#### BACKGROUND PAPER ON DISTRIBUTED RENEWABLE ENERGY GENERATION AND INTEGRATION

#### PREPARED FOR

## TECHNOLOGY EXECUTIVE COMMITTEE (TEC) UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (UNFCCC) BONN, GERMANY

PREPARED BY

PAUL KOMOR TIMOTHY MOLNAR

UNIVERSITY OF COLORADO\* BOULDER, COLORADO, USA 20 FEBRUARY 2015

\*LISTED FOR AFFILIATION ONLY. THIS PAPER REFLECTS THE VIEWS OF THE AUTHORS ONLY AND NOT NECESSARILY THE INSTITUTION.

#### What does 'distributed' mean?

- -Term used inconsistently in the literature
- -Generally: Larger than off-grid, smaller than centralized
- Can be free-standing or tied to a centralized grid



#### Distributed and Centralized

- -Determining optimal mix is a complex problem
- -Costs reasonably well understood; social and environmental issues less so

|             | Advantages                                            |
|-------------|-------------------------------------------------------|
|             | -Wide range of mature technologies                    |
| Centralized | -Lower per-kW costs                                   |
|             | -Higher load diversity->flatter demand profile        |
|             | -Well-developed industry                              |
|             | -Appropriate for small/remote communities             |
| Distributed | -Greater system resilience due to diversity of supply |
|             | -Reduced transmission and distribution (T&D) losses   |
|             | -Allows for direct private investment in generation   |

### What are the distributed technologies?

- -Vary widely in market maturity, fuel needs, variability, and other variables
- -PV: significant recent module price drops -> larger proportion of local content

|                  | Typical<br>Cost | Resource or      |           | Variability of<br>Output - Diurnal** |
|------------------|-----------------|------------------|-----------|--------------------------------------|
| Technology       | (USD/kW)*       | Fuel Needs       | O&M Needs |                                      |
| Distributed PV   | 2 to 5          | Sunlight         | Low       | High                                 |
| system           |                 |                  |           |                                      |
| Methane digester | 3 to 6          | Dung             | High      | Low                                  |
| Micro            | 3.4 to 10+      | Consistent water | Medium    | Low                                  |
| hydropower       |                 | flows            |           |                                      |
| Small wind       | 7               | Wind > 3 meters  | Medium    | ***                                  |
| turbine          |                 | per second (m/s) |           |                                      |

<sup>\*</sup>For sources, see discussion in text. These costs do not include storage.

<sup>\*\*</sup>Other time scales may be of interest as well, notably annual and 'climatic' (longer-term). For these time scales, variability may vary by location. For example, PV output will vary considerably over the course of a year for installations at greater latitudes, but much less so for installations near the Equator.

<sup>\*\*\*</sup>Depends on specific location. Some regions show large day/night variability in the wind resource, others much less so.

## Methodology for our report

- -Literature review: recent (post-2010) evaluations of field experience with distributed renewables
- -Emphasize developing country literature.
- -Extract/summarize:
  - Barriers
  - Enabling Environments
  - Policy Issues and Options

# Perspectives/concerns vary by stakeholder

| Perspective, Community, or<br>Stakeholder | Concern or Issue                                                                    |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------|--|--|
|                                           | Variability and grid integration                                                    |  |  |
| Technical and engineering                 | <ul> <li>Technical reliability</li> </ul>                                           |  |  |
|                                           | Impacts on power quality                                                            |  |  |
|                                           | <ul> <li>Policy uncertainty and political risk</li> </ul>                           |  |  |
| Financial and investment                  | Expected financial return                                                           |  |  |
|                                           | Default risk                                                                        |  |  |
|                                           | Grid access rules                                                                   |  |  |
| Policy and regulatory                     | <ul> <li>Equity and distributional impacts</li> </ul>                               |  |  |
|                                           | <ul> <li>How to allocate costs and benefits</li> </ul>                              |  |  |
|                                           | <ul> <li>Business risks (e.g., technical performance, regulatory change)</li> </ul> |  |  |
| Private sector                            | Expected return on investment                                                       |  |  |
|                                           | Consumer acceptance                                                                 |  |  |
|                                           | Grid operational impacts                                                            |  |  |
| Utility                                   | <ul> <li>Potential loss of revenue</li> </ul>                                       |  |  |
|                                           | <ul> <li>Loss of control over generation assets</li> </ul>                          |  |  |

### **Enabling Environments**

- Engage utilities as essential partners rather than opponents
- Leverage peer influences and personal networks within the community
- Standardize technologies and business practices
- Reduce perceived risk for investors and system owners
- Allow for innovative finance
- Offer sufficient financial incentives to attract private-sector investment
- Provide for system O&M

### Policy issues and options

- Balance financial innovation and regulation
- Rethink public and private roles in electricity
- Reassess the utility role
- Rethink fossil fuel subsidies
- Derisk to attract private sector investment
- Limit policy uncertainty
- Build in-country capabilities



Earthrise, 1968