

Project «Uzbekistan: Preparation of the Second National Communication under UN Framework Convention on Climate Change (UNFCCC)»

# National GHG Inventory Report 2000

**Republic of Uzbekistan** 

TASHKENT - 2008

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

#### Content

| Preface                                                                        |          |
|--------------------------------------------------------------------------------|----------|
| Chapter 1: GHG Emissions in 2000                                               | 12<br>16 |
| 1.1 Total GHG emissions in 2000                                                | 16       |
| 1.2 GHG emissions by sectors                                                   | 16       |
| 1.3 Key source categories                                                      |          |
| 1.4 Total uncertainty estimation                                               | 19<br>۵۵ |
| 1.5 Completeness                                                               |          |
| Chapter 3: ENERGY                                                              |          |
| 3.1 Sector review                                                              | 23       |
| 3.2 1A FUEL COMBUSTION ACTIVITIES                                              |          |
| 3.2.1 Description of source categories                                         |          |
| 3.2.2 Methodology                                                              |          |
| 3.2.3 Uncertainties and sequence of time series                                |          |
| 3.2.4 Quality Assurance/ Quality Control                                       |          |
| 3.2.5 Recalculations by categories                                             |          |
| 3.2.6 Planned improvements by category<br>3.3 1B FUGITIVE EMISSIONS FROM FUELS | 40<br>40 |
| 3.3.1 Description of the source category Solid Fuels                           |          |
| 3.3.2 Methodology                                                              |          |
| 3.3.3 Uncertainties and time series consistencies                              | 43       |
| 3.3.4 Quality Assurance/ Quality Control                                       |          |
| 3.3.5 Recalculation by categories                                              |          |
| 3.3.6 Planned improvements by categories                                       |          |
| 3.4.1 Description of source category Oil Operation                             |          |
| 3.4.2 Methodology                                                              |          |
| 3.4.3 Uncertainty and time series consistencies                                |          |
| 3.4.4 Quality Assurance/ Quality Control by categories and verification        |          |
| 3.3.5 Recalculation by categories                                              |          |
| 3.3.6 Planned improvements by categories                                       |          |
| 3.5.1 Description of source category. Gas Operation                            | 45       |
| 3.5.2 Methodology                                                              | 46       |
| 3.5.3 Uncertainty and sequence of time series                                  |          |
| 3.5.4 Quality Assurance/ Quality Control by category and verification          |          |
| 3.5.5 Recalculations by category                                               |          |
| 3.5.6 Planned improvements by category<br>Chapter 4: 2 INDUSTRIAL PROCESSES    | 47       |
|                                                                                |          |
| 4.1 Sector review<br>4.2 2A MINERAL PRODUCTION                                 | 48<br>50 |
| 4.2.1 Description of the source category                                       |          |
| 4.2.2 Methodology                                                              |          |
| 4.2.3 Uncertainty and sequence of time series                                  |          |
| 4.2.4 Quality Assurance/ Quality Control                                       |          |
| 4.2.5 Recalculations by category                                               |          |
| 4.2.6 Planned improvements by category                                         |          |
| 4.3 2 B CHEMICAL INDUSTRY                                                      |          |
| 4.3.1 Description of source category                                           | 51       |
| 4.3.2 Methodology                                                              |          |
| 4.3.3 Uncertainty and sequence of time series                                  |          |
| 4.3.5 Recalculations by category                                               |          |
| 4.3.6 Planned improvements by category                                         |          |
| 4.4 2C METAL PRODUCTION                                                        |          |
| 4.4.1 Description of source category                                           |          |
| 4.4.2 Methodology                                                              |          |
| 4.4.3 Uncertainty and sequence of time series                                  |          |
| 4.4.4 Quality Assurance/ Quality Control                                       |          |
| 4.4.5 Recalculations in category<br>4.4.6 Planned improvements by category     |          |
| 4.4.0 rianneu improvements by category                                         |          |

| 4.5.1 Description of source category                                                                 | 56 |
|------------------------------------------------------------------------------------------------------|----|
| 4.5.2 Methodology                                                                                    |    |
| 4.5.3 Uncertainty and sequence of time series                                                        |    |
| 4.5.4 Quality Assurance/ Quality Control                                                             |    |
| 4.5.5 Recalculations in category                                                                     |    |
|                                                                                                      |    |
| 4.5.6 Planned improvements by category<br>4.6 2F CONSUMPTION OF HALOCARBONS AND SULPHUR HEXAFLUORIDE | ,  |
| 4.6.1 Description of source category                                                                 |    |
| 4.6.2 Methodology                                                                                    |    |
| 4.6.3 Uncertainty and sequence of time series                                                        |    |
| 4.6.4 Quality Assurance/ Quality Control                                                             |    |
| 4.6.5 Recalculations in category                                                                     |    |
| 4.6.6 Planned improvements by category                                                               |    |
| Chapter 5: AGRICULTURE                                                                               | ,  |
| 5.1 Sector review                                                                                    |    |
| 5.2 4A ENTERIC FERMENTATION                                                                          | 60 |
| 5.2.1 Description of source category                                                                 |    |
| 5.2.2 Methodology                                                                                    | 61 |
| 5.2.3 Uncertainty and sequence of time series                                                        | 62 |
| 5.2.4 Quality Assurance/ Quality Control                                                             | 62 |
| 5.2.5 Recalculations in category                                                                     |    |
| 5.2.6 Planned improvements by category                                                               |    |
| 5.3 4B MANURE MANAGEMENT                                                                             | 62 |
| 5.3.1 Description of source category                                                                 | 62 |
| 5.3.2 Methodology                                                                                    |    |
| 5.3.3 Uncertainty and sequence of time series                                                        | 64 |
| 5.3.4 Quality Assurance/ Quality Control                                                             | 64 |
| 5.3.5 Recalculations in category                                                                     | 64 |
| 5.3.6 Planned improvements by category                                                               | 64 |
| 5.3.5 Recalculations by categories                                                                   |    |
| 5.4 4C RICE CULTIVATION                                                                              | 64 |
| 5.4.1 Description of source category                                                                 | 64 |
| 5.4.2 Methodology                                                                                    | 64 |
| 5.4.3 Uncertainty and sequence of time series                                                        | 65 |
| 5.4.4 Quality Assurance/ Quality Control                                                             | 65 |
| 5.4.5 Recalculations in category                                                                     | 65 |
| 5.4.6 Planned improvements by category                                                               | 65 |
| 5.5 4D AGRICULTURAL SOILS                                                                            | 65 |
| 5.5.1 Description of source category                                                                 | 65 |
| 5.5.2 Methodology                                                                                    | 66 |
| 5.5.3 Uncertainty and sequence of time series                                                        | 66 |
| 5.5.4 Quality Assurance/ Quality Control                                                             | 66 |
| 5.5.5 Recalculations in category                                                                     | 66 |
| 5.5.6 Planned improvements by category                                                               | 66 |
| 5.6 4F FIELD BURNING OF AGRICULTURAL RESIDUES                                                        |    |
| 5.6.1 Description of source category                                                                 |    |
| 5.6.2 Methodology                                                                                    |    |
| 5.6.3 Uncertainty and sequence of time series                                                        |    |
| 5.6.4 Quality Assurance/ Quality Control                                                             |    |
| 5.6.5 Recalculations in category                                                                     |    |
| 5.6.6 Planned improvements by category                                                               |    |
| 5.7 4G OTHER                                                                                         |    |
| 5.7.1 Description of source category                                                                 |    |
| 5.7.2 Methodology                                                                                    |    |
| 5.7.3 Uncertainty and sequence of time series                                                        |    |
| 5.7.4 Quality Assurance/ Quality Control                                                             |    |
| 5.7.5 Recalculations in category                                                                     |    |
| Chapter 6: 5 LAND-USE CHANGE & FORESTRY                                                              |    |
| 6.1 Sector review                                                                                    |    |



| 6.2 5A CHANGES IN FOREST AND OTHER WOODY BIOMASS STOCKS                                                           |       |
|-------------------------------------------------------------------------------------------------------------------|-------|
| 6.2.1 Description of source category                                                                              |       |
| 6.2.2 Methodology                                                                                                 | 72    |
| 6.2.3 Uncertainty and sequence of time series                                                                     |       |
| 6.2.4 Quality Assurance/ Quality Control                                                                          |       |
| 6.2.5 Recalculations in category                                                                                  |       |
| 6.2.6 Planned improvements by category                                                                            | 73    |
| 6.3 5C ABANDONMENT OF MANAGED LAND                                                                                |       |
| 6.3.1 Description of source category<br>6.4 5D EMISSIONS AND REMUVALS FROM SOIL                                   | 73    |
| 6.4.1 Description of source category                                                                              |       |
| 6.4.2 Methodology                                                                                                 |       |
| 6.4.3 Uncertainty and sequence of time series                                                                     |       |
| 6.4.4 Quality Assurance/ Quality Control                                                                          |       |
| 6.4.5 Recalculations in category                                                                                  |       |
| 6.4.6 Planned improvements by category                                                                            |       |
| Chapter 7: 6 WASTE                                                                                                |       |
| 7.1 Sector review                                                                                                 | 76    |
| 7.2 6A SOLID WASTE DISPOSAL ON LAND                                                                               |       |
| 7.2.1 Description of source category                                                                              |       |
| 7.2.2 Methodology                                                                                                 |       |
| 7.2.3 Uncertainty an sequence of time series                                                                      |       |
| 7.2.4 Quality Assurance/ Quality Control                                                                          | 78    |
| 7.2.5 Recalculations in category                                                                                  |       |
| 7.2.6 Planned improvements by category                                                                            | 78    |
| 7.3 6B WASTEWATER HANDLING                                                                                        | 78    |
| 7.3.1 Description of source category Industrial Wastewater                                                        |       |
| 7.3.2 Methodology                                                                                                 |       |
| 7.3.3 Uncertainty and sequence of time series                                                                     |       |
| 7.3.4 Quality Assurance/ Quality Control                                                                          |       |
| 7.3.5 Recalculations in category                                                                                  |       |
| 7.3.6 Planned improvements by category                                                                            |       |
| 7.4.1 Description of source category Domestic and Commercial Wastewater                                           |       |
| 7.4.2 Methodology                                                                                                 |       |
| 7.4.3 Uncertainty and sequence of time series                                                                     |       |
| 7.4.4 Quality Assurance/ Quality Control                                                                          |       |
| 7.4.5 Recalculations in category                                                                                  |       |
| 7.4.6 Planned improvements by category                                                                            |       |
| References                                                                                                        |       |
| Annex 1. Table 1. National inventory of anthropogenic emissions by sources and removals by sinks of all           |       |
| greenhouse gases not controlled by the Montreal Protocol, and precursors of greenhouse gases                      |       |
| Annex 2. Table 2. National greenhouse gas inventory of anthropogenic emissions of HFCs, PFCs and SF6              |       |
| Annex 3. Sectoral tables (IPCC Software, 2000)                                                                    |       |
| Annex 4. Worksheet 1 CO <sub>2</sub> Emissions from Energy (Reference Approach)                                   |       |
| Annex 5. Key sources analysis                                                                                     |       |
| Annex 6. Calorific value of sub-bituminous coal                                                                   |       |
| Annex 7. Calculation of national indirect GHG emission factors for transport in the sector "Energy" in Uzbekistan | . 121 |
| Annex 8. Calculation of national factors for fugitive methane emission from gas operation in Uzbekistan           |       |
| Annex 9. Calculation of national SO <sub>2</sub> emission factor from gas operation in Uzbekistan                 |       |
| Annex 10. Calculation of national emission factors in the sector "Industrial processes" in Uzbekistan             |       |
| Annex 11. Calculation of imported HFCs                                                                            |       |
| Annex 12. Calculation of CO <sub>2</sub> emission/removals from agricultural soils                                |       |
| Annex 13. Quantitative estimates of uncertainties by separate gases and sectors                                   | . 142 |

 $\mathbb{C}$ 

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

#### List of tables

| 1000 11 Durct greenhouse gases.       0         1000 12 Indirect genehouse gases.       0         1001 12 Indirect Genehouse gases.       0         1001 12 Indirect Genehouse gases.       0         1001 12 Indirect Genehouse gases.       0         1011 12 Indirect Genehouse gases.       0 </th <th></th> <th>16</th>                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 12 GHC emissions per capita in 2000       16         Table 13 GHC emissions structure       16         Table 13 GHC emissions structure       17         Table 13 GHC emissions structure       18         Table 13 GHC emissions structure       19         Table 17 Key GHC emission sources, 2000       18         Table 17 Key GHC emission sources, 2000       18         Table 17 Key GHC emission sources, 2000       18         Table 21 Direct GHC emissions by sectors, million nones CO, equivalent       21         Table 22 Direct GHC emissions from encry sector, 2000       23         Table 23 Direct GHC emissions from encry sector, 2000       23         Table 31 Direct GHC emissions from encry sector, 2000       23         Table 31 Direct GHC emissions from fract encry GB       24         Table 31 Direct GHC emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 2000       25         Table 31 Or emissions from fract encry sector, 200       25         Table 31 Or emissions from                                                                                                                                                                                                                                                                                                  | Table 1.1 Direct greenhouse gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Table 14 GHC emissions by sectors.       16         Dable 15 GHC emissions by sectors.       17         Table 16 Rev regins GHC emissions sources, 2000.       17         Dable 17 Key GHC emissions sources, 2000.       18         Dable 18 Key GHG emission sources, 2000.       18         Dable 18 Key GHG emission sources, 2000.       19         Dable 19 Key GHG emission sources, 2000.       20         Dable 2 A Charge in total emission as compared to 1990.       21         Dable 2 A Charge in total emission as compared to 1990.       22         Dable 2 A Charge in total emission as compared to 1990.       23         Table 3 D Enc (GHG emissions from encregy sector, 2000.       23         Table 3 D Andrec (GHG emissions from relexy sector, 2000.       23         Table 3 A Direct GHG emissions from face combustion, 2000.       25         Table 3 A Direct GHG emissions from face combustion, 2000.       25         Table 3 A Direct GHG emissions from face combustion, 2000.       25         Table 3 D Direct GHG emissions from face combustion, 2000.       25         Table 3 D So Charge GHG emissions from face combustion, 2000.       25         Table 3 D Direct GHG emissions from face combustion, 2000.       26         Table 3 D Direct GHG emissions from face combustion, 2000.       27         Table 3 D Oncensions from face combustion, 50                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 15 GHG emissions by sectors, (lig CO <sub>2</sub> -qa)       17         Table 17 Key GHG emission sources, 2000       18         Table 17 Key GHG emission sources, 2005       19         Table 17 Key GHG emission sources, 2005       19         Table 12 Direct GHG emissions by sectors, 2006       19         Table 12 Direct GHG emissions by sectors, 2006       21         Table 21 Direct GHG emissions for sectors, 2006       21         Table 21 Direct GHG emissions from energy sector, 2000       22         Table 31 Direct GHG emissions from energy sector, 2000       23         Table 31 Direct GHG emissions from energy sector, 2000       23         Table 31 Direct GHG emissions from energy sector, 2000       25         Table 35 Total emissions from from energy sector, 2000       25         Table 35 Total emissions from from fleel combustion, 2000       25         Table 35 Total emissions from fleel combustion, 2000       25         Table 35 Oto emissions acticulated with employing the reference and sectoral approaches, Millon tonnes OCo, equivalent       26         Table 31 Direct GHG emissions from fleel combustion, 2000       25         Table 31 Direct GHG emissions from fleel combustion, 2000       25         Table 31 Direct GHG emissions from fleel combustion, 200       26         Table 31 Oto emissions from fleel combustion, 200       26 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 1 Per capita GHC emissions by sectors, 2000.       17         Table 1 & Key GHG emission sources, 2005.       19         Table 1 & Key GHG emission sources, 2005.       19         Table 2 Direct GHG emissions by gaces, million tomes CO, equivalent.       21         Table 2 Direct GHG emissions are compared to 1990.       22         Table 2 Direct GHG emissions run energy sector, 2000.       23         Table 3 Direct GHG emissions from energy sector, 2000.       23         Table 3 Direct GHG emissions from energy sector, 2000.       23         Table 3 Direct GHG emissions from face combustion and leakage, million tomes CO, equivalent.       24         Table 3 Direct GHG emissions from face combustion, 2000.       25         Table 3 A Indirect GHG emissions from face combustion, 2000.       25         Table 3 S CO, emissions from face combustion, 2000.       25         Table 3 S CO, emissions from face combustion, 2000.       25         Table 3 S CO, emissions from face combustion, 2000.       25         Table 3 1 Direct GHG emissions from face combustion, 2000.       26         Table 3 1 Direct GHG emissions from face combustion, 2000.       27         Table 3 1 Direct GHG emissions from face combustion, 200.       26         Table 3 1 Direct GHG emissions from face combustion, 200.       27         Table 3 1 Direct GHG emissions from face combustion, 200. </td <td></td> <td></td>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 17, Key GHG emission sources, 2000.       18         18 bet 18 Key GHG emission sources, 2005.       19         Table 19 Firstmation of inventory completeness.       20         Table 22 Direct GHG emissions by sectors, million tonnes CO; equivalent.       21         Table 23 Change in total emission as compared to 1990.       22         Table 24 I Direct GHG emissions from energy sector, 2000.       23         Table 31 Direct GHG emissions from energy sector, 2000.       23         Table 31 Inferct GHG emissions from energy sector, 2000.       23         Table 31 Andrect GHG emissions from energy sector, 2000.       24         Table 31 Andrect GHG emissions from fact combustion, 2000.       25         Table 31 Andrect GHG emissions from fact combustion, 2000.       25         Table 31 Or centisions from fact combustion, 2000.       25         Table 31 Or centisions from fact combustion, 2000.       25         Table 31 Or centisions from fact combustion, 2000.       25         Table 31 Or centisions from fact combustion, 2000.       27         Table 31 Direct GHG emissions from fact combustion, 62       20. equivalent         Table 31 Or centisions from fact combustion of y sub-sectors, 62       20. equivalent         Table 31 Or centisions from fact combustion by sub-sectors, 62       30         Table 31 Or centisions from fact combustion by sub-sectors, 62                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 18 kcj GHG emission sources, 2005       19         Table 2 1 Direct GHG emissions by gases, million tomes CO, equivalent       21         Table 2 2 Direct GHG emissions by sectors, million tomes CO, equivalent       21         Table 2 3 Change in total emission from energy sector, 2000       23         Table 3 1 Direct GHG emissions from energy sector, 2000       23         Table 3 1 Direct GHG emissions from energy sector, 2000       23         Table 3 1 Direct GHG emissions from energy sector, 2000       23         Table 3 1 Direct GHG emissions from energy sector, 2000       24         Table 3 1 Direct GHG emissions from energy sector, 2000       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000       26         Table 3 1 Direct GHG emissions from fuel combustion, 2000       26         Table 3 1 Direct GHG emissions from fuel combustion, 2000, Gg CO, equivalent       27         Table 3 1 Direct GHG emissions from fuel combustion, 2000, Gg CO, equivalent       28         Table 3 1 Direct GHG emissions from fuel combustion, 2000, Gg CO, equivalent       29         Table 3 1 Direct GHG emissions from fuel combustion by sub-sectors, Gg       28         Table 3 1 Direct GHG emissions from fuel combustion by sub-sectors, Gg                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 19 Estimation of inventory completeness.       20         Table 2 Direct GHG emissions by sectors, million tonnes CO; equivalent       21         Table 2 Direct GHG emissions a compared to 1990.       22         Table 2 A Indirect GHG emissions from energy sector, 2000.       23         Table 3 Direct GHG emissions from energy sector, 2000.       23         Table 3 Direct GHG emissions from energy sector, 2000.       23         Table 3 Direct GHG emissions from energy sector, 2000.       24         Table 3 Direct GHG emissions from from energy sector, 2000.       25         Table 3 Direct GHG emissions from from energy sector, 2000.       25         Table 3 P Indirect GHG emissions from fruct combustion, 2000.       25         Table 3 D Orsensidone Tiom floc combustion, 2000.       25         Table 3 P Orsensidone Tiom floc combustion, 2000.       25         Table 3 D Orsensidone Tiom floc combustion, 2000.       25         Table 3 D Orsensidone Tiom floc combustion, 200.       26         Table 3 D Direct GHG emissions from floc combustion, 200.       27         Table 3 D Table C GHG emissions from floc combustion, 200.       27         Table 3 D Table C GHG emissions from floc combustion by sub-sectors, Gg.       28         Table 3 D Table C GHG emissions from floc combustion by sub-sectors, Gg.       28         Table 3 D Table C GHG emissions from floc co                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 2 1 Direct GHG emissions by gates, million tonnes CO <sub>2</sub> equivalent       21         Table 2 3 Change in total emission as compared to 1990.       22         Table 3 1 Direct GHG emissions from energy sector, 2000.       23         Table 3 1 Direct GHG emissions from energy sector, 2000.       23         Table 3 1 Direct GHG emissions from energy sector, 2000.       23         Table 3 1 Direct GHG emissions from energy sector, 2000.       24         Table 3 1 Direct GHG emissions from energy sector, 2000.       25         Table 3 1 Direct GHG emissions from energy sector, 3000.       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000.       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000.       25         Table 3 1 Direct GHG emissions from fuel combustion, 2000.       26         Table 3 1 Direct GHG emissions from fuel combustion, 2000.       26         Table 3 1 Direct GHG emissions from fuel combustion, 200, 62       27         Table 3 1 Direct GHG emissions from fuel combustion, 200, 62       28         Table 3 1 Direct GHG emissions from fuel combustion, 200, 62       28         Table 3 1 Direct GHG emissions from fuel combustion, 200, 62       28         Table 3 1 Direct GHG emissions from fuel combustion by abovectors, 62       28         Table 3 1 AD Core emissions from fuel combustion by abovectors, 62       28                                                                                                                                                                                                                 | Table 1.8 Key GHG emission sources, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 |
| Table 2 2 Direct GHG emissions by sectors, million tomes (C):       21         Table 2 4 Indirect GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from from energy sector, 2000       24         Table 3 A Direct GHG emissions from from energy sector, 2000       24         Table 3 A Indirect GHG emissions from file combustion and leakage, million tones CO; equivalent       24         Table 3 A Porteringe of direct GHG emissions from file combustion, 2000       25         Table 3 R O; emissions from file combustion, 2000       25         Table 3 R O; emissions from file combustion, 2000       26         Table 3 10 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       27         Table 3 1 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       27         Table 3 1 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       30         Table 3 1 NOx emissions from fi                                                                                                                                                                                        | Table 1.9 Estimation of inventory completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 |
| Table 2 2 Direct GHG emissions by sectors, million tomes (C):       21         Table 2 4 Indirect GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from energy sector, 2000       23         Table 3 Direct GHG emissions from from energy sector, 2000       24         Table 3 A Direct GHG emissions from from energy sector, 2000       24         Table 3 A Indirect GHG emissions from file combustion and leakage, million tones CO; equivalent       24         Table 3 A Porteringe of direct GHG emissions from file combustion, 2000       25         Table 3 R O; emissions from file combustion, 2000       25         Table 3 R O; emissions from file combustion, 2000       26         Table 3 10 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       27         Table 3 1 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       27         Table 3 1 Direct GHG emissions from file combustion, 2000, Gg CO; equivalent       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       28         Table 3 1 A CO; emissions from file combustion by sub-sectors, Gg       30         Table 3 1 NOx emissions from fi                                                                                                                                                                                        | Table 2.1 Direct GHG emissions by gases, million tonnes CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Table 23 Change in total emission as compared to 1990.       22         Table 31 Direct GHG emissions from energy sector, 2000.       23         Table 31 Direct GHG emissions from energy sector, 2000.       23         Table 35 Direct GHG emissions from energy sector, 2000.       23         Table 35 Direct GHG emissions from energy sector, 2000.       24         Table 35 Direct GHG emissions from energy sector, 2000.       24         Table 35 Proteneing of direct GHG emissions from fuel combustion, 2000.       25         Table 35 D Comissions accultated with employing the reference and sectoral approaches, Gg CO, equivalent.       25         Table 35 D Comissions from fuel combustion, 2000.       25         Table 31 Direct GHG emissions from fuel combustion, 2000.       26         Table 31 Direct GHG emissions from fuel combustion, 200, 20, 20, equivalent.       27         Table 31 Direct GHG emissions from fuel combustion, 200, 20, 20, equivalent.       28         Table 31 Direct GHG emissions from fuel combustion by ab-sectors, Gg CO, equivalent.       28         Table 31 Direct GHG emissions from fuel combustion by ab-sectors, Gg CO, equivalent.       28         Table 31 NOr emissions from fuel combustion by ab-sectors, Gg CO, equivalent.       29         Table 31 NOC emissions from fuel combustion by ab-sectors, Gg CO, equivalent.       20         Table 31 NOC emissions from fuel combustion by ab-sectors, Gg CO, equivalent.                                                                                                                                                          | Table 2.2 Direct GHG emissions by sectors, million tonnes CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Table 2.1 Interest GHG emissions, million tonnes.       22         Table 3.2 Indirect GHG emissions from energy sector, 2000.       23         Table 3.2 Interest GHG emissions from energy sector, 2000.       23         Table 3.3 Direct GHG emissions from energy sector, 000.       24         Table 3.4 Indirect GHG emissions from fuel combustion and leakage, million tones CO <sub>2</sub> equivalent.       24         Table 3.4 Indirect GHG emissions from fuel combustion, 2000.       25         Table 3.4 Procentage of direct GHG emissions from fuel combustion, 2000.       25         Table 3.4 CO, emissions from fuel combustion, 2000.       25         Table 3.1 Direct GHG emissions from fuel combustion, 2000.       26         Table 3.1 Direct GHG emissions from fuel combustion, 2000.       26         Table 3.1 Direct GHG emissions from fuel combustion pice QCo <sub>2</sub> equivalent.       27         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> -eq.       28         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> -eq.       28         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> 28         Table 3.1 NOx emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> 28         Table 3.1 NOX emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> 28         Table 3.1 NOX emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> 20 <tr< td=""><td>Table 2.3 Change in total emission as compared to 1990</td><td>22</td></tr<> | Table 2.3 Change in total emission as compared to 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 |
| Table 31 Direct GHG emissions from energy sector, 2000.       23         Table 33 Direct GHG emissions from energy sector, 2000.       23         Table 34 Inferet GHG emissions from fuel combustion, 2000.       24         Table 35 Total emissions from fuel combustion, 2000.       25         Table 34 Inferet GHG emissions from fuel combustion, 2000.       25         Table 35 Orecreatage of direct GHG emissions from fuel combustion, 2000.       25         Table 34 Orecreatage of direct GHG emissions from fuel combustion, 2000.       26         Table 35 Orecreatage of direct GHG emissions from fuel combustion, 2000.       26         Table 31 Direct GHG emissions from fuel combustion, 2000.       27         Table 31 Direct GHG emissions from fuel combustion, 2000.       27         Table 31 Indirect GHG emissions from fuel combustion by 300.       20, CQ-eq.       28         Table 31 S CH, emissions from fuel combustion by sub-sectors, Gg       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       29       28       29       28       28       28       29       29                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.2 Indirect GHG emissions from energy sector, 2000.       23         Table 3.3 Direct GHG emissions from energy sector, Gg.       24         Table 3.4 Indirect GHG emissions from the combustion nones CO <sub>2</sub> equivalent.       24         Table 3.6 Total emissions from fuel combustion.       2000.         Table 3.6 Total emissions from fuel combustion.       2000.         Table 3.6 Total emissions from fuel combustion.       2000.         Table 3.1 A forder GHG emissions from fuel combustion.       200         Table 3.1 A forder GHG emissions from fuel combustion.       200         Table 3.1 Direct GHG emissions from fuel combustion.       200         Table 3.1 Direct GHG emissions from fuel combustion.       200         Table 3.1 Direct GHG emissions from fuel combustion by sub-sectors.       200         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors.       200         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors.       200         Table 3.1 A CO <sub>2</sub> emissions from fuel combustion by sub-sectors.       200         Table 3.1 Noc emissions from fuel combustion by sub-sectors.       200         Table 3.2 O CO- emissions from fuel combustion by sub-sectors.       200         Table 3.1 NOC emissions from fuel combustion by sub-sectors.       200         Table 3.2 O CO- emissions from fuel combustion by sub-sectors.       200                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3 Direct GHG emissions from energy sector, million tomes CO; equivalent.23Table 3 Jonet GHG emissions in the energy sector, Gg.24Table 3 For an emission s from fuel combustion, 2000.25Table 3 PC emissions and the enormation fuel combustion, 2000.25Table 3 PC emissions from fuel combustion, 2000.25Table 3 PC emissions from fuel combustion, 2000.26Table 3 PC or emissions from fuel combustion, Gg. CO; equivalent.27Table 3 PC Direct GHG emissions from fuel combustion, Gg. CO; equivalent.27Table 3 I Direct GHG emissions from fuel combustion, Gg. CO; equivalent.27Table 3 I Direct GHG emissions from fuel combustion by sub-sectors, Gg.28Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.28Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.28Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.28Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.28Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.30Table 3 I NOVCC emissions from fuel combustion by sub-sectors, Gg.31Table 3 I S CH; emissions from fuel combustion by sub-sectors, Gg.32Table 3 I S Direct GHG emissions from fuel combustion by sub-sectors, Gg.32Table 3 I S Direct GHG emissions from transport by types, 2000.33Table 3 I S Direct GHG emissions from transport by types, 2000.33Table 3 I Direct GHG from international air bunker.34Table 3 I S Direct and indirect GHG from international air bunker.34 <td></td> <td></td>                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 34 Indirect GHG emissions in the energy sector, Gg       24         Table 35 Total emissions from fuel combustion and leakage, million tones CO; equivalent       24         Table 36 Total emissions from fuel combustion, 2000       25         Table 38 CO; emissions from fuel combustion, 2000       25         Table 38 CO; emissions from fuel combustion, 2000       26         Table 31 Obrect GHG emissions from fuel combustion, 2000       26         Table 31 Obrect GHG emissions from fuel combustion, Gg CO; equivalent       27         Table 31 Direct GHG emissions from fuel combustion, Gg CO; equivalent       27         Table 31 Infraret CHG emissions from fuel combustion for G CO; equivalent       28         Table 31 A CO; emissions from fuel combustion by sub-sectors; Gg CO; equivalent       29         Table 31 A CO; emissions from fuel combustion by sub-sectors; Gg CO; equivalent       30         Table 31 A CO; emissions from fuel combustion by sub-sectors; Gg       31         Table 31 Procet GHG (missions from fuel combustion by sub-sectors; Gg       32         Table 31 Procet GHG (missions from fuel combustion for gg       30         Table 31 Procet GHG (missions from fuel combustion for gg       31         Table 31 Procet GHG (missions from fuel combustion for gg       32         Table 31 Procet GHG (missions from fuel combustion for gg       33         Table 31 Procet GHG (missions from f                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.5 Total emissions from fuel combustion, and leakage, million tones CO; equivalent.241able 3.6 Percentage of direct GHG emissions from fuel combustion, 2000.25Table 3.7 Indirect GHG emissions from fuel combustion, 2000.25Table 3.8 CO; emissions from fuel combustion, 2000.25Table 3.9 CO; emissions from fuel combustion, 2000.26Table 3.1 Direct GHG emissions from fuel combustion, Gg27Table 3.1 Direct GHG emissions from fuel combustion, Gg27Table 3.1 Direct GHG emissions by sub-sectors in 2000, Gg CO; equivalent27Table 3.1 CP, emissions from fuel combustion by sub-sectors, Gg28Table 3.1 CP, emissions from fuel combustion by sub-sectors, Gg28Table 3.1 CO; emissions from fuel combustion by sub-sectors, Gg28Table 3.1 CO; emissions from fuel combustion by sub-sectors, Gg30Table 3.1 CO; emissions from fuel combustion by sub-sectors, Gg30Table 3.1 NO; emissions from fuel combustion for gu-sub-sectors, Gg32Table 3.1 NO; emissions from fuel combustion by sub-sectors, Gg32Table 3.2 CHG emissions from fuel combustion by sub-sectors, Gg32Table 3.2 CHG emissions from transport by gases, 2000.33Table 3.2 Direct and indirect GHG from international at bunker.34Table 3.2 CHG emissions from transport by gases, 2000.34Table 3.2 Direct and indirect GHG from international at bunker.34Table 3.2 CHG emissions from transport by gases, 2000.36Table 3.2 The production and consumption in 2000.36Table 3.2 Chatle crop yield in 2000.                                                                                                                                                                             | Table 3.5 Direct Orio emissions non-energy sector, innion tonies CO <sub>2</sub> equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Table 3.6 Percentage of direct GHG emissions from fuel combustion, 2000.       25         Table 3.8 CO, emissions from fuel combustion, 2000.       25         Table 3.8 CO, emissions from fuel combustion, 2000.       26         Table 3.8 CO, emissions from fuel combustion, Gg CO, equivalent.       27         Table 3.1 Direct GHG emissions from fuel combustion, Gg CO, equivalent.       27         Table 3.1 Lindrect GHG emissions from fuel combustion, Gg CO, equivalent.       27         Table 3.1 Lindrect GHG emissions from fuel combustion for Gg.       28         Table 3.1 Lindrect GHG emissions from fuel combustion by sub-sectors, Gg CO, equivalent.       28         Table 3.1 Lindrect GHG emissions from fuel combustion by sub-sectors, Gg CO, equivalent.       29         Table 3.1 S CH, emissions from fuel combustion by sub-sectors, Gg CO, equivalent.       30         Table 3.1 S CH, emissions from fuel combustion by sub-sectors, Gg       31         Table 3.1 S CH, emissions from fuel combustion by sub-sectors, Gg       32         Table 3.2 D NWCOC emissions from transport by types, 2000.       33         Table 3.2 D Nicet GHG emissions from interaport by gases, 2000.       33         Table 3.2 D Sicet GHG emissions from interaport by gases, 2000.       34         Table 3.2 D Sicet and indirect GHG emissions from interaport by gase, 2000.       34         Table 3.2 D Sicet and indirect GHG emissions from interaport by gase, 2003. <td>Table 3.4 induction of emissions in the chergy sector, Gg</td> <td></td>                                                                           | Table 3.4 induction of emissions in the chergy sector, Gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Table 3 1 CO, emissions from fuel combustion, 2000.25Table 3 8 CO, emissions from fuel combustion, 2000, equivalent.25Table 3 10 Co, emissions from fuel combustion, Ge, equivalent.27Table 3 10 Indirect GHG emissions from fuel combustion, Ge, equivalent.27Table 3 11 Indirect GHG emissions from fuel combustion, Ge, equivalent.27Table 3 12 Direct GHG emissions from fuel combustion, Ge, equivalent.28Table 3 13 Indirect GHG emissions by sub-sectors in 2000, Gg CO-eq.28Table 3 15 CH <sub>1</sub> emissions from fuel combustion by sub-sectors, Gg CO, equivalent.29Table 3 15 CH <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg CO, equivalent.30Table 3 10 NO emissions from fuel combustion by sub-sectors, Gg CO, equivalent.30Table 3 10 NOC emissions from fuel combustion by sub-sectors, Gg.31Table 3 10 NOC emissions from fuel combustion by sub-sectors, Gg.32Table 3 12 ON emissions from fuel combustion by sub-sectors, Gg.32Table 3 20 SO, emissions from fuel combustion by sub-sectors, Gg.32Table 3 20 SO, emissions from transport by pyee, 2000.33Table 3 20 EVC emissions from transport by pyee, 2000.34Table 3 20 Forter and indirect GHG from intrantional air bunker.34Table 3 20 Forter and indirect GHG from intrantional air bunker.34Table 3 20 Forter and indirect GHG from intrantional air bunker.34Table 3 20 Forter and indirect GHG from intrantional air bunker.34Table 3 20 Forter and indirect GHG from intrantional air bunker.36Table 3 20 Forter and indirect GHG fr                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3 & CO, emissions calculated with employing the reference and sectoral approaches, Gg CO, equivalent.25Table 3 10 Direct GHG emissions from fuel combustion, Gg27Table 3 11 Direct GHG emissions from fuel combustion, Gg27Table 3 11 Indirect GHG emissions from fuel combustion (Gg27Table 3 11 Indirect GHG emissions from fuel combustion (Gg28Table 3 11 Alter of the emissions from fuel combustion by sub-sectors, Gg28Table 3 14 CO; emissions from fuel combustion by sub-sectors, Gg CO; equivalent29Table 3 16 CH; emissions from fuel combustion by sub-sectors, Gg CO; equivalent30Table 3 17 CO emissions from fuel combustion of by sub-sectors, Gg31Table 3 18 CN; emissions from fuel combustion of by sub-sectors, Gg32Table 3 19 NMVOC emissions from fuel combustion by sub-sectors, Gg32Table 3 10 CR emissions from fuel combustion by sub-sectors, Gg32Table 3 20 Sciencisions from fuel combustion by sub-sectors, Gg32Table 3 20 Sciencisions from transport by gases, 200033Table 3 23 Direct GHG emissions from transport by gases, 200034Table 3 23 Direct GHG emissions from interantional air bunker, 200034Table 3 24 CHG emissions from interantional air bunker, 200034Table 3 25 Direct and indirect GHG emissions from interantional air bunker, 200034Table 3 20 Averaged weighted coefficients for coal (1998-2005).38Table 3 21 GHG emissions from interantional air bunker, 200034Table 3 20 Averaged weighted coefficients for coal (1998-2005).36Table 3 20 Averaged wei                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3: 0 Dyemissions from fuels calculated with employing the reference and sectoral approaches, million tonnes of CO <sub>2</sub> 26         Table 3: 10 Indirect GHG emissions from fuel combustion, Gg       27         Table 3: 11 Indirect GHG emissions by sub-sectors in 2000, Gg CO <sub>2</sub> -eq.       28         Table 3: 12 Indirect GHG emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       29         Table 3: 16 N:G emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       29         Table 3: 16 N:G emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       30         Table 3: 16 N:G emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       30         Table 3: 18 NOX emissions from fuel combustion by sub-sectors, Gg       31         Table 3: 18 NOX emissions from fuel combustion by sub-sectors, Gg       32         Table 3: 20 SO, emissions from transport by gases, 2000.       33         Table 3: 21 OHG emissions from transport by gases, 2000.       33         Table 3: 22 GHG emissions from international air bunker.       34         Table 3: 24 Direct and indirect GHG from international air bunker.       34         Table 3: 24 Direct and indirect GHG from international air bunker.       34         Table 3: 24 Direct and indirect GHG from international air bunker.       36         Table 3: 20 Averaged weighted coefficients for coal (1998-2005).       38         Table 3: 30 Av                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.10 Direct GHG emissions from fuel combustion, Ĝg       27         Table 3.11 Indirect GHG emissions by sub-sectors in 2000, Gg CO-eq.       28         Table 3.13 Indirect GHG emissions from fuel combustion by sub-sectors, Gg       28         Table 3.14 CO: emissions from fuel combustion by sub-sectors, Gg CO, equivalent       29         Table 3.14 CO: emissions from fuel combustion by sub-sectors, Gg CO, equivalent       29         Table 3.16 NA; CO: emissions from fuel combustion by sub-sectors, Gg CO, equivalent       30         Table 3.15 NA; comissions from fuel combustion by sub-sectors, Gg CO, equivalent       30         Table 3.18 NA; comissions from fuel combustion by sub-sectors, Gg       31         Table 3.19 NAVOC emissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 Specific emissions from transport by gpes, 2000       33         Table 3.21 GHG emissions from transport by gpes, 2000       33         Table 3.23 Direct GHG emissions from transport by gpes, 2000       34         Table 3.24 Direct and indirect GHG from international air bunker.       34         Table 3.25 A total crop yield in 2000       35         Table 3.25 A total crop yield in 2000       35         Table 3.25 A total crop yield in 2000       35         Table 3.25 A total crop yield in 2000       35         Table 3.26 Total crop yield in 2000       36                                                                                                                                                                                                                              | Table 3.8 $CO_2$ emissions calculated with employing the reference and sectoral approaches, $Gg CO_2$ equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Table 3.11 Indirect GHG emissions form fuel combustion, Gg       27         Table 3.13 Indirect GHG emissions by sub-sectors in 2000, Gg CO-eq.       28         Table 3.14 CO- emissions from fuel combustion by sub-sectors, Gg CO: equivalent.       29         Table 3.15 CH, emissions from fuel combustion by sub-sectors, Gg CO: equivalent.       30         Table 3.16 VcO emissions from fuel combustion by sub-sectors, Gg CO: equivalent.       30         Table 3.16 NcO emissions from fuel combustion by sub-sectors, Gg       31         Table 3.18 NOX emissions from fuel combustion by sub-sectors, Gg       31         Table 3.18 NOX emissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 SO: emissions from transport by gases, 2000.       33         Table 3.21 CHG emissions from transport by gases, 2000.       33         Table 3.24 Direct and indirect GHG from international air bunker.       34         Table 3.25 Chall crop yield in 2000.       35         Table 3.26 Total crop yield in 2000.       36         Table 3.27 Chall crop yield in 2000.       36         Table 3.28 Inergy coefficients.       35         Table 3.29 Averaged weighted coefficients for coal (1994-2005).       38         Table 3.20 SO-emissions and consumption in 2000.       36         Table 3.20 SO-emission and consumption in 2000.       36         Table 3.20 Cwaraged weighted coe                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.12 Direct GHG emissions by sub-sectors in 2000, Gg CO <sub>2</sub> -eq.       28         Table 3.13 Inferet GHG emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       29         Table 3.16 CH <sub>4</sub> emissions from fuel combustion by sub-sectors, Gg CO <sub>2</sub> equivalent.       30         Table 3.16 NO <sub>4</sub> emissions from fuel combustion of sub-sectors, Gg CO <sub>2</sub> equivalent.       30         Table 3.18 NO <sub>4</sub> comissions from fuel combustion by sub-sectors, Gg       31         Table 3.18 NO <sub>4</sub> comissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 No <sub>4</sub> comissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 No <sub>4</sub> comissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 No <sub>4</sub> comissions from fuel combustion by sub-sectors, Gg       32         Table 3.21 CHG emissions from transport by gases, 2000       33         Table 3.23 Direct GHG emissions from international air bunker, 2000       33         Table 3.24 Direct and indirect GHG from international air bunker, 2000       34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       35         Table 3.24 Direct and indirect GHG from international air bunker, 2000       36         Table 3.25 Truel production and consumption in 2000       36         Table 3.26 Total crop yield in 2000       36         Table 3.27 Fuel production and consumption in 2000       36      <                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.14 CD; emissions from fuel combustion by sub-sectors, Gg       28         Table 3.16 CP; emissions from fuel combustion by sub-sectors, Gg CO; equivalent       29         Table 3.16 NQ emissions from fuel combustion by sub-sectors, Gg CO; equivalent       30         Table 3.17 CD; emissions from fuel combustion by sub-sectors, Gg       30         Table 3.18 NOx emissions from fuel combustion by sub-sectors, Gg       31         Table 3.19 NWOC emissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 SO; emissions from fuel combustion by sub-sectors, Gg       32         Table 3.21 GHG emissions from fuel combustion by sub-sectors, Gg       32         Table 3.21 GHG emissions from transport by types, 2000       33         Table 3.22 GHG emissions from transport by gases, 2000       33         Table 3.23 Direct GHG emissions from transport, Gg CO; equivalent       34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       35         Table 3.26 Leip roduction and consumption in 2000       35         Table 3.27 Averaged weighted coefficients for coal (1998-2005)       38         Table 3.29 Averaged weighted coefficients for coal (1998-2005)       38         Table 3.31 Sulfur content in fuel.       30         Table 3.32 Quantitative uncertainty estimate of the                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.14 CO; emissions from fuel combustion by sub-sectors, Gg Co; equivalent       .29         Table 3.16 N-Q emissions from fuel combustion by sub-sectors, Gg CO; equivalent       .30         Table 3.16 N-Q emissions from fuel combustion by sub-sectors, Gg       .30         Table 3.18 NOx emissions from fuel combustion by sub-sectors, Gg       .31         Table 3.18 NOx emissions from fuel combustion by sub-sectors, Gg       .32         Table 3.20 SO; emissions from fuel combustion by sub-sectors, Gg       .32         Table 3.21 GHG emissions from transport by gaes, 2000       .33         Table 3.23 Direct GHG emissions from transport, Gg CO; equivalent       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.26 Total crop yield in 2000       .35         Table 3.27 Fuel production and consumption in 2000       .36         Table 3.28 Interg woefficients.       .35         Table 3.29 Averaged weighted coefficients for coal (1998-2005)       .38         Table 3.31 fubric rontent in fuel       .30         Table 3.32 Quantitaitve uncertainty estimate of the CO; emissions from ene                                                                                                                                                                                        | Table 3.12 Direct GHG emissions by sub-sectors in 2000, Gg CO <sub>2</sub> -eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Table 3.14 CO; emissions from fuel combustion by sub-sectors, Gg Co; equivalent       .29         Table 3.16 N-Q emissions from fuel combustion by sub-sectors, Gg CO; equivalent       .30         Table 3.16 N-Q emissions from fuel combustion by sub-sectors, Gg       .30         Table 3.18 NOx emissions from fuel combustion by sub-sectors, Gg       .31         Table 3.18 NOx emissions from fuel combustion by sub-sectors, Gg       .32         Table 3.20 SO; emissions from fuel combustion by sub-sectors, Gg       .32         Table 3.21 GHG emissions from transport by gaes, 2000       .33         Table 3.23 Direct GHG emissions from transport, Gg CO; equivalent       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       .34         Table 3.26 Total crop yield in 2000       .35         Table 3.27 Fuel production and consumption in 2000       .36         Table 3.28 Interg woefficients.       .35         Table 3.29 Averaged weighted coefficients for coal (1998-2005)       .38         Table 3.31 fubric rontent in fuel       .30         Table 3.32 Quantitaitve uncertainty estimate of the CO; emissions from ene                                                                                                                                                                                        | Table 3.13 Indirect GHG emissions by sub-sectors in 2000, Gg CO <sub>2</sub> -eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Table 3.16 CH, emissions from fuel combustion by sub-sectors, Gg CO; equivalent       30         Table 3.16 NO; O emissions from fuel combustion by sub-sectors, Gg       30         Table 3.19 NOVCC emissions from fuel combustion by sub-sectors, Gg       31         Table 3.19 NOVCC emissions from fuel combustion by sub-sectors, Gg       32         Table 3.20 SO; emissions from fuel combustion by sub-sectors, Gg       32         Table 3.21 GHC emissions from transport by types, 2000       33         Table 3.22 GHG emissions from transport by gcO; equivalent       34         Table 3.24 Direct AHG emissions from international air bunker, 2000       34         Table 3.25 Direct GHG emissions from international air bunker, 2000       34         Table 3.25 Direct and indirect GHG from international air bunker, 2000       34         Table 3.26 Total crop yield in 2000       35         Table 3.27 Europer dicticants       35         Table 3.28 Energy coefficients       36         Table 3.29 Averaged weighted coefficients for coal (1990-1997)       36         Table 3.31 Sulfur content in fuel.       39         Table 3.32 Chaunitative uncertainty estimate of the CO <sub>2</sub> emissions from energy sector, 2000.       39         Table 3.35 Cinparison of the results with the IEA       40         Table 3.34 Fugitive methane emission from cal mining, Gg CO <sub>2</sub> equivalent.       41 <t< td=""><td>Table 3.14 CO<sub>2</sub> emissions from fuel combustion by sub-sectors, Gg</td><td></td></t<>                                                                                                 | Table 3.14 CO <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Table 3.16 N <sub>2</sub> O emissions from fuel combustion by sub-sectors, Gg CO: equivalent.30Table 3.17 Co emissions from fuel combustion, Gg.31Table 3.18 NOX emissions from fuel combustion by sub-sectors, Gg32Table 3.20 SQ: emissions from fuel combustion by sub-sectors, Gg32Table 3.20 SQ: emissions from fuel combustion by sub-sectors, Gg32Table 3.20 SQ: emissions from fuel combustion by sub-sectors, Gg33Table 3.21 GHG emissions from transport by types, 200033Table 3.22 Direct GHG emissions from transport, Gg CO: equivalent34Table 3.25 Direct and indirect GHG emissions from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker, 200036Table 3.26 Vareaged weighted coefficients for coal (1990-1997)36Table 3.27 Fuel production and consumption in 200036Table 3.31 Sulfar content in fuel39Table 3.33 Comparison of the results with the IEA40Table 3.34 Cupatitative uncertainty estimate of the CO; emissions from energy sector, 200039Table 3.35 Indirect GHG from oil and gas production, 200040Table 3.36 Indirect GHG emissions, Gg CO; equivalent41Table 3.37 Indirect GHG emissions from oil and gas production, 200042Table 3.37 Indirect GHG emissions from oil and gas production, 3641Table 3.37 Indirect GHG emissions from oil and gas production, 3641Table 3.37 Indirect GHG emissions from oil and gas production, 4241Table 3.38                                                                                                                                                              | Table 3.15 CH <sub>4</sub> emissions from fuel combustion by sub-sectors. Gg CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Table 3.17 CO emissions from fuel combustion by sub-sectors, Gg.       30         Table 3.18 NOx emissions from fuel combustion (gg.       31         Table 3.19 NUVOC emissions from fuel combustion by sub-sectors, Gg.       32         Table 3.20 SO <sub>2</sub> emissions from fuel combustion by sub-sectors, Gg.       32         Table 3.21 GHC emissions from transport by types, 2000       33         Table 3.22 GHG emissions from transport, Gg CO <sub>2</sub> equivalent       34         Table 3.24 Direct and indirect GHG from international air bunker, 2000       34         Table 3.25 Direct and indirect GHG from international air bunker       34         Table 3.25 Direct and indirect GHG from international air bunker       34         Table 3.26 Total crop yield in 2000       35         Table 3.27 Fuel production and consumption in 2000       36         Table 3.28 Energy coefficients for coal (1990-1997)       36         Table 3.31 Outer content in fuel.       39         Table 3.32 Quantitative uncertainty estimate of the CO <sub>2</sub> emissions from energy sector, 2000.       39         Table 3.34 Fugitive methane emissions (200       40         Table 3.35 Indirect GHG from oil and gas production, 200       40         Table 3.34 Fugitive methane emissions from oil and gas production, 200       40         Table 3.35 Indirect GHG from oil and gas production, 200       41         Table 3.34 Fugi                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.18 NOx emissions from fuel combustion Gg31Table 3.20 SO2 emissions from fuel combustion by sub-sectors, Gg32Table 3.20 SO2 emissions from fuel combustion by sub-sectors, Gg32Table 3.21 GHG emissions from transport by types, 200033Table 3.22 GHG emissions from transport by gases, 200033Table 3.23 Direct GHG emissions from transport, Gg CO2 equivalent34Table 3.24 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker34Table 3.26 Total crop yield in 200035Table 3.28 Energy coefficients35Table 3.29 Averaged weighted coefficients for coal (1990-1997)36Table 3.29 Averaged weighted coefficients for coal (1990-1997)38Table 3.23 Comparison of the results of the CO2 emissions from energy sector, 200039Table 3.23 Comparison of the results with the IEA40Table 3.23 Comparison of the results with the IEA40Table 3.23 Chigitive methane emissions, Gg CO2 equivalent41Table 3.23 Indirect GHG from oil and gas production, 200040Table 3.24 Chigitive methane emissions from oil and gas production, 20042Table 3.24 Chigitive methane emissions from oil and gas production, 3041Table 3.24 Chigitive methane emission from coal mining, Gg CO2 equivalent42Table 3.24 Chift emissions from oil and gas production, Gg43Table 3.24 Chift emissions from oil and gas production, Gg43Table 3.45 Indirect GHG emissions from oil, 200043Table 3.46 CHA emis                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.19 NMVOC emissions from fuel combustion by sub-sectors, Gg.32Table 3.20 SO; emissions from transport by types, 200033Table 3.21 GHG emissions from transport by gases, 200033Table 3.22 GHG emissions from transport by gases, 200034Table 3.23 Direct GHG emissions from international air bunker, 200034Table 3.24 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker, 200034Table 3.26 Total crop yield in 200035Table 3.27 Eule production and consumption in 200036Table 3.27 Eule production and consumption in 200036Table 3.27 Eule production and consumption in 200036Table 3.28 Energy coefficients for coal (1990-1997)38Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.31 Sulfur content in fuel39Table 3.32 Quantitative uncertainty estimate of the CO <sub>2</sub> emissions from energy sector, 200039Table 3.33 Comparison of the results with the IEA.40Table 3.34 Fugitive methane emissions, 200040Table 3.35 Indirect GHG from oil and gas production, Gg41Table 3.36 Fugitive methane emissions from oil and gas production, Gg42Table 3.41 Factors of methane emissions from oil 200042Table 3.42 CH4 emissions from oil, Gg CO <sub>2</sub> equivalent.42Table 3.43 Flactors of methane emissions from oil, 200043Table 3.44 Factors of methane emissions from oil, 200043Table 3.44 Factors of methane emissions from oil, 200043                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.20 SO; emissions from ful combustion by sub-sectors, Gg32Table 3.21 GHG emissions from transport by types, 200033Table 3.22 GHG emissions from transport by gases, 200033Table 3.23 Direct GHG emissions from transport, Gg CO; equivalent34Table 3.24 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker, 200034Table 3.26 Total crop yield in 200035Table 3.28 Energy coefficients.35Table 3.29 Averaged weighted coefficients for coal (1990-1997)36Table 3.28 Energy coefficients for coal (1990-1997)38Table 3.3 Suffur content in fuel.39Table 3.31 Suffur content in fuel.39Table 3.33 Comparison of the results with the IEA.40Table 3.34 Fugitive methane emissions, 200040Table 3.35 Comparison of the results with the IEA.40Table 3.35 Ugaintitive uncertainty estimate of the CO <sub>2</sub> equivalent.41Table 3.35 Ugaintitive uncertainty estimate of the CO <sub>2</sub> equivalent.40Table 3.35 Ugaintitive uncertainty estimate of the CO <sub>2</sub> equivalent.40Table 3.36 Comparison of the results with the IEA.40Table 3.37 Ugaintitive uncertainty estimate of the CO <sub>2</sub> equivalent.40Table 3.38 Heithane emissions, 200040Table 3.39 Methane emission from coal mining, Gg CO <sub>2</sub> equivalent.41Table 3.39 Methane emission from coal mining, Gg CO <sub>2</sub> equivalent.42Table 3.41 Fuctors of methane emission from coal mining, m <sup>3</sup> /tonne.43Table 3.42 C                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.21 GHG emissions from transport by types, 200033Table 3.22 GHG emissions from transport by gases, 200033Table 3.23 Direct GHG emissions from international air bunker, 200034Table 3.24 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker34Table 3.25 Direct and indirect GHG from international air bunker34Table 3.27 Fuel production and consumption in 200035Table 3.27 Fuel production and consumption in 200036Table 3.28 Comparison of the results with the IEA.39Table 3.31 Sulfur content in fuel.39Table 3.32 Comparison of the results with the IEA.40Table 3.33 Fugitive methane emissions, 200040Table 3.34 Fugitive methane emissions, 200040Table 3.35 Hudiret GHG from oil and gas production, 6g41Table 3.36 Fugitive methane emissions from oil and gas production, 6g41Table 3.39 Methane emission from coal mining, 6g CO <sub>2</sub> equivalent, 200042Table 3.41 Factors of methane emission from coal mining, 70 (or equivalent, 2000)43Table 3.42 CH, emissions from oil, 200043Table 3.44 CH, emissions from oil, 200043Table 3.45 Indirect GHG emissions from oil and gas production, 6g43Table 3.44 CH, emissions from oil, 200043Table 3.45 Ladirect GHG emissions                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.22 GHG emissions from transport by gases, 200033Table 3.23 Direct GHG emissions from international air bunker, 200034Table 3.24 Direct and indirect GHG from international air bunker, 200034Table 3.25 Direct and indirect GHG from international air bunker34Table 3.26 Total crop yield in 200035Table 3.27 Fuel production and consumption in 200035Table 3.29 Averaged weighted coefficients for coal (1990-1997)38Table 3.20 Averaged weighted coefficients for coal (1998-2005)38Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 200039Table 3.33 Comparison of the results with the IEA.40Table 3.34 Urgitive methane emissions, Gg CO2 equivalent40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Urgitive methane emissions, Gg CO2 equivalent41Table 3.37 Indirect GHG emissions from coal mining, Gg CO2 equivalent, 2000.42Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 2000.43Table 3.41 Factors of methane emission from coal mining, m²/tonne43Table 3.41 Indirect GHG emissions from oil, 2000.43Table 3.42 L, emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CL emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.44 CL emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000. <td>Table 3.21 GUG amiginer from transport by trace 2000</td> <td></td>                                                                                                                              | Table 3.21 GUG amiginer from transport by trace 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Table 3.23 Direct GHG emissions from transport, Gg CO2 equivalent34Table 3.24 Direct and indirect GHG missions from international air bunker, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 3.21 GHG emissions from transport by conservation and a second sec |    |
| Table 3 24 Direct and indirect GHG emissions from international air bunker, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.25 Direct and indirect GHG from international air bunker34Table 3.28 Energy coefficients35Table 3.28 Energy coefficients.35Table 3.29 Energy coefficients for coal (1990-1997).38Table 3.20 Averaged weighted coefficients for coal (1998-2005).38Table 3.31 Sulfur content in fuel.39Table 3.31 Sulfur content in fuel.39Table 3.34 Cupantiative uncertainty estimate of the CO2 emissions from energy sector, 2000.40Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Fugitive methane emissions, Gg CO2 equivalent.41Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Indirect GHG emissions from oil aming, m <sup>3</sup> /tonne.43Table 3.42 CH4 emissions from oil, 2000.43Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 Indirect GHG emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.41Table 3.45 Indirect GHG emissions from oil, Gg.43Table 3.45 Indirect GHG emissions from oil, Gg.43Table 3.42 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg. <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.26 Total crop yield in 2000.35Table 3.28 Energy coefficients.35Table 3.29 Energy coefficients.36Table 3.29 Averaged weighted coefficients for coal (1990-1997).38Table 3.30 Averaged weighted coefficients for coal (1998-2005).38Table 3.31 Sulfar content in fuel.39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Fugitive methane emissions, Ge CO2 equivalent.41Table 3.37 Indirect GHG emissions from oil and gas production, Gg.41Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.41 Factors of methane emission from coal mining, m <sup>1</sup> /tonne.43Table 3.42 CH4 emissions from oil, 2000.43Table 3.42 CH4 emissions from oil, Gg CO2 equivalent.43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission from coal mining, m <sup>1</sup> /tonne.43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Nethane emission from oil, Gg CO2 equivalent.43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 LA emissions from gas, 2000.45                                                                                                                                                                                                                               | Table 3.24 Direct and indirect GHG emissions from international air bunker, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34 |
| Table 3.28 Energy coefficients35Table 3.29 Fuel production and consumption in 200036Table 3.29 Averaged weighted coefficients for coal (1990-1997)38Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.31 Sulfur content in fuel39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 200039Table 3.34 Fugitive methane emissions, 200040Table 3.35 Indirect GHG from oil and gas production, 200040Table 3.36 Fugitive methane emissions, Cg CO2 equivalent41Table 3.37 Indirect GHG missions from oil and gas production, Gg41Table 3.39 Methane emission from coal mining, Gg CO2 equivalent, 200042Table 3.49 Methane emission from coal mining, Gg CO2 equivalent42Table 3.40 Coal mining in 2000, thousand tonnes42Table 3.41 Factors of methane emission from coal mining, m <sup>3</sup> /tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4, emissions from oil, 200043Table 3.45 Indirect GHG emissions from oil, 200043Table 3.45 CH4 emissions from oil, 200043Table 3.46 Methane emission from oil, 200043Table 3.47 CH4, emissions from oil, 200043Table 3.46 Methane emission from oil, 200043Table 3.45 Indirect GHG emissions from oil, 300044Table 3.45 CH4, emissions from oil, 200043Table 3.45 CH4, emissions from oil, 200044Table 3.45 CH4, emissions from oil, 3000<                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.27 Fuel production and consumption in 200036Table 3.29 Averaged weighted coefficients for coal (1998-2005)38Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.31 Sulfur content in fuel.39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Fugitive methane emissions, Gg CO2 equivalent.41Table 3.37 Indirect GHG emissions from oil and gas production, Gg.41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Factors of methane emission from coal mining, m <sup>3</sup> tonne43Table 3.42 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg.45Table 3.45 Indirect GHG emissions from gas, 2000.45Table 3.45 Indirect GHG emissions                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.29 Averaged weighted coefficients for coal (1990-1997)38Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.31 Sulfur content in fuel.39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Fugitive methane emissions, Gg CO2 equivalent.41Table 3.36 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Factors of methane emissions from oil, 2000.43Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.42 CH4 emissions from oil, Gg CO2 equivalent.44Table 3.43 Indirect GHG emissions from oil, Gg.44Table 3.44 CH4 emissions from oil, Gg CO2 equivalent.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.47 CH4 emissions from oil, Gg CO2 equivalent.45Table 3.48 CH4 emissions from oil, Gg CO2 equivalent.45Table 3.49 SO2 emissions from gas, 2000.46Table 3.49 SO2 emissions from gas, sulfur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.30 Averaged weighted coefficients for coal (1998-2005)38Table 3.31 Sulfur content in fuel.39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG from oil and gas production, Gg41Table 3.37 Indirect GHG emissions from coal mining, Gg CO2 equivalent41Table 3.37 Indirect GHG emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.36 Vertex of methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Factors of methane emission from coal mining, m <sup>3</sup> /tonne43Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.46 Methane emission from oil, Gg44Table 3.47 CH4 emissions from oil, Gg44Table 3.46 Methane emission from oil, Gg44Table 3.47 CH4 emissions from gas, 2000.45Table 3.49 CD4 emissions from gas, 2000.45Table 3.49 SO2 emissions from gas, 2000.46Table 3.49 CD4 emissions from gas, 2000.46Table 3.49 CD2 emissions from gas, 2000.46Table 3.49 CD4 emissions from gas, 2000.46Table 3.40 CH4 emissions from gas, 2000.46Table 3.50 Data for estimation of fugitiv                                                                                                                                                                                                                                              | Table 3.27 Fuel production and consumption in 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Table 3.31 Sulfur content in fuel.39Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.39 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.41 Factors of methane emission from coal mining, m <sup>3</sup> /tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg CO2 equivalent.44Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.47 CH4 emissions from gas, 2000.45Table 3.48 CH4 emissions from gas, 2000.45Table 3.49 SO2 emissions from gas, 2000.45Table 3.48 CH4 emissions from gas, 2000.45Table 3.48 CH4 emissions from gas, 2000.45Table 3.49 SO2 emissions from gas, 9000.46Table 3.49 SO2 emiss                                                                                                                                                                                                                                               | Table 3.29 Averaged weighted coefficients for coal (1990-1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Table 3.32 Quantitative uncertainty estimate of the CO2 emissions from energy sector, 2000.39Table 3.33 Comparison of the results with the IEA.40Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.36 Fugitive methane emissions, Gg CO2 equivalent.41Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.37 Indirect GHG emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent.42Table 3.41 Factors of methane emission from coal mining, Gg CO2 equivalent.42Table 3.41 Factors of methane emission from coal mining, m <sup>3</sup> /tonne43Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.46 Indirect GHG emissions from oil, Gg.44Table 3.47 CH4 emissions from oil, Gg.44Table 3.48 CH4 emissions from gas, 2000.45Table 3.49 SO2 emissions from gas, Gg CO2 equivalent.45Table 3.49 SO2 emissions from gas, Gg CO2 equivalent.45Table 3.49 CP4 emissions from gas, Sg CO2 equivalent.45Table 3.49 CP4 emissions from gas, Sg CO2 equivalent.45Table 3.49 CP4 emissions from gas, Gg CO2 equivalent.45Table 3.49 CP4 emissions from gas, Sg CO2 equivalent.45Table 3.49 CP4 emissions from gas, Sg CO2 equivalent.46Table 3.40 CP4 e                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.33 Comparison of the results with the IEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 3.31 Sulfur content in fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39 |
| Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG emissions from oil and gas production, Gg41Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 CH4 emissions from oil, Gg.44Table 3.46 CH4 emissions from gas, 2000.45Table 3.47 CH4 emissions from gas, Gg CO2 equivalent45Table 3.48 CH4 emissions from gas, Sig CO2 equivalent45Table 3.49 SO2 emissions from gas, Sig CO2 equivalent45Table 3.49 Co2 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.49 CO2 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions                                                                                                                                                                                                                                                         | Table 3.32 Quantitative uncertainty estimate of the CO <sub>2</sub> emissions from energy sector, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 |
| Table 3.34 Fugitive methane emissions, 2000.40Table 3.35 Indirect GHG from oil and gas production, 2000.40Table 3.35 Indirect GHG emissions from oil and gas production, Gg41Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.39 Methane emission from coal mining, Gg CO2 equivalent, 2000.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.42 CH4 emissions from oil, 2000.43Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, 2000.43Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.45 CH4 emissions from oil, Gg.44Table 3.46 CH4 emissions from gas, 2000.45Table 3.47 CH4 emissions from gas, Gg CO2 equivalent45Table 3.48 CH4 emissions from gas, Sig CO2 equivalent45Table 3.49 SO2 emissions from gas, Sig CO2 equivalent45Table 3.49 Co2 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.49 CO2 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions from gas, Sig CO2 equivalent45Table 3.40 CH4 emissions                                                                                                                                                                                                                                                         | Table 3.33 Comparison of the results with the IEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 |
| Table 3.36 Fugitive methane emissions, Gg CO2 equivalent41Table 3.37 Indirect GHG emission from oil and gas production, Gg41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 200042Table 3.39 Methane emission from coal mining, Gg CO2 equivalent42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Factors of methane emission from coal mining, m³/tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.42 Indirect GHG emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Suffur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 4.1 Direct GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent49Table 4.5 Direct GHG emissions from industrial processes, Gg CO2 equivalent49                                                                                                                                                                                                                                                                     | Table 3.34 Fugitive methane emissions, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 |
| Table 3.36 Fugitive methane emissions, Gg CO2 equivalent41Table 3.37 Indirect GHG emission from oil and gas production, Gg41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 200042Table 3.39 Methane emission from coal mining, Gg CO2 equivalent42Table 3.40 Coal mining in 2000, thousand tonnes.42Table 3.41 Factors of methane emission from coal mining, m³/tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.42 Indirect GHG emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Gg CO2 equivalent45Table 3.49 CP4 emissions from gas, Suffur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 4.1 Direct GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent49Table 4.5 Direct GHG emissions from industrial processes, Gg CO2 equivalent49                                                                                                                                                                                                                                                                     | Table 3.35 Indirect GHG from oil and gas production. 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 |
| Table 3.37 Indirect GHG emissions from oil and gas production, Gg41Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 200042Table 3.39 Methane emission from coal mining, Gg CO2 equivalent42Table 3.40 Coal mining in 2000, thousand tonnes42Table 3.41 Factors of methane emission from coal mining, m³/tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission from gas, 200044Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas, Gg CO2 equivalent45Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 4.1 Direct GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.4 Indirect GHG emissions from industrial processes by categories, Gg CO2 equivalent49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.38 Methane emission from coal mining, Gg CO2 equivalent, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.39 Methane emission from coal mining, Gg CO2 equivalent42Table 3.40 Coal mining in 2000, thousand tonnes42Table 3.41 Factors of methane emission from coal mining, $m^3$ /tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, 200043Table 3.45 Indirect GHG emissions from oil, Gg43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas, Gg CO2 equivalent46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 3.51 CH4 and SO2 emissions from industrial processes, 200048Table 4.1 Direct GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.4 Indirect GHG emissions from industrial processes, Gg CO2 equivalent48Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.40 Coal mining in 2000, thousand tonnes42Table 3.41 Factors of methane emission from coal mining, m³/tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, 200045Table 3.49 SO2 emissions from gas, Gg CO2 equivalent45Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 3.51 CH4 and SO2 emission from gas, venting and flaring47Table 3.51 CH4 and SO2 emission from industrial processes, Cg48Table 4.1 Direct GHG emissions from industrial processes, Gg48Table 4.2 Share of direct GHG from industrial processes, Gg48Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes, Gg49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 3.30 Methane emission from coal mining Gg CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Table 3.41 Factors of methane emission from coal mining, $m^3$ /tonne43Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas of CO2 equivalent45Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 4.1 Direct GHG emissions from industrial processes, 200048Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.42 CH4 emissions from oil, 200043Table 3.43 Indirect GHG emissions from oil, 200043Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas, Gg CO2 equivalent45Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 4.1 Direct GHG emissions from industrial processes, 200048Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.43 Indirect GHG emissions from oil, 2000.43Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 4.1 Direct GHG emissions from industrial processes, 200048Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.44 CH4 emissions from oil, Gg CO2 equivalent43Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.45 Indirect GHG emissions from oil, Gg44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 200045Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 200046Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring47Table 4.1 Direct GHG emissions from industrial processes, 200048Table 4.2 Share of direct GHG, 200048Table 4.3 Direct GHG emissions from industrial processes, Gg49Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.45 Indirect GHG emissions from oil, Gg.44Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 2000.45Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 2000.46Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring.47Table 4.1 Direct GHG emissions from industrial processes, 2000.48Table 4.2 Share of direct GHG, 2000.48Table 4.3 Direct GHG emissions from industrial processes, Gg48Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.46 Methane emission factors and indirect GHG from oil44Table 3.47 CH4 emissions from gas, 2000.45Table 3.48 CH4 emissions from gas, Gg CO2 equivalent45Table 3.49 SO2 emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)46Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 2000.46Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring.47Table 4.1 Direct GHG emissions from industrial processes, 2000.48Table 4.2 Share of direct GHG, 2000.48Table 4.3 Direct GHG emissions from industrial processes, Gg48Table 4.4 Indirect GHG emissions from industrial processes, Gg49Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.47 CH4 emissions from gas, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 3.45 Indirect GHG emissions from oil, Gg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44 |
| Table 3.48 CH <sub>4</sub> emissions from gas, Gg CO <sub>2</sub> equivalent       45         Table 3.49 SO <sub>2</sub> emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)       46         Table 3.50 Data for estimation of fugitive CH <sub>4</sub> emissions from gas, 2000       46         Table 3.51 CH <sub>4</sub> and SO <sub>2</sub> emission factors from gas, venting and flaring.       47         Table 4.1 Direct GHG emissions from industrial processes, 2000       48         Table 4.2 Share of direct GHG, 2000       48         Table 4.3 Direct GHG emissions from industrial processes, Gg       48         Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO <sub>2</sub> equivalent.       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.49 SO2 emissions from gas sulfur production (when refinement of high-sulfur gas from sulfurous compounds)       46         Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 2000       46         Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring.       47         Table 4.1 Direct GHG emissions from industrial processes, 2000       48         Table 4.2 Share of direct GHG, 2000       48         Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent       48         Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.50 Data for estimation of fugitive CH4 emissions from gas, 2000       46         Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring.       47         Table 4.1 Direct GHG emissions from industrial processes, 2000       48         Table 4.2 Share of direct GHG, 2000       48         Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent       48         Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 3.48 CH <sub>4</sub> emissions from gas, Gg CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 |
| Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 3.51 CH4 and SO2 emission factors from gas, venting and flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 4.1 Direct GHG emissions from industrial processes, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 3.51 CH <sub>4</sub> and SO <sub>2</sub> emission factors from gas, venting and flaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47 |
| Table 4.2 Share of direct GHG, 2000       48         Table 4.3 Direct GHG emissions from industrial processes, Gg CO <sub>2</sub> equivalent       48         Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO <sub>2</sub> equivalent       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 4.3 Direct GHG emissions from industrial processes, Gg CO2 equivalent       48         Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 4.4 Indirect GHG emissions from industrial processes, Gg       49         Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO <sub>2</sub> equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Table 4.5 Direct GHG emissions from industrial processes by categories, Gg CO2 equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

## $\bigcirc$

| Second National Communication of the Republic of Uzbekistan under UNFCCC |
|--------------------------------------------------------------------------|
| National GHG Inventory Report 2000                                       |

| Table 4.7 CO <sub>2</sub> emission from mineral products, Gg                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Table 4.8 SO <sub>2</sub> emission from cement production<br>Table 4.9 Mineral products production and use, 2000                                                                           |  |
| Table 4.10 Quantitative estimation of $CO_2$ emission from industrial processes, 2000                                                                                                      |  |
| Table 4.11 GHG emission from chemical industry, 2000                                                                                                                                       |  |
| Table 4.12 Indirect GHG emission from chemical industry, 2000                                                                                                                              |  |
| Table 4.13 Direct emission from chemical industry, Gg CO <sub>2</sub> equivalent<br>Table 4.14 Indirect GHG emission from chemical industry, Gg                                            |  |
| Table 4.15 Chemical product production, 2000                                                                                                                                               |  |
| Table 4.16 Quantitative estimate of uncertainty of emission from industrial processes by gases, 2000                                                                                       |  |
| Table 4.17 Direct and indirect GHG emission from metal production, 2000, Gg                                                                                                                |  |
| Table 4.18 CO <sub>2</sub> emission from steel production, Gg<br>Table 4.19 Indirect GHG emission from steel production, Gg                                                                |  |
| Table 4.20 NMVOC emission from food and drink production, Gg, 2000                                                                                                                         |  |
| Table 4.21 NMVOC emission from food and drink production, Gg                                                                                                                               |  |
| Table 4.22 Food production, 2000                                                                                                                                                           |  |
| Table 4.23 Drink production, 2000         Table 4.24 Potential HFCs emission                                                                                                               |  |
| Table 4.24 Potential HPCs emission                                                                                                                                                         |  |
| Table 4.26 Import of fluorides in 2000-2004, tonne                                                                                                                                         |  |
| Table 5.1 Direct GHG emission, 2000                                                                                                                                                        |  |
| Table 5.2 Direct GHG emission by gas, 2000                                                                                                                                                 |  |
| Table 5.3 Direct GHG emission from agriculture by gases, Gg CO <sub>2</sub> equivalent         Table 5.4 Direct GHG emission from agriculture by categories, Gg CO <sub>2</sub> equivalent |  |
| Table 5.5 CH <sub>4</sub> emission from enteric fermentation by category, 2000                                                                                                             |  |
| Table 5.6 CH <sub>4</sub> emission from enteric fermentation by provinces, 2000                                                                                                            |  |
| Table 5.7 CH <sub>4</sub> emissions from enteric fermentation                                                                                                                              |  |
| Table 5.8 Domestic livestock population by provinces, thousand heads, 2000         Table 5.9 Direct GHG emission from manure management, 2000                                              |  |
| Table 5.1 $N_2O$ emission from manure management by categories, 2000                                                                                                                       |  |
| Table 5.10 CH <sub>4</sub> emission from manure management by categories, 2000                                                                                                             |  |
| Table 5.12 CH <sub>4</sub> emission from manure management by provinces                                                                                                                    |  |
| Table 5.13 Direct emission from manure management, Gg CO <sub>2</sub> equivalent                                                                                                           |  |
| Table 5.14 CH <sub>4</sub> emission from rice cultivation<br>Table 5.15 N <sub>2</sub> O emission from agricultural soils, 2000                                                            |  |
| Table 5.16 N <sub>2</sub> O emission from agricultural soils, Gg CO <sub>2</sub> -equivalent                                                                                               |  |
| Table 5.17 Crop production, thousand tonnes                                                                                                                                                |  |
| Table 5.18 Non-CO <sub>2</sub> emission from field burning of agricultural residues                                                                                                        |  |
| Table 5.19 Direct GHG emission from field burning of agricultural residues         Table 5.20 Indirect GHG emission from on-site burning of agricultural residues, Gg                      |  |
| Table 5.20 Indirect Orio emission non on site summing of agricultural residues, og                                                                                                         |  |
| Table 5.22 CO <sub>2</sub> emissions and removals from agricultural soils                                                                                                                  |  |
| Table 5.23 Crop yield, thousand tonnes                                                                                                                                                     |  |
| Table 5.24 Fertilizers application, thousand tonnes                                                                                                                                        |  |
| Table 5.25 Coefficients for calculation of emissions/removals of $CO_2$ in made solits                                                                                                     |  |
| Table 6.2 Emissions/removals in the sector «Land-Use Change and Forestry», Gg CO2                                                                                                          |  |
| Table 6.3 CO <sub>2</sub> removals in the category «Changes in forest and other woody biomass stocks»                                                                                      |  |
| Table 6.4 Area under forest by prevailing species, thousand hectares                                                                                                                       |  |
| Table 6.5 Data on wood utilization, thousand m <sup>3</sup><br>Table 6.6 National factors for calculation of CO <sub>2</sub> removals                                                      |  |
| Table 6.7 Comparison of removals in the category «Changes in forest and other woody biomass stocks»,                                                                                       |  |
| calculated by two methods, Gg CO <sub>2</sub>                                                                                                                                              |  |
| Table 6.8 CO <sub>2</sub> emissions and removals from soils under change in land use and management                                                                                        |  |
| Table 6.9 Areas of land-use systems, thousand hectares         Table 6.10 Factors for calculation of emissions/removals from soils under land use change                                   |  |
| Table 7.1 GHG emissions, 2000                                                                                                                                                              |  |
| Table 7.2 Share of greenhouse gases in waste sector, 2000                                                                                                                                  |  |
| Table 7.3 Greenhouse gas emissions from waste sector, CO2 equivalent                                                                                                                       |  |
| Table 7.4 Greenhouse gas emissions from waste sector by category, Gg CO <sub>2</sub><br>Table 7.5 CH <sub>4</sub> emission from solid waste disposal sites                                 |  |
| Table 7.6 Percentage of waste containing DOC in total amount of waste disposed to disposal site                                                                                            |  |
| Table 7.7 GHG emissions from wastewaters, 2000                                                                                                                                             |  |
| Table 7.8 CH <sub>4</sub> emissions from industrial wastewater                                                                                                                             |  |
| Table 7.9 Industrial production, 2000         Table 7.10 Factors used for estimation of CH, emission from industrial wastewaters.                                                          |  |
| Table 7.10 Factors used for estimation of CH <sub>4</sub> emission from industrial wastewaters<br>Table 7.11 Direct GHG emission from domestic and commercial wastewaters, 2000            |  |
| Table 7.12 GHG emission from domestic and commercial wastewaters, 2000                                                                                                                     |  |
| Table 7.13 CH <sub>4</sub> emission from domestic and commercial wastewaters by provinces                                                                                                  |  |
| Table 7.14 Population having access to sewage system, 2000                                                                                                                                 |  |
|                                                                                                                                                                                            |  |

## **List of Figures**

| Fig. 1. Organizational structure of the National Inventory System                                                                                                         |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Fig. 2. GHG inventory program and process                                                                                                                                 |          |
| Fig. 1.1. Composition of direct GHG emissions                                                                                                                             |          |
| Fig. 1.2. GHG emissions by sectors                                                                                                                                        |          |
| Fig. 1.3. CO <sub>2</sub> emissions by sectors                                                                                                                            |          |
| Fig. 1.4. CH <sub>4</sub> emissions by sectors                                                                                                                            |          |
| Fig. 1.5. N <sub>2</sub> O emissions by sectors.                                                                                                                          |          |
| Fig. 2.1. Trends of emissions by gases                                                                                                                                    | 21       |
| Fig. 2.2. Change in percentage of GHG emissions                                                                                                                           |          |
| Fig. 2.3. Trends of direct emissions by sectors<br>Fig. 2.4. Change in total emission as comparison with the 1990 level                                                   | 22       |
| Fig. 2.5. Trends of indirect GHG emissions.                                                                                                                               |          |
| Fig. 2.6. Trends of GHG emissions per capita by gases.                                                                                                                    |          |
| Fig. 2.7. Trends of GHG emissions per capita by sectors                                                                                                                   |          |
| Fig. 3.1. Percentage of leakage and fuel in 2000                                                                                                                          |          |
| Fig. 3.2. Trends of direct emissions from energy sector                                                                                                                   |          |
| Fig. 3.3. Trends of indirect emissions from energy sector                                                                                                                 |          |
| Fig. 3.4. Trends of emissions from combustion and leakage                                                                                                                 | 24       |
| Fig. 3.5. Change in percentage of combustion and leakage in the energy sector                                                                                             |          |
| Fig. 3.6. Difference in estimates made by the reference and sectoral approach                                                                                             |          |
| Fig. 3.7. Trends of direct GHG emissions from fuel combustion                                                                                                             |          |
| Fig. 3.8. Trend of CO <sub>2</sub> emissions from biomass combustion                                                                                                      | 27       |
| Fig. 3.9. Trends of indirect GHG emissions.                                                                                                                               | 27       |
| Fig. 3.10. Contribution of sub-sectors to direct GHG emission from fuel combustion, 2000                                                                                  |          |
| Fig. 3.11. Contribution of sub-sectors to indirect GHG emission from fuel combustion, 2000                                                                                |          |
| Fig. 3.12. Trends of CO <sub>2</sub> emissions by sub-sectors.                                                                                                            |          |
| Fig. 3.13. Trends of CH <sub>4</sub> emissions from fuel combustion by sub-sectors<br>Fig. 3.14. Trends of N <sub>2</sub> O emissions from fuel combustion by sub-sectors |          |
| Fig. 3.15. Trends of CO emissions from fuel combustion by sub-sectors                                                                                                     | 31       |
| Fig. 3.16. Trends of NOx emissions from fuel combustion by sub-sectors                                                                                                    |          |
| Fig. 3.17. Trends of NMVOC emissions from fuel combustion by sub-sectors                                                                                                  |          |
| Fig. 3.18. Trends of $SO_2$ emissions from fuel combustion by sub-sectors                                                                                                 |          |
| Fig. 3.19. GHG emissions from transport in 2000 by types                                                                                                                  |          |
| Fig. 3.20. Trends of direct GHG emissions from transport by types                                                                                                         |          |
| Fig. 3.21. Trends of direct GHG emissions from international air bunker                                                                                                   |          |
| Fig. 3.22. Trends of indirect GHG emissions from international air bunker                                                                                                 |          |
| Fig. 3.23. Trends of fugitive methane emissions (coal, oil, venting and flaring)                                                                                          | 41       |
| Fig. 3.24. Trends of fugitive methane emissions (gas)                                                                                                                     | 41       |
| Fig. 3.25. Trends of indirect GHG emissions from oil and gas production                                                                                                   |          |
| Fig. 3.26. Trends of methane emissions from coal mining                                                                                                                   |          |
| Fig. 3.27. Trends of methane emissions from oil.                                                                                                                          |          |
| Fig. 3.28. Trends of indirect GHG emissions from oil.                                                                                                                     |          |
| Fig. 3.29. Emissions from gas activities.                                                                                                                                 |          |
| Fig. 3.30. Trends of CH <sub>4</sub> emissions from gas                                                                                                                   |          |
| Fig. 3.31. Trend of SO <sub>2</sub> emission from gas sulfur production<br>Fig. 4.1. Trends of direct GHG emissions from industrial processes                             |          |
| Fig. 4.2. Trends of indirect GHG emissions from industrial processes                                                                                                      |          |
| Fig. 4.3. Trends of direct GHG emissions by category                                                                                                                      |          |
| Fig. 4.4. Trends of CO <sub>2</sub> emission from mineral products                                                                                                        |          |
| Fig. 4.5. Trend of $SO_2$ emission from mineral products.                                                                                                                 |          |
| Fig. 4.6. Trends of direct GHG emissions from chemical industry                                                                                                           |          |
| Fig. 4.7. Trends of indirect GHG emissions from chemical industry                                                                                                         |          |
| Fig. 4.8. Trends of CO <sub>2</sub> emission from steel production                                                                                                        | 54       |
| Fig. 4.9. Trends of indirect GHG emissions from steel production                                                                                                          |          |
| Fig. 4.10.Trends of NMVOC emissions from food and drink production                                                                                                        |          |
| Fig. 4.11. Trend of potential HFCs emissions.                                                                                                                             | 57       |
| Fig. 5.1. Trends of direct GHG emission from agriculture by gases                                                                                                         |          |
| Fig. 5.2. Trends of direct GHG emission from agriculture by categories                                                                                                    |          |
| Fig. 5.3. $CH_4$ emission from enteric fermentation by provinces.                                                                                                         |          |
| Fig. 5.4. Trend of CH <sub>4</sub> emission from enteric fermentation.                                                                                                    | 01<br>62 |
| Fig. 5.5. Emissions of CH <sub>4</sub> from manure management by provinces<br>Fig. 5.6. Trends of direct GHG emissions from manure management                             |          |
| rig. 5.6. riends of direct of to emissions from manufe management                                                                                                         | 03       |

| Fig. 5.7. Trend of CH <sub>4</sub> emission from rice cultivation                                               | 64 |
|-----------------------------------------------------------------------------------------------------------------|----|
| Fig. 5.8. N <sub>2</sub> O emission from agricultural soils, 2000                                               | 65 |
| Fig. 5.9. Trends of N <sub>2</sub> O emissions from agricultural soils                                          | 65 |
| Fig. 5.10. Trends of direct GHG emissions from field burning of agricultural residues                           | 67 |
| Fig. 5.11. Trends of indirect GHG emissions from field burning of agricultural residues                         | 67 |
| Fig. 5.12. Trends of CO <sub>2</sub> emission and removal from agricultural soils.                              | 69 |
| Fig. 6.1. Trends of CO <sub>2</sub> removals in the sector «Land-Use Change and Forestry»                       | 71 |
| Fig. 6.2. Trends of CO <sub>2</sub> removals in the category «Changes in forest and other woody biomass stocks» | 71 |
| Fig. 6.3. Trends of CO <sub>2</sub> emissions and removals from soils under change in land use and management   | 74 |
| Fig. 7.1. Trends of GHG emissions from waste                                                                    | 76 |
| Fig. 7.2. Trends of GHG emissions from waste by sub-sectors                                                     | 76 |
| Fig. 7.3. Trend of CH <sub>4</sub> emission from solid waste disposal sites                                     | 77 |
| Fig. 7.4. Trend of CH <sub>4</sub> from industrial wastewaters                                                  | 78 |
| Fig. 7.5. Trends of GHG emissions from domestic and commercial wastewaters                                      | 80 |
| Fig. 7.6. CH <sub>4</sub> emission from domestic and commercial wastewaters by provinces, 2000                  | 81 |

#### Abbreviation

|                                  | Abbreviation                                                                              |
|----------------------------------|-------------------------------------------------------------------------------------------|
| BOD                              | - Biochemical Oxygen Demand                                                               |
| CIS                              | – Commonwealth of Independent States                                                      |
| CO <sub>2</sub> -eq              | $-CO_2$ equivalent                                                                        |
| COD                              | – Chemical Oxygen Demand                                                                  |
| DOC                              | – degradable organic carbon                                                               |
| FAO                              | – Food and Agricultural Organization of the United Nations                                |
| GHG                              | - Greenhouse gases                                                                        |
| GOST                             | – state standards                                                                         |
| GPP                              | – Gas Processing Plant                                                                    |
| GWP                              | – Global Warming Potential                                                                |
| HFC                              | – hydrofluoracarbon                                                                       |
| IEA                              | - International Energy Agency                                                             |
| INC                              | – Initial National Communication                                                          |
| IPCC                             | – Intergovernmental Panel on Climate Change                                               |
| LULUCF                           |                                                                                           |
| MSW                              | – municipal solid waste                                                                   |
| NIR                              | – National Inventory Report                                                               |
| NMVOC                            | - Non-Methane Volatile Organic Compounds                                                  |
| PFC                              | – perfluoracarbon                                                                         |
| QA                               | – Quality Assurance                                                                       |
| <b>Č</b> C                       | – Quality Control                                                                         |
| SNC                              | - Second National Communication                                                           |
| SWDS                             | <ul> <li>Solid Waste Disposal Sites</li> </ul>                                            |
| UNEP                             | – United Nations Environmental Program                                                    |
| UNFCCC                           | - United Nations Framework Convention on Climate Change                                   |
|                                  | Units                                                                                     |
| Desellar                         | 10 1/100                                                                                  |
| Decalitre                        | – 10 litres                                                                               |
| g<br>Gg                          | $-\operatorname{gram}_{\operatorname{signarrow}}(10^9  \mathrm{g \ or \ 1000 \ topp os})$ |
| Gg<br>GJ                         | – gigagram (10 <sup>9</sup> g or 1000 tonnes)<br>– gigajoule (10 <sup>9</sup> joule)      |
| Hectolitre                       | -100 litres                                                                               |
|                                  | – kilogram                                                                                |
| kg<br>m <sup>2</sup>             | – square meter                                                                            |
| m <sup>2</sup><br>m <sup>3</sup> | – square meter                                                                            |
| mm                               | – millimeter                                                                              |
| PJ                               | $=$ numerical $(10^{12} \text{ joule})$                                                   |
| TJ                               | – petajoule (10 <sup>12</sup> joule)<br>– terajoule (10 <sup>12</sup> joule)              |
| 10                               |                                                                                           |
|                                  | Chemical formulas                                                                         |
| C                                | – Carbon                                                                                  |
| CH <sub>4</sub>                  | – Methane                                                                                 |
| $CH_2F_2$                        | - HFC-32                                                                                  |
| C <sub>2</sub> HF <sub>5</sub>   | - HFC-125                                                                                 |
| CH <sub>2</sub> FCF <sub>3</sub> | - HFC-134a                                                                                |
| $C_2H_3F_3$                      | – HFC-143a                                                                                |
| CO                               | - Carbon monoxide                                                                         |
| $CO_2$                           | – Carbon dioxide                                                                          |
| HNO <sub>3</sub>                 | – Nitric acid                                                                             |
| $H_2SO_4$                        | – Sulphuric acid                                                                          |
| N<br>NUL                         | – Nitrogen                                                                                |
| NH <sub>3</sub>                  | – Ammonia                                                                                 |
| $N_2O$                           | – Nitrous oxide                                                                           |
| NOx<br>S                         | – Nitrogen oxides                                                                         |
| S<br>SE                          | – Sulphur<br>Sulphur havefluoride                                                         |
| SF <sub>6</sub>                  | – Sulphur hexafluoride                                                                    |
| $SO_2$                           | – Sulphur dioxide                                                                         |



#### National GHG Inventory Report

# Project «Uzbekistan: Preparation of the Second National Communication under UN Framework Convention on Climate Change (UNFCCC) »

National UNFCCC Focal Point for Uzbekistan: Project Coordinator: Inventory Team Leader: V.E. Chub T. A. Ososkova O.A. Agafonova

#### **In-Country Executing Agency:**

Center of Hydrometeorological Service (Uzhydromet) at the Cabinet of Ministers of the Republic of Uzbekistan

#### **Collaboration Agencies:**

State Committee for Nature Protection

State Committee on Statistics

Ministry of Agriculture and Water Resource Management

State Joint-Stock Company «Uzbeknergo»

National Holding Company «Uzneftegaz»

Joint-Stock Company «Uztransgaz»

Open Joint-Stock Company «Ugol»

National Aviation Company «Uzbek Havo Yullary»

State Joint-Stock Company «Uzkimesanoat»

Joint-Stock Company «Uzqurilishmateriallari»

Uzbek Agency "Uzcommunkhizmat"

Republic Scientific-Production Center of Decorative Gardening and Forestry

State Research Institute of Soil Science and Agrochemistry

The project was implemented in the Center of Hydrometeorological Service (Uzhydromet) at the Cabinet of Ministers of the Republic of Uzbekistan with financial assistance of the Global Environment Facility and the United Nations Environment Program

Center of Hydrometeorological Service (Uzhydromet) 100052, 72, Maksumov str, Tashkent, 100052, Uzbekistan Tel: (998 71) 233 61 17 Fax: (998 71) 233 61 17 E-mail: ososkova@meteo.uz



#### Preface

Being responsible body on the implementation of the UN Framework Convention on Climate Change and the Kyoto Protocol in Uzbekistan, the Center of Hydrometeorological Service (Uzhydromet) has prepared the national inventory of greenhouse gas emissions for 2000 within the framework of the Second National Communication on Climate Change. This Report has been prepared in accordance with the decision 17/CP.8, item 1a, Article 12 and item 1a, Article 12 of the UN Framework Convention on Climate Change and also in compliance with the *Reporting on Climate Change User Manual for the Guidelines on National Communications from non-Annex 1 Parties* [1]. The draft report was brought up for discussions and comments to different ministries and agencies.

The Report presents the inventory of greenhouse gas emissions in the Republic of Uzbekistan in 2000 and also the review of the GHG emissions trends for the period 1990-2005. The emissions and removals in 2000 are given in the tables 1 and 2 for gases and sectors identified by IPCC (Annex 1 and 2) and also in the Sectoral Tables (Annex 3). The trend for each sector is provided in the relevant chapter.

Inventory comprises the following direct greenhouse gases: carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), hydrofluorocarbons (HFCs) as well as the indirect greenhouse gases, such as carbon monoxide (CO), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC) and sulphur dioxide (SO<sub>2</sub>). To recalculate emissions into CO<sub>2</sub> equivalent in accordance with the recommendations [1] the global warming potentials were used: for CO<sub>2</sub> -1, CH<sub>4</sub> -21, N<sub>2</sub>O -310.

In accordance with the IPCC methodology and the standard IPCC software the greenhouse gas inventory was conducted in 5 sectors. The sector "Solvent and Other Product Use" was not considered due to lack of the calculation method.

#### Structure of Report

The report includes Introduction, 7 Specific Chapters and Annexes. Introduction describes institutional arrangement and process of inventory itself. The Specific Chapters present the emission estimates for 2000, emission trends, emission estimates, trends in separate sectors and estimation of emissions uncertainty.



#### Introduction

#### **Reference on inventory and climate change**

The first inventory of greenhouse gas emissions was made within the framework of the Initial National Communication in 1999 for 1990 and 1994. In 2001 the Phase 2 of the Initial National Communication was prepared where the GHG emissions were calculated for 1999. The Republic of Uzbekistan took part in the Regional Project "Capacity Building for Improving the Quality of the GHG Inventories (Europe/CIS region)" (2003-2006). The UNEP Project "Implementation of UNFCCC Article 6 in Uzbekistan" (2004-2005) and the UNEP/ Uzbekistan Project "Education, Training and Public Awareness" (2005-2006) were implemented in Uzbekistan. For the inventory preparation within the framework of the Second National Communication (2005-2008) the experience was used gained when implementation of the previous projects. In the Second National Communication the inventory includes a larger list of the gases and source/sink categories. The recalculations were made in some source categories. The elements of Good Practice were also used: Quality Assurance/Quality Control Plan, National Manual GHG Inventory Procedures, the system of documentation and archiving of all inventories related data.

The GHG inventory was implemented in the Center of Hydrometeorological Service at the Cabinet of Ministers of the Republic of Uzbekistan (Uzhydromet), which is a responsible body for the implementation of the commitments of Uzbekistan under the UN Framework Convention on Climate Change. National inventory team was built up on the base of the Atmosphere, Surface Water and Soil Pollution Monitoring Service, one of the Uzhydromet's divisions, which was assigned to be the project coordination body. In this Service all information on the GHG inventory is collected, compiled and stored. In order to address the specific objectives the experts were recruited from other organizations, agencies and industrial companies. These experts provided the information on the activity data, emission factors, other parameters and other inventory related information; they also made calculations and prepared documentation. The institutional scheme is shown in the Fig. 1.

The GHG inventory was prepared in conformity with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, the elements of the Good Practice Guidance and Uncertainty Management in National GHG Inventories, IPCC 2003 and the Good Practice Guidance in Land Use, Land Use Change and Forestry, IPCC 2003. As the activity data, both official statistical data on industrial activity in different economic sectors and the data of some big industrial companies were used. In order to estimate emissions the national emission factors and other parameters as well as default factors were utilized. The emissions calculation was made with use of the standard IPCC Software with some modifications on separate sheets, which were introduced in accordance with the national circumstances. The scheme of the inventory process is shown in the Figure 2.

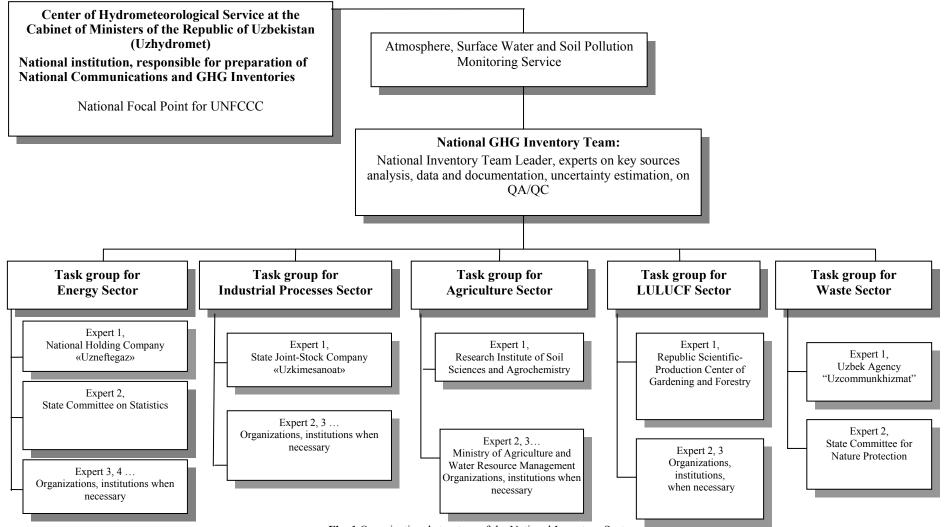



Fig. 1 Organizational structure of the National Inventory System

83

13

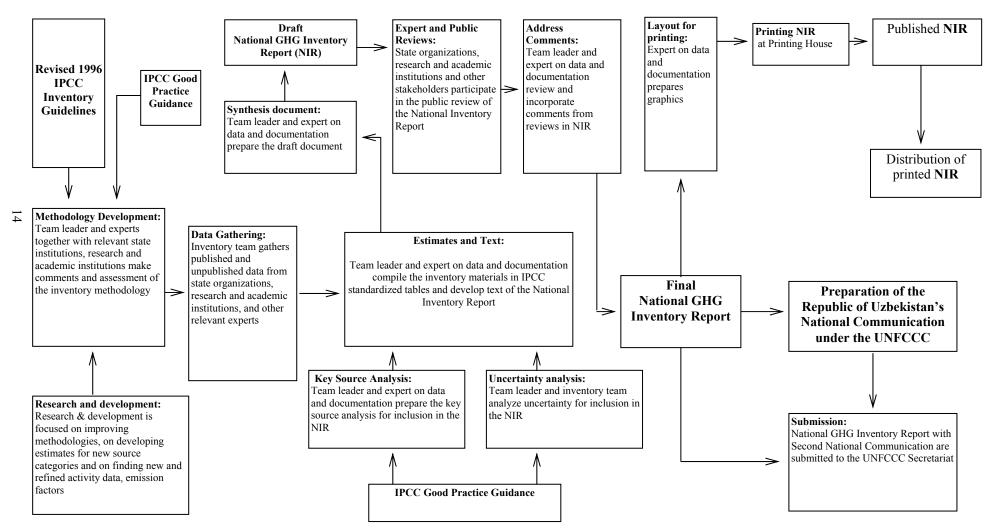



Fig. 2 GHG inventory program and process

0



#### QA/QC Plan

The QA/QC procedures were implemented as an element of good practice for improvement of the national inventory quality. Quality control was performed according to the Tier 1- common procedures, mainly in Uzhydromet. The organizations and companies participated in the quality assurance in their relevant source categories.

#### **Quality Control procedure**

The quality control procedures were conducted in a while after the activity had been conducted, for the period from several days to 1-2 months, depending on the type of check. In some cases checks repeated if changes in process occur.

The following quality control procedures were implemented for all sectors:

- check for transcription errors of newly data obtained;
- check for transcription errors in data input;
- check of calculation for filling gaps in the activity data with employing mathematical methods;
- check that emission units, parameters or conversion factors are correctly recorded;
- check that emissions are calculated correctly;
- check for consistency in input and calculations in temporal series while changing in tier, emission factors and other parameters or data;
- check that formulas are correctly recorded, calculations are correctly performed etc. in the worksheets modified in accordance with the national circumstances;
- check for correction of calculations when national factors development;
- check that emission sources are properly documented (assumptions and criteria for the selection of activity data, calculation method, emission factors and other parameters);
- check of the documentation on the national factors development;
- check of all references related to the data, coefficients, factors etc.

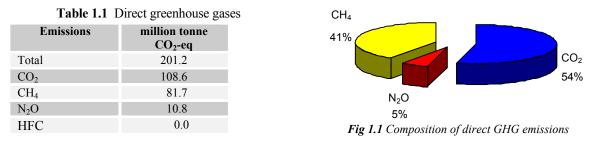
#### **Quality Assurance procedures**

Quality Assurance was performed after all inventory calculations had been completed.

External reviewers were given the Draft National GHG Inventory Report that included all necessary information for quality check:

- calculation method
- activity data;
- factors and other parameters;
- emission data;
- information on quality control performed .

#### Organizations and companies that reviewed the inventory report:


- State Committee on Statistics
- State Joint-Stock Company «Uzbekenergo»
- National Holding Company «Uzbekneftegaz»
- State Joint-Stock Company «Uzkimesanoat»
- Republic Scientific Production Center of Gardening and Forestry
- Uzbek Agency «Uzcommunkhizmat»



#### **Chapter 1: GHG Emissions in 2000**

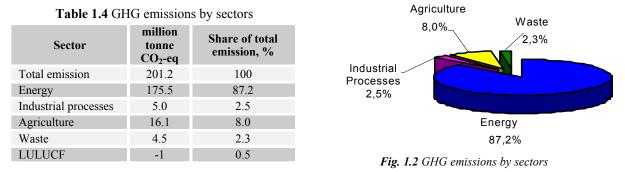
#### 1.1 Total GHG emissions in 2000

Contributions of individual greenhouse gases to the total emission were as follows:  $CO_2 - 54\%$  (the most significant contributor), CH4 - 41%,  $N_2O - 5\%$  and HFC – less than 0.01%.



As compared to 1990 CO<sub>2</sub> emissions decreased by 4.1%; CH<sub>4</sub> emissions increased by 44.2%; N<sub>2</sub>O emissions decreased by 16.3% and total emission increased by 10%.

| Table 1.2 Indirect | et greenhouse gases | Ta               | ble 1.3 GHG emissi         | ons per capita | in 2000         |
|--------------------|---------------------|------------------|----------------------------|----------------|-----------------|
| Emissions          | Gg                  | Gas              | tonne CO2-eq<br>per/capita | Gas            | kg / per capita |
| СО                 | 1184                | CO <sub>2</sub>  | 4.4                        | СО             | 47.8            |
| NOx                | 286                 | CH <sub>4</sub>  | 3.3                        | NOx            | 20.1            |
| NMVOC              | 251                 | N <sub>2</sub> O | 0.4                        | NMVOC          | 10.2            |
| SO <sub>2</sub>    | 294                 | HFC              | 0.0003                     | $SO_2$         | 11.9            |
|                    |                     | Total            | 8.1                        |                |                 |


The volume of CO emission, accounting for the largest proportion of emissions with indirect greenhouse effects, exceeds the volumes of NOx, NMVOC and SO<sub>2</sub> by 4-4.7 times.

As compared to 1990 the emissions of all gases with indirect greenhouse effect declined: CO - by 39.2%; NOx - by 30.5%; NMVOC - by 38.5% and  $SO_2 - by 56.7\%$ .

The largest volume of the direct GHG emissions per capita falls at CO<sub>2</sub> and indirect GHG emissions – at CO.

#### 1.2 GHG emissions by sectors

The estimates of the 2000 GHG emissions by sectors and categories are given in the tables 1 and 2 in the Annex 1 and 2. The major contributor to 2000 greenhouse gas emission was the energy sector with more than 87% in CO<sub>2</sub> equivalents followed by agriculture (8%). The contributions of the industrial processes and waste sectors are almost similar and amount to 2.5% and 2.3% respectively. Total GHG emission excluding the LULUCF sector is 201.2 million tones in CO<sub>2</sub> equivalent. Increase in the emissions from the energy sector as compared to 1990 amounts to 14.2% and in the waste sector is 11.3%; decline in emissions in the industrial processes sector is 38.3% and in the agriculture sector is 5.3%;

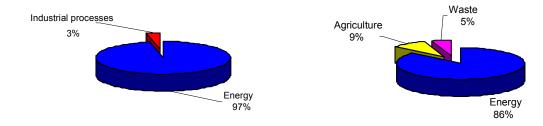


Contribution of the sectors to GHG emissions is different. Most emissions of  $CO_2$  (97%) and  $CH_4$  (86%) come from the energy sector. The major contributor to the N<sub>2</sub>O emissions is the agricultural sector (81%). The largest volume of per capita GHG emission comes from the energy sector.



Total

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000


| <b>Table 1.5</b> GHG emissions by sectors, $(Gg CO_2 - eq)$ |                 |                 |                  |  |
|-------------------------------------------------------------|-----------------|-----------------|------------------|--|
| Sector                                                      | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O |  |
| Energy                                                      | 105016          | 70391           | 110              |  |
| Industrial processes                                        | 3590            | 0               | 1374             |  |
| Agriculture                                                 | 0               | 7348            | 8800             |  |
| Waste                                                       | 0               | 4004            | 528              |  |

108606 81742 10812

Table 1 5 GUG amissions by sosters (Ga CO

Table 1.6 Per capita GHG emissions by sectors, 2000

| Sector               | tonne CO <sub>2</sub> -eq /per capita |
|----------------------|---------------------------------------|
| Energy               | 7.1                                   |
| Industrial processes | 0.2                                   |
| Agriculture          | 0.7                                   |
| Waste                | 0.2                                   |
| Total                | 8.1                                   |



~~)

Fig. 1.3 CO<sub>2</sub> emissions by sectors

Fig. 1.4 CH<sub>4</sub>. emissions by sectors

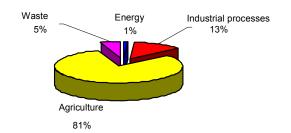



Fig. 1.5 N<sub>2</sub>O emissions by sectors

#### 1.3 Key source categories

The key sources analysis was conducted with use of the Tier 1 method in accordance with [5], chapter 7, Methodological Choice and Recalculation. The following gases were analyzed:  $CO_2$ ,  $CH_4$ ,  $N_2O$  and HFCs. PFCs and  $SF_6$  were excluded as there is no data available to estimate these gases emission. All estimated source categories were analyzed excluding emissions and removals in the LULUCF, because their volume does not exceed 0.5% of the country's total emission.

Disaggregation and identification of emission sources were conducted in accordance with [5], chapter 7, Methodological Choice and Recalculation, table 7-1.

The emission level and trend were assessed for 2000 and 2005. The base year was 1990. The key sources analysis is presented in the Annex 5. In the tables below the sources are shown that are defined as the key ones by the emission level and trend.

The number of common key sources for 2000 and 2005 are about the same, only their position in the list (table 1.7 and table 1.8) is different.



| million                                                                   |                  |       |       |                              |                     |  |  |  |  |  |
|---------------------------------------------------------------------------|------------------|-------|-------|------------------------------|---------------------|--|--|--|--|--|
| IPCC category                                                             | Gas              | Level | Trend | tonne<br>CO <sub>2</sub> -eq | % of total emission |  |  |  |  |  |
| 1.B.2 Fugitive emissions from oil and gas<br>production                   | CH <sub>4</sub>  | •     | •     | 70.02                        | 34.8                |  |  |  |  |  |
| 1.A.4 Residential sector, natural gas combustion                          | CO <sub>2</sub>  | •     | •     | 32.64                        | 16.2                |  |  |  |  |  |
| 1.A.1 Energy Industries                                                   | CO <sub>2</sub>  | •     | •     | 32.35                        | 16.1                |  |  |  |  |  |
| 4.D Emissions of N <sub>2</sub> O from agricultural soils                 | N <sub>2</sub> O | •     | •     | 8.54                         | 4.2                 |  |  |  |  |  |
| 1.A.4 Commercial/institutional sector (natural gas combustion)            | CO <sub>2</sub>  | •     | •     | 6.96                         | 3.5                 |  |  |  |  |  |
| 4.A Enteric Fermentation                                                  | CH <sub>4</sub>  | •     |       | 6.59                         | 3.3                 |  |  |  |  |  |
| 1.A.1 Energy Industries (residual fuel oil)                               | $CO_2$           | •     | •     | 5.76                         | 2.9                 |  |  |  |  |  |
| 1.A.3 Mobile sources: Road Transportation                                 | CO <sub>2</sub>  | •     | •     | 5.62                         | 2.8                 |  |  |  |  |  |
| 1.A.3 Pipeline Transport                                                  | $CO_2$           | •     |       | 5.11                         | 2.5                 |  |  |  |  |  |
| 1.A.2 Manufacturing Industry and Construction<br>(natural gas combustion) | CO <sub>2</sub>  | •     | •     | 4.21                         | 2.1                 |  |  |  |  |  |
| 6. A Solid Waste Disposal on Land                                         | $\mathrm{CH}_4$  | •     |       | 3.71                         | 1.8                 |  |  |  |  |  |
| 1.A.1 Energy Industries (sub-bituminous coal)                             | CO <sub>2</sub>  | •     | •     | 3.09                         | 1.5                 |  |  |  |  |  |
| 1.A.4 Agriculture/Forestry/Fishing (liquid fuel combustion)               | CO <sub>2</sub>  | •     | •     | 2.59                         | 1.3                 |  |  |  |  |  |
| 1.A.1 Energy Industries (crude oil )                                      | CO <sub>2</sub>  | •     | •     | 2.04                         | 1.0                 |  |  |  |  |  |
| 1.A.4 Commercial sector (liquid fuel combustion)                          | CO <sub>2</sub>  | •     | •     | 1.49                         | 0.7                 |  |  |  |  |  |
| 2.A Cement Production                                                     | CO <sub>2</sub>  | •     | •     | 1.48                         | 0.7                 |  |  |  |  |  |
| 2.B Ammonia Production                                                    | CO <sub>2</sub>  |       | •     | 1.30                         | 0.7                 |  |  |  |  |  |
| 1.A.2 Manufacturing Industry and Construction<br>(liquid fuel combustion) | CO <sub>2</sub>  |       | •     | 0.74                         | 0.4                 |  |  |  |  |  |
| 1.A.4 Commercial sector (solid fuel combustion)                           | CO <sub>2</sub>  |       | •     | 0.57                         | 0.3                 |  |  |  |  |  |
| 1.A.3 Mobile sources: Railways                                            | CO <sub>2</sub>  |       | •     | 0.33                         | 0.2                 |  |  |  |  |  |
| 1.A.4 Residential sector (liquid fuel combustion)                         | CO <sub>2</sub>  |       | •     | 0.05                         | 0.0                 |  |  |  |  |  |
| 1.A.2 Manufacturing Industry and Construction<br>(solid fuel combustion)  | CO <sub>2</sub>  |       | •     | 0.03                         | 0.0                 |  |  |  |  |  |
| 1.A.4 Residential sector (solid fuel combustion)                          | CO <sub>2</sub>  |       | •     | 0.01                         | 0.0                 |  |  |  |  |  |
| Total emission by the key sources                                         |                  |       |       | 196.6                        | 97.7                |  |  |  |  |  |

Table 1.7 Key GHG emission sources, 2000



| IPCC category                                                             | Gas              | Level | Trend | million<br>tonne<br>CO <sub>2</sub> -eq | % of total emission |
|---------------------------------------------------------------------------|------------------|-------|-------|-----------------------------------------|---------------------|
| 1.B.2 Fugitive emissions from oil and gas production                      | $\mathrm{CH}_4$  | •     | •     | 76.33                                   | 38.2                |
| 1.A.4 Residential sector (natural gas combustion)                         | CO <sub>2</sub>  | •     | •     | 30.92                                   | 15.5                |
| 1.A.1 Energy Industries (natural gas combustion)                          | CO <sub>2</sub>  | •     | •     | 29.65                                   | 14.9                |
| 1.A.4 Commercial sector (natural gas combustion)                          | CO <sub>2</sub>  | •     | •     | 9.03                                    | 4.5                 |
| 4.A Enteric Fermentation                                                  | CH <sub>4</sub>  | •     | •     | 7.90                                    | 4.0                 |
| 4.D Emissions of N2O from agricultural soils                              | N <sub>2</sub> O | •     | •     | 7.42                                    | 3.7                 |
| 1.A.3 Mobile sources: Road Transportation                                 | CO <sub>2</sub>  | •     | •     | 5.25                                    | 2.6                 |
| 1.A.2 Manufacturing Industry and Construction<br>(natural gas combustion) | CO <sub>2</sub>  | •     | •     | 4.92                                    | 2.5                 |
| 1.A.3 Pipeline Transport                                                  | CO <sub>2</sub>  | •     | •     | 3.85                                    | 1.9                 |
| 6.A Solid Waste Disposal on Land                                          | CH <sub>4</sub>  | •     |       | 3.81                                    | 1.9                 |
| 1.A.1 Energy Industries (sub-bituminous coal)                             | CO <sub>2</sub>  | •     | •     | 2.52                                    | 1.3                 |
| 1.A.1 Energy Industries (residual fuel oil)                               | CO <sub>2</sub>  | •     | •     | 2.47                                    | 1.2                 |
| 2.A Cement Production                                                     | CO <sub>2</sub>  | •     |       | 2.26                                    | 1.1                 |
| 1.A.4 Agriculture/Forestry/Fshing (liquid fuel combustion)                | CO <sub>2</sub>  | •     | •     | 1.94                                    | 1.0                 |
| 2.B Nitric Acid Production                                                | N <sub>2</sub> O | •     |       | 1.58                                    | 0.8                 |
| 2.B Ammonia Production                                                    | CO <sub>2</sub>  |       | •     | 1.40                                    | 0.7                 |
| 1.A.4 Commercial sector (liquid fuel combustion )                         | CO <sub>2</sub>  |       | •     | 1.31                                    | 0.7                 |
| 1.A.1 Energy Industries (crude oil )                                      | CO <sub>2</sub>  |       | •     | 1.26                                    | 0.6                 |
| 1.A.3 Mobile Sources: railways                                            | CO <sub>2</sub>  |       | •     | 0.44                                    | 0.2                 |
| 1.A.2 Manufacturing Industry and Construction (solid fuel combustion)     | CO <sub>2</sub>  |       | •     | 0.38                                    | 0.2                 |
| 1.A.4 Commercial sector (solid fuel combustion)                           | CO <sub>2</sub>  |       | •     | 0.35                                    | 0.2                 |
| 1.A.4 Residential sector (liquid fuel combustion)                         | CO <sub>2</sub>  |       | •     | 0.07                                    | 0.0                 |
| 1.A.4 Residential sector (solid fuel combustion)                          | CO <sub>2</sub>  |       | •     | 0.01                                    | 0.0                 |
| Total emission by the key sources                                         |                  |       |       | 194.9                                   | 97.6                |

Table 1.8 Key GHG emission sources, 2005

#### 1.4 Total uncertainty estimation

This chapter is devoted to the estimating uncertainties of greenhouse gases emissions. The estimation was performed in accordance with [2]. Not all uncertainties were possible to estimate in this work.

In the energy sector only uncertainties associated with  $CO_2$  emissions were estimated, which amount to 59.8% of the total emissions in this sector.

In the sector "Industrial Processes" the  $CO_2$  emissions were estimated from clinker and ammonia production and  $N_2O$  emissions from nitric acid production, which amounted to 83.6% of total emissions from industrial processes.

Uncertainties associated with the GHG emissions in other categories were not estimated owing to absence of the default uncertainty values or national uncertainties values associated with activity data or emission factors, or both of them.

 $\bigcirc$ 

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

Uncertainties estimated are as follows:

 $\rm CO_2-99.3\%$  of total  $\rm CO_2$  emissions from all sectors;

 $N_2O - 12.7\%$  of total  $N_2O$  emissions from all sectors.

All uncertainties estimated covered 54.2% of the total emission in 2000.

Total uncertainty in  $CO_2$  emissions estimates in the energy sector in 2000 amounted to ±11262.6 Gg  $CO_2$  equivalent or ±10.7 %.

Uncertainties in CO<sub>2</sub> emissions estimates from industrial processes in 2000 amounted to  $\pm 155.9$  Gg CO<sub>2</sub> equivalent or  $\pm 5.6$  %.

Uncertainties in the estimates of CO<sub>2</sub> emissions over all estimated categories in 2000 amounted to  $\pm 11418.5$  Gg CO<sub>2</sub> equivalent or  $\pm 10.6$  %.

Uncertainties in the N<sub>2</sub>O emissions from industrial processes in 2000 were estimated only for the category "Nitric Acid Production" and amounted to  $\pm 357.5$  Gg CO<sub>2</sub> equivalent or  $\pm 26$  %.

Uncertainties in estimation of all gases emission from industrial processes in 2000 amounted to  $\pm 513.4$  Gg CO<sub>2</sub> equivalent or  $\pm 12.4$  %.

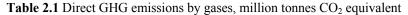
Uncertainties in estimation of emission from all categories and gases in 2000 amounted to  $\pm 11776.0$  Gg CO<sub>2</sub> equivalent or  $\pm 10.5$  %.

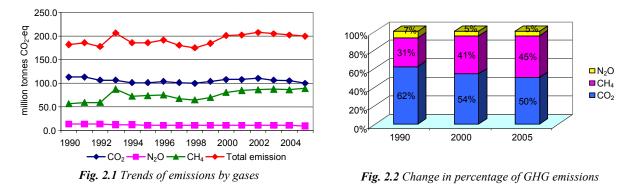
Calculation of the total uncertainty in the above categories is shown in the Annex 13.

#### **1.5 Completeness**

The major GHG emissions and removals were inventoried in the country. All major direct greenhouse gases and all indirect greenhouse gases are included in the inventory. The table 1.9 presents the greenhouse gases categories, which were not included, by some reason, in the inventory. Also the gases are presented, emissions of which were not estimated.

| IPCC source<br>category | Category                                                                | The reason by which the category was not included in inventory                 |
|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Gases                   | Perfluorocarbons, sulphure hexafluoride                                 | Lack of data                                                                   |
| 1 B 2 a i               | Exploration                                                             | Lack of data on wells drilled                                                  |
| 1 B 2 a iii             | Transport                                                               | Not available                                                                  |
| 1 B 2 a v               | Distribution of Oil Products                                            | Lack of data                                                                   |
| 1 B 2 c i               | Venting and Flaring – Oil                                               | Lack of data                                                                   |
| 1 B 2 c iii             | Venting and flaring– Combined (in case oil and gas cannot be separated) | Lack of data                                                                   |
| 2A 3                    | Limestone and Dolomite                                                  | Lack of data                                                                   |
| 2A 5                    | Asphalt Roofing                                                         | Lack of data                                                                   |
| 2A 6                    | Road Paving with Asphalt                                                | Lack of data                                                                   |
| 2B 3                    | Adipic Acid Production                                                  | No production                                                                  |
| 2B 4                    | Carbide Production                                                      | Lack of data                                                                   |
| 2C 2                    | Ferroalloys Production                                                  | No production                                                                  |
| 2C 3                    | Aluminum Production                                                     | No production                                                                  |
| 2C 4                    | SF6 Used in Aluminum and Magnesium Foundries                            | No production                                                                  |
| 2D 1                    | Pulp and Paper                                                          | Cellulose production is not available                                          |
| 2E                      | Production of Halocarbons and Sulphur Hexafluoride                      | production is not available                                                    |
| 3                       | Solvent and Other Product Use                                           | Lack of generally accepted calculation method                                  |
| 4E                      | Prescribed Burning of Savannas                                          | Not applicable                                                                 |
| 5B                      | Forest and Grassland Conversion                                         | Presently there is no practice of forest and grassland conversion into tillage |
| 6C                      | Waste Incineration                                                      | Lack of data                                                                   |


Table 1.9 Estimation of inventory completeness




#### **Chapter 2: Tendencies of GHG Emissions**

As compared to the base year, the total emission in 2000 increased by 10%, in 2005 – by 9.3%. At that, the  $CO_2$  and  $N_2O$  emissions decreased by 10-20%, and the  $CH_4$  emission rose sharply – more than 50%. The later was caused by increasing methane leakage from gas production. The most emission was observed in 2002.

| Year | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total | Year | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total |
|------|-----------------|------------------|-----------------|-------|------|-----------------|------------------|-----------------|-------|
| 1990 | 113.3           | 12.9             | 56.7            | 182.9 | 1998 | 100.0           | 11.3             | 64.5            | 175.8 |
| 1991 | 113.3           | 13.5             | 59.1            | 185.9 | 1999 | 104.1           | 11.0             | 69.7            | 184.7 |
| 1992 | 106.3           | 13.4             | 59.2            | 179.0 | 2000 | 108.6           | 10.8             | 81.7            | 201.2 |
| 1993 | 106.8           | 12.8             | 87.5            | 207.2 | 2001 | 107.9           | 10.5             | 84.8            | 203.2 |
| 1994 | 101.4           | 12.0             | 73.6            | 187.0 | 2002 | 111.0           | 10.7             | 85.9            | 207.7 |
| 1995 | 101.0           | 11.5             | 74.4            | 186.9 | 2003 | 106.8           | 10.5             | 87.9            | 205.3 |
| 1996 | 104.0           | 11.4             | 76.3            | 191.7 | 2004 | 104.8           | 10.5             | 87.1            | 202.5 |
| 1997 | 101.3           | 11.2             | 68.2            | 180.7 | 2005 | 100.4           | 10.0             | 89.4            | 199.8 |





Change in emissions for the period from 1990 to 2005 was as follows:  $CO_2 - 11.4\%$ ; N<sub>2</sub>O -22.5%; CH<sub>4</sub> +57.7%; total emission - +9.3%. Noticeable increase in 1993 is caused by a great volume of the transit gas entailing increase in methane leakage from main-line transport of gas.

The figure 2.2 shows the change in percentage of the direct GHG emissions for the considered period.

Emissions by the sectors changed as follows: in the energy sector – increase by more than 10%, in the waste sector – more than 15%. In the same time drop in the emissions from the industrial was 20% and in the agricultural sector – approximately 4%.

|      |        |                      | · · · · · · · · · · · · · · · · · · · | - 1   |       |
|------|--------|----------------------|---------------------------------------|-------|-------|
| Year | Energy | Industrial processes | Agriculture                           | Waste | Total |
| 1990 | 153.7  | 8.1                  | 17.1                                  | 4.1   | 182.9 |
| 1991 | 155.6  | 8.6                  | 17.6                                  | 4.1   | 185.9 |
| 1992 | 148.5  | 8.3                  | 18.0                                  | 4.2   | 179.0 |
| 1993 | 177.6  | 7.4                  | 17.9                                  | 4.2   | 207.2 |
| 1994 | 159.3  | 5.9                  | 17.5                                  | 4.3   | 187.0 |
| 1995 | 160.6  | 5.4                  | 16.7                                  | 4.3   | 186.9 |
| 1996 | 165.4  | 5.6                  | 16.3                                  | 4.3   | 191.7 |
| 1997 | 154.6  | 5.3                  | 16.3                                  | 4.4   | 180.7 |
| 1998 | 149.7  | 5.3                  | 16.4                                  | 4.5   | 175.8 |
| 1999 | 159.0  | 4.8                  | 16.3                                  | 4.5   | 184.7 |
| 2000 | 175.5  | 5.0                  | 16.1                                  | 4.5   | 201.2 |
| 2001 | 177.7  | 5.0                  | 15.8                                  | 4.6   | 203.2 |
| 2002 | 181.6  | 5.1                  | 16.3                                  | 4.6   | 207.7 |
| 2003 | 178.8  | 5.4                  | 16.5                                  | 4.7   | 205.3 |
| 2004 | 174.8  | 6.1                  | 16.9                                  | 4.7   | 202.5 |
| 2005 | 172.3  | 6.4                  | 16.4                                  | 4.7   | 199.8 |

Table 2.2 Direct GHG emissions by sectors, million tonnes CO<sub>2</sub> equivalent

Change in the direct GHG emissions from 1990 to 2005 was as follows: energy sector +12.1 %; industrial processes -21.0%; agricultural sector -3.6%; waste sector +15.2%; total emission +9.3%.

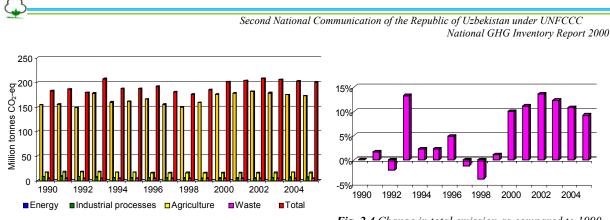
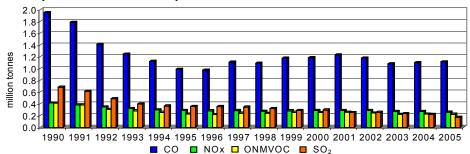



Fig. 2.3 Trends of direct GHG emissions by sectors

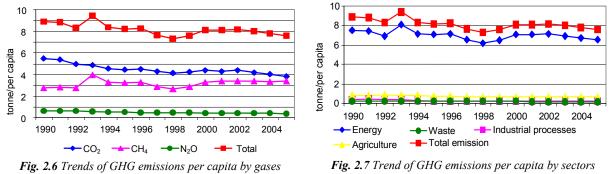
Fig. 2.4 Change in total emission as compared to 1990

The highest values of the total emissions as comparison with the base year were recorded in 1993 and 2002 (more than 13%). The lowest values of emissions were in 1998 (-3.9 %).

**Table 2.3** Change in totalemission as compared to 1990


| Year | %    | Year | %    |
|------|------|------|------|
| 1990 | 0.0  | 1998 | -3.9 |
| 1991 | 1.6  | 1999 | 1.0  |
| 1992 | -2.2 | 2000 | 10.0 |
| 1993 | 13.3 | 2001 | 11.1 |
| 1994 | 2.2  | 2002 | 13.5 |
| 1995 | 2.2  | 2003 | 12.5 |
| 1996 | 4.8  | 2004 | 10.7 |
| 1997 | -1.2 | 2005 | 9.3  |

#### Table 2.4 Indirect GHG emissions, million tonnes


| Year | CO  | NOx | NMVOC | SO <sub>2</sub> | Year | CO  | NOx | NMVOC | $SO_2$ |
|------|-----|-----|-------|-----------------|------|-----|-----|-------|--------|
| 1990 | 1.9 | 0.4 | 0.4   | 0.7             | 1998 | 1.1 | 0.3 | 0.2   | 0.3    |
| 1991 | 1.8 | 0.4 | 0.4   | 0.6             | 1999 | 1.2 | 0.3 | 0.3   | 0.3    |
| 1992 | 1.4 | 0.3 | 0.3   | 0.5             | 2000 | 1.2 | 0.3 | 0.3   | 0.3    |
| 1993 | 1.2 | 0.3 | 0.3   | 0.4             | 2001 | 1.2 | 0.3 | 0.3   | 0.3    |
| 1994 | 1.1 | 0.3 | 0.3   | 0.4             | 2002 | 1.2 | 0.3 | 0.2   | 0.3    |
| 1995 | 1.0 | 0.3 | 0.2   | 0.4             | 2003 | 1.1 | 0.3 | 0.2   | 0.2    |
| 1996 | 1.0 | 0.3 | 0.2   | 0.4             | 2004 | 1.1 | 0.3 | 0.2   | 0.2    |
| 1997 | 1.1 | 0.3 | 0.2   | 0.3             | 2005 | 1.1 | 0.3 | 0.3   | 0.2    |

Changes in indirect GHG emissions for the period 1990-2005 were as follows: CO -43%; NOx -38%; NMVOC - 46%; SO<sub>2</sub> -75%.

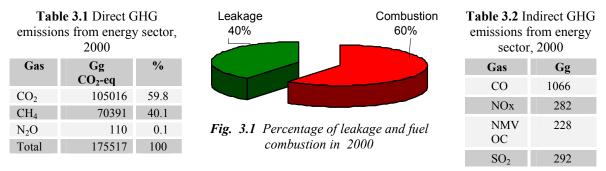
Per capita emissions for the considered period changed as follows: the total emission decreased from 8.9 tonnes  $CO_2$ -eq (1990) to 8.1 (2000) and 7.6 (2005); the  $CO_2$  emissions also decreased from 5.5 tonnes  $CO_2$  equivalent to 4.4  $\mu$  3.8 tonnes in 2000 and 2005 respectively; and the N<sub>2</sub>O emissions – from 0.6  $CO_2$  equivalent in 1990 to 0.4  $CO_2$  equivalent in 2000 and 2005. The per capita  $CH_4$  emissions increased from 2.8 to 3.3 and 3.4 tonnes  $CO_2$  equivalent in 2000 and 2005. The most considerable changes in the emissions per inhabitant occurred in the energy sector – drop from 7.5 tonnes  $CO_2$  equivalent in 1990 to 7.1 and 6.6 tonnes in 2000 and 2005.










#### **Chapter 3: ENERGY**

#### 3.1 Sector review

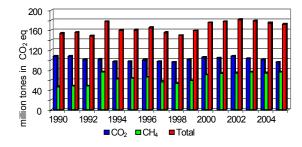
- The energy sector includes two sub-sectors:
- Fuel combustion activities (1 A);
- Fugitive emissions from fuels (1 B);

In this sector the inventories of direct greenhouse gases  $-CO_2$ ,  $CH_4$ ,  $N_2O$  and indirect greenhouse gases  $-CO_2$ , NOx, NMVOC, and SO<sub>2</sub> have been carried out.

#### Emissions in 2000



In 2000 the total emissions from fuel combustion accounted to 105273 Gg CO<sub>2</sub> equivalent, the total fugitive emissions - 70245 Gg CO<sub>2</sub> equivalent.


#### Trends of emissions by gas

| Table 3.3 Direct GHG emissions from energy sector, r | million tonnes CO <sub>2</sub> equivalent |
|------------------------------------------------------|-------------------------------------------|
|                                                      |                                           |

| Year | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | Total | Year | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | Total |
|------|-----------------|-----------------|------------------|-------|------|-----------------|-----------------|------------------|-------|
| 1990 | 107.0           | 46.5            | 0.2              | 153.7 | 1998 | 96.3            | 53.3            | 0.1              | 149.7 |
| 1991 | 107.0           | 48.4            | 0.2              | 155.6 | 1999 | 100.6           | 58.4            | 0.1              | 159.0 |
| 1992 | 100.2           | 48.1            | 0.1              | 148.5 | 2000 | 105.0           | 70.4            | 0.1              | 175.5 |
| 1993 | 101.3           | 76.2            | 0.1              | 177.6 | 2001 | 104.3           | 73.4            | 0.1              | 177.7 |
| 1994 | 96.9            | 62.3            | 0.1              | 159.3 | 2002 | 107.3           | 74.2            | 0.1              | 181.6 |
| 1995 | 97.2            | 63.2            | 0.1              | 60.6  | 2003 | 102.8           | 75.8            | 0.1              | 178.8 |
| 1996 | 100.0           | 65.3            | 0.1              | 165.4 | 2004 | 100.2           | 74.5            | 0.1              | 174.8 |
| 1997 | 97.4            | 57.1            | 0.1              | 154.6 | 2005 | 95.6            | 76.6            | 0.1              | 172.3 |

The changes occurred in the sector for the period 1990-2005 were as follows:  $CO_2$  -10.7%;  $CH_4$  +65%;  $N_2O$  -50%; the total emission from the sector + 12%.

No emissions of N<sub>2</sub>O were shown in the fig. 3.2 due to their marginal amounts.



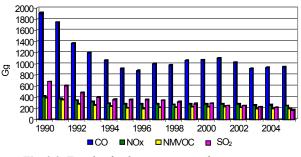



Fig. 3.2 Trends of direct GHG emissions from energy sector

Fig. 3.3 Trends of indirect emissions from energy sector

The changes in the emissions from the sector for the period 1990-2005 were as follows: CO -50.7% or halved emissions; NOx -38.8% or decrease by 1.6 times; NMVOC -48.3% or decrease by 1.9 times; SO<sub>2</sub> -75.1% or fall by 4 times.



| Table 3.4 multert Ono emissions in the energy sector, Og |      |     |       |                 |      |      |     |       |                 |  |
|----------------------------------------------------------|------|-----|-------|-----------------|------|------|-----|-------|-----------------|--|
| Year                                                     | CO   | NOx | NMVOC | SO <sub>2</sub> | Year | CO   | NOx | NMVOC | SO <sub>2</sub> |  |
| 1990                                                     | 1904 | 410 | 381   | 676             | 1998 | 976  | 270 | 218   | 315             |  |
| 1991                                                     | 1738 | 377 | 351   | 606             | 1999 | 1059 | 276 | 230   | 285             |  |
| 1992                                                     | 1362 | 344 | 281   | 481             | 2000 | 1066 | 282 | 228   | 292             |  |
| 1993                                                     | 1192 | 317 | 256   | 392             | 2001 | 1098 | 281 | 232   | 250             |  |
| 1994                                                     | 1056 | 292 | 233   | 358             | 2002 | 1025 | 280 | 217   | 250             |  |
| 1995                                                     | 905  | 283 | 206   | 353             | 2003 | 912  | 262 | 196   | 229             |  |
| 1996                                                     | 874  | 276 | 197   | 349             | 2004 | 927  | 264 | 197   | 217             |  |
| 1997                                                     | 1000 | 281 | 220   | 341             | 2005 | 939  | 251 | 197   | 168             |  |

Table 3.4 Indirect GHG emissions in the energy sector. Gg

Trends of emissions from fuel combustion and leakage

Table 3.5 Total emissions from fuel combustion and leakage, million tones CO<sub>2</sub> equivalent

|      |            |         | U /  |            | 1       |
|------|------------|---------|------|------------|---------|
| Year | Combustion | Leakage | Year | Combustion | Leakage |
| 1990 | 108        | 46      | 1998 | 97         | 53      |
| 1991 | 108        | 48      | 1999 | 101        | 58      |
| 1992 | 101        | 48      | 2000 | 105        | 70      |
| 1993 | 102        | 76      | 2001 | 105        | 73      |
| 1994 | 97         | 62      | 2002 | 108        | 74      |
| 1995 | 97         | 63      | 2003 | 103        | 76      |
| 1996 | 100        | 65      | 2004 | 100        | 74      |
| 1997 | 98         | 57      | 2005 | 96         | 76      |

For the period 1990-2005 the changes in the emissions from the fuel combustion amounted to -11.1%; from leakage +65.2%.

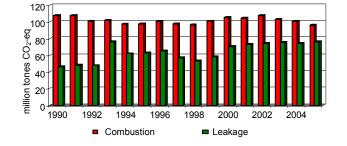
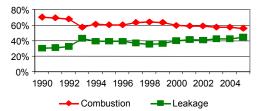
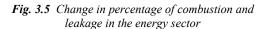





Fig. 3.4 Trends of emissions from combustion and leakage





#### Key sources

The key sources that were used when assessment of emission level or trend, are listed below in order of decreasing emission volumes:

- 1. Fugitive CH<sub>4</sub> emissions from oil and gas production level, trend
- 2. Other sectors. Residential sector, CO<sub>2</sub> emissions from natural gas combustion level, trend
- 3. Energy Industries, CO<sub>2</sub> emissions from natural gas combustion level, trend.
- 4. Other sectors: Commercial sector, CO<sub>2</sub> emissions from natural gas combustion level, trend.
- 5. Energy industries, CO<sub>2</sub> emissions from residual fuel oil level, trend.
- 6. Mobile sources: CO<sub>2</sub> emissions from road transportation level, trend.
- 7. CO<sub>2</sub> emissions from pipeline transport level, trend.
- 8. Manufacturing industries and construction, CO<sub>2</sub> emissions from natural gas combustion level, trend.
- 9. Energy industries, CO<sub>2</sub> emissions from brown coal combustion level, trend.
- 10. Other sectors: Agriculture, CO<sub>2</sub> emissions from liquid fuel combustion level, trend.
- 11. Energy industries, CO<sub>2</sub> emissions from crude oil combustion level, trend.
- 12. Other sectors: Commercial sector, CO<sub>2</sub> emissions from liquid fuel combustion level, trend.
- 13. Manufacturing industries and construction, CO<sub>2</sub> emissions from liquid fuel combustion trend.
- 14. Other sectors: Commercial sector, CO<sub>2</sub> emissions from solid fuel combustion trend.
- 15. Mobile sources: CO<sub>2</sub> emissions from railways level, trend.
- 16. Other sectors. Residential sector, CO<sub>2</sub> emissions from liquid fuel combustion –trend
- 17. Manufacturing industries and construction, CO<sub>2</sub> emissions from solid fuel combustion trend
- 18. Other sectors. Residential sector, CO<sub>2</sub> emissions from solid fuel combustion trend.



#### **3.2 1A FUEL COMBUSTION ACTIVITIES**

#### 3.2.1 Description of source categories

In this category the emissions of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO, NOx, NMVOC and SO<sub>2</sub> from fuel combustion were estimated. The emissions were estimated by sub-sectors: 1A1 Energy Industries; 1A2 Manufacturing industries and construction; 1A3 Transport (all types of transport 1A3 a (I  $\mu$  ii), 1A3 b, 1A3 c, 1A3 d ii, 1A3 e i); 1A4 a Commercial sector, 1A4 b Residential sector, 1A4 c Agriculture (I  $\mu$  ii). CO<sub>2</sub> emissions were also estimated with employing the reference approach (Annex 4).

| Table 3.6 Percentage of direct GHG emissions from | m |
|---------------------------------------------------|---|
| fuel combustion, 2000                             |   |

| 1401 001110 4501011, 2000 |                        |       |  |  |  |  |
|---------------------------|------------------------|-------|--|--|--|--|
| Gas                       | Gg CO <sub>2</sub> -eq | %     |  |  |  |  |
| CO <sub>2</sub>           | 105016                 | 99.8  |  |  |  |  |
| CH <sub>4</sub>           | 146                    | 0.1   |  |  |  |  |
| $N_2O$                    | 110                    | 0.1   |  |  |  |  |
| Total                     | 105273                 | 100.0 |  |  |  |  |

| Table 3.7 | Indirect GHG | emissions from fuel |
|-----------|--------------|---------------------|
|           | combustion,  | 2000                |

| Gas             | Gg   |
|-----------------|------|
| СО              | 1066 |
| NOx             | 282  |
| NMVOC           | 191  |
| SO <sub>2</sub> | 223  |

The  $CO_2$  emissions from fuel combustion calculated with employing the reference approach, amounted 106060 Gg in 2000. Difference between the emissions calculated with use of two approaches is 1%.

The  $CO_2$  emissions from biomass combustion amounted to 3001.8 Gg (not included in the total emission). Emissions from international bunkers amounted to 1126.4 Gg  $CO_2$  equivalent (not included in the total emission).

#### **CO**<sub>2</sub> Emissions

The most significant differences in the  $CO_2$  emissions calculated with employing the reference and sectoral approaches were recorded in the beginning of the 90'es.

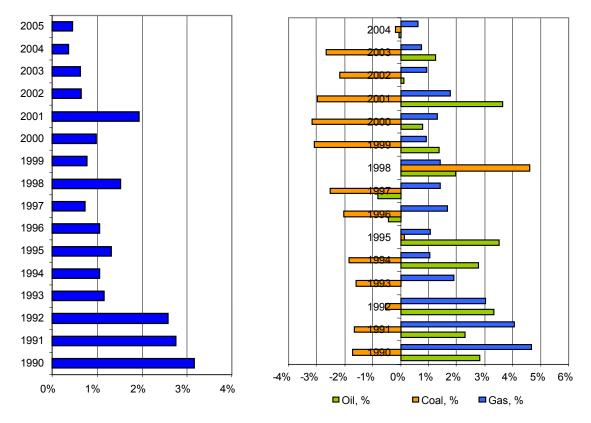
| Year | Reference approach | Sectoral approach | Difference, % |
|------|--------------------|-------------------|---------------|
| 1990 | 110495             | 107009            | 3.2           |
| 1991 | 110035             | 107003            | 2.8           |
| 1992 | 102905             | 100249            | 2.6           |
| 1993 | 102497             | 101318            | 1.2           |
| 1994 | 97909              | 96894             | 1.0           |
| 1995 | 98511              | 97224             | 1.3           |
| 1996 | 101114             | 100069            | 1.0           |
| 1997 | 99157              | 98439             | 0.7           |
| 1998 | 97755              | 96270             | 1.5           |
| 1999 | 101353             | 100575            | 0.8           |
| 2000 | 106060             | 105016            | 1.0           |
| 2001 | 106306             | 104260            | 1.9           |
| 2002 | 107950             | 107260            | 0.6           |
| 2003 | 103485             | 102848            | 0.6           |
| 2004 | 100602             | 100236            | 0.4           |
| 2005 | 96076              | 95648             | 0.4           |

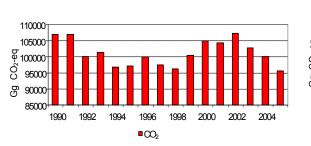
Table 3.8 CO<sub>2</sub> emissions calculated with employing the reference and sectoral approaches, Gg CO<sub>2</sub> equivalent

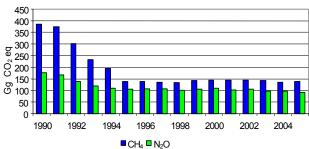
The difference in the calculations of the  $CO_2$  emissions by type of fuel is presented in the table 3.9.

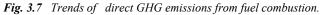
| Year | Reference approach, million tonnes of CO <sub>2</sub> |       |       | Sectoral approach,<br>million tonnes of CO <sub>2</sub> |       |       | Difference, % |      |     |
|------|-------------------------------------------------------|-------|-------|---------------------------------------------------------|-------|-------|---------------|------|-----|
|      | Oil                                                   | Coal  | Gas   | Oil                                                     | Coal  | Gas   | Oil           | Coal | Gas |
| 1990 | 33.37                                                 | 13.50 | 63.62 | 32.4                                                    | 13.74 | 60.64 | 2.8           | -1.7 | 4.7 |
| 1991 | 28.96                                                 | 12.86 | 68.22 | 28.3                                                    | 13.07 | 65.45 | 2.3           | -1.6 | 4.1 |
| 1992 | 23.39                                                 | 9.73  | 69.78 | 22.6                                                    | 9.78  | 67.66 | 3.3           | -0.5 | 3.0 |
| 1993 | 20.32                                                 | 5.73  | 76.45 | 20.3                                                    | 5.82  | 74.99 | 0.0           | -1.6 | 1.9 |
| 1994 | 19.28                                                 | 4.64  | 73.98 | 18.7                                                    | 4.73  | 73.23 | 2.8           | -1.8 | 1.0 |
| 1995 | 18.96                                                 | 4.07  | 75.48 | 18.3                                                    | 4.06  | 74.67 | 3.5           | 0.1  | 1.1 |
| 1996 | 17.97                                                 | 4.42  | 78.73 | 18.1                                                    | 4.50  | 77.40 | -0.4          | -2.0 | 1.7 |
| 1997 | 18.82                                                 | 3.71  | 76.63 | 19.0                                                    | 3.80  | 75.55 | -0.8          | -2.5 | 1.4 |
| 1998 | 17.58                                                 | 3.41  | 76.76 | 17.2                                                    | 3.25  | 75.68 | 2.0           | 4.6  | 1.4 |
| 1999 | 18.98                                                 | 3.11  | 79.27 | 18.7                                                    | 3.20  | 78.56 | 1.4           | -3.1 | 0.9 |
| 2000 | 19.75                                                 | 3.73  | 82.58 | 19.6                                                    | 3.85  | 81.49 | 0.8           | -3.2 | 1.3 |
| 2001 | 18.21                                                 | 3.13  | 84.96 | 17.5                                                    | 3.23  | 83.46 | 3.6           | -3.0 | 1.8 |
| 2002 | 17.86                                                 | 3.31  | 86.78 | 17.8                                                    | 3.38  | 85.97 | 0.1           | -2.2 | 0.9 |
| 2003 | 16.98                                                 | 2.55  | 83.95 | 16.8                                                    | 2.62  | 83.34 | 1.3           | -2.7 | 0.7 |
| 2004 | 15.66                                                 | 3.39  | 81.55 | 15.7                                                    | 3.39  | 81.05 | 0.0           | -0.2 | 0.6 |
| 2005 | 14.01                                                 | 2.90  | 79.16 | 14.1                                                    | 2.91  | 78.55 | -0.4          | -0.4 | 0.8 |

 Table 3.9 CO2 emissions from fuels calculated with employing the reference and sectoral approaches, million tonnes of CO2





Fig. 3.6 Difference in estimates made by the reference and sectoral approach


#### Trends of emissions by gases


The direct GHG emissions for the period 1990-2005 changed as follows:  $CO_2 -10.6\%$ ;  $N_2O -48.7\%$ ;  $CH_4 - 64.4\%$ ; total emission -10.9%;  $CO_2$  from biomass combustion +429% or a rise in emissions by 5.3 times. The emissions from biomass combustion were not included in the total emission.

|      |                 |                  |                 |                | 2 1                                     |
|------|-----------------|------------------|-----------------|----------------|-----------------------------------------|
| Year | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total emission | CO <sub>2</sub> from biomass combustion |
| 1990 | 107009          | 177              | 385             | 107571         | 856                                     |
| 1991 | 107003          | 166              | 373             | 107543         | 959                                     |
| 1992 | 100249          | 139              | 303             | 100691         | 1018                                    |
| 1993 | 101318          | 119              | 233             | 101669         | 1208                                    |
| 1994 | 96894           | 109              | 196             | 97199          | 1565                                    |
| 1995 | 97224           | 105              | 139             | 97468          | 2028                                    |
| 1996 | 100069          | 108              | 139             | 100316         | 2434                                    |
| 1997 | 97439           | 106              | 137             | 97682          | 2676                                    |
| 1998 | 96270           | 100              | 133             | 96503          | 2859                                    |
| 1999 | 100575          | 104              | 144             | 100822         | 2957                                    |
| 2000 | 105016          | 110              | 146             | 105273         | 3002                                    |
| 2001 | 104260          | 103              | 144             | 104507         | 3392                                    |
| 2002 | 107260          | 105              | 144             | 107510         | 3902                                    |
| 2003 | 102848          | 98               | 142             | 103088         | 4316                                    |
| 2004 | 100235          | 99               | 137             | 100471         | 4506                                    |
| 2005 | 95648           | 91               | 137             | 95876          | 4532                                    |

Table 3.10 Direct GHG emissions from fuel combustion, Gg CO<sub>2</sub> equivalent







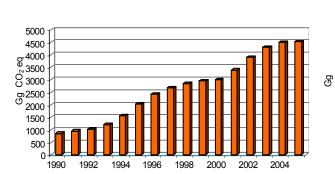
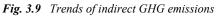




Fig. 3.8 Trend of CO<sub>2</sub> emissions from biomass combustion



|      |      |     |       |                 |      |      | , 0 |       |                 |
|------|------|-----|-------|-----------------|------|------|-----|-------|-----------------|
| Year | CO   | NOx | NMVOC | SO <sub>2</sub> | Year | CO   | NOx | NMVOC | SO <sub>2</sub> |
| 1990 | 1904 | 410 | 337   | 503             | 1998 | 975  | 269 | 178   | 220             |
| 1991 | 1738 | 377 | 306   | 443             | 1999 | 1058 | 276 | 192   | 205             |
| 1992 | 1361 | 344 | 243   | 345             | 2000 | 1066 | 282 | 191   | 223             |
| 1993 | 1191 | 317 | 215   | 272             | 2001 | 1097 | 280 | 197   | 182             |
| 1994 | 1055 | 292 | 192   | 249             | 2002 | 1025 | 280 | 184   | 191             |
| 1995 | 904  | 282 | 168   | 258             | 2003 | 912  | 262 | 164   | 176             |
| 1996 | 873  | 275 | 161   | 270             | 2004 | 927  | 263 | 166   | 169             |
| 1997 | 999  | 280 | 183   | 257             | 2005 | 938  | 251 | 168   | 125             |

Table 3.11 Indirect GHG emissions from fuel combustion, Gg

rig. 5.7 Trenus of thureet 0110 emis

For the period 1990-2005 changes in the indirect GHG emissions were as follows: CO -50.7%; NOx -38.8%; NMVOC -50.1%; SO<sub>2</sub> -75.2%.



#### GHG emissions by sub-sectors

For all sub-sectors the same emission factors were applied for each type of fuel, therefore all sub-sectors are described in the sub-chapter – Fuel combustion.

| Table 3.12 Direct GHG emissions by sub-sectors in |
|---------------------------------------------------|
| 2000, Gg CO <sub>2</sub> -eq                      |

| Sub-sector                                      | CO <sub>2</sub> | CH <sub>4</sub> | $N_2O$ | Total  |
|-------------------------------------------------|-----------------|-----------------|--------|--------|
| Energy industries                               | 44284           | 20              | 54     | 44359  |
| Manufacturing<br>industries and<br>construction | 4982            | 9               | 5      | 4996   |
| Transport                                       | 11132           | 31              | 16     | 11179  |
| Commercial                                      | 9024            | 19              | 10     | 9053   |
| Residential                                     | 32696           | 62              | 18     | 32777  |
| Agriculture                                     | 2693            | 5               | 7      | 2704   |
| Other                                           | 206             | 0               | 0      | 206    |
| Total                                           | 105016          | 146             | 110    | 105272 |

Table 3.13 Indirect GHG emissions by sub-sectors in2000, Gg CO2-eq

| Sub-sector                                      | CO   | NOx | NMVOC | SO <sub>2</sub> |
|-------------------------------------------------|------|-----|-------|-----------------|
| Energy industries                               | 14   | 120 | 4     | 185             |
| Manufacturing<br>industries and<br>construction | 3    | 14  | 0     | 4               |
| Transport                                       | 929  | 80  | 161   | 6               |
| Commercial                                      | 19   | 9   | 2     | 18              |
| Residential                                     | 30   | 29  | 3     | 1               |
| Agriculture                                     | 72   | 29  | 21    | 8               |
| Total                                           | 1066 | 282 | 191   | 223             |

"Other" means CO<sub>2</sub> emissions from lubricating oils, as they were not distributed among sub-sectors.

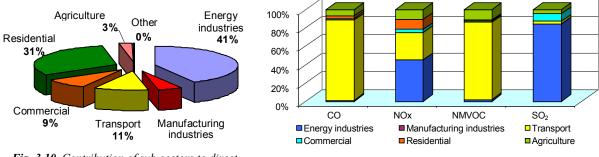



Fig. 3.10 Contribution of sub-sectors to direct GHG emissions from fuel combustion, 2000

Fig. 3.11 Contribution of sub-sectors to indirect GHG emissions from fuel combustion, 2000

The most significant contributors to the GHG emissions are the energy industries and residential sub-sectors.

#### Trends of the GHG emissions by sub-sectors

|      |                      |                                              |           | -          |             |             |        |
|------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|--------|
| Year | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture | Others |
| 1990 | 55100                | 10168                                        | 16491     | 6841       | 12240       | 5667        | 503    |
| 1991 | 53981                | 9406                                         | 15168     | 9507       | 13041       | 5399        | 501    |
| 1992 | 50432                | 8341                                         | 11274     | 10679      | 13986       | 5118        | 420    |
| 1993 | 46921                | 7725                                         | 9803      | 14646      | 17421       | 4445        | 357    |
| 1994 | 44952                | 6058                                         | 8720      | 10385      | 22588       | 3855        | 337    |
| 1995 | 44916                | 6227                                         | 8134      | 9369       | 24492       | 3870        | 216    |
| 1996 | 43249                | 5808                                         | 8358      | 9723       | 28961       | 3757        | 214    |
| 1997 | 43058                | 5563                                         | 8571      | 7610       | 29762       | 2620        | 255    |
| 1998 | 40965                | 5232                                         | 9096      | 7786       | 30272       | 2687        | 232    |
| 1999 | 40916                | 5042                                         | 10385     | 8470       | 32408       | 3151        | 203    |
| 2000 | 44284                | 4982                                         | 11132     | 9024       | 32696       | 2693        | 206    |
| 2001 | 42251                | 5106                                         | 12941     | 9050       | 31696       | 3004        | 213    |
| 2002 | 44912                | 5150                                         | 12569     | 7968       | 33833       | 2649        | 179    |
| 2003 | 41640                | 5332                                         | 11142     | 8338       | 33893       | 2141        | 363    |
| 2004 | 43345                | 5333                                         | 10139     | 9773       | 29467       | 2003        | 175    |
| 2005 | 36695                | 5327                                         | 9588      | 10689      | 30991       | 2024        | 334    |

Table 3.14 CO2 emissions from fuel combustion by sub-sectors, Gg

The following changes in the emissions from the sub-sectors occurred for the period 1990-2005: energy industries -33.4%; manufacturing industries and construction -47.6%; transport -41.9%; commercial sub-sector

+56.2%; residential sub-sector +153.2% or increase by 2.5 times; agriculture -64.3%; other (lubricating oils, which were not distributed among the sub-sectors) -33.6 %.

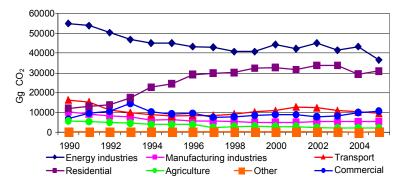


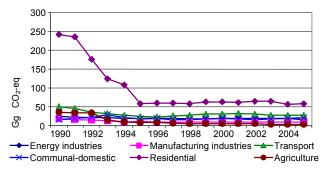

Fig. 3.12 Trends of CO<sub>2</sub> emissions by sub-sectors

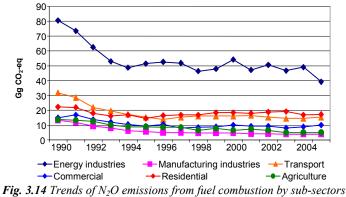
Considerable rise in the  $CO_2$  emissions from the residential sub-sector was due to the fact that many inhabited localities, including in rural area, were supplied with natural gas for that period within the framework of the state program of gasification.

| Year | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture |
|------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|
| 1990 | 24.2                 | 17.6                                         | 50.8      | 15.4       | 241.9       | 34.7        |
| 1991 | 23.1                 | 16.2                                         | 45.8      | 20.1       | 234.7       | 33.4        |
| 1992 | 20.9                 | 14.5                                         | 35.7      | 22.0       | 175.9       | 34.0        |
| 1993 | 20.2                 | 13.7                                         | 31.5      | 28.5       | 124.2       | 14.7        |
| 1994 | 19.5                 | 10.4                                         | 27.7      | 20.5       | 108.4       | 9.8         |
| 1995 | 19.8                 | 11.2                                         | 23.5      | 18.5       | 57.4        | 8.4         |
| 1996 | 19.2                 | 10.5                                         | 22.4      | 19.4       | 59.2        | 7.9         |
| 1997 | 19.3                 | 10.0                                         | 26.5      | 15.4       | 59.0        | 6.7         |
| 1998 | 18.1                 | 9.5                                          | 26.6      | 15.9       | 58.9        | 4.5         |
| 1999 | 18.5                 | 9.1                                          | 30.6      | 17.3       | 62.7        | 5.5         |
| 2000 | 20.2                 | 9.1                                          | 31.1      | 18.8       | 62.4        | 4.6         |
| 2001 | 18.6                 | 9.5                                          | 31.9      | 18.3       | 61.0        | 5.1         |
| 2002 | 20.0                 | 9.3                                          | 29.8      | 16.5       | 64.5        | 4.4         |
| 2003 | 18.7                 | 9.9                                          | 27.4      | 17.1       | 65.2        | 3.5         |
| 2004 | 18.8                 | 10.1                                         | 27.7      | 19.9       | 56.8        | 3.3         |
| 2005 | 15.5                 | 9.9                                          | 28.1      | 21.7       | 58.8        | 3.4         |

Table 3.15 CH<sub>4</sub> emissions from fuel combustion by sub-sectors, Gg CO<sub>2</sub> equivalent

Change in the CH<sub>4</sub> emissions from fuel combustion in the sub-sectors for the period 1990-2005 was as follows: energy industries -36.0%; manufacturing industries and construction -43.7%; transport -44.7%; commercial +40.9%; residential -75.7% or drop by 4.1 times; agriculture -90.2% or drop by 10 times.





Fig. 3.13 Trend of CH<sub>4</sub> emissions from fuel combustion by sub-sectors

Decrease in  $CH_4$  emissions from the residential sector between 1990 and 1995 brought about by less amount of solid fuel used in the sector.

| Year | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture |
|------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|
| 1990 | 80.6                 | 13.3                                         | 31.9      | 14.9       | 22.3        | 14.0        |
| 1991 | 73.5                 | 11.8                                         | 28.5      | 17.1       | 22.0        | 13.3        |
| 1992 | 62.6                 | 9.3                                          | 22.0      | 13.6       | 18.0        | 12.4        |
| 1993 | 53.0                 | 8.1                                          | 19.5      | 12.1       | 16.1        | 10.2        |
| 1994 | 48.7                 | 6.2                                          | 17.4      | 10.5       | 17.1        | 9.0         |
| 1995 | 51.5                 | 5.9                                          | 15.2      | 9.3        | 14.6        | 9.0         |
| 1996 | 52.7                 | 5.3                                          | 14.0      | 10.5       | 16.4        | 8.7         |
| 1997 | 51.8                 | 5.3                                          | 15.2      | 8.1        | 16.7        | 8.7         |
| 1998 | 46.5                 | 4.7                                          | 16.1      | 8.7        | 17.1        | 6.5         |
| 1999 | 48.1                 | 4.7                                          | 16.1      | 9.0        | 18.3        | 7.8         |
| 2000 | 54.3                 | 4.7                                          | 16.1      | 10.2       | 18.3        | 6.5         |
| 2001 | 47.1                 | 4.3                                          | 16.4      | 9.3        | 18.0        | 7.4         |
| 2002 | 50.5                 | 4.3                                          | 15.5      | 9.3        | 18.9        | 6.5         |
| 2003 | 46.8                 | 4.0                                          | 14.6      | 8.1        | 19.2        | 5.3         |
| 2004 | 49.3                 | 4.0                                          | 14.6      | 9.0        | 16.7        | 5.0         |
| 2005 | 39.4                 | 4.0                                          | 15.2      | 10.2       | 17.4        | 5.0         |

Table 3.16 N<sub>2</sub>O emissions from fuel combustion by sub-sectors, Gg CO<sub>2</sub> equivalent

Change in the  $N_2O$  emissions from fuel combustion in the sub-sectors for the period 1990-2005 was as follows: energy industries -51.1% or half decrease; manufacturing industries and construction -69.9% or decrease by 3.3 times; transport -52.4 or half decrease; commercial -31.5%; residential -22.0%; agriculture -64.3 % or decrease by 2.8 times.



Considerable drop in the  $N_2O$  emissions from energy industries for the period 1990-1994 was caused by decrease in coal utilization.

| Table 3.17 CO emission | ns from fue | combustion | by sub-sectors, | Gg |
|------------------------|-------------|------------|-----------------|----|
|------------------------|-------------|------------|-----------------|----|

| Year | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture |  |  |  |
|------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|--|--|--|
| 1990 | 16.9                 | 5.7                                          | 1567.6    | 41.1       | 78.6        | 193.6       |  |  |  |
| 1991 | 16.9                 | 5.2                                          | 1399.7    | 52.0       | 76.6        | 187.2       |  |  |  |
| 1992 | 16.2                 | 4.4                                          | 1090.0    | 31.2       | 58.9        | 160.6       |  |  |  |
| 1993 | 15.2                 | 4.1                                          | 970.7     | 25.1       | 43.9        | 132.4       |  |  |  |
| 1994 | 14.6                 | 3.1                                          | 854.4     | 26.2       | 40.7        | 116.9       |  |  |  |
| 1995 | 14.4                 | 3.3                                          | 721.4     | 22.7       | 25.4        | 117.1       |  |  |  |
| 1996 | 13.7                 | 3.0                                          | 693.4     | 25.6       | 27.4        | 109.9       |  |  |  |
| 1997 | 13.7                 | 2.9                                          | 832.9     | 16.1       | 27.5        | 106.0       |  |  |  |
| 1998 | 13.2                 | 2.7                                          | 843.6     | 17.0       | 27.7        | 70.7        |  |  |  |
| 1999 | 13.0                 | 2.6                                          | 912.9     | 16.1       | 29.5        | 84.1        |  |  |  |
| 2000 | 14.0                 | 2.6                                          | 928.9     | 18.7       | 29.5        | 72.1        |  |  |  |
| 2001 | 13.7                 | 2.7                                          | 953.4     | 18.8       | 28.8        | 80.0        |  |  |  |
| 2002 | 14.5                 | 2.7                                          | 887.6     | 18.6       | 30.5        | 71.1        |  |  |  |
| 2003 | 13.4                 | 2.8                                          | 796.5     | 11.0       | 30.7        | 57.5        |  |  |  |
| 2004 | 14.0                 | 2.9                                          | 817.2     | 12.1       | 26.7        | 53.7        |  |  |  |
| 2005 | 12.1                 | 2.8                                          | 825.6     | 15.9       | 27.8        | 54.2        |  |  |  |

 $\bigcirc$ 

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

Change in the CO emissions from fuel combustion in the sub-sectors for the period 1990-2005 was as follows: energy industries -28.4 %; manufacturing industries and construction -50.9% or half decrease; transport -47.3 or about half decrease; commercial -61.3% or drop by 2.6 times; residential -64.6% or drop by 2.8 times; agriculture -72.0 % or decrease by 3.6 times.




Fig. 3.15 Trends of CO emissions from fuel combustion by sub-sectors

Drop in the CO emissions from transport in the first half of the 90-s was brought about by decline in cargo- and passenger transportation, mainly by motor and railway transport.

| Year | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture |
|------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|
| 1990 | 151.0                | 29.4                                         | 158.1     | 7.3        | 12.1        | 51.6        |
| 1991 | 147.7                | 26.9                                         | 144.2     | 9.6        | 12.7        | 35.5        |
| 1992 | 137.8                | 23.8                                         | 112.5     | 10.5       | 13.2        | 45.8        |
| 1993 | 127.2                | 22.0                                         | 97.1      | 13.6       | 16.0        | 41.1        |
| 1994 | 121.5                | 17.0                                         | 86.1      | 9.8        | 20.5        | 37.0        |
| 1995 | 121.5                | 17.7                                         | 74.4      | 8.8        | 22.0        | 37.8        |
| 1996 | 117.4                | 16.6                                         | 69.4      | 9.2        | 26.0        | 36.8        |
| 1997 | 116.8                | 15.9                                         | 75.6      | 7.3        | 26.7        | 38.0        |
| 1998 | 111.0                | 15.0                                         | 79.8      | 7.6        | 27.2        | 28.7        |
| 1999 | 110.9                | 14.4                                         | 79.8      | 8.3        | 29.1        | 33.6        |
| 2000 | 120.4                | 14.3                                         | 80.0      | 8.9        | 29.3        | 28.7        |
| 2001 | 114.8                | 14.6                                         | 81.5      | 8.7        | 28.4        | 32.3        |
| 2002 | 121.9                | 14.6                                         | 76.6      | 7.9        | 30.4        | 28.3        |
| 2003 | 112.7                | 15.1                                         | 72.4      | 8.1        | 30.4        | 22.8        |
| 2004 | 117.8                | 15.1                                         | 72.9      | 9.5        | 26.5        | 21.4        |
| 2005 | 99.8                 | 14.8                                         | 76.4      | 10.3       | 27.8        | 21.6        |

Table 3.18 NOx emissions from fuel combustion, Gg

The following changes in NOx emissions from the sub-sectors occurred for the period 1990-2005: energy industries -33.9% or 1.5 time decline; manufacturing industries and construction -49.7% or half decrease; transport -51.7% or half decrease; commercial sub-sector +41.1%; residential sub-sector +129.8% or an increase by 2.3 times; agriculture -58.1% or drop by 2.4 times.

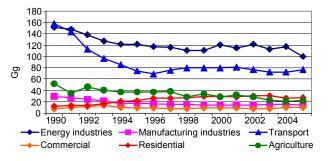



Fig. 3.16 Trends of NOx emissions from fuel combustion by sub-sectors

Drop in the NOx emissions from transport in the first half of the 90-s as with drop in the CO emissions was brought about by decline in cargo- and passenger transportation, mainly by motor and railway transport.

3

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

| Table 5.17 Harves emissions nom race combustion by sub-sectors, 65 |                                                                |     |           |            |             |             |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------|-----|-----------|------------|-------------|-------------|--|--|--|
| Year                                                               | Energy Manufacturing industries<br>industries and construction |     | Transport | Commercial | Residential | Agriculture |  |  |  |
| 1990                                                               | 4.4                                                            | 1.0 | 272.4     | 4.2        | 7.9         | 46.7        |  |  |  |
| 1991                                                               | 4.4                                                            | 0.9 | 243.2     | 5.3        | 7.7         | 44.7        |  |  |  |
| 1992                                                               | 4.2                                                            | 0.8 | 189.3     | 3.2        | 5.9         | 39.8        |  |  |  |
| 1993                                                               | 3.9                                                            | 0.7 | 169.2     | 2.5        | 4.4         | 34.3        |  |  |  |
| 1994                                                               | 3.8                                                            | 0.6 | 150.7     | 2.6        | 4.1         | 30.7        |  |  |  |
| 1995                                                               | 3.7                                                            | 0.6 | 128.2     | 2.3        | 2.5         | 31.0        |  |  |  |
| 1996                                                               | 3.6                                                            | 0.5 | 122.5     | 2.6        | 2.7         | 29.6        |  |  |  |
| 1997                                                               | 3.6                                                            | 0.5 | 144.7     | 1.7        | 2.8         | 29.7        |  |  |  |
| 1998                                                               | 3.4                                                            | 0.5 | 148.7     | 1.7        | 2.8         | 21.1        |  |  |  |
| 1999                                                               | 3.4                                                            | 0.5 | 158.5     | 1.7        | 3.0         | 24.9        |  |  |  |
| 2000                                                               | 3.6                                                            | 0.5 | 161.0     | 1.9        | 3.0         | 21.3        |  |  |  |
| 2001                                                               | 3.5                                                            | 0.5 | 164.7     | 1.9        | 2.9         | 23.9        |  |  |  |
| 2002                                                               | 3.7                                                            | 0.5 | 153.3     | 1.9        | 3.1         | 21.0        |  |  |  |
| 2003                                                               | 3.4                                                            | 0.5 | 138.9     | 1.2        | 3.1         | 17.0        |  |  |  |
| 2004                                                               | 3.6                                                            | 0.5 | 141.8     | 1.3        | 2.7         | 15.9        |  |  |  |
| 2005                                                               | 3.1                                                            | 0.5 | 144.4     | 1.6        | 2.8         | 16.0        |  |  |  |

| Table 3.19 NMVOC | emissions from | n fuel combustion b | v sub-sectors. Gg |
|------------------|----------------|---------------------|-------------------|
|                  |                |                     |                   |

Change in the NMVOC emissions from fuel combustion in the sub-sectors for the period 1990-2005 was as follows: energy industries -29.5 %; manufacturing industries and construction -50.0% or half decrease; transport -47.0 or decrease by 1.9 times; commercial -61.9% or drop by 2.6 times; residential -64.6% or drop by 2.8 times; agriculture -65.7 % or decrease by 2.9 times.

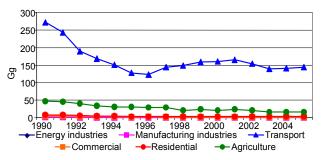



Fig. 3.17 Trends of NMVOC emissions from fuel combustion by sub-sectors

Decrease in the NMVOC emissions from transport in the first half of the 90-s was brought about by the same causes as drop in the CO and  $N_2O$  emissions, that is, a decline in cargo- and passenger transportation, mainly by motor and railway transport.

| Table 5.20 50 <sub>2</sub> emissions nom ruer combustion by sub-sectors, Gg |                      |                                              |           |            |             |             |  |  |  |
|-----------------------------------------------------------------------------|----------------------|----------------------------------------------|-----------|------------|-------------|-------------|--|--|--|
| Year                                                                        | Energy<br>industries | Manufacturing industries<br>and construction | Transport | Commercial | Residential | Agriculture |  |  |  |
| 1990                                                                        | 302.4                | 27.6                                         | 34.6      | 54.8       | 44.7        | 39.4        |  |  |  |
| 1991                                                                        | 255.3                | 23.5                                         | 32.3      | 52.1       | 44.1        | 36.1        |  |  |  |
| 1992                                                                        | 191.2                | 17.6                                         | 25.2      | 41.7       | 33.6        | 35.2        |  |  |  |
| 1993                                                                        | 172.9                | 12.1                                         | 21.4      | 16.9       | 20.8        | 28.2        |  |  |  |
| 1994                                                                        | 160.6                | 8.9                                          | 20.1      | 18.8       | 15.3        | 24.9        |  |  |  |
| 1995                                                                        | 188.4                | 7.0                                          | 18.3      | 15.6       | 3.1         | 25.1        |  |  |  |
| 1996                                                                        | 199.0                | 6.1                                          | 16.2      | 22.7       | 1.7         | 24.6        |  |  |  |
| 1997                                                                        | 194.4                | 6.2                                          | 14.3      | 14.5       | 1.5         | 25.8        |  |  |  |
| 1998                                                                        | 161.9                | 6.6                                          | 15.9      | 14.5       | 1.2         | 19.8        |  |  |  |
| 1999                                                                        | 172.3                | 3.6                                          | 6.3       | 12.1       | 1.1         | 9.8         |  |  |  |
| 2000                                                                        | 185.3                | 3.8                                          | 6.1       | 18.3       | 0.9         | 8.3         |  |  |  |
| 2001                                                                        | 145.5                | 2.7                                          | 6.1       | 17.8       | 1.0         | 9.4         |  |  |  |
| 2002                                                                        | 157.4                | 3.1                                          | 5.8       | 15.5       | 0.9         | 8.2         |  |  |  |
| 2003                                                                        | 150.7                | 2.3                                          | 6.1       | 9.1        | 1.1         | 6.6         |  |  |  |
| 2004                                                                        | 144.7                | 1.9                                          | 5.9       | 9.1        | 1.0         | 6.2         |  |  |  |
| 2005                                                                        | 99.7                 | 1.8                                          | 6.8       | 9.7        | 0.8         | 6.3         |  |  |  |

Table 3.20 SO<sub>2</sub> emissions from fuel combustion by sub-sectors, Gg



Change in the SO<sub>2</sub> emissions from fuel combustion in the sub-sectors for the period 1990-2005 was as follows: energy industries -67.0 % or 3 times less; manufacturing industries and construction -93.5% or a decrease by 15 times; transport -80.3% or decrease by 5.1 times; commercial -82.3% or drop by 5.6 times; residential -98.2% or drop by 56 times; agriculture -84.0 % or decrease by 6.3 times.

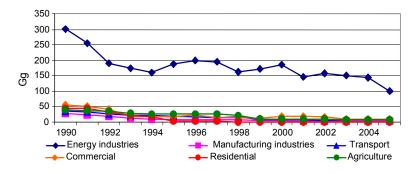
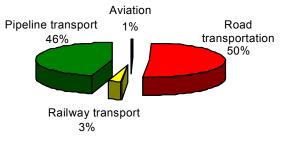



Fig. 3.18 Trends of SO<sub>2</sub> emissions from fuel combustion by sub-sectors

Drop in the SO<sub>2</sub> emissions from the energy sector occurred due to an increase in share of gas in the utilized fuel. *GHG emissions from transport* 


GHG emissions from transport were estimated in more detail – by types of transport.

**Table 3.21** GHG emissions from transport by types, 2000

| Type of transport      | Emissions<br>Gg CO <sub>2</sub> -eq | %   |
|------------------------|-------------------------------------|-----|
| Domestic air transport | 71.4                                | < 1 |
| Road transport         | 5664.7                              | 51  |
| Railways               | 328.5                               | 3   |
| Navigation             | 0                                   | 0   |
| Pipeline transport     | 5114.3                              | 46  |
| Total                  | 1178.9                              | 100 |

| Table 3.22 GHG emissions from transport |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|
| by gases, 2000                          |  |  |  |  |  |

| Gas              | Emissions,<br>Gg CO2-eq | %    |
|------------------|-------------------------|------|
| CO <sub>2</sub>  | 1132                    | 99.6 |
| CH <sub>4</sub>  | 31.1                    | 0.3  |
| N <sub>2</sub> O | 16.2                    | 0.1  |
|                  |                         |      |



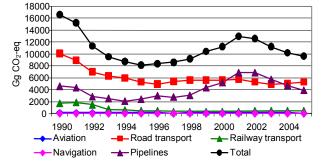
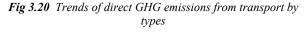




Fig. 3.19 GHG emissions from transport by types, 2000



Change in emissions from transport for the period 1990-2005 was as follows: domestic aviation -65.5% or decline by 2.9 times; road transport -47.2% or drop by 1.9 times; railways -75.0% or decrease by 4 times; navigation – the emissions dropped to zero by 1997 due to degradation of the Aral Sea and complete decline in water transport; pipeline transport -15.3%; total sectoral emission -41.9% or decrease by 1.7 times.

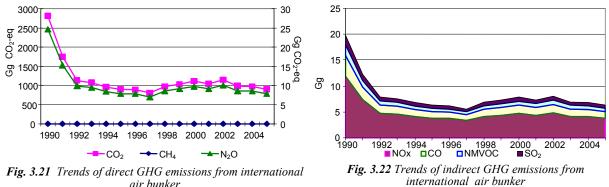
| Table 3.23 Direct GHG emissions from transport, Gg CO <sub>2</sub> equivalent |                          |                       |          |            |                    |       |  |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------|----------|------------|--------------------|-------|--|--|
| Year                                                                          | <b>Domestic aviation</b> | <b>Road transport</b> | Railways | Navigation | Pipeline transport | Total |  |  |
| 1990                                                                          | 165                      | 10060                 | 1761     | 13         | 4575               | 16574 |  |  |
| 1991                                                                          | 108                      | 8957                  | 1808     | 13         | 4357               | 15242 |  |  |
| 1992                                                                          | 75                       | 6959                  | 1436     | 9          | 2852               | 11332 |  |  |
| 1993                                                                          | 69                       | 6353                  | 648      | 9          | 2475               | 9554  |  |  |
| 1994                                                                          | 63                       | 6004                  | 579      | 9          | 2110               | 8765  |  |  |
| 1995                                                                          | 60                       | 5283                  | 441      | 6          | 2382               | 8172  |  |  |
| 1996                                                                          | 59                       | 4944                  | 404      | 6          | 2981               | 8394  |  |  |
| 1997                                                                          | 54                       | 5431                  | 379      | 0          | 2752               | 8616  |  |  |
| 1998                                                                          | 67                       | 5600                  | 388      | 0          | 3086               | 9141  |  |  |
| 1999                                                                          | 67                       | 5640                  | 350      | 0          | 4374               | 10432 |  |  |
| 2000                                                                          | 71                       | 5665                  | 328      | 0          | 5114               | 11179 |  |  |
| 2001                                                                          | 64                       | 5720                  | 375      | 0          | 6830               | 12989 |  |  |
| 2002                                                                          | 67                       | 5296                  | 416      | 0          | 6835               | 12614 |  |  |
| 2003                                                                          | 64                       | 4956                  | 438      | 0          | 5725               | 11184 |  |  |
| 2004                                                                          | 61                       | 5002                  | 503      | 0          | 4678               | 10244 |  |  |
| 2005                                                                          | 57                       | 5289                  | 441      | 0          | 3845               | 9632  |  |  |

 Table 3.23 Direct GHG emissions from transport
 Gg CO<sub>2</sub> equivalent

#### International bunkers

Direct GHG emissions from international air transport in 2000 added up to 1126.4 Gg CO<sub>2</sub> equivalent (in Uzbekistan there is only international air bunker).

Table 3.24 Direct and indirect GHG emissions from international air bunker, 2000


| Direct GHG, Gg CO <sub>2</sub> -eq |                 |        | Indirect GHG, Gg |     |     |        |
|------------------------------------|-----------------|--------|------------------|-----|-----|--------|
| $CO_2$                             | CH <sub>4</sub> | $N_2O$ | CO               | NOx | НМУ | $SO_2$ |
| 1116.4                             | 0.17            | 9.8    | 1.58             | 4.7 | 0.8 | 0.7    |

The following changes in the emissions from international air bunker took place for the period 1

| 1990-2005: CO <sub>2</sub> -68.3%; CH <sub>4</sub> -75.0% or drop by 4 times; N <sub>2</sub> O -68.5%; NOx -68.1%; CO -67.5%; NMVOC - |
|---------------------------------------------------------------------------------------------------------------------------------------|
| 70.0%; SO <sub>2</sub> -68.4%. The emissions of all gases, except of methane were decreased by $3.1-3.3$ times.                       |

| Year  | CO <sub>2</sub>        | $\mathbf{CH}_4$ | $N_2O$ | NOx  | СО  | NMVOC | SO <sub>2</sub> | Year                   | CO <sub>2</sub> | $\mathbf{CH}_4$ | $N_2O$ | NOx | СО  | NMVOC | SO <sub>2</sub> |
|-------|------------------------|-----------------|--------|------|-----|-------|-----------------|------------------------|-----------------|-----------------|--------|-----|-----|-------|-----------------|
| I cal | Gg CO <sub>2</sub> -eq |                 |        | Gg   |     |       | 1 cai           | Gg CO <sub>2</sub> -eq |                 | Gg              |        |     |     |       |                 |
| 1990  | 2818.5                 | 0.4             | 24.7   | 11.9 | 4.0 | 2.0   | 1.9             | 1998                   | 978.0           | 0.1             | 8.6    | 4.1 | 1.4 | 0.7   | 0.6             |
| 1991  | 1745.3                 | 0.3             | 15.3   | 7.4  | 2.5 | 1.2   | 1.1             | 1999                   | 1035.7          | 0.2             | 9.1    | 4.4 | 1.5 | 0.7   | 0.7             |
| 1992  | 1125.1                 | 0.2             | 9.9    | 4.8  | 1.6 | 0.8   | 0.7             | 2000                   | 1116.4          | 0.2             | 9.8    | 4.7 | 1.6 | 0.8   | 0.7             |
| 1993  | 1078.9                 | 0.2             | 9.5    | 4.6  | 1.5 | 0.8   | 0.7             | 2001                   | 1041.4          | 0.2             | 9.1    | 4.4 | 1.5 | 0.7   | 0.7             |
| 1994  | 963.5                  | 0.1             | 8.4    | 4.1  | 1.4 | 0.7   | 0.6             | 2002                   | 1144.1          | 0.2             | 10.0   | 4.8 | 1.6 | 0.8   | 0.8             |
| 1995  | 900.1                  | 0.1             | 7.9    | 3.8  | 1.3 | 0.6   | 0.6             | 2003                   | 983.7           | 0.1             | 8.6    | 4.2 | 1.4 | 0.7   | 0.6             |
| 1996  | 885.7                  | 0.1             | 7.8    | 3.8  | 1.3 | 0.6   | 0.6             | 2004                   | 969.3           | 0.1             | 8.5    | 4.1 | 1.4 | 0.7   | 0.6             |
| 1997  | 793.3                  | 0.1             | 6.9    | 3.4  | 1.1 | 0.6   | 0.5             | 2005                   | 894.3           | 0.1             | 7.8    | 3.8 | 1.3 | 0.6   | 0.6             |

Table 3.25 Direct and indirect GHG from international air bunker



air bunker

Decline in both direct and indirect GHG emissions occurred due to decrease in air carriages in the beginning of the 90'es.



#### 3.2.2 Methodology

The estimation of the  $CO_2$  emissions from fuel combustion was performed in accordance with the Revised 1996 IPCC Guidelines for National GHG Inventories, [3] – Tier 1. For the calculations both reference (Annex 4) and sectoral approaches were used. The  $CO_2$  emissions from biomass combustion and emissions of non- $CO_2$  gases (CH<sub>4</sub>, N<sub>2</sub>O, NOx, CO, NMVOC, SO<sub>2</sub>) were also estimated with use of Tier 1 in accordance with [3].

#### Activity data

The data on the volumes of import and export, changes in storage and use of fuel for the period 1990-2005 were provided by the State Committee on Statistics of the Republic of Uzbekistan (table 3.27). The share of jet kerosene used for domestic air transport amounted to 5% but for international air bunker it came to 95%.

To calculate CO<sub>2</sub> emissions from biomass combustion the following data were used:

1. Amount of crop residues and other agricultural waste on site (sector Agriculture). The data were provided by the State Committee on Statistics of the Republic of Uzbekistan [12].

| Table 3.26         I otal crop yield in 2000 |                 |                 |                 |  |  |  |  |  |  |
|----------------------------------------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| Wheat Barley Rye Total                       |                 |                 |                 |  |  |  |  |  |  |
| thousand tonnes                              | thousand tonnes | thousand tonnes | thousand tonnes |  |  |  |  |  |  |
|                                              |                 |                 |                 |  |  |  |  |  |  |

2. Amount of fuel wood harvested from sanitary felling in forests (sector Land-Use Change & Forestry). The data on volume of felling were provided by the Main Forestry Administration. In 2000 the amount of fuel wood amounted to 35.12 thousand tonnes.

#### **Emission factors**

For the calculation both national and default emission factors were used. National factors are energy conversation coefficients for all types of fuel.

| Table 3.28 Energy | coefficients |
|-------------------|--------------|
|-------------------|--------------|

| Fuel                                                      | TJ/thousand tonnes | Fuel                | TJ/thousand tonnes |
|-----------------------------------------------------------|--------------------|---------------------|--------------------|
| Solid fuel                                                |                    | Jet kerosene        | 42.900             |
| Uzbek brown coal                                          | 13.775             | Other kerosene      | 43.082             |
| Uzbek coal                                                | 19.929             | Diesel fuel         | 42.496             |
| Uzbek coal briquettes                                     | 22.860             | Residual fuel oil   | 40.151             |
| Coke                                                      | 26.377             | Domestic stove fuel | 42.496             |
| Gas                                                       |                    | Liquefied gas       | 46.013             |
| Gas of underground gasification (million m <sup>3</sup> ) | 3.647              | Oil refinery gas    | 43.961             |
| Natural and associated gas (million m <sup>3</sup> )      | 33.997             | Bitumen             | 39.565             |
| Liquid fuel                                               |                    | Petroleum oil       | 40.151             |
| Crude oil and condensate                                  | 41.868             | Other oil products  | 40.151             |
| Gasoline                                                  | 43.668             |                     |                    |

Recalculation coefficients of fuel from natural values into energy ones for calculation of  $CO_2$  emissions were taken in accordance with [8] and [9, 10] excluding for jet kerosene. Calorific values of jet kerosene were provided by the Joint-Stock Company "Uznefteprodukt", that is a part of the National Holding Company "Uzneftegaz".

In the previous years not only uzbek coals but coals from the provinces of former USSR were utilized in the republic. The imported coals are characterized by higher calorific values. Therefore average weighted coefficients for coals were calculated for each year starting since 1990. The calculation was performed in the State Committee on Statistics of the Republic of Uzbekistan.

Import of coals stopped in 1993. In 1998 import was recommenced, but in much less volume. There is no data on their calorific value. The quality of uzbek coals is reducing. In 2006 the calorific value was revised of subbituminous coals being in use (Annex 6). Average value of calorific value according to the data of the Open Joint-Stock Company "Ugol" is 2965.0 kcal/kg (or **12.414** GJ/tonne or TJ/thousand tonnes). For 1998 it was decided to use the value **13.158** GJ/tonne, that is averaged value between 1997 (13.901 GJ/tonne) and 1999 (12.414 GJ/tonne) as no data available on calorific values of imported coals.

|    |                                     | Natural gas,<br>million m <sup>3</sup> | Gas of<br>underground<br>gasification,<br>million m <sup>3</sup> | Crude oil and<br>condensate,<br>thousand<br>tonnes | Gasoline,<br>thousand<br>tonnes | Diesel fuel,<br>thousand<br>tonnes | Residual<br>fuel oil,<br>thousand<br>tonnes | LPG,<br>thousand<br>tonnes | Jet<br>kerosene,<br>thousand<br>tonnes | Other<br>kerosene,<br>thousand<br>tonnes |
|----|-------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------|---------------------------------|------------------------------------|---------------------------------------------|----------------------------|----------------------------------------|------------------------------------------|
|    | Produced                            | 56401                                  | 247                                                              | 7536                                               | 1709                            | 1972                               | 1709                                        | 91                         | 394                                    | 67                                       |
|    | Including : oil                     |                                        |                                                                  | 4170                                               |                                 |                                    |                                             |                            |                                        |                                          |
|    | condensate                          |                                        |                                                                  | 3366                                               |                                 |                                    |                                             |                            |                                        |                                          |
|    | Import                              | 1621                                   |                                                                  | 0                                                  | 1                               | 0                                  | 0                                           | 0                          | 0                                      | 0                                        |
|    | Export                              | 6857                                   |                                                                  | 280                                                | 74                              | 336                                | 71                                          | 18                         | 2                                      | 40                                       |
|    | Change in storage                   | 123                                    |                                                                  | 219                                                | - 40                            | 41                                 | 345                                         | 0                          | 2                                      | 0                                        |
| 36 | Total consumption                   | 51288                                  | 247                                                              | 7475                                               | 1596                            | 1677                               | 1983                                        | 74                         | 394                                    | 27                                       |
|    | Non-energy consumption              | 9257                                   |                                                                  | 139                                                |                                 |                                    | 2                                           |                            |                                        |                                          |
|    | Including as chemical row materials | 1619                                   |                                                                  |                                                    |                                 |                                    |                                             |                            |                                        |                                          |
|    | Energy sector                       | 17045                                  | 247                                                              | 7336                                               | 6                               | 20                                 | 1872                                        | 3                          | 0                                      | 3                                        |
|    | Industrial processes                | 1310                                   |                                                                  |                                                    | 5                               | 197                                | 17                                          | 1                          | 0                                      | 17                                       |
|    | Transport                           | 2754                                   |                                                                  |                                                    | 1471                            | 448                                | 0                                           | 11                         | 387                                    | 0                                        |
|    | Road transport                      | 59                                     |                                                                  |                                                    | 1471                            | 343                                |                                             | 11                         | 0                                      |                                          |
|    | Railway transport                   |                                        |                                                                  |                                                    |                                 | 105                                |                                             |                            | 0                                      |                                          |
|    | Air transport                       |                                        |                                                                  |                                                    |                                 |                                    |                                             |                            | 387                                    |                                          |
|    | Pipeline transport                  | 2695                                   |                                                                  |                                                    |                                 |                                    |                                             |                            |                                        |                                          |
|    | Other                               |                                        |                                                                  |                                                    |                                 |                                    |                                             |                            |                                        |                                          |
|    | Agriculture                         | 56                                     |                                                                  |                                                    | 4                               | 822                                | 1                                           | 0                          |                                        | 0                                        |
|    | Population                          | 17198                                  |                                                                  |                                                    | 1                               | 1                                  |                                             | 13                         |                                        | 1                                        |
|    | Communal and other                  | 3668                                   |                                                                  |                                                    | 109                             | 189                                | 91                                          | 46                         | 7                                      | 6                                        |

 Table 3.27 Fuel production and consumption in 2000

4

|                                      | Domestic<br>stove fuel,<br>thousand<br>tonnes | Oil refinery gas,<br>thousand tonnes | Other oil<br>products,<br>thousand<br>tonnes | Bitumen,<br>thousand<br>tonnes | Lubricants,<br>thousand<br>tonnes | Sub-<br>bituminous<br>coal,<br>thousand<br>tonnes | Bituminous<br>coal,<br>thousand<br>tonnes | Patent fuel,<br>thousand<br>tonnes | Coke oven,<br>thousand<br>tonnes |
|--------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------|-----------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------|----------------------------------|
| Produced                             | 63                                            | 243                                  | 125                                          | 167                            | 182                               | 2409                                              | 92                                        | 57                                 | 67                               |
| Including oil                        |                                               |                                      |                                              |                                |                                   |                                                   |                                           |                                    |                                  |
| condensate                           | e                                             |                                      |                                              |                                |                                   |                                                   |                                           |                                    |                                  |
| Import                               | 0                                             | 0                                    | 0                                            | 0                              | 2                                 | 12                                                | 0                                         | 0                                  | 0                                |
| Export                               | 12                                            | 0                                    | 0                                            | 5                              | 46                                | 0                                                 | 7                                         | 0                                  | 40                               |
| Change in storage                    | - 1                                           | 0                                    | 0                                            | - 8                            | 3                                 | 613                                               | 16                                        | - 2                                | 0                                |
| Total consumption                    | 50                                            | 243                                  | 125                                          | 154                            | 141                               | 3034                                              | 101                                       | 55                                 | 27                               |
| Non- energy consumption              |                                               |                                      | 121                                          | 154                            | 141                               | 2                                                 |                                           |                                    |                                  |
| Including as chemic<br>row materials | cal                                           |                                      |                                              |                                |                                   |                                                   |                                           |                                    |                                  |
| Energy sector                        | 4                                             | 243                                  | 0                                            |                                |                                   | 2646                                              | 71                                        | 8                                  | 3                                |
| Industrial processes                 | 1                                             |                                      | 0                                            |                                |                                   | 20                                                | 2                                         | 0                                  | 17                               |
| Transport                            | 0                                             |                                      | 4                                            |                                |                                   | 0                                                 | 0                                         | 0                                  | 0                                |
| Road transport                       |                                               |                                      | 0                                            |                                |                                   |                                                   |                                           |                                    |                                  |
| Railway transport                    |                                               |                                      | 0                                            |                                |                                   |                                                   |                                           |                                    |                                  |
| Air transport                        |                                               |                                      | 4                                            |                                |                                   |                                                   |                                           |                                    |                                  |
| Pipeline transport                   |                                               |                                      | 0                                            |                                |                                   |                                                   |                                           |                                    |                                  |
| Other                                |                                               |                                      | 0                                            |                                |                                   |                                                   |                                           |                                    |                                  |
| Agriculture                          | 3                                             |                                      |                                              |                                |                                   | 1                                                 | 0                                         | 0                                  | 0                                |
| Population                           | 0                                             |                                      |                                              |                                |                                   | 11                                                | 0                                         | 0                                  | 1                                |
| Communal and other                   | 42                                            |                                      |                                              |                                |                                   | 354                                               | 28                                        | 47                                 | 6                                |

## Continuation of the table 3.27

0

Table 3.30 Averaged weighted

|      | TJ/ thousand tor | coefficients for coal (1998-2005) |                    |                     |  |  |
|------|------------------|-----------------------------------|--------------------|---------------------|--|--|
| Year | Bituminous coal  | Sub-bituminous coal               | TJ/ thousand tones |                     |  |  |
| 1990 | 24.703           | 15.413                            | Year               | Sub-bituminous coal |  |  |
|      |                  |                                   | 1998               | 13.158              |  |  |
| 1991 | 24.134           | 15.252                            | 1999               | 12.414              |  |  |
| 1992 | 20.466           | 14.489                            |                    |                     |  |  |
|      |                  |                                   | 2000               | 12.414              |  |  |
| 1993 | 19.929           | 14.242                            | 2001               | 12.414              |  |  |
| 1994 | 19.929           | 14.124                            | 2002               | 12.414              |  |  |
| 1995 | 19.929           | 13.830                            | 2003               | 12.414              |  |  |
| 1996 | 19.929           | 13.622                            | 2004               | 12.414              |  |  |
| 1997 | 19.929           | 13.901                            | 2005               | 12.414              |  |  |

 Table 3.29 Averaged weighted coefficients for coal (1990-1997)

 TI/ thousand tonnes

Coefficients for bituminous coal remain invariable for the period 1993-2005.

*Carbon emission factors and fraction of oxidized carbon* are default values that were taken from [3].

Coefficients for calculation of CO<sub>2</sub> emission from biomass burning are as follows:

- *Fraction of residues burned on fields* **0.38.** It is a national coefficient, that is shown in details in the sector Agriculture )
- Conversion energy factor for biomass 15.5 TJ/thousand tones (default value) [4].
- Carbon emission factor 29.9 tonnes C/TJ (default value) [3].
- *Fraction of oxidized carbon* **0.90** (default value) [3].

 $CH_4$  emission factors (kg/TJ) are default values in all sectors [4].  $N_2O$  emission factors (kg/TJ) are default values in all sectors [4].

**CO** emission factors (kg/TJ) are default values in all sectors except of road transportation (1A3b) (gasoline, diesel oil, gas) and mobile sources in the sub-sector Agriculture/Forestry/Fishing (1A4c) (gasoline, diesel oil).

In the sub-sector Road transportation (1A3b), national **CO** emission factor for **gas =3694.6** kg/TJ. In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), national **CO** emission factor for **gasoline = 13740.0** kg/TJ.

In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), national CO emission factor for diesel oil = 2353.2 kg/TJ.

**NOx** emission factors (kg/TJ) are default values in all sectors except of road transportation (gasoline, diesel oil, gas) and mobile sources in the sub-sector Agriculture/Forestry/Fishing (1A4c) (gasoline, diesel oil).

In the sub-sector Road transportation (1A3) national NOx emission factor for gas = 869.3 kg/TJ.

In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), national NOx emission factor for gasoline = 916 kg/TJ.

In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), NOx national emission factor for diesel oil = 941.3 kg/TJ.

**NMVOC** emission factors (kg/TJ) are default values in all sectors except of road transportation (1A3b) (gasoline, diesel oil, gas) and mobiles in the sector Agriculture/Forestry/Fishing (1A4c) (gasoline, diesel fuel).

In the sub-sector Road transportation (1A3), national NMVOC emission factor for gas =1304 kg/TJ.

In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), national NOx emission factor for gasoline = 2290 kg/TJ.

In the sub-sector Road transportation (1A3b) and mobile sources (1A4ii), national NOx emission factor for diesel oil = 706 kg/TJ.

Above listed *national emission factors* were calculated based on the instructions given in [11]. The calculation is presented in the Annex 7.

*Sulfur content in fuel* – all values are national (table 3.31).

To estimate  $SO_2$  emissions from solid combustion the average weighted coefficient (calorific value) was calculated taking into account a contribution of different types of solid fuel. For 2000 this coefficient is **12.841** TJ / thousand tones.

*S* content in ash was taken equal to 0 due to absence of data.

*Reduction emission effect* was taken equal to **0** due to absence of data.

6

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

| Fuel                                                                                                             | Normative document                                                                                                        | Sulfur, %               |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Coals                                                                                                            | Actual content                                                                                                            | 1                       |
| Heavy oil fraction<br>(fuel oil) M-40, M-100                                                                     | GOST 10585-75                                                                                                             | 3.5                     |
| Light fraction of oil (diesel fuel and domestic furnace fuel)                                                    | Temporary permission until putting into operation of the<br>equipment on desulfurization at Fergana Petroleum<br>Refinery | 1.2                     |
| Since 1999, after putting into operation<br>of the equipment on desulfurization at<br>Fergana Petroleum Refinery | GOST 305-85,<br>since 1.09.01 Uz 989                                                                                      | 0.5                     |
| Gasoline (motor transport)                                                                                       | Actual content for the Bukhara Petroleum Refinery                                                                         | 0.05                    |
| Jet kerosene                                                                                                     | GOST 10227-86                                                                                                             | 0.1                     |
| Natural gas                                                                                                      | GOST Uz.39.0-1-95                                                                                                         | $0.02 \text{ gram/m}^3$ |

#### 3.2.3 Uncertainties and sequence of time series

**Only** uncertainties of the  $CO_2$  emissions from fuel combustion were estimated in accordance with [2]. To estimate the uncertainty associated with the emission factors the default values were used [5], for estimation of the uncertainties associated with activity data – expert judgment.

| Table 3.32 Quantitative uncertaint | v estimate of the | CO <sub>2</sub> emissions | from energy sector, 2000 |
|------------------------------------|-------------------|---------------------------|--------------------------|
|                                    |                   | 2                         |                          |

| Sub-sector                                      | · · · · · · · · · · · · · · · · |                | Combined<br>uncertainty | n,<br>Gg CO <sub>2</sub> -eq | ± E     | n + E                  | n - E   |
|-------------------------------------------------|---------------------------------|----------------|-------------------------|------------------------------|---------|------------------------|---------|
|                                                 | U <sub>A</sub>                  | U <sub>F</sub> | UT                      |                              |         | Gg CO <sub>2</sub> -eq |         |
| Energy industries                               | 1%                              | 5%             | 5%                      | 44284.4                      | 2258.1  | 46542.5                | 42026.4 |
| Manufacturing<br>industries and<br>construction | 15%                             | 5%             | 16%                     | 4981.8                       | 787.7   | 5769.5                 | 4194.1  |
| Road transport                                  | 15%                             | 5%             | 16%                     | 5619.4                       | 888.5   | 6507.9                 | 4730.9  |
| Domestic aviation                               | 40%                             | 5%             | 40%                     | 70.7                         | 28.5    | 99.3                   | 42.2    |
| Railways                                        | 1%                              | 5%             | 5%                      | 327.2                        | 16.7    | 343.9                  | 310.5   |
| Pipeline transport                              | 1%                              | 5%             | 5%                      | 5114.3                       | 260.8   | 5375.1                 | 4853.5  |
| Commercial/Institu tional                       | 15%                             | 5%             | 16%                     | 9023.8                       | 1426.8  | 10450.6                | 7597.0  |
| Residential                                     | 15%                             | 5%             | 16%                     | 32695.9                      | 5169.7  | 37865.6                | 27526.3 |
| Agriculture/<br>Forestry/Fishing                | 15%                             | 5%             | 16%                     | 2693.2                       | 425.8   | 3119.1                 | 2267.4  |
| Total                                           |                                 |                |                         | 104810.8                     | 11262.6 | 116073.4               | 93548.3 |
| Total in %                                      |                                 |                |                         |                              | 10.7    | 10.7                   | -10.7   |

Above shown expert judgments show that the uncertainty due to the activity data for  $CO_2$  emissions from energy industries, railways and pipeline transport is low, about 1%. It is resulted from a strict control over fuel consumption and reporting. The uncertainty due to activity data for  $CO_2$  emissions from road transportation, commercial, residential and agriculture sub-sectors are about 15% (data extrapolation in accordance with the ordinary statistical practice in the country). Uncertainty associated with activity data for  $CO_2$  emissions from industrial processes was taken to be 15%. When calculation of the emissions this sector was not divided into energy intensive industry where uncertainty of activity data is low (about 1%) and other industries where the data extrapolation is performed (15%). For all industries the maximal values were taken. Uncertainty of activity data for air transport (40 %) was quantified based on the data of the National Aviation Company "Uzbekistan Havo Yullari" according to which fuel consumed by domestic air transport amounts to 3-7% of the total fuel amount. This figure can vary within 40%.

## **Combined uncertainty**

Combined uncertainty for  $CO_2$  emissions from categories where uncertainty can be estimated, range between  $\pm$  11263 Gg of  $CO_2$  or 10.7% of the total emission.

For all years the same method and the same data sets were used.



## 3.2.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the general principals of QA/QC and QA/QC plan. There were conducted the checks of: the activity data obtained and input data for transcription errors; correctness of entering the coefficients (electronically) and formulas in the worksheets was checked; if units are properly labels and correctly carried through from beginning to end of calculation; consistency of time series inputs and calculations if data have changed; information sources for input data in Program Software were referenced; all information related to emission sources was documented. Comparison was made of CO<sub>2</sub> emissions estimates performed with employing sectoral and references approaches. Comparison was also made of the CO<sub>2</sub> emissions with the respective data of the International Energy Agency (IEA) [13]. The results obtained differ significantly from the ones of the IEA.

| million tonnes CO <sub>2</sub> | S          | ectoral appr | oach       | Reference approach |       |            |  |  |
|--------------------------------|------------|--------------|------------|--------------------|-------|------------|--|--|
|                                | Uzbekistan | IEA          | Difference | Uzbekistan         | IEA   | Difference |  |  |
| 1990                           | 107.0      | 120.2        | -11.0%     | 110.5              | 120.6 | -8.4%      |  |  |
| 1995                           | 97.2       | 101.8        | -4.5%      | 98.5               | 103.9 | -5.2%      |  |  |
| 2000                           | 105.0      | 116.7        | -10.0 %    | 106.1              | 120.9 | -12.3 %    |  |  |
| 2005                           | 95.6       | 110.1        | -13.1%     | 96.1               | 113.0 | -15.0%     |  |  |

Table 3.33 Comparison of the results with the IEA

The cause of difference is most likely due to employing different emissions factors and activity data.

#### 3.2.5 Recalculations by categories

The recalculation was implemented in the sub-categories 'Domestic Aviation' and 'International Bunker'. In the framework of the Initial National Communication calculation of  $CO_2$  emissions was conducted assuming that 30% of all jet kerosene is consumed for domestic air carriages, the rest – for international bunker. However, according to the assessments implemented while SNC preparation, based on the data of the National Aviation Company "Havo Yullari", only 3-7% of jet kerosene is used for domestic carriages. For recalculation of emission the following values were taken: 5% – for domestic aviation and 95% – for international bunker. No recalculations were done in other categories.

#### 3.2.6 Planned improvements by category

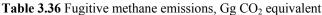
Within the framework of the Third National Communication emissions are supposed to estimated in accordance with [7].

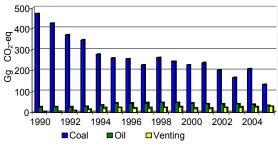
## **3.3 1B FUGITIVE EMISSIONS FROM FUELS**

Under this category the  $CH_4$ , CO, NOx, NMVOC,  $SO_2$  emissions were estimated from production, processing, transmission and storage of fossil fuel. Emissions were estimated under the categories: 1B1 a Coal Mining, 1B2 a Oil, 1B2 b Natural Gas, 1B2 c Venting and Flaring.

| Category            | Gg CO <sub>2</sub> -eq | %    |
|---------------------|------------------------|------|
| Coal mining         | 225                    | 0.3  |
| Oil                 | 43                     | 0.1  |
| Natural gas         | 69960                  | 99.6 |
| Venting and flaring | 17                     | 0.0  |
| Total               | 70245                  | 100  |

 Table 3.34 Fugitive methane emissions, 2000


| Table 3.35 Indirect GHG from oil and gas produ | iction, | 2000 |
|------------------------------------------------|---------|------|
|------------------------------------------------|---------|------|


| Gas             | Gg   |
|-----------------|------|
| СО              | 0.6  |
| NOx             | 0.4  |
| NMVOC           | 36.8 |
| SO <sub>2</sub> | 68.9 |

#### Trends of fugitive emissions

Change in the methane emissions for the period 1990-2005 was as follows: coal -73.5% or drop by 3.8 times; oil +33.3%; gas +67.1% or rise by 1.7 times; total leakage +65.7% or rise by 1.7 times.

| Table 3.50 Fugitive methane emissions, Gg CO <sub>2</sub> equivalent |      |     |       |         |       |  |  |  |  |  |  |
|----------------------------------------------------------------------|------|-----|-------|---------|-------|--|--|--|--|--|--|
| Year                                                                 | Coal | Oil | Gas   | Venting | Total |  |  |  |  |  |  |
| 1990                                                                 | 469  | 24  | 45646 | 2       | 46141 |  |  |  |  |  |  |
| 1991                                                                 | 424  | 24  | 47564 | 3       | 48015 |  |  |  |  |  |  |
| 1992                                                                 | 368  | 24  | 47390 | 6       | 47788 |  |  |  |  |  |  |
| 1993                                                                 | 342  | 28  | 75591 | 13      | 75975 |  |  |  |  |  |  |
| 1994                                                                 | 274  | 25  | 61761 | 20      | 62090 |  |  |  |  |  |  |
| 1995                                                                 | 257  | 43  | 62763 | 23      | 63085 |  |  |  |  |  |  |
| 1996                                                                 | 254  | 43  | 64808 | 19      | 65124 |  |  |  |  |  |  |
| 1997                                                                 | 226  | 44  | 56637 | 20      | 56927 |  |  |  |  |  |  |
| 1998                                                                 | 260  | 46  | 52849 | 22      | 53177 |  |  |  |  |  |  |
| 1999                                                                 | 243  | 46  | 57896 | 25      | 58210 |  |  |  |  |  |  |
| 2000                                                                 | 225  | 43  | 69960 | 17      | 70245 |  |  |  |  |  |  |
| 2001                                                                 | 235  | 41  | 72947 | 18      | 73241 |  |  |  |  |  |  |
| 2002                                                                 | 201  | 41  | 73822 | 22      | 74086 |  |  |  |  |  |  |
| 2003                                                                 | 165  | 40  | 75442 | 24      | 75671 |  |  |  |  |  |  |
| 2004                                                                 | 207  | 37  | 74046 | 26      | 74316 |  |  |  |  |  |  |
| 2005                                                                 | 132  | 32  | 76271 | 28      | 76463 |  |  |  |  |  |  |





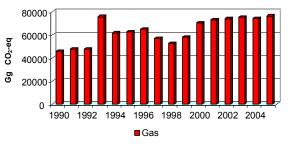



Fig. 3.23 Trends of fugitive methane emissions (coal, oil, venting and flaring)

Fig. 3.24 Trends of fugitive methane emissions (gas)

Sharp rise in the emissions in 1993 and a drop in 1998 was brought about by change in volume of transit gas.

Table 3.37 Indirect GHG emissions from oil and gas production, Gg

| Year | CO  | NOx | NMVOC | $SO_2$ | Year | CO  | NOx | MNVOC | $SO_2$ | Year | CO  | NOx | NMVOC | $SO_2$ |
|------|-----|-----|-------|--------|------|-----|-----|-------|--------|------|-----|-----|-------|--------|
| 1990 | 0.7 | 0.5 | 44.3  | 172.1  | 1996 | 0.6 | 0.4 | 36.0  | 78.8   | 2002 | 0.5 | 0.4 | 33.3  | 59.7   |
| 1991 | 0.7 | 0.5 | 44.6  | 162.1  | 1997 | 0.6 | 0.4 | 36.8  | 83.9   | 2003 | 0.5 | 0.4 | 31.8  | 53.1   |
| 1992 | 0.6 | 0.4 | 37.7  | 136.1  | 1998 | 0.7 | 0.4 | 39.7  | 95.2   | 2004 | 0.5 | 0.3 | 31.3  | 48.4   |
| 1993 | 0.7 | 0.4 | 40.8  | 119.6  | 1999 | 0.6 | 0.4 | 38.3  | 79.9   | 2005 | 0.5 | 0.3 | 28.6  | 43.0   |
| 1994 | 0.7 | 0.4 | 40.3  | 109.2  | 2000 | 0.6 | 0.4 | 36.8  | 68.9   |      |     |     |       |        |
| 1995 | 0.6 | 0.4 | 37.6  | 95.9   | 2001 | 0.6 | 0.4 | 34.3  | 67.5   |      |     |     |       |        |

Change in the emissions for the period 1990-2005 was as follows: CO -28.6%; NOx -40.0%; NMVOC -35.4%; SO<sub>2</sub> -75.0% or drop by 4 times.

Due to their marginal amount the CO and NOx emissions are not presented in the diagram.

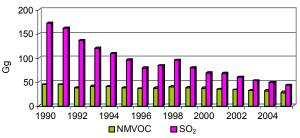



Fig. 3.25 Trends of indirect GHG emissions from oil and gas production



#### 3.3.1 Description of the source category Solid Fuels

Fugitive methane emissions were estimated in the following sub-categories 1B1 a Coal Mining: i Underground, (Mines, Mining activities µ Post-mining activities); ii Surface Mines, (Mining activities µ Post-mining activities) were inventoried.

| Catego                         | ory                    | Gg CO <sub>2</sub> -eq | %    |
|--------------------------------|------------------------|------------------------|------|
| Underground Mines              | Mining activities      | 140.1                  | 62.3 |
|                                | Post-mining activities | 22.5                   | 10.0 |
|                                | Total                  | 162.5                  | 72.3 |
| Surface Mines                  | Mining activities      | 56.5                   | 25.1 |
|                                | Post-mining activities | 5.7                    | 2.5  |
|                                | Total                  | 62.2                   | 27.7 |
| Total leakage from coal mining |                        | 224.7                  | 100  |

| Table 3.38 Methane | emission from | n coal mining, | $Gg CO_2 eq$ | uivalent, 2000 |
|--------------------|---------------|----------------|--------------|----------------|

Table 3.39 Methane emission from coal mining, Gg CO<sub>2</sub> equivalent

| Underground |                      |                           |       |                      | Leakage from              |       |             |
|-------------|----------------------|---------------------------|-------|----------------------|---------------------------|-------|-------------|
| Year        | Mining<br>activities | Post-mining<br>activities | Total | Mining<br>activities | Post-mining<br>activities | Total | coal mining |
| 1990        | 251                  | 40                        | 291   | 162                  | 16                        | 179   | 469         |
| 1991        | 224                  | 36                        | 259   | 150                  | 15                        | 164   | 424         |
| 1992        | 208                  | 33                        | 242   | 115                  | 12                        | 127   | 368         |
| 1993        | 209                  | 33                        | 243   | 90                   | 9                         | 99    | 342         |
| 1994        | 145                  | 23                        | 168   | 97                   | 10                        | 106   | 274         |
| 1995        | 151                  | 24                        | 175   | 74                   | 7                         | 81    | 257         |
| 1996        | 155                  | 25                        | 180   | 67                   | 7                         | 74    | 254         |
| 1997        | 125                  | 20                        | 145   | 73                   | 7                         | 80    | 225         |
| 1998        | 157                  | 25                        | 182   | 71                   | 7                         | 78    | 260         |
| 1999        | 141                  | 23                        | 164   | 72                   | 7                         | 79    | 243         |
| 2000        | 140                  | 22                        | 163   | 56                   | 6                         | 62    | 225         |
| 2001        | 141                  | 23                        | 164   | 65                   | 7                         | 71    | 235         |
| 2002        | 108                  | 17                        | 126   | 68                   | 7                         | 75    | 201         |
| 2003        | 99                   | 16                        | 115   | 46                   | 5                         | 51    | 165         |
| 2004        | 115                  | 18                        | 134   | 67                   | 7                         | 74    | 207         |
| 2005        | 37                   | 6                         | 42    | 81                   | 8                         | 90    | 132         |

Change in the emissions for the period 1990-2005 was as follows: total underground coal mining - 85.6% or decline in emissions by 7 times; total surface coal mining - 50.3% or 2 time less; total leakage from coal mining -28.1% or decline by 3.6 times.

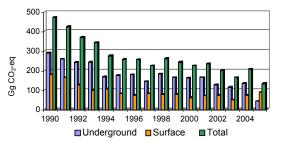



Fig. 3.26 Trends of methane emissions from coal mining

## 3.3.2 Methodology

Estimate of the CH<sub>4</sub> emissions from coal mining was implemented in accordance with [3] – Tier 1.

#### Activity data

Data on the volumes of coal mining both when surface and underground ways for the period 1990-2005 were provided by the State Committee on Statistics of the Republic of Uzbekistan.

| Produced                  | 2409 |
|---------------------------|------|
| Including by: surface way | 2011 |
| underground way           | 398  |



## **Emissions factors**

For calculation maximal default emission factors were used [3].

| Table 3.41 | Factors of | f methane | emission | from coa | l mining. | m <sup>3</sup> /tonne |
|------------|------------|-----------|----------|----------|-----------|-----------------------|
|            |            |           |          |          |           |                       |

|                        | Underground mining | Surface mining |
|------------------------|--------------------|----------------|
| Mining activities      | 25.0               | 2.0            |
| Post-mining activities | 4.0                | 0.2            |

### **3.3.3 Uncertainties and time series consistencies**

Uncertainty of  $CH_4$  emissions from coal mining was not estimated. For all years the same method and the same data sets were used.

## 3.3.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation, and whether all information sources of the input data for the program software were referenced.

## **3.3.5 Recalculation by categories**

Recalculations in this category were not conducted.

## 3.3.6 Planned improvements by categories

Within the framework of the Third National Communication emissions are supposed to estimated in accordance with [7].

## 3.4.1 Description of source category Oil Operation

Under the category 1B2 Oil and Natural Gas the estimate was implemented for sub-category a ii Production and 1B2 a iv Refining/Storage. In these sub-categories the fugitive methane emissions were estimated as well as NOx, CO, NMVOC and SO<sub>2</sub> emissions from oil processing and storage and the SO<sub>2</sub> emissions from sulfur production while oil refining.

| <b>Table 3.42</b> $CH_4$ emissions from oil, 2000 |            |            |              |         |          | Table 3.43 Indirect GHG emissions from oil, |           |                                                     |                    |  |
|---------------------------------------------------|------------|------------|--------------|---------|----------|---------------------------------------------|-----------|-----------------------------------------------------|--------------------|--|
| Category                                          | Production | Processing | Storage Tota | Storage | Total    |                                             |           | 200                                                 |                    |  |
| category                                          | 110000000  | Trocosting | Storage      | Total   | Gas      | CO                                          | NOx       | MNVOC*                                              | SO <sub>2</sub> ** |  |
| Gg CO <sub>2</sub> -eq                            | 33.2       | 8.2        | 1.5          | 42.8    | Gg       | 0.6                                         | 0.4       | 36.8                                                | 6.8                |  |
| %                                                 | 77.5       | 19.1       | 3.4          | 100     | ** total | emissio                                     | n from oi | l processing an<br>l processing ar<br>finement from | nd sulfur          |  |
|                                                   |            |            |              |         | comp     |                                             |           |                                                     |                    |  |

Changes in the emissions for the period 1990-2005 were as follows: oil production +100 % or the emissions were doubled, oil processing -40 % or drop by 1.7 times; oil storage – 50% or the emissions halved; total leakage from the oil sector +29 %.

| Table 3.44 Cl | H <sub>4</sub> emissions | from oil, | Gg CO <sub>2</sub> | equivalent |
|---------------|--------------------------|-----------|--------------------|------------|
|---------------|--------------------------|-----------|--------------------|------------|

| Year | Production | Processing | Storage | Total | Year | Production | Processing | Storage | Total |
|------|------------|------------|---------|-------|------|------------|------------|---------|-------|
| 1990 | 12         | 10         | 2       | 24    | 1998 | 36         | 9          | 2       | 46    |
| 1991 | 12         | 10         | 2       | 24    | 1999 | 36         | 9          | 1       | 46    |
| 1992 | 14         | 8          | 1       | 24    | 2000 | 33         | 8          | 2       | 43    |
| 1993 | 18         | 9          | 2       | 28    | 2001 | 32         | 8          | 1       | 41    |
| 1994 | 24         | 9          | 2       | 35    | 2002 | 32         | 7          | 1       | 40    |
| 1995 | 33         | 8          | 1       | 43    | 2003 | 32         | 7          | 1       | 40    |
| 1996 | 34         | 8          | 1       | 43    | 2004 | 29         | 7          | 1       | 37    |
| 1997 | 35         | 8          | 1       | 44    | 2005 | 24         | 6          | 1       | 31    |

| Year | CO  | NOx | NMVOC* | SO <sub>2</sub> | Year | CO  | NOx | NMVOC* | SO <sub>2</sub> ** |
|------|-----|-----|--------|-----------------|------|-----|-----|--------|--------------------|
| 1990 | 0,7 | 0,5 | 44,3   | 7,5             | 1998 | 0,7 | 0,4 | 39,7   | 6,7                |
| 1991 | 0,7 | 0,5 | 44,6   | 7,5             | 1999 | 0,6 | 0,4 | 38,3   | 6,6                |
| 1992 | 0,6 | 0,4 | 37,7   | 6,4             | 2000 | 0,6 | 0,4 | 36,8   | 6,8                |
| 1993 | 0,7 | 0,4 | 40,8   | 6,9             | 2001 | 0,6 | 0,4 | 34,3   | 6,1                |
| 1994 | 0,7 | 0,4 | 40,3   | 6,8             | 2002 | 0,5 | 0,4 | 33,3   | 5,7                |
| 1995 | 0,6 | 0,4 | 37,6   | 6,3             | 2003 | 0,5 | 0,4 | 31,8   | 5,4                |
| 1996 | 0,6 | 0,4 | 36,0   | 6,1             | 2004 | 0,5 | 0,3 | 31,3   | 5,4                |
| 1997 | 0,6 | 0,4 | 36,8   | 6,2             | 2005 | 0,5 | 0,3 | 28,6   | 5,2                |

Table 3.45 Indirect GHG emissions from oil, Gg

\* total emission from oil processing and storage since 1999 (putting in operation the aguingment)

since 1999 (putting in operation the equipment on oil desulphurization in the Fergana Refinery): total emission from oil processing and sulfur production when oil refinement from sulfurous compounds

Change in the emissions that occurred for the period 1990-2005 was as follows: CO -29%; NOx -40%; NMVOC - 35%; SO<sub>2</sub> -30.7%.



Fig. 3.27 Trends of methane emissions from oil

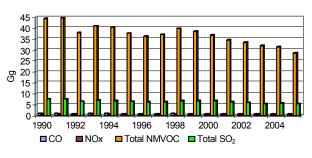



Fig. 3.28 Trends of indirect GHG emissions from oil

#### 3.4.2 Methodology

The  $CH_4$  emissions were estimated following the Revised 1996 IPCC Guidelines for National Greenhouse Inventories [3] – Tier 1. Estimation of the indirect GHG (NOx, CO, NMVOC, and SO<sub>2</sub>) was also implemented in accordance with [3].

## Activity data

The volumes of oil production and processing for 1990-2005 were provided by the State Committee on Statistics of the Republic of Uzbekistan.

| Oil produced  | Oil processed |
|---------------|---------------|
| 7536 thousand | 6665 thousand |
| tonnes        | tonnes        |

#### **Emission** factors

For the methane emissions calculation the maximum default emission factors were used ("Former USSR and Central and Eastern Europe") [3]. To estimate the indirect GHG emissions the default emission factors were also used [3].

| Table 3.46 I             | Table 3.46 Methane emission factors and indirect GHG from oil |                                       |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| CH <sub>4</sub> emission | Oil production                                                | 5000 kg CH <sub>4</sub> / PJ          |  |  |  |  |  |
|                          | Oil processing                                                | 1400 kg CH <sub>4</sub> / PJ          |  |  |  |  |  |
|                          | Oil storage                                                   | 250 kg CH <sub>4</sub> / PJ           |  |  |  |  |  |
| CO emission              | Oil processing                                                | 0.09 kg CO / tonne of oil             |  |  |  |  |  |
| NOx emission             | Oil processing                                                | 0.06 kg NOx/ tonne of oil             |  |  |  |  |  |
| NMVOC emission           | Oil processing                                                | 0.62 kg NMVOC / tonne of oil          |  |  |  |  |  |
| NMVOC emission           | Oil storage                                                   | 4.9 кг NMVOC/ tonne of oil            |  |  |  |  |  |
| SO <sub>2</sub> emission | Oil processing                                                | $0.93 \text{ kg SO}_2$ / tonne of oil |  |  |  |  |  |
| SO <sub>2</sub> emission | Oil production                                                | 139 kg SO <sub>2</sub> /tonne S       |  |  |  |  |  |

Table 2 4( Mathema amigging factors and indirect CUC from ail

#### **3.4.3** Uncertainty and time series consistencies

Uncertainty of  $CH_4$  emissions from the oil was not estimated. For all years the same method and the same data sets were used.



## 3.4.4 Quality Assurance/ Quality Control by categories and verification

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, correctness of formulas in the worksheets, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

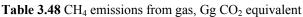
#### **3.3.5 Recalculation by categories**

Recalculations of fugitive emissions from this category were not conducted.

#### 3.3.6 Planned improvements by categories

Within the framework of the Third National Communication emissions are supposed to estimated in accordance with [7].

#### 3.5.1 Description of source category. Gas Operation


The methane fugitive emissions were estimated in the following sub-categories: 1B2 b i Production/Processing, 1B2 b ii Transmission/ Distribution, 1B2 b iii Other leakage; 1B2 c Venting and Flaring ii. In sub-category 1B2 b i Production /Processing gas processing is considered as a separate source, as in this sub-category the methane leakages were estimated when refining high-sulfur gas, which comes to 70% of total amount of gas produced. The respective changes were inserted in the worksheet of the IPCC Program Software. In this category there were also estimated SO<sub>2</sub> emissions from sulfur production when gas refinement from sulfurous compounds. These emissions were not previously inventoried. The data on this source were inserted in the standard worksheet of the IPCC Program Software.

|               |                                 |                        |      | Other                  |                |
|---------------|---------------------------------|------------------------|------|------------------------|----------------|
|               | Category                        | Gg CO <sub>2</sub> -eq | %    | Other<br>leakages      | Production     |
| Production/pr | ocessing                        | 248.5                  | 3.2  | 13%                    | 3%             |
| Processing    | Mubarek Gas Processing<br>Plant | 18412.8                | 26.3 |                        |                |
|               | Plant «Shurtangaz»              | 635.7                  | 0.9  |                        |                |
|               | Total                           | 19048.5                | 27.2 |                        |                |
| Transmission  |                                 | 39520.1                | 56.5 |                        | Processing     |
| Other         | Non-residential sector          | 6791.2                 | 9.7  | Transmission           | 27%            |
| leakages      | Residential sector              | 2351.6                 | 3.4  | 57%                    |                |
|               | Total                           | 9142.8                 | 13.1 | Ein 2 20 Emissions h   |                |
| Total leakage | s from gas operation            | 69959.8                | 100  | Fig. 3.29 Emissions by | gas activities |

| <b>Table 3.47</b> | CH <sub>4</sub> | emissions | from | gas. | 2000 |
|-------------------|-----------------|-----------|------|------|------|
|                   | <b>U</b> 4      | •         |      | D    |      |

In 2000 the SO<sub>2</sub> emissions from sulfur production (when refinement of high-sulfur gas) amounted to 62.2 Gg.

| Year | Production | Processing | Transmission | Other leakages | Total | Venting and flaring |
|------|------------|------------|--------------|----------------|-------|---------------------|
| 1990 | 1645       | 15744      | 20519        | 7738           | 45646 | 2                   |
| 1991 | 1689       | 16348      | 21069        | 8458           | 47564 | 3                   |
| 1992 | 1721       | 15941      | 21083        | 8645           | 47390 | 6                   |
| 1993 | 1797       | 16313      | 48085        | 9397           | 75591 | 13                  |
| 1994 | 1870       | 16520      | 34514        | 8856           | 61761 | 20                  |
| 1995 | 1924       | 18127      | 33933        | 8778           | 62763 | 23                  |
| 1996 | 1945       | 18170      | 35860        | 8833           | 64808 | 19                  |
| 1997 | 2035       | 17976      | 28116        | 8510           | 56637 | 20                  |
| 1998 | 2174       | 18153      | 24044        | 8477           | 52849 | 22                  |
| 1999 | 2201       | 18257      | 28672        | 8766           | 57896 | 25                  |
| 2000 | 2248       | 19048      | 39520        | 9143           | 69960 | 17                  |
| 2001 | 2289       | 20088      | 41055        | 9516           | 72945 | 18                  |
| 2002 | 2372       | 20059      | 41634        | 9757           | 73822 | 22                  |
| 2003 | 2306       | 20151      | 43610        | 9375           | 75442 | 24                  |
| 2004 | 2397       | 20366      | 41918        | 9365           | 74046 | 26                  |
| 2005 | 2389       | 20408      | 44521        | 8954           | 76271 | 28                  |





Change in the emissions for the period 1990-2005 was as follows: production +45.2%; processing +29.6%; transmission +117% or rise by 2.2 times; other leakages +15.7%; the total leakages +67.1%. Emissions from venting and flaring rose by 14 times.

The category Venting and Flaring is not shown in the graph due to the marginal values.

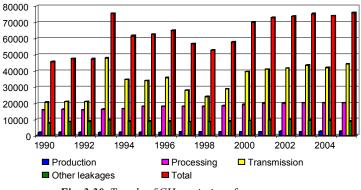



Fig. 3.30 Trends of  $CH_4$  emissions from gas

Sharp rise in the emissions from transmissions in 1993 occurred due to a greater volume of transit gas.

3g CO2-eq

| <b>Table 3.49</b> SO <sub>2</sub> emissions from gas sulfur production |
|------------------------------------------------------------------------|
| (when refinement of high-sulfur gas from sulfurous                     |
| compounds)                                                             |

| compounds) |       |      |      |  |  |  |  |  |
|------------|-------|------|------|--|--|--|--|--|
| Year       | Gg    | Year | Gg   |  |  |  |  |  |
| 1990       | 164.6 | 1998 | 88.5 |  |  |  |  |  |
| 1991       | 154.6 | 1999 | 73.3 |  |  |  |  |  |
| 1992       | 129.7 | 2000 | 62.2 |  |  |  |  |  |
| 1993       | 112.7 | 2001 | 61.5 |  |  |  |  |  |
| 1994       | 102.4 | 2002 | 54.0 |  |  |  |  |  |
| 1995       | 89.6  | 2003 | 47.7 |  |  |  |  |  |
| 1996       | 72.8  | 2004 | 43.0 |  |  |  |  |  |
| 1997       | 77.7  | 2005 | 37.8 |  |  |  |  |  |

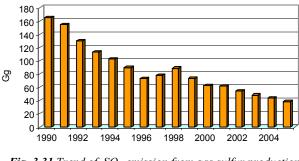



Fig. 3.31 Trend of SO<sub>2</sub> emission from gas sulfur production

Change in the emissions for the period 1990-2005 was a follows:  $SO_2$  -77% or drop by 4.4 times. Decrease in the emissions was brought about by drop in the volumes of sulfur production.

#### 3.5.2 Methodology

Estimation of the  $CH_4$  emissions from gas, venting and flaring when oil and gas production was implemented in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Inventories [3] – Tier 1. These Guidelines do not consider estimation of SO<sub>2</sub> emissions when high-sulfur gas refinement from sulfurous compounds. Therefore SO<sub>2</sub>, emissions were calculated by the method used for the calculation of emissions when oil refinement.

#### Activity data

The data on volumes of oil production, processing and transportation for the period 1990-2005 were provided by the National Holding Company "Uzneftegaz". The volumes of gas consumption in the residential and non-residential sectors were provided by the State Committee on Statistics of the Republic of Uzbekistan.

Almost all amount of associated gas is burned when flaring.

## **Table 3.50** Data for estimation of fugitive $CH_4$ emissions from gas, 2000

| Natural gas production, million m <sup>3</sup>                    | 56401 |
|-------------------------------------------------------------------|-------|
| Including associated gas, million m <sup>3</sup>                  | 817   |
| Gas transportation including transit, million m <sup>3</sup>      | 79092 |
| Gas processing, Mubarek GPP, million m <sup>3</sup>               | 25826 |
| Gas processing, Plant «Shurtangaz», million m <sup>3</sup>        | 12442 |
| Gas consumption in non-residential sector, million m <sup>3</sup> | 42031 |
| Gas consumption in non-residential sector, million m <sup>3</sup> | 17198 |

#### **Emission factors**

To estimate methane emissions from production, processing (gas refinement from sulfurous compounds) and transportation of natural gas the national methane emission factors were developed within the framework of the Regional Project "Capacity Building for Improving the Quality of National GHG Inventories (region of Europe and CIS)". The calculation of the emissions is presented in the Annex 8.



For the methane emissions calculation from other leakages and venting and flaring maximum default emission factors were used ("Former USSR and Central and Eastern Europe") [3]. To estimate SO<sub>2</sub> emissions a national factor was also used.

The calculation of the emissions is presented in the Annex 8.

## 3.5.3 Uncertainty and sequence of time series

Uncertainty of  $CH_4$  emissions from gas was not defined as the limited number of elements in a sample for each of the developed emission factors does not allow estimation of uncertainty associated with national factors. At the same time uncertainty associated with activity data according to expert judgments does not exceed 1-2%. Uncertainty of the other gases emission was not estimated too.

For all years the same method and the same data sets were used.

#### 3.5.4 Quality Assurance/ Quality Control by category and verification

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation, correctness of the formulas in the worksheets, modified worksheets, consistency of the calculations in the time series if the coefficients were changed, the calculations of the national factors. It was also checked whether all information sources for the input data for the program software were referenced.

#### 3.5.5 Recalculations by category

As national factors for estimates of the fugitive emissions from gas production, processing and transmission were developed within the framework of the regional project "Capacity Building for Improving the Quality of GHG Inventories (Europe/CIS region)", in the current inventory they were used for the emission recalculation in these sub-categories. In the Initial National Communication only default emission factors were applied. The volume of emissions from gas has turned out to be higher than those in the INC by 1.5-2 times for different years.

## **3.5.6 Planned improvements by category**

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

| CH <sub>4</sub> | Production       |                        | 56 798 kg/PJ     |
|-----------------|------------------|------------------------|------------------|
|                 | Processing       | Mubarek GPP            | 1 001 098 kg/ PJ |
|                 |                  | Plant "Shurtangaz"     | 71 733 kg/ PJ    |
|                 | Transportation   |                        | 701 615 kg/ PJ   |
|                 | Other leakage    | Non residential sector | 384 000 kg/ PJ   |
|                 |                  | Residential sector     | 192 000 kg/ PJ   |
|                 | Venting and flar | ing                    | 30 000 kg/ PJ    |



## **Chapter 4: 2 INDUSTRIAL PROCESSES**

## 4.1 Sector review

Gases and categories in industrial processes presented in the tables 4.1 and 4.2 were inventoried.

## **Table 4.1** Direct GHG emissions from industrial processes,2000

| Category                       | Emission,<br>Gg CO <sub>2</sub> -eq | %    |
|--------------------------------|-------------------------------------|------|
| 2 A Mineral products           | 1627.0                              | 32.7 |
| 2 B Chemical industry          | 2672.1                              | 53.8 |
| 2 C Metal production           | 664.6                               | 13.4 |
| 4 D Other production           | 0                                   | 0    |
| 2 F Consumption of halocarbons | 6.3                                 | 0.1  |
| Total                          | 4970.0                              | 100  |

## Table 4.2 Share of direct GHG, 2000

| Gas                                  | CO <sub>2</sub> | N <sub>2</sub> O | HFC |
|--------------------------------------|-----------------|------------------|-----|
| Emissions,<br>Gg CO <sub>2</sub> -eq | 3589.6          | 1373.9           | 6.3 |
| %                                    | 72.2            | 27.6             | 0.1 |

#### Trends of emissions by gases

Change in the emissions for the period 1990-2005 was as follows:  $CO_2$  -24.0%;  $CH_4$  – no possibility to calculate as the methanol production started in 1999, polyethylene – in 2003; N<sub>2</sub>O -11.3%; HFC – no possibility to calculate as the data are available only for 2000-2005; total emission -21.0%.

| Year | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFCs | Total  | Year | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | HFCs  | Total  |
|------|-----------------|-----------------|------------------|------|--------|------|-----------------|-----------------|------------------|-------|--------|
| 1990 | 6277.1          |                 | 1781.9           |      | 8058.9 | 1998 | 3728.9          |                 | 1541.0           |       | 5269.9 |
| 1991 | 6298.6          |                 | 2319.4           |      | 8618.0 | 1999 | 3477.5          |                 | 1350.4           |       | 4827.9 |
| 1992 | 6057.9          |                 | 2236.7           |      | 8294.5 | 2000 | 3589.6          | 0.1             | 1373.9           | 6.34  | 4970.0 |
| 1993 | 5490.3          |                 | 1931.6           |      | 7421.9 | 2001 | 3614.4          | 0.1             | 1420.7           | 6.34  | 5041.6 |
| 1994 | 4474.1          |                 | 1474.7           |      | 5948.8 | 2002 | 3758.8          | 0.2             | 1357.8           | 1.69  | 5118.4 |
| 1995 | 3797.3          |                 | 1556.8           |      | 5354.1 | 2003 | 3990.6          | 1.5             | 1417.0           | 9.05  | 5418.1 |
| 1996 | 3944.4          |                 | 1668.1           |      | 5612.5 | 2004 | 4585.2          | 2.3             | 1510.3           | 38.16 | 6136.0 |
| 1997 | 3828.6          |                 | 1473.4           |      | 5302.0 | 2005 | 4770.9          | 2.7             | 1580.7           | 12.12 | 6366.4 |

Table 4.3 Direct GHG emissions from industrial processes, Gg CO<sub>2</sub> equivalent

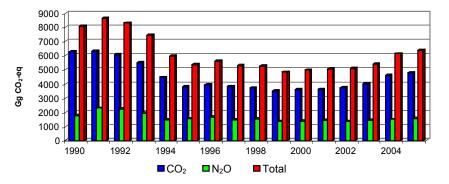



Fig. 4.1 Trends of direct GHG emissions from industrial processes

Note: no trends of  $CH_4$  and HFC emissions are shown on the diagrams due to their small volumes. The indirect GHG emissions were also calculated.

Changes in the emissions for the period 1990-2005 were as follows: CO -38.7%; NOx -11.1%; NMVOC -15.0%; SO<sub>2</sub> -34.3%.

6

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

| Year | CO   | NOx | NMVOC | SO <sub>2</sub> | Year | CO  | NOx | NMVOC | SO <sub>2</sub> |
|------|------|-----|-------|-----------------|------|-----|-----|-------|-----------------|
| 1990 | 13.7 | 0.9 | 28.6  | 5.8             | 1998 | 8.4 | 0.8 | 19.4  | 2.4             |
| 1991 | 13.7 | 1.1 | 27.9  | 5.7             | 1999 | 7.6 | 0.7 | 23.2  | 2.4             |
| 1992 | 12.6 | 1.1 | 25.0  | 4.2             | 2000 | 7.8 | 0.7 | 24.0  | 2.3             |
| 1993 | 10.6 | 1.0 | 24.4  | 3.8             | 2001 | 6.4 | 0.7 | 22.7  | 2.1             |
| 1994 | 7.8  | 0.7 | 19.6  | 3.3             | 2002 | 7.2 | 0.7 | 24.1  | 2.5             |
| 1995 | 8.7  | 0.8 | 17.6  | 2.7             | 2003 | 7.9 | 0.7 | 24.7  | 2.5             |
| 1996 | 9.1  | 0.8 | 17.8  | 2.6             | 2004 | 8.1 | 0.7 | 25.1  | 2.8             |
| 1997 | 9.1  | 0.7 | 19.3  | 2.4             | 2005 | 8.4 | 0.8 | 24.3  | 2.7             |



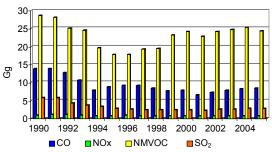



Fig. 4.2 Trends of indirect GHG emissions

#### Trends of emissions by sub-sectors

Changes in the emissions for the period 1990-2005 were as follows: mineral products -22.0%; chemical industry -26.5%; metal production -2.7%; use of HFCs – no possibility to calculate as the data are available only for 2000-2005; the total emission -21.4%.

Key sources in the sector are given below in order of emission volumes diminution.

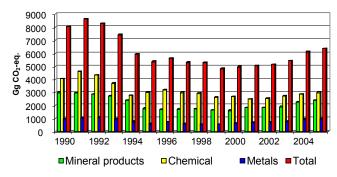



Fig. 4.3 Trends of direct GHG emissions by category

1. CO<sub>2</sub> emissions from clinker production – level, trend.

2.  $CO_2$  emissions from ammonia production – trend.

The diagram of the emissions from HFC use is not shown due to their marginal amount.

|      |                  |                   |                  |             | 1              |
|------|------------------|-------------------|------------------|-------------|----------------|
| Year | Mineral products | Chemical industry | Metal production | Use of HFCs | Total emission |
| 1990 | 2996.6           | 4064.0            | 998.4            |             | 8058.9         |
| 1991 | 2957.2           | 4604.8            | 1056.0           |             | 8618.0         |
| 1992 | 2858.8           | 4334.9            | 1100.8           |             | 8294.5         |
| 1993 | 2742.5           | 3701.8            | 977.6            |             | 7421.9         |
| 1994 | 2402.5           | 2771.9            | 774.4            |             | 5948.8         |
| 1995 | 1758.9           | 3008.0            | 587.2            |             | 5354.1         |
| 1996 | 1677.6           | 3189.3            | 745.6            |             | 5612.5         |
| 1997 | 1712.2           | 2983.4            | 606.4            |             | 5302.0         |
| 1998 | 1750.6           | 2948.0            | 571.4            |             | 5269.9         |
| 1999 | 1638.3           | 2620.4            | 569.3            |             | 4827.9         |
| 2000 | 1627.0           | 2672.1            | 664.6            | 6.3         | 4970.0         |
| 2001 | 1830.2           | 2491.0            | 714.1            | 6.3         | 5041.6         |
| 2002 | 1827.3           | 2549.9            | 739.6            | 1.7         | 5118.4         |
| 2003 | 1905.8           | 2726.2            | 777.0            | 9.1         | 5418.1         |
| 2004 | 2268.0           | 2866.4            | 963.5            | 38.2        | 6136.0         |
| 2005 | 2396.5           | 2986.1            | 971.7            | 12.1        | 6366.1         |



## **4.2 2A MINERAL PRODUCTION**

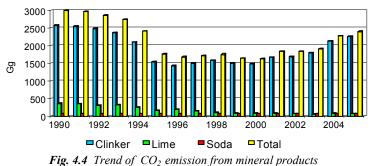
#### 4.2.1 Description of the source category

Under this category the  $CO_2$  emission was estimated from clinker and lime production, use of soda (soda is produced by Solvey process, for which the IPCC methodology does not provide estimate of  $CO_2$  emission [3]) and  $SO_2$ emission from cement production.

| Catagory                    | CO <sub>2</sub> emis | SO <sub>2</sub> emission |     |
|-----------------------------|----------------------|--------------------------|-----|
| Category                    | Gg                   | %                        | Gg  |
| Clinker production (cement) | 1475.5               | 90.7                     | 1.0 |
| Lime production             | 80.9                 | 5.0                      |     |
| Use of soda                 | 70.6                 | 4.3                      |     |
| Total emission              | 1627.0               | 100.0                    | 1.0 |

Table 4.6 CO<sub>2</sub> и SO<sub>2</sub> emissions from mineral products, 2000

|      |                    |                 | - · •       |                |
|------|--------------------|-----------------|-------------|----------------|
| Year | Clinker production | Lime production | Use of soda | Total emission |
| 1990 | 2572.2             | 353.8           | 70.6        | 2996.6         |
| 1991 | 2544.2             | 342.5           | 70.6        | 2957.2         |
| 1992 | 2484.1             | 304.2           | 70.6        | 2858.8         |
| 1993 | 2360.6             | 311.4           | 70.6        | 2742.5         |
| 1994 | 2092.7             | 239.2           | 70.6        | 2402.5         |
| 1995 | 1538.2             | 150.1           | 70.6        | 1758.9         |
| 1996 | 1427.5             | 179.6           | 70.6        | 1677.6         |
| 1997 | 1495.9             | 145.8           | 70.6        | 1712.2         |
| 1998 | 1585.1             | 94.9            | 70.6        | 1750.6         |
| 1999 | 1491.5             | 76.2            | 70.6        | 1638.3         |
| 2000 | 1475.5             | 80.9            | 70.6        | 1627.0         |
| 2001 | 1674.8             | 84.9            | 70.6        | 1830.2         |
| 2002 | 1686.0             | 70.8            | 70.6        | 1827.3         |
| 2003 | 1785.0             | 50.2            | 70.6        | 1905.8         |
| 2004 | 2123.5             | 73.9            | 70.6        | 2268.0         |
| 2005 | 2257.4             | 68.6            | 70.6        | 2396.5         |


Table 4.7 CO<sub>2</sub> emission from mineral products, Gg

Change in  $CO_2$  emission for the period 1990-2005 was as follows: clinker production -12.2%; lime production - 80. 6% or drop by 5.16 times; total emission -20.0%.

Drop in emission is caused by decline in production at the beginning of 90-s. Change in emission for the period 1990-2005 was 20.8%.

| Table 4.8 SO2 emission from cement |
|------------------------------------|
| production                         |

| Year | Gg   | Year | Gg   |
|------|------|------|------|
| 1990 | 1.92 | 1998 | 1.01 |
| 1991 | 1.86 | 1999 | 1.00 |
| 1992 | 1.78 | 2000 | 0.99 |
| 1993 | 1.58 | 2001 | 1.12 |
| 1994 | 1.43 | 2002 | 1.18 |
| 1995 | 1.03 | 2003 | 1.22 |
| 1996 | 0.98 | 2004 | 1.44 |
| 1997 | 0.99 | 2005 | 1.52 |



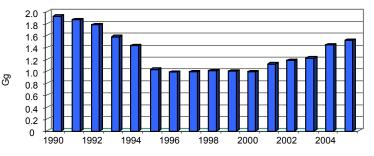



Fig. 4.5 Trend of SO<sub>2</sub> emission from mineral products



### 4.2.2 Methodology

The estimation of  $CO_2$  emission from clinker and lime production, use of soda and  $SO_2$  emission from cement production was implemented according to [3].

#### Activity data

The data for estimation of  $CO_2$  emission from clinker production and  $SO_2$  emission from cement production were provided by the National Joint-Stock Company "Uzqurilishmateriallari". The data for estimation of  $CO_2$  emission from use of soda originate from the reports of the Ministry of Economics of the Republic of Uzbekistan on industrial sectors demand in calcined soda.

As there is no precise data by years, it was suggested that annual demand for soda for the period 1990-2005 was the same for each year.

| Tał | ole 4 | <b>.9</b> I | Min | eral proc | lucts j | production | and |
|-----|-------|-------------|-----|-----------|---------|------------|-----|
|     |       |             |     | use, 2    | 000     |            |     |
|     | P     |             |     | -         |         |            |     |

| Product | Thousand tonnes |
|---------|-----------------|
| Clinker | 2909.7          |
| Cement  | 3284.4          |
| Lime    | 102.4           |
| Soda    | 170.0           |

The data for estimation of  $CO_2$  emission from lime production for the period 1990-1995 were provided by the National Joint-Stock Company "Uzqurilishmateriallari" and for the period 1996-2005 – by the State Committee on Statistics as since 1996 new lime production enterprises started to operate that do not belong the National Joint-Stock Company "Uzqurilishmateriallari".

#### **Emission factors**

 $CO_2$  emission from clinker production = 0.5071 tonne CO<sub>2</sub> per tonne of product [3].

 $CO_2$  emission from lime production = 0.79 tonne CO<sub>2</sub> per tonne of product [3]. Calculation was conducted for quick-slaking lime as raw calcite is used.

 $\hat{SO}_2$  emission from cement production = 0.3 tonne SO<sub>2</sub>/ per tonne of product [3].

 $CO_2$  emission from use of soda = 415 kg CO<sub>2</sub> per tonne of used soda [3].

#### 4.2.3 Uncertainty and sequence of time series

The uncertainties of  $CO_2$  emission from clinker production were estimated in accordance with [2]. To estimate uncertainty associated with the emission factors from clinker production the default values were assumed [5]. Uncertainty of  $SO_2$  emission from cement production was not estimated.

|  | Table 4.10 Q | uantitative | estimation | of CO <sub>2</sub> | emission | from | industrial | processes. | 2000 |
|--|--------------|-------------|------------|--------------------|----------|------|------------|------------|------|
|--|--------------|-------------|------------|--------------------|----------|------|------------|------------|------|

| Sub-sector            | Data<br>uncertainty | Emission factor<br>uncertainty | Combined<br>uncertainty | n, Gg CO <sub>2</sub> -eq | ± E  | n + E                 | n - E  |
|-----------------------|---------------------|--------------------------------|-------------------------|---------------------------|------|-----------------------|--------|
|                       | U <sub>A</sub>      | U <sub>F</sub>                 | UT                      |                           |      | Gg CO <sub>2</sub> -o | eq     |
| Clinker<br>production | 1%                  | 6%                             | 6%                      | 1475.5                    | 89.8 | 1565.3                | 1385.8 |

For all years the same method and the same data set were used.

#### 4.2.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 4.2.5 Recalculations by category

Recalculations were not conducted.

### 4.2.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

## 4.3 2 B CHEMICAL INDUSTRY

#### **4.3.1 Description of source category**

Under this category the direct GHG emissions were estimated:  $CO_2$  from ammonia production,  $N_2O$  emission from nitric acid production and  $CH_4$  emission from methanol (since 1999) and polyethylene (since 2003) production. Indirect GHG emissions were estimated from ammonia and nitric acid production.

The main source of  $CO_2$  emission is ammonia production and  $N_2O$  emission – nitric acid production.



| Category               | Gas              | Gg CO <sub>2</sub> -eq | %     |
|------------------------|------------------|------------------------|-------|
| Ammonia production     | CO <sub>2</sub>  | 1298.0                 | 48.6  |
| Nitric acid production | N <sub>2</sub> O | 1373.9                 | 51.4  |
| Methanol production    | CH <sub>4</sub>  | 0.1                    | 0.0   |
| Total emission         |                  | 2672.1                 | 100.0 |

| Table 4.11 GHG emission from chemical industry, |
|-------------------------------------------------|
| 2000                                            |

 Table 4.12 Indirect GHG emission from chemical industry, 2000

| Category                  | Gas    | Gg   |
|---------------------------|--------|------|
| Ammonia production        | CO     | 7.8  |
| Nitric acid production    | NOx    | 0.7  |
| Ammonia production        | NMVOC  | 4.6  |
| Ackrylnitrile production  | NMVOC  | 0.02 |
| Formalin production       | NMVOC  | 0.6  |
| Total NMVOC               | NMVOC  | 5.2  |
| Sulphuric acid production | $SO_2$ | 1.3  |
| Ammonia production        | $SO_2$ | 0.0  |
| Total SO <sub>2</sub>     | $SO_2$ | 1.3  |

## Trends of emission by gases

Changes in the emissions fro the period 1990-2005 were as follows:  $CO_2$  -38.5%;  $N_2O$  -11.3%;  $CH_4$  – no possibility to calculate as methanol production started in 1999 and polyethylene – in 2003; the total emission -26.5%.

| Year | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total emission | Year | CO <sub>2</sub> | N <sub>2</sub> O | CH <sub>4</sub> | Total emission |
|------|-----------------|------------------|-----------------|----------------|------|-----------------|------------------|-----------------|----------------|
| 1990 | 2282.1          | 1781.9           |                 | 4064.0         | 1998 | 1407.0          | 1541.0           |                 | 2948.0         |
| 1991 | 2285.4          | 2319.4           |                 | 4604.8         | 1999 | 1270.0          | 1350.4           | 0               | 2620.4         |
| 1992 | 2098.2          | 2236.7           |                 | 4334.9         | 2000 | 1298.0          | 1373.9           | 0.1             | 2672.1         |
| 1993 | 1770.2          | 1931.6           |                 | 3701.8         | 2001 | 1070.2          | 1420.7           | 0.1             | 2491.0         |
| 1994 | 1297.2          | 1474.7           |                 | 2771.9         | 2002 | 1191.9          | 1357.8           | 0.2             | 2549.9         |
| 1995 | 1451.2          | 1556.8           |                 | 3008.0         | 2003 | 1307.8          | 1417.0           | 1.5             | 2726.2         |
| 1996 | 1521.1          | 1668.1           |                 | 3189.2         | 2004 | 1353.7          | 1510.3           | 2.3             | 2866.4         |
| 1997 | 1509.9          | 1473.4           |                 | 2983.4         | 2005 | 1402.7          | 1580.7           | 2.7             | 2986.1         |

Table 4.13 Direct emission from chemical industry, Gg  $CO_2$  equivalent

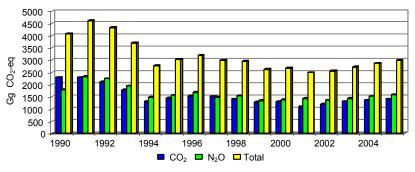



Fig 4.6 Trends of direct GHG emission from chemical industry

Trend of CH<sub>4</sub> emission is not shown in the diagram as it is insignificant.

| Table 4.14 Indirect GH0 | emission fi | rom chemical | industry, Gg |
|-------------------------|-------------|--------------|--------------|
|-------------------------|-------------|--------------|--------------|

| Year | CO   | NOx | NMVOC | SO <sub>2</sub> | Year | CO  | NOx | NMVOC | SO <sub>2</sub> |
|------|------|-----|-------|-----------------|------|-----|-----|-------|-----------------|
| 1990 | 13.7 | 0.9 | 8.2   | 3.9             | 1998 | 8.4 | 0.7 | 5.0   | 1.4             |
| 1991 | 13.7 | 1.1 | 8.2   | 3.8             | 1999 | 7.6 | 0.6 | 4.5   | 1.4             |
| 1992 | 12.6 | 1.1 | 7.5   | 2.4             | 2000 | 7.8 | 0.7 | 5.2   | 1.3             |
| 1993 | 10.6 | 0.9 | 6.3   | 2.2             | 2001 | 6.4 | 0.7 | 4.6   | 1.0             |
| 1994 | 7.8  | 0.7 | 4.6   | 1.9             | 2002 | 7.2 | 0.7 | 5.1   | 1.3             |
| 1995 | 8.7  | 0.7 | 5.2   | 1.6             | 2003 | 7.9 | 0.7 | 5.7   | 1.3             |
| 1996 | 9.1  | 0.8 | 5.4   | 1.6             | 2004 | 8.1 | 0.7 | 6.1   | 1.3             |
| 1997 | 9.1  | 0.7 | 5.4   | 1.4             | 2005 | 8.4 | 0.8 | 6.4   | 1.2             |

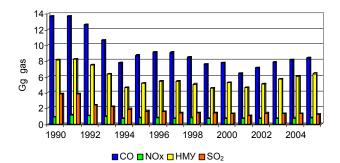



Fig. 4.7 Trends of indirect emissions from chemical industry

Change in the emissions for the period 1990-2005 was as follows: CO -38.7%; NOx -11.1%; NMVOC -22%; SO<sub>2</sub> - 69.2 %.

## 4.3.2 Methodology

Direct and indirect emissions in this category were estimated in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories [3]. Emission from ammonia production was estimated using the **Tier 1 b**.

## Activity data

The data on ammonia, nitric acid, methanol, ackrylnitrile and formaldehyde production for direct and indirect GHG emission estimation were provided by the National Joint-Stock Company "Uzkimesanoat".

Estimates of direct and indirect GHG emission from polyethylene production were based on official statistics from the Stare Committee for Statistics of the Republic of Uzbekistan.

| Table 4.15 Chemical | product | production, 2000 |  |
|---------------------|---------|------------------|--|
|---------------------|---------|------------------|--|

| Production                          | thousand tonnes |
|-------------------------------------|-----------------|
| Ammonia                             | 985.60          |
| Nitric acid                         | 1057.00         |
| Methanol                            | 2.40            |
| Ackrylnitrile production            | 16.50           |
| Formaldehyde                        | 0.58            |
| Polyethlene (production since 2003) | 0               |

## **Emission** factors

For calculations both national and default emission factors were used. National factors for this category were developed within the framework of the Second National Communication.

 $CO_2$  emissions from ammonia production = 1.317 tonne CO<sub>2</sub> per tonne of product, national emission factor (Annex 10).

 $N_2O$  emission from nitric acid production = 4.193 kg N<sub>2</sub>O per tonne of product, national emission factor (Annex 10).

 $CH_4$  emission from methanol production = 2 kg CH<sub>4</sub> per tonne of product [3].

 $CH_4$  emission from polyethylene production = 1 kg CH<sub>4</sub> per tonne of product [3].

*CO emission from ammonia production* = 7.9 kg CO per tonne of product [3].

NOx emission from nitric acid production = 0.620 kg NOx per tonne of product, national emission factor (Annex 10).

*NMVOC emission from ammonia production* = 4.7 kg NMVOC per tonne of product [3].

*NMVOC emission from ackrylnitrile production* = 1.0 kg NMVOC per tonne of product [3].

*NMVOC emission from formaldehyde production* = 5.0 kg NMVOC per tonne of product [3].

*NMVOC emission from polyethylene production (low density)* = 3.0 kg NMVOC per tonne of product [3].

 $SO_2$  emission from sulfuric acid production = 1.567 tonne  $SO_2$  per tonne of product, national emission factor (Annex 10).

 $SO_2$  emissions from ammonia production = 0.03 kg SO<sub>2</sub> per tonne of product [3].

## 4.3.3 Uncertainty and sequence of time series

Uncertainty was estimated only for two source categories. Estimation of the uncertainty of national  $CO_2$  emission factor for ammonia production and  $N_2O$  emission factor for nitric acid production is presented in the Annex 10. Estimate of the activity data uncertainty was based on national expert judgment.



| (                      |                     | P                     |                      | 0, = -       |       |                       |        |
|------------------------|---------------------|-----------------------|----------------------|--------------|-------|-----------------------|--------|
| Sub-sector             | Data<br>uncertainty | Factor<br>uncertainty | Total<br>uncertainty | n, Gg CO2-eq | ± E   | n + E                 | n - E  |
|                        | UA                  | U <sub>F</sub>        | UT                   |              |       | Gg CO <sub>2</sub> -e | q      |
| Ammonia production     | 1%                  | 5%                    | 5%                   | 1298.0       | 66.2  | 1364.2                | 1231.8 |
| Nitric acid production | 1%                  | 26%                   | 26%                  | 1373.9       | 357.5 | 1731.4                | 1016.4 |
| Total                  |                     |                       |                      | 2671.9       | 423.7 | 3095.6                | 2248.2 |
| % from total           |                     |                       |                      |              | 15.9  | 15.9                  | - 15.9 |

Table 4.16 Quantitative estimate of uncertainty of emission from industrial processes by gases, 2000

Uncertainty associated with activity data (ammonia and nitric acid production) is low, about 1%, which is resulted from a strict control over the production.

Combined uncertainty in this sub-sector for emission of gases from categories, where uncertainty can be estimated, amounts to  $\pm$  423.7 Gg CO<sub>2</sub> equivalent or  $\pm$  15.9 % of the total estimated emission. For all years the same method and the same data sets were used.

#### 4.3.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input activity data, data transcription and documentation, calculation of national factors. It was also checked whether all information sources for the input data for the program software were referenced.

#### 4.3.5 Recalculations by category

Emissions were recalculated in those categories for which national emission factors were used. In the Initial National Communication the default emission factors were used.

#### 4.3.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

### **4.4 2C METAL PRODUCTION**

#### 4.4.1 Description of source category

Under this category emissions were estimated only from steel production, namely: CO<sub>2</sub>, CO, NOx, NMVOC, SO<sub>2</sub>.

Iron, ferroalloys, aluminum and magnesium are not produced in the country. The data on non-ferrous metals are not accessible.

Year

1998

1999

2000

2001

2002

2003

2004

2005

CO<sub>2</sub>

571.4

569.3

664.6

714 1

739.6

777.0

963.5

971.7

# **Table 4.17** Direct and indirect GHG emission frommetal production, 2000, Gg

| CO <sub>2</sub> | CO      | NOx   | NMVOC | SO <sub>2</sub> |
|-----------------|---------|-------|-------|-----------------|
| 664.64          | 0.00042 | 0.017 | 0.012 | 0.019           |

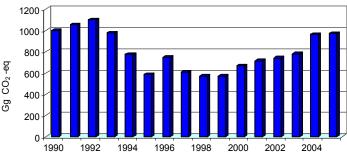



Fig. 4.8 Trends of CO<sub>2</sub> emission from steel production.

Change in  $CO_2$  emission for the period 1990-2005 amounted to 2.7 %. Decrease in emission in the middle of the 90-ies was brought about by total decline of the industrial production in that period.

## **Table 4.18** CO2 emission from steelproduction, Gg

**CO**<sub>2</sub>

998.4

1056.0

1100.8

977.6

774.4

587.2

745.6

606.4

Year

1990

1991

1992

1993

1994

1995

1996

1997



| Table 4.17 mundet of to emission nom steel production, og |         |       |       |                 |      |         |       |       |                 |
|-----------------------------------------------------------|---------|-------|-------|-----------------|------|---------|-------|-------|-----------------|
| Year                                                      | CO      | NOx   | NMVOC | SO <sub>2</sub> | Year | СО      | NOx   | NMVOC | SO <sub>2</sub> |
| 1990                                                      | 0.00062 | 0.025 | 0.019 | 0.028           | 1998 | 0.00036 | 0.014 | 0.011 | 0.016           |
| 1991                                                      | 0.00066 | 0.026 | 0.020 | 0.030           | 1999 | 0.00036 | 0.014 | 0.011 | 0.016           |
| 1992                                                      | 0.00069 | 0.028 | 0.021 | 0.031           | 2000 | 0.00042 | 0.017 | 0.012 | 0.019           |
| 1993                                                      | 0.00061 | 0.024 | 0.018 | 0.027           | 2001 | 0.00045 | 0.018 | 0.013 | 0.020           |
| 1994                                                      | 0.00048 | 0.019 | 0.015 | 0.022           | 2002 | 0.00046 | 0.018 | 0.014 | 0.021           |
| 1995                                                      | 0.00037 | 0.015 | 0.011 | 0.017           | 2003 | 0.00049 | 0.019 | 0.015 | 0.022           |
| 1996                                                      | 0.00047 | 0.019 | 0.014 | 0.021           | 2004 | 0.00060 | 0.024 | 0.018 | 0.027           |
| 1997                                                      | 0.00028 | 0.015 | 0.011 | 0.017           | 2005 | 0.00061 | 0.024 | 0.018 | 0.027           |

Table 4.19 Indirect GHG emission from steel production, Gg

Values of indirect GHG emission from steel production are marginal. Change in emission for the period 1990-2005 was as follows: CO -1.6%; NOx -4.0%; NMVOC -5.3%; SO<sub>2</sub> -3.6%.

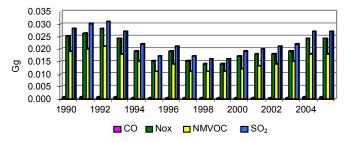



Fig. 4.9 Trends of indirect GHG emission from steel production

#### 4.4.2 Methodology

Direct and indirect GHG emissions in this category were estimated in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories [3]. Emission from steel production was estimated using the **Tier 1 b**.

## Activity data

Estimation of direct and indirect emissions from steel production was based on the statistical data of the State Committee on Statistics of the Republic of Uzbekistan. Volume of steel produced in 2000 amounted to 415.4 thousand tonnes.

#### **Emission factors**

Default emission factors were applied for calculations.

*CO*<sub>2</sub> *emission form steel production* = 1.6 tonne CO<sub>2</sub> per tonne of product [3]. *CO emission form steel production* = 1 gram CO per tonne of product [3]. *NOx emission form steel production* = 40 grams NOx per tonne of product [3]. *NMVOC emission form steel production* = 30 grams NMVOC per tonne of product [3]. *SO*<sub>2</sub> *emission form steel production* = 45 grams SO<sub>2</sub> per tonne of product [3].

#### 4.4.3 Uncertainty and sequence of time series

Uncertainty of CO<sub>2</sub> and other gases emissions from steel production were not estimated.

For all years the same method and the same data sets were used.

## 4.4.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

## 4.4.5 Recalculations in category

Recalculations were not performed.

#### 4.4.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].



## **4.5 2D OTHER PRODUCTION**

## 4.5.1 Description of source category

Under this category NMVOC emission from food and drink production was estimated.

| <b>Table 4.20</b> NMVOC emission from food and<br>drink production, Gg, 2000 |      |       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|------|-------|--|--|--|--|--|--|--|
| Drinks                                                                       | Food | Total |  |  |  |  |  |  |  |
| 10.9                                                                         | 7.9  | 18.7  |  |  |  |  |  |  |  |
| 58%                                                                          | 42%  | 100%  |  |  |  |  |  |  |  |

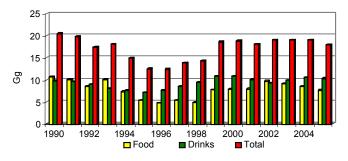



Fig. 4.10 Trends of NMVOC emission from food and drink production.

Table 4.21 NMVOC emission from food and drink production, Gg

| Year | Drinks | Food | Total | Year | Drinks | Food | Total |
|------|--------|------|-------|------|--------|------|-------|
| 1990 | 9.8    | 10.7 | 20.5  | 1998 | 9.5    | 4.9  | 14.3  |
| 1991 | 9.6    | 10.1 | 19.7  | 1999 | 10.9   | 7.7  | 18.6  |
| 1992 | 9.0    | 8.5  | 17.5  | 2000 | 10.9   | 7.9  | 18.7  |
| 1993 | 8.0    | 10.1 | 18.1  | 2001 | 10.1   | 8.0  | 18.1  |
| 1994 | 7.6    | 7.3  | 14.9  | 2002 | 9.3    | 9.7  | 19.0  |
| 1995 | 7.1    | 5.4  | 12.5  | 2003 | 9.9    | 9.1  | 19.0  |
| 1996 | 7.6    | 4.7  | 12.3  | 2004 | 10.5   | 8.5  | 19.0  |
| 1997 | 8.5    | 5.4  | 13.8  | 2005 | 10.3   | 7.7  | 17.9  |

Change in emission for the period 1990-2005 was as follows: drink production +5.2%; food production -28.4%; the total emission -12.3%.

Decrease in emission in the middle of the 90-ies was brought about by total decline of the industrial production in that period.

## 4.5.2 Methodology

Indirect GHG emissions in this category were estimated in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories [3].

#### Activity data

Estimation of direct and indirect GHG emission from food and drink production was based on the statistical data from the State Committee on Statistics of the Republic of Uzbekistan.

| Table 4.22 Food produc              | tion, 2000     | Table 4.23 Drink production, 2000 |                              |           |  |  |
|-------------------------------------|----------------|-----------------------------------|------------------------------|-----------|--|--|
| Production                          | Thousand tonne | Production                        | thousand decalitre hectolite |           |  |  |
| Meat and meat products              | 124.390        | Troduction                        | thousand uccantre            | nectonici |  |  |
| Fish products including canned fish | 9.000          | Alcohol                           | 7166                         | 716600    |  |  |
| Sugar                               | 10.169         |                                   |                              |           |  |  |
| Animal fat                          | 0.037          | Cognac                            | 131                          | 13100     |  |  |
| Animal oil                          | 2.180          | Wine                              | 5987                         | 598700    |  |  |
| Margarine                           | 22.453         |                                   |                              | 270100    |  |  |
| Bread and bakery                    | 847.231        | Beer                              | 6081                         | 608100    |  |  |
| Confectionery (floury)              | 55.853         |                                   |                              |           |  |  |
| Mixed fodder                        | 666.672        |                                   |                              |           |  |  |



## **Emission** factors

Default emission factors were used for calculations.

NMVOC emission from food production [3], table 2-25, 2-26:
Meat, fish and poultry = 0.3 kg NMVOC per tonne of product
Sugar = 10.0 kg NMVOC per tonne of product
Margarine and fat = 10.0 kg NMVOC per tonne of product
Cakes, biscuits etc. = 1.0 kg NMVOC per tonne of product
Bread = 8.0 kg NMVOC per tonne of product
Mixed fodder = 1.0 kg NMVOC per tonne of product
Wine = 0.08 kg/ hectoliter
Beer = 0.035 kg/ hectoliter
Strong alcohol = 15 kg/ hectoliter
Cognac = 3.5 kg/ hectoliter

## 4.5.3 Uncertainty and sequence of time series

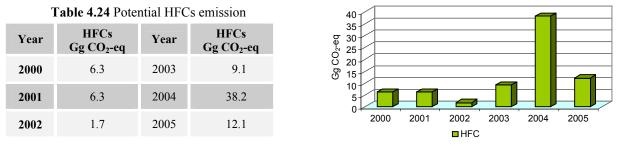
Uncertainty of emissions was not estimated. For all years the same method and the same data sets were used.

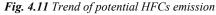
#### 4.5.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 4.5.5 Recalculations in category

Recalculations were not performed


#### 4.5.6 Planned improvements by category


While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

## 4.6 2F CONSUMPTION OF HALOCARBONS AND SULPHUR HEXAFLUORIDE

#### 4.6.1 Description of source category

Under this category potential hydrofluorocarbons emission were estimated for the period 2000-2005. Hydrofluorocarbons emission in 2000 in  $CO_2$  equivalent came to 6.3 Gg.





Increase in emission for the period 2000-2005 amounted to 92%. However, according to the available estimates to assess the stability of the emission trend is not possible.

#### 4.6.2 Methodology

Potential HFCs emission in this category was estimated in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, using the **Tier 1 b**. [3].

## Activity data

There is no HFCs production in the country and data on their entrapment and demolition are absent. Estimation of potential HFCs emission was implemented using the data on import of fluorides and iodides provided by the State Committee on Statistics and the data on import of the HFCs from the State Committee for Nature Protection. Unfortunately, these data are incomplete. Data for the period until 2000 are not available at all. State Committee on Statistics has provided the total amount of fluorides and iodides imported for the period 2002-2005. State Committee for Nature Protection has provided total amount of HFCs imported for the period 2000-2004.

 Table 4.25 Import of fluorides and iodides, tonne

 Table 4.26 Import of fluorides in 2000-2004, tonne

| 2002 | 2003 | 2004 | 2005 |
|------|------|------|------|
| 1.1  | 5.9  | 24.9 | 7.9  |

Emissions were estimated assuming that:

- 1. having no detailed information on fluorides and iodides, we consider the sum of fluorides and iodides as HFCs;
- 2. composition of HFCs for each year is the same;
- 3. share of each HFC in total amount remains unchangeable for each year;
- 4. amount of HFCs is equal for 2000 and 2001.

Following these assumptions the amount of each HFCs was calculated for each year (calculation is shown in the Annex 11).

For 2000 HFCs were estimated in tonnes of gas and in tonnes of CO<sub>2</sub> equivalent.

|                             | HFC-32 | HFC-125 | HFC-134a | HFC-143a |
|-----------------------------|--------|---------|----------|----------|
| Tonnes, gas                 | 0.05   | 0.30    | 3.57     | 0.22     |
| Tonnes, CO <sub>2</sub> -eq | 29.8   | 853.4   | 4634.5   | 819.7    |

## Emission factors

| For calculation of potential HFCs emission in CO <sub>2</sub> | HFC-32 | HFC-125 | HFC-134a | HFC-143a |  |  |
|---------------------------------------------------------------|--------|---------|----------|----------|--|--|
| equivalent GWPs were used, that are based on                  | 650    | 2 800   | 1 300    | 3 800    |  |  |
| greenhouse gases impact for 100 year period [4].              |        |         |          |          |  |  |

## 4.6.3 Uncertainty and sequence of time series

Uncertainty of potential HFCs emissions was not estimated, it was suggested to be of high value as the data available were incomplete and invalid and also many assumptions were used.

## 4.6.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for calculations, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 4.6.5 Recalculations in category

In previous years emissions in this category were not estimated.

#### 4.6.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].



## **Chapter 5: AGRICULTURE**

## 5.1 Sector review

| Table 5.1 Direct GHG emission, | 2000 |
|--------------------------------|------|
|--------------------------------|------|

| Cotogomi                                  | Emission,              | %    |
|-------------------------------------------|------------------------|------|
| Category                                  | Gg CO <sub>2</sub> -eq | 70   |
| 4 A Enteric fermentation                  | 6592.1                 | 40.8 |
| 4 B Manure management                     | 709.4                  | 4.4  |
| 4 C Rice cultivation                      | 187.9                  | 1.2  |
| 4 D Agricultural soils                    | 8538.9                 | 52.9 |
| 4 F Field burning of agricultural resides | 119.3                  | 0.7  |
| Other                                     |                        |      |
| Total in sector                           | 16147.6                | 100  |

Inventory in the agricultural sector covers emission of methane and nitrous oxide (direct effect) and carbon oxide and nitrogen oxides (indirect effect) in the category 4F Field Burning of Agricultural Residues and from the activities listed in the table 5.1. Major emission sources are enteric fermentation and agricultural soils.

Table 5.2 Direct GHG emission by gas, 2000

| Gas                              | CH <sub>4</sub> | N <sub>2</sub> O |
|----------------------------------|-----------------|------------------|
| Emission, Gg CO <sub>2</sub> -eq | 7347.8          | 8800.0           |
| %                                | 45.5            | 54.5             |

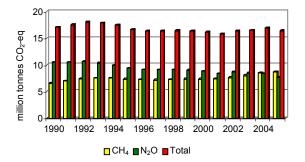

#### Trends of emission by gases and categories

Table 5.3 Direct GHG emission from agriculture by gases, Gg CO<sub>2</sub> equivalent

| Year | CH <sub>4</sub> | N <sub>2</sub> O | Total   | Year | CH <sub>4</sub> | N <sub>2</sub> O | Total   |
|------|-----------------|------------------|---------|------|-----------------|------------------|---------|
| 1990 | 6538.0          | 10517.1          | 17054.9 | 1998 | 7284.9          | 9138.2           | 16423.1 |
| 1991 | 7028.3          | 10529.5          | 17557.7 | 1999 | 7323.8          | 9008.9           | 16332.7 |
| 1992 | 7414.5          | 10599.2          | 18013.7 | 2000 | 7347.8          | 8800.0           | 16147.6 |
| 1993 | 7571.3          | 10309.4          | 17880.7 | 2001 | 7392.0          | 8427.0           | 15819.0 |
| 1994 | 7522.2          | 9980.1           | 17502.3 | 2002 | 7632.2          | 8700.8           | 16333.0 |
| 1995 | 7345.6          | 9333.2           | 16678.8 | 2003 | 8024.7          | 8466.1           | 16490.8 |
| 1996 | 7220.0          | 9122.7           | 16342.7 | 2004 | 8504.6          | 8383.0           | 16887.6 |
| 1997 | 7200.7          | 9136.3           | 16337.0 | 2005 | 8701.8          | 7740.1           | 16441.9 |

Change in emission for the period 1990-2005 was as follows: CH<sub>4</sub> +33.1%; N<sub>2</sub>O -26.4%; the total emission -3.6%.

12000



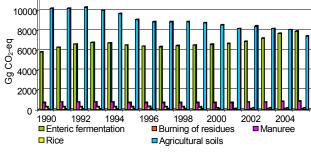



Fig. 5.1 Trends of direct GHG emission from agriculture by gases

Fig. 5.2 Trends of direct GHG emission from agriculture by categories

Change in emission for the period 1990-2005 was as follows: enteric fermentation +35.5 %; manure management +19.3%; rice cultivation -62.0 %; field burning of agricultural residues – rise in emission by 4.7; agricultural soils - 27.4 %.

The key emission sources in the sector are as follows:

- 1. N<sub>2</sub>O emission from agricultural soils level, trend
- 2. CH<sub>4</sub> from enteric fermentation level, trend

| Year | Enteric<br>fermentation | Manure<br>management | Rice<br>cultivation | Field burning of agricultural residues | Agricultural soils |
|------|-------------------------|----------------------|---------------------|----------------------------------------|--------------------|
| 1990 | 5833.4                  | 706.7                | 261.7               | 32.0                                   | 10221.7            |
| 1991 | 6276.9                  | 741.4                | 273.4               | 36.1                                   | 10230.0            |
| 1992 | 6619.2                  | 762.3                | 292.5               | 38.4                                   | 10301.3            |
| 1993 | 6755.7                  | 762.9                | 296.7               | 46.2                                   | 10019.2            |
| 1994 | 6707.3                  | 744.1                | 287.7               | 60.3                                   | 9703.0             |
| 1995 | 6524.7                  | 713.7                | 290.2               | 79.6                                   | 9070.6             |
| 1996 | 6379.8                  | 688.9                | 306.0               | 95.9                                   | 8872.2             |
| 1997 | 6363.0                  | 684.5                | 296.1               | 105.7                                  | 8887.7             |
| 1998 | 6447.0                  | 693.6                | 284.3               | 113.5                                  | 8884.6             |
| 1999 | 6514.2                  | 700.9                | 248.9               | 117.4                                  | 8751.3             |
| 2000 | 6592.1                  | 709.4                | 187.9               | 119.3                                  | 8538.9             |
| 2001 | 6673.8                  | 718.8                | 132.1               | 135.2                                  | 8159.2             |
| 2002 | 6890.1                  | 741.2                | 126.0               | 156.1                                  | 8419.6             |
| 2003 | 7232.4                  | 776.4                | 140.9               | 172.6                                  | 8168.5             |
| 2004 | 7683.9                  | 826.0                | 134.2               | 180.5                                  | 8063.1             |
| 2005 | 7902.3                  | 843.1                | 99.5                | 181.6                                  | 7415.2             |

### Table 5.4 Direct GHG emission from agriculture by categories, Gg CO<sub>2</sub> equivalent

#### **5.2 4A ENTERIC FERMENTATION**

#### 5.2.1 Description of source category

Emissions were estimated in the following IPCC categories: 4 A 1 a , 4 A 1 b, 4 A 3, 4 A 4, 4 A 5, 4 A 6, 4 A 7, 4 A 8.

| <b>Table 5.5</b> CH <sub>4</sub> emission from enteric fermentation by category, 2000 |                        |       |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------|-------|--|--|--|--|
| Category                                                                              | Gg CO <sub>2</sub> -eq | %     |  |  |  |  |
| Cattle                                                                                | 5533.1                 | 83.9  |  |  |  |  |
| Dairy                                                                                 | 2750.0                 | 41.7  |  |  |  |  |
| Non-dairy                                                                             | 2783.1                 | 42.2  |  |  |  |  |
| Sheep                                                                                 | 818.2                  | 12.4  |  |  |  |  |
| Goats                                                                                 | 120.4                  | 1.8   |  |  |  |  |
| Camels                                                                                | 15.0                   | 0.2   |  |  |  |  |
| Horses                                                                                | 55.4                   | 0.8   |  |  |  |  |
| Asses                                                                                 | 48.4                   | 0.7   |  |  |  |  |
| Swine                                                                                 | 1.7                    | 0.0   |  |  |  |  |
| Total                                                                                 | 6592.0                 | 100.0 |  |  |  |  |

 Table 5.6 CH<sub>4</sub> emission from enteric fermentation by provinces, 2000

| Province                   | Gg CO <sub>2</sub> -eq | %    |
|----------------------------|------------------------|------|
| Republic of Karakalpakstan | 452.7                  | 6.9  |
| Andijan                    | 509.8                  | 7.7  |
| Bukhara                    | 538.7                  | 8.2  |
| Jizak                      | 386.6                  | 5.9  |
| Kashkadarya                | 814.1                  | 12.3 |
| Navoi                      | 310.9                  | 4.7  |
| Namangan                   | 409.7                  | 6.2  |
| Samarkand                  | 933.5                  | 14.2 |
| Surkhandarya               | 576.9                  | 8.7  |
| Syrdarya                   | 191.0                  | 2.9  |
| Tashkent                   | 457.1                  | 6.9  |
| Fergana                    | 523.2                  | 7.9  |
| Khoresm                    | 490.0                  | 7.4  |

The 2000 methane emission was estimated for the provinces of Uzbekistan. The calculation of emissions for each province was performed with application of the method offered in [3] in a separate file. Total emission from the provinces differs from that calculated for the entire country by 2 Gg.

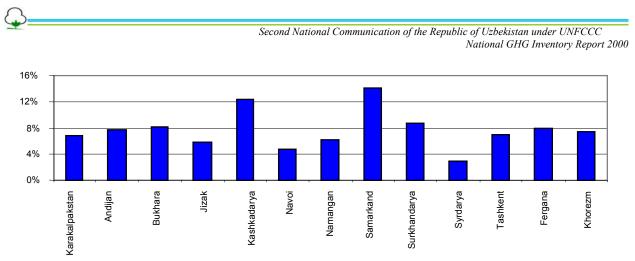



Fig. 5.3 CH<sub>4</sub> emission from enteric fermentation by provinces

#### Trends of emission

| Table 5.7 $CH_4$ emissions from enteric fermentation |                        |      |                        |  |  |  |  |
|------------------------------------------------------|------------------------|------|------------------------|--|--|--|--|
| Year                                                 | Gg CO <sub>2</sub> -eq | Year | Gg CO <sub>2</sub> -eq |  |  |  |  |
| 1990                                                 | 5833.4                 | 1998 | 6447.0                 |  |  |  |  |
| 1991                                                 | 6276.9                 | 1999 | 6514.2                 |  |  |  |  |
| 1992                                                 | 6619.2                 | 2000 | 6592.0                 |  |  |  |  |
| 1993                                                 | 6755.7                 | 2001 | 6673.8                 |  |  |  |  |
| 1994                                                 | 6707.3                 | 2002 | 6890.1                 |  |  |  |  |
| 1995                                                 | 6524.7                 | 2003 | 7232.4                 |  |  |  |  |
| 1996                                                 | 6379.8                 | 2004 | 7683.9                 |  |  |  |  |
| 1997                                                 | 6363.0                 | 2005 | 7902.3                 |  |  |  |  |

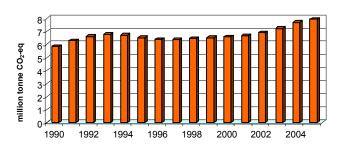



Fig. 5.4 Trends of CH<sub>4</sub> emission from enteric fermentation

Change in emission for the period 1990-2005: +35.5%.

Change in emission is brought about by change in livestock, especially in cattle population.

#### 5.2.2 Methodology

Estimation of CH<sub>4</sub> emission from enteric fermentation was implemented in accordance with [3].

#### Activity data

For the emission estimation the data of the state statistics on domestic livestock population was used. As it is recommended by [3] three year averages of activity data were used for calculation.

| Province       | Cattle | Dairy cattle | Sheep  | Goats | Camels | Horses | Asses | Swine | Poultry |
|----------------|--------|--------------|--------|-------|--------|--------|-------|-------|---------|
| Republic of    |        |              |        |       |        |        |       |       |         |
| Karakalpakstan | 382.6  | 161.3        | 379.9  | 55.9  | 4.6    | 16.2   | 9.6   | 7.8   | 687.5   |
| Andijan        | 441.0  | 185.3        | 442.2  | 65.1  | 0      | 5.8    | 0.5   | 1.2   | 1353.9  |
| Bukhara        | 428.0  | 184.7        | 709.5  | 104.4 | 2.8    | 3.0    | 34.8  | 5.1   | 770.9   |
| Jizak          | 283.0  | 128.7        | 700.7  | 103.1 | 0      | 14.8   | 12.0  | 3.1   | 409.4   |
| Kashkadarya    | 581.8  | 254.7        | 1627.0 | 239.3 | 0.9    | 18.8   | 39.2  | 5.5   | 1099.3  |
| Navoi          | 174.4  | 89.0         | 921.0  | 135.5 | 6.7    | 11.1   | 25.9  | 12.7  | 611.9   |
| Namangan       | 348.7  | 136.8        | 418.1  | 61.5  | 0      | 5.9    | 2.1   | 0.3   | 596.5   |
| Samarkand      | 794.0  | 353.5        | 778.8  | 114.5 | 0.3    | 16.0   | 49.5  | 12.9  | 2382.9  |
| Surkhandarya   | 446.4  | 215.1        | 850.1  | 125.0 | 0      | 13.0   | 13.6  | 1.4   | 941.7   |
| Syrdarya       | 171.1  | 71.5         | 96.5   | 14.2  | 0.1    | 5.7    | 4.5   | 4.7   | 275.2   |
| Tashkent       | 387.5  | 180.1        | 339.3  | 49.9  | 0      | 26.9   | 10.3  | 20.7  | 3259.3  |
| Fergana        | 464.9  | 196.2        | 341.8  | 50.3  | 0      | 5.0    | 4.9   | 4.2   | 927.8   |
| Khirezm        | 450.0  | 186.3        | 182.1  | 26.8  | 0      | 4.1    | 17.5  | 6.2   | 1193.7  |

Table 5.8 Domestic livestock population by provinces, thousand heads, 2000



#### **Emission factors**

For each animal type a default factor from [3] was used:

Table 4-2, page 4.3, column «Developing countries», table 4-3, page 4.5, line «Asia» – as most similar in value of milk production of dairy cattle from 1875 kg/head/yr at the beginning of the 90-ies to 1550 kg/heady/yr in 2000 (the data of the State Committee on Statistics of the Republic of Uzbekistan).

#### 5.2.3 Uncertainty and sequence of time series

Uncertainty of methane emission was not estimated. For all years the same method and the same data set was used.

#### 5.2.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the modified worksheets, the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 5.2.5 Recalculations in category

Recalculations were not implemented.

#### 5.2.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

## **5.3 4B MANURE MANAGEMENT**

#### 5.3.1 Description of source category

Methane emission was estimated in the following categories: 4 A 1 a, 4 A 1 b, 4 A 3, 4 A 4, 4 A 5, 4 A 6, 4 A 7, 4 A 8, 4 B 9. Nitrous oxide emission – in the categories: B 10, 4 B 11, 4 B 12.

| management, 2000                                 |                        |       |  |  |  |  |
|--------------------------------------------------|------------------------|-------|--|--|--|--|
| Category                                         | Emission,<br>Gg CO2-eq | %     |  |  |  |  |
| CH <sub>4</sub> emission from manure management  | 480.4                  | 67.7  |  |  |  |  |
| N <sub>2</sub> O emission from manure management | 229.0                  | 32.3  |  |  |  |  |
| Total emission from manure management            | 709.4                  | 100.0 |  |  |  |  |

**Table 5.9** Direct GHG emission from manure

## Table 5.11 N<sub>2</sub>O emission from manure management by categories, 2000

| U              | ,                      |       |
|----------------|------------------------|-------|
| Category       | Gg CO <sub>2</sub> -eq | %     |
| Anaerobic      | 4.2                    | 1.8   |
| Liquid systems | 3.1                    | 1.3   |
| Solid storage  | 171.2                  | 74.8  |
| Other          | 50.6                   | 22.1  |
| Total          | 229.0                  | 100.0 |

Table 5.10 CH4 emission from manure managementby categories, 2000

| -         | -                      |       |
|-----------|------------------------|-------|
| Category  | Gg CO <sub>2</sub> -eq | %     |
| Cattle    | 447.7                  | 93.2  |
| dairy     | 384.4                  | 80.0  |
| non dairy | 63.3                   | 13.2  |
| Sheep     | 17.4                   | 3.6   |
| Goats     | 2.8                    | 0.6   |
| Camels    | 0.4                    | 0.1   |
| Horses    | 3.5                    | 0.7   |
| Asses     | 3.0                    | 0.6   |
| Swine     | 1.8                    | 0.4   |
| Poultry   | 3.8                    | 0.8   |
| Total     | 480.4                  | 100.0 |

 Table 5.12 CH<sub>4</sub> emission from manure management

 by provinces

| Province                   | Gg CO <sub>2</sub> -eq | %    |
|----------------------------|------------------------|------|
| Republic of Karakalpakstan | 30.2                   | 6.3  |
| Andijan                    | 34.2                   | 7.1  |
| Bukhara                    | 34.9                   | 7.2  |
| Jizak                      | 24.6                   | 5.1  |
| Kashkadarya                | 49.6                   | 10.3 |
| Navoi                      | 18.3                   | 3.8  |
| Namangan                   | 25.9                   | 5.4  |
| Samarkand                  | 65.0                   | 13.5 |
| Surkhandarya               | 81.6                   | 17.0 |
| Syrdarya                   | 13.2                   | 2.7  |
| Tashkent                   | 33.7                   | 7.0  |
| Fergana                    | 35.8                   | 7.4  |
| Khorezm                    | 34.1                   | 7.1  |



The 2000 methane emission from manure management was estimated for the provinces of Uzbekistan. The calculation of emissions for each province was performed with application of the method offered in [3] in a separate file. Total emission from the provinces differs from that calculated for the entire country by 2 Gg.

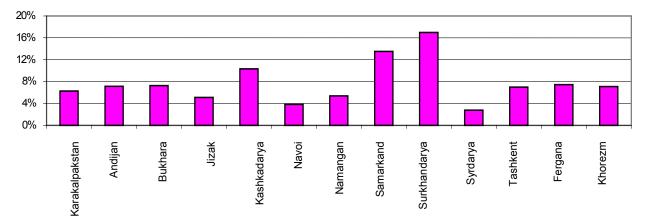



Fig. 5.5  $CH_4$  emission from manure management by provinces.

Trends of emission

| Year | CH <sub>4</sub> | N <sub>2</sub> O | Total emission | Year | CH <sub>4</sub> | N <sub>2</sub> O | Total emission |
|------|-----------------|------------------|----------------|------|-----------------|------------------|----------------|
| 1990 | 420.0           | 286.8            | 706.7          | 1998 | 470.4           | 223.2            | 693.6          |
| 1991 | 451.5           | 289.9            | 741.4          | 1999 | 474.6           | 226.3            | 700.9          |
| 1992 | 474.6           | 287.7            | 762.3          | 2000 | 480.4           | 229.0            | 709.4          |
| 1993 | 485.1           | 277.8            | 762.9          | 2001 | 487.2           | 231.6            | 718.8          |
| 1994 | 483.0           | 261.1            | 744.1          | 2002 | 501.9           | 239.3            | 741.2          |
| 1995 | 472.5           | 241.2            | 713.7          | 2003 | 525.0           | 251.4            | 776.4          |
| 1996 | 464.1           | 224.8            | 688.9          | 2004 | 554.4           | 271.6            | 826.0          |
| 1997 | 464.1           | 220.4            | 684.5          | 2005 | 567.0           | 276.1            | 843.1          |

Change in emission for the period 1990-2005 was as follows: CH<sub>4</sub> +35 %; N<sub>2</sub>O -3.7 %; total emission +19.3%.

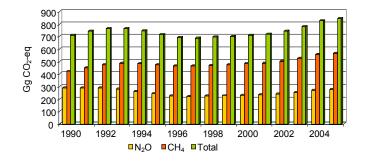



Fig. 5.6 Trends of direct GHG from manure management

## 5.3.2 Methodology

The CH<sub>4</sub> and N<sub>2</sub>O emissions from manure management were estimated in accordance with [3].

#### Activity data

For the emission estimation the data of the state statistics on domestic livestock population was used (table 5.5). As it is recommended by [3] three year averages of activity data were used for calculation.

#### **Emission** factors

For each animal type a default factor from [3] was used:



 $CH_4$  emission factor for manure – table 4-4, «Developing countries», page 4.6, table 4-5, region «Asia», page 4.7. Emission factors for the Surkhandarya province were taken from the column «Temperate climate» (annual average temperature is greater than 15°), for the rest of the provinces – the column «Cool climate» (annual average temperature is less than 15°).

 $N_2O$  emission factor for manure – table 4-6, page 4.10, line «Asia and Far East».

The portion of nitrogen in manure for each AWMS (Animal Waste Management System) was taken from table 4-7, page 4.13, region "Asia and Far East".

 $N_2O$  emission factor for each AWMS – (EF<sub>3</sub>) was taken from table 4-8, page 4.14. Conversion factor = 44/28.

#### 5.3.3 Uncertainty and sequence of time series

Uncertainty of methane and nitrous oxides emissions were not estimated. For all years the same method and the same data set was used.

#### 5.3.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the modified worksheets, the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### **5.3.5 Recalculations in category**

The given estimates of  $CH_4$  emission are recalculated ones. Recalculation was implemented due to change in the factors in whole time series (in the Initial National Communication the factors for temperate climate were applied for the whole country).

## 5.3.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

#### 5.3.5 Recalculations by categories

## **5.4 4C RICE CULTIVATION**

#### 5.4.1 Description of source category

Emission from rice cultivation in 2000 amounted to 187.93 Gg CO<sub>2</sub> equivalent.

| Year | Gg CO <sub>2</sub> -eq | Year | Gg CO <sub>2</sub> -eq |
|------|------------------------|------|------------------------|
| 1990 | 261.7                  | 1998 | 284.3                  |
| 1991 | 273.4                  | 1999 | 248.9                  |
| 1992 | 292.5                  | 2000 | 187.9                  |
| 1993 | 296.7                  | 2001 | 132.1                  |
| 1994 | 287.7                  | 2002 | 126.0                  |
| 1995 | 290.2                  | 2003 | 140.9                  |
| 1996 | 306.0                  | 2004 | 134.2                  |
| 1997 | 296.1                  | 2005 | 99.5                   |

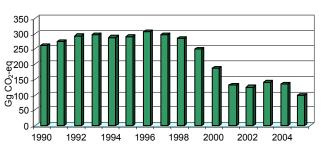



Fig. 5.7 Trends of CH<sub>4</sub> emission from rice cultivation

Change in the emission for the period 1990-2005 was as follows: – drop by 62% or by 2.93 times. Change in emission after 1999-2000 was brought about by a sharp decline in areas under rice.

#### 5.4.2 Methodology

The CH<sub>4</sub> emission from rice cultivation was estimated in accordance with [3].

#### Activity data

For the calculation the data were used of the state statistics on the areas occupied by rice -1999 - 164.21 thousand hectares, 2000 - 131.84 thousand hectares; 2001 - 39.52 thousand hectares (Year book «Totals of counting of area under crop for 2000 yield (on all lands)", the similar year books for 1999 and 2001). For calculations three year averages recommended by [3] were used.



## **Emission factors**

In Uzbekistan under conditions when fertilizers are applied to the rice fields and they are intermittently flooded with multiple aerations, the relevant default factors from [3] are employed, such as:

*Scaling factor* – **0.2** (Table 4-10, page 4.21).

Default correction factor – 2 (page 4.16, Item 3).

Default seasonally integrated factor - 20 g/m<sup>2</sup> (Table 4-11, page 4.22, line «Arithmetic average»).

### 5.4.3 Uncertainty and sequence of time series

Uncertainty of methane was not estimated. For all years the same method and the same data set was used.

#### 5.4.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 5.4.5 Recalculations in category

Recalculations were not implemented.

#### 5.4.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

#### **5.5 4D AGRICULTURAL SOILS**

#### 5.5.1 Description of source category

Under this category direct and indirect N<sub>2</sub>O emission from agricultural soils and animal grazing were estimated.

**Table 5.15** N<sub>2</sub>O emission from agricultural soils,

| 2000              |                        |  |  |  |  |
|-------------------|------------------------|--|--|--|--|
| Category          | Gg CO <sub>2</sub> -eq |  |  |  |  |
| Indirect emission | 2910.4                 |  |  |  |  |
| Direct emission   | 4112.9                 |  |  |  |  |
| Grazing animals   | 1516.5                 |  |  |  |  |
| Total emission    | 8538.9                 |  |  |  |  |

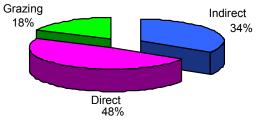



Fig. 5.8 N<sub>2</sub>O emission from agricultural soils, 2000

Table 5.16 N<sub>2</sub>O emission from agricultural soils, Gg CO<sub>2</sub>-equivalent

| Year | Indirect | Direct | Grazing | Total emission | Year | Indirect | Direct | Grazing | Total emission |
|------|----------|--------|---------|----------------|------|----------|--------|---------|----------------|
| 1990 | 3530.9   | 5155.3 | 1535.5  | 10221.7        | 1998 | 3065.9   | 4327.6 | 1488.0  | 8881.5         |
| 1991 | 3503.0   | 5111.9 | 1618.2  | 10233.1        | 1999 | 3007.0   | 4240.8 | 1503.5  | 8751.3         |
| 1992 | 3515.4   | 5108.8 | 1680.2  | 10304.4        | 2000 | 2909.4   | 4112.9 | 1516.5  | 8538.9         |
| 1993 | 3406.9   | 4929.0 | 1683.3  | 10019.2        | 2001 | 2740.4   | 3887.4 | 1531.4  | 8159.2         |
| 1994 | 3306.7   | 4754.4 | 1642.0  | 9703.0         | 2002 | 2821.0   | 4020.7 | 1577.9  | 8419.6         |
| 1995 | 3096.9   | 4420.6 | 1556.2  | 9073.7         | 2003 | 2672.2   | 3844.0 | 1652.3  | 8168.5         |
| 1996 | 3053.5   | 4327.6 | 1491.1  | 8872.2         | 2004 | 2793.1   | 4011.4 | 1701.9  | 8506.4         |
| 1997 | 3087.6   | 4333.8 | 1466.3  | 8887.7         | 2005 | 2290.9   | 3323.2 | 1801.1  | 7415.2         |

Change in emission for the period 1990-2005 was as follows: indirect emission -35.1%; direct emission -35.5%; grazing +17.4%; total emission -27.5%.

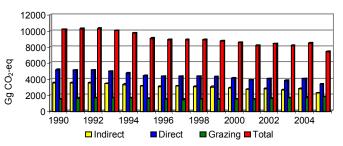



Fig. 5.9 Trends of N<sub>2</sub>O emission from agricultural soils

## 5.5.2 Methodology

N<sub>2</sub>O emissions from agricultural soils were estimated in accordance with [3].

#### Activity data

- 1. The data on nitrogen fertilizer applied to agricultural fields totaled 424.1 thousand tonnes in 1999; 421.05 thousand tonnes in 2000; 399.2 thousand tonnes in 2001 were provided by the State Committee for Statistics.
- 2. The data on livestock population from the State Committee on Statistics are given in the table 5.5.
- 3. The data on agricultural crop production were taken from the yearbook "Gross yield of agricultural in 2000" and from the yearbooks for 1999 and 2001.

For calculations three year averages recommended by [3] were used.

| Table 3.17 Crop production, mousand tonnes |         |         |         |  |  |  |  |  |
|--------------------------------------------|---------|---------|---------|--|--|--|--|--|
| Сгор                                       | 1999    | 2000    | 2001    |  |  |  |  |  |
| Leguminous plants                          | 112.7   | 92.8    | 104.4   |  |  |  |  |  |
| Cereal crops                               | 45073.1 | 40921.6 | 42297.0 |  |  |  |  |  |
| Technical crops                            | 38519.3 | 31285.2 | 33546.2 |  |  |  |  |  |
| Oil bearing plants (without soya)          | 225.3   | 196.7   | 142.3   |  |  |  |  |  |
| Soya                                       | 3.8     | 4.6     | 0.7     |  |  |  |  |  |
| Vegetables                                 | 38555.0 | 38277.0 | 39885.1 |  |  |  |  |  |
| Feed crop                                  | 34701.9 | 31132.1 | 27181.8 |  |  |  |  |  |
| Grass (haying)                             | 19637.7 | 14683.1 | 13502.0 |  |  |  |  |  |

## **Emission** factors

- 1. To convert initial data in units of dry biomass default factor (0.85 = 1 0.15) from [3], page 4.36
- 2. *Nitrogen emission factor*  $EF_1 = 0.0125 (0.0025 0.0225) kg N_2O-N/kg N applied, [3], table. 4.18, page 4.37$
- 3. *Emission factor*  $EF_4 = 0.01 (0.002 0.02) \text{ kg N}_2\text{O-N/kg}$  emitted NH<sub>3</sub>-N+NO<sub>x</sub>-N, [3], table 4-18, page 4.37
- 4. *Emission factor* EF<sub>5</sub>=0.025 (0.002 0.12) kg N<sub>2</sub>O-N/kg N from leaching /washout [3], table 4-18, page 4.37
- 5.  $Frac_{NCRBF} = 0.03 \text{ kg N/ kg of dry biomass from [3], table 4-17, page 4.35.}$
- 6.  $Frac_{GASF} = 0.1 \text{ kg NH}_3-N + NOx-N/\text{kg N input, [3], table 4-17, page 4.35.}$
- 7.  $Frac_{FUEL} = 0 \text{ kg N} / \text{kg N}$  totally extracted, [3], table 4-17, page 4.35.
- 8.  $Frac_{GASM} = 0.2 \text{ kg NH}_3\text{-N+NOx-N/kg N excreted}, [3], table 4-17, page 4.35.$
- 9.  $Frac_{NCR0} = 0.015 \text{ kg N} / \text{kg of dry biomass}, [3], \text{ table 4-17, page 4.35.}$
- 10.  $Frac_{LEACH} = 0.3$  kg N/kg of fertilizer or manure N [3], table 4-17, page 4.35.
- 11. Total nitrogen excretion (Nex) [3], table 4-6, page 4.10, line «Asia and Far East»;
- 12. *Fraction of nitrogen in manure for each AWMS* (Animal Waste Management System) was taken from table 4-7, page 4.13, region "Asia and Far East".
- 13. *Fraction of nitrogen* emitted from *dung and urine deposits of grazing animals* = 0.02 kg N / kg N [3], Annex A, table A-1, page 4.47, column « Pasture range and paddock"
- 14. *Fraction of crop residue removed from the field* = 0.75 kg N/kg crop-N (National coefficient provided by the Research Center at the Interstate Commission for Water Coordination).
- 15. *Fraction of burned residues* = 0.05 kg N/kg plant nitrogen (national factor provide by the Research Institute of Water Economy commission).
- 16. Conversion factor =44/28 [3].

#### 5.5.3 Uncertainty and sequence of time series

Uncertainty of N<sub>2</sub>O emission was not estimated. For all years the same method and the same data set was used.

#### 5.5.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of correctness of formulas in the worksheets, the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

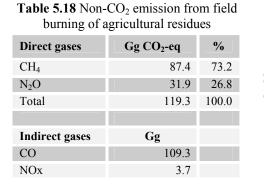
#### 5.5.5 Recalculations in category

Recalculations were not implemented.

#### 5.5.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

## Table 5.17 Crop production, thousand tonnes




National GHG Inventory Report 2000

## 5.6 4F FIELD BURNING OF AGRICULTURAL RESIDUES

## 5.6.1 Description of source category

Emission of non- $CO_2$  greenhouse gases only from burning of crop stubble on field (4F 1Cereals) was inventoried. Under this category greenhouse gas emissions presented in the table 5.18 were estimated.



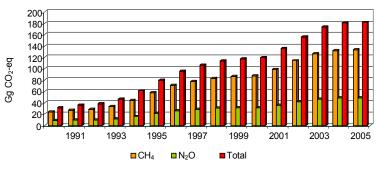



Fig. 5.10 Trends of direct GHG emission from field burning of agricultural residues

| Table 3.17 Direct Girls emission nom ned ourning of agricultural residues |                 |                  |       |      |                 |                  |       |  |
|---------------------------------------------------------------------------|-----------------|------------------|-------|------|-----------------|------------------|-------|--|
| Year                                                                      | CH <sub>4</sub> | N <sub>2</sub> O | Total | Year | CH <sub>4</sub> | N <sub>2</sub> O | Total |  |
| 1990                                                                      | 23.3            | 8.7              | 32.0  | 1998 | 83.2            | 30.4             | 113.5 |  |
| 1991                                                                      | 22.5            | 9.6              | 36.1  | 1999 | 86.1            | 31.3             | 117.4 |  |
| 1992                                                                      | 28.1            | 10.2             | 38.4  | 2000 | 87.4            | 31.9             | 119.3 |  |
| 1993                                                                      | 33.8            | 12.4             | 46.2  | 2001 | 98.9            | 36.3             | 135.2 |  |
| 1994                                                                      | 44.3            | 16.1             | 60.3  | 2002 | 114.2           | 41.9             | 156.1 |  |
| 1995                                                                      | 58.2            | 21.4             | 79.6  | 2003 | 126.4           | 46.2             | 172.6 |  |
| 1996                                                                      | 70.1            | 25.7             | 95.9  | 2004 | 132.1           | 48.4             | 180.5 |  |
| 1997                                                                      | 77.5            | 28.2             | 105.7 | 2005 | 132.9           | 48.7             | 181.6 |  |

Table 5.19 Direct GHG emission from field burning of agricultural residues

Change in emission for the period 1990-2005 was as follows:  $CH_4$  – rise by 5.70 times;  $N_2O$  – rise by 5.60 times; total emission increased by 5.68 times.

| burning of agricultural residues, Gg |      |     |      |       |     |
|--------------------------------------|------|-----|------|-------|-----|
| Year                                 | CO   | NOx | Year | CO    | NOx |
| 1990                                 | 29.3 | 1.0 | 1998 | 104.0 | 3.5 |
| 1991                                 | 33.1 | 1.1 | 1999 | 107.7 | 3.7 |
| 1992                                 | 35.3 | 1.2 | 2000 | 109.3 | 3.7 |
| 1993                                 | 42.3 | 1.4 | 2001 | 123.8 | 4.2 |
| 1994                                 | 55.5 | 1.9 | 2002 | 142.7 | 4.9 |
| 1995                                 | 72.7 | 2.5 | 2003 | 158.0 | 5.4 |
| 1996                                 | 87.8 | 3.0 | 2004 | 165.1 | 5.6 |
| 1997                                 | 96.7 | 3.3 | 2005 | 166.0 | 5.7 |

 Table 5.20 Indirect GHG emission from on-site

automal maniduan C

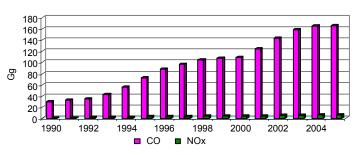



Fig. 5.11 Trends of indirect GHG emission from on-site burning of agricultural residues

Change in emission for the period 1990-2005 was as follows: CO – rose by 5. 67 times; NOx rose by 5.66 times. Rise in emission was brought about by increase in area under crops and crop yield in the country.

## 5.6.2 Methodology

Non-CO<sub>2</sub> emissions from on-site burning of agricultural residues were estimated in accordance with [3].

## Activity data

Only cereal residues are burnt on fields<br/>(wheat, barley, rye). For calculations the<br/>data of the state statistics on crop<br/>production were used (the yearbooks<br/>"Gross yield of agricultural crops on all<br/>lands").TalCrop1999Wheat3757.Burley119.Rye2.

|        | Table 5.21 Crop production, thousand tonnes |        |        |            |  |
|--------|---------------------------------------------|--------|--------|------------|--|
| Crop   | 1999                                        | 2000   | 2001   | % for 2000 |  |
| Wheat  | 3757.1                                      | 3684.2 | 3843.5 | 97.54      |  |
| Burley | 119.4                                       | 91.3   | 140.8  | 2.42       |  |
| Rye    | 2.3                                         | 1.8    | 0.9    | 0.05       |  |
| Total  | 3878.8                                      | 3777.3 | 3985.2 | 100.00     |  |

For calculations three year averages recommended by [3] were used.

## **Emission** factors

Emission factors are given for wheat (barley and rye residues were burned on fields too but their share in total crop production is marginal (table 5.21) so the magnitudes of wheat emission factors were applied to all crops). *Residues/production* ratio = 1.575 [16].

Dry biomass/total biomass ratio = 0.83 (in range of 0.78-0.88), [3], page 4.29, table 4-15, line «Wheat».

*Portion of biomass burned on fields* = 0.38 [16].

Fraction oxidized = 0.9 [3]

Portion of carbon in dry biomass = 0.45 [16].

*Nitrogen/carbon ratio* = 0.012, [3], page 4.29, table 4-15, line «Wheat».

*Emission ratios*: CH<sub>4</sub> = 0.004; CO = 0.06; N<sub>2</sub>O = 0.007; NOx = 0.121 [3], page 4.31, table 4-16.

## 5.6.3 Uncertainty and sequence of time series

Uncertainty of non-CO2 emission was not estimated. For all years the same method and the same data set was used.

## 5.6.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

## 5.6.5 Recalculations in category

Before now emissions in this category were not estimated.

## 5.6.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

## 5.7 4G OTHER

Category  $(CO_2 \text{ emissions})$  and removals from cultivated agricultural fields" is not included in the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories and IPCC software. The results obtained were not included in the national GHG inventory. The calculation was made by the specialists of the State Research Institute of Soil Science and Agrochemistry at the Academy of Science of the Republic of Uzbekistan.

The method of the calculation was developed by A. Banaru, the Research Institute for Pedology, Agrochemistry and Hydrology "N.Dimo", Moldova) [14, 15].

The calculation is given in the Annex 12.

## 5.7.1 Description of source category

Emissions and removals of  $CO_2$  were estimated from irrigated areas under cotton, wheat and alfalfa that constitute 93% of the total irrigated area.

In 2000 removals amounted to 3090.4 Gg CO2 equivalent. Three year averages were used.

| Year | Gg CO <sub>2</sub> | Year | Gg CO <sub>2</sub> |
|------|--------------------|------|--------------------|
| 1990 | 4545.6             | 1998 | -1267.9            |
| 1991 | 2169.5             | 1999 | -421.8             |
| 1992 | -217.8             | 2000 | -3090.4            |
| 1993 | -1327.5            | 2001 | -4731.2            |
| 1994 | -375.7             | 2002 | -6510.6            |
| 1995 | -259.2             | 2003 | -7223.1            |
| 1996 | -2286.3            | 2004 | -7212.1            |
| 1997 | -1830.3            | 2005 | -6189.0            |

Table 5.22 CO<sub>2</sub> emissions and removals

from agricultural soils

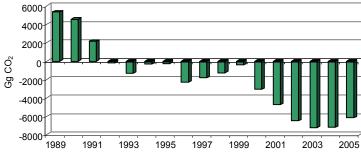



Fig. 5.12 Trend of CO<sub>2</sub> emissions and removals from agricultural soils

#### 5.7.2 Methodology

The method of the estimation is described in the following publications:

Anatol Banaru. "The greenhouse CO<sub>2</sub> emissions from the arable soils of the Republic of Moldova. CLIMATE CHANGE. Researches, studies, solutions. Chisinau, 2000" [7].

Anatol Banaru. "The methodology for the assessment of greenhouse  $CO_2$  emissions from the arable soils. CLIMATE CHANGE. Researches, studies, solutions. Chisinau, 2000" [8].

The methodology of the calculations of emissions/removals of  $CO_2$  is based on the assessment of carbon cycle in tillable soils. Carbon stocks in soils are made up of humified plant residues and organic substances entering the soil with organic fertilizers. Carbon stocks are calculated with application of the humification coefficients.

Emissions/removals of CO<sub>2</sub> depend on mineralization of organic matter and are estimated based on the magnitude of nitrogen removed with yield as the ratio carbon/nitrogen in soil humus is a constant.

## Activity data

The calculations were based on the state statistics on crop production – the 1999 -2001 yearbooks "Gross yield of agricultural crops on all lands" and "Gross yield of agricultural crops on irrigated lands". The data on the amount of the mineral and organic fertilizers applied were provided by the Ministry of Agriculture and Water Management. There are no any statistics on alfalfa production so approximate data from the Ministry of Agriculture and Water

Management were used.

According to the data of the Ministry of Agriculture and Water Management fertilizers are not applied to area under alfalfa.

| Year | Cotton  | Wheat   | Alfalfa |
|------|---------|---------|---------|
| 1999 | 3599.99 | 3551.91 | 1.50    |
| 2000 | 3001.84 | 3623.00 | 1.50    |
| 2001 | 3270.18 | 3802.23 | 1.50    |

Table 5.23 Crop yield, thousand tonnes

Table 5.24 Fertilizers application, thousand tonnes

| Year | Manur<br>thousand to |        | Nitrogen fertilizers<br>thousand tonnes |        |  |
|------|----------------------|--------|-----------------------------------------|--------|--|
|      | Cotton               | Wheat  | Cotton                                  | Wheat  |  |
| 1999 | 6069.6               | 4020.5 | 291.34                                  | 201.12 |  |
| 2000 | 7222.1               | 6420.2 | 295.81                                  | 203.02 |  |
| 2001 | 10163.3              | 9320.1 | 281.67                                  | 196.10 |  |

#### **Emission factors**

The national factors and some generally known coefficients were used for calculation.

| Coefficient                                                        | Сгор    | Magnitude |
|--------------------------------------------------------------------|---------|-----------|
| Coefficient of plant residues accumulation                         | Alfalfa | 0.5       |
| Coefficient of plant residues accumulation                         | Cotton  | 0.85      |
| Coefficient of plant residues accumulation                         | Wheat   | 1.17      |
| Coefficient of plant residues humification                         | Alfalfa | 0.18      |
| Coefficient of plant residues humification                         | Cotton  | 0.21      |
| Coefficient of plant residues humification                         | Wheat   | 0.19      |
| Coefficient of nitrogen removal                                    | Alfalfa | 0.025     |
| Coefficient of nitrogen removal                                    | Cotton  | 0.050     |
| Coefficient of nitrogen removal                                    | Wheat   | 0,035     |
| Nitrogen content in plant residues                                 | Alfalfa | 0.028     |
| Nitrogen content in plant residues                                 | Cotton  | 0.0064    |
| Nitrogen content in plant residues                                 | Wheat   | 0.005     |
| Coefficient of utilization of nitrogen from mineral fertilizers    | Cotton  | 0.40      |
| Coefficient of utilization of nitrogen from mineral fertilizers    | Wheat   | 0.36      |
| Coefficient of humus conversion into carbon                        |         | 0.58      |
| Coefficient of manure conversion into carbon                       |         | 0.58      |
| Coefficient of manure humification                                 |         | 0,22      |
| Portion of nitrogen in manure                                      |         | 0.005     |
| Coefficient of nitrogen removed with yield                         |         | 0.3       |
| Coefficient of soil texture                                        |         | 1.2       |
| Coefficient of technological effectiveness                         | Alfalfa | 1.5       |
| Coefficient of technological effectiveness                         | Cotton  | 1.5       |
| Coefficient of technological effectiveness                         | Wheat   | 1.85      |
| Coefficient of nitrogen conversion into carbon                     |         | 10.7      |
| Conversion factor for recalculation of carbon into CO <sub>2</sub> |         | 3.67      |

Sources are as follows: [17, 18, 19, 20, 21, 22, 23, 24, 25, and 26].

## 5.7.3 Uncertainty and sequence of time series

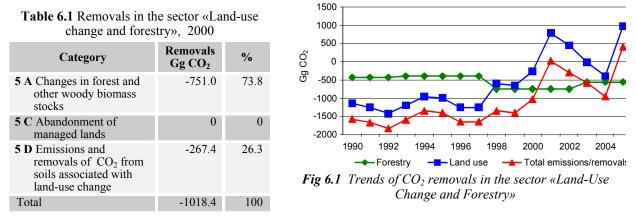
Uncertainties were not estimated despite they are probably high. To comprehensively estimate emissions/removals of  $CO_2$  in tillable soils the data on all crops sown all over the whole country's territory are required. There are no statistical data on non-widespread crops, majority of which is sown in small farms. In particular, the data are not available on application of mineral and organic fertilizers to each crop.

For all years the same method and the same data set was used.

## 5.7.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced. The calculations were checked by the developers of the method from Moldova.

## 5.7.5 Recalculations in category


Before now emissions in this category were not estimated.

## Chapter 6: 5 LAND-USE CHANGE & FORESTRY

#### 6.1 Sector review

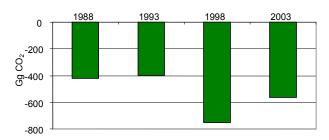
Under this sector emissions/removals were estimated under the categories «Changes in forest and other woody biomass stocks», «Abandonment of managed lands», «CO<sub>2</sub> emissions and removals from soil associated with land-use change». The estimates of the removals are shown n the table.

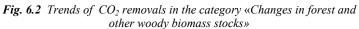
Removals account to 0.94% from the CO<sub>2</sub> emissions and 0.51% from the total GHG emission.



In the category «Changes in forest and other woody biomass stocks» removals are estimated once in every 5 years in compliance with frequency of the state accounting for forest resources. Values of removals and emissions in the following 4 years are taken equal by default. The closest in time to 1990 state forest resources inventories were conducted in 1988, 1993 and 2003. The categories in this sector were not estimated as the key ones.

|      | Functional Emissionis/Territovius in the sector (Eurilia Ose Change and Foresuly), 65 CO2 |          |         |      |                   |          |         |
|------|-------------------------------------------------------------------------------------------|----------|---------|------|-------------------|----------|---------|
| Year | Change in forests                                                                         | Land use | Total   | Year | Change in forests | Land use | Total   |
| 1990 | -420.8                                                                                    | -1145.4  | -1566.3 | 1998 | -751.0            | -597.5   | -1348.5 |
| 1991 | -420.8                                                                                    | -1246.2  | -1667.0 | 1999 | -751.0            | -646.7   | -1397.7 |
| 1992 | -420.8                                                                                    | -1418.6  | -1839.4 | 2000 | -751.0            | -267.4   | -1018.4 |
| 1993 | -399.4                                                                                    | -1196.1  | -1595.5 | 2001 | -751.0            | +781.5   | +30.5   |
| 1994 | -399.4                                                                                    | - 53.1   | -1352.5 | 2002 | -751.0            | +454.9   | -296.1  |
| 1995 | -399.4                                                                                    | -998.0   | -1397.5 | 2003 | -562.4            | -23.3    | -585.7  |
| 1996 | -399.4                                                                                    | -1247.7  | -1647.1 | 2004 | -562.4            | -390.2   | -952.7  |
| 1997 | -399.4                                                                                    | -1249.2  | -1648.7 | 2005 | -562.4            | +979.9   | +417.4  |


Table 6.2 Emissions/removals in the sector «Land-Use Change and Forestry», Gg CO<sub>2</sub>


## 6.2 5A CHANGES IN FOREST AND OTHER WOODY BIOMASS STOCKS

#### 6.2.1 Description of source category

**Table 6.3** CO<sub>2</sub> removals in the category «Changes in forest and other woody biomass

|                    | stocks» |        |
|--------------------|---------|--------|
| Year               | 1988    | 1993   |
| Gg CO <sub>2</sub> | -420.8  | -399.4 |
| Year               | 1998    | 2003   |
| Gg CO <sub>2</sub> | -751.0  | -562.4 |





Removals in this category are estimated once in every 5 years in compliance with frequency of the state accounting for forest resources and only for areas under forest of the state forest resources as for others no data are available.



Values of removals and emissions in the following 4 years are taken equal by fault. The closest in time to 1990 state forest resources inventories were conducted in 1988, 1993 and 2003.

### 6.2.2 Methodology

Estimation of the CO<sub>2</sub> removals in the category was carried out based on Revised 1996 IPCC Guidelines for national greenhouse gas inventories [3].

Considerable increase is featured for juniper, saxaul, poplar, tamarisk, saltwort and other shrubs and for other species increase is within rounding so plants were grouped by natural zones:

- I. Mountain forests
  - 1) Juniper arboreal;
  - 2) Other woody species growing mainly in mountains: (maple, birch, apricot, hackberry, almond, walnut, mountain ash, cherry plum, pistachio, bird cherry tree, apple);
- II. Valley-flood-plain forests
  - 1) Poplar (Asiatic poplar);
  - 2) Other arboreal species growing mainly in valleys and flood-plains: (ash tree, elm, locust, bastard acacia, willow arboreal, mulberry, other arboreal species);
- III. Desert forests
  - 1) Saxaul
- IV. Shrubs

Biomass gain was calculated with application of the national factors in compliance with the instruction on state forest resources inventory [27, 28].

#### Activity data

The data on areas under forests were taken from the state forest resources inventory [29, 30]. It should be mentioned that not all areas under forest in the country are inventoried.

The data on wood produced, wood fuel consumption and other wood usage were taken from the materials of the state accounting for forests.

To estimate CO<sub>2</sub> removals in 2000 the data of 1998 were used.

| Type of vegetation  | Species groups                                             | Area, thousand hectares |
|---------------------|------------------------------------------------------------|-------------------------|
| Mountain forests    | Juniper arboreal                                           | 194.24                  |
|                     | Other arboreal species growing in mountains                | 67.21                   |
| Flood-plain forests | Poplar (Asiatic poplar)                                    | 27.22                   |
|                     | Other arboreal species growing in valleys and flood-plains | 5.31                    |
| Desert forests      | Saxaul                                                     | 2398.98                 |
|                     | Shrubs                                                     | 340.54                  |

## Table 6.4 Area under forest by prevailing species, thousand hectares

## Table 6.5 Data on wood utilization, thousand m<sup>3</sup>

| Wood utilization            | Species group           | Amount, thousand m <sup>3</sup> |
|-----------------------------|-------------------------|---------------------------------|
| Amount of wood produced     | Poplar (asiatic poplar) | 3.35                            |
| Total wood fuel consumption | Poplar (asiatic poplar) | 4.56                            |
|                             | Saxaul                  | 46.11                           |
| Other wood utilization      | Poplar (asiatic poplar) | 0.10                            |
|                             | Saxaul                  | 0.36                            |



#### **Emission** factors

For the calculation of the  $CO_2$  removals the national factors were used. Volume shrinkage and density of dry wood matter were calculated in accordance to [31]. Average gain in damp wood was calculated based on the data of the state accounting for forests.

| Species group                                              | Average gain in damp<br>wood, m <sup>3</sup> /hectare | Volume shrinkage<br>% | Density of dry wood matter<br>kg/m <sup>3</sup> |
|------------------------------------------------------------|-------------------------------------------------------|-----------------------|-------------------------------------------------|
| Juniper arboreal                                           | 0.206                                                 | 9.9                   | 440                                             |
| Other arboreal species growing in mountains                | 0.223                                                 | 13.2                  | 545                                             |
| Poplar (asiatic poplar)                                    | 1.933                                                 | 10.2                  | 395                                             |
| Other arboreal species growing in valleys and flood-plains | 1.364                                                 | 17.1                  | 710                                             |
| Saxaul                                                     | 0.199                                                 | 16.2                  | 867                                             |
| Shrubs                                                     | 0.361                                                 | 14.7                  | 510                                             |

**Table 6.6** National factors for calculation of CO<sub>2</sub> removals

#### 6.2.3 Uncertainty and sequence of time series

Uncertainties were not estimated. Judging from the fact that averaged coefficients were used and the activity data were incomplete, it is possible to assume that uncertainty is of high value.

For all years the same method and the same data set was used.

#### 6.2.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 6.2.5 Recalculations in category

The test calculation of the  $CO_2$  removals was made for 2003 in accordance with Good Practice Guidance for Land Use Change & Forestry IPCC 2003 [6], that was not included in the inventory. The result obtained differs considerably from that calculated in accordance to [3].

 Table 6.7 Comparison of removals in the category «Changes in forest and other woody biomass stocks», calculated by two methods, Gg CO<sub>2</sub>

| Revised 1996 IPCC Guidelines for National | Good Practice Guidance for the sectors Land Use |
|-------------------------------------------|-------------------------------------------------|
| Greenhouse Gas Inventories                | Change & Forestry IPCC 2003                     |
| - 562.46                                  | - 1310.0                                        |

#### 6.2.6 Planned improvements by category

While preparation of the Third National Communication removals are supposed to estimate in accordance with [7].

#### 6.3 5C ABANDONMENT OF MANAGED LAND

#### 6.3.1 Description of source category

The data on the abandoned lands were provided by the State Committee on Land Resources, Geodesy, Cartography and State Cadastre. Analysis of the data obtained has shown that natural conditions of all abandoned lands are not fit for natural reforestation even in the case when these abandoned lands were previously forest areas. On these lands only herbaceous vegetation is restored. Annual growth rate of surface biomass of herbaceous vegetation is equal to "0" [3]. Removals in this category for Uzbekistan are equal "0", respectively. In the future calculations in this category are not envisaged.



#### 6.4 5D EMISSIONS AND REMUVALS FROM SOIL

#### 6.4.1 Description of source category

While estimating  $CO_2$  emissions and removals under change in land use and management the following land-use systems were taken into consideration:

- Tillable lands
- Perennial arboreal plants (gardens, garden nurseries, mulberries, vineyards etc.)
- Fallow lands and lands under meliorative development
- Hayfields
- Pastures
- Household lands and lands of horticultural and vegetable raising farms.

According to [32, 33, 34, and 35] the majority of soils in Uzbekistan belong to the group of soils containing minerals of highly active alumina. There are no soils containing minerals of low active alumina, volcanic and podzol soils in Uzbekistan. Sandy soils occupy only 3.5% of the total area (they are named desert sandy soils according to the classification adopted in Uzbekistan). Soils of wetlands (marsh soils according to the classification adopted in Uzbekistan) occupy small areas and are used for rice cultivation.

Removals in 2000 in this category amounted to 267.36 Gg CO<sub>2</sub>.

## **Table 6.8** CO<sub>2</sub> emissions and removals from soils under change in land use and management

|      | 5                  |      | 6                  |
|------|--------------------|------|--------------------|
| Year | Gg CO <sub>2</sub> | Year | Gg CO <sub>2</sub> |
| 1990 | -1145.4            | 1998 | -597.5             |
| 1991 | -1246.2            | 1999 | -646.7             |
| 1992 | -1418.6            | 2000 | -267.4             |
| 1993 | -1196.1            | 2001 | +781.5             |
| 1994 | -953.1             | 2002 | +454.9             |
| 1995 | -998.0             | 2003 | -23.3              |
| 1996 | -1247.7            | 2004 | -390.2             |
| 1997 | -1249.2            | 2005 | +979.9             |
|      |                    |      |                    |

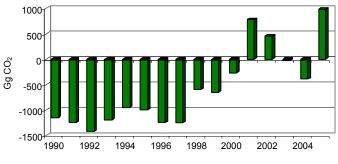



Fig. 6.3 Trends of CO<sub>2</sub> emissions and removals from soils under change in land use and management

Top emissions in 2001 and 2005 were brought about by sharp reduction in cultivated wetlands.

#### 6.4.2 Methodology

The CO<sub>2</sub> removals in this category were estimated in accordance with [3].

#### Activity data

The data on the lands under different land-use systems were provided by the State Committee on Land Resources, Geodesy, Cartography and State Cadastre.

The 2000 data are given in the table. The total lands under all land-use systems per year t and year t-20 are not equal so, following the instructions given in [3], the areas of 1980 were reduced to the total area of 2000.

| Table 6.9 Areas of land-use | systems, thousand hectares |
|-----------------------------|----------------------------|
|-----------------------------|----------------------------|

| Land-use systems                         | 1980    | 2000    | Reduced data, 1980 |
|------------------------------------------|---------|---------|--------------------|
| Tillable lands (without area under rice) | 3832.3  | 3926.9  | 3697.9             |
| Area under rice                          | 104.1   | 131.8   | 100.4              |
| Perennial plants                         | 269.9   | 346.9   | 260.4              |
| Fallow lands                             | 158.1   | 165.6   | 152.6              |
| Hayfields                                | 117.0   | 112.3   | 112.9              |
| Pastures                                 | 23782.1 | 22134.1 | 22948.1            |
| Household land                           | 201.5   | 649.2   | 194.4              |
| Total                                    | 28465.0 | 27466.8 | 27466.8            |



#### **Emission factors**

The Uzbekistan's territory is located in the temperate-warm dry zone with mean annual temperature of 13.4 C°, that is, within the range 10-20°C. Mean annual precipitation is less than 600 mm.

Corresponding to above mentioned climate conditions default magnitudes of carbon stocks under native vegetation were used [6], page 3.83, and table 3.3.3. Factors used are as follows: base factor, tillage factor, input factor.

| Land use systems                     | Base factor | Tillage factor | Input factor |
|--------------------------------------|-------------|----------------|--------------|
| Tillable lands (highly active soils) | 0.82        | 1.0            | 1.34         |
| Tillable lands (waterlogged)         | 1.10        | -              | -            |
| Perennial plants                     | 0.82        | 1.0            | 1.00         |
| Fallow lands                         | 0.82        | 1.10           | 0.92         |
| Hayfield                             | 1.00        | -              | -            |
| Pastures                             | 1.00        | 0.95           | -            |
| Household land                       | 0.82        | 1.00           | 1.07         |

Table 6.10 Factors for calculation of emissions/removals from soils under land use change

#### 6.4.3 Uncertainty and sequence of time series

Uncertainty was not estimated. It is assumed of high value. One of the causes is that even a choice of factors for a specific land use system is a problem. For instance, it is an ordinary practice to remove residues from fields (area under cotton) and burn stubble (area under wheat). That is why it is necessary to select a low input factor. However, it is also an ordinary practice to apply every year organic fertilizers both to cotton and wheat. For all years the same method and the same data set was used.

#### 6.4.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the input data for areas, the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 6.4.5 Recalculations in category

Before now emissions and removals were not estimated in this category.

#### 6.4.6 Planned improvements by category

While preparation of the Third National Communication the emissions/removals are supposed to estimate in accordance with [7].



## Chapter 7: 6 WASTE

#### 7.1 Sector review

The waste sector covers the categories 6A and 6B (1 and 2) indicated in the table 7.1 as well as  $CH_4$  and  $N_2O$  emissions. The waste incineration category was not inventoried due to absence of any data.

| Table 7.1 GHG emissions, 2000             |                        |       |  |  |  |
|-------------------------------------------|------------------------|-------|--|--|--|
| Category                                  | Gg CO <sub>2</sub> -eq | %     |  |  |  |
| 6 A Solid waste disposal on land          | 3705.1                 | 81.8  |  |  |  |
| 6 B 1 Industrial wastewaters              | 33.3                   | 0.7   |  |  |  |
| 6 B 2 Domestic and commercial wastewaters | 793.5                  | 17.,5 |  |  |  |
| Total                                     | 4531.9                 | 100   |  |  |  |

| Table 7.2 Share of greenhouse gases in waste sector, 2000 |                 |                  |  |  |  |
|-----------------------------------------------------------|-----------------|------------------|--|--|--|
| Gas                                                       | CH <sub>4</sub> | N <sub>2</sub> O |  |  |  |
| Gg CO <sub>2</sub> -eq                                    | 4003.8          | 528.0            |  |  |  |
| %                                                         | 88.4            | 11.6             |  |  |  |

Table 7.3 Greenhouse gas emissions from waste sector, CO<sub>2</sub> equivalent

|      |                 |                  | e              |      | ,               |                  |                |
|------|-----------------|------------------|----------------|------|-----------------|------------------|----------------|
| Year | CH <sub>4</sub> | N <sub>2</sub> O | Total emission | Year | CH <sub>4</sub> | N <sub>2</sub> O | Total emission |
| 1990 | 3635.5          | 437.7            | 4073.2         | 1998 | 3948.0          | 514.6            | 4462.6         |
| 1991 | 3674.6          | 446.4            | 4121.0         | 1999 | 3988.9          | 520.8            | 4509.7         |
| 1992 | 3716.7          | 458.8            | 4175.5         | 2000 | 4003.8          | 528.0            | 4531.9         |
| 1993 | 3753.2          | 468.1            | 4221.3         | 2001 | 4033.4          | 533.2            | 4566.6         |
| 1994 | 3779.2          | 477.6            | 4256.7         | 2002 | 4079.2          | 542.5            | 4621.7         |
| 1995 | 3805.5          | 486.7            | 4292.2         | 2003 | 4101.1          | 548.7            | 4649.8         |
| 1996 | 3852.2          | 496.0            | 4348.2         | 2004 | 4115.6          | 554.9            | 4670.5         |
| 1997 | 3900.4          | 505.3            | 4405.7         | 2005 | 4130.0          | 561.1            | 4691.1         |

Change in emissions for the period 1990-2005 was as follows: CH<sub>4</sub>+13.6 %; N<sub>2</sub>O +28.4 %; total emission +15.2 %.

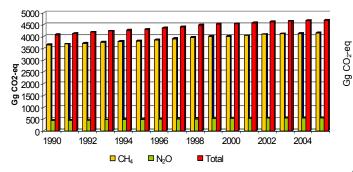



Fig. 7.1 Trends of greenhouse gas emissions from waste




Fig. 7.2 Trends of greenhouse gas emissions from waste by sub-sectors

| Table | 7.4 | Greenhouse g | as emissions | from waste | sector by | category, | $Gg CO_2$ |
|-------|-----|--------------|--------------|------------|-----------|-----------|-----------|
|       |     |              |              |            |           |           |           |

| Disposal sites | Wastewaters                                                        | Year                                                                                                                                                                                                           | <b>Disposal sites</b>                                                                                                                                                                                                                                             | Wastewaters                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3343.3         | 729.2                                                              | 1998                                                                                                                                                                                                           | 3654.0                                                                                                                                                                                                                                                            | 808.6                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3383.7         | 737.3                                                              | 1999                                                                                                                                                                                                           | 3688.7                                                                                                                                                                                                                                                            | 821.0                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3427.2         | 748.3                                                              | 2000                                                                                                                                                                                                           | 3705.1                                                                                                                                                                                                                                                            | 826.7                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3461.4         | 759.9                                                              | 2001                                                                                                                                                                                                           | 3729.4                                                                                                                                                                                                                                                            | 837.2                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3491.7         | 765.0                                                              | 2002                                                                                                                                                                                                           | 3752.5                                                                                                                                                                                                                                                            | 869.2                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3522.5         | 769.7                                                              | 2003                                                                                                                                                                                                           | 3771.4                                                                                                                                                                                                                                                            | 878.4                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3565.0         | 783.2                                                              | 2004                                                                                                                                                                                                           | 3791.6                                                                                                                                                                                                                                                            | 878.9                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3610.5         | 795.2                                                              | 2005                                                                                                                                                                                                           | 3814.2                                                                                                                                                                                                                                                            | 876.9                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | 3343.3<br>3383.7<br>3427.2<br>3461.4<br>3491.7<br>3522.5<br>3565.0 | 3343.3         729.2           3383.7         737.3           3427.2         748.3           3461.4         759.9           3491.7         765.0           3522.5         769.7           3565.0         783.2 | 3343.3       729.2       1998         3383.7       737.3       1999         3427.2       748.3       2000         3461.4       759.9       2001         3491.7       765.0       2002         3522.5       769.7       2003         3565.0       783.2       2004 | 3343.3         729.2         1998         3654.0           3383.7         737.3         1999         3688.7           3427.2         748.3         2000         3705.1           3461.4         759.9         2001         3729.4           3491.7         765.0         2002         3752.5           3522.5         769.7         2003         3771.4           3565.0         783.2         2004         3791.6 |

Change in emissions for the period 1990-2005 was as follows: disposal sites +14.1%; wastewaters +20.3%. Key category while estimating a level of emissions in this sector is only methane emission from solid waste disposal sites.



#### 7.2 6A SOLID WASTE DISPOSAL ON LAND

#### 7.2.1 Description of source category

CH<sub>4</sub> emission from solid waste disposal sites in 2000 amounted to 3705.1 Gg CO<sub>2</sub> equivalent

| <b>Table 7.5</b> CH4 emission from solid wastedisposal sites |                        |      |                        |  |  |
|--------------------------------------------------------------|------------------------|------|------------------------|--|--|
| Year                                                         | Gg CO <sub>2</sub> -eq | Year | Gg CO <sub>2</sub> -eq |  |  |
| 1990                                                         | 3343.3                 | 1998 | 3654.0                 |  |  |
| 1991                                                         | 3383.7                 | 1999 | 3688.7                 |  |  |
| 1992                                                         | 3427.2                 | 2000 | 3705.0                 |  |  |
| 1993                                                         | 3461.4                 | 2001 | 3729.4                 |  |  |
| 1994                                                         | 3491.7                 | 2002 | 3752.5                 |  |  |
| 1995                                                         | 3522.5                 | 2003 | 3771.4                 |  |  |
| 1996                                                         | 3565.0                 | 2004 | 3791.6                 |  |  |
| 1997                                                         | 3610.5                 | 2005 | 3814.2                 |  |  |

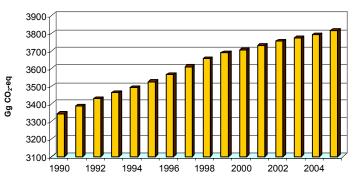



Fig. 7.3 Trend of  $CH_4$  emission from solid waste disposal sites

Change in emission for the period 1990-2005 was +14.1 %. Rise in emission was caused by increase in urban population growth.

#### 7.2.2 Methodology

Estimation of the  $CH_4$  emission from solid waste disposal sites was implemented following the instructions offered in [3]. Industrial waste dumped to disposal sites were not taken into consideration due to absence of the data on their amount.

#### Activity data

For the calculations there were used the data of the state statistics on mean annual urban population in 2000 that amounted to 9265.3 thousand person.

#### **Emission factors**

*Municipal solid waste (MSW) generation rate* = 1.2 kg/cap/day [36], page 8, table 3. The values given in the table were obtained by direct measurements conducted by the Institute of Sanitary and Hygiene in 1989.

*Fraction of MSW disposed to SWDS* = 1 (presented by the Tashkent Department on Heat Supply "Issikliq Manbai").

*Fraction of MSW on each type of disposal sites* (presented by the Tashkent Department on Heat Supply "Issikliq Manbai"):

| Managed                               | 0.17 |
|---------------------------------------|------|
| Unmanaged - deep (>=5 m of wastes)    | 0.04 |
| Unmanaged - shallow (< 5 m of wastes) | 0.79 |

#### Methane correction factor (MCF) = 0.52.

Fraction of DOC (degradable organic carbon) in MSW = 16.35% It was

 Table 7.6 Percentage of waste containing DOC in total amount of waste disposed to disposal site

| curbon) in MSW = 10.5570. It was       |
|----------------------------------------|
| calculated (equation 2, Chapter        |
| «Waste», [3]) using the values of the  |
| data on morphological composition of   |
| wastes that is presented in the        |
| normative document [36], page 5, table |
| 1.                                     |

| ····F···········      |                 |
|-----------------------|-----------------|
| Paper and textile     | 22.8% by weight |
| Garden and park waste | 0% by weight    |
| Food waste            | 38.4% by weight |
| Wood and straw waste  | 4.9% by weight  |

The values presented in the table are derived from direct measurements that were implemented by the Institute of Sanitary and Hygiene in 1989. Mean annual data were used for the calculation.

Fraction of DOC, which actually degrades = 0.77 [3], page 6.10. Fraction of carbon released as methane = 0.5 [3], page 6.10. Conversion factor = 16/12 [3], page 6.10. Methane correction factor = 0 [3], page 6.10.



#### 7.2.3 Uncertainty an sequence of time series

Uncertainty of methane emissions from municipal wastes was not estimated. For all years the same method and the same data set was used.

#### 7.2.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the additional worksheet for the calculation of national DOC, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 7.2.5 Recalculations in category

The results presented are recalculated values of the inventory that were reported in the Initial National Communication. In the current inventory unlike the previous one the national factor (waste generation) was used and the DOC and MSW factors calculated on the base of the national data.

#### 7.2.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

#### 7.3 6B WASTEWATER HANDLING

In the category the  $CH_4$  emission was estimated from industrial, domestic and commercial wastewaters handling as well as  $N_2O$  emission from human waste.

Approximately one third of industrial wastewater is disposed to sewage system. Where central sewage system is in place, all domestic/commercial wastewaters are disposed to treatment system.

Table 7.7 GHG emissions from wastewaters, 2000

| Category                            | Gas              | Gg CO <sub>2</sub> -eq | %     |
|-------------------------------------|------------------|------------------------|-------|
| 6 B1 Industrial wastewater          | CH <sub>4</sub>  | 33.3                   | 4.0   |
| 6 B2 Domestic/commercial wastewater | CH <sub>4</sub>  | 265.4                  | 32.1  |
| 6 B2 Domestic/commercial wastewater | N <sub>2</sub> O | 528.0                  | 63.9  |
| Total                               |                  | 826.7                  | 100.0 |

#### 7.3.1 Description of source category Industrial Wastewater

In 2000 the  $CH_4$  emission from industrial wastewater amounted to 33.26 Gg  $CO_2$  equivalent.

| Table 7.8 $CH_4$ emissions from industrialwastewater |                        |      |                        |  |
|------------------------------------------------------|------------------------|------|------------------------|--|
| Year                                                 | Gg CO <sub>2</sub> -eq | Year | Gg CO <sub>2</sub> -eq |  |
| 1990                                                 | 59.6                   | 1998 | 29.4                   |  |
| 1991                                                 | 54.2                   | 1999 | 33.5                   |  |
| 1992                                                 | 50.5                   | 2000 | 33.3                   |  |
| 1993                                                 | 49.5                   | 2001 | 36.9                   |  |
| 1994                                                 | 44.1                   | 2002 | 59.0                   |  |
| 1995                                                 | 37.7                   | 2003 | 61.2                   |  |
| 1996                                                 | 34.6                   | 2004 | 51.9                   |  |
| 1997                                                 | 33.3                   | 2005 | 40.5                   |  |

. . . . . . . . . . .

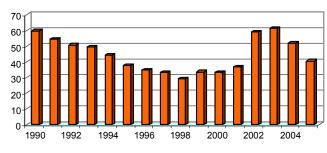



Fig. 7.4 Trend of CH<sub>4</sub> emission from industrial wastewaters

Change in emission for the period1990-2005 was 32.0 %.

The dynamics of methane emission from industrial wastewater is conditioned by the dynamics of industrial production.

#### 7.3.2 Methodology

The  $CH_4$  emissions from industrial wastewater were estimated following the instructions given in [3].

Gg CO<sub>2</sub>-eq

#### Activity data

Calculations were based on official statistics on industrial production.



Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

| №  | Production                  | Unit of measurement     | Amount  |
|----|-----------------------------|-------------------------|---------|
| 1  | Nitrogen fertilizers        | Thousand tonnes         | 716.8   |
| 2  | Canned food, total          | Million cans            | 492.088 |
| 3  | Beer                        | thousand deca-liters    | 6081    |
| 4  | Grape vine                  | thousand deca-liters    | 5987    |
| 5  | Cognac                      | thousand deca-liters    | 131     |
| 6  | Alcohol and alcohol drinks  | thousand deca-liters    | 7166    |
| 7  | Meat semi-prepared products | thousand tonnes         | 0.196   |
| 8  | Sausages                    | thousand tonnes         | 2.883   |
| 9  | Dairy products              | thousand tonnes         | 182.594 |
| 10 | Sugar                       | tonnes                  | 10169   |
| 11 | Mixed feed                  | tonnes                  | 666672  |
| 12 | Animal oil                  | thousand tonnes         | 2.18    |
| 13 | Animal fat                  | thousand tonnes         | 0.037   |
| 14 | Margarine                   | thousand tonnes         | 22.453  |
| 15 | Vegetable oil               | thousand tonnes         | 245.859 |
| 16 | Beverage                    | thousand deca-liters    | 17547   |
| 17 | Paper                       | thousand tonnes         | 9.7     |
| 18 | Petroleum products          | thousand tonnnes        | 6665    |
| 19 | Cotton cloth                | thousand m <sup>2</sup> | 358896  |
| 20 | Silk cloth                  | thousand m <sup>2</sup> | 5385    |
| 21 | Paints and varnishes        | tonnes                  | 35939   |

Table 7.9 Industrial production, 2000

#### **Emission factors**

Amount of organic matter was estimated based on the norms of wastewater formation and COD concentration that are indicated in the document "Increased norms of water supply and water allocation for different industrial sectors" [37].

| Product                    | Norms of wastewaters formation          | Concentration COD, mg/ liter |
|----------------------------|-----------------------------------------|------------------------------|
| Nitrogen fertilizers       | 480 m <sup>3</sup> / tonnes of products | 0.035 (0.02-0.05)            |
| Canned food, total         | 5.67 m <sup>3</sup> /1000 cans          | 0.233                        |
| Beer                       | 76.4 m <sup>3</sup> /1000 deca-liters   | 1.5                          |
| Grape vine                 | 28.15 m <sup>3</sup> /1000 deca-liters  | 13.0                         |
| Cognac                     | 164.56 m <sup>3</sup> /1000 deca-liters | 17.0                         |
| Alcohol and alcohol drinks | 259 m <sup>3</sup> /1000 deca-liters    | 0.6                          |
| Meat products              | $19.3 \text{ m}^3$ / tonnes             | 1.0                          |
| Dairy products             | 5.2 m <sup>3</sup> / tonnes             | 1.4                          |
| Sugar                      | $16.2 \text{ m}^3$ / tonnes             | 4.5                          |
| Mixed feed                 | $0.38 \text{ m}^3$ / tonnes             | 0.6                          |
| Animal oil and fat         | $1.74 \text{ m}^3$ / tonnes             | 0.25                         |
| Margarine                  | $3.14 \text{ m}^3$ / tonnes             | 15.0                         |
| Vegetable oil              | $1.31 \text{ m}^3$ / tonnes             | 1.5                          |
| Beverages                  | 38.05 m <sup>3</sup> /1000 deca-liters  | 1.0                          |
| Paper                      | 43.75 m <sup>3</sup> / tonnes           | 0.12                         |
| Petroleum products         | $0.215 \text{ m}^3$ / tonnes            | 0.6                          |
| Cotton cloth               | $42.6 \text{ m}^3/1000 \text{ m}^2$     | 0.675 (0.35-1.0)             |
| Silk cloth                 | $76.5 \text{ m}^3/1000 \text{ m}^2$     | 0.8 (0.6 – 1.0)              |
| Paints and varnishes       | $58.0 \text{ m}^3$ / tonnes             | 0.02                         |

Table 7.10 Factors used for estimation of CH<sub>4</sub> emission from industrial wastewaters

*Fraction of wastewater treated by certain handling system* = 0.3 (data of the Ministry of Agriculture and Water Management)

*Methane conversion factor* = 0.9 [3], table 6-8, page 6.19, line "Other countries of Asia". *Maximum methane producing capacity* = 0.25 kg CH<sub>4</sub>/ kg BOD [3].



#### 7.3.3 Uncertainty and sequence of time series

Uncertainty of the  $CH_4$  emission from industrial wastewaters was not estimated. For all years the same method and the same data set was used.

#### 7.3.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of input production data, data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 7.3.5 Recalculations in category

The results presented are recalculated values of the inventory that were reported in the Initial National Communication. In the current inventory a greater list of the enterprises wastewaters of which emit methane were taken into consideration. The norms of wastewater formation and COD values were also refined.

#### 7.3.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

#### 7.4.1 Description of source category Domestic and Commercial Wastewater

In this category the  $CH_4$  emission from domestic and commercial wastewaters as well as  $N_2O$  emissions from human wastes was estimated.

**Table 7.11** Direct GHG emission from domestic and commercial wastewaters,

2000

| Category                                                                | Emission,<br>CO <sub>2</sub> -eq | %     |
|-------------------------------------------------------------------------|----------------------------------|-------|
| CH <sub>4</sub> emission from<br>domestic and commercial<br>wastewater  | 265.4                            | 33.5  |
| N <sub>2</sub> O emission from<br>domestic and commercial<br>wastewater | 528.0                            | 66.5  |
| Total                                                                   | 793.4                            | 100.0 |

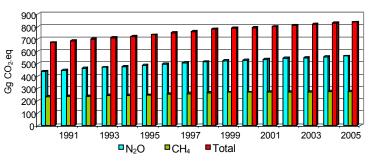
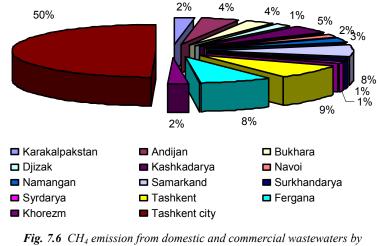



Fig. 7.5 Trends of GHG from domestic and commercial wastewaters


Change in the emission for the period 1990-2005 was as follows:  $CH_4 + 18.4 \%$ ;  $N_2O + 28.4 \%$ ; total +24.9 %.

| Year | CH <sub>4</sub> | N <sub>2</sub> O | Total | Year | CH <sub>4</sub> | N <sub>2</sub> O | Total |
|------|-----------------|------------------|-------|------|-----------------|------------------|-------|
| 1990 | 232.6           | 437.7            | 670.3 | 1998 | 264.6           | 514.6            | 779.2 |
| 1991 | 236.7           | 446.4            | 683.1 | 1999 | 266.7           | 520.0            | 787.5 |
| 1992 | 239.0           | 458.8            | 697.8 | 2000 | 265.4           | 528.0            | 793.4 |
| 1993 | 242.3           | 468.1            | 710.4 | 2001 | 267.1           | 533.2            | 800.3 |
| 1994 | 243.4           | 477.5            | 720.8 | 2002 | 267.8           | 542.5            | 810.3 |
| 1995 | 245.3           | 486.7            | 732.0 | 2003 | 268.6           | 548.7            | 817.3 |
| 1996 | 252.6           | 496.0            | 748.6 | 2004 | 272.2           | 554.9            | 827.1 |
| 1997 | 256.6           | 505.3            | 761.9 | 2005 | 275.3           | 560.4            | 835.6 |

Table 7.12 GHG emission from domestic and commercial wastewater, Gg CO<sub>2</sub> equivalent

|                | 5 1                    |       |  |
|----------------|------------------------|-------|--|
| Province       | Gg CO <sub>2</sub> -eq | %     |  |
| Republic of    |                        |       |  |
| Karakalpakstan | 5.605                  | 2.11  |  |
| Andijan        | 11.059                 | 4.17  |  |
| Bukhara        | 9.399                  | 3.54  |  |
| Djizak         | 3.974                  | 1.50  |  |
| Kashkadarya    | 13.488                 | 5.08  |  |
| Navoi          | 4.484                  | 1.69  |  |
| Namangan       | 8.228                  | 3.10  |  |
| Samarkand      | 20.113                 | 7.58  |  |
| Surkhandarya   | 3.928                  | 1.48  |  |
| Syrdarya       | 3.686                  | 1.39  |  |
| Tashkent       | 23.146                 | 8.72  |  |
| Fergana        | 21.019                 | 7.92  |  |
| Khorezm        | 5.849                  | 2.20  |  |
| Tashkent city  | 131.474                | 49.53 |  |
| Total          | 265.463                | 100.0 |  |
|                |                        |       |  |

| Table 7.13 CH <sub>4</sub> emission from domestic |
|---------------------------------------------------|
| and commercial wastewaters by provinces           |



provinces, 2000

#### 7.4.2 Methodology

The estimation of the  $CH_4$  emission from domestic and commercial wastewaters and  $N_2O$  emission from human waste was implemented in accordance with [3].

#### Activity data

Estimates of CH<sub>4</sub> emission from domestic and commercial wastewaters were based on official statistics from the Uzbek Agency "Uzcommunkhizmat" that was based on the data provided by the provincial and district authorities on urban and rural population having an access to central sewage system. For the Syrdarya and Navoi provinces this population was estimated as averaged for the period 1990-2005 portion of population with an access to sewage system. Estimates of N<sub>2</sub>O emission from human wastes were based on official statistics on mean annual population for 2000 (24745.5 thousand persons).

#### Table 7.14 Population having access to sewage system, 2000

| Province                   | Population, thousand persons |
|----------------------------|------------------------------|
| Republic of Karakalpakstan | 78.0                         |
| Andijan                    | 153.9                        |
| Bukhara                    | 130.8                        |
| Djizak                     | 55.3                         |
| Kashkadarya                | 187.7                        |
| Navoi                      | 62.4                         |
| Namangan                   | 114.5                        |
| Samarkand                  | 279.9                        |
| Surkhandarya               | 54.8                         |
| Syrdarya                   | 51.3                         |
| Tashkent                   | 322.1                        |
| Fergana                    | 292.5                        |
| Khorezm                    | 81.4                         |
| Tashkent city              | 1829.6                       |

#### **Emission** factors

To calculate CH<sub>4</sub> emission the following coefficients and factors were used:

**Biochemical oxygen demand (BOD**<sub>5</sub>) = 18250 kg/1000 cap/year [3], table 6-5, page 6.12, line «former USSR». **Fraction of wastewater treated by certain handling system** = 1.0 (data of the State Committee for Nature Protection)

Methane conversion factor = 0.75 [3], table 6-7, page 6.18, line "Other countries of Asia".

*Maximum methane producing capacity* =  $0.25 \text{ kg CH}_4/\text{ kg BOD}$  [3].

To calculate N<sub>2</sub>O emission the following coefficients and factors were used:

*Annual per capita protein intake* = 75 gram/person/day, averaged for the period 1997-1999 value over the world, as no FAO data available for Central Asia but the rest regions are characterized by different nutrition pattern [38]. The coefficient was converted in 27.375 kg /person/yr.



Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

*Fraction of nitrogen in protein (Frac<sub>NPR</sub>)* = **0.16** kg N/ kg protein [3], page 4.41, table 4-19. *Emission factor EF*<sub>6</sub> = **0.01** (0.002-0.12) kg N<sub>2</sub>O-N/kg sewage N produced [3], page 4.37, table 4-18.

#### 7.4.3 Uncertainty and sequence of time series

Uncertainties of  $CH_4$  and  $N_2O$  emission were not estimated. For all years the same method and the same data set was used.

#### 7.4.4 Quality Assurance/ Quality Control

The QA/QC procedures were implemented in accordance with the QA/QC principals and QA/QC plan. The check was conducted of the created worksheets for calculation of  $CH_4$  emissions by provinces, the data transcription and documentation. It was also checked whether all information sources for the input data for the program software were referenced.

#### 7.4.5 Recalculations in category

The results presented are recalculated values of the inventory that was reported in the Initial National Communication. In the current inventory the data on population having an access to central sewage system was taken into consideration, unlike the previous inventory where all urban population was considered. The fraction of wastewater treated by certain handling system was refined. Before now the  $N_2O$  emission from human wastes was not estimated.

#### 7.4.6 Planned improvements by category

While preparation of the Third National Communication the emissions are supposed to estimate in accordance with [7].

 $\left( \begin{array}{c} \\ \\ \\ \end{array} \right)$ 

Second National Communication of the Republic of Uzbekistan under UNFCCC National GHG Inventory Report 2000

#### References

- 1. Reporting on Climate Change User Manual for the Guidelines on National Communications from non-Annex 1 Parties.
- 2. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories, Greenhouse Gas Inventory Reporting Instructions, IPCC, 1996, Volume 1.
- 3. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories, Workbook, IPCC, 1996, Volume 2.
- 4. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories, Greenhouse Gas Inventory Reference Manual, IPCC, 1996, Volume 3.
- 5. Good Practice and Uncertainty Management in National Greenhouse Gas Inventories IPCC, 2003.
- 6. Good Practice Guidance for Land-Use Change and Forestry IPCC, 2003.
- 7. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- 8. Instruction of State Commission for Statistics of USSR № 240, 29 December 1989, on Making Up Fuel-Energy Balance for 1990. Izhevsk: Soyuzblankizdat, 1990.
- 9. Statistical Report according to the form № 1-PS (gas) for 1990-1999.
- 10. Statistical Report according to the form № 1-PS (coal) for 1990-1999.
- 11. Instruction on Making Report on Atmospheric Air Pollution according to the form № 2-TP (2-E) (transport), Annex 1, approved by the Decree № 29 of the State Committee on Statistics of the Republic of Uzbekistan, 20 September, 1994.
- 12. Statistic yearbook "Gross yield of agricultural crops in 2000 on all lands".
- 13. IEA STATISTICS.  $CO_2$  emissions from fuel combustion 1971-2005. 2007.
- 14. A. Banaru. CO<sub>2</sub> emissions from the arable soils in the Republic of Moldova. CLIMATE CHANGE. Researches, studies, solutions. Chisinau, 2000.
- 15. A. Banaru. The methodology for the assessment of CO<sub>2</sub> emissions from the arable soils. CLIMATE CHANGE. Researches, studies, solutions. Chisinau, 2000.
- 16. Recommendations for estimation of fertility damage from burning stubble of cereal crops». Tashkent, 2002.
- 17. Agrochemistry / Edited by B.A. Yagodin, 1982.
- 18. A. Al Dalfi. Mineral Fertilizers Impact on Spring Wheat Yield Depending on Soil Conditions and Sort. Author's abstract of dissertation. Tashkent, 1984.
- 19. M.A. Belousov. Physiological Fundamentals of Cotton Root Nutrition. Tashkent, 1975.
- 20. V.V Lapa., N.A. Ivanenko. Using Nutrients of Fertilizers and Soils by Agricultural Crops// Agrochemistry. № 7. Moscow, 1989.
- 21. E.N. Masharipov. Balance of Manure Nitrogen and Mineral Fertilizers when their Separate and Joint Application to Cotton. Author's abstract of dissertation. Tashkent, 1984.
- 22. Methods of Agrochemical and Agrophysical Research in Soil. Tashkent: SoyuzNIKI, 1978.
- 23. Irrigated Farming / Edited by S.N. Ryzhov. Tashkent, 1965.
- 24. D.S. Satarov. Sort, Soil, Fertilizer and Yield. Tashkent, 1988.
- 25. S. Siddikov. Relationship between Qualitative and Quantitative Composition of Humus in Irrigated Soils and Agrotechnique and Kinds of Plant Residues. Author's abstract of dissertation. Tashkent, 1987.
- 26. Z. Umarov, Kh. N. Atabaeva. Wheat and Barley Productivity when Fall Sowing and a Possibility of Having the Second Yield // Information Leaflet. Tashkent, 1994.
- 27. Manual on State Forest Inventory. Moscow, 1982. 96 p.
- 28. Peculiarities of Forest Management in Central Asia (Annex to the Manual on Forest Management in Unified State Forest Resources of USSR). Tashkent, 1989.
- 29. State Forest Inventory, Form 2 «Forest Distribution by Prevailing Species and Age Groups, Sheet A», 1998.
- 30. State Forest Inventory, Form 2 «Forest Distribution by Prevailing Species and Age Groups, Sheet B», 1998.
- 31. D.M. Fuzailov. Wood Stock of Uzbekistan (Scientific-Technical Basics for Utilization). -Tashkent: Fan, 1983. 135 p.
- 32. G.M. Konobeeva. Soils of Uzbekistan, their zoning and qualitative assessment. -Tashkent: Mekhnat, 1985.
- 33. Handbook on Cotton Growing. -Tashkent: Uzbekistan, 1981.
- 34. Agrochemistry /Under edition of Prof. I.S. Kauricheva. -Moscow: "Kolos", 1975.
- 35. Soil map of Uzbekistan, 1970.
- 36. «Sanitary Rules and Norms» (RUz, № 0068-96), Tashkent, 1996.
- 37. "Increased norms of water supply and water allocation for different industrial sectors" Moscow, 1982.
- 38. Site FAO: http://www.fao.org/DOCREP/005/Y3800M/y3800m07.htm



## Annex 1

## Table 1. National greenhouse gas inventory of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by Montreal<sup>a</sup> Protocol and greenhouse gases precursors

|                                             | ~~                                   | ~~                                  |                         |                          |            |             | 1              |             |
|---------------------------------------------|--------------------------------------|-------------------------------------|-------------------------|--------------------------|------------|-------------|----------------|-------------|
| GREENHOUSE GAS SOURCE<br>AND SINK CATEGORY  | CO <sub>2</sub><br>emissions<br>(Gg) | CO <sub>2</sub><br>removals<br>(Gg) | CH <sub>4</sub><br>(Gg) | N <sub>2</sub> O<br>(Gg) | CO<br>(Gg) | NOx<br>(Gg) | NMVOCs<br>(Gg) | SOx<br>(Gg) |
| Total national emission and removals        | 108 606                              | - 1 018                             | 3 892                   | 35                       | 1 184      | 286         | 251            | 295         |
| 1. Energy                                   | 105 016                              | NO                                  | 3 352                   | 0                        | 1 066      | 282         | 228            | 292         |
| A. Fuel combustion (sectoral approach)      | 105 016                              | 110                                 | 7                       | 0                        | 1 066      | 282         | 191            | 223         |
| 1. Energy industries                        | 44 284                               |                                     | 1                       | 0                        | 14         | 120         | 4              | 185         |
| 2. Manufacturing industries                 | 44 204                               |                                     | 1                       | 0                        | 14         | 120         | +              | 105         |
| and construction                            | 4 982                                |                                     | 0                       | 0                        | 3          | 14          | 0              | 4           |
| 3. Transport                                | 11 132                               |                                     | 1                       | 0                        | 929        | 80          | 161            | 6           |
| 4. Other sectors                            | 44 413                               |                                     | 4                       | 0                        | 120        | 67          | 26             | 28          |
| 5. Other (Labricants)                       | 206                                  |                                     | NA                      | NA                       | NA         | NA          | NA             | NA          |
| B. Fugitive emissions fuels                 | NE                                   |                                     | 3 345                   |                          | 1          | 0           | 37             | 69          |
| 1. Solid fuels                              |                                      |                                     | 11                      |                          | NO         | NO          | NO             | NO          |
| 2. Oil and natural gas                      |                                      |                                     | 3 334                   |                          | 1          | 0           | 37             | 69          |
| 2. Industrial processes                     | 3 590                                | NO                                  | 0                       | 4                        | 8          | 1           | 23             | 4           |
| A. Mineral products                         | 1627                                 |                                     |                         |                          | 0          | 0           | 0              | 1           |
| B. Chemical industry                        | 1298                                 |                                     | 0                       | 4                        | 8          | 1           | 5              | 3           |
| C. Metal production                         | 665                                  |                                     | 0                       | 0                        | 0          | 0           | 0              | 0           |
| D. Other production                         | NA                                   |                                     |                         |                          | NA         | NA          | 19             | NA          |
| E. Production of halocarbons                |                                      |                                     |                         |                          |            |             |                |             |
| and sulphur hexafluoride                    |                                      |                                     |                         |                          |            |             |                |             |
| F. Consumption of                           |                                      |                                     |                         |                          |            |             |                |             |
| halocarbons and sulphur<br>hexafluoride     |                                      |                                     |                         |                          |            |             |                |             |
| G. Other (please specify)                   |                                      |                                     |                         |                          |            |             |                |             |
| <b>3. Solvent and other product use</b>     | NE                                   |                                     |                         | NE                       |            |             | NE             |             |
| 4. Agriculture                              | INE                                  |                                     | 350                     | 28                       | 109        | 4           | INE .          |             |
| A. Enteric fermentation                     |                                      |                                     | 314                     | 20                       | 109        | 4           |                |             |
|                                             |                                      |                                     | 23                      | 1                        |            |             | NA             |             |
| B. Manure management<br>C. Rice cultivation |                                      |                                     | 23                      | 1                        |            |             | NA             |             |
| D. Agricultural soils                       |                                      |                                     | 9<br>NE                 | 28                       |            |             | NA             |             |
|                                             |                                      |                                     | INE                     | 20                       |            |             | INA            |             |
| E. Prescribed burning of savannas           |                                      |                                     | NO                      | NO                       | NO         | NO          | NO             |             |
| F. Field burning of                         |                                      |                                     | 4                       | 0                        | 109        | 4           | NA             |             |
| agricultural residues                       |                                      |                                     | 4                       | 0                        | 109        | 4           | INA            |             |
| G. Other (please specify)                   |                                      |                                     |                         |                          |            |             |                |             |
| 5. Land-use change and                      |                                      | - 1 018                             | NO                      | NO                       | NO         | NO          | NO             | NO          |
| forestry                                    |                                      | - 1 018                             | NU                      | NU                       | UNU        | NU          | NU             | INU         |
| A. Changes in forest and                    |                                      |                                     |                         |                          |            |             |                |             |
| other woody biomass                         |                                      | - 751                               |                         |                          |            |             |                |             |
| stocks                                      |                                      |                                     |                         |                          |            |             |                |             |
| B. Forest and grassland conversion          | NO                                   | NO                                  | NO                      | NO                       | NO         | NO          |                |             |
| C. Abandonment of                           |                                      |                                     |                         |                          |            |             |                |             |
| management lands                            |                                      | 0                                   |                         |                          |            |             |                |             |
| D. $CO_2$ emissions and                     |                                      | 267                                 |                         |                          |            |             |                |             |
| removals from soil                          |                                      | - 267                               |                         |                          |            |             |                |             |
| E. Other (please specify)                   |                                      |                                     |                         |                          |            |             |                |             |

| GREENHOUSE GAS SOURCE<br>AND SINK CATEGORY | CO <sub>2</sub><br>emissions<br>(Gg) | CO <sub>2</sub><br>removals<br>(Gg) | CH <sub>4</sub><br>(Gg) | N <sub>2</sub> O<br>(Gg) | CO<br>(Gg) | NOx<br>(Gg) | NMVOCs<br>(Gg) | SOx<br>(Gg) |
|--------------------------------------------|--------------------------------------|-------------------------------------|-------------------------|--------------------------|------------|-------------|----------------|-------------|
| 6. Waste                                   |                                      |                                     | 191                     | 2                        | NO         | NO          | NO             | NO          |
| A. Solid waste disposal on land            |                                      |                                     | 176                     |                          | NO         |             | NO             |             |
| B. Wastewater handing                      |                                      |                                     | 14                      | 2                        | NO         | NO          | NO             |             |
| C. Waste incineration                      |                                      |                                     |                         |                          | NE         | NE          | NE             | NE          |
| D. Other (please specify)                  |                                      |                                     |                         |                          |            |             |                |             |
| 7. Other (please specify)                  |                                      |                                     |                         |                          |            |             |                |             |
| Memo items                                 |                                      |                                     |                         |                          |            |             |                |             |
| International bunkers                      | 1 116                                |                                     | 0                       | 0                        | 2          | 5           | 1              | 1           |
| Aviation                                   | 1 1 1 1 6                            |                                     | 0                       | 0                        | 2          | 5           | 1              | 1           |
| Marine                                     | NO                                   |                                     | NO                      | NO                       | NO         | NO          | NO             | NO          |
| CO <sub>2</sub> emissions from biomass     | 3 002                                |                                     |                         |                          |            |             |                |             |

<u>Notes:</u> Shaded cells do not require entries. <sup>a</sup> The following standard indicators should be used, as appropriate, for emissions by sources and removals by sinks of GHGs:

NO (not occurring) for activities and processes that do not occur for a particular gas or source/sink category within a country;

NE (not estimated) for existing emissions and removals which have not been estimated;

NA (not applicable) for activities in a given source/sink category which do not result in emissions and removals of a specific gas;

IE (included elsewhere) for emissions and removals estimated but included elsewhere in the inventory (Parties should indicate where the emissions and removals have been included);

C (confidential) for emissions and removals which could lead to the disclosure of confidential information.

<sup>b</sup> Do not provide an estimate of both CO<sub>2</sub> emissions and CO<sub>2</sub> removals. "Net" emissions (emissions-removals) of CO<sub>2</sub> should be estimated and a single number placed in either the CO<sub>2</sub> emissions or CO<sub>2</sub> removals column, as appropriate. Note that for the purposes of reporting, the signs for removals are always (-) and for emissions (+).



## Annex 2

## Table 2. National greenhouse gas inventory of anthropogenic emissions of HFCs, PFCs and SF<sub>6</sub>.

| GREENHOUSE GAS                     |         |         | HFCs <sup>a,b</sup> (Gg | ()        |           | PFC | $Cs^{a,b}(Gg)$ | SF <sub>6</sub> |
|------------------------------------|---------|---------|-------------------------|-----------|-----------|-----|----------------|-----------------|
| SOURCE AND SINK                    | HFC-32  | HFC-125 | HFC-134a                | LIEC 1420 | Other (to | CF4 | Other (to      | (Gg)            |
| CATEGORY                           | пгс-52  | пгС-125 | пгС-154а                | пгС-145а  | be added) | CF4 | be added)      | (Ug)            |
| Total national emission and        | 0.00005 | 0.00030 | 0.00357                 | 0.00022   | NE        | NE  | NE             | NE              |
| removals                           | 0.00003 | 0.00050 | 0.00557                 | 0.00022   | INE       | NE  | INE            | INE             |
| 1. Energy                          |         |         |                         |           |           |     |                |                 |
| A. Fuel combustion                 |         |         |                         |           |           |     |                |                 |
| (sectoral approach)                |         |         |                         |           |           |     |                |                 |
| 1. Energy industries               |         |         |                         |           |           |     |                |                 |
| 2. Manufacturing                   |         |         |                         |           |           |     |                |                 |
| industries and                     |         |         |                         |           |           |     |                |                 |
| construction                       |         |         |                         |           |           |     |                |                 |
| 3. Transport                       |         |         |                         |           |           |     |                |                 |
| 4. Other sectors                   |         |         |                         |           |           |     |                |                 |
| 5. Other (please                   |         |         |                         |           |           |     |                |                 |
| specify)                           |         |         |                         |           |           |     |                |                 |
| B. Fugitive emissions fuels        |         |         |                         |           |           |     |                |                 |
| 1. Solid fuels                     |         |         |                         |           |           |     |                |                 |
|                                    |         |         |                         |           |           |     |                |                 |
| 2. Oil and natural gas             | 0.00007 | 0.00020 | 0.00257                 | 0.00022   | NIE       | NIT | NE             | NE              |
| 2. Industrial processes            | 0.00005 | 0.00030 | 0.00357                 | 0.00022   | NE        | NE  | NE             | NE              |
| A. Mineral products                |         |         |                         |           |           |     |                |                 |
| B. Chemical industry               |         |         |                         |           |           |     |                |                 |
| C. Metal production                | NO      | NO      | NO                      | NO        | NO        | NO  | NO             | NO              |
| D. Other production                |         |         |                         |           |           |     |                |                 |
| E. Production of                   |         |         |                         |           |           |     |                | Ν               |
| halocarbons and                    | NO      | NO      | NO                      | NO        | NO        | NO  | NO             | 0               |
| sulphur hexafluoride               |         |         |                         |           |           |     |                | 0               |
| F. Consumption of                  |         |         |                         |           |           |     |                |                 |
| halocarbons and                    | 0.00005 | 0.00030 | 0.00357                 | 0.00022   | NE        | NE  | NE             | NE              |
| sulphur hexafluoride               |         |         |                         |           |           |     |                |                 |
| G. Other (please specify)          |         |         |                         |           |           |     |                |                 |
| 3. Solvent and other               |         |         |                         |           |           |     |                |                 |
| product use                        |         |         |                         |           |           |     |                |                 |
| 4. Agriculture                     |         |         |                         |           |           |     |                |                 |
| A. Enteric fermentation            |         |         |                         |           |           |     |                |                 |
| B. Manure management               |         |         |                         |           |           |     |                |                 |
| C. Rice cultivation                |         |         |                         |           |           |     |                |                 |
| D. Agricultural soils              |         |         |                         |           |           |     |                |                 |
| E. Prescribed burning of           |         |         |                         |           |           |     |                |                 |
| savannas                           |         |         |                         |           |           |     |                |                 |
| F. Field burning of                |         |         |                         |           |           |     |                |                 |
| agricultural residues              |         |         |                         |           |           |     |                |                 |
| G. Other (please specify)          |         |         |                         |           |           |     |                |                 |
| 5. Land-use change and             |         |         |                         |           |           |     |                |                 |
| 5. Land-use change and<br>forestry |         |         |                         |           |           |     |                |                 |
| A. Changes in forest and           |         |         |                         |           |           |     |                |                 |
|                                    |         |         |                         |           |           |     |                |                 |
| other woody biomass                |         |         |                         |           |           |     |                |                 |
| stocks                             |         |         |                         |           |           |     |                |                 |
| B. Forest and grassland            |         |         |                         |           |           |     |                |                 |
| conversion                         |         |         |                         |           |           |     |                |                 |
| C. Abandonment of                  |         |         |                         |           |           |     |                |                 |
| management lands                   |         |         |                         |           |           |     |                |                 |
| D. $CO_2$ emissions and            |         |         |                         |           |           |     |                |                 |
| removals from soil                 |         |         |                         |           |           |     |                |                 |
| E. Other (please specify)          |         |         |                         |           |           |     |                |                 |

| GREENHOUSE GAS                         |        |         | HFCs <sup>a,b</sup> (Gg | )        |                     | PFC | $Cs^{a,b}$ (Gg)     | SF <sub>6</sub> |
|----------------------------------------|--------|---------|-------------------------|----------|---------------------|-----|---------------------|-----------------|
| SOURCE AND SINK<br>CATEGORY            | HFC-32 | HFC-125 | HFC-134a                | HFC-143a | Other (to be added) | CF4 | Other (to be added) | (Gg)            |
| 6. Waste                               |        |         |                         |          |                     |     |                     |                 |
| A. Solid waste disposal<br>on land     |        |         |                         |          |                     |     |                     |                 |
| B. Wastewater handing                  |        |         |                         |          |                     |     |                     |                 |
| C. Waste incineration                  |        |         |                         |          |                     |     |                     |                 |
| D. Other (please specify)              |        |         |                         |          |                     |     |                     |                 |
| 7. Other (please specify)              |        |         |                         |          |                     |     |                     |                 |
| Memo items                             |        |         |                         |          |                     |     |                     |                 |
| International bunkers                  |        |         |                         |          |                     |     |                     |                 |
| Aviation                               |        |         |                         |          |                     |     |                     |                 |
| Marine                                 |        |         |                         |          |                     |     |                     |                 |
| CO <sub>2</sub> emissions from biomass |        |         |                         |          |                     |     |                     |                 |

<sup>a</sup> Parties may wish to express HFC, PFC and  $SF_6$  emissions as either potential or actual. Potential emissions should be estimated using the tier 1 approach of the IPCC Guidelines. Actual emissions should be estimated using the tier 2 approach of the IPCC Guidelines.

<sup>b</sup> Parties reporting HFCs and PFCs should provide emission estimates on a gas-by-gas basis, that is, disaggregated estimates by chemical expressed in units of mass (Gg), as indicated in the table (e.g. HFC-23), where information is available. This should be done by inserting a column for each HFC and PHC gas for which emissions do occur in the country. The gases in the column headings are given as examples only. Other gases to be reported in this table include HFC-32, HFC-41, HFC-43-10, HFC-125, HFC-134a, HFC-152a, HFC-43-10mee, HFC-143a, HFC-227ea, HFC-236fa, HFC-245ca,  $C_3F_8$ ,  $C_4F_{10}$ ,  $c-C_4F_8$ ,  $C_5F_{12}$ ,  $C_6F_{14}$  and any other GHG with high global warming potential not covered in this list.

## Annex 3

## Sectoral tables

# TABLE 1 SECTORAL REPORT FOR ENERGY (Uzbekistan, 2000)(Sheet 1 of 2)

| SECTORAL REPORT F                                        | OR NATIONAL GR  | REENHOUSE G | GAS INVENTO      | RIES (Gg)       |       |       |                 |
|----------------------------------------------------------|-----------------|-------------|------------------|-----------------|-------|-------|-----------------|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES                | CO <sub>2</sub> | CH4         | N <sub>2</sub> O | NO <sub>x</sub> | CO    | NMVOC | SO <sub>2</sub> |
| Total Energy                                             | 105 016         | 3 352       | 0                | 282             | 1 066 | 228   | 292             |
| A Fuel Combustion Activities (Sectoral Approach)         | 105 016         | 7           | 0                | 282             | 1 066 | 191   | 223             |
| 1 Energy Industries                                      | 44 284          | 1           | 0                | 120             | 14    | 4     | 185             |
| a Public Electricity and Heat Production                 |                 |             |                  |                 |       |       |                 |
| b Petroleum Refining                                     |                 |             |                  |                 |       |       |                 |
| c Manufacture of Solid Fuels and Other Energy Industries |                 |             |                  |                 |       |       |                 |
| 2 Manufacturing Industries and Construction              | 4 982           | 0           | 0                | 14              | 3     | 0     | 4               |
| a Iron and steel                                         |                 |             |                  |                 |       |       |                 |
| b Non-Ferrous Metals                                     |                 |             |                  |                 |       |       |                 |
| c Chemicals                                              |                 |             |                  |                 |       |       |                 |
| d Pulp, Paper and Print                                  |                 |             |                  |                 |       |       |                 |
| e Food Processing, Beverages and Tobacco                 |                 |             |                  |                 |       |       |                 |
| f Other (please specify)                                 |                 |             |                  |                 |       |       |                 |
| 3 Transport                                              | 11 132          | 1           | 0                | 80              | 929   | 161   | 6               |
| a Civil Aviation                                         | 71              | 0           | 0                | 0               | 0     | 0     |                 |
| b Road Transportation                                    | 5 619           | 1           | 0                | 74              | 924   | 160   |                 |
| c Railways                                               | 327             | 0           | 0                | 5               | 4     | 1     |                 |
| d Navigation                                             | 0               | 0           | 0                | 0               | 0     | 0     |                 |
| e Other - Pipeline transport                             | 5 114           |             |                  |                 |       |       |                 |
| 4 Other Sectors                                          | 44 413          | 4           | 0                | 67              | 120   | 26    | 28              |
| a Commercial/ Institutional                              | 9 024           | 1           | 0                | 9               | 19    | 2     | 18              |
| b Residential                                            | 32 696          | 3           | 0                | 29              | 30    | 3     | 1               |
| c Agriculture/Forestry/Fishing                           | 2 693           | 0           | 0                | 29              | 72    | 21    | 8               |
| 5 Other - Lubricants                                     | 206             | 0           | 0                | 0               | 0     | 0     |                 |

## TABLE 1 SECTORAL REPORT FOR ENERGY (Uzbekistan, 2000)(Sheet 2 of 2)

| GREENHOUSE GAS SOURSE AND SINK CATEGORIES | CO <sub>2</sub> | CH4   | N <sub>2</sub> O | NO <sub>x</sub> | CO | NMVOC | SO <sub>2</sub> <sup>(1)</sup> |
|-------------------------------------------|-----------------|-------|------------------|-----------------|----|-------|--------------------------------|
| B Fugitive Emissions from Fuels           | 0               | 3 345 | 0                | 0               | 1  | 37    | 69                             |
| 1 Solid Fuels                             | 0               | 11    | 0                | 0               | 0  | 0     | 0                              |
| a Coal Mining                             |                 | 11    |                  |                 |    |       |                                |
| b Solid Fuel Transformation               |                 |       |                  |                 |    |       |                                |
| c Other (please specify)                  |                 |       |                  |                 |    |       |                                |
| 2 Oil and Natural Gas                     | 0               | 3 334 | 0                | 0               | 1  | 37    | 69                             |
| a Oil                                     |                 | 2     |                  | 0               | 1  | 37    | 7                              |
| b Natural Gas                             |                 | 3 331 |                  |                 |    |       | 62                             |
| c Venting and Flaring                     |                 | 1     |                  |                 |    |       |                                |
| Memo Items                                |                 |       |                  |                 |    |       |                                |
| International Bunkers                     | 1 116           | 0     | 0                | 5               | 2  | 1     | 1                              |
| Aviation                                  | 1 116           | 0     | 0                | 5               | 2  | 1     | 1                              |
| Marine                                    | 0               | 0     | 0                | 0               | 0  | 0     | 0                              |
| CO <sub>2</sub> Emissions from Biomass    | 3 002           |       |                  |                 |    |       |                                |

## TABLE 2 SECTORAL REPORT FOR INDUSTRIAL PROCESSES (Uzbekistan, 2000)

## (Sheet 1 of 2)

| SECTOR                                                      | AL REPORT       | FOR NAT | FIONAL G         | REENHOU | JSE GAS II | NVENTORII | ES (Gg)         |    |     |    |    |    |                |
|-------------------------------------------------------------|-----------------|---------|------------------|---------|------------|-----------|-----------------|----|-----|----|----|----|----------------|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES                   | CO.             | CH4     | N-O              | NOx     | CO         | NMVOC     | SO <sub>2</sub> | HI | FCs | PF | Cs | SF | <sup>7</sup> 6 |
| GREENIOUSE GAS SOURSE AND SINK CATEGORIES                   | CO <sub>2</sub> | Сп4     | N <sub>2</sub> O | NOX     | co         | in voc    | 502             | Р  | Α   | Р  | А  | Р  | Α              |
| Total Industrial Processes                                  | 3 590           | 0       | 4                | 1       | 8          | 23        | 2               | 0  | 0   | 0  | 0  | 0  | 0              |
| A Mineral Products                                          | 1 627           | 0       | 0                | 0       | 0          | 0         | 1               | 0  | 0   | 0  | 0  | 0  | 0              |
| 1 Cement Production                                         | 1 476           |         |                  |         |            |           | 1               |    |     |    |    |    |                |
| 2 Lime Production                                           | 81              |         |                  |         |            |           |                 |    |     |    |    |    |                |
| 3 Limestone and Dolomite Use                                | 0               |         |                  |         |            |           |                 |    |     |    |    |    |                |
| 4 Soda Ash Production an Use                                | 71              |         |                  |         |            |           |                 |    |     |    |    |    |                |
| 5 Asphalt Roofing                                           |                 |         |                  |         | 0          | 0         |                 |    |     |    |    |    |                |
| 6 Road Paving with Asphalt                                  |                 |         |                  |         |            | 0         |                 |    |     |    |    |    |                |
| 7 Other (please specify)                                    | 0               | 0       | 0                | 0       | 0          | 0         | 0               | 0  | 0   | 0  | 0  | 0  | 0              |
| Glass Production                                            |                 |         |                  |         |            | 0         |                 |    |     |    |    |    |                |
| Concrete Pumice Stone                                       |                 |         |                  |         |            |           | 0               |    |     |    |    |    |                |
| B Chemical Industry                                         | 1 298           | 0       | 4                | 1       | 8          | 5         | 1               | 0  | 0   | 0  | 0  | 0  | 0              |
| 1 Ammonia Production                                        | 1 298           |         |                  |         | 8          | 5         | 0               |    |     |    |    |    |                |
| 2 Nitric Acid Production                                    |                 |         | 4                | 1       |            |           |                 |    |     |    |    |    |                |
| 3 Adipic Acid Production                                    |                 |         | 0                | 0       | 0          | 0         |                 |    |     |    |    |    |                |
| 4 Carbide Production                                        | 0               | 0       |                  |         |            |           |                 |    |     |    |    |    |                |
| 5 Other (Sulphuric Acid Production)                         |                 | 0       |                  | 0       | 0          | 0         | 1               |    |     |    |    |    |                |
| C Metal Production                                          | 665             | 0       | 0                | 0       | 0          | 0         | 0               | 0  | 0   | 0  | 0  | 0  | 0              |
| 1 Iron and Steel Production                                 | 665             |         |                  | 0       | 0          | 0         | 0               |    |     |    |    |    |                |
| 2 Ferroalloys Production                                    | 0               |         |                  |         |            |           |                 |    |     |    |    |    |                |
| 3 Aluminium Production                                      | 0               |         |                  | 0       | 0          |           | 0               |    |     |    | 0  |    |                |
| 4 SF <sub>6</sub> Used in Aluminium and Magnesium Foundries |                 |         |                  |         |            |           |                 |    |     |    |    |    | 0              |
| 5 Other (please specify)                                    | 0               |         |                  |         |            |           |                 |    |     |    |    |    |                |

P = Potential emissions based on Tier 1 Approach. A = Actual emissions based on Tier 2 Approach. This only applies in sectors where methods exist for both tiers.

## TABLE 2 SECTORAL REPORT FOR INDUSTRIAL PROCESSES (Uzbekistan, 2000)

(Sheet 2 of 2)

| SECTORAL                                                 | REPORT FOR      | R NATION | AL GREEN         | NHOUSE (        | GAS INVE | NTORIES (G | g)              |    |    |    |    |    |    |
|----------------------------------------------------------|-----------------|----------|------------------|-----------------|----------|------------|-----------------|----|----|----|----|----|----|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES                | CO <sub>2</sub> | CH4      | N <sub>2</sub> O | NO <sub>x</sub> | СО       | NMVOC      | SO <sub>2</sub> | HF | Cs | PF | Cs | SI | F6 |
|                                                          | 002             | 0114     | 1120             | NOX             | 00       | 101100     | 502             | Р  | А  | Р  | А  | Р  | А  |
| D Other Production                                       | 0               | 0        | 0                | 0               | 0        | 19         | 0               | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 Pulp and Paper                                         |                 |          |                  | 0               | 0        | 0          | 0               |    |    |    |    |    |    |
| 2 Food and Drink                                         |                 |          |                  |                 |          | 19         |                 |    |    |    |    |    |    |
| E Production of Halocarbons and Sulphur Hexafluoride     | 0               | 0        | 0                | 0               | 0        | 0          | 0               | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 By-product Emissions                                   |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 2 Fugitive Emissions                                     |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 3 Other (please specify)                                 |                 |          |                  |                 |          |            |                 |    |    |    |    |    |    |
| F Consumption of Halocarbons and Sulphur<br>Hexafluoride | 0               | 0        | 0                | 0               | 0        | 0          | 0               | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 Refrigeration and Air Conditioning Equipment           |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 2 Foam Blowing                                           |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 3 Fie Extinguishers                                      |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    | 0  |
| 4 Aerosols                                               |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 5 Solvents                                               |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    |    |
| 6 Other (please specify)                                 |                 |          |                  |                 |          |            |                 |    | 0  |    | 0  |    | 0  |
| G Other (please specify)                                 |                 |          |                  |                 |          |            |                 |    |    |    |    |    |    |

P = Potential emissions based on Tier 1 Approach. A = Actual emissions based on Tier 2 Approach. This only applies in sectors where methods exist for both tiers.

## TABLE 4 SECTORAL REPORT FOR AGRICULTURE (Uzbekistan, 2000)

(Sheet 1 of 2)

| SECTORAL REPORT FO                        | R NATIONAL GREEN | HOUSE GAS INVE | NTORIES (Gg)    |     |       |
|-------------------------------------------|------------------|----------------|-----------------|-----|-------|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES | CH4              | N2O            | NO <sub>x</sub> | СО  | NMVOC |
| Total Agriculture                         | 350              | 28             | 4               | 109 | 0     |
| A Enteric Fermentation                    | 314              |                |                 |     |       |
| 1 Cattle                                  | 263              |                |                 |     |       |
| 2 Buffalo                                 | 0                |                |                 |     |       |
| 3 Sheep                                   | 39               |                |                 |     |       |
| 4 Goats                                   | 6                |                |                 |     |       |
| 5 Camels and Llamas                       | 1                |                |                 |     |       |
| 6 Horses                                  | 3                |                |                 |     |       |
| 7 Mules and Asses                         | 2                |                |                 |     |       |
| 8 Swine                                   | 0                |                |                 |     |       |
| 9 Poultry                                 | 0                |                |                 |     |       |
| 10 Other (please specify)                 |                  |                |                 |     |       |
| B Manure Management                       | 23               | 1              |                 |     |       |
| 1 Cattle                                  | 21               |                |                 |     |       |
| 2 Buffalo                                 | 0                |                |                 |     |       |
| 3 Sheep                                   | 1                |                |                 |     |       |
| 4 Goats                                   | 0                |                |                 |     |       |
| 5 Camels and Llamas                       | 0                |                |                 |     |       |
| 6 Horses                                  | 0                |                |                 |     |       |
| 7 Mules and Asses                         | 0                |                |                 |     |       |
| 8 Swine                                   | 0                |                |                 |     |       |
| 9 Poultry                                 | 0                |                |                 |     |       |

## TABLE 4 SECTORAL REPORT FOR AGRICULTURE (Uzbekistan, 2000)

## (Sheet 2 of 2)

| SECTORAL REPORT FOR N                     | ATIONAL GREENH | DUSE GAS INVENT  | ORIES (Gg)      |     |       |
|-------------------------------------------|----------------|------------------|-----------------|-----|-------|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES | CH4            | N <sub>2</sub> O | NO <sub>x</sub> | СО  | NMVOC |
| B Manure Management (cont)                |                |                  |                 |     |       |
| 10 Anaerobic                              |                | 0                |                 |     |       |
| 11 Liquid Systems                         |                | 0                |                 |     |       |
| 12 Solid Storage and Dry Lot              |                | 1                |                 |     |       |
| 13 Other (please specify)                 |                | 0                |                 |     |       |
| C Rice Cultivation                        | 9              |                  |                 |     |       |
| 1 Irrigated                               | 9              |                  |                 |     |       |
| 2 Painfed                                 | 0              |                  |                 |     |       |
| 3 Deep Water                              | 0              |                  |                 |     |       |
| 4 Other (please specify)                  |                |                  |                 |     |       |
| D Agricultural Soils                      |                | 28               |                 |     |       |
| E Prescribed Burning of Savannas          | 0              | 0                | 0               | 0   |       |
| F Field Burning of Agricultural Residues  | 4              | 0                | 4               | 109 |       |
| 1 Cereals                                 | 4              | 0                | 4               | 109 |       |
| 2 Pulse                                   |                |                  |                 |     |       |
| 3 Tuber and Root                          |                |                  |                 |     |       |
| 4 Sugar Cane                              |                |                  |                 |     |       |
| 5 Other (please specify)                  |                |                  |                 |     |       |
| G Other (please specify)                  |                |                  |                 |     |       |

### TABLE 5 SECTORAL REPORT FOR LAND-USE CHENGE AND FORESTRY (Uzbekistan, 2000)

(Sheet 1 of 1)

| SECTORAL REPORT FOR                                | NATIONAL GREENH          | OUSE | E GAS             | INVENT   | ORIES (Gg) |                  |                 |    |
|----------------------------------------------------|--------------------------|------|-------------------|----------|------------|------------------|-----------------|----|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES          | CO <sub>2</sub> Emission | s (  | CO <sub>2</sub> R | Removals | CH4        | N <sub>2</sub> O | NO <sub>x</sub> | СО |
| Total Land-Use Change and Forestry                 | (1)                      | 0 (  | (1)               | -1 018   | 0          | 0                | 0               | 0  |
| A Changes in Forest and Other Woody Biomass Stocks | (1)                      | 0 (  | (1)               | -751     |            |                  |                 |    |
| 1 Tropical Forests                                 |                          |      |                   |          |            |                  |                 |    |
| 2 Temperate Forests                                |                          |      |                   |          |            |                  |                 |    |
| 3 Boreal Forests                                   |                          |      |                   |          |            |                  |                 |    |
| 4 Grassland / Tundra                               |                          |      |                   |          |            |                  |                 |    |
| 5 Other (please specify)                           |                          |      |                   |          |            |                  |                 |    |
| B Forest and Grassland Conversion                  |                          | 0    |                   |          | 0          | 0                | 0               | 0  |
| 1 Tropical Forests                                 |                          | 0    |                   |          |            |                  |                 |    |
| 2 Temperate Forests                                |                          | 0    |                   |          |            |                  |                 |    |
| 3 Boreal Forests                                   |                          | 0    |                   |          |            |                  |                 |    |
| 4 Grassland / Tundra                               |                          | 0    |                   |          |            |                  |                 |    |
| 5 Other (please specify)                           |                          | 0    |                   |          |            |                  |                 |    |
| C Abandonment of Managed Lands                     |                          |      |                   | 0        |            |                  |                 |    |
| 1 Tropical Forests                                 |                          |      |                   | 0        |            |                  |                 |    |
| 2 Temperate Forests                                |                          |      |                   | 0        |            |                  |                 |    |
| 3 Boreal Forests                                   |                          |      |                   | 0        |            |                  |                 |    |
| 4 Grassland / Tundra                               |                          |      |                   | 0        |            |                  |                 |    |
| 5 Other (please specify)                           |                          |      |                   | 0        |            |                  |                 |    |
| D CO <sub>2</sub> Emissions and Removals from Soil | (1)                      | 0 (  | (1)               | -267     |            |                  |                 |    |
| E Other (please specify)                           |                          |      |                   |          |            |                  |                 |    |

(1) The formula does not provide a total estimate of both  $CO_2$  emissions and  $CO_2$  removals. It estimates "net" emissions of  $CO_2$  and places a single number in either the  $CO_2$  emissions or  $CO_2$  removals column, as appropriate. Please note that the purposes of reporting, the signs for removals are always (-) and for emissions (+).

94

## TABLE 6 SECTORAL REPORT FOR WASTE (Uzbekistan, 2000)

## (Sheet 1 of 1)

| SECTORAL REPORT                           | FOR NATIONAL G     | REENHOUSE GA | S INVENTORIES    | 5 (Gg)          |    |       |
|-------------------------------------------|--------------------|--------------|------------------|-----------------|----|-------|
| GREENHOUSE GAS SOURSE AND SINK CATEGORIES | CO2 <sup>(1)</sup> | CH4          | N <sub>2</sub> O | NO <sub>x</sub> | СО | NMVOC |
| Total Waste                               | 0                  | 191          | 2                |                 |    |       |
| A Solid Waste Disposal on Land            | 0                  | 176          | 0                |                 |    |       |
| 1 Managed Waste Disposal on Land          |                    |              |                  |                 |    |       |
| 2 Unmanaged Waste Disposal Sites          |                    |              |                  |                 |    |       |
| 3 Other (please specify)                  |                    |              |                  |                 |    |       |
| B Wastewater Handling                     | 0                  | 14           | 2                |                 |    |       |
| 1 Industrial Wastewater                   |                    | 2            |                  |                 |    |       |
| 2 Domestic and Commercial Wastewater      |                    | 13           | 2                |                 |    |       |
| 3 Other (please specify)                  |                    |              |                  |                 |    |       |
| C Waste Incineration                      |                    |              |                  |                 |    |       |
| D Other (please specify)                  |                    |              |                  |                 |    |       |

(1) Note that CO<sub>2</sub> from waste disposal and incineration should only be included if it stems from non-biological or inorganic waste sources.

 $\bigcirc$ 

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

## TABLE 7A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000)

(Sheet 1 of 2)

|                                                          | SUMMARY R       | EPORT FOR       | NATION | AL GREEN         | HOUSE           | GAS INV | <b>ENTORIES</b> | (Gg)            |    |     |    |    |    |    |
|----------------------------------------------------------|-----------------|-----------------|--------|------------------|-----------------|---------|-----------------|-----------------|----|-----|----|----|----|----|
| GREENHOUSE GAS SOURSE AND SINK                           | CO <sub>2</sub> | CO <sub>2</sub> | CH4    | N <sub>2</sub> O | NO <sub>x</sub> | СО      | NMVOC           | SO <sub>2</sub> | HF | °Cs | PF | Cs | SI | F6 |
| CATEGORIES                                               | Emissions       | Removals        | CII4   | 1120             | NOχ             | 00      | 1001/00         | 502             | Р  | А   | Р  | А  | Р  | Α  |
| <b>Total National Emissions and Removals</b>             | 108 606         | -1 018          | 3 892  | 35               | 286             | 1 184   | 251             | 294             | 0  | 0   | 0  | 0  | 0  | 0  |
| 1 Energy                                                 | 105 016         | 0               | 3 352  | 0                | 282             | 1 066   | 228             | 292             |    |     |    |    |    |    |
| A Fuel Combustion (Sectoral Approach)                    | 105 016         |                 | 7      | 0                | 282             | 1 066   | 191             | 223             |    |     |    |    |    |    |
| 1 Energy Industries                                      | 44 284          |                 | 1      | 0                | 120             | 14      | 4               | 185             |    |     |    |    |    |    |
| 2 Manufacturing Industries and<br>Construction           | 4 982           |                 | 0      | 0                | 14              | 3       | 0               | 4               |    |     |    |    |    |    |
| 3 Transport                                              | 11 132          |                 | 1      | 0                | 80              | 929     | 161             | 6               |    |     |    |    |    |    |
| 4 Other Sectors                                          | 44 413          |                 | 4      | 0                | 67              | 120     | 26              | 28              |    |     |    |    |    |    |
| 5 Other (Lubricants)                                     | 206             |                 | 0      | 0                | 0               | 0       | 0               | 0               |    |     |    |    |    |    |
| B Fugitive Emissions from Fuel                           | 0               |                 | 3 345  |                  | 0               | 1       | 37              | 69              |    |     |    |    |    |    |
| 1 Solid Fuels                                            |                 |                 | 11     |                  |                 |         |                 |                 |    |     |    |    |    |    |
| 2 Oil and Natural Gas                                    |                 |                 | 3 334  |                  | 0               | 1       | 37              | 69              |    |     |    |    |    |    |
| 2 Industrial Processes                                   | 3 590           | 0               | 0      | 4                | 1               | 8       | 23              | 2               | 0  | 0   | 0  | 0  | 0  | 0  |
| A Mineral Products                                       | 1 627           |                 |        |                  |                 | 0       | 0               | 1               |    |     |    |    |    |    |
| B Chemical Industry                                      | 1 298           |                 | 0      | 4                | 1               | 8       | 5               | 1               |    |     |    |    |    |    |
| C Metal Production                                       | 665             |                 | 0      | 0                | 0               | 0       | 0               | 0               | 0  | 0   | 0  | 0  | 0  | 0  |
| D Other Production                                       | 0               |                 |        |                  | 0               | 0       | 19              | 0               |    |     |    |    |    |    |
| E Production of Halocarbons and<br>Sulphur Hexafluoride  |                 |                 |        |                  |                 |         |                 |                 | 0  | 0   | 0  | 0  | 0  | 0  |
| F Consumption of Halocarbons and<br>Sulphur Hexafluoride |                 |                 |        |                  |                 |         |                 |                 | 0  | 0   | 0  | 0  | 0  | 0  |
| G Other (please specify)                                 | 0               |                 | 0      | 0                | 0               | 0       | 0               | 0               |    |     |    | 0  |    | 0  |

P = Potential emissions based on Tier 1 Approach. A = Actual emissions based on Tier 2 Approach.

### TABLE 7A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000)

(Sheet 2 of 2)

| GREENHOUSE GAS SOURSE AND SINK                        |     | CO2     |     | CO <sub>2</sub> | CH4 | NLO              | NO              | CO  | NMVOC | SO.             | H | FCs | PF | FCs | S | F6       |
|-------------------------------------------------------|-----|---------|-----|-----------------|-----|------------------|-----------------|-----|-------|-----------------|---|-----|----|-----|---|----------|
| CATEGORIES                                            | En  | issions | Re  | emovals         | Сп4 | N <sub>2</sub> O | NO <sub>x</sub> | co  | NWVOC | SO <sub>2</sub> | Р | Α   | Р  | Α   | Р | A        |
| 3 Solvent and Other Product Use                       |     | 0       |     |                 |     | 0                |                 |     | 0     |                 |   |     |    |     |   |          |
| 4 Agriculture                                         |     |         |     |                 | 350 | 28               | 4               | 109 |       |                 |   |     |    |     |   |          |
| A Enteric Fermentation                                |     |         |     |                 | 314 |                  |                 |     |       |                 |   |     |    |     |   |          |
| B Manure Management                                   |     |         |     |                 | 23  | 1                |                 |     |       |                 |   |     |    |     |   |          |
| C Rice Cultivation                                    |     |         |     |                 | 9   |                  |                 |     |       |                 |   |     |    |     |   |          |
| D Agricultural Soils                                  |     |         |     |                 |     | 28               |                 |     |       |                 |   |     |    |     |   |          |
| E Prescribed Burning of Savannas                      |     |         |     |                 | 0   | 0                | 0               | 0   |       |                 |   |     |    |     |   |          |
| F Field Burning of Agricultural<br>Residues           |     |         |     |                 | 4   | 0                | 4               | 109 |       |                 |   |     |    |     |   |          |
| G Other (please specify)                              |     |         |     |                 | 0   | 0                |                 |     |       |                 |   |     |    |     |   |          |
| 5 Land-Use Change & Forestry                          | (1) | 0       | (1) | -1 018          | 0   | 0                | 0               | 0   |       |                 |   |     |    |     |   |          |
| A Changes in Forest and Other<br>Woody Biomass Stocks | (1) | 0       | (1) | -751            |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| B Forest and Grassland Conversion                     |     | 0       |     |                 | 0   | 0                | 0               | 0   |       |                 |   |     |    |     |   |          |
| C Abandonment of Managed Lends                        |     |         |     | 0               |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| D CO <sub>2</sub> Emissions and Removals<br>from Soil | (1) | 0       | (1) | -267            |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| E Other (please specify)                              |     | 0       |     | 0               | 0   | 0                | 0               | 0   |       |                 |   |     |    |     |   |          |
| 6 Waste                                               |     |         |     |                 | 191 | 2                | 0               | 0   | 0     | 0               |   |     |    |     |   |          |
| A Solid Waste Disposal on Land                        |     |         |     |                 | 176 |                  |                 |     |       |                 |   |     |    |     |   |          |
| B Wastewater Handling                                 |     |         |     |                 | 14  | 2                |                 |     |       |                 |   |     |    |     |   |          |
| C Waste Incineration                                  |     |         |     |                 |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| D Other (please specify)                              |     |         |     |                 | 0   | 0                |                 |     |       |                 |   |     |    |     |   |          |
| 7 Other (please specify)                              |     |         |     |                 |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| Memo Items:                                           |     |         |     |                 |     |                  |                 |     |       |                 |   |     |    |     |   |          |
| International Bunkers                                 |     | 1 116   |     |                 | 0   | 0                | 5               | 2   | 1     | 1               |   |     |    |     |   | Γ        |
| Aviation                                              |     | 1 1 1 6 |     |                 | 0   | 0                | 5               | 2   | 1     | 1               |   |     | 1  |     |   |          |
| Marine                                                |     | 0       |     |                 | 0   | 0                | 0               | 0   | 0     | 0               |   |     | 1  |     |   | T        |
| CO <sub>2</sub> Emissions from Biomass                |     | 3 002   |     |                 |     |                  | i               |     |       |                 |   |     | 1  |     |   | $\vdash$ |

(1) The formula does not provide a total estimate of both  $CO_2$  emissions and  $CO_2$  removals. It estimates "net" emissions of  $CO_2$  and places a single number in either the  $CO_2$  emissions or  $CO_2$  removals column, as appropriate. Please note that the purposes of reporting, the signs for removals are always (-) and for emissions (+).

 $\bigcirc$ 

Г

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

#### TABLE 7B SHORT SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000)

#### (Sheet 1 of 1)

|    |                            |                                   | SHO | RTSUMM          | ARY I | REPORT F        | FOR NAT | IONAL G          | REENHO | USE GAS | S INVENTOI | RIES (Gg)       |    |            |    |    |    |    |
|----|----------------------------|-----------------------------------|-----|-----------------|-------|-----------------|---------|------------------|--------|---------|------------|-----------------|----|------------|----|----|----|----|
|    |                            | GAS SOURSE AND SINK               |     | CO <sub>2</sub> |       | CO <sub>2</sub> | CH4     | N <sub>2</sub> O | NOx    | СО      | NMVOC      | SO <sub>2</sub> | HF | <b>C</b> S | PF | Cs | SI | F6 |
|    | CA                         | ATEGORIES                         | En  | nissions        | Re    | emovals         | 0114    | 1120             | ΠOX    |         |            | 502             | Р  | Α          | Р  | Α  | Р  | Α  |
|    | Total National<br>Removals | Emissions and                     |     | 108 606         |       | -1 018          | 3 892   | 35               | 286    | 1 184   | 251        | 294             | 0  | 0          | 0  | 0  | 0  | 0  |
|    | 1 Energy                   | Reference Approach <sup>(1)</sup> |     | 106 060         |       |                 |         |                  |        |         |            |                 |    |            |    |    |    |    |
|    |                            | Sectoral Approach <sup>(1)</sup>  |     | 105 016         |       |                 | 3 352   | 0                | 282    | 1 066   | 228        | 292             |    |            |    |    |    |    |
|    | A Fuel Con                 | nbustion                          |     | 105 016         |       |                 | 7       | 0                | 282    | 1 066   | 191        | 223             |    |            |    |    |    |    |
|    | B Fugitive                 | Emissions from Fuels              |     | 0               |       |                 | 3 345   |                  | 0      | 1       | 37         | 69              |    |            |    |    |    |    |
|    | 2 Industrial Pr            | rocesses                          |     | 3 590           |       |                 | 0       | 4                | 1      | 8       | 23         | 2               | 0  | 0          | 0  | 0  | 0  | 0  |
|    | 3 Solvent and              | Other Product Use                 |     | 0               |       |                 |         | 0                |        |         | 0          |                 |    |            |    |    |    |    |
|    | 4 Agriculture              |                                   |     |                 |       |                 | 350     | 28               | 4      | 109     |            |                 |    |            |    |    |    |    |
| 86 | 5 Land-Use Cl              | hange & Forestry                  | (2) | 0               | (2)   | -1 018          | 0       | 0                | 0      | 0       |            |                 |    |            |    |    |    |    |
|    | 6 Waste                    |                                   |     |                 |       |                 | 191     | 2                |        |         |            |                 |    |            |    |    |    |    |
|    | 7 Other (please            | e specify)                        |     | 0               |       | 0               | 0       | 0                | 0      | 0       | 0          | 0               |    |            |    |    |    |    |
|    | Memo Items:                |                                   |     |                 |       |                 |         |                  |        |         |            |                 |    |            |    |    |    |    |
|    | International B            | Bunkers                           |     | 1 116           |       |                 | 0       | 0                | 5      | 2       | 1          | 1               |    |            |    |    |    |    |
|    | Aviation                   |                                   |     | 1 1 1 6         |       |                 | 0       | 0                | 5      | 2       | 1          | 1               |    |            |    |    |    |    |
|    | Marine                     |                                   |     | 0               |       |                 | 0       | 0                | 0      | 0       | 0          | 0               |    |            |    |    |    |    |
|    | CO <sub>2</sub> Emissions  | from Biomass                      |     | 3 002           |       |                 |         |                  |        |         |            |                 |    |            |    |    |    |    |

P = Potential emissions based on Tier 1 Approach. A = Actual emissions based on Tier 2 Approach.

(1) For verification purposes, countries are asked to report the results of their calculations using the Reference Approach and explain any differences with the Sectoral Approach. Do not include the results of both the Reference Approach and the Sectoral Approach in national totals.

(2) The formula does not provide a total estimate of both  $CO_2$  emissions and  $CO_2$  removals. It estimates "net" emissions of  $CO_2$  and places a single number in either the  $CO_2$  emissions or  $CO_2$  removals column, as appropriate. Please note that the purposes of reporting, the signs for removals are always (-) and for emissions (+).

 $\bigcirc$ 

## TABLE 8A OVEVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000)(Sheet 1 of 3)

| -  | GREENHOUSE GAS<br>SOURSE AND SINK                    | C        | O <sub>2</sub> | Cl       | $H_4$   | $N_2$    | 0       | N        | O <sub>x</sub> | C        | 0       | NMV      | VOC     | S        | D <sub>2</sub> | HF       | Cs      | PF       | ĊCs     | S        | F <sub>6</sub> | Docume<br>ntation | Disaggr<br>egation- |
|----|------------------------------------------------------|----------|----------------|----------|---------|----------|---------|----------|----------------|----------|---------|----------|---------|----------|----------------|----------|---------|----------|---------|----------|----------------|-------------------|---------------------|
|    | CATEGORIES                                           | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality        | ination           | cgation-            |
|    | l National Emissions<br>Removals                     |          |                |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |                   |                     |
| E  | nergy                                                |          |                |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |                   |                     |
| А  | Fuel Combustion<br>Activities                        |          |                |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |                   |                     |
|    | Reference Approach                                   | ALL      | Н              |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                | Н                 | 1                   |
|    | Sectoral Approach                                    | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 1 Energy Industries                                  | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 2 Manufacturing<br>Industries and<br>Construction    | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 3 Transport                                          | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 4 Other sectors                                      | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 5 Other (Lubricants)                                 | ALL      | М              | NE       |         | NE       |         | NE       |                | NE       |         | NE       |         | NE       |                | NA       |         | NA       |         | NA       |                | Н                 | 1                   |
| В  | Fugitive Emissions from<br>Fuels                     |          |                |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |                   |                     |
|    | 1 Solid Fuels                                        | NA       |                | ALL      | М       | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
|    | 2 Oil and Natural Gas                                | NE       |                | ALL      | М       | NE       |         | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
| In | ndustrial Processes                                  |          |                |          |         |          |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |                   |                     |
| Α  | Mineral Products                                     | PART     | Н              | NA       |         | NE       |         | NE       |                | NE       |         | NE       |         | PART     | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
| В  | Chemical Industry                                    | PART     | Н              | PART     | Н       | ALL      | М       | PART     | М              | PART     | Н       | PART     | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
| С  | Metal Production                                     | PART     | Н              | NE       |         | NE       |         | PART     | Н              | PART     | Н       | PART     | Н       | PART     | Н              | NO       |         | NO       |         | NO       |                | Н                 | 3                   |
| D  | Other Production                                     | NE       |                | NE       |         | NE       |         | NE       |                | NE       |         | ALL      | Н       | NE       |                | NA       |         | NA       |         | NA       |                | Н                 | 3                   |
| Е  | Production of Halocarbons<br>and Suphur Hexafluoride | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | NO       |         | NO       |         | NO       |                |                   |                     |

|   |      | GREENHOUSE GAS<br>SOURSE AND SINK                       | C        | $O_2$   | CI       | $H_4$   | N <sub>2</sub> | 0       | N        | O <sub>x</sub> | C        | 0       | NMV      | VOC     | S        | $O_2$   | HF       | Cs      | PF       | Cs      | S        | H -     | Docum<br>entatio | 00 |
|---|------|---------------------------------------------------------|----------|---------|----------|---------|----------------|---------|----------|----------------|----------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|---------|------------------|----|
|   |      | CATEGORIES                                              | Estimate | Quality | Estimate | Quality | Estimate       | Quality | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality | Estimate | Quality | Estimate | Quality | Estimate | Quality | n                | n  |
|   | Indu | ustrial Processes (cont)                                |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
|   |      |                                                         |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
|   | 1    | F Consumption of Halocarbons<br>and Suphur Hexafluoride | NA       |         | NA       |         | NA             |         | NA       |                | NA       |         | NA       |         | NA       |         |          |         |          |         |          |         |                  |    |
|   |      | Potential <sup>(1)</sup>                                |          |         |          |         |                |         |          |                |          |         |          |         |          |         | PART     | L       | NE       |         | NE       |         |                  | М  |
|   |      | Actual (2)                                              |          |         |          |         |                |         |          |                |          |         |          |         |          |         | NO       |         | NO       |         | NO       |         |                  |    |
|   |      | G Other (please specify)                                |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
|   | 4    | Solvent and Other Product<br>Use                        | NA       |         | NA       |         | NA             |         | NA       |                | NA       |         | NE       |         | NA       |         | NA       |         | NA       |         | NA       |         |                  |    |
|   | 4    | Agriculture                                             |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
|   |      | A Enteric Fermentation                                  | NA       |         | ALL      | Н       | NA             |         | NA       |                | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | Н                | 3  |
|   | ]    | B Manure Management                                     | NA       |         | ALL      | Н       | ALL            | Н       | NA       |                | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | Н                | 3  |
|   | (    | C Rice Cultivation                                      | NA       |         | ALL      | Н       | NA             |         | NA       |                | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | Н                | 2  |
|   | ]    | D Agricultural Soils                                    | NA       |         | NA       |         | ALL            | М       | NA       |                | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | NA       |         | Н                | 1  |
|   | 1    | E Prescribed Burning of<br>Savannas                     | NO       |         | NO       |         | NO             |         | NO       |                | NO       |         | NO       |         | NO       |         | NA       |         | NA       |         | NA       |         |                  |    |
|   |      | F Field Burning of Agricultural<br>Residues             | IE       | М       | PART     | М       | PART           | М       | PART     | М              | PART     | М       | NA       |         | NE       |         | NA       |         | NA       |         | NA       |         | Н                | 2  |
|   |      | G Other (please specify)                                |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
| : | 5 1  | Land-Use Change & Forestry                              |          |         |          |         |                |         |          |                |          |         |          |         |          |         |          |         |          |         |          |         |                  |    |
|   |      | A Other Woody Biomass<br>Stocks                         | PART     | М       | NE       |         | NE             |         | NE       |                | NE       |         | NE       |         | NE       |         | NA       |         | NA       |         | NA       |         | Н                | 2  |
|   | 1    | B Forest and Grassland<br>Conversion                    | NE       |         | NE       |         | NE             |         | NE       |                | NE       |         | NE       |         | NE       |         | NA       |         | NA       |         | NA       |         |                  |    |

### TABLE 8A OVEVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000) (Sheet 2 of 3)

Potential emissions based on Tier 1 Approach.
 Actual emissions based on Tier 2 Approach.

### TABLE 8A OVEVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (Uzbekistan, 2000) (Sheet 3 of 3)

| GREENHOUSE GAS<br>SOURSE AND SINK                     | C        | O <sub>2</sub> | C        | $H_4$   | N <sub>2</sub> | $_{2}O$ | N        | O <sub>x</sub> | C        | 0       | NM       | VOC     | S        | O <sub>2</sub> | HF       | Cs      | PF       | Cs      | S        | F <sub>6</sub> | Documentat | Disaggreg |
|-------------------------------------------------------|----------|----------------|----------|---------|----------------|---------|----------|----------------|----------|---------|----------|---------|----------|----------------|----------|---------|----------|---------|----------|----------------|------------|-----------|
| CATEGORIES                                            | Estimate | Quality        | Estimate | Quality | Estimate       | Quality | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality        | Estimate | Quality | Estimate | Quality | Estimate | Quality        | ion        | ation     |
| 5 Land-Use Change &<br>Forestry (cont)                |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| C Abandonment of Managed<br>Land                      | ALL      | М              | NA       |         | NA             |         | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | Н          | 2         |
| D CO <sub>2</sub> Emissions and<br>Removals from Soil | ALL      | М              | NA       |         | NA             |         | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | Н          | 2         |
| E Other (please specify)                              |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| 6 Waste                                               |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         | NA       |         | NA       |                |            |           |
| A Solid Waste Disposal on<br>Land                     | NA       |                | ALL      | М       | NA             |         | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | Н          | 2         |
| B Wastewater Handling                                 | NA       |                | ALL      | М       | ALL            | М       | NA       |                | NA       |         | NA       |         | NA       |                | NA       |         | NA       |         | NA       |                | Н          | 2         |
| C Waste Incineration                                  | NE       |                | NE       |         | NE             |         | NE       |                | NE       |         | NE       |         | NE       |                | NA       |         | NA       |         | NA       |                |            |           |
| D Other (please specify)                              |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| 7 Other (please specify)                              |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| Memo Items:                                           |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| International Bunker                                  |          |                |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                |            |           |
| Aviation                                              | ALL      | Н              | ALL      | Н       | ALL            | Н       | ALL      | Н              | ALL      | Н       | ALL      | Н       | ALL      | Н              | NA       |         | NA       |         | NA       |                | Н          | 3         |
| Marine                                                | NO       |                | NO       |         | NO             |         | NO       |                | NO       |         | NO       |         | NO       |                | NA       |         | NA       |         | NA       |                |            |           |
| CO <sub>2</sub> Emissions from Biomass                | PART     | М              |          |         |                |         |          |                |          |         |          |         |          |                |          |         |          |         |          |                | Н          | 1         |

Estimate PART - Partly estimated ALL - Full estimate of all possible sources

NE - Not estimated

IE - Estimated but included elsewhere

NO - Not occurring

NA - Not applicable

#### Quality

#### H - High confidence in estimation

M - Medium confidence in estimation L - Low confidence in estimation

#### Documentation

H - High (all background information included)
 M - Medium (some background information included)
 L - Low (only emission estimates included)

- Disaggregation 1 Total emission estimated
- 2 Sectoral split3 Sub-sectoral split



## Annex 4

|                  |                  | MODULE                   | ENERGY                                                                       |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
|------------------|------------------|--------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|
|                  |                  | SUBMODULE                | CO <sub>2</sub> FROM                                                         | ENERGY SO                                                          | URCES (REF                                                                       | ERENCE API                                                                                                                                                    | PROACH)                                                                  |                                                                    |
|                  |                  | WORKSHEET                | 1-1                                                                          |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
|                  |                  | SHEETS                   | 1 OF 5                                                                       |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
|                  |                  | CUUNTRY                  | UZBEKIST                                                                     | AN                                                                 |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
|                  |                  | YEAR                     | 2000                                                                         |                                                                    | 0.00                                                                             | 554                                                                                                                                                           |                                                                          |                                                                    |
|                  |                  | /DEC                     | $\begin{array}{c} A \\ Production \\ (10^3 t) \\ (gas-10^6 m^3) \end{array}$ | B Import (10 <sup>3</sup> t) (gas-10 <sup>6</sup> m <sup>3</sup> ) | $\begin{array}{c} & SI \\ C \\ Export \\ (10^3 t) \\ (gas-10^6 m^3) \end{array}$ | $\begin{array}{c} \textbf{EP 1} \\ \textbf{D} \\ \textbf{International} \\ \textbf{Bunkers} \\ (10^3 \text{ t}) \\ (\text{gas-}10^6 \text{ m}^3) \end{array}$ | E Stock Change (10 <sup>3</sup> t) (gas-10 <sup>6</sup> m <sup>3</sup> ) | $F$ Apparent Consumption ( $10^3$ t) (gas- $10^6$ m <sup>3</sup> ) |
| ¥ · · · I        | FUEL TY          | Crude Oil                | 7536                                                                         | 0                                                                  | 280                                                                              |                                                                                                                                                               | -219                                                                     | F=(A+B-C-D-E)<br>7 475.00                                          |
| Liquid<br>Fossil | Primary<br>Fuels | Natural Gas Liquids      | /330                                                                         | 0                                                                  | 280                                                                              |                                                                                                                                                               | -219                                                                     | 0.00                                                               |
| 1 05511          | 1 ueis           | Gasoline                 |                                                                              | 1                                                                  | 74                                                                               |                                                                                                                                                               | 40                                                                       | -113.00                                                            |
|                  | Secondary        | Jet Kerosene             |                                                                              | 0                                                                  | 2                                                                                | 374.3                                                                                                                                                         | -2                                                                       | -374.30                                                            |
|                  | Fuels            | Other Kerosene           |                                                                              | 0                                                                  | 40                                                                               |                                                                                                                                                               | 0                                                                        | -40.00                                                             |
|                  |                  | Gas/ Diesel Oil          |                                                                              | 0                                                                  | 336                                                                              |                                                                                                                                                               | -41                                                                      | -295.00                                                            |
|                  |                  | Stove Domestic<br>Fuel   |                                                                              | 0                                                                  | 12                                                                               |                                                                                                                                                               | 1                                                                        | -13.00                                                             |
|                  |                  | Residual Fuel Oil        |                                                                              | 0                                                                  | 71                                                                               |                                                                                                                                                               | -345                                                                     | 274.00                                                             |
|                  |                  | LPG                      |                                                                              | 0                                                                  | 18                                                                               |                                                                                                                                                               | 0                                                                        | -18.00                                                             |
|                  |                  | Bitumen                  |                                                                              | 0                                                                  | 5                                                                                |                                                                                                                                                               | 8                                                                        | -13.00                                                             |
|                  |                  | Lubricants               |                                                                              | 2                                                                  | 46                                                                               |                                                                                                                                                               | -3                                                                       | -41.00                                                             |
|                  |                  | Petroleum Coke           |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  |                  | Refinery gas             |                                                                              | 0                                                                  | 0                                                                                |                                                                                                                                                               | 0                                                                        | 0.00                                                               |
|                  |                  | Other Oil                |                                                                              | 0                                                                  | 0                                                                                |                                                                                                                                                               | 0                                                                        | 0.00                                                               |
| Liquid Fo        | ssil Totals      |                          |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
| Solid            | Primary          | Anthracite (a)           |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
| Fossil           | Fuels            | Coking Coal              |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  |                  | Other Bituminous<br>Coal | 92                                                                           | 0                                                                  | 7                                                                                |                                                                                                                                                               | -16                                                                      | 101.00                                                             |
|                  |                  | Sub-Bituminous<br>Coal   | 2409                                                                         | 12                                                                 | 0                                                                                |                                                                                                                                                               | -613                                                                     | 3 034.00                                                           |
|                  |                  | Lignite                  |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  |                  | Oil Shale                |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  |                  | Peat                     |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  | Secondary        | BKB & Patent<br>Fuel     |                                                                              | 0                                                                  | 0                                                                                |                                                                                                                                                               | 2                                                                        | -2.00                                                              |
|                  | Fuels            | Coke Oven /Gas<br>Coke   |                                                                              | 39                                                                 | 0                                                                                |                                                                                                                                                               | 4                                                                        | 35.00                                                              |
| Solid Foss       |                  |                          |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
| Gaseous F        | Fossil           | Natural Gas (Dry)        | 49871.3                                                                      | 1621                                                               | 6857                                                                             |                                                                                                                                                               | -123                                                                     | 44 758.26                                                          |
| Total            | P 4 1            |                          |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
| Biomass 7        | lotal            | Solid Biomass            | 1962.75                                                                      |                                                                    |                                                                                  |                                                                                                                                                               | +                                                                        | 1 962.75                                                           |
|                  |                  |                          | 1902.75                                                                      |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          |                                                                    |
|                  |                  | Liquid Biomass           |                                                                              |                                                                    |                                                                                  |                                                                                                                                                               |                                                                          | 0.00                                                               |
|                  |                  | Gas Biomass              |                                                                              |                                                                    |                                                                                  | [                                                                                                                                                             | L                                                                        | 0.00                                                               |

## Worksheet 1 CO<sub>2</sub> Emissions from Energy (Reference Approach)

(a) If anthracite is not separately available, include with Other Bituminous Coal.



| · · · · · ·     |                  | MODULE                    | ENERGY                                                                                     |                                 |                                          |                            |                             |
|-----------------|------------------|---------------------------|--------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------------|-----------------------------|
|                 |                  | SUBMODULE                 |                                                                                            | ERGY SOURCES                    | S (REFERENCE                             | APPROACH)                  |                             |
|                 |                  | WORKSHEET                 | 1-1                                                                                        |                                 | ,                                        | ,                          |                             |
|                 |                  | SHEETS                    | 2 OF 5                                                                                     |                                 |                                          |                            |                             |
|                 |                  | COUNTRY                   | UZBEKISTAN                                                                                 |                                 |                                          |                            |                             |
|                 |                  | YEAR                      | 2000                                                                                       |                                 |                                          |                            |                             |
|                 |                  |                           | G <sup>(b)</sup>                                                                           | Р2<br>Н                         | I                                        | STEP 3                     | K                           |
|                 |                  |                           | Conversion<br>factor<br>(TJ/10 <sup>3</sup> t)<br>(gas-TJ/10 <sup>6</sup> m <sup>3</sup> ) | Apparent<br>Consumption<br>(TJ) | Carbon<br>Emission<br>Factor<br>(t C/TJ) | Carbon<br>Content<br>(t C) | Carbon<br>Content<br>(Gg C) |
|                 | FUEL             | TYPES                     |                                                                                            | H=(FxG)                         |                                          | J=(HxI)                    | K=(J/1000)                  |
| Liquid          | Primary          | Crude Oil                 | 41.868                                                                                     | 312 963.30                      | 20.0                                     | 6 259 266.00               | 6 259.27                    |
| Fossil          | Fuels            | Natural Gas Liquids       |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 | Secondary        | Gasoline                  | 43.668                                                                                     | -4 934.48                       | 18.9                                     | -93 261.75                 | -93.26                      |
|                 | Fuels            | Jet Kerosene              | 42.900                                                                                     | -16 057.47                      | 19.5                                     | -313 120.67                | -313.12                     |
|                 |                  | Other Kerosene            | 43.082                                                                                     | -1 723.28                       | 19.6                                     | -33 776.29                 | -33.78                      |
|                 |                  | Gas/ Diesel Oil           | 42.496                                                                                     | -12 536.32                      | 20.2                                     | -253 233.66                | -253.23                     |
|                 |                  | Stove Domestic Fuel       | 42.496                                                                                     | -552.45                         | 20.2                                     | -11 159.45                 | -11.16                      |
|                 |                  | Residual Fuel Oil         | 40.151                                                                                     | 11 001.37                       | 21.1                                     | 232 128.99                 | 232.13                      |
|                 |                  | LPG                       | 46.013                                                                                     | -828.23                         | 17.2                                     | -14 245.62                 | -14.25                      |
|                 |                  | Bitumen                   | 39.565                                                                                     | -514.35                         | 22.0                                     | -11 315.59                 | -11.32                      |
|                 |                  | Lubricants                | 40.151                                                                                     | -1 646.19                       | 20.0                                     | -32 923.82                 | -32.92                      |
|                 |                  | Petroleum Coke            |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Refinery gas              |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Other Oil                 | 40.151                                                                                     | 0.00                            | 20                                       | 0.00                       | 0.00                        |
| 1               | ossil Totals     | ·                         |                                                                                            | 285 171.90                      |                                          | 5 728 358.14               | 5 728.36                    |
| Solid<br>Fossil | Primary<br>Fuels | Anthracite <sup>(a)</sup> |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Coking Coal               |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Other Bituminous Coal     | 19.929                                                                                     | 2 012.83                        | 25.8                                     | 51 930.99                  | 51.93                       |
|                 |                  | Sub-Bituminous Coal       | 12.414                                                                                     | 37 664.08                       | 26.2                                     | 986 798.79                 | 986.80                      |
|                 |                  | Lignite                   |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Oil Shale                 |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Peat                      |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 | Secondary        | BKB & Patent Fuel         | 22.86                                                                                      | -45.72                          | 25.8                                     | -1 179.58                  | -1.18                       |
|                 | Fuels            | Coke Oven /Gas Coke       | 26.377                                                                                     | 923.20                          | 29.5                                     | 27 234.25                  | 27.23                       |
| Solid Fos       | ssil Totals      | _                         |                                                                                            | 40 554.38                       |                                          | 1 064 784.46               | 1 064.78                    |
| Gaseous         | Fossil           | Natural Gas (Dry)         | 33.997                                                                                     | 1 521 646.57                    | 15.3                                     | 23 281 192.45              | 23 281.19                   |
| Total           |                  |                           |                                                                                            | 1 847 372.85                    |                                          | 30 074 335.05              | 30 074.34                   |
| Biomass         | Total            |                           |                                                                                            | 30 422.63                       |                                          | 909 636.49                 | 909.64                      |
|                 |                  | Solid Biomass             | 15.5                                                                                       | 30 422.63                       | 29.9                                     | 909 636.49                 | 909.64                      |
|                 |                  | Liquid Biomass            |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |
|                 |                  | Gas Biomass               |                                                                                            | 0.00                            |                                          | 0.00                       | 0.00                        |

(a) If anthracite is not separately available, include with Other Bituminous Coal.(b) Please specify units.



|            |             | MODULE                          | ENERGY                       |                                        |                                     |                                           |                                                                   |
|------------|-------------|---------------------------------|------------------------------|----------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
|            |             | SUBMODULE                       | CO <sub>2</sub> FROM ENE     | CRGY SOURCES                           | (REFERENCE                          | APPROACH)                                 |                                                                   |
|            |             | WORKSHEET                       | 1-1                          |                                        |                                     |                                           |                                                                   |
|            |             | SHEETS                          | 3 OF 5                       |                                        |                                     |                                           |                                                                   |
|            |             | COUNTRY                         | UZBEKISTAN                   |                                        |                                     |                                           |                                                                   |
|            |             | YEAR                            | 2000                         |                                        |                                     |                                           |                                                                   |
|            |             |                                 | STE                          |                                        | STEP                                |                                           | STEP 6                                                            |
|            |             |                                 | L<br>Carbon Stored<br>(Gg C) | M<br>Net Carbon<br>Emissions<br>(Gg C) | N<br>Fraction<br>Carbon<br>Oxidized | O<br>Actual Carbon<br>Emissions<br>(Gg C) | P<br>Actual CO <sub>2</sub><br>Emissions<br>(Gg CO <sub>2</sub> ) |
|            | FUEL TY     | /PES                            | M=(K-L)                      |                                        |                                     | O=(MxN)                                   | P=(Ox[44/12])                                                     |
| Liquid     | Primary     | Crude Oil                       |                              | 6 259.27                               | 0.99                                | 6 196.67                                  | 22 721.14                                                         |
| Fossil     | Fuels       | Natural Gas<br>Liquids          |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            | Secondary   | Gasoline                        |                              | -93.26                                 | 0.99                                | -92.33                                    | -338.54                                                           |
|            | Fuels       | Jet Kerosene                    |                              | -313.12                                | 0.99                                | -309.99                                   | -1 136.63                                                         |
|            |             | Other Kerosene                  |                              | -33.78                                 | 0.99                                | -33.44                                    | -122.61                                                           |
|            |             | Gas/ Diesel Oil                 | 0.00                         | -253.23                                | 0.99                                | -250.70                                   | -919.24                                                           |
|            |             | Stove Domestic<br>Fuel          | 0.00                         | -11.16                                 | 0.99                                | -11.05                                    | -40.51                                                            |
|            |             | Residual Fuel Oil               |                              | 232.13                                 | 0.99                                | 229.81                                    | 842.63                                                            |
|            |             | LPG                             | 0.00                         | -14.25                                 | 0.99                                | -14.10                                    | -51.71                                                            |
|            |             | Bitumen                         | 134.05                       | -145.36                                | 0.99                                | -143.91                                   | -527.66                                                           |
|            |             | Lubricants                      | 56.61                        | -89.54                                 | 0.99                                | -88.64                                    | -325.02                                                           |
|            |             | Petroleum Coke                  |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            |             | Refinery gas                    |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            |             | Other Oil                       | 97.17                        | -97.17                                 | 0.99                                | -96.19                                    | -352.71                                                           |
| Liquid Fo  | ssil Totals |                                 | 287.82                       | 5 440.53                               |                                     | 5 386.13                                  | 19 749.14                                                         |
| Solid      | Primary     | Anthracite <sup>(a)</sup>       |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
| Fossil     | Fuels       | Coking Coal                     | 0.00                         | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            |             | Other Bituminous<br>Coal        |                              | 51.93                                  | 0.98                                | 50.89                                     | 186.61                                                            |
|            |             | Sub-Bituminous<br>Coal          |                              | 986.80                                 | 0.98                                | 967.06                                    | 3 545.90                                                          |
|            |             | Lignite                         |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            |             | Oil Shale                       | Ī                            | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            |             | Peat                            |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |
|            | Secondary   | BKB & Patent<br>Fuel            |                              | -1.18                                  | 0.98                                | -1.16                                     | -4.24                                                             |
|            | Fuels       | Coke Oven /Gas<br>Coke          | 25.68                        | 1.56                                   | 0.98                                | 1.53                                      | 5.59                                                              |
| Solid Foss |             |                                 | 25.68                        | 1 039.11                               |                                     | 1 018.32                                  | 3 733.86                                                          |
| Gaseous I  | Fossil      | Natural Gas (Dry)               | 647.00                       | 22 634.20                              | 0.995                               | 22 521.02                                 | 82 577.09                                                         |
| Total      |             |                                 | 960.50                       | 29 113.84                              |                                     | 28 925.48                                 | 106 060.08                                                        |
| Biomass 7  | Fotal       | 0-1:4 D:                        | 0.00                         | 909.64                                 | 0.0                                 | 818.67                                    | 3 001.80                                                          |
|            |             | Solid Biomass<br>Liquid Biomass |                              | 909.64<br>0.00                         | 0.9                                 | 818.67<br>0.00                            | 3 001.80                                                          |
|            |             | Gas Biomass                     |                              | 0.00                                   |                                     | 0.00                                      | 0.00                                                              |

|        | MODULE                | ENERGY                                                                                              |                                                     |                                      |                                             |                                 |                                  |
|--------|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------|----------------------------------|
|        | SUBMODULE             | _                                                                                                   | NERGY SOUR                                          | CES (REFER                           | ENCE APPROAC                                | Ð                               |                                  |
|        | WORKSHEET             | 1-1                                                                                                 | Lindi Soon                                          |                                      |                                             |                                 |                                  |
|        | SHEETS                |                                                                                                     | IONS FROM I<br>ONAL MARIN                           |                                      | DNAL BUNKERS<br>FRANSPORT)                  |                                 |                                  |
|        | COUNTRY               | UZBEKISTA                                                                                           | Ň                                                   |                                      |                                             |                                 |                                  |
|        | YEAR                  | 2000                                                                                                |                                                     |                                      | -                                           |                                 |                                  |
|        |                       | STEP 1                                                                                              | STEI                                                |                                      |                                             | STEP 3                          |                                  |
|        |                       | $\begin{array}{c} A \\ \text{Quantities} \\ \text{Delivered}^{(a)} \\ (10^3 \text{ t}) \end{array}$ | B<br>Conversion<br>Factor<br>(TJ/10 <sup>3</sup> t) | C<br>Quantities<br>Delivered<br>(TJ) | D<br>Carbon Emission<br>Factor<br>(t C/ TJ) | E<br>Carbon<br>Content<br>(t C) | F<br>Carbon<br>Content<br>(Gg C) |
|        | FUEL TYPES            |                                                                                                     |                                                     | C=(AxB)                              |                                             | E=(CxD)                         | F=(E/1000)                       |
| Solid  | Other Bituminous Coal | 0.00                                                                                                | 19.93                                               | 0.00                                 | 25.80                                       | 0.00                            | 0.00                             |
| Fossil | Sub-Bituminous Coal   | 0.00                                                                                                | 12.41                                               | 0.00                                 | 26.20                                       | 0.00                            | 0.00                             |
| Liquid | Gasoline              | 0.00                                                                                                | 43.67                                               | 0.00                                 | 18.90                                       | 0.00                            | 0.00                             |
| Fossil | Jet Kerosene          | 374                                                                                                 | 42.90                                               | 16 057                               | 19.50                                       | 313 121                         | 313                              |
|        | Gas/ Diesel Oil       | 0.00                                                                                                | 42.50                                               | 0.00                                 | 20.20                                       | 0.00                            | 0.00                             |
|        | Residual Fuel Oil     | 0.00                                                                                                | 40.15                                               | 0.00                                 | 21.10                                       | 0.00                            | 0.00                             |
|        | Lubricants            | 0.00                                                                                                | 40.15                                               | 0.00                                 | 20.00                                       | 0.00                            | 0.00                             |
|        |                       |                                                                                                     | Total                                               | 16 057                               |                                             |                                 |                                  |

(a) Quantities taken from column "International Bunkers" from Worksheet 1-1, Sheet 1 of 5.

| r                | MODULE                | ENEDGY                   |             |              |            |                      |                       |
|------------------|-----------------------|--------------------------|-------------|--------------|------------|----------------------|-----------------------|
|                  | MODULE                | ENERGY                   |             |              |            |                      |                       |
|                  | SUBMODULE             | CO <sub>2</sub> FROM ENE | RGY SOURCES | S (REFERENCE | APPROACH)  |                      |                       |
|                  | WORKSHEET             | 1-1                      |             |              |            |                      |                       |
|                  | SHEETS                | 5 OF 5 EMISSIO           | NS FROM INT | ERNATIONAL   | BUNKERS    |                      |                       |
|                  |                       | (INTERN                  | ATIONAL MAI | RINE AND AIR | TRANSPORT) |                      |                       |
|                  | COUNTRY               | UZBEKISTAN               |             |              |            |                      |                       |
|                  | YEAR                  | 2000                     |             |              |            |                      |                       |
|                  |                       |                          | STEP 4      |              | STE        | CP 5                 | STEP 6                |
|                  |                       | G                        | Н           | Ι            | J          | K                    | L                     |
|                  |                       | Fraction                 | Carbon      | Net Carbon   | Fraction   | Actual               | Actual                |
|                  |                       | of Carbon                | Stored      | Stored       | of Carbon  | Carbon               | CO <sub>2</sub>       |
|                  |                       | Stored                   | (Gg C)      | (Gg C)       | Oxidized   | Emissions            | Emissions             |
|                  |                       |                          |             |              |            | (Gg C)               | (Gg CO <sub>2</sub> ) |
|                  | FUEL TYPES            |                          | H=(FxG)     | I=(F-H)      |            | K=(IxJ)              | L=(Kx[44/12])         |
| Solid            | Other Bituminous Coal |                          | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
| Fossil           | Sub-Bituminous Coal   |                          | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
| Liquid           | Gasoline              |                          | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
| Liquid<br>Fossil | Jet Kerosene          |                          | 0.00        | 313          | 0.99       | 310                  | 1 137                 |
| 1 03311          | Gas/ Diesel Oil       |                          | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
|                  | Residual Fuel Oil     |                          | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
|                  | Lubricants            | 0.5                      | 0.00        | 0.00         |            | 0.00                 | 0.00                  |
|                  |                       |                          |             |              |            | Total <sup>(a)</sup> | 1 137                 |

(a) The bunkers emissions are not to be added to national totals.



## Annex 5

## **KEY SOURCES ANALYSIS**

#### Level Assessment for 1990

|            | Sector                  | Categories                                                                                              | Gas                                 | Gg<br>CO₂-eq | % of<br>total | Cumulative<br>Total % |
|------------|-------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|---------------|-----------------------|
|            |                         | Total:                                                                                                  |                                     | 182899       |               |                       |
| 1.B.2      | Energy                  | Fugitive CH <sub>4</sub> Emissions from Oil and Gas Operation                                           | CH <sub>4</sub>                     | 45672        | 24.0%         | 24.0%                 |
| 1.A.1      | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Natural Gas)                                      | CO2                                 | 37147        | 20.3%         | 45.3%                 |
| 4.D        | Agriculture             | N <sub>2</sub> O Emissions from Agricultural Soils                                                      | N <sub>2</sub> O                    | 10222        | 5.6%          | 50.9%                 |
| 1.A.3      | Energy                  | Mobile Combustion: CO <sub>2</sub> Emissions from Road<br>Transportation                                | CO <sub>2</sub>                     | 9986         | 5.5%          | 56.3%                 |
| 1.A.1      | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Residual Fuel Oil)                                | CO <sub>2</sub>                     | 8814         | 4.8%          | 61.1%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Natural Gas)                                 | CO <sub>2</sub>                     | 8048         | 4.4%          | 65.5%                 |
| 1.A.2      | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Natural Gas)               | CO <sub>2</sub>                     | 7239         | 4.0%          | 69.5%                 |
| 1.A.1      | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)                          | CO <sub>2</sub>                     | 7158         | 3.9%          | 73.4%                 |
| 4.A        | Agriculture             | CH <sub>4</sub> Emissions from Enteric Fermentation                                                     | CH₄                                 | 5833         | 3.2%          | 76.6%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture /<br>Forestry/ Fishing (Liquid Fuels)         | CO <sub>2</sub>                     | 4799         | 2.6%          | 79.2%                 |
| 1.A.3      | Energy                  | CO <sub>2</sub> Emissions from Pipeline Transport                                                       | CO <sub>2</sub>                     | 4575         | 2.5%          | 81.7%                 |
| 6.A        | Waste                   | CH <sub>4</sub> Emissions from Solid Waste Disposal Sites                                               | CH₄                                 | 3343         | 1.8%          | 83.6%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                                 | CO <sub>2</sub>                     | 3338         | 1.8%          | 85.4%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Natural Gas)                | CO <sub>2</sub>                     | 3036         | 1.7%          | 87.0%                 |
| 2.A        | Industrial<br>processes | CO <sub>2</sub> Emissions from Cement Production                                                        | CO <sub>2</sub>                     | 2572         | 1.4%          | 88.5%                 |
| 2.B        | Industrial<br>processes | CO <sub>2</sub> Emissions from Ammonia Production                                                       | CO <sub>2</sub>                     | 2282         | 1.25%         | 89.7%                 |
| 1.A.2      | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels)              | CO <sub>2</sub>                     | 2187         | 1.2%          | 90.9%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Liquid Fuels)               | CO <sub>2</sub>                     | 2030         | 1.1%          | 92.0%                 |
| 2.B        | Industrial<br>processes | N <sub>2</sub> O Emissions from Nitric Acid Production                                                  | N <sub>2</sub> O                    | 1782         | 1.0%          | 93.0%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Solid Fuels)                | CO <sub>2</sub>                     | 1774         | 1.0%          | 94.0%                 |
| 1.A.3      | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Railways                                               | CO <sub>2</sub>                     | 1754         | 1.0%          | 94.9%                 |
| 2.C        | Industrial<br>processes | CO <sub>2</sub> Emissions from Steel Production                                                         | CO <sub>2</sub>                     | 998          | 0.5%          | 95.5%                 |
| 1.A.1      | Energy                  | $CO_2$ Emissions from Stationary Combustion (Refinery Gas)                                              | CO <sub>2</sub>                     | 865          | 0.5%          | 95.9%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Liquid Fuels)                                | CO <sub>2</sub>                     | 853          | 0.5%          | 96.4%                 |
| 1.A.2      | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Solid Fuels)               | CO <sub>2</sub>                     | 742          | 0.4%          | 96.8%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agricultural/<br>Forestry/ Fishing (Natural Gas)          | CO <sub>2</sub>                     | 509          | 0.3%          | 97.1%                 |
| 1.A.5      | Energy                  | Other: (Lubricants)                                                                                     | CO <sub>2</sub>                     | 503          | 0.3%          | 97.4%                 |
| 1.B.1      | Energy                  | Fugitive CH₄ Emissions from Coal Mining and Handling                                                    | CH <sub>4</sub>                     | 469          | 0.3%          | 97.6%                 |
| 6.B<br>4.B | Waste<br>Agriculture    | N <sub>2</sub> O Emissions from Wastewater Handling<br>CH <sub>4</sub> Emissions from Manure Management | N <sub>2</sub> O<br>CH <sub>4</sub> | 438<br>420   | 0.2%<br>0.2%  | 97.9%<br>98.1%        |
| 1.A.1      | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other<br>Bituminous Coal)                         | CO <sub>2</sub>                     | 364          | 0.2%          | 98.3%                 |
| 1.A.4      | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agricultural/<br>Forestry/ Fishing (Solid Fuels)          | CO <sub>2</sub>                     | 359          | 0.2%          | 98.5%                 |
| 2.A        | Industrial<br>processes | CO <sub>2</sub> Emissions from Lime Production                                                          | CO <sub>2</sub>                     | 354          | 0.2%          | 98.7%                 |
| 1.A.1      | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Crude Oil)                                        |                                     | 313          | 0.2%          | 98.8%                 |
| 6.B        | Waste                   | CH <sub>4</sub> Emissions from Wastewater Handling                                                      | $CH_4$                              | 292          | 0.2%          | 99.0%                 |

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

|                | Sector                  | Categories                                                                                                                 | Gas              | Gg<br>CO₂-eq | % of<br>total | Cumulative<br>Total % |
|----------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------|-----------------------|
| 4.B            | Agriculture             | N <sub>2</sub> O Emissions from Manure Management                                                                          | N <sub>2</sub> O | 287          | 0.2%          | 99.2%                 |
| 4.C            | Agriculture             | CH <sub>4</sub> Emissions from Rice Cultivation                                                                            | CH <sub>4</sub>  | 262          | 0.1%          | 99.3%                 |
| 1.A.4          | Energy                  | Other Sectors: CH₄ Emissions from Residential                                                                              | CH₄              | 242          | 0.1%          | 99.4%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gas of<br>Underground Gasification)                                  | CO <sub>2</sub>  | 192          | 0.1%          | 99.5%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Stave<br>Domestic Fuel)                                              | CO <sub>2</sub>  | 168          | 0.1%          | 99.6%                 |
| 1.A.3          | Energy                  | Mobile Combustion: CO <sub>2</sub> Emissions from Aviation                                                                 | CO <sub>2</sub>  | 163          | 0.1%          | 99.7%                 |
| 1.A.1          | Energy                  | N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion                                               | N <sub>2</sub> O | 81           | 0.0%          | 99.8%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gas/Diesel Oil)                                                      | CO <sub>2</sub>  | 78           | 0.0%          | 99.8%                 |
| 2.A            | Industrial<br>processes | CO <sub>2</sub> Emissions from Soda Ash Use                                                                                | CO <sub>2</sub>  | 71           | 0.0%          | 99.8%                 |
| 1.A.3          | Energy                  | Mobile Combustion: CH <sub>4</sub> Emissions from Road<br>Transportation                                                   | CH4              | 48           | 0.0%          | 99.9%                 |
| 1.A.4          | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Agriculture/<br>Forestry/ Fishing                                            | CH₄              | 35           | 0.0%          | 99.9%                 |
| 1.A.3          | Energy                  | Mobile Combustion: N <sub>2</sub> O Emissions from Road<br>Transportation                                                  | N <sub>2</sub> O | 26           | 0.0%          | 99.9%                 |
| 1.A.1          | Energy                  | CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion                                                | CH₄              | 24           | 0.0%          | 99.9%                 |
| 4.F            | Agriculture             | CH₄ Emissions from Field Burning of Agricultural<br>Residues                                                               | CH₄              | 23           | 0.0%          | 99.9%                 |
| 1.A.4          | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Residential                                                                 | N <sub>2</sub> O | 22           | 0.0%          | 99.9%                 |
| 1.A.2          | Energy                  | CH₄ Emissions from Manufacturing Industries and<br>Construction                                                            | CH₄              | 18           | 0.0%          | 100.0%                |
| 1.A.4          | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Commercial/<br>Institutional                                                 | CH₄              | 15           | 0.0%          | 100.0%                |
| 1.A.4          | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Commercial/<br>Institutional                                                | N <sub>2</sub> O | 15           | 0.0%          | 100.0%                |
| 1.A.4          | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Agriculture/<br>Forestry/ Fishing                                           | N <sub>2</sub> O | 14           | 0.0%          | 100.0%                |
| 1.A.2          | Energy                  | N <sub>2</sub> O Emissions from Manufacturing Industries and<br>Construction                                               | N <sub>2</sub> O | 13           | 0.0%          | 100.0%                |
| 1.A.3          | Energy                  | Mobile Combustion: CO <sub>2</sub> Emissions from Navigation                                                               | CO <sub>2</sub>  | 12           | 0.0%          | 100.0%                |
| 4.F            | Agriculture             | N <sub>2</sub> O Emissions from Field Burning of Agricultural<br>Residues                                                  | N <sub>2</sub> O | 9            | 0.0%          | 100.0%                |
| 1.A.3          | Energy                  | Mobile Combustion: N <sub>2</sub> O Emissions from Railways                                                                | N <sub>2</sub> O | 4            | 0.0%          | 100.0%                |
| 1.A.3          | Energy                  | Mobile Combustion: CH <sub>4</sub> Emissions from Railways                                                                 | CH <sub>4</sub>  | 3            | 0.0%          | 100.0%                |
| 1.A.3          | Energy                  | Mobile Combustion: N <sub>2</sub> O Emissions from Aviation                                                                | N <sub>2</sub> O | 1            | 0.0%          | 100.0%                |
| 1.A.3          | Energy                  | Mobile Combustion: N <sub>2</sub> O Emissions from Navigation                                                              | N <sub>2</sub> O | 0            | 0.0%          | 100.0%                |
| 1.A.3<br>1.A.3 | Energy<br>Energy        | Mobile Combustion: CH <sub>4</sub> Emissions from Aviation<br>Mobile Combustion: CH <sub>4</sub> Emissions from Navigation | CH₄<br>CH₄       | 0            | 0.0%          | 100.0%<br>100.0%      |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Patent<br>fuel)                                                      | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                                                            | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other<br>Kerosene)                                                   | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                                                                 | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                |
| 2.G            | Industrial processes    | Consumption of Halocarbons and Sulphur Hexafluoride                                                                        | HFC              | 0            | 0.0%          | 100.0%                |

|       | Sector               | Categories                                                                                      | Gas              | Gg<br>CO₂-eq | % of<br>total | Cumulative<br>Total % |
|-------|----------------------|-------------------------------------------------------------------------------------------------|------------------|--------------|---------------|-----------------------|
|       |                      | Total:                                                                                          |                  | 201167       |               |                       |
| 1.B.2 | Energy               | Fugitive CH <sub>4</sub> Emissions from Oil and Gas Operation                                   | CH₄              | 70020        | 34,8%         | 34,8%                 |
|       |                      | Other Sectors: $CO_2$ Emissions from Residential                                                |                  |              |               |                       |
| 1.A.4 | Energy               | (Natural Gas)<br>CO <sub>2</sub> Emissions from Stationary Combustion (Natural                  | CO <sub>2</sub>  | 32637        | 16.2%         | 51.0%                 |
| 1.A.1 | Energy               | Gas)                                                                                            | CO <sub>2</sub>  | 32346        | 16.1%         | 67.1%                 |
| 4.D   | Agriculture          | N <sub>2</sub> O Emissions from Agricultural Soils                                              | N <sub>2</sub> O | 8539         | 4.2%          | 71.4%                 |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Natural Gas)        | CO <sub>2</sub>  | 6961         | 3.5%          | 74.8%                 |
| 4.A   | Agriculture          | CH₄ Emissions from Enteric Fermentation                                                         | CH₄              | 6592         | 3.3%          | 78.1%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion<br>(Residual Fuel Oil)                     | CO <sub>2</sub>  | 5757         | 2.9%          | 81.0%                 |
| 1.A.3 | Energy               | Mobile Combustion: CO <sub>2</sub> Emissions from Road<br>Transportation                        | CO <sub>2</sub>  | 5619         | 2.8%          | 83.7%                 |
| 1.A.3 | Energy               | CO <sub>2</sub> Emissions from Pipeline Transport                                               | CO <sub>2</sub>  | 5114         | 2.5%          | 86.3%                 |
| 1.A.2 | Energy               | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Natural Gas)       | CO <sub>2</sub>  | 4210         | 2.1%          | 88.4%                 |
| 6.A   | Waste                | CH <sub>4</sub> Emissions from Solid Waste Disposal Sites                                       | CH₄              | 3705         | 1.8%          | 90.2%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)                  | CO <sub>2</sub>  | 3092         | 1.5%          | 91.8%                 |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Agriculture /<br>Forestry/ Fishing (Liquid Fuels) | CO <sub>2</sub>  | 2586         | 1.3%          | 93.0%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Crude<br>Oil)                             | CO <sub>2</sub>  | 2040         | 1.0%          | 94.1%                 |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Liquid Fuels)       | CO <sub>2</sub>  | 1498         | 0.7%          | 94.8%                 |
| 2.A   | Industrial processes | CO <sub>2</sub> Emissions from Cement Production                                                | CO <sub>2</sub>  | 1476         | 0.7%          | 95.5%                 |
| 2.B   | Industrial           | N <sub>2</sub> O Emissions from Nitric Acid Production                                          | N <sub>2</sub> O | 1374         | 0.7%          | 96.2%                 |
| 2.B   | Industrial processes | CO <sub>2</sub> Emissions from Ammonia Production                                               | CO <sub>2</sub>  | 1298         | 0.6%          | 96.9%                 |
| 1.A.2 | Energy               | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels)      | CO <sub>2</sub>  | 739          | 0.4%          | 97.2%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Refinery Gas)                             | CO <sub>2</sub>  | 706          | 0.4%          | 97.6%                 |
| 2.C   | Industrial processes | CO <sub>2</sub> Emissions from Steel Production                                                 | CO <sub>2</sub>  | 665          | 0.3%          | 97.9%                 |
| 1.A.4 | Энергетика           | Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Solid Fuels)        | CO <sub>2</sub>  | 565          | 0.3%          | 98.2%                 |
| 6.B   | Waste                | N <sub>2</sub> O Emissions from Wastewater Handling                                             | N <sub>2</sub> O | 528          | 0.3%          | 98.5%                 |
| 4.B   | Agriculture          | CH <sub>4</sub> Emissions from Manure Management                                                | CH₄              | 480          | 0.2%          | 98.7%                 |
| 1.A.3 | Energy               | Mobil Combustion: CO <sub>2</sub> Emissions from Railways                                       |                  | 327          | 0.2%          | 98.9%                 |
| 6.B   | Waste                | CH₄ Emissions from Wastewater Handling                                                          | CH <sub>4</sub>  | 299          | 0.1%          | 99.0%                 |
| 4.B   | Agriculture          | N <sub>2</sub> O Emissions from Manure Management                                               | $N_2O$           | 229          | 0.1%          | 99.1%                 |
| 1.B.1 | Energy               | Fugitive CH <sub>4</sub> Emissions from Coal Mining and Handling                                | CH₄              | 225          | 0.1%          | 99.2%                 |
| 1.A.5 | Energy               | Other: (Lubricants)                                                                             | CO <sub>2</sub>  | 206          | 0.1%          | 99.3%                 |
| 4.C   | Agriculture          | CH <sub>4</sub> Emissions from Rice Cultivation                                                 | CH₄              | 188          | 0.1%          | 99.4%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emission from Stationary Combustion (Other<br>Bituminous Coal)                  | CO <sub>2</sub>  | 131          | 0.1%          | 99.5%                 |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)    | $CO_2$           | 106          | 0.1%          | 99.5%                 |
| 4.F   | Agriculture          | CH <sub>4</sub> Emissions from Field Burning Agricultural Residues                              | CH₄              | 87           | 0.0%          | 99.6%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Gas of Underground Gasification)          | CO <sub>2</sub>  | 85           | 0.0%          | 99.6%                 |
| 2.A   | Industrial processes | CO <sub>2</sub> Emissions from Lime Production                                                  | CO <sub>2</sub>  | 81           | 0.0%          | 99.7%                 |
| 1.A.3 | Energy               | Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                                       | CO <sub>2</sub>  | 71           | 0.0%          | 99.7%                 |
| 2.A   | Industrial           | CO <sub>2</sub> Emissions from Soda Ash Use                                                     | CO <sub>2</sub>  | 71           | 0.0%          | 99.7%                 |
| 1.A.4 | Energy               | Other Sectors: CH <sub>4</sub> Emissions from Residential                                       | CH₄              | 62           | 0.0%          | 99.8%                 |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Gas/<br>Diesel Oil)                       | CO <sub>2</sub>  | 62           | 0.0%          | 99.8%                 |

## Level Assessment for 2000

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

|       | Sector                  | Categories                                                                                         | Gas                                 | Gg<br>CO₂-eq | % of<br>total | Cumulative<br>Total % |
|-------|-------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|--------------|---------------|-----------------------|
| 1.A.1 | Energy                  | N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary<br>Combustion                    | N <sub>2</sub> O                    | 54           | 0.0%          | 99.8%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Liquid Fuels)                           | CO <sub>2</sub>                     | 47           | 0.0%          | 99.9%                 |
| 1.A.2 | Energy                  | CO <sub>2</sub> Emission from Manufacturing Industries and<br>Construction (Solid Fuel)            | CO <sub>2</sub>                     | 33           | 0.0%          | 99.9%                 |
| 4.F   | Agriculture             | N <sub>2</sub> O Emissions from Field Burning Agricultural<br>Residues                             | $N_2O$                              | 32           | 0.0%          | 99.9%                 |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Road<br>Transportation                            | CH₄                                 | 31           | 0.0%          | 99.9%                 |
| 1.A.1 | Energy                  | CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary<br>Combustion                     | CH₄                                 | 20           | 0.0%          | 99.9%                 |
| 1.A.4 | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Commercial/<br>Institutional                         | CH₄                                 | 19           | 0.0%          | 99.9%                 |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emission from Residential                                          | $N_2O$                              | 18           | 0.0%          | 99.9%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                                    | CO <sub>2</sub>                     | 18           | 0.0%          | 99.9%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Patent Fuel)                                 | CO <sub>2</sub>                     | 17           | 0.0%          | 99.9%                 |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Road<br>Transportation                           | $N_2O$                              | 15           | 0.0%          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                            | CO <sub>2</sub>                     | 13           | 0.0%          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)                         | CO <sub>2</sub>                     | 12           | 0.0%          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Commercial/<br>Institutional                        | $N_2O$                              | 10           | 0.0%          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                              | CO <sub>2</sub>                     | 9            | 0.0%          | 100.0%                |
| 1.A.2 | Energy                  | CH <sub>4</sub> Emissions from Manufacturing Industries and<br>Construction                        | CH₄                                 | 9            | 0.0%          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                                         | CO <sub>2</sub>                     | 9            | 0.0%          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Agriculture/<br>Forestry/Fishing                    | $N_2O$                              | 7            | 0.0%          | 100.0%                |
| 2.G   | Industrial<br>processes | Consumption Halocarbons and Sulphur Hexafluoride                                                   | HFC                                 | 6            | 0.0%          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Agriculture/<br>Forestry/Fishing                     | CH₄                                 | 5            | 0.0%          | 100.0%                |
| 1.A.2 | Energy                  | N <sub>2</sub> O Emissions from Manufacturing Industries and Construction                          | N <sub>2</sub> O                    | 5            | 0.0%          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/<br>Forestry/Fishing (Solid Fuel)        | CO <sub>2</sub>                     | 1            | 0.0%          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Railways                                         | N <sub>2</sub> O                    | 1            | 0.0%          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                                         | N <sub>2</sub> O                    | 1            | 0.0%          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emission from Railways                                           | CH <sub>4</sub>                     | 0            | 0.0%          | 100.0%                |
| 2.B   | Industrial<br>processes | CH <sub>4</sub> Emissions from Chemical Industry                                                   | CH₄                                 | 0            | 0.0%          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Aviation                                          | CH₄                                 | 0            | 0.0%          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Navigation                                        | CO <sub>2</sub>                     | 0            | 0.0%          | 100.0%                |
| 1.A.3 | Energy<br>Energy        | Mobil Combustion: CH₄ Emissions from Navigation<br>Mobil Combustion: N₂O Emissions from Navigation | CH <sub>4</sub><br>N <sub>2</sub> O | 0            | 0.0%          | 100.0%<br>100.0%      |

| LA4         Energy         Other Sectors: CO. Emissions from Residential<br>CO2         CO2         30915         15.5%         53.7%           1A.1         Energy         CO2, Emissions from Stationary Combustion (Natural<br>CO2, Emissions from Commercial/<br>Institutional (Natural Cas)         CO2         29848         14.8%         68.5%           1A.4         Energy         Other Sectors: CO, Emissions from Commercial/<br>Institutional (Natural Cas)         CO2         9031         4.5%         73.0%           4.A         Agriculture         CH, Emissions from Agricultural Sol         N-00         77.416         3.7%         60.7%           1.A.3         Energy         CO2, Emissions from Manufacturing Industries and<br>CO2, Emissions from Sold Waste Disposal Sites         CH,<br>3845         1.9%         67.7%           6.A         Waste         CH, Emissions from Stationary Combustion (Sub-<br>Bituminous Cas)         CO2         22473         1.2%         92.1%           1.A.1         Energy         CO2, Emissions from Stationary Combustion         CO2         22473         1.2%         92.1%           2.A         Industrial<br>processes         CO2, Emissions from Cement Production         CO2         22473         1.2%         92.1%           2.B         Industrial<br>processes         CO2, Emissions from Agricultural<br>feastual Fuel Oi)         CO2         <                                                                                                                                                                                                                                   |                | Sector      | Categories                                                                                      | Gas              | Gg<br>CO₂-eq | % of<br>total | Cumulativ<br>e<br>Total % |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------------------------------------------------------------------------------------------|------------------|--------------|---------------|---------------------------|
| LA4         Energy         Other Sectors: CO. Emissions from Residential<br>CO2         CO2         30915         15.5%         53.7%           1A.1         Energy         CO2, Emissions from Stationary Combustion (Natural<br>CO2, Emissions from Commercial/<br>Institutional (Natural Cas)         CO2         29848         14.8%         68.5%           1A.4         Energy         Other Sectors: CO, Emissions from Commercial/<br>Institutional (Natural Cas)         CO2         9031         4.5%         73.0%           4.A         Agriculture         CH, Emissions from Agricultural Sol         N-00         77.416         3.7%         60.7%           1.A.3         Energy         CO2, Emissions from Manufacturing Industries and<br>CO2, Emissions from Sold Waste Disposal Sites         CH,<br>3845         1.9%         67.7%           6.A         Waste         CH, Emissions from Stationary Combustion (Sub-<br>Bituminous Cas)         CO2         22473         1.2%         92.1%           1.A.1         Energy         CO2, Emissions from Stationary Combustion         CO2         22473         1.2%         92.1%           2.A         Industrial<br>processes         CO2, Emissions from Cement Production         CO2         22473         1.2%         92.1%           2.B         Industrial<br>processes         CO2, Emissions from Agricultural<br>feastual Fuel Oi)         CO2         <                                                                                                                                                                                                                                   |                |             |                                                                                                 |                  | 199839       |               |                           |
| Interact Sectors         Cost Construction         Cost Cost Sectors         Cost Sectors <th< td=""><td>1.B.2</td><td>Energy</td><td></td><td>CH₄</td><td>76331</td><td>38.2%</td><td>38.2%</td></th<>                                                                                               | 1.B.2          | Energy      |                                                                                                 | CH₄              | 76331        | 38.2%         | 38.2%                     |
| In.1         Energy         Gas         Col         28040         14.8 m         00.01           1A.4         Energy         Institutional (Natural Gas)         CO2         9031         4.5%         73.0%           4.A         Agriculture         N.4 Emissions from Enteric fermentation         CA2         9031         4.5%         73.0%           4.D         Agriculture         N.Q Emissions from Manufactural Soil         N.Q         7416         3.7%         80.7%           1A.3         Energy         Co2, Emissions from Manufacturing Industries and         CO2         4921         2.5%         85.8%           1A.3         Energy         CO2, Emissions from Soild Waste Disposal Sites         CH4         1.9%         89.7%           6.A         Waste         CH4 Emissions from Soild Waste Disposal Sites         CH4         1.9%         89.6%           1A.1         Energy         CO2, Emissions from Cement Production         CO2         2.522         1.3%         90.9%           1A.1         Energy         CO2, Emissions from Cement Production         CO2         2.257         1.1%         93.2%           1A.4         Energy         Other Sectors: CO2, Emissions from Agriculture         CO2         1.144         1.0%         94.2%                                                                                                                                                                                                                                                                                                                                                                                | 1.A.4          | Energy      | (Natural Gas)                                                                                   | CO <sub>2</sub>  | 30915        | 15.5%         | 53.7%                     |
| Institutional (Natural Gas)         Co.         90.01         4.3%         7.3%           4.A         Agriculture         N-0 Emissions from Enteric fermentation         CH.         770%         4.0%         77.0%           4.D         Agriculture         N-0 Emissions from Agricultural Soll         N-0         7416         3.7%         80.7%           1.A.3         Energy         Co.2 Emissions from Manufacturing Industries and         Co.2         5248         2.6%         83.3%           1.A.2         Energy         Co.2 Emissions from Manufacturing Industries and         Co.2         4.9%         89.6%           1.A.3         Energy         Co.2 Emissions from Sold Waste Disposal Sites         CH.         89.6%         89.6%           1.A.1         Energy         Co.2 Emissions from Stationary Combustion         Co.2         22522         1.3%         90.9%           1.A.1         Energy         Co.2 Emissions from Cement Production         Co.2         2257         1.1%         93.2%           2.A         Industrial         Co.2 Emissions from Nitric Acid Production         No.0         15811         0.8%         95.0%           2.B         Industrial         Co.2 Emissions from Stationary Combustion (Crude         Co.2         1403         0.7%         95.7%<                                                                                                                                                                                                                                                                                                                                            | 1.A.1          | Energy      | Gas)                                                                                            | CO <sub>2</sub>  | 29648        | 14.8%         | 68.5%                     |
| 4.D         Agriculture         N <sub>2</sub> O Emissions from Agricultural Soil         N <sub>2</sub> O         7416         3.7%         80.7%           1A.3         Energy         Transportation         Co2         5248         2.6%         83.3%           1A.2         Energy         Co2, Emissions from Manufacturing Industries and<br>Co2, Emissions from Pipeline Transport         CO2         4921         2.5%         85.8%           1A.3         Energy         CO2, Emissions from Stationary Combustion (Sub-<br>Bluminous Coal)         CO2         2522         1.3%         90.9%           1A.1         Energy         CO2, Emissions from Stationary Combustion (Sub-<br>Bluminous Coal)         CO2         2257         1.1%         93.24%           2.A         Industrial<br>processes         CO2 Emissions from Stationary Combustion         CO2         2257         1.1%         93.24%           2.B         Industrial<br>processes         No C missions from Namonia Production         CO2         1944         1.0%         94.2%           1.A.4         Energy         CO2 Emissions from Stationary Combustion         CO2         140.3         0.7%         95.7%           2.B         Industrial<br>processes         No Consistions from Stationary Combustion         CO2         140.3         0.7%         96.7%           2.B                                                                                                                                                                                                                                                                                          | 1.A.4          |             | Institutional (Natural Gas)                                                                     | CO <sub>2</sub>  |              |               | 73.0%                     |
| A.3         Energy         Mobil Combustion: CO <sub>2</sub> Emissions from Road         CO <sub>2</sub> 5248         2.6%         83.3%           1A.2         Energy         CO <sub>2</sub> Emissions from Manufacturing Industries and<br>CO <sub>2</sub> CO <sub>2</sub> 4921         2.5%         85.5%           1A.3         Energy         CO <sub>2</sub> Emissions from Pipeline Transport         CO <sub>2</sub> 3845         1.9%         87.7%           6.A         Waste         CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)         CO <sub>2</sub> 2522         1.3%         90.9%           1A.1         Energy         CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)         CO <sub>2</sub> 2473         1.2%         92.1%           2.A         Industrial<br>processes         CO <sub>2</sub> Emissions from Agriculture<br>(Residual Fuel OII)         CO <sub>2</sub> 2257         1.1%         93.2%           1.A.4         Energy         Cher Sectors: CO <sub>2</sub> Emissions from Agriculture<br>(Residual Fuel OII)         CO <sub>2</sub> 1944         1.0%         94.2%           2.B         Industrial<br>Industrial         N-O Emissions from Ammonia Production         N <sub>QO</sub> 1581         0.8%         95.7%           1.A.4         Energy         Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>(Liquid Fuels)         CO <sub>2</sub> 1310         0.7% <t< td=""><td>4.A</td><td>Agriculture</td><td>CH<sub>4</sub> Emissions from Enteric fermentation</td><td>CH<sub>4</sub></td><td>7903</td><td>4.0%</td><td>77.0%</td></t<> | 4.A            | Agriculture | CH <sub>4</sub> Emissions from Enteric fermentation                                             | CH <sub>4</sub>  | 7903         | 4.0%          | 77.0%                     |
| Int.3         Energy         Transportation         CO2         3249         2.5%         85.3%           1A.2         Energy         CO2 Emissions from Manufacturing Industries and<br>Construction (Natural Gas)         CO2         49815         1.9%         88.8%           1A.3         Energy         CO2 Emissions from Solid Waste Disposal Sites         CH4         3814         1.9%         88.9%           1A.1         Energy         CO2 Emissions from Stationary Combustion (Sub-<br>Bituminous Coa)         CO2         2522         1.3%         90.9%           1A.1         Energy         CO2 Emissions from Stationary Combustion         CO2         2257         1.1%         93.2%           1A.4         Energy         CO2 Emissions from Stationary Combustion         CO2         2473         1.2%         92.1%           2.B         Industrial<br>processes         CO2 Emissions from Nitric Acid Production         No         1681         0.8%         95.0%           2.B         Industrial<br>processes         No Emissions from Stationary Combustion (Crude<br>CO2         1403         0.7%         96.7%           1A.4         Energy         CO2 Emissions from Stationary Combustion (Crude<br>CO2         1264         0.6%         97.0%           1A.4         Energy         CO2 Emissions from Manura Anagement<                                                                                                                                                                                                                                                                                                        | 4.D            | Agriculture |                                                                                                 | N <sub>2</sub> O | 7416         | 3.7%          | 80.7%                     |
| Int.2         Energy         Construction (Natural Gas)         Cos         40.8 product           1A.3         Energy         CO <sub>2</sub> Emissions from Pipeline Transport         CO <sub>2</sub> 3845         1.9%         88.7%           1A.1         Energy         CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Biuminous Coal)         CO <sub>2</sub> 2522         1.3%         90.9%           1A.1         Energy         CO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Biuminous Coal)         CO <sub>2</sub> 2473         1.2%         92.1%           2.A         Industrial<br>processes         CO <sub>2</sub> Emissions from Cement Production         CO <sub>2</sub> 1.1%         93.2%           1.A.4         Energy         Other Sectors: CO <sub>2</sub> Emissions from Ammonia Production         N <sub>CO</sub> 1581         0.8%         95.0%           2.B         Industrial<br>processes         N <sub>2</sub> O Emissions from Ammonia Production         N <sub>CO</sub> 1581         0.8%         95.0%           2.B         Industrial<br>processes         O <sub>2</sub> Emissions from Stationary Combustion (Crude<br>O <sub>2</sub> 1310         0.7%         95.7%           1.A.4         Energy         Other Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Liquid Fuels)         CO <sub>2</sub> 1310         0.7%         95.7%           1.A.1         Energy         O <sub>2</sub> Emi                                                                                                                                                                        | 1.A.3          | Energy      | Transportation                                                                                  | CO <sub>2</sub>  | 5248         | 2.6%          | 83.3%                     |
| 6.AWasteCH <sub>4</sub> Emissions from Solid Waste Disposal SitesCH <sub>4</sub> 38141.9%89.6%1.A.1EnergyCO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)CO <sub>2</sub> 25221.3%90.9%1.A.1EnergyCO <sub>2</sub> Emissions from Stationary CombustionCO <sub>2</sub> 24731.2%92.1%2.AIndustrial<br>processesCO <sub>2</sub> Emissions from Cement ProductionCO <sub>2</sub> 24731.2%92.1%2.BIndustrial<br>processesN <sub>2</sub> O Emissions from Marculture<br><i>f</i> -orestry / Fishing (Liquid Fuels)CO <sub>2</sub> 19441.0%94.2%2.BIndustrial<br>processesN <sub>2</sub> O Emissions from Nitic Acid ProductionN <sub>2</sub> O15810.8%95.0%2.BIndustrial<br>processesCO <sub>2</sub> Emissions from Ammonia ProductionCO <sub>2</sub> 14030.7%95.7%1.A.4EnergyOther Sectors: CO <sub>2</sub> Emissions from Commercial/<br>Institutional (Liquid Fuels)CO <sub>2</sub> 13100.7%96.4%2.CIndustrial<br>processesCO <sub>2</sub> Emissions from Stationary Combustion (Crude<br>OII)CO <sub>2</sub> 12640.6%97.0%1.A.1EnergyCO <sub>2</sub> Emissions from Stationary CombustionCO <sub>2</sub> 9720.5%97.5%1.A.1EnergyCO <sub>2</sub> Emissions from Manure ManagementCH <sub>4</sub> 5680.3%98.1%4.BAgricultureCH <sub>4</sub> Emissions from Manufacturing industries and<br>CO <sub>2</sub> Emissions from Manufacturing industries and<br>CO <sub>2</sub> CO <sub>2</sub> 3340.2%98.8%1.A.4EnergyOther Sectors: CO <sub>2</sub> Emissions                                                                                                                                                                                               | 1.A.2          | Energy      |                                                                                                 | CO <sub>2</sub>  | 4921         | 2.5%          | 85.8%                     |
| 1A.1EnergyCO <sub>2</sub> Emissions from Stationary Combustion (Sub-<br>Bituminous Coal)CO <sub>2</sub> 25221.3%90.9%1A.1EnergyCO <sub>2</sub> Emissions from Stationary Combustion<br>(Residual Fuel Oii)CO <sub>2</sub> 24731.2%92.1%2.AIndustrial<br>processesCO <sub>2</sub> Emissions from Cement ProductionCO <sub>2</sub> 22571.1%93.2%1A.4EnergyOther Sectors: CO <sub>2</sub> Emissions from Agriculture<br>(Forestry / Fishing (Liquid Fuels)CO <sub>2</sub> 19441.0%94.2%2.BIndustrial<br>processesN <sub>2</sub> O Emissions from Nitric Acid ProductionN <sub>2</sub> O15810.8%95.0%2.BIndustrial<br>processesCO <sub>2</sub> Emissions from Ammonia ProductionCO <sub>2</sub> 14030.7%95.7%1A.4EnergyOther Sectors: CO <sub>2</sub> Emissions from Commercial/<br>processesCO <sub>2</sub> 13100.7%96.4%1A.1EnergyOther Sectors: CO <sub>2</sub> Emissions from Commercial/<br>processesCO <sub>2</sub> 12640.6%97.0%2.CIndustrial<br>processesCO <sub>2</sub> Emissions from Stationary CombustionCO <sub>2</sub> 12640.6%97.0%3.1A.1EnergyCO <sub>2</sub> Emissions from Stationary CombustionCO <sub>2</sub> 12640.6%97.0%4.BAgricultureCO <sub>2</sub> Emissions from Marure ManagementCH <sub>4</sub> 5680.3%98.3%1.A.2EnergyMobil Combustion: CO <sub>2</sub> Emissions from Commercial/<br>(Refinery Gas)CO <sub>2</sub> 3820.2%98.6%1.A.3EnergyMobil Combustion: CO <sub>2</sub> Emissions from RailwaysCO <sub>2</sub> 340                                                                                                                                                                                                                                | 1.A.3          | Energy      | CO <sub>2</sub> Emissions from Pipeline Transport                                               | CO <sub>2</sub>  | 3845         | 1.9%          | 87.7%                     |
| 1A.1EnergyBituminous Coal)Number of the sectorsCO225221.3%99.9%1A.1EnergyCO2Emissions from Stationary CombustionCO224731.2%92.1%2.AIndustrial<br>processesCO2 Emissions from Cement ProductionCO222571.1%93.2%1A.4EnergyOther Sectors: CO2 Emissions from Agriculture<br>processesCO219441.0%94.2%2.BIndustrial<br>processesNo Cemissions from Nutric Acid ProductionN2O15810.8%95.0%2.BIndustrial<br>processesCO2 Emissions from Ammonia ProductionCO214030.7%95.7%1A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Liquid Fuels)CO213100.7%96.4%1.A.1EnergyCO2 Emissions from Stationary Combustion (Crude<br>OII)CO212640.6%97.0%2.CIndustrial<br>processesCO2 Emissions from Stationary CombustionCO212640.6%97.8%4.BAgricultureCH4 Emissions from Manure ManagementCH45680.3%98.3%1.A.1EnergyMobil Combustion: CO2 Emissions from Commercial/<br>Dialisons from RailwaysCO24390.2%98.6%4.BAgricultureCH4 Emissions from Manure ManagementCH45680.3%98.3%1.A.3EnergyMobil Combustion: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO234470.2%98.8%1.A.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.A            | Waste       | CH <sub>4</sub> Emissions from Solid Waste Disposal Sites                                       | CH₄              | 3814         | 1.9%          | 89.6%                     |
| I.A.1Energy(Residual Fuel Oil)CO224731.2%92.1%2.AIndustrial<br>processesCO2 Emissions from Cement ProductionCO222571.1%93.2%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture<br>processesCO219441.0%94.2%2.BIndustrial<br>processesN2O Emissions from Nitric Acid ProductionN2O15810.8%95.0%2.BIndustrial<br>processesCO2 Emissions from Nitric Acid ProductionCO214030.7%95.7%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Liquid Fuels)CO213100.7%96.4%1.A.1EnergyCO2 Emissions from Stationary Combustion (Crude<br>Oil)CO212640.6%97.0%2.CIndustrial<br>(Refinery Gas)CO2 Emissions from Manure ManagementCO45680.3%98.1%4.BAgricultureCO2 Emissions from Manure ManagementCH45680.3%98.8%1.A.3EnergyMobil Combustion: CO2 Emissions from RailwaysCO23420.2%98.8%1.A.2EnergyOther Sectors: CO2 Emissions from Commercial/<br>CO2 Emissions from Manufacturing Industries and<br>CO3CO23440.2%99.9%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>CO3 Emissions from Wastewater HandlingCO23470.2%98.8%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>CO3 Emissions from Nanure ManagementN2O <t< td=""><td>1.A.1</td><td>Energy</td><td></td><td>CO<sub>2</sub></td><td>2522</td><td>1.3%</td><td>90.9%</td></t<>                                                                                                                                                                                                                                                                                                                                                                                            | 1.A.1          | Energy      |                                                                                                 | CO <sub>2</sub>  | 2522         | 1.3%          | 90.9%                     |
| 2.AIndustrial<br>processesCO2Emissions from Cement ProductionCO222571.1%93.2%1.A.4EnergyOther Sectors: CO2Emissions from Agriculture<br>(Forestry / Fishing (Liquid Fuels)CO219441.0%94.2%2.BIndustrial<br>processesN2O Emissions from Nitric Acid ProductionN2O15810.8%95.0%2.BIndustrial<br>processesCO2Emissions from Ammonia ProductionCO214030.7%95.7%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Other Sectors: CO2CO213100.7%96.4%1.A.1EnergyCO2 Emissions from Stationary Combustion (Crude<br>OII)CO212640.6%97.0%2.CIndustrial<br>processesCO2 Emissions from Iron and Steel ProductionCO29720.5%97.8%4.BAgricultureCH4Emissions from Manure ManagementCH45680.3%98.3%1.A.1EnergyMobil Combustion: CO2 Emissions from Commercial/<br>(Refinery Gas)N2O5600.3%98.3%1.A.3EnergyMobil Combustion: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23470.2%98.8%1.A.4EnergyOther: Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23470.2%98.9%1.A.4EnergyOther: Clubricants)CO23440.2%99.1%1.A.5EnergyOther: Gettrice Scole Scole Scole Scole Scole Scole Scole Scole Scole Sco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.A.1          | Energy      |                                                                                                 | CO <sub>2</sub>  | 2473         | 1.2%          | 92.1%                     |
| 1A.4Ellegy/Forestry / Fishing (Liquid Fuels)CO219441.0%94.2%2.BIndustrial<br>processesN <sub>2</sub> O Emissions from Nitric Acid ProductionN <sub>2</sub> O15810.8%95.0%2.BIndustrial<br>processesCO2 Emissions from Ammonia ProductionCO214030.7%95.7%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Liquid Fuels)CO213100.7%96.4%1.A.1EnergyCO2 Emissions from Stationary Combustion (Crude<br>Oll)CO212640.6%97.0%2.CIndustrial<br>processesCO2 Emissions from Stationary CombustionCO29720.5%97.5%1.A.1EnergyCO2 Emissions from Stationary Combustion<br>(Refinery Gas)CO26070.3%98.8%4.BAgricultureCH4 Emissions from Manure ManagementCH45680.3%98.8%1.A.2EnergyMobil Combustion: CO2 Emissions from Commercial/<br>CO2 Emissions from Manufacturing Industries and<br>CO2CO23820.2%98.6%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23440.2%99.3%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23420.2%98.6%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23440.2%99.3%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.A            |             | CO <sub>2</sub> Emissions from Cement Production                                                | CO <sub>2</sub>  | 2257         | 1.1%          | 93.2%                     |
| 2.Bprocesses<br>Industrial<br>Industrial<br>Industrial<br>Industrial<br>Industrial<br>Institutional<br>(Liquid Fuels)N2013810.8%95.0%2.BIndustrial<br>Industrial<br>Institutional<br>(Liquid Fuels) $CO_2$ Emissions from Ammonia Production $CO_2$ 14030.7%95.7%1.A.4EnergyOther Sectors: CO_2 Emissions from Commercial/<br>Institutional<br>(Liquid Fuels) $CO_2$ 13100.7%96.4%1.A.1Energy $CO_2$ Emissions from Stationary Combustion (Crude<br>Oll) $CO_2$ 12640.6%97.0%2.CIndustrial<br>processes $CO_2$ Emissions from Stationary Combustion<br>(Refinery Gas) $CO_2$ 6070.3%97.8%4.BAgricultureCH4 Emissions from Manure ManagementCH45680.3%98.1%6.BWasteN2O Emissions from Manure ManagementCH45680.3%98.8%1.A.2EnergyMobil Combustion: CO_2 Emissions from RailwaysCO_24390.2%98.6%1.A.4EnergyOther Sectors: CO_2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO_23420.2%98.9%1.A.4EnergyOther: (Lubricants)CO_23420.2%99.3%4.BAgricultureN2O Emissions from Manure ManagementN2O23470.2%99.3%1.A.4EnergyOther: (Lubricants)CO_23410.2%99.3%1.A.5EnergyOther: (Lubricants)CO_23440.2%99.3%1.A.5Energy <td>1.A.4</td> <td>Energy</td> <td>Other Sectors: CO<sub>2</sub> Emissions from Agriculture<br/>/Forestry / Fishing (Liquid Fuels)</td> <td>CO<sub>2</sub></td> <td>1944</td> <td>1.0%</td> <td>94.2%</td>                                                                                                                                                                                                                                                                                                                                         | 1.A.4          | Energy      | Other Sectors: CO <sub>2</sub> Emissions from Agriculture<br>/Forestry / Fishing (Liquid Fuels) | CO <sub>2</sub>  | 1944         | 1.0%          | 94.2%                     |
| 2.BprocessesCO2Effective Co2Emissions from Antinonal ProductionCO214030.7%95.7%1.A.4EnergyOther Sectors: CO2Emissions from Commercial/<br>Institutional (Liquid Fuels)CO213100.7%96.4%1.A.1EnergyCO2Emissions from Stationary Combustion (Crude<br>Oil)CO212640.6%97.0%2.CIndustrial<br>processesCO2Emissions from Stationary CombustionCO29720.5%97.5%1.A.1EnergyCO2Emissions from Stationary Combustion<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.B            |             | N <sub>2</sub> O Emissions from Nitric Acid Production                                          | N <sub>2</sub> O | 1581         | 0.8%          | 95.0%                     |
| 1.A.4EnergyInstitutional (Liquid Fuels) $CO_2$ 1310 $0.7\%$ $96.4\%$ 1.A.1Energy $CO_2$ Emissions from Stationary Combustion (Crude<br>Oll) $CO_2$ 1264 $0.6\%$ $97.0\%$ 2.CIndustrial<br>processes $CO_2$ Emissions from Iron and Steel Production $CO_2$ $972$ $0.5\%$ $97.5\%$ 1.A.1Energy $CO_2$ Emissions from Stationary Combustion<br>(Refinery Gas) $CO_2$ $607$ $0.3\%$ $97.8\%$ 4.BAgriculture $CH_4$ Emissions from Manure Management $CH_4$ $568$ $0.3\%$ $98.1\%$ 6.BWaste $N_2O$ Emissions from Manure Management $CL_4$ $560$ $0.3\%$ $98.3\%$ 1.A.2EnergyMobil Combustion: $CO_2$ Emissions from Railways $CO_2$ $439$ $0.2\%$ $98.6\%$ 1.A.2EnergyCO_2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels) $CO_2$ $344$ $0.2\%$ $98.9\%$ 1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ $334$ $0.2\%$ $99.3\%$ 1.A.5EnergyOther: (Lubricants) $CO_2$ $334$ $0.2\%$ $99.3\%$ 4.BAgriculture $R_4$ Emissions from Manure Management $N_2O$ $276$ $0.1\%$ $99.3\%$ 4.B.1Agriculture $CH_4$ Emissions from Manure Management $N_2O$ $276$ $0.1\%$ $99.5\%$ 1.A.1EnergyOther Sectors: $CO_2$ Emissions from Coal Mining and<br>Underground Gasification) $CH_4$ $1332$ <td>2.B</td> <td></td> <td>CO<sub>2</sub> Emissions from Ammonia Production</td> <td>CO<sub>2</sub></td> <td>1403</td> <td>0.7%</td> <td>95.7%</td>                                                                                                                                                                                                                                                                 | 2.B            |             | CO <sub>2</sub> Emissions from Ammonia Production                                               | CO <sub>2</sub>  | 1403         | 0.7%          | 95.7%                     |
| I.A.1LifegyOil)CO2I2040.0%97.0%2.CIndustrial<br>processes $CO_2$ Emissions from Iron and Steel Production $CO_2$ 9720.5%97.5%1.A.1Energy $CO_2$ Emissions from Stationary Combustion<br>(Refinery Gas) $CO_2$ 6070.3%97.8%4.BAgriculture $CH_4$ Emissions from Manure Management $CH_4$ 5680.3%98.1%6.BWaste $N_2O$ Emissions from Wastewater Handling $N_2O$ 5600.3%98.3%1.A.2EnergyMobil Combustion: $CO_2$ Emissions from Railways $CO_2$ 4390.2%98.6%1.A.2EnergyCO2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels) $CO_2$ 3470.2%98.8%1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ 3440.2%99.1%6.BOTxoqbi $CH_4$ Emissions from Wastewater Handling $CH_4$ 3160.2%99.3%4.FAgriculture $N_2O$ Emissions from Manure Management $N_2O$ 2760.1%99.4%4.FAgriculture $N_2O$ Emissions from Stationary Combustion (Gas of<br>Handling $CO_2$ 1240.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Handling $CO_2$ 1240.1%99.5%4.FAgricultureCH_4 Emissions from Stationary Combustion (Gas of<br>Handling $CO_2$ 1240.1%99.6%1.A.1Energy <t< td=""><td>1.A.4</td><td>Energy</td><td></td><td>CO<sub>2</sub></td><td>1310</td><td>0.7%</td><td>96.4%</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                               | 1.A.4          | Energy      |                                                                                                 | CO <sub>2</sub>  | 1310         | 0.7%          | 96.4%                     |
| 2.Cprocesses $CO_2$ Emissions from from and steel Production $CO_2$ $972$ $0.5\%$ $97.5\%$ 1.A.1Energy $CO_2$ Emissions from Stationary Combustion<br>(Refinery Gas) $CO_2$ $607$ $0.3\%$ $97.8\%$ 4.BAgricultureCH4 Emissions from Manure ManagementCH4 $568$ $0.3\%$ $98.1\%$ 6.BWasteN_2O Emissions from Wastewater HandlingN_2O $560$ $0.3\%$ $98.3\%$ 1.A.3EnergyMobil Combustion: $CO_2$ Emissions from Railways $CO_2$ $439$ $0.2\%$ $98.6\%$ 1.A.2EnergyCO_2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels) $CO_2$ $347$ $0.2\%$ $98.9\%$ 1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ $344$ $0.2\%$ $99.9\%$ 1.A.5EnergyOther: (Lubricants) $CO_2$ $344$ $0.2\%$ $99.9\%$ 4.BAgricultureN_2O Emissions from Manure Management $N_2O$ $276$ $0.1\%$ $99.9\%$ 4.FAgricultureCH4 Emissions from Field Burning Agricultural $CH_4$ $133$ $0.1\%$ $99.5\%$ 1.B.1EnergyFugitive CH4 Emissions from Rice CultivationCH4 $132$ $0.1\%$ $99.6\%$ 1.A.1EnergyOther Sectors: CO <sub>2</sub> Emissions from Agriculture/<br>Handling $CO_2$ $800$ $0.0\%$ $99.7\%$ 1.A.4EnergyOther Sectors: CO <sub>2</sub> Emissions from Residential $CO_2$ $71$ $0.0\%$ $99.7\%$ <tr< td=""><td>1.A.1</td><td>Energy</td><td></td><td>CO<sub>2</sub></td><td>1264</td><td>0.6%</td><td>97.0%</td></tr<>                                                                                                                                                                                                                                                                                                       | 1.A.1          | Energy      |                                                                                                 | CO <sub>2</sub>  | 1264         | 0.6%          | 97.0%                     |
| I.A.1Energy(Refinery Gas)CO26070.3%97.3%4.BAgriculture $CH_4$ Emissions from Manure Management $CH_4$ 5680.3%98.1%6.BWasteN2O Emissions from Wastewater HandlingN2O5600.3%98.3%1.A.3EnergyMobil Combustion: $CO_2$ Emissions from Railways $CO_2$ 4390.2%98.6%1.A.2EnergyCO2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels) $CO_2$ 3820.2%98.8%1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ 3470.2%98.9%1.A.5EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ 3340.2%99.1%6.BOTxogbi $CH_4$ Emissions from Manure Management $N_2O$ 2760.1%99.4%4.BAgriculture $N_2O$ Emissions from Manure Management $N_2O$ 2760.1%99.5%4.BAgriculture $N_2O$ Emissions from Stationary Combustion (Gas of<br>Handling $CO_2$ 1240.1%99.5%1.B.1EnergyFugitive CH_4 Emissions from Agriculture/<br>Handling $CO_2$ 800.0%99.7%1.A.4EnergyOther Sectors: $CO_2$ Emissions from Agriculture/<br>Handling $CO_2$ 800.0%99.7%1.A.4EnergyOther Sectors: $CO_2$ Emissions from Agriculture/<br>Liquid Fuels) $CO_2$ 800.0%99.7%1.A.4Ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.C            |             | CO <sub>2</sub> Emissions from Iron and Steel Production                                        | CO <sub>2</sub>  | 972          | 0.5%          | 97.5%                     |
| 6.BWasteN2O Emissions from Wastewater HandlingN2O5600.3%98.3%1.A.3EnergyMobil Combustion: $CO_2$ Emissions from Railways $CO_2$ 4390.2%98.6%1.A.2Energy $CO_2$ Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels) $CO_2$ 3820.2%98.8%1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ 3470.2%98.9%1.A.5EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ 3470.2%98.9%1.A.5EnergyOther: (Lubricants) $CO_2$ 34470.2%99.1%6.BOtxoqueCH4 Emissions from Mature ManagementN2O2760.1%99.3%4.FAgricultureN2O Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.6%1.A.1EnergyCO2Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyCO2Emissions from Soda Ash UseCO2710.0%99.7%2.AIndustrial<br>processesCO2Emissions from Line ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2Emissions from ResidentialCH4590.0%99.8%1.A.4EnergyOther Sectors: CO2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.A.1          | Energy      |                                                                                                 | CO <sub>2</sub>  | 607          | 0.3%          | 97.8%                     |
| 1.A.3EnergyMobil Combustion: CO2 Emissions from RailwaysCO24390.2%98.6%1.A.2EnergyCO2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels)CO23820.2%98.8%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23470.2%98.9%1.A.5EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23470.2%98.9%1.A.5EnergyOther: (Lubricants)CO23340.2%99.1%6.BOTxodbiCH4 Emissions from Wastewater HandlingCH43160.2%99.3%4.BAgricultureN2O Emissions from Manure ManagementN2O2760.1%99.4%4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.6%1.A.1EnergyCO2 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2700.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from ResidentialCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.B            | Agriculture | CH <sub>4</sub> Emissions from Manure Management                                                | CH <sub>4</sub>  | 568          | 0.3%          | 98.1%                     |
| 1.A.2EnergyCO2 Emissions from Manufacturing Industries and<br>Construction (Liquid Fuels)CO23820.2%98.8%1.A.4EnergyOther Sectors: CO2 Emissions from Commercial/<br>Institutional (Solid Fuels)CO23470.2%98.9%1.A.5EnergyOther: (Lubricants)CO23470.2%99.1%6.BOTxoqbiCH4 Emissions from Wastewater HandlingCH43160.2%99.3%4.BAgricultureN2O Emissions from Manure ManagementN2O2760.1%99.4%4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processesCO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Stati nerge ProductionCO2690.0%99.7%2.AIndustrial<br>processesCO2 Emissions from State from Residential<br>processesCO2690.0%99.7%2.AIndustrial<br>processesCO2 Emissions from State from Residential<br>processesCO2690.0%99.7%3.AIndustr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.B            | Waste       | N <sub>2</sub> O Emissions from Wastewater Handling                                             | N <sub>2</sub> O | 560          | 0.3%          | 98.3%                     |
| 1.A.2EnergyConstruction (Liquid Fuels)CO2 $362$ $0.2\%$ $98.8\%$ 1.A.4EnergyOther Sectors: $CO_2$ Emissions from Commercial/<br>Institutional (Solid Fuels) $CO_2$ $347$ $0.2\%$ $98.9\%$ 1.A.5EnergyOther: (Lubricants) $CO_2$ $334$ $0.2\%$ $99.1\%$ 6.BOrxoдыCH4 Emissions from Wastewater HandlingCH4 $316$ $0.2\%$ $99.3\%$ 4.BAgricultureN2O Emissions from Manure ManagementN2O $276$ $0.1\%$ $99.3\%$ 4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH4 $133$ $0.1\%$ $99.5\%$ 1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH4 $132$ $0.1\%$ $99.5\%$ 1.A.1EnergyCO2 Emissions from Rice CultivationCH4 $132$ $0.1\%$ $99.5\%$ 1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas) $CO_2$ $80$ $0.0\%$ $99.7\%$ 1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processes $CO_2$ $71$ $0.0\%$ $99.7\%$ 1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>Liquid Fuels) $CO_2$ $69$ $0.0\%$ $99.7\%$ 2.AIndustrial<br>processesCO2 Emissions from Lime Production $CO_2$ $69$ $0.0\%$ $99.7\%$ 2.AIndustrial<br>processes $CO_2$ Emissions from Lime Production $CO_2$ $69$ $0.0\%$ $99.7\%$ 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.A.3          | Energy      | Mobil Combustion: CO <sub>2</sub> Emissions from Railways                                       | CO <sub>2</sub>  | 439          | 0.2%          | 98.6%                     |
| I.A.4EnergyInstitutional (Solid Fuels)CO23470.2%94.7%1.A.5EnergyOther: (Lubricants)CO23340.2%99.1%6.BОтходыCH4 Emissions from Wastewater HandlingCH43160.2%99.3%4.BAgricultureN2O Emissions from Manure ManagementN2O2760.1%99.4%4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.6%4.CAgricultureCH4 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2710.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2700.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2690.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CO4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CO4 Emissions from Residential<br>processesCO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.A.2          | Energy      | Construction (Liquid Fuels)                                                                     | CO <sub>2</sub>  | 382          | 0.2%          | 98.8%                     |
| 6.ВОтходыCH4 Emissions from Wastewater HandlingCH43160.2%99.3%4.ВAgricultureN2O Emissions from Manure ManagementN2O2760.1%99.4%4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.6%4.CAgricultureCH4 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CO4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.A.4          | Energy      |                                                                                                 | CO <sub>2</sub>  | 347          | 0.2%          | 98.9%                     |
| 4.BAgricultureN2O Emissions from Manure ManagementN2O2760.1%99.4%4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.6%4.CAgricultureCH4 Emissions from Stationary CombustionCH41000.0%99.6%4.CAgricultureCH4 Emissions from Stationary CombustionCH41000.0%99.6%4.CAgricultureCH4 Emissions from Stationary CombustionCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Line ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.A.5          | Energy      | Other: (Lubricants)                                                                             | CO <sub>2</sub>  | 334          | 0.2%          | 99.1%                     |
| 4.FAgricultureCH4 Emissions from Field Burning Agricultural<br>ResiduesCH41330.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.5%4.CAgricultureCH4 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.6%4.CAgricultureCH4 Emissions from Stationary CombustionCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2710.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2690.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.B            | Отходы      | CH <sub>4</sub> Emissions from Wastewater Handling                                              |                  | 316          | 0.2%          | 99.3%                     |
| 4.FAgricultureResidues0.000.1%99.5%1.B.1EnergyFugitive CH4 Emissions from Coal Mining and<br>HandlingCH41320.1%99.5%1.A.1EnergyCO2 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.5%4.CAgricultureCH4 Emissions from Stationary Combustion (Gas of<br>Underground Gasification)CO21240.1%99.6%4.CAgricultureCH4 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.B            | Agriculture |                                                                                                 | N <sub>2</sub> O | 276          | 0.1%          | 99.4%                     |
| HandlingConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraintConstraint <th< td=""><td>4.F</td><td>Agriculture</td><td>Residues</td><td>CH<sub>4</sub></td><td>133</td><td>0.1%</td><td>99.5%</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.F            | Agriculture | Residues                                                                                        | CH <sub>4</sub>  | 133          | 0.1%          | 99.5%                     |
| 1.A.1EnergyUnderground Gasification)CO21240.1%99.8%4.CAgricultureCH4 Emissions from Rice CultivationCH41000.0%99.6%1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2710.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from Residential<br>processesCO2690.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.B.1          | Energy      | Handling                                                                                        | CH <sub>4</sub>  | 132          | 0.1%          | 99.5%                     |
| 1.A.4EnergyOther Sectors: CO2 Emissions from Agriculture/<br>Forestry/Fishing (Natural Gas)CO2800.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Soda Ash UseCO2710.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.A.1          |             | Underground Gasification)                                                                       |                  |              |               | 99.6%                     |
| 1.A.4EnergyForestry/Fishing (Natural Gas)CO2600.0%99.7%2.AIndustrial<br>processesCO2CO2710.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>processesCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.C            | Agriculture |                                                                                                 | CH₄              | 100          | 0.0%          | 99.6%                     |
| 2.AprocessesCO2 Emissions from Soda Ash UseCO2710.0%99.7%1.A.4EnergyOther Sectors: CO2 Emissions from Residential<br>(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.A.4          | 0,          |                                                                                                 | CO <sub>2</sub>  | 80           | 0.0%          | 99.7%                     |
| 1.A.4Energy(Liquid Fuels)CO2700.0%99.7%2.AIndustrial<br>processesCO2 Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.A            |             |                                                                                                 | CO <sub>2</sub>  | 71           | 0.0%          | 99.7%                     |
| 2.AprocessesCO2Emissions from Lime ProductionCO2690.0%99.7%1.A.4EnergyOther Sectors: CH4 Emissions from ResidentialCH4590.0%99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             | (Liquid Fuels)                                                                                  |                  | 70           |               | 99.7%                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | processes   |                                                                                                 |                  |              |               | 99.7%                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.A.4<br>1.A.3 | Energy      | Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                                       |                  | 59           | 0.0%          | 99.8%                     |

# Level Assessment for 2005

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

|       | Sector               | Categories                                                                                      | Gas              | Gg<br>CO₂-eq | % of<br>total | Cumulativ<br>e<br>Total % |
|-------|----------------------|-------------------------------------------------------------------------------------------------|------------------|--------------|---------------|---------------------------|
| 4.F   | Agriculture          | N₂O Emissions from Filed Burning Agricultural<br>Residues                                       | N <sub>2</sub> O | 49           | 0.0%          | 99.9%                     |
| 1.A.1 | Energy               | N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary<br>Combustion                 | N <sub>2</sub> O | 39           | 0.0%          | 99.9%                     |
| 1.A.3 | Energy               | Mobil Combustion: CH <sub>4</sub> Emissions from Road<br>Transportation                         | CH <sub>4</sub>  | 27           | 0.0%          | 99.9%                     |
| 1.A.2 | Energy               | CO <sub>2</sub> Emissions from Manufacturing Industries and<br>Construction (Solid Fuels)       | CO <sub>2</sub>  | 25           | 0.0%          | 99.9%                     |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Gas/<br>Diesel Oil)                       | CO <sub>2</sub>  | 22           | 0.0%          | 99.9%                     |
| 1.A.4 | Energy               | Other Sectors: CH <sub>4</sub> emissions from Commercial/<br>Institutional                      | CH <sub>4</sub>  | 22           | 0.0%          | 99.9%                     |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion<br>(Gasoline)                              | CO <sub>2</sub>  | 18           | 0.0%          | 99.9%                     |
| 1.A.4 | Energy               | Other Sectors: N <sub>2</sub> O Emissions from Residential                                      | N <sub>2</sub> O | 17           | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary<br>Combustion                  | CH <sub>4</sub>  | 15           | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: N <sub>2</sub> O Emissions from Road<br>Transportation                        | N <sub>2</sub> O | 14           | 0.0%          | 100.0%                    |
| 2.G   | Industrial processes | Consumption of Halocarbons and Sulphur<br>Hexafluoride                                          | HFC              | 12           | 0.0%          | 100.0%                    |
| 1.A.4 | Energy               | Other sectors: N <sub>2</sub> O Emissions from Commercial/<br>Institutional                     | N <sub>2</sub> O | 10           | 0.0%          | 100.0%                    |
| 1.A.2 | Energy               | CH <sub>4</sub> Emissions from Manufacturing Industries and<br>Construction                     | CH4              | 10           | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Other<br>Bituminous Coal)                 | CO <sub>2</sub>  | 9            | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                                      | CO <sub>2</sub>  | 9            | 0.0%          | 100.0%                    |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                         | CO <sub>2</sub>  | 6            | 0.0%          | 100.0%                    |
| 1.A.4 | Energy               | Other Sectors: N <sub>2</sub> O Emissions from Agricultural / Forestry/ Fishing                 | N <sub>2</sub> O | 5            | 0.0%          | 100.0%                    |
| 1.A.2 | Energy               | N <sub>2</sub> O Emissions from Manufacturing Industries and<br>Construction                    | N <sub>2</sub> O | 4            | 0.0%          | 100.0%                    |
| 1.A.4 | Energy               | Other Sectors: CH <sub>4</sub> Emissions from Agricultural /<br>Forestry/ Fishing               | CH4              | 3            | 0.0%          | 100.0%                    |
| 2.B   | Industrial processes | CH <sub>4</sub> Emissions from Chemical Industry                                                | CH₄              | 3            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: N <sub>2</sub> O Emissions from Railways                                      | N <sub>2</sub> O | 1            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: CH₄ Emissions from Railways                                                   | CH₄              | 1            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                                      | N <sub>2</sub> O | 0            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: $M_2$ Emissions from Aviation                                                 | CH₄              | 0            | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Patent<br>Fuel)                           | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                           | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                    |
| 1.A.1 | Energy               | CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)                      | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: CO <sub>2</sub> Emissions from Navigation                                     | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: CH <sub>4</sub> Emissions from Navigation                                     | CH <sub>4</sub>  | 0            | 0.0%          | 100.0%                    |
| 1.A.3 | Energy               | Mobil Combustion: N <sub>2</sub> O Emissions from Navigation                                    | N <sub>2</sub> O | 0            | 0.0%          | 100.0%                    |
| 1.A.4 | Energy               | Other Sectors: CO <sub>2</sub> Emissions from Agricultural /<br>Forestry/ Fishing (Solid Fuels) | CO <sub>2</sub>  | 0            | 0.0%          | 100.0%                    |

-

|   |       | Sector                  | Category                                                                                      | Gas              | Base Year<br>Emission,<br>Gg CO <sub>2</sub> -eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -eq | Relative<br>change<br>1990-2000, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|---|-------|-------------------------|-----------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
|   |       |                         |                                                                                               |                  | 1990                                             | 2000                                                    |                                    |                     |                               |                       |
| ſ |       |                         | Total:                                                                                        |                  | 182899                                           | 201167                                                  | 10.0%                              |                     |                               |                       |
| Ī | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Natural Gas)                       | CO <sub>2</sub>  | 8048                                             | 32637                                                   | 305.5%                             | 0.107               | 24.1%                         | 24.1%                 |
|   | 1.B.2 | Energy                  | Fugitive CH <sub>4</sub> Emissions from Oil and Gas Operation                                 | CH <sub>4</sub>  | 45672                                            | 70020                                                   | 53.3%                              | 0.089               | 20.0%                         | 44.1%                 |
|   | 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Natural Gas)                            | CO <sub>2</sub>  | 37147                                            | 32346                                                   | -12.9%                             | 0.038               | 8.6%                          | 52.7%                 |
|   | 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Road Transportation                          | CO <sub>2</sub>  | 9986                                             | 5619                                                    | -43.7%                             | 0.024               | 5.4%                          | 58.2%                 |
|   | 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Sub-Bituminous Coal)                    | CO <sub>2</sub>  | 7158                                             | 3092                                                    | -56.8%                             | 0.022               | 4.8%                          | 63.0%                 |
|   | 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Residual Fuel Oil)                      | CO <sub>2</sub>  | 8814                                             | 5757                                                    | -34.7%                             | 0.018               | 4.0%                          | 67.0%                 |
|   | 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Natural Gas)        | CO <sub>2</sub>  | 7239                                             | 4210                                                    | -41.8%                             | 0.017               | 3.8%                          | 70.8%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                       | CO <sub>2</sub>  | 3338                                             | 13                                                      | -99.6%                             | 0.017               | 3.7%                          | 74.5%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/ Institutional (Natural Gas)         | CO <sub>2</sub>  | 3036                                             | 6961                                                    | 129.3%                             | 0.016               | 3.7%                          | 78.2%                 |
|   | 4.D   | Agriculture             | N <sub>2</sub> O Emissions from Agricultural Soils                                            | N <sub>2</sub> O | 10222                                            | 8539                                                    | -16.5%                             | 0.012               | 2.7%                          | 80.9%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry /Fishing<br>(Liquid Fuels) | CO <sub>2</sub>  | 4799                                             | 2586                                                    | -46.1%                             | 0.012               | 2.7%                          | 83.6%                 |
| 1 | 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Crude Oil)                              | CO <sub>2</sub>  | 313                                              | 2040                                                    | 551.5%                             | 0.008               | 1.7%                          | 85.4%                 |
|   | 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Liquid Fuel)        | CO <sub>2</sub>  | 2187                                             | 739                                                     | -66.2%                             | 0.008               | 1.7%                          | 87.0%                 |
|   | 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Railways                                     | CO <sub>2</sub>  | 1754                                             | 327                                                     | -81.3%                             | 0.007               | 1.6%                          | 88.7%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Solid Fuels)          | CO <sub>2</sub>  | 1774                                             | 565                                                     | -68.2%                             | 0.006               | 1.4%                          | 90.1%                 |
|   | 2.A   | Industrial<br>processes | CO <sub>2</sub> Emissions from Cement Production                                              | CO <sub>2</sub>  | 2572                                             | 1476                                                    | -42.6%                             | 0.006               | 1.4%                          | 91.4%                 |
|   | 2.B   | Industrial processes    | CO <sub>2</sub> Emissions from Ammonia Production                                             | CO <sub>2</sub>  | 2282                                             | 1298                                                    | -43.1%                             | 0.005               | 1.2%                          | 92.7%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Liquid Fuels)                      | CO <sub>2</sub>  | 853                                              | 47                                                      | -94.5%                             | 0.004               | 0.9%                          | 93.6%                 |
|   | 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Solid Fuels)        | CO <sub>2</sub>  | 742                                              | 33                                                      | -95.6%                             | 0.004               | 0.8%                          | 94.4%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/ Institutional (Liquid Fuels)        | CO <sub>2</sub>  | 2030                                             | 1498                                                    | -26.2%                             | 0.003               | 0.7%                          | 95.1%                 |
|   | 2.B   | Industrial<br>processes | N <sub>2</sub> O Emissions from Nitric Acid Production                                        | N <sub>2</sub> O | 1782                                             | 1374                                                    | -22.9%                             | 0.003               | 0.6%                          | 95.7%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/ Fishing (Natural Gas)     | CO <sub>2</sub>  | 509                                              | 106                                                     | -79.1%                             | 0.002               | 0.5%                          | 96.2%                 |
|   | 2.C   | Industrial processes    | CO <sub>2</sub> Emissions from Iron and Steel Production                                      | CO <sub>2</sub>  | 998                                              | 665                                                     | -33.4%                             | 0.002               | 0.4%                          | 96.6%                 |
|   | 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/ Fishing (Solid Fuels)     | CO <sub>2</sub>  | 359                                              | 1                                                       | -99.7%                             | 0.002               | 0.4%                          | 97.0%                 |
|   | 1.A.5 | Energy                  | Other: (Lubricants)                                                                           | CO <sub>2</sub>  | 503                                              | 206                                                     | -59.1%                             | 0.002               | 0.4%                          | 97.3%                 |
|   | 2.A   | Industrial processes    | CO <sub>2</sub> Emissions from Lime Production                                                | CO <sub>2</sub>  | 354                                              | 81                                                      | -77.1%                             | 0.001               | 0.3%                          | 97.7%                 |

# Trend Assessment for 1990-2000

|                | Sector                  | Category                                                                                                                           | Gas                                  | Base Year<br>Emission,<br>Gg CO <sub>2</sub> -eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -eq | Relative<br>change<br>1990-2000, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
| 1.B.1          | Energy                  | Fugitive CH₄ Emissions from Coal Mining and Handling                                                                               | $CH_4$                               | 469                                              | 225                                                     | -52.1%                             | 0.001               | 0.3%                          | 98.0%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other Bituminous Coal)                                                       | CO <sub>2</sub>                      | 364                                              | 131                                                     | -64.0%                             | 0.001               | 0.3%                          | 98.2%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Refinery Gas)                                                                | CO <sub>2</sub>                      | 865                                              | 706                                                     | -18.5%                             | 0.001               | 0.2%                          | 98.5%                 |
| 1.A.4          | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Residential                                                                          | CH <sub>4</sub>                      | 242                                              | 62                                                      | -74.2%                             | 0.001               | 0.2%                          | 98.7%                 |
| 4.A            | Agriculture             | CH <sub>4</sub> Emissions from Enteric Fermentation                                                                                | CH <sub>4</sub>                      | 5833                                             | 6592                                                    | 13.0%                              | 0.001               | 0.2%                          | 98.9%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)                                                         | CO <sub>2</sub>                      | 168                                              | 12                                                      | -92.6%                             | 0.001               | 0.2%                          | 99.0%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gas of Underground Gasification)                                             | CO <sub>2</sub>                      | 192                                              | 85                                                      | -55.7%                             | 0.001               | 0.1%                          | 99.2%                 |
| 1.A.3          | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                                                                          | CO <sub>2</sub>                      | 163                                              | 71                                                      | -56.7%                             | 0.000               | 0.1%                          | 99.3%                 |
| 4.C            | Agriculture             | CH <sub>4</sub> Emissions from Rice Cultivation                                                                                    | CH₄                                  | 262                                              | 188                                                     | -28.2%                             | 0.000               | 0.1%                          | 99.4%                 |
| 4.B            | Agriculture             | N <sub>2</sub> O Emissions from Manure Management                                                                                  | N <sub>2</sub> O                     | 287                                              | 229                                                     | -20.1%                             | 0.000               | 0.1%                          | 99.5%                 |
| 1.A.3          | Energy                  | CO <sub>2</sub> Emissions from Pipeline Transport                                                                                  | CO <sub>2</sub>                      | 4575                                             | 5114                                                    | 11.8%                              | 0.000               | 0.1%                          | 99.5%                 |
| 4.F            | Agriculture             | CH <sub>4</sub> Emissions from Field Burning Agricultural Residual                                                                 | CH <sub>4</sub>                      | 23                                               | 87                                                      | 273.5%                             | 0.000               | 0.1%                          | 99.6%                 |
| 6.B            | Waste                   | N <sub>2</sub> O Emissions from Wastewater Handling                                                                                | N <sub>2</sub> O                     | 438                                              | 528                                                     | 20.6%                              | 0.000               | 0.0%                          | 99.7%                 |
| 1.A.1          | Energy                  | N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion                                                       | N <sub>2</sub> O                     | 81<br>35                                         | 54                                                      | -32.5%                             | 0.000               | 0.0%                          | 99.7%                 |
| 1.A.4          | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Agriculture/Forestry /Fishing                                                        | CH <sub>4</sub>                      |                                                  | 5                                                       | -86.9%                             | 0.000               | 0.0%                          | 99.7%                 |
| 6.A<br>1.A.1   | <u>Отходы</u><br>Energy | CH <sub>4</sub> Emissions from Solid Waste Disposal Sites<br>CO <sub>2</sub> Emissions from Stationary Combustion (Gas/Diesel Oil) |                                      | 3343<br>78                                       | 3705<br>62                                              | 10.8%<br>-20.0%                    | 0.000               | 0.0%                          | 99.8%<br>99.8%        |
| 6.B            | Отходы                  | CH <sub>4</sub> Emissions from Wastewater Handling                                                                                 | CO <sub>2</sub><br>CH₄               | 292                                              | 299                                                     | 2.2%                               | 0.000               | 0.0%                          | 99.8%                 |
| 4.F            | Agriculture             | N <sub>2</sub> O Emissions from Field Burning Agricultural Residual                                                                | N <sub>2</sub> O                     | 9                                                | 32                                                      | 273.5%                             | 0.000               | 0.0%                          | 99.8%                 |
| 1.A.3          | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Road Transportation                                                               | CH₄                                  | 48                                               | 31                                                      | -36.5%                             | 0.000               | 0.0%                          | 99.8%                 |
| 4.B            | Agriculture             | $CH_4$ Emissions from Manure Management                                                                                            | CH₄<br>CH₄                           | 420                                              | 480                                                     | 14.5%                              | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                                                                    | CO <sub>2</sub>                      | 0                                                | 18                                                      | 7090.2%                            | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.1          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Patent Fuel)                                                                 | CO <sub>2</sub>                      | 0                                                | 17                                                      | 6681.8%                            | 0.000               | 0.0%                          | 99.90                 |
| 1.A.3          | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Road Transportation                                                              | N <sub>2</sub> O                     | 26                                               | 15                                                      | -43.2%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.2          | Energy                  | CH <sub>4</sub> Emissions from Manufacturing Industries and Construction                                                           | CH₄                                  | 18                                               | 9                                                       | -48.6%                             | 0.000               | 0.0%                          | 99.92                 |
| 1.A.2          | 0,                      | $N_2O$ Emissions from Manufacturing Industries and Construction                                                                    | N <sub>2</sub> O                     | 13                                               | 5                                                       | -65.9%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.2          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                                                              |                                      | 0                                                | 9                                                       | 3578.2%                            | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.1          | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Agriculture/Forestry /Fishing                                                       | N <sub>2</sub> O                     | 14                                               | 9                                                       | -52.6%                             | 0.000               | 0.0%                          | 99.94<br>99.9%        |
| 1.A.4          | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                                                                         | CO <sub>2</sub>                      | 0                                                | 9                                                       | 3347.4%                            | 0.000               | 0.0%                          | 100.0%                |
| 2.A            | Energy<br>Industrial    | CO <sub>2</sub> Emissions from Soda Ash Use                                                                                        | CO <sub>2</sub>                      | 71                                               | 9<br>71                                                 | 0.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 1.A.1          | processes               | CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion                                                        | CH₄                                  | 24                                               | 20                                                      | -16.7%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.1          | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Residential                                                                         | N <sub>2</sub> O                     | 24                                               | 18                                                      | -18.2%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4<br>1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Commercial/ Institutional                                                           | N <sub>2</sub> O<br>N <sub>2</sub> O | 15                                               | 10                                                      | -18.2%                             | 0.000               | 0.0%                          | 100.0%                |
|                | Energy<br>Industrial    |                                                                                                                                    | 2 -                                  | -                                                |                                                         |                                    |                     |                               |                       |
| 2.G            | processes               | Consumption Halocarbon and Sulphur Hexaflouride                                                                                    | HFC                                  | 0                                                | 6                                                       | 2435.0%                            | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3          | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Railways                                                                         | N <sub>2</sub> O                     | 4                                                | 1                                                       | -81.3%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3          | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Railways                                                                          | CH <sub>4</sub>                      | 3                                                | 0                                                       | -81.3%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4          | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Commercial/ Institutional                                                            | CH₄                                  | 15                                               | 19                                                      | 21.7%                              | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3          | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                                                                         | N <sub>2</sub> O                     | 1                                                | 1                                                       | -56.6%                             | 0.000               | 0.0%                          | 100.0%                |

|       | Sector                  | Category                                                     | Gas              | Base Year<br>Emission,<br>Gg CO₂-eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -eq | Relative<br>change<br>1990-2000, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|-------|-------------------------|--------------------------------------------------------------|------------------|-------------------------------------|---------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Aviation    | CH <sub>4</sub>  | 0                                   | 0                                                       | -56.6%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Navigation  | CO <sub>2</sub>  | 12                                  | 0                                                       | -98.0%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Navigation  | $CH_4$           | 0                                   | 0                                                       | 0.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Navigation | N <sub>2</sub> O | 0                                   | 0                                                       | 0.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 2.B   | Industrial<br>processes | CH₄ Emissions from Chemical Industry                         | CH4              | 0                                   | 0                                                       | -59.7%                             | 0.000               | 0.0%                          | 100.0%                |

|       | Sector                  | Category                                                                                       | Gas              | Base Year<br>Emission,<br>Gg CO₂-eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -<br>eq | Relative<br>change<br>1990-2005, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|-------|-------------------------|------------------------------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
|       |                         |                                                                                                |                  | 1990                                | 2005                                                        |                                    |                     |                               |                       |
|       |                         | Total:                                                                                         |                  | 182899                              | 199839                                                      | 9.26%                              |                     |                               |                       |
| 1.B.2 | Energy                  | Fugitive CH₄ Emissions from Oil and Gas Operation                                              | CH <sub>4</sub>  | 45672                               | 76331                                                       | 67.1%                              | 0.121               | 23.2%                         | 23.2%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Natural Gas)                        | CO <sub>2</sub>  | 8048                                | 30915                                                       | 284.1%                             | 0.101               | 19.4%                         | 42.6%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Natural Gas)                             | CO <sub>2</sub>  | 37147                               | 29648                                                       | -20.2%                             | 0.050               | 9.6%                          | 52.2%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Residual Fuel Oil)                       | CO <sub>2</sub>  | 8814                                | 2473                                                        | -71.9%                             | 0.033               | 6.3%                          | 58.5%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/ Institutional (Natural Gas)          | CO <sub>2</sub>  | 3036                                | 9031                                                        | 197.4%                             | 0.026               | 5.0%                          | 63.5%                 |
| 1.A.3 | Energy                  | Mobile Combustion: CO <sub>2</sub> Emissions from Road Transportation                          | CO <sub>2</sub>  | 9986                                | 5248                                                        | -47.4%                             | 0.026               | 5.0%                          | 68.5%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Sub-Bituminous Coal)                     | CO <sub>2</sub>  | 7158                                | 2522                                                        | -64.8%                             | 0.024               | 4.7%                          | 73.1%                 |
| 4.D   | Agriculture             | N <sub>2</sub> O Emissions from Agricultural Soils                                             | N <sub>2</sub> O | 10222                               | 7416                                                        | -27.4%                             | 0.017               | 3.3%                          | 76.4%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                        | CO <sub>2</sub>  | 3338                                | 6                                                           | -99.8%                             | 0.017               | 3.2%                          | 79.6%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry /<br>Fishing (Liquid Fuels) | CO <sub>2</sub>  | 4799                                | 1944                                                        | -59.5%                             | 0.015               | 2.9%                          | 82.5%                 |
| 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Natural Gas)         | CO <sub>2</sub>  | 7239                                | 4921                                                        | -32.0%                             | 0.014               | 2.6%                          | 85.1%                 |
| 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Liquid Fuels)        | CO <sub>2</sub>  | 2187                                | 382                                                         | -82.5%                             | 0.009               | 1.8%                          | 86.9%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/ Institutional (Solid Fuels)          | CO <sub>2</sub>  | 1774                                | 347                                                         | -80.4%                             | 0.007               | 1.4%                          | 88.3%                 |
| 4.A   | Agriculture             | CH <sub>4</sub> Emissions from Enteric Fermentation                                            | CH <sub>4</sub>  | 5833                                | 7903                                                        | 35.5%                              | 0.007               | 1.3%                          | 89.6%                 |
| 1.A.3 | Energy                  | Mobile Combustion: CO <sub>2</sub> Emissions from Railways                                     | CO <sub>2</sub>  | 1754                                | 439                                                         | -75.0%                             | 0.007               | 1.3%                          | 90.9%                 |
| 1.A.3 | Energy                  | CO <sub>2</sub> Emissions from Pipeline Transport                                              | CO <sub>2</sub>  | 4575                                | 3845                                                        | -16.0%                             | 0.005               | 1.0%                          | 92.0%                 |
| 2.B   | Industrial<br>processes | CO <sub>2</sub> Emissions from Ammonia Production                                              | CO <sub>2</sub>  | 2282                                | 1403                                                        | -38.5%                             | 0.005               | 1.0%                          | 92.9%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Crude Oil)                               | CO <sub>2</sub>  | 313                                 | 1264                                                        | 303.9%                             | 0.004               | 0.8%                          | 93.7%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Commercial/ Institutional (Liquid Fuels)         | CO <sub>2</sub>  | 2030                                | 1310                                                        | -35.5%                             | 0.004               | 0.8%                          | 94.5%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Residential (Liquid Fuels)                       | CO <sub>2</sub>  | 853                                 | 70                                                          | -91.8%                             | 0.004               | 0.8%                          | 95.3%                 |
| 1.A.2 | Energy                  | CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Solid Fuels)         | CO <sub>2</sub>  | 742                                 | 25                                                          | -96.7%                             | 0.004               | 0.7%                          | 96.0%                 |
| 2.A   | Industrial<br>processes | CO <sub>2</sub> Emissions from Cement Production                                               | CO <sub>2</sub>  | 2572                                | 2257                                                        | -12.2%                             | 0.003               | 0.5%                          | 96.5%                 |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry / Fishing (Natural Gas)     | CO <sub>2</sub>  | 509                                 | 80                                                          | -84.3%                             | 0.002               | 0.4%                          | 96.9%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other Bituminous Coal)                   | CO <sub>2</sub>  | 364                                 | 9                                                           | -97.5%                             | 0.002               | 0.3%                          | 97.2%                 |
| 1.B.1 | Energy                  | Fugitive CH <sub>4</sub> Emissions from Coal Mining and Handling                               | CH₄              | 469                                 | 132                                                         | -71.8%                             | 0.002               | 0.3%                          | 97.5%                 |
| 2.B   | Industrial              | N <sub>2</sub> O Emissions from Nitric Acid Production                                         | N <sub>2</sub> O | 1782                                | 1581                                                        | -11.3%                             | 0.002               | 0.3%                          | 97.9%                 |

# Trend Assessment for 1990-2005

|       | Sector                  | Category                                                                               | Gas              | Base Year<br>Emission,<br>Gg CO <sub>2</sub> -eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -<br>eq | Relative<br>change<br>1990-2005, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|-------|-------------------------|----------------------------------------------------------------------------------------|------------------|--------------------------------------------------|-------------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
|       | processes               |                                                                                        |                  |                                                  |                                                             |                                    |                     |                               |                       |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Refinery Gas)                    | CO <sub>2</sub>  | 865                                              | 607                                                         | -29.9%                             | 0.002               | 0.3%                          | 98.2%                 |
| 2.A   | Industrial processes    | CO <sub>2</sub> Emissions from Lime Production                                         | CO <sub>2</sub>  | 354                                              | 69                                                          | -80.6%                             | 0.001               | 0.3%                          | 98.4%                 |
| 1.A.5 | Energy                  | Other: (Lubricants)                                                                    | CO <sub>2</sub>  | 503                                              | 334                                                         | -33.6%                             | 0.001               | 0.2%                          | 98.6%                 |
| 1.A.4 | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Residential                              | $CH_4$           | 242                                              | 59                                                          | -75.7%                             | 0.001               | 0.2%                          | 98.8%                 |
| 4.C   | Agriculture             | CH <sub>4</sub> Emissions from Rice Cultivation                                        | CH <sub>4</sub>  | 262                                              | 100                                                         | -61.9%                             | 0.001               | 0.2%                          | 99.0%                 |
| 6.A   | Отходы                  | CH <sub>4</sub> Emissions from Solid Waste Disposal Sites                              | CH4              | 3343                                             | 3814                                                        | 14.1%                              | 0.001               | 0.1%                          | 99.1%                 |
| 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                              | CO <sub>2</sub>  | 163                                              | 56                                                          | -65.7%                             | 0.001               | 0.1%                          | 99.2%                 |
| 2.C   | Industrial processes    | CO <sub>2</sub> Emissions from Iron and Steel Production                               | CO <sub>2</sub>  | 998                                              | 972                                                         | -2.7%                              | 0.001               | 0.1%                          | 99.3%                 |
| 4.B   | Agriculture             | CH <sub>4</sub> Emissions from Manure Management                                       | CH <sub>4</sub>  | 420                                              | 568                                                         | 35.3%                              | 0.001               | 0.1%                          | 99.4%                 |
| 4.F   | Agriculture             | CH <sub>4</sub> Emissions from Field Burning Agricultural Residues                     | CH₄              | 23                                               | 133                                                         | 467.5%                             | 0.000               | 0.1%                          | 99.5%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gas of Underground Gasification) | CO <sub>2</sub>  | 192                                              | 124                                                         | -35.5%                             | 0.001               | 0.1%                          | 99.6%                 |
| 6.B   | Waste                   | N <sub>2</sub> O Emissions from Wastewater Handling                                    | N <sub>2</sub> O | 438                                              | 560                                                         | 28.0%                              | 0.000               | 0.1%                          | 99.7%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gas/ Diesel Oil)                 | CO <sub>2</sub>  | 78                                               | 22                                                          | -72.0%                             | 0.000               | 0.1%                          | 99.7%                 |
| 1.A.1 | Energy                  | N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion           | N <sub>2</sub> O | 81                                               | 39                                                          | -51.3%                             | 0.001               | 0.0%                          | 99.8%                 |
| 4.F   | Agriculture             | N <sub>2</sub> O Emissions from Field Burning Agricultural Residues                    | N <sub>2</sub> O | 9                                                | 49                                                          | 467.5%                             | 0.000               | 0.0%                          | 99.8%                 |
| 4.B   | Agriculture             | N <sub>2</sub> O Emissions from Manure Management                                      | N <sub>2</sub> O | 287                                              | 276                                                         | -3.7%                              | 0.000               | 0.0%                          | 99.8%                 |
| 1.A.4 | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Agriculture/Forestry/ Fishing            | CH <sub>4</sub>  | 35                                               | 3                                                           | -90.3%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Road Transportation                   | CH <sub>4</sub>  | 48                                               | 27                                                          | -43.1%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                        | CO <sub>2</sub>  | 0                                                | 18                                                          | 7090.2%                            | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Road Transportation                  | N <sub>2</sub> O | 26                                               | 14                                                          | -47.4%                             | 0.000               | 0.0%                          | 99.9%                 |
| 2.G   | Industrial<br>processes | Consumption Halocarbons and sulphur hexafluoride                                       | HFC              | 0                                                | 12                                                          | 4747.3%                            | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.1 | Energy                  | CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion            | CH <sub>4</sub>  | 24                                               | 15                                                          | -36.1%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.2 | Energy                  | N <sub>2</sub> O Emissions from Manufacturing Industries and Construction              | N <sub>2</sub> O | 13                                               | 4                                                           | -70.6%                             | 0.000               | 0.0%                          | 99.9%                 |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Agriculture/Forestry/ Fishing           | N <sub>2</sub> O | 14                                               | 5                                                           | -64.4%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.2 | Energy                  | CH <sub>4</sub> Emissions from Manufacturing Industries and Construction               | $CH_4$           | 18                                               | 10                                                          | -43.8%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                             | CO <sub>2</sub>  | 0                                                | 9                                                           | 3347.4%                            | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Residential                             | N <sub>2</sub> O | 22                                               | 17                                                          | -22.3%                             | 0.000               | 0.0%                          | 100.0%                |
| 2.A   | Industrial<br>processes | CO <sub>2</sub> Emissions from Soda Ash Use                                            | CO <sub>2</sub>  | 71                                               | 71                                                          | 0.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: N <sub>2</sub> O Emissions from Commercial/ Institutional               | N <sub>2</sub> O | 15                                               | 10                                                          | -32.4%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: CH <sub>4</sub> Emissions from Commercial/ Institutional                | CH <sub>4</sub>  | 15                                               | 22                                                          | 40.9%                              | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Railways                             | N <sub>2</sub> O | 4                                                | 1                                                           | -75.0%                             | 0.000               | 0.0%                          | 100.0%                |
| 6.B   | Waste                   | CH <sub>4</sub> Emissions from Wastewater Handling                                     | $CH_4$           | 292                                              | 316                                                         | 8.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Railways                              | CH <sub>4</sub>  | 3                                                | 1                                                           | -75.0%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                             | N <sub>2</sub> O | 1                                                | 0                                                           | -65.6%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Aviation                              | CH <sub>4</sub>  | 0                                                | 0                                                           | -65.6%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Patent Fuel)                     | CO <sub>2</sub>  | 0                                                | 0                                                           | 0.0%                               | 0.000               | 0.0%                          | 100.00%               |

|       | Sector                  | Category                                                                                  | Gas              | Base Year<br>Emission,<br>Gg CO <sub>2</sub> -eq | Currently<br>Year<br>Emission<br>Gg CO <sub>2</sub> -<br>eq | Relative<br>change<br>1990-2005, % | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total % |
|-------|-------------------------|-------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|-------------------------------------------------------------|------------------------------------|---------------------|-------------------------------|-----------------------|
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                     | CO <sub>2</sub>  | 0                                                | 0                                                           | 0.0%                               | 0.000               | 0.0%                          | 100.0%                |
| 1.A.1 | Energy                  | CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)                | CO <sub>2</sub>  | 168                                              | 0                                                           | -99.9%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CO <sub>2</sub> Emissions from Navigation                               | CO <sub>2</sub>  | 12                                               | 0                                                           | -98.0%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: CH <sub>4</sub> Emissions from Navigation                               | $CH_4$           | 0                                                | 0                                                           | 1300.7%                            | 0.000               | 0.0%                          | 100.0%                |
| 1.A.3 | Energy                  | Mobil Combustion: N <sub>2</sub> O emissions from Navigation                              | N <sub>2</sub> O | 0                                                | 0                                                           | 690.7%                             | 0.000               | 0.0%                          | 100.0%                |
| 1.A.4 | Energy                  | Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/ Fishing (Solid Fuels) | CO <sub>2</sub>  | 359                                              | 0                                                           | -99.9%                             | 0.000               | 0.0%                          | 100.0%                |
| 2.B   | Industrial<br>processes | CH <sub>4</sub> Emissions from Chemical Industry                                          | CH <sub>4</sub>  | 0                                                | 3                                                           | +965.0%                            | 0.000               | 0.0%                          | 100.0%                |

 $\square$ 

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

# Source Category Analysis Summary Quantitative Method Tier 1 Level Assessment for 2000, Trend Assessment for 1990-2000.

| А                                                                                             | В                           | с                                 | D                                                        |
|-----------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------|
| IPCC Source Categories                                                                        | Direct<br>Greenhouse<br>Gas | Key<br>Source<br>Category<br>Flag | Criteria for<br>Identification<br>Kay Source<br>Category |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Other Bituminous Coal)            | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Sub-Bituminous Coal)              | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Patent Fuel)                      | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Crude Oil)                        | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                         | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                   | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Gas/ Diesel Oil)                  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Residual Fuel Oil)                | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                              | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Refinery Gas)                     | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)              | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Natural Gas)                      | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Gas of Underground Gasification)  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion             | CH₄                         | No                                |                                                          |
| 1.A.1 N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion            | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Solid Fuels)  | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Liquid Fuels) | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Natural Gas)  | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.2 CH <sub>4</sub> Emissions from Manufacturing Industries and Construction                | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.2 N <sub>2</sub> O Emissions from Manufacturing Industries and Construction               | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Road Transportation                    | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Road Transportation                    | CH₄                         | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Road Transportation                   | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Navigation                             | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Navigation                             | CH₄                         | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Navigation                            | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                               | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: CH₄ Emissions from Aviation                                           | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                              | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Railways                               | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Railways                               | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Railways                              | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 CO <sub>2</sub> Emissions from Pipeline Transport                                       | CO <sub>2</sub>             | Yes                               | Level                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Solid Fuels)    | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Liquid Fuels)   | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Natural Gas)    | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CH <sub>4</sub> Emissions from Commercial/Institutional                  | CH₄                         | No                                |                                                          |
| 1.A.4 Other Sectors: N <sub>2</sub> O Emissions from Commercial/Institutional                 | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                 | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: $CO_2$ Emissions from Residential (Liquid Fuels)                         |                             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: $CO_2$ Emissions from Residential (Natural Gas)                          | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CH <sub>4</sub> Emissions from Residential                               | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.4 Other Sectors: $N_2O$ Emissions from Residential                                        | N <sub>2</sub> O            | No                                | 1                                                        |



Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

| Α                                                                                               | В                           | С                                 | D                                                        |
|-------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------|
| IPCC Source Categories                                                                          | Direct<br>Greenhouse<br>Gas | Key<br>Source<br>Category<br>Flag | Criteria for<br>Identification<br>Kay Source<br>Category |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Solid Fuels)  | CO2                         | No                                |                                                          |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Liquid Fuels) | CO2                         | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Natural Gas)  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.4 Other Sectors: CH <sub>4</sub> Emissions from Agriculture/Forestry/Fishing                | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.4 Other Sectors: N <sub>2</sub> O Emissions from Agriculture/Forestry/Fishing               | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.5 Other: (Lubricants)                                                                       | CO <sub>2</sub>             | No                                |                                                          |
| 1.B.1 Fugitive CH <sub>4</sub> Emissions from Coal Mining and Handling                          | CH <sub>4</sub>             | No                                |                                                          |
| 1.B.2 Fugitive CH <sub>4</sub> Emissions from Oil and Gas Operation                             | CH₄                         | Yes                               | Level, Trend                                             |
| 2.A CO <sub>2</sub> Emissions from Cement Production                                            | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 2.A CO <sub>2</sub> Emissions from Lime Production                                              | CO <sub>2</sub>             | No                                |                                                          |
| 2.A CO <sub>2</sub> Emissions from Soda Ash Use                                                 | CO <sub>2</sub>             | No                                |                                                          |
| 2.C CO <sub>2</sub> Emissions from Iron and Steel Production                                    | CO <sub>2</sub>             | No                                |                                                          |
| 2.B N <sub>2</sub> O Emissions from Nitric Acid Production                                      | N <sub>2</sub> O            | No                                |                                                          |
| 2.B CO <sub>2</sub> Emissions from Ammonia Production                                           | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 2.B CH <sub>4</sub> Emissions from Chemical Industry                                            | CH₄                         | No                                |                                                          |
| 2.G Consumption Halocarbon and Sulphur Hexafluoride                                             | HFC                         | No                                |                                                          |
| 4.A CH <sub>4</sub> Emissions from Enteric Fermentation                                         | CH₄                         | Yes                               | Level                                                    |
| 4.B CH <sub>4</sub> Emissions from Manure Management                                            | $CH_4$                      | No                                |                                                          |
| 4.B N <sub>2</sub> O Emissions from Manure Management                                           | N <sub>2</sub> O            | No                                |                                                          |
| 4.F CH <sub>4</sub> Emissions from Filed Burning Agricultural Residues                          | CH₄                         | No                                |                                                          |
| 4.F N <sub>2</sub> O Emissions from Filed Burning Agricultural Residues                         | N <sub>2</sub> O            | No                                |                                                          |
| 4.D N <sub>2</sub> O Emissions from Agricultural Soils                                          | N <sub>2</sub> O            | Yes                               | Level, Trend                                             |
| 4.C CH <sub>4</sub> Emissions from Rice Cultivation                                             | $CH_4$                      | No                                |                                                          |
| 6.A CH <sub>4</sub> Emissions from Solid Waste Disposal Sites                                   | CH <sub>4</sub>             | Yes                               | Level                                                    |
| 6.B CH <sub>4</sub> Emissions from Wastewater Handling                                          | CH <sub>4</sub>             | No                                |                                                          |
| 6.B N <sub>2</sub> O Emissions from Wastewater Handling                                         | N <sub>2</sub> O            | No                                |                                                          |

 $\square$ 

Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

# Source Category Analysis Summary Quantitative Method Tier 1 Level Assessment for 2005, Trend Assessment for 1990-2005.

| А                                                                                             | В                           | с                                 | D                                                        |
|-----------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------|
| IPCC Source Categories                                                                        | Direct<br>Greenhouse<br>Gas | Key<br>Source<br>Category<br>Flag | Criteria for<br>Identification<br>Kay Source<br>Category |
| 1.A. CO <sub>2</sub> Emissions from Stationary Combustion (Other Bituminous Coal)             | CO <sub>2</sub>             | No                                |                                                          |
| 1.A. CO <sub>2</sub> Emissions from Stationary Combustion (Sub-Bituminous Coal)               | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A. CO <sub>2</sub> Emissions from Stationary Combustion (Patent Fuel)                       | CO <sub>2</sub>             | No                                |                                                          |
| 1.A. CO <sub>2</sub> Emissions from Stationary Combustion (Crude Oil)                         | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A. CO <sub>2</sub> Emissions from Stationary Combustion (Gasoline)                          | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Other Kerosene)                   | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Gas/ Diesel Oil)                  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Residual Fuel Oil)                | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (LPG)                              | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Refinery Gas)                     | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Stove Domestic Fuel)              | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Natural Gas)                      | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.1 CO <sub>2</sub> Emissions from Stationary Combustion (Gas of Underground Gasification)  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.1 CH <sub>4</sub> (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion             | CH₄                         | No                                |                                                          |
| 1.A.1 N <sub>2</sub> O (Non-CO <sub>2</sub> ) Emissions from Stationary Combustion            | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Solid Fuels)  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Liquid Fuels) | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.2 CO <sub>2</sub> Emissions from Manufacturing Industries and Construction (Natural Gas)  | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.2 CH <sub>4</sub> Emissions from Manufacturing Industries and Construction                | CH4                         | No                                |                                                          |
| 1.A.2 N <sub>2</sub> O Emissions from Manufacturing Industries and Construction               | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Road Transportation                    | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Road Transportation                    | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Road Transportation                   | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Navigation                             | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Navigation                             | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Navigation                            | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Aviation                               | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Aviation                               | CH <sub>4</sub>             | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Aviation                              | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 Mobil Combustion: CO <sub>2</sub> Emissions from Railways                               | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.3 Mobil Combustion: CH <sub>4</sub> Emissions from Railways                               | CH₄                         | No                                |                                                          |
| 1.A.3 Mobil Combustion: N <sub>2</sub> O Emissions from Railways                              | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.3 CO <sub>2</sub> Emissions from Pipeline Transport                                       | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Solid Fuels)    | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Liquid Fuels)   | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Commercial/Institutional (Natural Gas)    | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CH <sub>4</sub> Emissions from Commercial/Institutional                  | CH4                         | No                                |                                                          |
| 1.A.4 Other Sectors: N <sub>2</sub> O Emissions from Commercial/Institutional                 | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Residential (Solid Fuels)                 | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Residential (Liquid Fuels)                | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Residential (Natural Gas)                 | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: $CH_4$ Emissions from Residential                                        | CH <sub>4</sub>             | No                                |                                                          |



Second National Communication of Uzbekistan on Climate Change under UNFCCC National GHG Inventory Report 2000

| A                                                                                               | В                           | С                                 | D                                                        |
|-------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------------------------------|
| IPCC Source Categories                                                                          | Direct<br>Greenhouse<br>Gas | Key<br>Source<br>Category<br>Flag | Criteria for<br>Identification<br>Kay Source<br>Category |
| 1.A.4 Other Sectors: N <sub>2</sub> O Emissions from Residential                                | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Solid Fuels)  | CO2                         | No                                |                                                          |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Liquid Fuels) | CO <sub>2</sub>             | Yes                               | Level, Trend                                             |
| 1.A.4 Other Sectors: CO <sub>2</sub> Emissions from Agriculture/Forestry/Fishing (Natural Gas)  | CO <sub>2</sub>             | No                                |                                                          |
| 1.A.4 Other Sectors: CH <sub>4</sub> Emissions from Agriculture/Forestry/Fishing                | CH₄                         | No                                |                                                          |
| 1.A.4 Other Sectors: N <sub>2</sub> O Emissions from Agriculture/Forestry/Fishing               | N <sub>2</sub> O            | No                                |                                                          |
| 1.A.5 Other: (Lubricants)                                                                       | CO <sub>2</sub>             | No                                |                                                          |
| 1.B.1 Fugitive CH <sub>4</sub> Emissions from Coal Mining and Handling                          | CH₄                         | No                                |                                                          |
| 1.B.2 Fugitive CH <sub>4</sub> Emissions from Oil and Gas Operation                             | CH₄                         | Yes                               | Level, Trend                                             |
| 2.A CO <sub>2</sub> Emissions from Cement Production                                            | CO <sub>2</sub>             | Yes                               | Level                                                    |
| 2.A CO <sub>2</sub> Emissions from Lime Production                                              | CO <sub>2</sub>             | No                                |                                                          |
| 2.A CO <sub>2</sub> Emissions from Soda Ash Use                                                 | CO <sub>2</sub>             | No                                |                                                          |
| 2.C CO <sub>2</sub> Emissions from Iron and Steel Production                                    | CO <sub>2</sub>             | No                                |                                                          |
| 2.B N <sub>2</sub> O Emissions from Nitric Acid Production                                      | N <sub>2</sub> O            | Yes                               | Level                                                    |
| 2.B CO <sub>2</sub> Emissions from Ammonia Production                                           | CO <sub>2</sub>             | Yes                               | Trend                                                    |
| 2.B CH <sub>4</sub> Emissions from Chemical Industry                                            | CH <sub>4</sub>             | No                                |                                                          |
| 2.G Consumption Halocarbon and Sulphur Hexafluoride                                             | HFC                         | No                                |                                                          |
| 4.A CH₄ Emissions from Enteric Fermentation                                                     | CH₄                         | Yes                               | Level, Trend                                             |
| 4.B CH₄ Emissions from Manure Management                                                        | CH₄                         | No                                |                                                          |
| 4.B N <sub>2</sub> O Emissions from Manure Management                                           | N <sub>2</sub> O            | No                                |                                                          |
| 4.F CH <sub>4</sub> Emissions from Filed Burning Agricultural Residues                          | CH <sub>4</sub>             | No                                |                                                          |
| 4.F N <sub>2</sub> O Emissions from Filed Burning Agricultural Residues                         | N <sub>2</sub> O            | No                                |                                                          |
| 4.D N <sub>2</sub> O Emissions from Agricultural Soils                                          | N <sub>2</sub> O            | Yes                               | Level, Trend                                             |
| 4.C CH <sub>4</sub> Emissions from Rice Cultivation                                             | CH <sub>4</sub>             | No                                |                                                          |
| 6.A CH₄ Emissions from Solid Waste Disposal Sites                                               | CH <sub>4</sub>             | Yes                               | Level                                                    |
| 6.B CH₄ Emissions from Wastewater Handling                                                      | CH <sub>4</sub>             | No                                |                                                          |
| 6.B N <sub>2</sub> O Emissions from Wastewater Handling                                         | N <sub>2</sub> O            | No                                |                                                          |



# Annex 6

#### Calorific value of sub-bituminous coal

In 2006 when preparation of the greenhouse gas inventory within the framework of the Second National Communication on Climate Change, the national conversion factor for uzbek sub-bituminous coals were revised for the period 1999-2005.

To calculate the averages the data on the lowest calorific values provided by the Open Joint-Stock Company «Ugol» were used.

| Rank of coal | Lowest calorific value | Measurement<br>unit | Normative document |
|--------------|------------------------|---------------------|--------------------|
| 2BPK         | 3200                   | kcal /kg            | GOST 8302-87       |
| 2BR, BOMSSh  | 3200                   | kcal /kg            | GOST 8298-89       |
| 2BOMSSh-B1   | 2700                   | kcal /kg            | TSh12-18:2001      |
| 2BR-B1       | 2760                   | kcal /kg            | TSh12-18:2001      |

Table A1 Data of the Open Joint-Stock Company «Ugol»

Average calorific value for a sample = 2965.0 kcal /kg (or 12.414 GJ/tonne).

Limited number of elements in the sample does not allow estimation of uncertainty of the averages. Only deviation of the data available can be estimated.

Standard square deviation  $\sigma = \pm 272.5$  kcal/kg. Relative maximal deviation =  $\pm 9.19$  %.

In the previous years not only uzbek coals but coals from the provinces of former USSR were utilized in the republic. The imported coals are characterized by higher calorific values. Therefore average weighted coefficients for coals were calculated for each year for the period 1990-1997. The calculation was performed in the State Committee for Statistics of the Republic of Uzbekistan.

For 1998 it was decided to use the value **13.158** GJ/tonne, that is averaged value of 1997 (13.901 GJ/tonne) and 1999 (12.414 GJ/tonne) as no data available on calorific values of imported coals.

Average calorific value of rank of coals (2965.0 kcal /kg (or **12.414** GJ/tonne)) was used for the period 1999-2005.

 Table A2
 Weighted average coefficients for coals by years

| Year | Sub-bituminous<br>coal | Year | Sub-bituminous<br>coal |
|------|------------------------|------|------------------------|
| 1990 | 15.413                 | 1994 | 14.124                 |
| 1991 | 15.252                 | 1995 | 13.830                 |
| 1992 | 14.489                 | 1996 | 13.622                 |
| 1993 | 14.242                 | 1997 | 13.901                 |

Table A3 Weighted average coefficients for coals by years

| Year | Sub-bituminous<br>coal | Year | Sub-bituminous<br>coal |
|------|------------------------|------|------------------------|
| 1998 | 13.158                 | 2002 | 12.414                 |
| 1999 | 12.414                 | 2003 | 12.414                 |
| 2000 | 12.414                 | 2004 | 12.414                 |
| 2001 | 12.414                 | 2005 | 12.414                 |

 $\bigcirc$ 

# Annex 7

# Calculation of national indirect GHG emission factors for transport in the sector "Energy" in Uzbekistan

In 2007 when preparation of the GHG inventory for the Second National Communication, the national factors were recalculated for emissions of:

- CO from fuel combustion for transport activity
- NOx from fuel combustion for transport activity
- NMVOC from fuel combustion for transport activity

All factors were calculated using the same way based on the "Instruction on Making Report on Atmospheric Air Pollution", Annex 1, approved by the Decree of the State Committee on Statistics of the Republic of Uzbekistan from 20.09.94, N 29 (Table A4).

**Table A4** Polluting substances emissions from combustion of 1 tonne of fuel, tonne/tonne

| Polluting substance                               | Polluting substances emissions |                       |            |  |
|---------------------------------------------------|--------------------------------|-----------------------|------------|--|
| i onuting substance                               | Gasoline engine                | Diesel engine         | Gas-engine |  |
| Carbon oxide                                      | 0.6                            | 0.1                   | 0.17       |  |
| Hydrocarbons                                      | 0.1                            | 0.03                  | 0.06       |  |
| Nitrogen oxides (converted into nitrogen dioxide) | 0.04                           | 0.04                  | 0.04       |  |
| Sulfurous gas                                     | 0.002                          | 0.02                  |            |  |
| Soot                                              |                                | 0.016                 |            |  |
| Aldehydes                                         | 0.04                           | 0.0025                |            |  |
| Benzpyrene                                        | 0.23*10 <sup>-6</sup>          | 0.31*10 <sup>-6</sup> |            |  |
| Lead compounds                                    | 0.0003                         |                       |            |  |

As the emission factors should be expressed in kg gas / TJ, fuel data is converted to energy units.

Table A5 Calorific value of fuel

| Fuel            | Gasoline          | Diesel fuel       | Liquefied gas     |
|-----------------|-------------------|-------------------|-------------------|
| Calorific value | 0.043668 TJ/tonne | 0.042496 TJ/tonne | 0.046013 TJ/tonne |

Calculation of emissions in kg gas/ TJ was made based on the following:

X = n kg rasa \* 1 TJ / tonne of fuel expressed in TJ

X - emission factor (kg/TJ)

N – gas emission from combustion of 1 tonne of fuel

Taking into account the fuel quality and condition of car fleet, it is preferably to use national factors for emission calculation but not default ones.

Calculations of each of the developed factors follow.

# 7.1. National CO emission factor for fuel combustion in transport

In accordance with the "Instruction on Making Report on Atmospheric Air Pollution", there are given below the gas emission per tonne of fuel, expressed in energy units.

| Fuel                            | Gasoline    | Diesel fuel | Liquefied gas |
|---------------------------------|-------------|-------------|---------------|
| 1 tonne of fuel in energy units | 0.043668 TJ | 0.042496 TJ | 0.046013 TJ   |
| Specific CO emission, kg        | 600         | 100         | 170           |



Calculation of emission, kg CO/ TJ:

| Gasoline      | X = 600 * 1 / 0.043668 = 13740.0  kg/TJ |
|---------------|-----------------------------------------|
| Diesel fuel   | X = 100 * 1 / 0.042496 = 2353.2 kg/TJ   |
| Liquefied gas | X = 170 * 1 / 0.046013 = 3694.6 kg/TJ   |

| Table A7 Calculated CO emiss | sion factors |
|------------------------------|--------------|
|------------------------------|--------------|

| Gasoline      | Diesel fuel  | Liquefied gas |
|---------------|--------------|---------------|
| 13740.0 kg/TJ | 2353.2 kg/TJ | 3694.6 kg/TJ  |

# 7.2 NOx emission factor for fuel combustion in transport

In accordance with the "Instruction on Making Report on Atmospheric Air Pollution", there are given below the gas emission per tonne of fuel, expressed in energy units.

|  | Table | A8 Sp | ecific | NOx | emission |
|--|-------|-------|--------|-----|----------|
|--|-------|-------|--------|-----|----------|

| Fuel                            | Gasoline    | Diesel fuel | Liquefied gas |
|---------------------------------|-------------|-------------|---------------|
| 1 tonne of fuel in energy units | 0.043668 TJ | 0.042496 TJ | 0.046013 TJ   |
| Specific NOx emission, kg       | 40          | 40          | 40            |

Calculation of emission, kg NOx / TJ:

| Gasoline      | X = 40 * 1 / 0.043668 = 916.0  kg/TJ |
|---------------|--------------------------------------|
| Diesel fuel   | X = 40 * 1 / 0.042496 = 941.3  kg/TJ |
| Liquefied gas | X = 40 * 1 / 0.046013 = 869.3  kg/TJ |

Table A9 Calculated NOx emission factors

| Gasoline    | Diesel fuel | Liquefied gas |
|-------------|-------------|---------------|
| 916.0 kg/TJ | 941.3 kg/TJ | 869.3 kg/TJ   |

# 7.3 NMVOC emission factor for fuel combustion in transport

In accordance with the "Instruction on Making Report on Atmospheric Air Pollution", there are given below the gas emission per tonne of fuel, expressed in energy units.

| T 11 140   | a .c     | NINGOO | • •       |
|------------|----------|--------|-----------|
| Tohlo Alli | Specific |        | emiccion  |
| Table A10  | SUCCIIIC |        | CHIISSION |
|            | - F      |        |           |

| Fuel                            | Gasoline    | Diesel fuel | Liquefied gas |
|---------------------------------|-------------|-------------|---------------|
| 1 tonne of fuel in energy units | 0.043668 TJ | 0.042496 TJ | 0.046013 TJ   |
| Specific NMVOC emission, kg     | 100         | 30          | 60            |

Calculation of emission, kg NMVOC / TJ:

| Gasoline      | X = 100 * 1 / 0.043668 = 2290.0  kg/TJ |
|---------------|----------------------------------------|
| Diesel fuel   | X = 30 * 1 / 0.042496 = 705.9 kg/TJ    |
| Liquefied gas | X = 60 * 1 / 0.046013 = 1304.0  kg/TJ  |

| Gasoline     | Diesel fuel | Liquefied gas |
|--------------|-------------|---------------|
| 2290.0 kg/TJ | 705.9 kg/TJ | 1304.0 kg/TJ  |



# Annex 8

# Calculation of national factors for fugitive methane emission from gas operation in Uzbekistan

Within the framework of the Regional Project "Capacity Building for Improving the Quality of the GHG Inventories (Europe/CIS region)" (2003-2006) the national factors were developed for fugitive methane emissions from the following gas activities:

- production
- transmission
- processing (gas treatment from sulfurous compounds)

Calculation was made based on the data of the National Holding Company «Uzneftegaz» and the Joint-Stock Company «Uztransgaz».

Limited number of elements in the sample for each developed factor does not allow estimation of uncertainty of the national factors. Only deviation of the data available can be estimated.

While preparation of the GHG inventory within the framework of the Second National Communication, the national emission factors for methane emission from gas production and transmission were used as they meet the national circumstances to a greater extent than default factors. Besides, the average factors developed for two enterprises with different treatment technology were employed for estimation of methane emission from gas processing (treatment from sulfurous compounds). This emission source was not covered in the previous inventory.

Calculations for each of developed factors follow.

## 8.1 Calculation of national methane emission factors for gas production

The general scheme of emission factors calculation is as follows:

| $ \begin{array}{l} \mathbf{K} = \mathbf{V}_{NL} / \mathbf{V}_{AD} * 1000 \\ \text{Where:} \\ \mathbf{K} - \text{emission factor, kg/thousand m}^{3} \\ \mathbf{V}_{NL} - \text{amount of gas emitted into the atmosphere when gas losses and consumption for own needs, tone \\ \mathbf{V}_{AD} - \text{activity data (gas production and preparation), thousands m}^{3}. \end{array} $ | ( <b>1</b> )<br>nes; |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Calculation of methane amount:<br>$V_{NL} = V^*C^* \rho_i/1000$<br>Where:<br>$V - volume of gas, m^3$<br>C - fraction of methane in natural gas<br>$\rho - density of methane, 0.668 kg/m^2 - under 20° C and 760 millimeter of mercury 1000 - conversion factor, that converts kg to tonne$                                                                                            | (2)                  |
| Calculation of emission factor, kg/PJ<br>K kg/PJ = K kg/thousand m <sup>3</sup> * 8 100 000 cal/m <sup>3</sup> * 4.1868 J/cal/ $10^{15}$<br>Annual factors were calculated for the period 1999-2004.                                                                                                                                                                                    | (3)                  |

Volumes of own needs and losses were calculated using "Method of calculation of gas consumption for own needs while gas production and preparation", that was developed by the Ukraine Research Institute of Gas in 1981 and Work Document 39.2-140-95 ("Method of calculation of hazardous substances emission into the atmosphere for oil & gas production enterprise and oil & gas refinery", Tashkent, 1995)

Activity data were provided by the National Holding Company «Uzneftegaz».

Table A12 Data on natural gas production and leaks

|                                               | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     |
|-----------------------------------------------|----------|----------|----------|----------|----------|----------|
| Total gas production, thousand m <sup>3</sup> | 55581000 | 56400000 | 57414000 | 58430000 | 58060000 | 60428000 |
| Natural gas leaks, thousand $m^3$             | 180439   | 153085   | 224747   | 188729   | 175234   | 143846   |

Methane fraction in natural gas is taken equal to 0.935 in volume units (averaged data of regular analyses of gas produced).



#### Calculation of methane emission

According to the formula (2)  $CH_4 = 143\overline{8}46$  thousand m<sup>3</sup> \* 0.935 \* 0.668\*1000/1000 = 89843 tonne (The example of calculation for 2004)

#### Calculation of annual aggregated methane emission factor

43841 kg/PJ.

(The example of calculation for 2004)

For six years taken for calculation of methane emission factors (1999-2004) as the most reliable for accounting all gas lost, the annual emission factors were calculated.

| Table A13 Annual | factors of methane | emission from | gas production, kg/PJ |
|------------------|--------------------|---------------|-----------------------|
|                  |                    |               |                       |

| 1999  | 2000  | 2001  | 2002  | 2003  | 2004  |
|-------|-------|-------|-------|-------|-------|
| 59789 | 49989 | 72094 | 59487 | 55586 | 43841 |

#### Calculation of average factor

Based on the above presented aggregated factors of methane emission from gas production and preparation for the period 1999-2004, the average factor was calculated – 56798 kg/PJ.

Estimation of available data deviation. Standard square deviation  $\sigma = \pm 9652.5 \text{ kg CH}_4/\text{PJ}$ . Maximal relative deviation (coefficient of variation) =  $\pm 17.0$  %.

#### 8.2. Calculation of national factors of methane emissions from gas transmission pipelines

General scheme of emission factors calculation is as follow:

| $\mathbf{K} = \mathbf{V}_{NL} / \mathbf{V}_{AD} * 1000$<br>Where:<br>$\mathbf{K}$ – emission factor, kg/thousand m <sup>3</sup><br>$\mathbf{V}_{NL}$ - amount of gas emitted into the atmosphere when gas losses and consumption for own needs, tonn<br>$\mathbf{V}_{AD}$ – activity data (volumes of gas transported), thousand m <sup>3</sup> . | (1)<br>es; |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Calculation of methane amount:<br>$V_{NL} = V * C * \rho_i / 1000$<br>Where:<br>$V - volume of gas, m^3$<br>C - methane fraction in natural gas<br>$\rho - density of methane - 0.668 kg/m^2 - under 20° C and 760 mm of mercury column.$<br>1000 - conversion factor, that converts kg to tonne                                                  | (2)        |
| Calculation of emission factor, kg/PJ<br>K kg/PJ = K kg/thousand m <sup>3</sup> * 8 100 000 cal/m <sup>3</sup> * 4.1868 J/cal/ $10^{15}$<br>Annual factors were calculated for the period 1999-2003.                                                                                                                                              | (3)        |

The volumes of own needs and losses were calculated based on the method of gas discharge calculation for own needs and losses applied in the system of the gas transmission pipelines in the Republic of Uzbekistan. This method was developed basing on the Guidance on Control of Polluting Substances Emission from Transport and Gas Storage Facilities (Research Institute of Gas, Moscow, 1985).

Activity data were provided by the Joint-Stock Company «Uztransgaz».

Table A14 Data on the volumes of gas transmission and leaks

|                                                                                                                | 1999     | 2000     | 2001     | 2002     | 2003     |
|----------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|
| Gas intake in the pipe-lines of<br>«Uztransgaz» (including transit of<br>Turkmen gas), thousand m <sup>3</sup> | 57381533 | 79092548 | 82164489 | 83321929 | 87277265 |
| Natural gas leaks, thousand m <sup>3</sup>                                                                     | 2195345  | 2303959  | 2912861  | 3674561  | 3943376  |

Methane fraction in natural gas is taken equal to 0.927 in volume units (averaged data of regular analyses of gas produced).



#### Calculation of methane emission

According to the formula (2)  $CH_4 = 2195345$  thousand m<sup>3</sup> \* 0.927 \* 0.668 \* 1000/1000 = 1359437 tonne (The example of calculation for 1999)

#### Calculation of annual aggregated methane emission factor

Specific CH<sub>4</sub> emission = 1 359 437 tonne/ 57 381 533 thousand  $m^3 * 1000 = 23.69 \text{ kg/thousand } m^3$ . Specific CH<sub>4</sub> emission = 1 359 437 tonne / (57 381 533 thousand  $m^3 * 1000*8 100 000 \text{ cal/m}^3 * 4.1868 \text{ J/cal/ } 10^{15}$ ) = 698 586 kg/PJ.

(The example of calculation for 1999)

For five years taken for calculation of methane emission factors (1999-2003) as the most reliable for accounting all gas lost, the annual emission factors were calculated.

Table A15 Annual factors of methane emission from gas transmission, kg/PJ

| 1999   | 2000   | 2001   | 2002   | 2003   |
|--------|--------|--------|--------|--------|
| 698586 | 531898 | 647328 | 805258 | 825004 |

#### Calculation of average factor

Based on the above presented aggregated factors of methane emission from gas transmission for the period 1999-2003, the average factor was calculated -701615 kg/PJ.

Estimation of available data deviation.

Standard square deviation  $\sigma = \pm 120132.1 \text{ kg CH}_4/\text{PJ}$ .

Maximal relative deviation (coefficient of variation) =  $\pm 17.1$  %.

# 8.3. Calculation of national factor of methane emission from natural gas processing (refinement from sulfurous compounds)

General scheme of emission factors calculation is as follow:

 $\mathbf{K} = \mathbf{V}_{NL} / \mathbf{V}_{AD} * 1000$ (1)Where:(1) $\mathbf{K}$  - emission factor, kg/thousand m<sup>3</sup> $\mathbf{V}_{NL}$  - amount of gas emitted into the atmosphere when gas losses and consumption for own needs, tonne; $\mathbf{V}_{AD}$  - activity data (volumes of gas processed), thousand m<sup>3</sup>.Calculation of methane amount: $\mathbf{V}_{NL} = \mathbf{V}^* \mathbf{C}^* \ \mathbf{\rho}_i / 1000$ (2)

Where:

V – volume of gas, m<sup>3</sup>

**C** – methane fraction in natural gas

 $\rho$  – density of methane – 0.668 kg/m<sup>2</sup> - under 20° C and 760 mm of mercury column.

1000 - conversion factor, that converts kg to tonne

Calculation of emission factor, kg/PJ K kg/PJ = K kg/thousand m<sup>3</sup> \* 8 100 000 cal/m<sup>3</sup> \* 4.1868 J/cal/  $10^{15}$ 

Annual factors were calculated for two period 1999-2004 (Mubarek Gas Processing Plant) and 1995-1998 (Gas Production Plant "Shurtanneftegaz").

The volumes of own needs and losses were calculated based on "The method of gas discharge calculation for own needs and technological losses for gas processing plants" developed by the Uzbek Research Institute of Oil &Gas in 2004. This method was based on the "The Method of calculation of Polluting Substances Emission for Oil &Gas Production and Processing Enterprises", Tashkent, 1995.

Activity data were provided by the National Holding Company «Uzneftegaz».

Table A16 Data on volumes of gas processed and lost at the Mubarek Gas Processing Plant

|                                                | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     |
|------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Intake for processing, thousand m <sup>3</sup> | 24678410 | 25825880 | 27298000 | 27323451 | 27521672 | 27801264 |
| Natural gas leaks, thousand m <sup>3</sup>     | 1506400  | 1544817  | 1467033  | 1444064  | 1394659  | 1334942  |

Methane fraction in natural gas is taken equal to 0.935 in volume units (averaged data of regular analyses of gas processed).

(3)



Table A17 Volumes of natural gas processed and lost at the Gas Production Plant «Shurtanneftegaz»

|                                                | 1995     | 1996     | 1997     | 1998     |
|------------------------------------------------|----------|----------|----------|----------|
| Intake for processing, thousand m <sup>3</sup> | 12668530 | 13340360 | 13380740 | 13262590 |
| Natural gas leaks, thousand m <sup>3</sup>     | 132208   | 75701    | 60374    | 36433    |

#### Calculation of methane emission

According to the formula (2)

 $CH_4 = 133\overline{4}942$  thousand m<sup>3</sup> \* 93.5/100 \* 0.668 \* 1000/1000 = 833778 tonne

(The example of calculation for 2004, Mubarek Gas Plant)

 $CH_4 = 132208$  thousand m<sup>3</sup> \* 93.5/100 \* 0.668 \* 1000/1000 = 82574 tonne

(The example of calculation for 1995, Gas Production Plant "Shurtanneftegaz")

#### Calculation of annual aggregated methane emission factor

Specific CH<sub>4</sub> emission = 833778 tonne/ 27801264 thousand  $m^3 * 1000 = 23.99$  kg/thousand  $m^3$ . Specific CH<sub>4</sub> emission = 833778 tonne / (27801264 thousand  $m^3 * 1000 * 8 100 000$  cal/m<sup>3</sup> \* 4.1868 J/cal/ 10<sup>15</sup>) = 884339 kg/PJ.

(The example of calculation for 2004, Mubarek Gas Processing Plant)

Specific CH<sub>4</sub> emission = 82574 tonne/ 12668530 thousand  $m^3 * 1000 = 6.52 \text{ kg/thousand } m^3$ . Specific CH<sub>4</sub> emission = 82574 tonne / (12668530 thousand  $m^3 * 1000 * 8 100\ 000\ cal/m^3 * 4.1868\ J/cal/\ 10^{15}) = 192200 \text{ kg/PJ}$ .

(The example of calculation for 1995, Gas Production Plant "Shurtanneftegaz")

For six years taken for calculation of methane emission factors (1999-2004) as the most reliable for accounting all gas lost, the annual emission factors were calculated (Mubarek Gas Processing Plant)

Table A18 Annual factors of methane emission from processing (Mubarek Gas Processing Plant), kg/PJ

| 1999    | 2000    | 2001   | 2002   | 2003   | 2004   |
|---------|---------|--------|--------|--------|--------|
| 1124201 | 1101648 | 989760 | 973356 | 933285 | 884339 |

For four years taken for calculation of methane emission factors (1995-1998) the annual emission factors were получены, kg/PJ (Gas Production Plant "Shurtangaz")

Table A19 Annual methane emission factors from processing (Gas Production Plant "Shurtanneftegaz"), kg/PJ

| 1995    | 1996   | 1997  | 1998  |
|---------|--------|-------|-------|
| 1992200 | 104509 | 83098 | 50593 |

#### Calculation of average factor

Based on the above presented aggregated factors of methane emission from gas processing the average factors were calculated -1001098 kg/PJ for Mubarek Gas Processing Plant and 71733 for Gas Production Plant "Shurtanneftegaz"

A great difference in the factors is caused by difference in the technology of gas processing: Mubarek Gas Processing Plant - amine gas treating; Gas Production Plant "Shurtanneftegaz" - amine and zeolitic gas treating.

Estimation of available data deviation.

Mubarek Gas Refinery Standard square deviation  $\sigma = \pm 94227.5 \text{ kg CH}_4/\text{PJ}.$ 

Maximal relative deviation (coefficient of variation) =  $\pm 9.4$  %.

Gas Production Plant "Shurtangaz"

Standard square deviation  $\sigma = \pm 60599.3$  kg CH<sub>4</sub>/PJ.

Maximal relative deviation (coefficient of variation) =  $\pm$  84.3 %.

#### Reference

- 1. The methods of calculation of gas consumption for own needs when gas production and field processing, Ukraine Research Institute of Gas, 1981.
- 2. RD 39.2-140-95. The method of calculation of polluting substances emissions in oil &gas production and oil &gas refinery, Tashkent, 1995.

 RD 51-100-85. Guidance on regulation of polluting substances emissions from transport and gas storage facilities, Research Institute of Gas, Moscow, 1985.

4. The method of calculation of gas consumption rates for own needs and technological losses for gas refinery units, Uzbek Research Institute of Oil &Gas, Tashkent, 2004.



# Annex 9

## Calculation of national SO<sub>2</sub> emission factor from gas operation in Uzbekistan

In 2001 with the framework of the project "Uzbekistan: Country Study on Climate Change, Phase 2" the national  $SO_2$  emission factor from gas operation was developed.

In Uzbekistan about 70% of gas produced contains up to 5% (in volume) of sulfurous compounds. Gas is treated from these compounds at the enterprises of the National Holding Company "Uzneftegaz". Then sulfur is separated from these compounds.

The calculation was made based on the data of the National Holding Company "Uzneftegaz". Limited number of the elements of the sample does not allow estimation of uncertainty of the national factor. Only deviation in the data available can be estimated.

The developed  $SO_2$  emission factor from natural gas treatment from sulfurous compounds was used in the GHG inventory prepared within the framework of the Second National Communication as before this emission source was not inventoried and the default factors are not available in the Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories, Greenhouse Gas Inventory Reporting Instructions, IPCC, 1996

General scheme of emission factors calculation is as follow:

 $\mathbf{K} = \mathbf{V}_{SO2} / \mathbf{V}_{AD}$ Where:

 $\mathbf{K}$  – emission factor, tonne SO<sub>2</sub>/tonne of sulfur produced;

 $V_{SO2}$ - SO<sub>2</sub> emissions, tonne;

 $V_{AD}$  – activity data (amount of sulfur processed), tonne.

Annual factors were calculated for the period 1998-2000.

The volumes of  $SO_2$  emissions were calculated based on the RD 39.2-140-95 (Method of polluting substances emission calculation for oil &gas production and oil &gas processing enterprises of the oil &gas branch, Tashkent, 1995)

The activity data were provided by the National Holding Company "Uzneftegaz".

Table A20 Data on gas sulfur production and sulfurous gas (SO<sub>2</sub>) emissions from gas treatment

|                           | 1998   | 1999   | 2000   |
|---------------------------|--------|--------|--------|
| Sulfur production, tonnes | 280000 | 273600 | 260000 |
| $SO_2$ emissions, tonnes  | 91737  | 73507  | 62564  |

# Calculation of annual aggregated SO<sub>2</sub> emission factor

 $SO_2$  emission factor = 62564 tonne / 260000 tonne = 0.241 tonne  $SO_2$ /tonne of sulfur produced.

(Example of calculation for 2000)

For three years taken for calculation of  $SO_2$  emission factors (1998-2000) the annual emission factors were calculated.

Table A21 Annual sulfur dioxide emissions from sulfur production, SO2 tonne /tonne of sulfur produced

| 1998  | 1999  | 2000  |
|-------|-------|-------|
| 0.328 | 0.269 | 0.241 |

#### Calculation of average factor

Based on the above presented aggregated factors of  $SO_2$  emission from treatment of gas from sulfur-bearing compounds for 1998 – 2000 the average coefficient was calculated **0.279**  $SO_2$  tonne / tonne of sulfur produced. This emission factor was applied for  $SO_2$  emission from gas operations within the preparation of the Second National Communication.

Estimation of available data deviation.

Standard square deviation  $\sigma = \pm 0.044$  tonne SO<sub>2</sub>/ tonne of sulfur. Maximal relative deviation (coefficient of variation) =  $\pm 15.9$  %.

#### References

- 1. RD 39.2-140-95 (Method of polluting substances emission calculation for oil &gas production and oil &gas processing enterprises of the oil &gas branch, Tashkent, 1995).
- 2. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories.

(1)



## Annex 10 Calculation of national emission factors in the sector "Industrial processes" in Uzbekistan

In 2006 within the framework of the Second National Communication while the preparation of the greenhouse gas inventories the national emission factors were developed:

- CO<sub>2</sub> emission factor for ammonia production
- N<sub>2</sub>O emission factor for nitric acid production
- NOx emission factor for nitric acid production
- SO<sub>2</sub> emission factor for sulphuric acid

The method of calculation of all factors was based on the production data and annual sum of the relevant emissions. Annual emissions were calculated on the industrial enterprises in accordance with the sectoral methods of calculation of polluting substances emissions, technological regulations or based on direct measurements.

Basing on these data the annual emission factors were calculated for each enterprise. In its turn, the average national emission factor for each gas was calculated using the annual emission factors.

Uncertainty of each factor (coefficient of variation) was calculated by the method of mathematical statistics.

Coefficient of variation (variability) Cv was calculated using the following formula:

$$Cv = \frac{\sigma}{X_i} \cdot 100\%$$

where  $\sigma$  – standard deviation;  $X_i$  - average value for the given series of data Standard deviation  $\sigma$  was calculated by the formula:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X_i})^2}{(n-1)}}$$

where  $X_i - i$ -variable (value of emission factor);  $X_i$ - average for the given series; n - a number of terms in a series.

The data and the calculations for each of the developed factors are presented below.

#### **10.1.** National CO<sub>2</sub> emission factor for ammonia production

Ammonia is produced at the following enterprises of the State Joint-Stock Company «Uzkimesanoat»: «Elektrokimesanoat», «Navoiazot», and «Ferganaazot».

The data for ammonia production (thousands tonnes) from 1990 to 2005 and the annual  $CO_2$  emissions from ammonia production for each enterprise were provided by the State Joint-Stock Company «Uzkimesanoat».

| able A22 Data for calculation of national fact | ta for calculation of national factor |
|------------------------------------------------|---------------------------------------|
|------------------------------------------------|---------------------------------------|

| Year | Ammonia<br>production,<br>thousand tonnes | CO <sub>2</sub> emissions,<br>thousand<br>tonnes | Ammonia<br>production,<br>thousand<br>tonnes | CO <sub>2</sub><br>emissions,<br>thousand<br>tonnes | Ammonia<br>production,<br>thousand tonnes | CO <sub>2</sub><br>emissions,<br>thousand<br>tonnes |
|------|-------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|      | «Elektrokin                               | nesanoat»                                        | «Navoi                                       | azot»                                               | «Fergana                                  | azot»                                               |
| 1990 | 731.7                                     | 968.6                                            | 449.1                                        | 600.6                                               | 552.0                                     | 777.1                                               |
| 1991 | 713.6                                     | 946.7                                            | 469.7                                        | 627.6                                               | 552.0                                     | 777.1                                               |
| 1992 | 678.1                                     | 902.6                                            | 479.2                                        | 637.5                                               | 435.9                                     | 665.4                                               |
| 1993 | 563.7                                     | 758.6                                            | 378.0                                        | 504.9                                               | 402.4                                     | 614.3                                               |
| 1994 | 400.4                                     | 523.0                                            | 309.7                                        | 418.2                                               | 274.9                                     | 341.3                                               |
| 1995 | 477.3                                     | 631.0                                            | 332.6                                        | 442.4                                               | 292.0                                     | 362.5                                               |
| 1996 | 532.9                                     | 700.4                                            | 350.8                                        | 469.3                                               | 271.3                                     | 336.8                                               |
| 1997 | 481.6                                     | 636.6                                            | 385.0                                        | 516.8                                               | 279.9                                     | 347.5                                               |
| 1998 | 436.8                                     | 569.6                                            | 423.9                                        | 568.3                                               | 207.6                                     | 257.7                                               |
| 1999 | 404.1                                     | 532.9                                            | 411.1                                        | 550.4                                               | 149.1                                     | 185.1                                               |
| 2000 | 330.7                                     | 431.1                                            | 426.6                                        | 572.5                                               | 228.3                                     | 283.4                                               |
| 2001 | 240.3                                     | 315.3                                            | 442.2                                        | 595.0                                               | 130.1                                     | 161.5                                               |
| 2002 | 333.8                                     | 431.6                                            | 427.3                                        | 574.7                                               | 143.9                                     | 178.6                                               |
| 2003 | 351.6                                     | 449.4                                            | 428.8                                        | 575.7                                               | 212.6                                     | 263.9                                               |
| 2004 | 345.1                                     | 446.4                                            | 432.7                                        | 581.6                                               | 250.1                                     | 310.5                                               |
| 2005 | 372.4                                     | 484.2                                            | 405.6                                        | 545.4                                               | 287.1                                     | 356.4                                               |

Based on these data the emissions factors were calculated for each enterprise and average national  $CO_2$  emission factor for ammonia production.

|       | Enterprise    | <b>«Elektrokimesanoat»</b> | «Navoiazot» | «Ferganaazot» |
|-------|---------------|----------------------------|-------------|---------------|
|       | 1990          | 1.324                      | 1.337       | 1.408         |
| 1991  |               | 1.327                      | 1.336       | 1.408         |
| 1992  |               | 1.331                      | 1.330       | 1.527         |
|       | 1993          | 1.346                      | 1.336       | 1.527         |
|       | 1994          | 1.306                      | 1.350       | 1.241         |
|       | 1995          | 1.322                      | 1.330       | 1.241         |
|       | 1996          | 1.314                      | 1.338       | 1.241         |
|       | 1997          | 1.322                      | 1.342       | 1.241         |
|       | 1998          | 1.304                      | 1.341       | 1.241         |
|       | 1999          | 1.319                      | 1.339       | 1.241         |
|       | 2000          | 1.304                      | 1.342       | 1.241         |
|       | 2001          | 1.312                      | 1.345       | 1.241         |
|       | 2002          | 1.293                      | 1.345       | 1.241         |
|       | 2003          | 1.278                      | 1.343       | 1.241         |
|       | 2004          | 1.294                      | 1.344       | 1.241         |
|       | 2005          | 1.300                      | 1.345       | 1.241         |
|       | Average value | 1.312                      | 1.340       | 1.298         |
|       | Cv, %         | 1.3                        | 0.4         | 8,1           |
|       | σ, ±          | 0.017                      | 0.005       | 0,106         |
| Total | Average value |                            | 1.317       |               |
|       | Cv. %         |                            | 4.8         |               |
|       | σ. ±          |                            | 0.063       |               |

Table A23 CO2 (tonne/tonne) emission factors for ammonia production

Thus the national  $CO_2$  emission factor for ammonia production is **1.317 tonne**  $CO_2$ /tonne ammonia, its uncertainty is **4.8** %.

Total CO<sub>2</sub> emission calculated using the national factor (1.317) and the default factor (1.5) [1, p. 2.13] for 2000 differ (table A24).

| <b>Table A24</b> Change in CO <sub>2</sub> , emission (Gg) (at the moment of the national factor calculation) |
|---------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------|

|                                                       | When us                    | Change in CO <sub>2</sub>   |             |
|-------------------------------------------------------|----------------------------|-----------------------------|-------------|
| Category                                              | Default emission<br>factor | National<br>emission factor | emission, % |
| Ammonia production                                    | 1478.55                    | 1298.17                     | - 12.2      |
| Industrial processes                                  | 3700                       | 3519                        | - 4.88      |
| National CO <sub>2</sub> emission                     | 109491.04                  | 109310.66                   | - 0.16      |
| National GHG emission (Gg CO <sub>2</sub> equivalent) | 204135.9                   | 203955.5                    | - 0.09      |

## 10.2. National N<sub>2</sub>O emission factor for weak nitric acid production

Weak nitric acid is produced at the following enterprises of the State Joint-Stock Company «Uzkimesanoat»: «Elektrokimesanoat», «Navoiazot», and «Ferganaazot». The weak acid is produced the combined way, that is, each enterprise is equipped with the units working under both increased pressure and atmospheric pressure.

The data for weak nitric acid production (thousands tonnes) from 1990 to 2005 and the annual  $N_2O$  emissions from weak acid production for each enterprise were provided by the State Joint-Stock Company «Uzkimesanoat».

| Year | Weak acid production,<br>thousand tonnes | N <sub>2</sub> O emissions,<br>tonnes | Weak acid production,<br>thousand tonnes | N <sub>2</sub> O emissions,<br>tonnes |
|------|------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|
|      | <b>«Elektrokimes</b>                     | anoat»                                | «Navoiazot»                              |                                       |
| 1990 | 558.8                                    | 2304.8                                | 812.1                                    | 3971.4                                |
| 1991 | 538.2                                    | 2410.7                                | 840.4                                    | 4027.3                                |
| 1992 | 494.7                                    | 2022.0                                | 831.2                                    | 4017.9                                |
| 1993 | 447.8                                    | 1483.3                                | 637.1                                    | 3048.6                                |
| 1994 | 301.8                                    | 669.3                                 | 526.8                                    | 2529.4                                |
| 1995 | 356.5                                    | 1573.2                                | 565.3                                    | 2674.0                                |

#### Table A25 Data for calculation of national factor

| Year | Weak acid production,<br>thousand tonnes | N <sub>2</sub> O emissions,<br>tonnes | Weak acid production,<br>thousand tonnes | N <sub>2</sub> O emissions,<br>tonnes |
|------|------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|
|      | <b>«Elektrokimes</b>                     | anoat»                                | «Navoiazot»                              |                                       |
| 1996 | 403.4                                    | 684.4                                 | 591.7                                    | 2779.6                                |
| 1997 | 380.9                                    | 1147.4                                | 363.1                                    | 2942.3                                |
| 1998 | 373.4                                    | 1436.1                                | 709.1                                    | 3258.7                                |
| 1999 | 330.2                                    | 380.1                                 | 708.0                                    | 3300.2                                |
| 2000 | 329.3                                    | 1374.9                                | 727.7                                    | 3377.8                                |
| 2001 | 379.3                                    | 1047.4                                | 713.6                                    | 3279.4                                |
| 2002 | 349.1                                    | 1269.8                                | 695.4                                    | 3271.5                                |
| 2003 | 367.7                                    | 2437.7                                | 688.0                                    | 3208.6                                |
| 2004 | 348.3                                    | 1324.6                                | 653.7                                    | 3108.3                                |
| 2005 | 344.2                                    | 1833.3                                | 651.3                                    | 3080.5                                |

N<sub>2</sub>O emissions were calculated based on instrumental measurements in waste gases released from weak nitric acid production units. At the «Ferganaazot» such measurements were not conducted.

Based on these data the emissions factors were calculated for each year, each enterprise and average national  $N_2O$  emission factor for weak nitric acid production.

|       | Enterprise    | <b>«Elektrokimesanoat»</b> | Navoiazot» |
|-------|---------------|----------------------------|------------|
|       | 1990          | 4.125                      | 4.890      |
|       | 1991          | 4.479                      | 4.792      |
|       | 1992          | 4.087                      | 4.834      |
|       | 1993          | 3.212                      | 4.785      |
|       | 1994          | 2.217                      | 4.801      |
|       | 1995          | 4.413                      | 4.730      |
|       | 1996          | 1.697                      | 4.698      |
|       | 1997          | 3.012                      | 4.626      |
|       | 1998          | 3.846                      | 4.595      |
|       | 1999          | 1.151                      | 4.661      |
|       | 2000          | 4.175                      | 4.642      |
|       | 2001          | 2.761                      | 4.596      |
|       | 2002          | 3.637                      | 4.704      |
|       | 2003          | 6.630                      | 4.664      |
|       | 2004          | 3.803                      | 4.755      |
|       | 2005          | 5.326                      | 4.730      |
|       | Average value | 3.667                      | 4.719      |
|       | Cv, %         | 36.7                       | 1.8        |
|       | σ, ±          | 1.345                      | 0.087      |
| Total | Average value | 4.19                       | 3          |
|       | Cv, %         | 25.                        | 7          |
|       | σ, ±          | 1.07                       | 9          |

Table A26 N<sub>2</sub>O (kg/tonne) emission factors for weak nitric acid production

Thus the national  $N_2O$  emission factor for weak nitric acid production is 4. 193 kg  $N_2O$  /tonne nitric acid, its uncertainty is 25.7 %.

Total  $N_2O_{emission}$  calculated using the national factor (4. 193) and the default factor 7.5 [1, Table 2-5, page 2.16] for 2000 differ (table A27).

**Table A27** Change in N<sub>2</sub>O emission (Gg) (at the moment of the national factor calculation)

|                                                       | When u                     | Change in N <sub>2</sub> O  |             |
|-------------------------------------------------------|----------------------------|-----------------------------|-------------|
| Category                                              | Default emission<br>factor | National<br>emission factor | emission, % |
| Weak nitric acid production                           | 7.93                       | 4.43                        | - 44.1      |
| Industrial processes                                  | 7.93                       | 4.43                        | - 44.1      |
| Nation N <sub>2</sub> O emission                      | 36.256                     | 32.758                      | - 9.6       |
| National GHG emission (Gg CO <sub>2</sub> equivalent) | 203955.5                   | 202620.7                    | - 0.65      |



# 10.3. National NOx emission factor for weak nitric acid production

Weak nitric acid is produced at the following enterprises of the State Joint-Stock Company «Uzkimesanoat»: «Elektrokimesanoat», «Navoiazot», and «Ferganaazot».

The data for weak nitric acid production (thousands tonnes) from 1990 to 2005 and the annual NOx emissions from weak acid production for each enterprise were provided by the State Joint-Stock Company «Uzkimesanoat».

| Year | Weak acid<br>production,<br>thousand tonnes | NOx<br>emissions,<br>tonnes | Weak acid<br>production,<br>thousand tonnes | NOx<br>emissions,<br>tonnes | Weak acid<br>production,<br>thousand tonnes | NOx<br>emissions,<br>tonnes |
|------|---------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|
|      | «Elektrokim                                 | esanoat»                    | «Navoia:                                    | zot»                        | "Ferganaa                                   | azot"                       |
| 1990 | 558.8                                       | 183.2                       | 812.1                                       | 501.9                       | *                                           | *                           |
| 1991 | 538.2                                       | 200.5                       | 840.4                                       | 505.2                       | 405.7                                       | 247.5                       |
| 1992 | 494.7                                       | 459.2                       | 831.2                                       | 513.7                       | 394.8                                       | 240.8                       |
| 1993 | 447.8                                       | 265.9                       | 637.1                                       | 379.9                       | 401.2                                       | 244.7                       |
| 1994 | 301.8                                       | 29.0                        | 526.8                                       | 362.1                       | 305.9                                       | 208.0                       |
| 1995 | 356.5                                       | 157.7                       | 565.3                                       | 376.9                       | 276.0                                       | 193.2                       |
| 1996 | 403.4                                       | 207.0                       | 591.7                                       | 375.3                       | 288.2                                       | 169.0                       |
| 1997 | 380.9                                       | 138.1                       | 363.1                                       | 357.6                       | 116.5                                       | 87.4                        |
| 1998 | 373.4                                       | 149.9                       | 709.1                                       | 434.6                       | 103.1                                       | 82.5                        |
| 1999 | 330.2                                       | 168.7                       | 708.0                                       | 459.6                       | 0.71                                        | 0.6                         |
| 2000 | 329.3                                       | 166.3                       | 727.7                                       | 486.7                       | **                                          | **                          |
| 2001 | 379.3                                       | 167.2                       | 713.6                                       | 482.7                       | **                                          | **                          |
| 2002 | 349.1                                       | 191.2                       | 695.4                                       | 522.5                       | **                                          | **                          |
| 2003 | 367.7                                       | 105.5                       | 688.0                                       | 591.7                       | 34.4                                        | 15.1                        |
| 2004 | 348.3                                       | 584.5                       | 653.7                                       | 650.6                       | 159.9                                       | 150.8                       |
| 2005 | 344.2                                       | 315.1                       | 651.3                                       | 506.2                       | 220.5                                       | 177.1                       |

Table A28 Data for calculation of national factor

\*- no data available or not defined

\*\* - production was ceased

NOx emissions were calculated using the departmental methods of definition of polluting substances emissions.

Based on these data the emissions factors were calculated for each year, each enterprise and average national NOx mission factor for weak nitric acid production.

| Enterprise      | <b>«Elektrokimesanoat»</b> | «Navoiazot» | "Ferganaazot" |
|-----------------|----------------------------|-------------|---------------|
| 1990            | 0.328                      | 0.618       |               |
| 1991            | 0.373                      | 0.601       | 0.610         |
| 1992            | 0.928                      | 0.618       | 0.610         |
| 1993            | 0.594                      | 0.596       | 0.610         |
| 1994            | 0.096                      | 0.687       | 0.680         |
| 1995            | 0.442                      | 0.667       | 0.700         |
| 1996            | 0.513                      | 0.634       | 0.680         |
| 1997            | 0.363                      | 0.562       | 0.750         |
| 1998            | 0.401                      | 0.613       | 0.800         |
| 1999            | 0.511                      | 0.649       | 0.845         |
| 2000            | 0.505                      | 0.669       |               |
| 2001            | 0.441                      | 0.676       |               |
| 2002            | 0.548                      | 0.751       |               |
| 2003            | 0.287                      | 0.860       | 0.439         |
| 2004            | 0.592                      | 0.995       | 0.943         |
| 2005            | 0.915                      | 0.777       | 0.803         |
| Average value   | 0.490                      | 0.686       | 0.706         |
| Cv, %           | 43.0                       | 16.3        | 18.9          |
| σ, ±            | 0.210                      | 0.112       | 0.134         |
| Total Average v | alue                       | 0.620       |               |
| Cv. %           | )                          | 29.9        |               |
| σ. ±            |                            | 0.185       |               |

Table A29 NOx (kg/tonne) emission factors for weak nitric acid production

Thus the national NOx emission factor for nitric acid production is **0. 620 kg NOx /tonne** nitric acid, its uncertainty is **29.9 %**.

Total NOx emission calculated using the national factor (0. 620) and the default factor 12 [1, page 2.16] for 2000 differ (table A30).

|                             | When u                     | Change in NOx               |             |
|-----------------------------|----------------------------|-----------------------------|-------------|
| Category                    | Default emission<br>factor | National<br>emission factor | emission, % |
| Weak nitric acid production | 12.68                      | 0.66                        | - 94.8      |
| Industrial processes        | 12.70                      | 0.67                        | - 94.7      |
| Nation NOx emission         | 287.30                     | 275.27                      | - 4.2       |

| Table A30. | Change in NOx emis | ssion (Gg) (at the mome | nt of the national | factor calculation) |
|------------|--------------------|-------------------------|--------------------|---------------------|
|            |                    |                         |                    |                     |

# 10.4 SO<sub>2</sub> emission factor for sulphuric acid production

Sulphuric acid is produced at the following enterprises of the State Joint-Stock Company «Uzkimesanoat»: «Ammofos», Samarkand chemical plant (up to 2002), «Elektrokimesanoat» (plant «Kaproloktam»).

The data on sulphuric acid production (thousand tonnes) for the period 1990 - 2005 and the annual SO<sub>2</sub> emissions from sulphuric acid production for each enterprise were provided by the State Joint-Stock Company «Uzkimesanoat». Some sulphuric acid production enterprises do not belong to the State Joint-Stock Company «Uzkimesanoat». These enterprises were not taken into account while the national emission factor calculation due to lack of necessary data on the annual sulphuric gas emissions.

The production conditions at these enterprises are assumed to be the same as at the State Joint-Stock Company «Uzkimesanoat". This calculated emission factor was employed for the calculation of the national emissions.

| Year | Sulphuric acid<br>production,<br>thousand tonnes | SO <sub>2</sub> ,<br>emissions,<br>tonnes | Sulphuric acid<br>production,<br>thousand tonnes | SO <sub>2</sub> ,<br>emissions,<br>tonnes | Sulphuric acid<br>production,<br>thousand tonnes | SO <sub>2</sub> ,<br>emissions,<br>tonnes |
|------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|
|      | «Ammofo                                          | s»                                        | Samarkand che                                    | mical plant                               | Plant «Kapro                                     | oloktam»                                  |
| 1990 | *                                                | *                                         | *                                                | *                                         | 208.3                                            | 159.2                                     |
| 1991 | 489.6                                            | *                                         | 636.2                                            | 503.2                                     | 224.7                                            | 138.4                                     |
| 1992 | 195.6                                            | *                                         | 347.2                                            | 380.2                                     | 187.5                                            | 131.7                                     |
| 1993 | 256.9                                            | *                                         | 337.4                                            | 101.5                                     | 138.9                                            | 84.4                                      |
| 1994 | 78.4                                             | 73.8                                      | 93.3                                             | *                                         | 147.1                                            | 93.1                                      |
| 1995 | 157.2                                            | 274.8                                     | 190.3                                            | *                                         | 157.7                                            | 83.2                                      |
| 1996 | 226.7                                            | 356.2                                     | 268.1                                            | 120.6                                     | 131.9                                            | 40.1                                      |
| 1997 | 106.3                                            | 256.9                                     | 185.0                                            | 454.5                                     | 154.0                                            | 53.7                                      |
| 1998 | 186.8                                            | 417.3                                     | 145.0                                            | 494.4                                     | 91.6                                             | 53.9                                      |
| 1999 | 243.2                                            | 627.3                                     | 152.7                                            | 651.6                                     | 151.5                                            | 45.2                                      |
| 2000 | 164.0                                            | 353.5                                     | 95.8                                             | 424.0                                     | 106.5                                            | 51.6                                      |
| 2001 | 84.7                                             | 164.1                                     | 43.1                                             | 291.7                                     | 61.7                                             | 45.3                                      |
| 2002 | 279.4                                            | 764.7                                     | **                                               | **                                        | 56.5                                             | 36.8                                      |
| 2003 | 184.5                                            | 486.9                                     | **                                               | **                                        | 35.4                                             | 31.5                                      |
| 2004 | 180.2                                            | 231.1                                     | **                                               | **                                        | 67.8                                             | 50.4                                      |
| 2005 | 112.0                                            | 382.5                                     | **                                               | **                                        | 72.0                                             | 55.3                                      |
| 2006 |                                                  |                                           |                                                  |                                           | 58.9                                             | 16.2                                      |

## Table A31 Data for national factor calculation

\* -no data available or they were not defined

\*\* - production was stopped

Based on these data the emission factors were calculated for each year and for each enterprise as well as average national  $SO_2$  emission factor from sulphuric acid production.

| - ( 0 |               |           | Samarkand chemical |                        |  |
|-------|---------------|-----------|--------------------|------------------------|--|
|       | Enterprise    | «Ammofos» | plant              | Plant<br>«Kaprolaktam» |  |
| 1990  |               |           |                    | 0.764                  |  |
|       | 1991          |           | 0.791              | 0.616                  |  |
|       | 1992          |           | 1.095              | 0.703                  |  |
|       | 1993          |           | 0.301              | 0.608                  |  |
|       | 1994          | 0.942     |                    | 0.633                  |  |
|       | 1995          | 1.748     |                    | 0.528                  |  |
|       | 1996          | 1.571     | 0.450              | 0.304                  |  |
|       | 1997          | 2.417     | 2.457              | 0.349                  |  |
|       | 1998          | 2.234     | 3.410              | 0.588                  |  |
|       | 1999          | 2.579     | 4.267              | 0.298                  |  |
|       | 2000          | 2.155     | 4.425              | 0.485                  |  |
|       | 2001          | 1.937     | 6.768              | 0.735                  |  |
|       | 2002          | 2.727     |                    | 0.651                  |  |
|       | 2003          | 2.639     |                    | 0.890                  |  |
|       | 2004          | 1.282     |                    | 0.744                  |  |
|       | 2005          | 3.415     |                    | 0.768                  |  |
|       | 2006          |           |                    | 0.276                  |  |
|       | Average value | 2.138     | 2.663              | 0.585                  |  |
|       | Cv, %         | 32.2      | 83.5               | 29.7                   |  |
|       | $\sigma, \pm$ | 0.687     | 2.224              | 0.174                  |  |
| Total | Average value |           | 1.567              |                        |  |
|       | Cv, %         |           | 91.7               |                        |  |
|       | σ, ±          |           | 1.437              |                        |  |

Table A32 SO<sub>2</sub> (kg/tonne) emission factors for sulphuric acid production

Thus, the national  $SO_2$  emission factor from sulphuric production – 1.567 kg  $SO_2$  /tonne of sulphuric acid, its uncertainty is high and equal 91.7 %.

Total  $SO_2$  emission calculated with use of the factor 1.567 as comparison with the total emission calculated with use of the default emission factor 17.5 [1, Table 2-10, p. 2.23] for 2000 change as follows:

| <b>Table A33</b> Change in SO <sub>2</sub> emission, | , Gg (at the moment of the national factor calculation) |
|------------------------------------------------------|---------------------------------------------------------|
|------------------------------------------------------|---------------------------------------------------------|

|                                 | When                       | Change in SO <sub>2</sub>   |             |
|---------------------------------|----------------------------|-----------------------------|-------------|
| Category                        | Default emission<br>factor | National emission<br>factor | emission, % |
| Sulphuric acid production       | 14.41                      | 1.29                        | - 90.0      |
| Industrial processes            | 15.423                     | 2.666                       | - 82.7      |
| Nation SO <sub>2</sub> emission | 311.816                    | 288.839                     | - 7.4       |

#### References

1. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories, Volume 2.

# Annex 11

# **Calculation of imported HFCs**

Due to incomplete data available on HFCs import in Uzbekistan to estimate possible HFC emissions the calculation was made of the amount of HFCs imported for the period 2000 – 2005 based on the following data and assumptions.

#### Data:

The data of the State Committee on Statistics of the The data of the State Committee for Nature Protection of Republic of Uzbekistan.

the Republic of Uzbekistan.

 
 Table A35 Import of fluorocarbon
 for the period 2000-2004

| 2002       | 2003       | 2004        | 2005       | R-407c        | R-404a        | R-134a          |
|------------|------------|-------------|------------|---------------|---------------|-----------------|
| 1.1 tonnes | 5.9 tonnes | 24.9 tonnes | 7.9 tonnes | 1.9408 tonnes | 4.7647 tonnes | 33.45716 tonnes |

#### Assumptions

- 1. Having no detailed information on fluorides and iodides, we consider the sum of fluorides and iodides as HFCs;
- 2. Composition of HFCs for each year is the same;
- 3. Share of each HFC in total amount remains unchangeable for each year;
- 4. Amount of HFCs is equal for 2000 and 2001.

The calculation of HFCs amount for each year is presented below.

## Calculation of the HFC import for each year.

#### Calculation of the total amount

| <b>Total HFCs for 2000-2004</b> = R-407c + R-404a + R-134a = | (1) |
|--------------------------------------------------------------|-----|
| 1.9408 + 4.7647 + 33.45716 = 40.16266 tonne                  |     |

**Total HFCs for 
$$2002-2004 = 1.1 + 5.9 + 24.9 = 31.9$$
 tonne** (2)

Total HFCs for 2000-2001 = 40.16266 - 31.9 = 8.26266 tonne / 2 = 4.13133 for each year (3)

Table A36 Fraction of each HFC including multi-component ones for each year

| HFC    | Amount, tonne | Fraction |
|--------|---------------|----------|
| R-407c | 1.9408        | 0.048    |
| R-404a | 4.7647        | 0.119    |
| R-134a | 33.45716      | 0.833    |
| Total  | 40.16266      | 1.000    |

## Amount of each HFC including multi-component ones for each year

In accordance with the formula Amount of each HFC =  $\Sigma$  HFC for each year x HFC fraction (4) The amount of HFC was calculated for each year:

#### Table A37 Annual amount of imported HFC

| Year | R-407c, tonne | R-404a, tonne | R-134a, tonne |
|------|---------------|---------------|---------------|
| 2000 | 0.19964       | 0.490121      | 3.441569      |
| 2001 | 0.19964       | 0.490121      | 3.441569      |
| 2002 | 0.053156      | 0.130499      | 0.916346      |
| 2003 | 0.285109      | 0.699947      | 4.914944      |
| 2004 | 1.203255      | 2.954013      | 20.74273      |
| 2005 | 0.381756      | 0.937217      | 6.581027      |

## Taking multi-component HFC into account

It should be taken into account that above indicated HFCs are of complex composition.



| HFC    | Composition | Fraction | HFC    | Composition | Fraction |
|--------|-------------|----------|--------|-------------|----------|
| R-407c | HFC-32      | 0.23     | R-404a | HFC-143a    | 0.44     |
|        | HFC-125     | 0.25     |        | HFC-125     | 0.52     |
|        | HFC-134a    | 0.52     |        | HFC-134a    | 0.04     |

 Table A38 HFC composition

Information on the composition of each multi-component HFCs were taken from the site of the producer AlChem, Ukraine: alchemi.com.

## Amount of each HFC for each year

As a result of the calculations the following amount of HFCs were obtained for each year:

|      |        |         | 1        | ,        |       |
|------|--------|---------|----------|----------|-------|
| Year | HFC-32 | HFC-125 | HFC-134a | HFC-143a | Total |
| 2000 | 0.0459 | 0.3048  | 3.5650   | 0.2157   | 4.13  |
| 2001 | 0.0459 | 0.3048  | 3.5650   | 0.2157   | 4.13  |
| 2002 | 0.0122 | 0.0811  | 0.9492   | 0.0574   | 1.10  |
| 2003 | 0.0656 | 0.4352  | 5.0912   | 0.3080   | 5.90  |
| 2004 | 0.2767 | 1.8369  | 21.4866  | 1.2998   | 24.90 |
| 2005 | 0.0878 | 0.5828  | 6.8170   | 0.4124   | 7.90  |

## Recalculation into CO<sub>2</sub> equivalent.

For recalculation the following values of the global warming potential were used:

## Table A40 Global warming potentials

| HFC-32 | HFC-125 | HFC-134a | HFC-143a |
|--------|---------|----------|----------|
| 650    | 2800    | 1300     | 3800     |

The following estimates of the possible HFC emission were obtained.

## Table A41 HFC emissions in CO2 equivalent

| Year | HFC-32 | HFC-125 | HFC-134a | HFC-143a | Total    |
|------|--------|---------|----------|----------|----------|
| 2000 | 29.85  | 853.36  | 4634.48  | 819.48   | 6337.17  |
| 2001 | 29.85  | 853.36  | 4634.48  | 819.48   | 6337.17  |
| 2002 | 7.95   | 227.22  | 1233.97  | 218.19   | 1687.32  |
| 2003 | 42.62  | 1218.70 | 6618.56  | 1170.31  | 9050.19  |
| 2004 | 179.89 | 5143.32 | 27932.56 | 4939.11  | 38194.88 |
| 2005 | 57.07  | 1631.82 | 8862.14  | 1567.03  | 12118.05 |



# Annex 12

#### Calculation of CO<sub>2</sub> emission/removals from agricultural soils

Developer of the method of the calculation of CO<sub>2</sub> emission/removals from agricultural soils is Dr. Anatol Banaru, The Research Institute for Pedology, Agrochemistry and Hydrology "N.Dimo", Moldova.

The methodology is based on the assessment of the carbon cycle of the arable soils. The carbon storage results from the humification of vegetable residues and organic nutrients and is assessed through the calculation of the humification coefficients. The  $CO_2$  emissions depend on the organic matters mineralization and are calculated as nitrogen export with yield, because there is a constant ration between carbon and nitrogen in soil's humus The national coefficients used for the calculations were taken from the listed below sources.

#### Reference

- 1. Anatol Banaru. The greenhouse  $CO_2$  emissions from the arable soils of the Republic of Moldova. CLIMATE CHANGE. Researches, studies, solutions. Chisenau, 2000.
- 2. Anatol Banaru. The methodology for the assessment of greenhouse CO<sub>2</sub> emissions from the arable soils. CLIMATE CHANGE. Researches, studies, solutions. Chisenau, 2000.
- 3. Agrochemistry / Edited by B.A. Yagodin, 1982.
- 4. Al Dalfi. Mineral Fertilizers Impact on Spring Wheat Yield Depending on Soil Conditions and Sort. Author's abstract of dissertation. - Tashkent, 1984.
- 5. M.A. Belousov. Physiological Fundamentals of Cotton Root Nutrition. Tashkent, 1975.
- 6. V.V Lapa., N.A. Ivanenko. Using Nutrients of Fertilizers and Soils by Agricultural Crops// Agrochemistry. № 7. Moscow, 1989.
- 7. E.N. Masharipov. Balance of Manure Nitrogen and Mineral Fertilizers when their Separate and Joint Application to Cotton. Author's abstract of dissertation. Tashkent, 1984.
- 8. Methods of Agrochemical and Agrophysical Research in Soil. Tashkent: SoyuzNIKI, 1978.
- 9. Irrigated Farming / Edited by S.N. Ryzhov. Tashkent, 1965.
- 10. D.S. Satarov. Sort, Soil, Fertilizer and Yield. Tashkent, 1988.
- 11. S. Siddikov. Dependence of Qualitative and Quantitative Composition of Humus of Irrigated Soils on Agrotechnics and Kinds of Plant Recidues. Author's abstract of dissertation. Tashkent, 1987.
- 12. Z. Umarov, Kh. N. Atabaeva. Wheat and Barley Productivity when Fall Sowing and a Possibility of Having the Second Yield // Information Leaflet. Tashkent, 1994.

| MODULE                                             | AGRICULT           | TURE                                                                         |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
|----------------------------------------------------|--------------------|------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------|--------------------|------------------------------------------|----------------------------------------|--|--|
| SUBMODULE                                          | AGRICULT           | URAL SOILS                                                                   |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
|                                                    | 1-2                |                                                                              |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
| WORKSHEET                                          | ESTIMATE           | ESTIMATE OF CARBON INPUT TO SOIL WITH PLANT RESIDUES AND ORGANIC FERTILIZRES |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
| 2000                                               |                    | STEP 1 STEP 2                                                                |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
|                                                    | A                  | В                                                                            | С                                               | D                                                | Е                                                 | F                                                   | G                              | Н                  | Ι                                        | J                                      |  |  |
| Crop, years and land<br>area, thousand<br>hectares | Gross yield        | Coefficient of plant<br>residues<br>accumulation                             | Amount of<br>plant<br>residues                  | Coefficient of<br>plant residues<br>humification | Amount of<br>humus                                | Amount of<br>carbon input<br>with plant<br>residues | Amount of<br>manure<br>applied | Humified<br>manure | Amount of<br>carbon input<br>with manure | Total<br>amount of<br>carbon           |  |  |
|                                                    | thousand<br>tonnes |                                                                              | thousand<br>tonnes                              |                                                  | thousand<br>tonnes                                | thousand<br>tonnes                                  | thousand<br>tonnes             | thousand<br>tonnes | thousand<br>tonnes                       | thousand<br>tonnes                     |  |  |
|                                                    |                    |                                                                              | $\mathbf{C} = \mathbf{A} \mathbf{x} \mathbf{B}$ |                                                  | $\mathbf{E} = (\mathbf{C} \mathbf{x} \mathbf{D})$ | $\mathbf{F} = \mathbf{E} \mathbf{x} 0.58$           |                                | G x 0.22           | I=H x 0.58                               | $\mathbf{J} = \mathbf{F} + \mathbf{I}$ |  |  |
| COTTON                                             |                    | 0.85                                                                         |                                                 | 0.21                                             |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
| 2001                                               | 3270.18            | 0.85                                                                         | 2779.7                                          | 0.21                                             | 583.7                                             | 338.6                                               | 10163.3                        | 2235.9             | 1296.8                                   | 1635.4                                 |  |  |
| 2000                                               | 3001.53            | 0.85                                                                         | 2551.3                                          | 0.21                                             | 535.8                                             | 310.7                                               | 7222.05                        | 1588.9             | 921.5                                    | 1232.3                                 |  |  |
| 1999                                               | 3599.99            | 0.85                                                                         | 3060.0                                          | 0.21                                             | 642.6                                             | 372.7                                               | 6069.6                         | 1335.3             | 774.5                                    | 1147.2                                 |  |  |
| Average                                            | 3290.57            | 0.85                                                                         | 2797.0                                          | 0.21                                             | 587.4                                             | 340.7                                               | 7818.3                         | 1720.0             | 997.6                                    | 1338.3                                 |  |  |
| WHEAT                                              |                    | 1.17                                                                         |                                                 | 0.19                                             |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
| 2001                                               | 3802.2             | 1.17                                                                         | 4448.6                                          | 0.19                                             | 845.2                                             | 490.2                                               | 9320.1                         | 2050.4             | 1189.2                                   | 1679.5                                 |  |  |
| 2000                                               | 3623.0             | 1.17                                                                         | 4238.9                                          | 0.19                                             | 805.4                                             | 467.1                                               | 6420.2                         | 1412.4             | 819.2                                    | 1286.3                                 |  |  |
| 1999                                               | 3551.9             | 1.17                                                                         | 4155.7                                          | 0.19                                             | 789.6                                             | 458.0                                               | 4020.5                         | 884.5              | 513.0                                    | 971.0                                  |  |  |
| Average                                            | 3659.0             | 1.17                                                                         | 4281.1                                          | 0.19                                             | 813.4                                             | 471.8                                               | 6586.9                         | 1449.1             | 840.5                                    | 1312.3                                 |  |  |
| ALFALFA                                            |                    | 0.5                                                                          |                                                 | 0.18                                             |                                                   |                                                     |                                |                    |                                          |                                        |  |  |
| 2001                                               | 1.500              | 0.5                                                                          | 0.750                                           | 0.18                                             | 0.135                                             | 0.078                                               |                                |                    |                                          | 0.078                                  |  |  |
| 2000                                               | 1.500              | 0.5                                                                          | 0.750                                           | 0.18                                             | 0.135                                             | 0.078                                               |                                |                    |                                          | 0.078                                  |  |  |
| 1999                                               | 1.500              | 0.5                                                                          | 0.750                                           | 0.18                                             | 0.135                                             | 0.078                                               |                                |                    |                                          | 0.078                                  |  |  |
| Average                                            | 1.500              | 0.5                                                                          | 0.750                                           | 0.18                                             | 0.135                                             | 0.078                                               |                                |                    |                                          | 0.078                                  |  |  |
| Total:                                             |                    |                                                                              |                                                 |                                                  |                                                   |                                                     |                                |                    |                                          |                                        |  |  |

| MODULE      | E AGRICULTURE                                           |                                             |                                                         |                                               |  |  |  |  |  |  |
|-------------|---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|
| SUBMODULE   | AGRICULTURAL SOIL                                       | AGRICULTURAL SOILS                          |                                                         |                                               |  |  |  |  |  |  |
|             | 3-4                                                     | 3-4                                         |                                                         |                                               |  |  |  |  |  |  |
| WORKSHEET   | KSHEET ESTIMATE OF NITROGEN REMOVAL WITH PLANT RESIDUES |                                             |                                                         |                                               |  |  |  |  |  |  |
| 2000        | STE                                                     | 2P 3                                        |                                                         | STEP 4                                        |  |  |  |  |  |  |
|             | K                                                       | L                                           | М                                                       | N                                             |  |  |  |  |  |  |
| Crop, years | Coefficient of nitrogen removal                         | Total nitrogen removed from soil with yield | Nitrogen content in plant residues<br>(leaves and root) | Nitrogen returned to soil with plant residues |  |  |  |  |  |  |
|             |                                                         | thousand tonnes                             |                                                         | thousand tonnes                               |  |  |  |  |  |  |
|             |                                                         | L=A x K                                     |                                                         | N=C x M                                       |  |  |  |  |  |  |
| COTTON      | 0.05                                                    |                                             | 0.0064                                                  |                                               |  |  |  |  |  |  |
| 2001        | 0.05                                                    | 163.51                                      | 0.0064                                                  | 17.79                                         |  |  |  |  |  |  |
| 2000        | 0.05                                                    | 150.08                                      | 0.0064                                                  | 16.33                                         |  |  |  |  |  |  |
| 1999        | 0.05                                                    | 180.00                                      | 0.0064                                                  | 19.58                                         |  |  |  |  |  |  |
| Average     | 0.05                                                    | 164.53                                      | 0.0064                                                  | 17.90                                         |  |  |  |  |  |  |
| WHEAT       | 0.035                                                   |                                             | 0.005                                                   |                                               |  |  |  |  |  |  |
| 2001        | 0.035                                                   | 133.08                                      | 0.005                                                   | 22.24                                         |  |  |  |  |  |  |
| 2000        | 0.035                                                   | 126.81                                      | 0.005                                                   | 21.19                                         |  |  |  |  |  |  |
| 1999        | 0.035                                                   | 124.32                                      | 0.005                                                   | 20.78                                         |  |  |  |  |  |  |
| Average     | 0.035                                                   | 128.07                                      | 0.005                                                   | 21.41                                         |  |  |  |  |  |  |
| ALFALFA     | 0.025                                                   |                                             | 0.028                                                   |                                               |  |  |  |  |  |  |
| 2001        | 0.025                                                   | 0.038                                       | 0.028                                                   | 0.021                                         |  |  |  |  |  |  |
| 2000        | 0.025                                                   | 0.038                                       | 0.028                                                   | 0.021                                         |  |  |  |  |  |  |
| 1999        | 0.025                                                   | 0.038                                       | 0.028                                                   | 0.021                                         |  |  |  |  |  |  |
| Average     | 0.025                                                   | 0.038                                       | 0.028                                                   | 0.021                                         |  |  |  |  |  |  |
| Total:      |                                                         |                                             |                                                         |                                               |  |  |  |  |  |  |

| MODULE      | AGRICULTURE                                           |                                                                           |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |
|-------------|-------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------------|---------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| SUBMODULE   | AGRICULTURAL                                          | SOILS                                                                     |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |
|             | 5-6-7                                                 |                                                                           |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |
| WORKSHEET   |                                                       | ESTIMATION OF NITROGEN INPUT TO SOIL WITH MINERAL AND ORGANIC FERTILIZERS |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |
| 2000        |                                                       | STEP 5                                                                    | STEP                                            |                                          |                                                      | STEP 7                                | l .                                        |  |  |  |  |  |  |
|             | 0                                                     | Р                                                                         | Q                                               | R                                        | S                                                    | Т                                     | U                                          |  |  |  |  |  |  |
| Crop, years | Nitrogen input to<br>soil with mineral<br>fertilizers | Nitrogen removed from mineral fertilizers by plants                       | Nitrogen input to soil with organic fertilizers | Manure nitrogen<br>removed with<br>yield | Coefficient<br>of nitrogen<br>fixation by<br>legumes | Symbiotic<br>nitrogen kept in<br>soil | Symbiotic<br>nitrogen removed<br>from soil |  |  |  |  |  |  |
|             | thousand tonnes                                       | thousand tonnes                                                           | thousand tonnes                                 | thousand tonnes                          |                                                      | thousand tonnes                       | thousand tonnes                            |  |  |  |  |  |  |
|             |                                                       | P=O x 0.40                                                                | Q=G x 0.005                                     | R=Q x 0.3                                |                                                      |                                       |                                            |  |  |  |  |  |  |
| COTTON      |                                                       | 0.40                                                                      | 0.005                                           | 0.3                                      |                                                      |                                       |                                            |  |  |  |  |  |  |
| 2001        | 281.67                                                | 112.67                                                                    | 50.8                                            | 15.2                                     |                                                      |                                       |                                            |  |  |  |  |  |  |
| 2000        | 295.81                                                | 118.32                                                                    | 36.1                                            | 10.8                                     |                                                      |                                       |                                            |  |  |  |  |  |  |
| 1999        | 291.34                                                | 116.54                                                                    | 30.3                                            | 9.1                                      |                                                      |                                       |                                            |  |  |  |  |  |  |
| Average     | 289.61                                                | 115.84                                                                    | 39.1                                            | 11.7                                     |                                                      |                                       |                                            |  |  |  |  |  |  |
| WHEAT       |                                                       | P=O x 0.36                                                                |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |
| 2001        | 196.1                                                 | 70.60                                                                     | 46.6                                            | 14.0                                     |                                                      |                                       |                                            |  |  |  |  |  |  |
| 2000        | 203.02                                                | 73.09                                                                     | 32.1                                            | 9.6                                      |                                                      |                                       |                                            |  |  |  |  |  |  |
| 1999        | 201.12                                                | 72.40                                                                     | 20.1                                            | 6.0                                      |                                                      |                                       |                                            |  |  |  |  |  |  |
| Average     | 200.08                                                | 72.03                                                                     | 32.9                                            | 9.9                                      |                                                      |                                       |                                            |  |  |  |  |  |  |
| ALFALFA     |                                                       |                                                                           |                                                 |                                          |                                                      | Т=С х М                               | U=A x K                                    |  |  |  |  |  |  |
| 2001        |                                                       |                                                                           |                                                 |                                          |                                                      | 0.021                                 | 0.038                                      |  |  |  |  |  |  |
| 2000        |                                                       |                                                                           |                                                 |                                          |                                                      | 0.021                                 | 0.038                                      |  |  |  |  |  |  |
| 1999        |                                                       |                                                                           |                                                 |                                          |                                                      | 0.021                                 | 0.038                                      |  |  |  |  |  |  |
| Average     |                                                       |                                                                           |                                                 |                                          |                                                      | 0.021                                 | 0.038                                      |  |  |  |  |  |  |
| Total:      |                                                       |                                                                           |                                                 |                                          |                                                      |                                       |                                            |  |  |  |  |  |  |

| MODULE      | AGRICULTURE                                                                 |                                            |                             |                                                       |                          |  |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------|--------------------------------------------|-----------------------------|-------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|
| SUBMODULE   | AGRICULTURAL SOILS                                                          | AGRICULTURAL SOILS                         |                             |                                                       |                          |  |  |  |  |  |  |  |
|             | 8                                                                           |                                            |                             |                                                       |                          |  |  |  |  |  |  |  |
| WORKSHEET   | ESTIMATION OF CARBON REMOVAL FROM SOIL                                      |                                            |                             |                                                       |                          |  |  |  |  |  |  |  |
| 2000        | STEP 8                                                                      |                                            |                             |                                                       |                          |  |  |  |  |  |  |  |
|             | V                                                                           | W                                          | Х                           | Y                                                     | Ζ                        |  |  |  |  |  |  |  |
| Crop, years | Nitrogen input to soil with plant residues, mineral and organic fertilizers | Nitrogen removed from soil (soil nitrogen) | Coefficient of soil texture | Coefficient of crop<br>technological<br>effectiveness | Carbon removed from soil |  |  |  |  |  |  |  |
|             | thousand tonnes                                                             | thousand tonnes                            |                             |                                                       | thousand tonnes          |  |  |  |  |  |  |  |
|             | V=N+O+Q                                                                     | W=L-(P+R)                                  |                             |                                                       | Z=W x X x Y x 10,7       |  |  |  |  |  |  |  |
| COTTON      |                                                                             |                                            | 1.2                         | 1.5                                                   |                          |  |  |  |  |  |  |  |
| 2001        | 350.28                                                                      | 35.60                                      | 1.2                         | 1.5                                                   | 685.58                   |  |  |  |  |  |  |  |
| 2000        | 348.25                                                                      | 20.92                                      | 1.2                         | 1.5                                                   | 402.91                   |  |  |  |  |  |  |  |
| 1999        | 341.27                                                                      | 54.36                                      | 1.2                         | 1.5                                                   | 1046.96                  |  |  |  |  |  |  |  |
| Average     | 346.60                                                                      | 36.96                                      | 1.2                         | 1.5                                                   | 711.81                   |  |  |  |  |  |  |  |
| WHEAT       |                                                                             |                                            | 1.2                         | 1.85                                                  |                          |  |  |  |  |  |  |  |
| 2001        | 264.94                                                                      | 48.50                                      | 1.2                         | 1.85                                                  | 1152.11                  |  |  |  |  |  |  |  |
| 2000        | 256.32                                                                      | 44.09                                      | 1.2                         | 1.85                                                  | 1047.25                  |  |  |  |  |  |  |  |
| 1999        | 242.00                                                                      | 45.88                                      | 1.2                         | 1.85                                                  | 1089.90                  |  |  |  |  |  |  |  |
| Average     | 254.42                                                                      | 46.16                                      | 1.2                         | 1.85                                                  | 1096.42                  |  |  |  |  |  |  |  |
| ALFALFA     | V=N                                                                         | W=L-V                                      | 1.2                         | 1.5                                                   |                          |  |  |  |  |  |  |  |
| 2001        | 0.021                                                                       | 0.017                                      | 1.2                         | 1.5                                                   | 0,318                    |  |  |  |  |  |  |  |
| 2000        | 0.021                                                                       | 0.017                                      | 1.2                         | 1.5                                                   | 0,318                    |  |  |  |  |  |  |  |
| 1999        | 0.021                                                                       | 0.017                                      | 1.2                         | 1.5                                                   | 0,318                    |  |  |  |  |  |  |  |
| Average     | 0.021                                                                       | 0.017                                      | 1.2                         | 1.5                                                   | 0,318                    |  |  |  |  |  |  |  |
| Total:      |                                                                             |                                            |                             |                                                       |                          |  |  |  |  |  |  |  |

| MODULE      | AGRICULTURE                  |                          |  |  |  |  |
|-------------|------------------------------|--------------------------|--|--|--|--|
| SUBMODULE   | AGRICULTURAL SOILS           |                          |  |  |  |  |
|             | 9                            |                          |  |  |  |  |
| WORKSHEET   | ESTIMATION OF CARBON BALANCE |                          |  |  |  |  |
| 2000        |                              | STEP 9                   |  |  |  |  |
|             | Aa                           | Ab                       |  |  |  |  |
|             | Carbon balance               | CO <sub>2</sub> emission |  |  |  |  |
| Crop, years | thousand tonnes              | thousand tonnes          |  |  |  |  |
|             | Aa=J-Z                       | Ab=-(Aa x 3.67)          |  |  |  |  |
| COTTON      |                              |                          |  |  |  |  |
| 2001        | 949.82                       | -3485.84                 |  |  |  |  |
| 2000        | 829.37                       | -3043.80                 |  |  |  |  |
| 1999        | 100.23                       | -367.85                  |  |  |  |  |
| Average     | 626.47                       | -2299.16                 |  |  |  |  |
| WHEAT       |                              |                          |  |  |  |  |
| 2001        | 527.37                       | -1935.44                 |  |  |  |  |
| 2000        | 239.09                       | -877.46                  |  |  |  |  |
| 1999        | -118.92                      | 436.45                   |  |  |  |  |
| Average     | 215.84                       | -792.15                  |  |  |  |  |
| ALFALFA     |                              |                          |  |  |  |  |
| 2001        | -0.239                       | 0.879                    |  |  |  |  |
| 2000        | -0.239                       | 0.879                    |  |  |  |  |
| 1999        | -0.239                       | 0.879                    |  |  |  |  |
| Average     | -0.239                       | 0.879                    |  |  |  |  |
| Total:      | 842.080                      | -3090.433                |  |  |  |  |



# Annex 13

# Quantitative estimates of uncertainties by separate gases and sectors

| Sub-sectors                                           | Activity<br>data<br>uncertainty | Emission<br>factor<br>uncertainty | Combined<br>uncertainty | n,<br>Gg CO2-eq | ±Ε     | n+E                    | n-E     |
|-------------------------------------------------------|---------------------------------|-----------------------------------|-------------------------|-----------------|--------|------------------------|---------|
|                                                       | U <sub>A</sub>                  | U <sub>F</sub>                    | UT                      |                 |        | Gg CO <sub>2</sub> -eq | l 👘     |
| Energy Industries                                     | 1%                              | 5%                                | 5%                      | 44284.4         | 2258.1 | 46542.5                | 42026.4 |
| Manufacturing<br>Industries and<br>Construction (all) | 15%                             | 5%                                | 16%                     | 4981.8          | 787.7  | 5769.5                 | 4194.1  |
| Road<br>Transportation                                | 15%                             | 5%                                | 16%                     | 5619.4          | 888.5  | 6507.9                 | 4730.9  |
| Civil Aviation<br>(domestic)                          | 40%                             | 5%                                | 40%                     | 70.7            | 28.5   | 99.3                   | 42.2    |
| Railways                                              | 1%                              | 5%                                | 5%                      | 327.2           | 16.7   | 343.9                  | 310.5   |
| Pipeline Transport                                    | 1%                              | 5%                                | 5%                      | 5114.3          | 260.8  | 5375.1                 | 4853.5  |
| Commercial/Institu tional                             | 15%                             | 5%                                | 16%                     | 9023.8          | 1426.8 | 10450.6                | 7597.0  |
| Residential                                           | 15%                             | 5%                                | 16%                     | 32695.9         | 5169.7 | 37865.6                | 27526.3 |
| Agriculture<br>/Forestry/Fishing                      | 15%                             | 5%                                | 16%                     | 2693.2          | 425.8  | 3119.1                 | 2267.4  |
|                                                       | 104810.8                        | 11262.6                           | 116073.<br>4            | 93548.3         |        |                        |         |
|                                                       | % of tota                       | 1                                 |                         |                 | 10.7   | 10.7                   | -10.7   |

**Table A42** Quantitative estimate of uncertainties associated with CO2 emission from the sector"Energy", 2000

 Table A43 Quantitative estimate of uncertainties associated with CO2 emission from the sector "Industrial Processes", 2000

| Sub-sectors        | Activity data<br>uncertainty | Emission<br>factor<br>uncertainty | Combined uncertainty | n,<br>Gg CO <sub>2</sub> -eq | ±Ε    | n+E                    | n-E    |
|--------------------|------------------------------|-----------------------------------|----------------------|------------------------------|-------|------------------------|--------|
|                    | U <sub>A</sub>               | U <sub>F</sub>                    | UT                   |                              | (     | Gg CO <sub>2</sub> -ee | q      |
| Clinker production | 1%                           | 6%                                | 6%                   | 1475.5                       | 89.8  | 1565.3                 | 1385.8 |
| Ammonia production | 1%                           | 5%                                | 5%                   | 1298.0                       | 66.2  | 1364.2                 | 1231.8 |
|                    | Total                        |                                   |                      | 2773.5                       | 155.9 | 2929.5                 | 2617.6 |
|                    | % of total                   | l                                 |                      |                              | 5.6   | 5.6                    | -5.6   |



| Sub-sectors                                     | Activity data<br>uncertainty | Emission<br>factor<br>uncertainty | Gg       | n,<br>Gg CO2-eq | ±Ε     | n+E                    | n-E     |
|-------------------------------------------------|------------------------------|-----------------------------------|----------|-----------------|--------|------------------------|---------|
|                                                 | U <sub>A</sub>               | U <sub>F</sub>                    | UT       |                 |        | Gg CO <sub>2</sub> -eq | l       |
| Energy<br>Industries                            | 1%                           | 5%                                | 5%       | 44284.4         | 2258.1 | 46542.5                | 42026.4 |
| Manufacturing<br>Industries and<br>Construction | 15%                          | 5%                                | 16%      | 4981.8          | 787.7  | 5769.5                 | 4194.1  |
| Road<br>Transportation                          | 15%                          | 5%                                | 16%      | 5619.4          | 888.5  | 6507.9                 | 4730.9  |
| Civil Aviation<br>(domestic)                    | 40%                          | 5%                                | 40%      | 70.7            | 28.5   | 99.3                   | 42.2    |
| Railways                                        | 1%                           | 5%                                | 5%       | 327.2           | 16.7   | 343.9                  | 310.5   |
| Pipeline<br>Transport                           | 1%                           | 5%                                | 5%       | 5114.3          | 260.8  | 5375.1                 | 4853.5  |
| Commercial/<br>Institutional                    | 15%                          | 5%                                | 16%      | 9023.8          | 1426.8 | 10450.6                | 7597.0  |
| Residential                                     | 15%                          | 5%                                | 16%      | 32695.9         | 5169.7 | 37865.6                | 27526.3 |
| Agriculture                                     | 15%                          | 5%                                | 16%      | 2693.2          | 425.8  | 3119.1                 | 2267.4  |
| Clinker<br>production                           | 1%                           | 6%                                | 6%       | 1475.5          | 89.8   | 1565.3                 | 1385.8  |
| Ammonia<br>Production                           | 1%                           | 5%                                | 5%       | 1298.0          | 66.2   | 1364.2                 | 1231.8  |
|                                                 | 107584.4                     | 11418.5                           | 119002.9 | 96165.9         |        |                        |         |
|                                                 |                              | 10.6                              | 10.6     | -10.6           |        |                        |         |

Table A44 Quantitative estimate of uncertainties associated with CO<sub>2</sub> emission by categories, 2000

Table A45 Quantitative estimate of uncertainties in the sector «Industrial Processes», 2000

| Sub-sectors               | Activity data<br>uncertainty | Emission<br>factor<br>uncertainty | Combined<br>uncertainty | n,<br>Gg CO <sub>2</sub> -eq | ±Ε    | n+E                    | n-E    |
|---------------------------|------------------------------|-----------------------------------|-------------------------|------------------------------|-------|------------------------|--------|
|                           | U <sub>A</sub>               | UF                                | UT                      | 8 - 1                        | -     | Gg CO <sub>2</sub> -eq |        |
| Clinker<br>production     | 1%                           | 6%                                | 6%                      | 1475.5                       | 89.8  | 1565.3                 | 1385.8 |
| Ammonia<br>Production     | 1%                           | 5%                                | 5%                      | 1298.0                       | 66.2  | 1364.2                 | 1231.8 |
| Nitric Acid<br>Production | 1%                           | 26%                               | 26%                     | 1373.9                       | 357.5 | 1731.4                 | 1016.4 |
|                           | 4147,4                       | 513.4                             | 4660.9                  | 3634.0                       |       |                        |        |
|                           |                              | 12.4                              | 12.4                    | -12.4                        |       |                        |        |

| Sub-sectors                                     | Activity<br>data<br>uncertainty | Emission<br>factor<br>uncertain<br>ty | Combined<br>uncertainty | n,<br>Gg CO <sub>2</sub> -eq | ±E      | n+E                   | n-E     |
|-------------------------------------------------|---------------------------------|---------------------------------------|-------------------------|------------------------------|---------|-----------------------|---------|
|                                                 | UA                              | U <sub>F</sub>                        | UT                      |                              |         | GgCO <sub>2</sub> -eq |         |
| Energy<br>Industries                            | 1%                              | 5%                                    | 5%                      | 44284.4                      | 2258.1  | 46542.5               | 42026.4 |
| Manufacturing<br>Industries and<br>Construction | 15%                             | 5%                                    | 16%                     | 4981.8                       | 787.7   | 5769.5                | 4194.1  |
| Road<br>Transportation                          | 15%                             | 5%                                    | 16%                     | 5619.4                       | 888.5   | 6507.9                | 4730.9  |
| Civil Aviation<br>(domestic)                    | 40%                             | 5%                                    | 40%                     | 70.7                         | 28.5    | 99.3                  | 42.2    |
| Railways                                        | 1%                              | 5%                                    | 5%                      | 327.2                        | 16.7    | 343.9                 | 310.5   |
| Pipeline<br>Transport                           | 1%                              | 5%                                    | 5%                      | 5114.3                       | 260.8   | 5375.1                | 4853.5  |
| Commercial/Insti<br>tutional                    | 15%                             | 5%                                    | 16%                     | 9023.8                       | 1426.8  | 10450.6               | 7597.0  |
| Residential                                     | 15%                             | 5%                                    | 16%                     | 32695.9                      | 5169.7  | 37865.6               | 27526.3 |
| Agriculture                                     | 15%                             | 5%                                    | 16%                     | 2693.2                       | 425.8   | 3119.1                | 2267.4  |
| Clinker<br>production                           | 1%                              | 6%                                    | 6%                      | 1475.5                       | 89.8    | 1565.3                | 1385.8  |
| Ammonia<br>Production                           | 1%                              | 5%                                    | 5%                      | 1298.0                       | 66.2    | 1364.2                | 1231.8  |
| Nitric Acid<br>Production                       | 1%                              | 26%                                   | 26%                     | 1373.9                       | 357.5   | 1731.4                | 1016.4  |
|                                                 | Total                           | l                                     |                         | 108958.3                     | 11775.0 | 120734.3              | 97182.3 |
|                                                 | % of to                         | tal                                   |                         |                              | 10.8    | 10.8                  | -10.8   |

Table A46 Quantitative estimate of uncertainties associated with emissions from all categories, 2000

## References

1. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 1.

2. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC, 2003.