IEA GHG Experiences on CO₂ Capture and Storage

John Gale

IEA Greenhouse Gas R&D Programme UNFCC SBSTA Workshop on CO₂ Capture and Storage 22nd May 2006 Maritim Hotel, Bonn, Germany

CO2 Capture and Storage

- Technology is developed
- CO₂ Capture demonstrated at 1 Mt/y scale
 - Sleipner and In-Salah
- For power generation applications need to scale up to 3 to 5 Mt/y scale and replicate several thousand times
 - Scale up not a major technical barrier
- Transmission 3100 km of CO₂ pipelines in existence
 - Need to expand pipeline infrastructure to be comparable to that of natural gas
 - Not a major technical barrier

CO2 Capture and Storage

- Geological storage
 - Sufficient capacity available to store all CO2 needed to stabilise emissions
 - In concert with other mitigation options
 - Will need to rely heavily on deep saline aquifers
 - Aquifer injection demonstrated at Sleipner
 - Need additional effort to quantify the storage capacity and integrity of deep saline aquifers
 - Need to demonstrate effective containment

CO2 Containment

- No firm evidence from any of the large scale projects that seepage is occurring
 - Sleipner, Weyburn and Rangeley
 - Only one project has reported surface seepage and there are doubts about the data
 - Biogenically converted methane
 - Monitoring lifetimes are short 3 to 25 years
- Performance assessment studies suggest negligible seepage
 - Weyburn simulations suggest 5000 years before surface seepage theoretically could occur
 - Wells could be an issue
 - Sleipner modelling suggests all CO₂ will have dissolved by 3000 years
- No technical basis on which to quote a seepage rate for geological storage

CO2 Containment

- Industry statistics show there will be fugitive emissions from pipelines and surface facilities
 - Low level and intermittent
 - Can quantify such emissions/
 - Reported through national inventories
- For storage formation should design for zero seepage but cannot say there will be no seepage
- Ensure storage formation does not seep/account for seepage should it occur
 - Effective site characterisation
 - Geology, hydrogeology, faults and wells
 - Risk assessment
 - Monitoring programme pre and post injection
 - Remediation planning

Cost of Capture and Storage

Electricity cost, US c/kWh

Basis: 10% DCF, 25 year life, 85% load factor, \$8/t CO₂ stored

Costs

- Costs are high but comparable with other mitigation technologies
 - Costs will reduce by 20-40% with replication

Value Chain Needed

- CCS investment in oil and gas sector stimulated by economic conditions
- Need to create a market for power sector
 - Biggest source of CO₂ emissions
- Emissions Trading may not provide enough support
 - Volatile market conditions may preclude investment

Technology Transfer

- Large numbers of sources in developing countries
 - Number of sources projected to rise
- Need technology implementation in developing countries
- Need CCS to be allowed under CDM to stimulate market take up
 - Need to address issues outstanding and remove barriers

