

Distr.: General 24 June 2025

English only

Report on the simplified review of the national inventory report of the Kingdom of the Netherlands* submitted in 2025

Summary

This report presents the results of the simplified review of the 2025 national inventory report of the Netherlands, conducted by the secretariat in accordance with the modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement.

Please recycle

^{*} As reporting under the UNFCCC is only required for the European part of the Kingdom of the Netherlands, the scope of the national inventory report submitted by the Party is limited to the European part of the Kingdom (referred to as "the Netherlands").

Abbreviations and acronyms

 C_2F_6 hexafluoroethane CF_4 tetrafluoromethane

 CH_4 methane CO_2 carbon dioxide

CO₂ eq carbon dioxide equivalent CRF common reporting format CRT common reporting table

ETF enhanced transparency framework under the Paris Agreement

GHG greenhouse gas
HFC hydrofluorocarbon
IE included elsewhere
IEF implied emission factor

LULUCF land use, land-use change and forestry

MPGs modalities, procedures and guidelines for the transparency framework for

action and support referred to in Article 13 of the Paris Agreement

 $\begin{array}{ccc} N & & nitrogen \\ N_2O & & nitrous \ oxide \\ NA & & not \ applicable \\ NE & & not \ estimated \\ NF_3 & & nitrogen \ trifluoride \\ NIR & & national \ inventory \ report \end{array}$

NO not occurring PFC perfluorocarbon

I. Introduction

- 1. This report covers the simplified review of the NIR of the Netherlands submitted in 2025. The review was conducted by the secretariat in accordance with the MPGs, ¹ particularly chapter VII thereof, and the simplified review procedures.²
- 2. On 21 May 2025 a draft version of this report was transmitted to the Government of the Netherlands, ³ which did not provide any comments on individual findings. The Netherlands provided general comments on the report on 12 June 2025 (see chap. II.B below).
- 3. The secretariat conducted the simplified review of the NIR of the Netherlands, which involved an initial assessment of completeness and consistency with the MPGs.⁴
- 4. The findings of the initial assessment, presented in the annex, are the result of automated checks and do not necessarily indicate issues of completeness or consistency of the Party's reporting with the MPGs.
- 5. This report, including the findings listed in the annex and any comments provided by the Party (see para. 2 above), will be made available to and considered by the technical expert review team as part of the subsequent technical expert review of the NIR of the Netherlands.⁵

II. Initial assessment of completeness and consistency with the modalities, procedures and guidelines

A. Summary of findings

6. The table below provides a summary of the findings of the initial assessment by the secretariat. Tables I.1–I.7 list the findings and include detailed information on each one.

Summary of the initial assessment

Area of review	Description	Assessment
Dates of submission	2025 submission: CRTs, 15 April 2025	
	2024 submission: CRTs, 19 November 2024	
Recalculations	Recalculations that have changed estimated total GHG emissions or removals (excluding LULUCF) by more than 2 per cent for categories or subcategories above the threshold of significance (71.32 kt CO ₂ eq for 2023) ^a	
	Recalculations for 1990 (the reference year for the Party's nationally determined contribution) and 2022 since the previous submission	See table I.1
Completeness	Detection of notation key "NE", or of missing gases or sectors in CRT 10 emission trends summary	See table I.2
Notation keys	Changes in notation keys reported for 1990 and 2022 since the previous submission	See table I.3
Sectoral and reference approaches	Difference in estimated energy consumption or CO ₂ emissions, by fuel type, of more than 5 per cent between the reference and sectoral approaches for the latest reported year (2023)	See table I.4
Time-series consistency	The time series of emissions is assessed by calculating interannual changes for each category and gas and converting them to CO ₂ eq. Inter-annual changes exceeding the significance threshold are evaluated using the z-score method, ^b where outliers	See table I.5

¹ Decision 18/CMA.1, annex.

² Contained in paras. 15–19 of the conclusions and recommendations from the 2023 joint meeting of lead reviewers, available at https://unfccc.int/documents/627213.

³ As per para. 163 of the MPGs.

⁴ As per para. 155 of the MPGs.

⁵ As per para. 155 of the MPGs.

Area of review	Description	Assessment
	are identified as values exceeding a z-score of 3, based on the statistical distribution of the full time series	
IEFs	Comparison of IEFs reported for any significant subcategories under key categories with the range of IEFs reported by developed country Parties for the latest inventory year (2023) in their 2025 submission ^c	See table I.6
Key categories	New key categories identified since the previous submission for level (latest year) and trend	See table I.7
Previous areas of improvement	Status of implementation of previous areas of improvement identified in the latest report on the technical expert review of the Party's biennial transparency report	NA^d

^a Threshold calculated by the secretariat as 0.05 per cent of the national total GHG emissions for 2023, excluding LULUCF, or 500 kt CO₂ eq, whichever is lower (see para. 32 of the MPGs).

B. Comments of the Party on the initial assessment

7. The Party provided general comments, 6 which are reported in the box below.

We would like to thank the secretariat for the conducted work and the findings. As a general clarification in relation to a number of findings, we would like to note that in the transition from the CRF to the ETF Reporting Tool there were still some lingering issues with notation keys, units, et cetera. This will be resolved in the next submission.

^b Statistical measure that indicates how many standard deviations a data point is from the mean.

^c Range defined by the median plus or minus two times the standard deviation, calculated from all available data points per category.

^d As at the time of publication of this report, information on status of implementation of previous areas of improvement was not yet available.

⁶ The comments provided by the Netherlands are presented verbatim.

Annex

Findings of the initial assessment of the 2025 national inventory report of the Netherlands

Tables I.1–I.7 detail the findings of the initial assessment by the secretariat of the Party's NIR.

Table I.1 **Findings on recalculations**

				Inventory	Estimate in latest submission	Estimate in previous submission			Difference (kt
ID#	Category	CRT	Gas	year	(2025)	(2024)	Difference Unit	Difference (%)	$CO_2 eq)$
I.1.1.	1.A.2.g. Other	Table1	CO_2	1990	4 296.84	4 401.89	-105.05 kt	-2.4	-105.05
I.1.2.	1.A.4.a. Commercial/institutional	Table1	CO_2	1990	8 551.56	8 372.20	179.35 kt	2.1	179.35
I.1.3.	1.B.2.b. Natural gas	Table1	CH ₄	1990	21.31	16.84	4.47 kt	26.5	125.20
I.1.4.	1.A.3.b. Road transportation	Table1	N_2O	2022	1.05	0.68	0.37 kt	55.0	99.01
I.1.5.	1.A.4.a. Commercial/institutional	Table1	CO_2	2022	5 820.88	5 696.34	124.54 kt	2.2	124.54
I.1.6.	1.B.2.b. Natural gas	Table1	CH ₄	2022	12.03	8.61	3.42 kt	39.7	95.80
I.1.7.	2.F.1. Refrigeration and air conditioning	Table2(I)	HFCs	2022	478.31	763.59	-285.29 kt CO ₂ eq	-37.4	-285.29
I.1.8.	2.F.1. Refrigeration and air conditioning	Table2(II)		2022	31.62	66.49	−34.87 t	-52.4	-110.53
I.1.9.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-143a	2022	4.39	24.61	-20.22 t	-82.2	-97.07
I.1.10.	4.B.2. Land converted to cropland	Table4	Net CO ₂	1990	1 746.92	1 398.41	348.51 kt CO ₂ eq	24.9	348.51
			emissions/removals						
I.1.11.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂ emissions/removals	1990	2 422.54	3 258.33	–835.79 kt CO ₂ eq	-25.7	-835.79
I.1.12.	4.C.2. Land converted to grassland	Table4	Net CO ₂ emissions/removals	1990	-689.70	-329.31	-360.40 kt CO ₂ eq	-109.4	-360.40
I.1.13.	4.A.1. Forest land remaining forest land	Table4	Net CO ₂ emissions/removals	2022	-1 359.69	-790.17	–569.52 kt CO ₂ eq	-72.1	-569.52
I.1.14.	4.B.2. Land converted to cropland	Table4	Net CO ₂ emissions/removals	2022	1 537.06	1 257.57	279.48 kt CO ₂ eq	22.2	279.48
I.1.15.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂ emissions/removals	2022	1 960.90	2 575.77	-614.86 kt CO ₂ eq	-23.9	-614.86
I.1.16.	4.C.2. Land converted to grassland	Table4	Net CO ₂ emissions/removals	2022	-771.52	-145.04	-626.48 kt CO ₂ eq	-431.9	-626.48
I.1.17.	4.E.1. Settlements remaining settlements	Table4	Net CO ₂ emissions/removals	2022	392.45	463.97	−71.52 kt CO ₂ eq	-15.4	-71.52

Findings on completeness

				Inventory		
ID#	Sector, category or gas	CRT	Gas	year	Notation key	Finding type
I.2.1.	4.B.2. Land converted to cropland	Table4	CH ₄	1990	IE, NE, NO	Reporting of "NE" detected
I.2.2.	4.C.2. Land converted to grassland	Table4	CH ₄	1990	IE, NE, NO	Reporting of "NE" detected
I.2.3.	4.B.2. Land converted to cropland	Table4	CH ₄	2023	IE, NE, NO	Reporting of "NE" detected
I.2.4.	4.C.2. Land converted to grassland	Table4	CH ₄	2023	IE, NE, NO	Reporting of "NE" detected
I.2.5.	5.F.1. Long-term storage of carbon in waste disposal sites	Table5	CO ₂	1990	NE	Reporting of "NE" detected
I.2.6.	5.F.1. Long-term storage of carbon in waste disposal sites	Table5	Total GHG emissions	1990	NE	Reporting of "NE" detected
I.2.7.	5.F.2. Annual change in total carbon storage	Table5	CO_2	1990	NE	Reporting of "NE" detected
I.2.8.	5.F.2. Annual change in total carbon storage	Table5	Total GHG emissions	1990	NE	Reporting of "NE" detected
I.2.9.	5.F.1. Long-term storage of carbon in waste disposal sites	Table5	CO ₂	2023	NE	Reporting of "NE" detected
I.2.10.	5.F.1. Long-term storage of carbon in waste disposal sites	Table5	Total GHG emissions	2023	NE	Reporting of "NE" detected
I.2.11.	5.F.2. Annual change in total carbon storage	Table5	CO_2	2023	NE	Reporting of "NE" detected
I.2.12.	5.F.2. Annual change in total carbon storage	Table5	Total GHG emissions	2023	NE	Reporting of "NE" detected
I.2.13.	Unspecified mix of HFCs and PFCs	Table10s6	_	1990	NO	Gas or sector not reported
I.2.14.	Unspecified mix of HFCs and PFCs	Table10s6	=	2023	NO	Gas or sector not reported
I.2.15.	NF ₃	Table10s6	=	1990	IE, NA, NO	Gas or sector not reported
I.2.16.	NF ₃	Table10s6	=	2023	IE, NA, NO	Gas or sector not reported
I.2.17.	6. Other	Table10s6	=	1990	NO	Gas or sector not reported
I.2.18.	6. Other	Table10s6	=	2023	NO	Gas or sector not reported

Table I.3 Changes in notation keys reported since the previous submission

					Notation key	Notation key
				Inventory	reported in latest	reported in previous
ID#	Category	CRT	Gas	year	submission (2025)	submission (2024)
I.3.1.	2.A.4. Other process uses of carbonates	Table2(I)	CH ₄	1990	NO	IE
I.3.2.	2.A.4. Other process uses of carbonates	Table2(I)	N_2O	1990	NO	IE
I.3.3.	2.B.5. Carbide production	Table2(I)	CO_2	1990	NO	IE, NO
I.3.4.	2.E.2. Thin-film-transistor flat panel display	Table2(I)	NF_3	1990	_	IE
I.3.5.	2.E.2. Thin-film-transistor flat panel display	Table2(I)	Total GHG emissions	1990	NA, NO	IE
I.3.6.	2.G.1. Electrical equipment	Table2(I)	Total GHG emissions	1990	IE. NA. NO	IE. NA

ч	1
	١
`	Ċ
(.)
\mathbf{C})
ì	Ì
_	i
=	3
7	1
Ò	j
Ĭ	j
	í
^	,
Ñ	ì
_	٥
Ñ	١
Ù	ı
\rightarrow	ì
_	3
┖	٩
C	J

					Notation key	Notation key
				Inventory	reported in latest	reported in previous
ID#	Category	CRT	Gas	year	submission (2025)	submission (2024)
I.3.7.	2.A.4. Other process uses of carbonates	Table2(I)	CH ₄	2022	NO	IE
I.3.8.	2.A.4. Other process uses of carbonates	Table2(I)	N_2O	2022	NO	IE
I.3.9.	2.B.5. Carbide production	Table2(I)	CO_2	2022	NO	IE, NO
I.3.10.	2.C.3. Aluminium production	Table2(I)	CO_2	2022	NO	15.14
I.3.11.	2.C.3. Aluminium production	Table2(I)	Total GHG emissions	2022	NO	15.14
I.3.12.	2.E.2. Thin-film-transistor flat panel display	Table2(I)	NF_3	2022	_	IE
I.3.13.	2.E.2. Thin-film-transistor flat panel display	Table2(I)	Total GHG emissions	2022	NA, NO	IE
I.3.14.	2.G.1. Electrical equipment	Table2(I)	Total GHG emissions	2022	IE, NA, NO	IE, NA
I.3.15.	2.E.2. Thin-film-transistor flat panel display	Table2(II)	NF_3	1990	_	IE
I.3.16.	2.E.2. Thin-film-transistor flat panel display	Table2(II)	NF_3	2022	_	IE
I.3.17.	4.A.2. Land converted to forest land	Table4	CH_4	1990	IE, NO	IE
I.3.18.	4.B.1. Cropland remaining cropland	Table4	N_2O	1990	IE, NO	IE
I.3.19.	4.B.2. Land converted to cropland	Table4	CH_4	1990	IE, NE, NO	IE
I.3.20.	4.C.2. Land converted to grassland	Table4	CH_4	1990	IE, NE, NO	IE
I.3.21.	4.A.2. Land converted to forest land	Table4	CH_4	2022	IE, NO	IE
I.3.22.	4.B.1. Cropland remaining cropland	Table4	N_2O	2022	IE, NO	IE
I.3.23.	4.B.2. Land converted to cropland	Table4	CH_4	2022	IE, NE, NO	IE
I.3.24.	4.C.2. Land converted to grassland	Table4	CH_4	2022	IE, NE, NO	IE

Table I.4

Differences between the sectoral and reference approaches for the latest reported year

				Difference between
				reference and sectoral
ID#	CRT table	Fuel type	Description	approaches (%)
I.4.1.	Table1.A(c)	Liquid fuels (excluding international bunkers)	Energy consumption	23.7
I.4.2.	Table1.A(c)	Liquid fuels (excluding international bunkers)	CO ₂ emissions	21.8

Table I.5 **Findings on time-series consistency**

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.1.	1.A.1.b. Petroleum refining	Table1	CO_2	2001	2002	12 695.96	10 743.76	−1 952.20 kt	-1 952.20	-15.4	-3.1
I.5.2.	1.A.2.g. Other	Table1	CO_2	1990	1991	4 296.84	4 761.91	465.07 kt	465.07	10.8	3.0
I.5.3.	1.A.3.b. Road transportation	Table1	CO_2	2019	2020	28 467.84	24 240.91	–4 226.92 kt	-4 226.92	-14.8	-3.7
I.5.4.	1.A.3.d. Domestic navigation	Table1	CO_2	2019	2020	943.09	730.54	–212.55 kt	-212.55	-22.5	-3.1

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.5.	1.A.4.c. Agriculture/forestry/fishing	Table1	CO ₂	2021	2022	9 090.54	6 835.82	−2 254.72 kt	-2 254.72	-24.8	-3.0
I.5.6.	1.A.4.c. Agriculture/forestry/fishing	Table1	CH ₄	2021	2022	48.13	34.63	-13.50 kt	-378.07	-28.1	-3.2
I.5.7.	1.B.2.a. Oil	Table1	CO_2	2001	2002	0.02	943.02	943.00 kt	943.00	4 291	4.9
										835.4	
I.5.8.	1.B.2.c. Venting and flaring	Table1	CO_2	1997	1998	494.23	309.50	−184.73 kt	-184.73	-37.4	-3.2
I.5.9.	1.B.2.c. Venting and flaring	Table1	CH ₄	1996	1997	54.28	30.53	–23.76 kt	-665.15	-43.8	-4.9
I.5.10.	1.D.1.a. Aviation	Table1	CO_2	2019	2020	11 889.77	6 631.40	−5 258.37 kt	-5258.37	-44.2	-4.9
I.5.11.	1.D.1.b. Navigation	Table1	CH ₄	2022	2023	5.37	8.45	3.08 kt	86.20	57.3	4.3
I.5.12.	2.A.1. Cement production	Table2(I)	CO_2	2018	2019	220.41	6.34	−214.08 kt	-214.08	-97.1	-3.3
I.5.13.	2.B.2. Nitric acid production	Table2(I)	N_2O	2007	2008	13.89	1.80	-12.09 kt	$-3\ 203.27$	-87.0	-5.0
I.5.14.	2.B.8. Petrochemical and carbon black production	Table2(I)	CO_2	2018	2019	458.32	553.99	95.67 kt	95.67	20.9	3.8
I.5.15.	2.B.9. Fluorochemical production	Table2(I)	HFCs	1998	1999	8 773.97	4 043.09	-4 730.89 kt CO ₂ eq	-4 730.89	-53.9	-4.3
I.5.16.	2.B.10. Other	Table2(I)	CO_2	1992	1993	10 339.13	5 845.58	–4 493.55 kt	-4 493.55	-43.5	-4.0
I.5.17.	2.C.3. Aluminium production	Table2(I)	CO_2	2011	2012	446.74	164.30	−282.44 kt	-282.44	-63.2	-3.3
I.5.18.	2.C.3. Aluminium production	Table2(I)	PFCs	2002	2003	2 206.60	466.27	−1 740.33 kt CO ₂ eq	-1740.33	-78.9	-4.4
I.5.19.	2.F.1. Refrigeration and air conditioning	Table2(I)	HFCs	2017	2018	1 296.43	864.86	-431.57 kt CO ₂ eq	-431.57	-33.3	-3.3
I.5.20.	2.B.9. Fluorochemical production	Table2(II)	HFC-23	1998	1999	665.86	294.02	−371.84 t	-4 610.82	-55.8	-4.4
I.5.21.	2.B.9. Fluorochemical production	Table2(II)	HFC-125	2002	2003	35.98	1.41	-34.57 t	-109.58	-96.1	-3.1
I.5.22.	2.B.9. Fluorochemical production	Table2(II)	HFC-134a	1997	1998	85.00	14.00	−71.00 t	-92.30	-83.5	-3.7
I.5.23.	2.B.9. Fluorochemical production	Table2(II)	HFC-143a	2000	2001	49.96	4.52	–45.44 t	-218.10	-90.9	-3.9
I.5.24.	2.B.9. Fluorochemical production	Table2(II)	Unspecified mix of	1996	1997	50.40	554.88	504.48 kt CO ₂ eq	504.48	1 000.9	4.5
			HFCs								
I.5.25.	2.B.9.a. By-product emissions	Table2(II)	HFC-23	1998	1999	665.86	294.02	−371.84 t	-4 610.82	-55.8	-4.4
I.5.26.	2.B.9.b. Fugitive emissions	Table2(II)	HFC-125	2002	2003	35.98	1.41	−34.57 t	-109.58	-96.1	-3.1
I.5.27.	2.B.9.b. Fugitive emissions	Table2(II)	HFC-134a	1997	1998	85.00	14.00	−71.00 t	-92.30	-83.5	-3.7
I.5.28.	2.B.9.b. Fugitive emissions	Table2(II)	HFC-143a	2000	2001	49.96	4.52	–45.44 t	-218.10	-90.9	-3.9
I.5.29.	2.B.9.b. Fugitive emissions	Table2(II)	Unspecified mix of	1996	1997	50.40	554.88	504.48 kt CO ₂ eq	504.48	1 000.9	4.5
			HFCs								
I.5.30.	2.C.3. Aluminium production	Table2(II)	CF ₄	2002	2003	235.98	52.64	−183.33 t	$-1\ 215.50$	-77.7	-4.3
I.5.31.	2.C.3. Aluminium production	Table2(II)	C_2F_6	2002	2003	57.84	10.56	–47.28 t	-524.83	-81.7	-4.7
I.5.32.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-143a	2017	2018	109.63	34.83	-74.80 t	-359.03	-68.2	-3.9
I.5.33.	3.A.3. Swine	Table3	CH ₄	1997	1998	22.78	20.17	-2.61 kt	-73.21	-11.5	-3.1
I.5.34.	3.B.3. Swine	Table3	CH ₄	1996	1997	124.32	110.44	-13.88 kt	-388.78	-11.2	-3.0
I.5.35.	3.B.4. Other livestock	Table3	CH ₄	1997	1998	14.79	9.81	–4.98 kt	-139.47	-33.7	-3.5
I.5.36.	3.D.1.b. Organic N fertilizers	Table3	N_2O	1991	1992	2.99	4.77	1.78 kt	472.69	59.7	4.5
I.5.37.	3.D.2. Indirect N ₂ O emissions from managed soils	Table3	N_2O	1991	1992	5.60	4.58	-1.02 kt	-269.51	-18.2	-4.1
I.5.38.	4.A.1. Forest land remaining forest land	Table4	Net CO ₂	2013	2014	$-2\ 058.67$	-1 644.92	413.75 kt CO ₂ eq	413.75	-20.1	4.3
			emissions/removals								

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.39.	4.A.2. Land converted to forest land	Table4	Net CO ₂ emissions/removals	2013	2014	-880.08	-787.06	93.02 kt CO ₂ eq	93.02	-10.6	4.2
I.5.40.	4.B.2. Land converted to cropland	Table4	Net CO ₂ emissions/removals	2008	2009	1 459.81	1 643.53	183.72 kt CO ₂ eq	183.72	12.6	3.3
I.5.41.	4.C.2. Land converted to grassland	Table4	Net CO ₂ emissions/removals	2003	2004	-475.57	-706.45	−230.88 kt CO ₂ eq	-230.88	48.5	-3.0
I.5.42.	4.C.2. Land converted to grassland	Table4	Net CO ₂ emissions/removals	2016	2017	-330.74	-631.86	−301.13 kt CO ₂ eq	-301.13	91.0	-3.9
I.5.43.	4.D.2. Land converted to wetlands	Table4	Net CO ₂ emissions/removals	2016	2017	66.25	-5.86	−72.11 kt CO ₂ eq	-72.11	-108.8	-5.1
I.5.44.	4.E.2. Land converted to settlements	Table4	Net CO ₂ emissions/removals	2016	2017	1 125.50	769.74	−355.76 kt CO ₂ eq	-355.76	-31.6	-5.3
I.5.45.	5.A.1. Managed waste disposal sites	Table5	CH_4	2004	2005	293.32	233.28	-60.03 kt	-1680.89	-20.5	-4.1
I.5.46.	5.D.1. Domestic wastewater	Table5	$\mathrm{CH_4}$	1990	1991	5.84	10.28	4.44 kt	124.41	76.1	3.8
I.5.47.	5.D.1. Domestic wastewater	Table5	CH_4	1993	1994	10.70	6.19	–4.50 kt	-126.08	-42.1	-3.8

Table I.6 Comparison between implied emission factors reported for key categories and the range of implied emission factors from the 2025 national inventory reports of developed country Parties

ID#	Category	CRT	Gas	Unit	IEF reported Comparison
I.6.1.	1.A.2. Manufacturing industries and construction – solid fuels	Table1.A(a)s2	CO ₂	t/TJ	55.815 Below range
I.6.2.	1.A.4. Other sectors – gaseous fuels	Table1.A(a)s4	CH ₄	kg/TJ	117.689 Above range
I.6.3.	2.D.2. Paraffin wax use	Table2(I).A-H	CO_2	t/t	3.130 Above range
I.6.4.	3.B.4.d. Goats	Table3.B(b)	N_2O	kg N2O/head/year	0.215 Above range
I.6.5.	3.D.1.c. Urine and dung deposited by grazing animals	Table3.D	N_2O	kg N2O-N/kg N	0.031 Above range

Table I.7 **Identification of new key categories**

ID#	New key category	Gas	Criteria	Inventory year
ID#	ivew key calegory	Ous	Criteria	уеш
I.7.1.	1.A.3.b. Road transportation	N_2O	Trend	2023
I.7.2.	2.B.1. Ammonia production	CO_2	Trend	2023
I.7.3.	3.B. Manure management	N_2O	Level	2023
I.7.4.	4.C.2. Land converted to grassland	CO_2	Level	2023

				Inventory
ID#	New key category	Gas	Criteria	year
I.7.5.	4(II). Emissions and removals from drainage and rewetting	CH ₄	Level	2023
	and other management of organic and mineral soils			