing, judicious
		utilization of natural resources and the protection and rational
		management of ecosystems for a sustainable and fair
		development. The Policy recognizes the adoption of
		environmental friendly technologies and that the technology
		constitutes high priority for central and local authorities.
Land policy	2004	The Policy calls for rational use and sound management of
		national land resources and be based on master plans. The Policy
		also provides development of land use plans based on suitability

		of the areas/lands/swamps thus distinguishing the different							
		categories of land and their purpose.							
		Regarding the use and management of marshlands, the Policy							
		stipulates that marshlands should be protected for human							
		occupation such as industries and others except after adequate							
		planning and environmental impact assessment.							
National Water	2011	The "National Water Resources Management Policy" is a policy							
Resources		which aims at fair and sustainable access to water and							
Management Policy		improvement of the management of water resources, through							
		reforestation on hillsides and water catchments areas.							

The above discussed policies and strategies were developed by the most competent authority in collaboration with others stakeholders taking into account the country's needs and relevance of the policy/strategy. There exist mechanisms of policy/strategy review in order to adapt to the most current situation. Rwanda selected agriculture as the adaptation sector mainly based on its high level of vulnerability to the effects of climate change. Technologies were identified and selected for the country in general and the agriculture sector in particular to adapt to the effects of climate change. Below is a brief presentation of the current technology profile, level of employment and future targets.

2.1.2 Current technology profile, employment level and future targets

2.1.2.1 Seed and grain storage

Currently, there exist some seed and grain storage facilities using silos and warehouse technology options. The installed capacity is estimated at 36000 metric tons for silos and 88100 metric tons for warehouses located in different parts of the country.

The target group for the transfer and diffusion of this technology is the farmers' associations/cooperatives in the first place which are considered as ideal for the good management and maintenance of the systems once put in place. Although the number of fully operating farmers associations/cooperatives is not yet well known, it is assumed that the entire Rwandan farming community which is estimated at 1 400 000 households will benefit from seed and grain storage technology transfer and diffusion. Future targets include the installation of additional capacity of 200 000 metric tons by the year 2017.

2.1.2.2 Agro forestry

Agro forestry plantations only occupy ¹/₄ of the available space to be used for the same purpose. Agro forestry systems being suitable for all kind of farming practices, the target group for its transfer and diffusion is the entire Rwandan farming community. It is estimated that all the sub groups (farming communities, associations and/cooperatives) of the 1 400 000 households involved in farming activities will benefit from agro forestry transfer and diffusion.

2.1.2.3 Radical terraces

According to district performance contracts up to 30000 ha of radical terraces were established by June 2012 in all the districts of Rwanda. Radical terraces are ideal for slopes ranging from 13% to 55%, it is estimated that agriculture land with radical terracing potential is owned by 1 000 000 households who are the main part of the Rwandan farming community. For this reason, the transfer and diffusion of radical terracing as an adaptation technology will target 71% of the entire farming community in Rwanda. Specific targets are the establishment of additional radical terraces to cover an estimated space of 7815 ha for the period of 2012/2013.

2.1.2.4 Drip irrigation

The total space currently covered by irrigation is estimated at 200 ha countrywide with the biggest drip irrigation system of 80 ha in the eastern province. Other small installations in place include Agriculture Research Centers and horticulture green houses mainly for flower and tomatoes. The transfer and diffusion of drip irrigation as a technology option for climate change adaption in Rwanda will target farming community populations located in low land regions, the central plateau with no incidental slopes and other areas where the land has been worked so as to be able to receive agriculture infrastructure. This farming community is estimated at 1 200 000 households which is about 80% of the entire farming community in Rwanda. Overall figures of future targets in irrigation are to reach 100000 ha in 2017 from 24000 ha currently in place. These include 65% of marshland irrigation and 35% of hillside irrigation. Drip irrigation falls into the category of hillside irrigation.

2.1.2.5 Rainwater harvesting

Rainwater harvesting infrastructure for agriculture applications is currently estimated at 3089 runoff ponds corresponding to 1235, 5 ha under irrigation. Only around 1% of the total number beneficiaries rooftop rainwater harvesting of has systems mainly for home applications.Rainwater harvesting transfer and diffusion could simply be beneficial to the entire Rwandan population given the country's relatively high precipitation per annum. In fact, rainfall average is 1400 mm per annum with abundant precipitation of 2000 mm in the North western part of the country and low precipitation of 700 mm in the South eastern part of the country. All the 1 400 000 households which make the Rwandan farming community could directly or indirectly benefit from the transfer and diffusion of this technology. Future targets up to 2017 include the installation of 2800 new runoff ponds to be installed at farm level and able to supply water to 1573 ha for irrigation purposes.

2.1.3 General barriers and proposed measures

The most common barrier for the all five technologies prioritized for the agriculture sector is gaps and/or lack of technical skills and knowledge. Crucial ones have also been identified as being: high cost of technology implementation and limited access to funds for all the five technologies. Other barriers include: limited awareness about the benefits of the technologies and limited rural infrastructure.

Proposed measures to overcome these barriers are: the provision of technical skills and knowhow for technology diffusion and deployment including implementation and maintenance, tax exemption, subsidies, incentives, reduction of interests' rates and facilitation to access funds by creating agriculture funding institutions, creation of awareness among farmers about the benefits as well as rural infrastructure development.

2.2 Action Plan for Seed and Grain Storage

2.2.1 Technology description

Seeds and grains are considered to be in storage from the moment they reach physiological maturity until they germinate, are consumed or thrown away because they are dead. Adequate storage helps preserve viability from harvest to sales, protects producers investment, profit and reputation. Cereals, pulses, oilseeds etc. are very important grain products for storage. In fact, good storage helps ensure household and community food security until the next harvest and commodities for sale can be held back so that farmers can avoid being forced to sell at low prices during the drop in demand that often follows a harvest. While considerable losses can occur in the field, both before and during harvest, the greatest losses usually occur during storage. Therefore the basic objective of good storage is to create environmental conditions that protect the product and maintain its quality and its quantity, thus reducing product loss and financial loss. Only well-dried seeds/grains should be stored. Seeds/ grains with moisture in them become damp, moldy and vulnerable to insect attacks.

The establishment of safe, long-term storage facilities ensures that:

Grain supplies are available during times of drought. It is important to be able to store food after harvest so as not to be compelled to sell at low prices. Appropriate storing techniques can prolong the life of foodstuffs, and/or protect the quality, thereby preserving stocks year-round. Seed and grain storage has been established to prepare for droughts, hunger and malnutrition (UNEP, 2010). Grain storage provides an adaptation strategy for climate change by ensuring feed is available for livestock and seed stock is available in the event of poor harvests due to drought (UNEP, 2010). Efficient storage can reduce post-harvest losses and preserve food quantity, quality and the nutritional value of the product (FAO, 2010). Innovations for addressing climate change include technologies for reducing waste of agricultural produce (BIAC, 2009). In fact, the establishment of safe storage for seeds and reserves of food and agricultural inputs are used as indicators of adaptive capacity in the agriculture sector (CARE, 2010).

2.2.2 Targets for seed and grain storage transfer and diffusion

The overall target group for the transfer and diffusion of this technology is the farmers' associations/cooperatives which are considered as ideal for the good management and maintenance of the systems once put in place. Although the number of fully operating farmers associations/cooperatives is not yet well known, it is assumed that the entire Rwandan farming community which is estimated at 1 400 000 households will benefit from seed and grain storage technology transfer and diffusion. Specific target would be that 50% the entire Rwandan community be able to benefit from modern seed and grain storage systems by 2020. It is important to highlight that according to the Rwanda Vision 2020, the population involved in agriculture will decrease from 80% to 60% by the year 2020.

2.2.3 Barriers to seed and grain storage diffusion

Several barriers which would limit meeting milestones and targets during transfer and diffusion of seed and grain storage were identified.. Categories of identified barriers are: Economical, financial and technological.

Economic and financial barriers include high initial investment cost which is related to the high cost of material and components and limited incentives and subsidies. Also, most of the material and components are imported from foreign countries. With the status of Rwanda as a landlocked country, material/components go through delays which negatively affects the delivery time and initial investment cost. Technological barriers are mainly those related to very few technical skills in installation and maintenance of seed and grain storage systems and there is no specific training on installation and maintenance of seed and grain storage systems.

Overall enabling framework which would assist in overcoming the identified barriers and meeting the specified targets and milestones for transfer and diffusion seed and grain storage have also been identified in the previous barriers analysis and enabling frameworks. They basically include already existing environment and other relevant factors to the transfer and diffusion of the technology. First of all, there exist institutions that intervene in the development of the agriculture sector. They mainly include the Ministry of Agriculture and Animal Resources which has the mandate of policy, strategy development and evaluation among others, Rwanda Agriculture Board which mostly deals with research, policy, strategy implementation in general and agriculture technology transfer and diffusion. Other institutions which directly partner with

the above mentioned in the development of the agriculture sector are; The Ministry of Natural Resources, The Ministry of Finance, The Ministry of Trade, Rwanda Natural Resources Authority, Rwanda Environmental Management Authority, Rwanda Cooperative Agency, Rwanda Governance Board, Rwanda Bureau of Standards, Financial Institutions and Research Institutions. Existing civil society partners include NGOs, farmers' associations/cooperatives and local business people (manufacturers, wholesalers and retailers). Other proposed enabling environments include; tax exemptions on imported material to be used in seed and grain storage systems installation, creation of interest among existing local manufacturers by providing incentives and subsidize the agriculture sector.

2.2.4 Proposed action plans for seed and grain storage

Table 18: Detailed action plan for the transfer and diffusion of seed and grain storage

Objective	Activities	Legal and	Responsib	Timef	Estimated cost	Source of	Success	Risk
		Institutions	ility	rame	(USD)	funds	indicators	indicators
		framework						
Increase	1. Selection of	-Agriculture	The	1 year	Based on estimations	Funds are	One demonstration	No plan
		U		i year				1
awareness	sites and	policy	Ministry		from the post harvest,	expected	site per rural	for site
and local	construction of	-Strategic	of Local		handling and storage	mainly	province - 4 in	selection
expertise	demonstration	Plan for	Governanc		task force, costs for	from local	total are	
	seed and grain	Agriculture	e for site		this activity are	funding	constructed	
	storage systems	transformatio	selection,		estimated at 800000 \$	institutions		
		n, phase II	the		(MINAGRI, 2012)	such as the		
	2. Organizing and	-National	Ministry	1 year	The cost for training	Ministry of	400 technicians	No
	directing	Seed policy	of		sessions is estimated	Finance	are trained on	selected
	training	-Post harvest	Agricultur		at \$ 200000. This	and local	basic function,	candidates
	sessions on the	staple crops	e and the		cost is estimated	banks.	installation and	yet
	installation and	strategy	Ministry		based on assumptions	There may	maintenance of	
	maintenance of	- MINAGRI	of Natural		that 400 technicians	be other	seed and grain	
	seed and grain	-MINICOM-	Resources		will be trained at a	funding	storage systems	
	storage systems	MINECOFI	for		cost of \$ 500 per	from		
		Ν	technical		trainee.	internation		

TAP report

Reduce	3. Mobilization of	-MINALOC	expertise	3	It is assumed that this	al partners	Existence of at	Actual
initial	local	-MININFRA	and the	years	activity will be	such as	least one local	electrify
investmen	manufacturers		Ministry		carried out through	UNEP, the	manufacturer of	price is
t cost			of Finance		meetings and the cost	World	component of	relatively
			for fund		is estimated at \$	Bank, the	modern seed and	high
			mobilizati		100000	African	grain storage	
			on and			Developme	system	
	4. Creation of	-	allocation	5	The estimated cost	nt Bank	At least 50 km of	No roads
	new rural			years	for this activity is		new rural feed	have been
	feeder roads				\$ 8000000. This		roads are	selected
	and				cost is delivered from		developed and 500	yet
	improvement of				quotations as		km of existing	
	existing ones				prepared by		roads are	
					HYMMELEC		improved	
					ENGENEERING in			
					2012.			

Table 18 illustrates a series of actions/activities planned for the transfer and diffusion of seed and grain storage as an adaptation technology for the agriculture sector. These actions include the construction of demonstration sites to allow the farming community in general and technicians in particular to familiarize with the technology and understand its benefits.

Local manufacturers will also be mobilized as to start produce low cost technology components for cheaper diffusion. For easy decentralization of seed and grain facilities in remote areas with high agriculture production potential, there will be a pilot project on access road construction and improvement.

2.3 Action Plan for Agro forestry

2.3.1 Technology description

Agro forestry is the integration of agriculture and/or farming with forestry so the land can simultaneously be used for more than one purpose. This practice is meant to have both environmental and financial benefits. The presence of trees can provide benefits such as sheltering livestock from the elements and improving the soil so that crops will be more productive. The agro forestry system can also provide a more even income for landowners since all of their income is not tied to a few crops or a single season. Agro forestry can also make it easier for farmers to transition from one type of crop to another as market demand for their products changes.

Agro-forestry is used in almost the whole world where agriculture is practiced. In Rwanda, it is practiced in the agricultural zones which are found in all the provinces. Crops can be grown together at the same time, in rotation, or in separate plots when materials from one are used to benefit another. Agro-forestry systems take advantage of trees for many functions: to hold the soil; to increase fertility through nitrogen fixation, or through bringing minerals from deep in the soil and depositing them by leaf-fall; and to provide shade, construction materials, foods and fuel.

Although agro forestry requires more planning and know-how than simpler land uses given that the system must take into consideration the diverse and sometimes contradictory needs of each component, its environmental and adaptation benefits are many. They include: Increased water infiltration and slow runoff flow, stabilized and protected stream banks from erosion, filtration of pollutants from runoff water, provision of shades to streams for controlling temperature, provision of woody debris that promotes good stream habitat, provision of habitat for wildlife, provision of conduits for wildlife movement, slowing erosive winds and promotes dust deposition, provides visual diversity that improves scenic quality, screening undesirable views. Socio economic benefits are mainly; creation of jobs in seedling preparation, land preparation, plantation, maintenance and harvesting; creation of investment in forestry production inputs, equipments and production transformation industry. It increases the income earned and inputs saved through improvements in the farm resource base and products for sale. Through increased yields, it provides significant savings for households on fire wood, forage and fertilizer purchase.

2.3.2 Targets for agro forestry

Agro forestry systems being suitable for all kind of farming practices, the target group for its transfer and diffusion is the entire Rwandan farming community. It is estimated that sub groups (farming communities made of households living in the same village, associations and cooperatives) of the 1 400 000 households involved in farming activities will benefit from the transfer and diffusion of agro forestry systems. Specific target would be that agro forestry be integrated on 210000 ha equivalent to 25% of the total arable land in Rwanda by 2020.

2.3.3 Barriers to agro forestry diffusion

Categories of identified barriers are: Political, economical, financial and technical.

Political barriers are mainly related to gaps that exist in forestry development legal framework. In fact the country has neither specific policy nor strategy on agro forestry development. Economic and financial barriers include relatively high initial investment, limited access to credit, high interest rate and the fact that agro forestry systems have no immediate economic benefits. Technical barriers are mainly those related to technical knowledge gaps which exist among agro extension agents and limited information and lack of awareness at farm level.

There also exists overall enabling framework which would assist in overcoming the identified barriers and meeting the specified targets and milestones for transfer and diffusion of agro forestry. They basically include already existing environment and other relevant factors to the transfer and diffusion of the technology. First of all, there exist institutions that intervene in the development of agriculture sector and agro forestry sub-sector. They mainly include the Ministry of Agriculture and Animal Resources and the Ministry of Natural Resources which has forestry development in its attributions. The mandate of these core institutions is policy, strategy development and evaluation among others, Rwanda Agriculture Board and Rwanda Natural Resources Authority / the forestry department which mostly deals with research, policy, strategy implementation in general and agro forestry technology transfer and diffusion in particular. Other institutions which directly partner with the above mentioned in the development of the agriculture sector are; The Ministry of Finance, The Ministry of Local Government, The Ministry of Trade, Rwanda Environmental Management Authority, Rwanda Bureau of Standards, Financial Institutions and Research Institutions. Existing civil society partners include

NGOs, farmers' associations/cooperatives and local business people (manufacturers, wholesalers and retailers). Other proposed enabling environments include; tax exemptions, subsidies and incentives.

2.3.4 Proposed Action Plans for Agro forestry

Table 19: Detailed action plan for the transfer and diffusion of agro forestry

Objectiv	Activities	Legal and	Responsibility	Timefr	Estimat	Source of	Success	Risk
e		Institutions		ame	ed cost	funds	indicators	indicators
		framework			(USD)			
Increase	1. Production of	-National	The Ministry of	1 year	50000	Funds are	Training material	Poor content
local	training	forestry	Local Governance			expected	are available	of the training
expertise	materials	policy	for solving project			mainly from		material
		-Agriculture	site related issues,			local funding		
		sector	population			institutions		
		transformatio	mobilization and			such as the		
		n strategy-	project			Ministry		
		Phase II	implementation.			of Finance		
		- MINAGRI	the Ministry of			and local		
		-MINICOM	Agriculture and			banks. Other		
		-	the			source of		
		MINECOFI	Ministry of			funds include		
		Ν	Natural Resources			the World		
		-MINALOC	for technical			Bank, the		
		-MININFRA	expertise and the			African		
		-RAB	Ministry of			Development		
TAP	report	-REMA	Finance for fund		2	Bank, FAO,		

	-RNRA	mobilization	and			IFAD	and		
		allocation				UNEP			
2. Organize and		-		1 year	400000			One agro	Absence of
conduct								extension agent	trained agro
training								per sector is	extension
sessions for								trained about the	agents
agro								development and	
extension								functions of	
agents								integrated agro	
								forestry systems	
3. Provision of				2 years	150000	-		At least three	None or not
support to the								existing agro	all existing
rehabilitation								forestry research	agro forestry
of existing								sites are	research sites
agro forestry								rehabilitated	are
research sites									rehabilitated

Raise	4. Production of		1 year	50000	Awareness	Non or
awarene	awareness				materials are	incomplete
SS	raising				produced	awareness
	materials					material are
						produced
	5. Installation of		5 years	500000	Existence of at	None or some
	agro forestry				least one well	of the
	demonstration				developed agro	proposed
	sites				forest	agro forestry
					demonstration	demonstration
					site per province	sites are
					(5 country wide)	installed
	6. Organizing		2 years	1000000	All farmers	None or very
	and directing				associations/coo	few farmers
	farmers study				perative leaders	study tour are
	tours				have at least	conducted
					visited one	
					successful agro	
					forestry site	

Reduce	7. Creation of		5 years	2000000	Existence of one	None of very
initial	tree seed				tree seed stands	few seeds
investme	stands in				in every district	stands are
nt	every district					created
	8. Production of		4 years	1000000	Existence of one	Nurseries for
	seedlings				agro forestry	agro forestry
					nursery per	trees do not
					sector in rural	exist in all
					areas	rural sectors

The interconnectedness of the components for seed and grain storage transfer and diffusion can be seen from activities dedicated to capacity building such as organizing and directing training sessions for agro extension agents, organizing and directing farmers study tours for better understanding and reception up to activities on actual transfer Production of training materials like the creation of tree seed stands in every district and production of seedlings. In fact, it was seen more relevant to start from informing the people before any other activity is undertaken.

2.4 Action Plan for Radical Terraces

2.4.1 Technology description

Radical terracing refers to a technique of landscaping a piece of sloped land into a series of successively receding flat surfaces or platforms, which resemble steps, for the purpose of more effective farming. This type of landscaping, therefore, is called terracing. Graduated terrace steps are commonly used to farm on hilly or mountainous terrain. Terraced fields decrease erosion and surface runoff retaining soil nutrients. Their environmental benefits and adaptation potential include: Soil erosion control, soil moisture improvement and maintenance, soil fertility improvement and maintenance, arable land (surface) increment, biodiversity conservation and natural hazards (land slide) prevention (MINAGRI, 2009).

Socio economic benefits are mainly; Contribution to the improvement of yields in both quality and quantity by increasing arable surface, soil fertility as well as permanent moisture content. For example potato yields would increase up to 140% on terraced spaces compared to non terraced ones which generate more income to the farmer. The implementation radical terraces are a labor intensive exercise which provides jobs to the local population. They promote investments opportunities in manufacturing tools such as shovels, tridents etc (Mupenzi et al., 2012).

2.4.2 Targets for radical terraces

Radical terraces are ideal for slopes ranging from 13% to 55%, it is estimated that agriculture land with radical terracing potential is owned by 1 000 000 households which make up a big majority of the Rwandan farming community. Radical terraces have already been implemented by individuals and local government entities (districts) but they still cover relatively smaller area of less than 20% of the total potential surface area. Specific target would be that radical terraces be implemented on 294000 ha equivalent to 50% of the total arable land with slopes ranging between 13% and 55% by the year 2020.

2.4.3 Barriers to radical terraces diffusion

Possible barriers which would limit meeting milestones and targets during transfer and diffusion of radical terraces have been identified and reported during barrier and enabling framework analysis exercise. Categories of identified barriers are: Political, economical, financial, technological and cultural.

Political barriers are mainly related to gaps that exist in land management legal framework. The country has neither specific policy nor strategy on radical terracing. Economic and financial barriers include relatively high initial investment, limited access to credit; high interest rate and the fact that radical terraces have no considerable immediate economic benefits. Technological barriers are mainly those related to limited technical skills in terracing and lack of reference information such as slope, soil depth, type etc. Cultural barriers are mainly limited acceptability of radical terraces within some communities due to perceptions that they reduce the size of the farm.

Overall enabling framework which would assist in overcoming the identified barriers and meeting the specified targets and milestones for transfer and diffusion of radical terraces basically include already existing environment and others, relevant to the transfer and diffusion of the technology. First of all, there exist institutions that intervene in the development of agriculture sector and land management. They mainly include the Ministry of Agriculture and Animal Resources and the Ministry of Natural Resources which has land management in its attributions. The mandate of these core institutions is policy, strategy development and evaluation among others, Rwanda Agriculture Board and Rwanda Natural Resources Authority /

the land centre which mostly deals with research, policy, strategy implementation in general and land management technology transfer and diffusion in particular.

Other institutions which directly partner with the above mentioned in the development of the agriculture sector are; The Ministry of Finance, The Ministry of Local Government, The Ministry of Trade, Rwanda Environmental Management Authority, Rwanda Cooperative Agency, Rwanda Governance Board, Rwanda Development Board, Rwanda Bureau of Standards, Financial Institutions and Research Institutions and International agencies. Existing civil society partners include NGOs, farmers' associations/cooperatives and local business people (manufacturers, wholesalers and retailers). Other proposed enabling environments include; tax exemptions, subsidies and incentives.

2.4.4 Proposed Action Plans for Radical Terraces

Table 20: Detailed action plan for the transfer and diffusion of radical terraces

Objective	Activities	Legal and	Responsibility	Timefr	Estimat	Source of	Success	Risk
		Institutions		ame	ed cost	funds	indicators	indicators
		framework			(USD)			
Reduce initial	1. Mobilization	-Agriculture	The Ministry of	3 years	100000	Funds are	Existence of at	Small number
investment	of local	sector	Local			expected	least five	of mobilized
	manufacturer	transformati	Governance for			mainly from	manufacturers of	local
	S	on strategy-	solving project			local funding	basic tools	manufacturers
	2. Provision of	Phase II	site related	5 years	1000000	institutions	8000 ha of newly	Shortage of
	compost	- MINAGRI	issues,			such as the	established	compost
		-MINICOM	population			Ministry	radical terraces	
		-	mobilization			of Finance	are supplied with	
		MINECOFI	and project			and local	compost	
Improve local	3. Organization	Ν	implementation.	3 years	1000000	banks. Other	At least one agro	No trainings
expertise	and	-MINALOC	the Ministry of			source of	extension agent	are conducted
	conduction	-	Agriculture and			funds include	per sector is	
	of technical	MININFRA	the			the World	trained farmers	
	trainings for	-RAB	Ministry of			Bank, the	and all farmers'	
	extension	-REMA	Natural			African	associations/coo	
	agents,	-RNRA	Resources for			Development	perative leaders	

	farmers	technical			Bank,	FAO,	have	at are	
	association	expertise and			IFAD	and	trained	about	
	leaders	the Ministry of			UNEP		radical	terraces	
		Finance for					establis	nment	
		fund					and mai	ntenance	
Increase	4. Preparation	mobilization	5 years	200000			Farmers	are	Incomplete
acceptability of	and	and allocation					aware	about	awareness
radical terraces	conduction						benefits	of	campaigns are
within	of awareness						radical t	erraces	conducted
communities	campaigns								

The mobilization of local manufacturers is the first component in the technology action plan for transfer and diffusion of radical terraces in order to promote local availability of basic tools given their high cost. To make the whole process a success, agriculture extension agents and the representative of the farming community (cooperatives/associations leaders) would benefit from a series of trainings which aims at building their capacity in terms of know how.

2.5 Action Plan for Drip Irrigation

2.5.1 Technology description

Drip irrigation is an irrigation technology based on the constant application of a specific and focused quantity of water to soil crops. The system uses pipes, valves and small drippers or emitters transporting water from the sources (i.e. wells, tanks and or reservoirs) to the root area and applying it under particular quantity and pressure specifications. The system should maintain adequate levels of soil moisture in the rooting areas, fostering the best use of available nutrients and a suitable environment for healthy plant roots systems. Its adaptation benefits are found through its ability to manage the exact (or almost) moisture requirement for each plant which significantly reduces water wastage and promotes efficient use.

Environmental wise, drip irrigation minimizes runoff and evaporation, reduces runoff and nonpoint source pollution, improves groundwater recharge, improves soil quality and retards erosion. Socio economic benefits include but not limited to: The creation of jobs in systems installations and maintenance, promotion of investments in components manufacturing, supply and systems installation, contribution to food security and increment of farmer's income.

2.5.2 Targets for drip irrigation

Overall targets in the transfer and diffusion of drip irrigation as an adaptation technology have been established in previous reports. These were estimated based on overall number of beneficiaries estimated at 1 200 000 households, 80% of the entire farming community in Rwanda. Specific target would be that drip irrigation be implemented on 20000 ha in the arid region of the country (eastern province) by the year 2020.

2.5.3 Barriers to drip irrigation diffusion

Possible barriers which would limit meeting milestones and targets during transfer and diffusion of drip irrigation have also been identified and reported during barrier and enabling framework analysis exercise. Categories of identified barriers are: Economical, financial, technological, natural and cultural.

Economic and financial barriers include relatively high initial investment, limited access to credit; high interest rate and limited private companies dealing in drip irrigation equipments. Technological barriers are mainly those related to limited technical skills in drip irrigation

systems installation and maintenance. Natural barriers include: Seasonal fluctuation of water availability, elevation of agricultural lands vs common water sources location, competition with other water uses. Cultural barriers are mainly those related to the fact that communities are not familiar with modern irrigarion systems which may result in rejecting the technology.

Overall enabling framework which would assist in overcoming the identified barriers and meeting the specified targets and milestones for transfer and diffusion of drip irrigation basically include already existing environment and others, relevant to the transfer and diffusion of the technology.

First of all, there exist institutions that intervene in the development of agriculture sector and water resources management. They mainly include the Ministry of Agriculture and Animal Resources and the Ministry of Natural Resources which has water resources management in its attributions. The mandate of these core institutions is policy, strategy development and evaluation among others, Rwanda Agriculture Board and Rwanda Natural Resources Authority / the water resources department which mostly deals with research, policy, strategy implementation in general and integrated water resources management technology transfer and diffusion in particular.

Other institutions which directly partner with those mentioned above in the development of the agriculture sector are; The Ministry of Finance, The Ministry of Local Government, The Ministry of Trade, Rwanda Environmental Management Authority, Rwanda Cooperative Agency, Rwanda Governance Board, Rwanda Development Board, Rwanda Bureau of Standards, Financial Institutions and Research Institutions and International agencies. Existing civil society partners include NGOs, farmers' associations/cooperatives and local business people (manufacturers, wholesalers and retailers). Other proposed enabling environments include; tax exemptions, subsidies and incentives.

102

2.5.4 Proposed Action Plans for Drip Irrigation

Table 21: Detailed action plan for the transfer and diffusion of drip irrigation

Objective	Activities	Legal and	Responsibilitie	Timefr	Estimat	Source of	Success	Risk
		Institutions	s	ame	ed cost	funds	indicators	indicators
		framework			(USD)			
Make	1. Promotion of	-Agriculture	The Ministry of	5 years	1500000	Funds are	Drip irrigation	Small number
available	local	sector	Local			expected	components/syst	of mobilized
affordable	manufacturer	transformation	Governance for			mainly from	ems are	local
drip		strategy-Phase	solving project			local funding	manufactured	manufacturers
irrigation		П	site related			institutions	locally	
systems		- MINAGRI	issues (land),			such as the		
		-MINICOM	population			Ministry		
		-MINECOFIN	mobilization			of Finance		
		-MINALOC	and project			and local		
		-MININFRA	implementation.			banks. Other		
		-RAB	the Ministry of			source of		
		-REMA	Agriculture and			funds include		
		-RNRA	the			the World		
			Ministry of			Bank, the		
			Natural			African		
			Resources for			Development		

			technical			Bank,	FAO,		
			expertise and			IFAD	and		
			the Ministry of			UNEP			
			Finance for						
			fund						
Improve	2.	Organizing	mobilization	3 years	1000000			Existence of	No trainings
local		and directing	and allocation					local contractors	are conducted
expertise		technical						dealing with drip	
		trainings on						irrigation	
		drip						systems	
		irrigation						installation and	
		systems						maintenance	
		installation							
		and							
		maintenance							
Increase	3.	Preparing		5 years	200000			Farmers are	Incomplete
acceptability		and						aware about	awareness
of drip		conducting						benefits of drip	campaigns are
irrigation		of awareness						irrigation	conducted
systems		campaigns							

among	4. Installation		5 years	5000000	1000 units of	No solar
communities	of small				small scale solar	powered drip
	scale solar				powered drip	irrigation
	powered drip				irrigation are	systems are
	irrigation				installed on	installed in
	systems in				selected farms in	remote areas
	remote areas				dry regions of	
					Rwanda	

Table 21 illustrates a series of actions/activities planned for the transfer and diffusion of drip irrigation as an adaptation technology for the agriculture sector. These actions include organizing and directing technical trainings on drip irrigation systems installation and maintenance, preparing and conducting awareness campaigns and Installation of small scale solar powered drip irrigation systems in remote areas.

2.6 Action Plan for Rainwater Harvesting

2.6.1 Technology description

Rainwater harvesting is a technology used for collecting and storing rainwater from rooftops, the land surface or rock catchments using simple techniques such as jars and pots as well as more complex techniques such as underground check dams. Commonly used systems are constructed of three principal components; namely, the catchment area, the collection device, and the conveyance system.

Socio economic benefits are mainly; Increased job opportunities, investment opportunities in RWHS components manufacturing, increased number of harvesting seasons and increased income. Environmental benefits include: No need of energy resources and chemicals normally used for clean water production. It reduces demand on rivers and groundwater, large- scale collection of rainwater can reduce run-off and therefore the risk of flooding.

2.6.2 Targets for rainwater harvesting

Rainwater harvesting transfer and diffusion could simply be beneficial to the entire Rwandan population given the country's relatively high precipitation per annum. In fact, rainfall average is 1400 mm per annum with abundant precipitation of 2000 mm in the North western part of the country and low precipitation of 700 mm in the South eastern part of the country. All the 1 400 000 households which makes the Rwandan farming community could benefit from the transfer and diffusion of this technology. Specific targets are the installation of a total capacity of 1 000 000 m^3 country wide by 2020.

2.6.3 Barriers to rainwater harvesting diffusion

Possible barriers which would limit meeting milestones and targets during transfer and diffusion of rainwater harvesting have been identified and reported during barrier and enabling framework analysis exercise. Categories of identified barriers are: Economical, financial and technological. Economical and financial barriers are mainly related to the high cost of RWH systems, difficulties to access funds and high interest rate. Technological barriers are mainly those related to limited technical skills in rain water harvesting systems installation and maintenance.

Overall enabling framework which would assist in overcoming the identified barriers and meeting the specified targets and milestones for transfer and diffusion of rain water harvesting basically include already existing environment and others, relevant to the transfer and diffusion of the technology.

There exist institutions that intervene in the development of agriculture sector and water resources management. They mainly include the Ministry of Agriculture and Animal Resources and the Ministry of Natural Resources which has water resources management in its attributions. The mandate of these core institutions is policy, strategy development and evaluation among others, Rwanda Agriculture Board and Rwanda Natural Resources Authority / the water resources department which mostly deals with research, policy, strategy implementation in general and integrated water resources management technology transfer and diffusion in particular.

Other institutions which directly partner with those mentioned above in the development of the agriculture sector are; The Ministry of Finance, The Ministry of Local Government, The Ministry of Trade, The Ministry of Infrastructure, Rwanda Environmental Management Authority, Rwanda Cooperative Agency, Rwanda Governance Board, Rwanda Development Board, Rwanda Bureau of Standards, Financial Institutions and Research Institutions and partners International agencies. Existing civil society include NGOs. farmers' associations/cooperatives and local business people (manufacturers, wholesalers and retailers). Other proposed enabling environments include; tax exemptions, subsidies and incentives.

2.6.4 Proposed Action Plans for Rainwater Harvesting

Table 22: Detailed action plan for the transfer and diffusion of rainwater harvesting

Objective	Activities	Legal and	Responsibilities	Timefr	Estimat	Source of	Success	Risk
		Institutions		ame	ed cost	funds	indicators	indicators
		framework			(USD)			
Improve	1. Organizing	-Agriculture	The Ministry of	3 years	800000	Funds are	Existence of	No trainings
local	and	sector	Local			expected	local contractors	are conducted
knowledge	directing	transformatio	Governance for			mainly from	specializing in	
	technical	n strategy-	solving project			local funding	small to large	
	trainings	Phase II	site related issues			institutions	scale rainwater	
	on rain	- MINAGRI	(land),			such as the	harvesting	
	water	-MINICOM	population			Ministry	systems	
	harvesting	-	mobilization and			of Finance	installation and	
	systems	MINECOFIN	project			and local	maintenance	
	installation	-MINALOC	implementation.			banks. Other		
	and	-MININFRA	the Ministry of			source of		
	maintenanc	-RAB	Agriculture and			funds include		
	е	-REMA	the			the World		
Make	2. Promotion	-RNRA	Ministry of	4 years	2000000	Bank, the	Rainwater	No local
available	of local		Natural			African	harvesting	manufacturers
affordable	manufactur		Resources for			Development	systems/	are promoted

TAP report

rainwater	ers	technical			Bank, FAO,	components are	
harvesting		expertise and the			IFAD and	produced locally	
systems		Ministry of			UNEP		
		Finance for fund					
		mobilization and					
		allocation					
	3. Provision		6 years	10 000		Rainwater	Very small
	of			000		harvesting	capacity of
	subsidies					systems with a	rainwater
	for					capacity of	harvesting
	technology					1000000 m ³ are	system is
	acquisition					installed country	installed
						wide	countrywide

The interconnectedness of the components for rainwater harvesting transfer and diffusion can be seen from organizing and directing technical trainings on rain water harvesting systems to the action diffusion through provision of subsidies for technology acquisition. In fact, it was considered more relevant to start with informing and raising awareness of the people before they use the technology.

Actions plans are mainly designed to address the issue of efficient technology transfer and diffusion. They take into account main barriers and proposed measures for best technology implementation. For seed and grain storage, they include: The selection of sites and construction of demonstration seed and grain storage systems, organizing and directing training sessions on the installation and maintenance of seed and grain storage systems, mobilization of local manufacturers, and creation of new rural feeder roads and improvement of existing ones.

The agro forestry technology will be promoted through trainings; awareness raising and creation of seeds/seedlings stands in every district of the country to assist farmers in better understand the benefits of agro forestry and support them in having main basic production inputs. The implementation of radical terraces as a CC adaptation technological option would require actions which include: The Mobilization of local manufacturers, the provision of organic manure, trainings and awareness creation.

Action plans for transfer and diffusion of drip irrigation will be based on different activities including: the promotion of local manufacturers for grip irrigation components, the installation of pilot drip irrigation systems preferably powered by solar panels trainings and awareness rising. Regarding rain water harvesting, actions plans are: Organizing and directing technical trainings on rain water harvesting systems installation and maintenance, promotion of local manufacturers, assistance to farmers for technology acquisition.

Existing interconnectivity between action plans for the all five selected technologies are: the promotion of local manufacturing since most of the technology components are imported which makes them expensive, trainings to improve local knowledge and awareness creation especially among farmers about multiple benefits of the technologies.

3. STAKEHOLDERS CONSULTATION

Key persons in different institutions were approached individually mostly through face to face meetings (see annex 1). This facilitated the drafting of the actions plans for all the selected technologies. After this exercise, the consultation process continued with a wide range of stakeholders during a workshop meeting held on 30th November 2012 at Umubano Hotel, Kigali, Rwanda. Invited were experts in the energy and agriculture sectors with scientific and financial backgrounds, people from the academia, researchers, NGOs representatives and media.

References

Dickson M.H and Fanelli M.; 2003. Geothermal energy utilization and technology. ISBN 92 – 3 – 103915 – 6. UNESCO, 2003. Paris , France

Entingh D.J, Easwaran E. McLay L., 1994. Small geothermal electric systems for remote powering. Washington D.C, United State of America, department of energy, geothermal division, USA.

EPRI, 2008. Studies on hypothetical in-river stream hydroelectric installation at Igiugig (40KWe), Eagle at Yukon River (60kWe), and white at Tanana River (590KWe). Electric Power Research Institute, Texas, USA.

ESMAP, 2007. Technical and economic assessment of off-grid, mini-grid, and grid electrification technologies. Energy Sector management Assistance Program (ESMAP); World Bank; New York.

EWSA, 2012. Recruitment of consultant Firm for collecting data, preliminarily design and technical assistance for work supervision for 109 potential micro and Pico hydro sites. Tender No 11.07053/2149/12/PROC-DIR/YM/Pny. Kigali, 2012.

IPCC, 2005. Carbon dioxide capture and storage. Intergovernmental Panel on Climate Change (IPCC); University Press, New York; 2005.

IPCC, 2007. Climate Change; Fourth Assessment Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland.

MINAGRI, 2007. National Seed Policy, Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINAGRI, 2009. Strategic Plan for the Transformation of Agriculture in Rwanda – Phase II (PSTA II), Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINAGRI, 2010. National Agricultural Extension Strategy, Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINAGRI, 2011. Agriculture Mechanization Strategy, Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINAGRI, 2011. National Post-Harvest Staple Crop Strategy, Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINAGRI, 2012. Strategic Environmental Assessment of the Agriculture Sector, European Development Fund, Ministry of Agriculture and Animal Resources, Kigali, Rwanda.

MINECOFIN, 2007. Economic Development and Poverty Development Strategy (EDPRS 2008-2012), Ministry of Economic Planning and Finance, Kigali, Rwanda.

MINECOFIN, 2007. Economic Development and Poverty Development Strategy (EDPRS 2008-2012), Ministry of Economic Planning and Finance, Kigali, Rwanda.

MININFRA, 2011. National Energy Policy and Strategy, Kigali, Rwanda.

MINIRENA, 2006. National Adaptation Programmes of Action to Climate Change, Ministry of Natural Resources, Kigali, Rwanda.

MINIRENA, 2009. Five-Year Strategic Plan for the Environment and Natural Resources Sector, Ministry of Natural Resources, Kigali, Rwanda.

MINIRENA, 2011. National Strategy for Climate Change and Low Carbon Development, Ministry of Natural Resources, Kigali, Rwanda.

MINIRENA, 2011. Second National Communication under the UNFCCC, Ministry of Natural Resources, Kigali, Rwanda.

MINIRENA, 2012. Rainwater harvesting and management national strategy, Ministry of Natural Resources, Kigali, Rwanda.

Mupenzi J.P., Li L., Ge J., Habumugisha J. D., Habiyaremye G., Ngamije J. and Baragahoranye I., 2012. Radical terraces in Rwanda, East African Journal of Science and Technology, Kigali, Rwanda.

SSEE, 2011. Transport sector working paper / appendix B; National strategy on climate change and low carbon development for Rwanda. ISSN-2042-4045; University of Oxford, SSEE School, UK.

SSEE, 2012. National Strategy on Climate Change and Low Carbon Development for Rwanda, Baseline report, Smith School of Enterprise and Environment, Oxford, United Kingdom.

UNDP, 2011. Handbook for conducting Technology Needs Assessment for climate change, Nov. 2010, New York, USA.

UNEP, 2011. Technologies for Climate Change Adaptation; Agriculture Sector. TNA Guidebook series, UNEP-RISO Center, URC, Roskilde, Denmark.

UNEP, 2011. Technologies for Climate Change Adaptation; Agriculture Sector. TNA Guidebook series. UNEP-RISO Center, URC, Roskilde, Denmark.

UNEP, 2011a. Technologies for Climate Change Adaptation; The Water Sector. TNA Guidebook series, UNEP-RISO Center, URC, Roskilde, Denmark.

UNEP, 2011b. Technologies for Adaptation: Perspectives and Practical Experiences, UNEP-RISO Center, URC, Roskilde, Denmark.

UNEP, 2012. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies, UNEP-RISO Center, URC, Roskilde, Denmark.

UNESCO, 2003. Geothermal Energy, Utilization and Technology, ISBN 92-3-103915-6, Paris, France.

UNESCO, 2003. Geothermal Energy: utilization and technology, United Nations Educational, Scientific and Cultural Organization, Paris, France.

UNFCCC, 2006. Technologies for Adaptation to Climate Change, UNEP-RISO Center, URC, Roskilde, Denmark.

World Bank, 2010. World Bank development indicators, Rwanda databank. Hhh: //data. Worldbank.org/country/Rwanda

Annex

Annex 1: List of Involved Stakeholders

Energy sector

Nº	Names	Field	Institution
1	Dr. Gasingirwa Christine	Chemistry	MINEDUC
2	Dr. Jean Baptiste	Agro forestry	IRST
	NDUWAYEZU		
3	Dr. Edmond Rwabuhungu	Hydrology / Geothermal	NUR
4	Dr. Ndahayo Fidele	Physics	NUR
5	Eng. NIYONZIMA Steven	Civil Engineering	NUR
		/Environmental	
6	Prof.Dr.Nizurugero Jean	Sociology /socio economics	NUR
7	Dr.Eng. Omar MUNYANEZA	Civil engineering/water	NUR
		engineering	
8	Eng.Fabien MUKUNDUFITE	Power engineering/ renewable	NUR
		energy	
9	Eng. Desire TWUBAHIMANA	Civil engineering	KIST
10	Dr. Telesphore KABERA	Hydro-geology/carbon capture	KIST
11	Eng. Fabien HABYARIMANA	Physics/solar energy	KIST
12	Dr. Cyprien HAKIZIMANA	Environmental chemistry	IRST
13	Eng. Augustin MUNEZERO	Power engineering/ renewable	IRST
		energy	
14	Eng. Felicien NSABUKUNZE	Applied physics /renewable	IRST
		energy	
15	Eng. Francois HABINSHUTI	Civil engineering	IRST
16	Eng. Vincent GASAMAGERA	Physics/ combustible nuts	IRST
17	Prof. Dr. KAREMERA	Physics/solar concentrators	INATEK
	MAREMBO		
18	Dr. Aloys KAMATARI	Environmental Chemistry/	INATEK
19	Eng. Alain Patience NIYIBIZI	Applied physics/Renewable	EWSA

		energy(biogas)	
20	Eng. Charles NYIRAHUKU	Unit of Methane gas	EWSA
		,petroleum, and peat	
21	Eng. Gaspard	Renewable energy	EWSA
	NKURIKIYUMUKIZA		
22	Eng. Gaetan SAKINDI	Applied Physics/geothermal	EWSA
23	Eng.Oswlald TANGANYIKA	Computer Science	INATEK
24	Dr Mathusalem KANOBANA	Soil Science	INATEK
25	Eng. Edison NIYONTEGEREJE	Power engineering/renewable	CIMERWA
		energy	
26	Eng. Jean de Dieu MUKWIYE	Solar energy	Private sector
27	Dr. Augustin BIZIMANA	Civil engineering/Energy	Private sector
		demand	
28	Eng. Gallican KAYITABA	Architector / energy demand	Private sector
29	Eng. Marcel HABIMANA	Power engineering	MININFRA
30	Eng.Charles KABIRI	Electromechanics	NUR
31	Eng.Onesphore NYAWERA	Computer science	IECO -GAZ .COM ltd.
32	Dr. Fabien TWAGIRAMUNGU	Chemistry/Environment	KIE
33	Eng. Jean BIZIMANA	Electromechanics	EWSA(Keya Small
55			Hydro Power Plant)
34	Eng. Theoneste ISHIMWE	Electromechanics	IRST
35	Eng. Jacques	Electrical	EWSA
55	MUNYANDAMUTSA		
36	Eng. Laurent MAJUNE	Mechanical Engineering	EWSA(Methane Gas
	SIBOMANA		Project/Kibuye Power
			Plant)
37	Eng. Elie KABENDE	Applied physics/R.E	ULK/Gisenyi
38	Eng. Abias UWIMANA	Environmental chemistry	NUR
39	Abbe Eugène URAYENEZA	Sociology	Gisenyi Parish
40	Dr. Froduald MINANI	Mathematics	NUR

41	Eng. Olivier NTIRUSHWA	Power	engineering/renewable	Kivu Methane Gas
		energy		

Agriculture sector

No	Names	Affiliation	E-mail
1	Bonaventure Ntirugulirwa	Rwanda Agricultural Board	ntirugulirwab@yahoo.com
2	Jean Claude Musabyimana	Irrigation and Mechanization Ministry of Agriculture and Animal Resources	musaclo@gmail.com
3	Jean Claude Sebahire	In Charge of Forest Inventory Rwanda Natural Resources Authority/Forestry Department	sebajec2002@yahoo.fr
4	Madeleine Usabyimbabazi	Planning Department Ministry of Agriculture and Animal resources	madousa2020@yahoo.fr
5	Gaston Ndayisaba	CUEP project Rwanda Natural Resources Authority	ndagaston@yahoo.fr
6	Pascal Nahimana	Agriculture department Kigali City Council	nahipas@yahoo.fr
7	Lucia Zigiriza	Post Harvest Task Force Rwanda Agriculture Board	zigiriza@gmail.com
8	Innocent Nzabamwita	NRM Rwanda Agriculture Board	nzabino@yahoo.fr
9	Nadia Musaninkindi	Famine Early Warning Systems Network	nadiev2002@yohoo.fr
10	Immaculee Nyampinga	National Agriculture Export Board	nyampinga9@yahoo.fr
11	Louise Munganyinka	Agronomist / Post Harvest	mlmunganyinka@yahoo.fr
12	Prime Ngabonziza	NRM Rwanda Agriculture Board	prime0467@yahoo.fr
13	Aline Uwimanzi	NRM Rwanda Agriculture Board	uwimanzi@yahoo.fr
14	Patrick Mugabo	EnvironmentalConventionsSpecialistEnvironmentRwandaEnvironmentManagement Authority	pmugabo@rema.gov.rw
15	Eugenie Umulisa	Project Officer Rwanda Environmental NGOs Forum	eumulisa@yahoo.fr