

Framework Convention on Climate Change

Distr.: General 20 June 2025

English only

Report on the simplified review of the national inventory report of Ukraine submitted in 2025

Summary

This report presents the results of the simplified review of the 2025 national inventory report of Ukraine, conducted by the secretariat in accordance with the modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement.

Abbreviations and acronyms

 CH_4 methane CO_2 carbon dioxide

GHG greenhouse gas
HFC hydrofluorocarbon
IEF implied emission factor

LULUCF land use, land-use change and forestry

MPGs modalities, procedures and guidelines for the transparency framework for

action and support referred to in Article 13 of the Paris Agreement

 $\begin{array}{ccc} N & & nitrogen \\ N_2O & & nitrous \ oxide \\ NA & & not \ applicable \\ NE & & not \ estimated \\ NF_3 & & nitrogen \ trifluoride \\ NIR & & national \ inventory \ report \end{array}$

NO not occurring PFC perfluorocarbon

I. Introduction

- 1. This report covers the simplified review of the NIR of Ukraine submitted in 2025. The review was conducted by the secretariat in accordance with the MPGs,¹ particularly chapter VII thereof, and the simplified review procedures.²
- 2. On 14 May 2025 a draft version of this report was transmitted to the Government of Ukraine, ³ which did not provide any comments on individual findings or any general comments on the report.
- 3. The secretariat conducted the simplified review of Ukraine's NIR, which involved an initial assessment of completeness and consistency with the MPGs.⁴
- 4. The findings of the initial assessment, presented in the annex, are the result of automated checks and do not necessarily indicate issues of completeness or consistency of the Party's reporting with the MPGs.
- 5. This report, including the findings listed in the annex and any comments provided by the Party (see para. 2 above), will be made available to and considered by the technical expert review team as part of the subsequent technical expert review of Ukraine's NIR.⁵

II. Initial assessment of completeness and consistency with the modalities, procedures and guidelines

A. Summary of findings

6. The table below provides a summary of the findings of the initial assessment by the secretariat. Tables I.1–I.7 list the findings and include detailed information on each one.

Summary of the initial assessment

Area of review	Description	Assessment
Dates of submission	2025 submission: CRTs, 2 April 2025	
	2024 submission: CRTs, 30 December 2024	
Recalculations	Recalculations that have changed estimated total GHG emissions or removals (excluding LULUCF) by more than 2 per cent for categories or subcategories above the threshold of significance (116.43 kt CO ₂ eq for 2023) ^a	
	Recalculations for 1990 (the reference year for the Party's nationally determined contribution) and 2022 since the previous submission	See table I.1
Completeness	Detection of notation key "NE", or of missing gases or sectors in CRT 10 emission trends summary	See table I.2
Notation keys	Changes in notation keys reported for 1990 and 2022 since the previous submission	No findings for this area
Sectoral and reference approaches	Difference in estimated energy consumption or CO ₂ emissions, by fuel type, of more than 5 per cent between the reference and sectoral approaches for the latest reported year (2023)	See table I.4
Time-series consistency	The time series of emissions is assessed by calculating interannual changes for each category and gas and converting them to CO ₂ eq. Inter-annual changes exceeding the significance threshold are evaluated using the z-score method, ^b where outliers	See table I.5

¹ Decision 18/CMA.1, annex.

² Contained in paras. 15–19 of the conclusions and recommendations from the 2023 joint meeting of lead reviewers, available at https://unfccc.int/documents/627213.

³ As per para. 163 of the MPGs.

⁴ As per para. 155 of the MPGs.

⁵ As per para. 155 of the MPGs.

Area of review	Description	Assessment
	are identified as values exceeding a z-score of 3, based on the statistical distribution of the full time series	
IEFs	Comparison of IEFs reported for any significant subcategories under key categories with the range of IEFs reported by developed country Parties for the latest inventory year (2023) in their 2025 submission ^c	See table I.6
Key categories	New key categories identified since the previous submission for level (latest year) and trend	See table I.7
Previous areas of improvement	Status of implementation of previous areas of improvement identified in the latest report on the technical expert review of the Party's biennial transparency report	NA^d

a Threshold calculated by the secretariat as 0.05 per cent of the national total GHG emissions for 2023, excluding LULUCF, or 500 kt CO₂ eq, whichever is lower (see para. 32 of the MPGs).
 b Statistical measure that indicates how many standard deviations a data point is from the mean.

Comments of the Party on the initial assessment B.

7. The Party did not provide any general comments.

Range defined by the median plus or minus two times the standard deviation, calculated from all available data points per

^d As at the time of publication of this report, information on status of implementation of previous areas of improvement was not yet available.

Annex

Findings of the initial assessment of Ukraine's 2025 national inventory report

Tables I.1–I.7 detail the findings of the initial assessment by the secretariat of the Party's NIR.

Table I.1 **Findings on recalculations**

					Estimate in	Estimate in previous			_
				Inventory	submission	submission			Difference (kt
ID#	Category	CRT	Gas	year	(2025)	(2024)	Difference Unit	Difference (%)	$CO_2 eq)$
I.1.1.	3.A.1.a. Other	Table3	CH ₄	1990	1 509.31	1 461.46	47.85 kt	3.3	1 339.80
I.1.2.	3.A.2. Sheep	Table3	CH ₄	1990	56.00	60.91	–4.91 kt	-8.1	-137.56
I.1.3.	3.B.5. Indirect N ₂ O emissions	Table3	N_2O	1990	5.20	4.67	0.53 kt	11.3	140.27
I.1.4.	3.D.1.b. Organic N fertilizers	Table3	N_2O	1990	8.46	7.78	0.67 kt	8.7	178.70
I.1.5.	3.B.3. Swine	Table3	CH ₄	2022	32.51	16.91	15.60 kt	92.2	436.71
I.1.6.	3.D.1.b. Organic N fertilizers	Table3	N_2O	2022	2.34	1.81	0.53 kt	29.2	140.13
I.1.7.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂ emissions/removals	1990	-1 539.61	-812.51	−727.11 kt CO ₂ eq	89.5	-727.11
I.1.8.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂ emissions/removals	2022	104.05	228.51	−124.47 kt CO ₂ eq	-54.5	-124.47
I.1.9.	5.D.1. Domestic wastewater	Table5	CH ₄	2022	142.12	136.11	6.01 kt	4.4	168.26

Table I.2 **Findings on completeness**

				Inventory	
ID#	Sector, category or gas	CRT	Gas	year	Notation key Finding type
I.2.1.	1.B.1.a. Coal mining and handling	Table1	CO ₂	1990	NA, NE, NO Reporting of "NE" detected
I.2.2,	1.D.2. Multilateral operations	Table1	CO_2	1990	NE Reporting of "NE" detected
I.2.3.	1.D.2. Multilateral operations	Table1	CH ₄	1990	NE Reporting of "NE" detected
I.2.4.	1.D.2. Multilateral operations	Table1	N_2O	1990	NE Reporting of "NE" detected
I.2.5.	1.D.2. Multilateral operations	Table1	Total GHG emissions	1990	NE Reporting of "NE" detected
I.2.6.	1.B.1.a. Coal mining and handling	Table1	CO_2	2023	NA, NE, NO Reporting of "NE" detected
I.2.7.	2.B.1. Ammonia production	Table2(I)	CH ₄	1990	NE Reporting of "NE" detected
I.2.8.	2.B.1. Ammonia production	Table2(I)	CH ₄	2023	NE Reporting of "NE" detected
I.2.9.	4.B.1. Cropland remaining cropland	Table4	CH ₄	1990	NA, NE, NO Reporting of "NE" detected

				Inventory	
ID#	Sector, category or gas	CRT	Gas	year	Notation key Finding type
I.2.10.	5.C.2. Open burning of waste	Table5	CO ₂	1990	NE Reporting of "NE" detected
I.2.11.	5.C.2. Open burning of waste	Table5	CH ₄	1990	NE Reporting of "NE" detected
I.2.12.	5.C.2. Open burning of waste	Table5	N_2O	1990	NE Reporting of "NE" detected
I.2.13.	5.C.2. Open burning of waste	Table5	Total GHG emissions	1990	NE Reporting of "NE" detected
I.2.14.	5.C.2. Open burning of waste	Table5	CO_2	2023	NE Reporting of "NE" detected
I.2.15.	5.C.2. Open burning of waste	Table5	CH ₄	2023	NE Reporting of "NE" detected
I.2.16.	5.C.2. Open burning of waste	Table5	N_2O	2023	NE Reporting of "NE" detected
I.2.17.	5.C.2. Open burning of waste	Table5	Total GHG emissions	2023	NE Reporting of "NE" detected
I.2.18.	HFCs	Table10s6	=	1990	NO Gas or sector not reported
I.2.19.	PFCs	Table10s6	=	2023	NO Gas or sector not reported
I.2.20.	Unspecified mix of HFCs and PFCs	Table10s6	=	1990	NO Gas or sector not reported
I.2.21.	Unspecified mix of HFCs and PFCs	Table10s6	=	2023	NO Gas or sector not reported
I.2.22.	NF_3	Table10s6	=	1990	NO Gas or sector not reported
I.2.23.	NF_3	Table10s6	=	2023	NO Gas or sector not reported
I.2.24.	6. Other	Table10s6	=	1990	NO Gas or sector not reported
I.2.25.	6. Other	Table10s6	-	2023	NO Gas or sector not reported

Table I.3 Changes in notation keys reported since the previous submission

				Notation key	Notation key
			Inventory	reported in latest	reported in previous
ID#	Category	CRT Gas	year	submission (2025)	submission (2024)
No find	ings for this area				

Table I.4

Differences between the sectoral and reference approaches for the latest reported year

				Difference between
				reference and sectoral
ID#	CRT table	Fuel type	Description	approaches (%)
I.4.1.	Table1.A(c)	Liquid fuels (excluding international bunkers)	Energy consumption	18.4
I.4.2.	Table1.A(c)	Liquid fuels (excluding international bunkers)	CO ₂ emissions	19.1
I.4.3.	Table1.A(c)	Gaseous fuels	Energy consumption	-16.8
I.4.4.	Table1.A(c)	Gaseous fuels	CO ₂ emissions	-17.0
I.4.5.	Table1.A(c)	Other fossil fuels	Energy consumption	-100.0
I.4.6.	Table1.A(c)	Other fossil fuels	CO ₂ emissions	-100.0

				Difference between
				reference and sectoral
ID#	CRT table	Fuel type	Description	approaches (%)
I.4.7.	Table1.A(c)	Peat	Energy consumption	36.6
I.4.8.	Table1.A(c)	Peat	CO ₂ emissions	36.6

Table I.5 Findings on time-series consistency

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.1.	1.A.1.b. Petroleum refining	Table1	CO ₂	1991	1992	5 506.98	3 282.16	−2 224.82 kt	-2 224.82	-40.4	-3.5
I.5.2.	1.A.1.c. Manufacture of solid fuels and other energy	Table1	CO_2	1994	1995	9 135.05	5 042.18	–4 092.87 kt	-4 092.87	-44.8	-3.1
	industries										
I.5.3.	1.A.2.a. Iron and steel	Table1	CO_2	1993	1994	35 572.87	21 482.59	−14 090.28 kt	$-14\ 090.28$	-39.6	-3.1
I.5.4.	1.A.2.c. Chemicals	Table1	CO_2	1993	1994	3 288.03	2 137.04	−1 150.99 kt	-1 150.99	-35.0	-3.8
I.5.5.	1.A.2.d. Pulp, paper and print	Table1	CO_2	1991	1992	163.64	327.57	163.93 kt	163.93	100.2	3.5
I.5.6.	1.A.2.e. Food processing, beverages and tobacco	Table1	CO_2	1996	1997	2 309.11	1 104.19	−1 204.92 kt	$-1\ 204.92$	-52.2	-3.1
I.5.7.	1.A.2.f. Non-metallic minerals	Table1	CO_2	1993	1994	13 199.03	6 863.25	−6 335.78 kt	-6 335.78	-48.0	-3.7
I.5.8.	1.A.2.g. Other	Table1	CO_2	1991	1992	25 934.39	8 538.18	–17 396.21 kt	-17 396.21	-67.1	-5.1
I.5.9.	1.A.3.a. Domestic aviation	Table1	CO_2	1991	1992	619.36	341.54	–277.82 kt	-277.82	-44.9	-3.5
I.5.10.	1.A.3.b. Road transportation	Table1	CO_2	1990	1991	59 916.59	45 482.65	−14 433.95 kt	-14 433.95	-24.1	-3.2
I.5.11.	1.A.3.b. Road transportation	Table1	CH_4	1990	1991	10.38	6.15	–4.23 kt	-118.32	-40.7	-3.5
I.5.12.	1.A.3.b. Road transportation	Table1	N_2O	1990	1991	4.00	2.82	-1.17 kt	-311.34	-29.4	-3.8
I.5.13.	1.A.3.d. Domestic navigation	Table1	CO_2	1991	1992	2 521.28	1 363.25	−1 158.03 kt	-1 158.03	-45.9	-4.3
I.5.14.	1.A.3.e. Other transportation	Table1	CH_4	1990	1991	17.21	24.26	7.06 kt	197.55	41.0	3.7
I.5.15.	1.A.3.e. Other transportation	Table1	N_2O	1990	1991	8.07	5.34	-2.73 kt	-724.07	-33.9	-4.3
I.5.16.	1.A.4.a. Commercial/institutional	Table1	CO_2	1996	1997	18 025.99	9 715.99	−8 310.00 kt	-8 310.00	-46.1	-3.1
I.5.17.	1.A.4.a. Commercial/institutional	Table1	CH_4	1991	1992	3.85	8.82	4.97 kt	139.05	128.9	3.8
I.5.18.	1.A.4.b. Residential	Table1	CO_2	1990	1991	56 448.26	43 300.46	−13 147.81 kt	$-13\ 147.81$	-23.3	-3.5
I.5.19.	1.A.4.b. Residential	Table1	CH_4	1990	1991	113.10	41.67	−71.42 kt	-1999.85	-63.2	-5.4
I.5.20.	1.A.4.c. Agriculture/forestry/fishing	Table1	CO_2	1993	1994	2 140.28	1 167.37	–972.91 kt	-972.91	-45.5	-3.5
I.5.21.	1.A.5.b. Mobile	Table1	CO_2	2021	2022	383.15	869.85	486.70 kt	486.70	127.0	4.3
I.5.22.	1.B.2.a. Oil	Table1	CH_4	2022	2023	56.32	78.35	22.03 kt	616.92	39.1	3.5
I.5.23.	1.B.2.b. Natural gas	Table1	CO_2	1990	1991	2 273.49	1 973.23	-300.26 kt	-300.26	-13.2	-3.2
I.5.24.	1.B.2.b. Natural gas	Table1	CO_2	1991	1992	1 973.23	1 692.52	-280.71 kt	-280.71	-14.2	-3.0
I.5.25.	1.D.1.b. Navigation	Table1	CO_2	1996	1997	1 041.86	510.62	−531.24 kt	-531.24	-51.0	-4.0
I.5.26.	2.A.1. Cement production	Table2(I)	CO_2	2008	2009	6 293.78	2 590.09	−3 703.69 kt	-3 703.69	-58.8	-3.6
I.5.27.	2.A.3. Glass production	Table2(I)	CO_2	2000	2001	79.12	215.29	136.17 kt	136.17	172.1	3.2

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.28.	2.A.3. Glass production	Table2(I)	CO_2	2021	2022	289.54	127.32	−162.22 kt	-162.22	-56.0	-3.7
I.5.29.	2.B.2. Nitric acid production	Table2(I)	N_2O	2021	2022	12.62	4.50	−8.12 kt	-2 151.12	-64.3	-3.1
I.5.30.	2.B.8. Petrochemical and carbon black production	Table2(I)	CO_2	1994	1995	1 503.82	560.46	–943.37 kt	-943.37	-62.7	-3.0
I.5.31.	2.B.8. Petrochemical and carbon black production	Table2(I)	CH_4	2021	2022	134.22	19.38	-114.84 kt	$-3\ 215.52$	-85.6	-3.6
I.5.32.	2.C.1. Iron and steel production	Table2(I)	CO_2	2021	2022	36 765.61	10 827.40	–25 938.21 kt	$-25\ 938.21$	-70.6	-3.8
I.5.33.	2.C.1. Iron and steel production	Table2(I)	CH ₄	2021	2022	21.35	6.21	−15.15 kt	-424.10	-70.9	-3.5
I.5.34.	2.D.1. Lubricant use	Table2(I)	CO_2	1995	1996	133.84	283.60	149.76 kt	149.76	111.9	3.3
I.5.35.	3.B.1. Cattle	Table3	N_2O	1996	1997	2.27	1.68	–0.59 kt	-155.60	-25.9	-3.3
I.5.36.	3.B.1.a. Other	Table3	N_2O	1996	1997	2.27	1.68	–0.59 kt	-155.60	-25.9	-3.3
I.5.37.	3.D.1.a. Inorganic N fertilizers	Table3	N_2O	2021	2022	31.40	22.09	−9.30 kt	-2465.34	-29.6	-3.1
I.5.38.	3.D.1.b. Organic N fertilizers	Table3	N_2O	1996	1997	5.61	4.58	-1.03 kt	-274.12	-18.4	-3.2
I.5.39.	3.D.2. Indirect N ₂ O emissions from managed soils	Table3	N_2O	2021	2022	24.37	17.62	−6.75 kt	-1790.03	-27.7	-3.0
I.5.40.	3.G. Liming	Table3	CO_2	1990	1991	2 592.08	1 351.26	−1 240.82 kt	$-1\ 240.82$	-47.9	-4.1
I.5.41.	3.G. Liming	Table3	CO_2	1995	1996	1 351.26	299.20	−1 052.06 kt	$-1\ 052.06$	-77.9	-3.5
I.5.42.	4.A.1. Forest land remaining forest land	Table4	CH_4	2019	2020	0.08	11.14	11.07 kt	309.82	14 081.1	3.7
I.5.43.	4.A.1. Forest land remaining forest land	Table4	CH_4	2020	2021	11.14	0.02	–11.13 kt	-311.54	-99.8	-3.8
I.5.44.	4.A.1. Forest land remaining forest land	Table4	N_2O	2019	2020	0.19	0.80	0.61 kt	162.21	329.0	3.7
I.5.45.	4.A.1. Forest land remaining forest land	Table4	N_2O	2020	2021	0.80	0.18	-0.62 kt	-163.11	-77.1	-3.8
I.5.46.	4.A.2. Land converted to forest land	Table4	Net CO ₂	2015	2016	$-1\ 103.07$	$-1\ 376.61$	−273.54 kt CO ₂ eq	-273.54	24.8	-4.1
			emissions/removals								
I.5.47.	4.B.2. Land converted to cropland	Table4	Net CO ₂	2011	2012	-1473.73	1.46	1 475.19 kt CO ₂ eq	1 475.19	-100.1	3.7
			emissions/removals								
I.5.48.	4.C.2. Land converted to grassland	Table4	Net CO ₂	1992	1993	-329.92	$-1\ 209.17$	-879.25 kt CO ₂ eq	-879.25	266.5	-3.4
			emissions/removals								
I.5.49.	4.C.2. Land converted to grassland	Table4	Net CO ₂	2012	2013	$-2\ 025.14$	$-1\ 197.22$	827.91 kt CO ₂ eq	827.91	-40.9	3.1
			emissions/removals								
I.5.50.	4.D.1. Wetlands remaining wetlands	Table4	Net CO ₂	1991	1992	9 816.76	5 036.56	-4 780.20 kt CO ₂ eq	-4 780.20	-48.7	-4.3
			emissions/removals								
I.5.51.	4.E.2. Land converted to settlements	Table4	Net CO ₂	2017	2018	765.30	4 917.58	4 152.28 kt CO ₂ eq	4 152.28	542.6	3.5
			emissions/removals								
I.5.52.	4.F.2. Land converted to other land	Table4	Net CO ₂	2009	2010	2 250.86	662.61	−1 588.26 kt CO ₂ eq	-1588.26	-70.6	-5.2
			emissions/removals								
I.5.53.	4.F.2. Land converted to other land	Table4	N_2O	2009	2010	0.64	0.19	-0.45 kt	-120.51	-70.6	-5.2
I.5.54.	5.A.1. Managed waste disposal sites	Table5	CH ₄	2019	2020	61.09	52.25	-8.84 kt	-247.50	-14.5	-3.2
I.5.55.	5.A.2. Unmanaged waste disposal sites	Table5	CH ₄	1990	1991	273.61	282.37	8.76 kt	245.19	3.2	3.5
I.5.56.	5.D.1. Domestic wastewater	Table5	CH ₄	2021	2022	171.38	142.12	−29.26 kt	-819.31	-17.1	-3.7

FCCC/ETF/SRR/2025/UKR

Table I.6

Comparison between implied emission factors reported for key categories and the range of implied emission factors from the 2025 national inventory reports of developed country Parties

ID#	Category	CRT	Gas	Unit	IEF reported Comparison
I.6.1.	1.A.4. Other sectors – liquid fuels	Table1.A(a)s4	CO_2	t/TJ	66.367 Below range
I.6.2.	2.B.2. Nitric acid production	Table2(I).A-H	N_2O	t/t	0.007 Above range
I.6.3.	3.A.4.h.i. Rabbit	Table3.A	CH_4	kg CH4/head/year	0.699 Above range
I.6.4.	3.A.4.h.iv. Fur-bearing animals	Table3.A	CH_4	kg CH ₄ /head/year	0.250 Above range
I.6.5.	3.B.1.a.i. Mature dairy cattle	Table3.B(a)	CH_4	kg CH ₄ /head/year	4.376 Below range
I.6.6.	3.D.1.a. Inorganic N fertilizers	Table3.D	N_2O	kg N ₂ O-N/kg N	0.000 Below range

Table I.7 **Identification of new key categories**

				Inventory
ID#	New key category	Gas	Criteria	year
I.7.1.	1.B.2.a. Fugitive emissions from fuels – oil and natural gas	CH ₄	Trend	2023
	- oil			
I.7.2.	2.A.1. Cement production	CO_2	Trend	2023
I.7.3.	2.B.1. Ammonia production	CO_2	Level	2023
I.7.4.	4.A.2. Land converted to forest land	CO_2	Trend	2023