System of Rice Intensification: Learning from Oxfam’s work Scaling up in Northern Vietnam

Le Nguyet Minh
Technology Executive Committee, UNFCCC
Bangkok, 5/9/2012
Presentation Outline

- Climate change and rice production in Vietnam
- System of Rice Intensification (SRI)
- Community-based SRI adoption in Vietnam
- Enabling environment and key messages
Climate change and rice production
Climate change and rice production

• High threat of Vietnam national’s food insecurity
 - If the sea level rises 1 meter, over 7% of paddy land area will be inundated; total rice production will reduce 12% (about 5 million tons)
 - Potentially affect 10% of total population and 10% of GDP
 - Every increase of 1 degree C in night-time temperature leads to 7-10% reduction of rice yield

• Potential threat to global food security.
Part of Problem

• Global statistics suggest agriculture (including rice cultivation) accounts for 8% of total GHG emission

• Thirsty crop:
 - 24-30% of global freshwater is consumed for rice production
 - 1 litter / second / 1 hectare of paddy field
 - 1 litter / second / domestic use by 1,000 people
System of Rice Intensification (SRI)
SRI Origins

Jesuit priest, Father Henri de Laulanié, is considered to have started SRI 20 years ago in Madagascar.

From 1 plant
Where SRI matters?

• Current conventional practices:
• Traumatic root system (due to strong pull)
• Weakened capacity to produce tillers (old seedling, narrow spacing)
• Poor growth (inundated conditions)
• Poor application of fertilizer
• Weak health and low resistance to diseases

Low returns on investment
environmental pollution
SRI: Less for More

Less inputs: Seeds, water, labour for transplanting and chemical sprays

Increased yield: 10 - 25%

Improved sustainability: Reduced reliance on productive inputs & adaptive capacity

Social benefits: Community cohesion, gender equality

Improved living environment: Less fertilizer, pesticide residues
SRI & Adaptation

- Resistant to lodging
- Increased pest resilience
- Shorter growing season needed
- Reduced need for standing water
- More vigorous roots able to draw moisture from deeper
- Reduced planting rate allows quicker replant
- Reduced seeding rate requires less seed reserve
- Increased potential keeps traditional varieties viable
- Reduces seed requirement - smaller gene pool quicker to adapt
Use of legumes minimizing need to extract methane to produce N-fertilizer

Use of legumes minimizing need to use N-fertilizer (70% of which is lost to the environment)

Reduced standing water – reduced methane emission

\[\text{Use of legumes minimizing need to use N-fertilizer (70\% of which is lost to the environment)} \]

\[\text{Reduced standing water – reduced methane emission} \]

\[\text{Use of legumes minimizing need to extract methane to produce N-fertilizer} \]

\[\text{Reduced standing water – reduced methane emission} \]
Community-based SRI adoption in Northern Vietnam
My story

- I am over 40 years old and primary farmer.
 - I am one of 8 millions farmers owns less than 0.5 ha of land.
- If weather is good, if inputs price are low, I can earn $130 from this land.
 - But it becomes harder.

“an inch of land, an inch of gold”
A design for scale

This is a 10-year program.

We aim to reach national scale of SRI adoption.

We aim to build the capacity of farming communities and extension services.

Three inter-linked phases

1. Local testing and confirmation of the potential of SRI
2. Expanding upon experience to build a critical mass
3. Aligning with the government and mobilizing resources.
Local testing and confirming SRI benefits
Farmer Field School

Can you group come to convince my husband about SRI

8 – 12 day old, too young to survive

Oh, yes. Wider spacing, single seedling will save labour and seedlings

Cooperative should compensate if there are losses

We must gain farmer’s confidence; communal leaders ought to get involved.
Developing the network of key farmers
Results to date

2003: IPM introduced SRI in Vietnam
2006: 3,450 farmers applied SRI
2007: MARD acknowledged SRI as technological advancement
2009: 264,000 farmers & 85,422 ha
2011: 1,070,384 farmers & 185,065 ha

SRI reaches 11% of rice farmers and covers 6% of paddy areas
Additional income between 95 – 210 USD per ha per crop
Positive changes to the environment and farmers’ health
Some 70% of women are participants to Farmer Field Schools
Enabling environment and key messages
Challenges & opportunities in creating enabling environment for SRI adoption

Challenges:

- SRI is principle-based rather than prescriptive (challenge the top-down extension and farmer mindset).
- Land fragmentations and water management
- Unwelcome by input suppliers
- Reconsideration of economic growth model

Opportunities

- Farmers are anxious about profit margins and paddy environment
- Political will to maintain a viable rice sector
- Well-established extension structure
Good practices and lessons in creating viable enabling environment

• Two-tiered extension (FFS, key farmer network)
• Diverse, innovative communication (field day, farmer ambassador, art performance, media)
• A variety of collaboration modes at the local level
• Effective M&E along the scaling up pathways.
• Influencing policy space (MARD’s endorsement)
 • Un-even uptake at the provincial and lower levels
 • Lack of independent evaluation, substantive information on SRI efficiency
 • Provincial support depends heavily on the private connections and advocacy capacity of provincial staff.
Links of innovation, learning, scaling-up

Source: Linn, 2011
Enabling factors – pathways for scaling up

Drivers
- Ideas and models
- Vision and leadership
- External catalysts
- Incentives and accountability

Spaces:
- Fiscal/financial spaces
- Policy space
- Market space
- Institutional capacity space
- Political space
- Natural resource/environment space
- Cultural space
- Partnership space
- Learning space
Message #1: Maintaining political and learning spaces are essential and challenging

- SRI adoption needs to remain principle-based rather than prescriptive.
- Effective M&E is established along the scaling up pathways.
- Empowered rural communities can serve as strong drivers of scaling up.
- A variety of collaboration modes at the local level is needed (cooperatives, farmer union, extension center).
- Provincial level decision making leads to un-even implementation despite MARD’s endorsement.
Message #2:
A design for scale should be supported with adequate technical and financial commitments

• Farmer Field School (FFS) is very effective but costly
• Fast and large uptake means many FFS. What types of trade-off can we afford?
• Whose decision counts?
Message #3:
The kinds of role and engagement that we take change over time

- Aligning and mobilizing resources.
- We are part of a “system” and Oxfam role as a catalyst.
- Deliberate planning for a “phase down” for increasing take-over by local partners
- Focus towards broader systematic changes: e.g. building key farmer network, participatory MEL, policy dialogues.
Mrs. Nguyen Thi Bun – I am over 70 years old but still have to take care of field work. I have practiced SRI for 6 crops. The burden lessens while yield gradually increases. I wish farmers in other communities to be brave and strong in trying new ideas and innovations. It will help to overcome our difficulties.