

Distr.: General 17 June 2025

English only

Report on the simplified review of the national inventory report of Greece submitted in 2025

Summary

This report presents the results of the simplified review of the 2025 national inventory report of Greece, conducted by the secretariat in accordance with the modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement.

Abbreviations and acronyms

 CH_4 methane CO_2 carbon dioxide

 ${
m CO_2} \ {
m eq} \hspace{1cm} {
m carbon \ dioxide \ equivalent} \ {
m CRT} \hspace{1cm} {
m common \ reporting \ table}$

DC degradable organic component

GHG greenhouse gas
HFC hydrofluorocarbon
HWP harvested wood products
IE included elsewhere
IEF implied emission factor

LULUCF land use, land-use change and forestry

MPGs modalities, procedures and guidelines for the transparency framework for

action and support referred to in Article 13 of the Paris Agreement

 $\begin{array}{ccc} N & & nitrogen \\ N_2O & & nitrous \ oxide \\ NE & & not \ estimated \\ NF_3 & & nitrogen \ trifluoride \\ NIR & & national \ inventory \ report \end{array}$

NO not occurring PFC perfluorocarbon

I. Introduction

- 1. This report covers the simplified review of the NIR of Greece submitted in 2025. The review was conducted by the secretariat in accordance with the MPGs,¹ particularly chapter VII thereof, and the simplified review procedures.²
- 2. On 15 May 2025 a draft version of this report was transmitted to the Government of Greece, which provided comments on individual findings on 12 June 2025 that were addressed by the secretariat and incorporated, as appropriate, in this final version of the report.³ Greece did not provide any general comments on the report.
- 3. The secretariat conducted the simplified review of Greece's NIR, which involved an initial assessment of completeness and consistency with the MPGs.⁴
- 4. The findings of the initial assessment, presented in the annex, are the result of automated checks and do not necessarily indicate issues of completeness or consistency of the Party's reporting with the MPGs.
- 5. This report, including the findings listed in the annex and any comments provided by the Party (see para. 2 above), will be made available to and considered by the technical expert review team as part of the subsequent technical expert review of Greece's NIR.⁵

II. Initial assessment of completeness and consistency with the modalities, procedures and guidelines

A. Summary of findings

6. The table below provides a summary of the findings of the initial assessment by the secretariat. Tables I.1–I.7 list the findings and include detailed information on each one.

Summary of the initial assessment

Area of review	Description	Assessment
Dates of submission	2025 submission: CRTs, 10 April 2025	
	2024 submission: CRTs, 30 December 2024	
Recalculations	Recalculations that have changed estimated total GHG emissions or removals (excluding LULUCF) by more than 2 per cent for categories or subcategories above the threshold of significance (35.97 kt CO ₂ eq for 2023) ^a	
	Recalculations for 1990 (the reference year for the Party's nationally determined contribution) and 2022 since the previous submission	See table I.1
Completeness	Detection of notation key "NE", or of missing gases or sectors in CRT 10 emission trends summary	See table I.2
Notation keys	Changes in notation keys reported for 1990 and 2022 since the previous submission	No findings for this area
Sectoral and reference approaches	Difference in estimated energy consumption or CO ₂ emissions, by fuel type, of more than 5 per cent between the reference and sectoral approaches for the latest reported year (2023)	See table I.4
Time-series consistency	The time series of emissions is assessed by calculating interannual changes for each category and gas and converting them to CO_2 eq. Inter-annual changes exceeding the significance	See table I.5

¹ Decision 18/CMA.1, annex.

² Contained in paras. 15–19 of the conclusions and recommendations from the 2023 joint meeting of lead reviewers, available at https://unfccc.int/documents/627213.

³ As per para. 163 of the MPGs.

⁴ As per para. 155 of the MPGs.

⁵ As per para. 155 of the MPGs.

Area of review	Description	Assessment
	threshold are evaluated using the z-score method, b where outliers are identified as values exceeding a z-score of 3, based on the statistical distribution of the full time series	
IEFs	Comparison of IEFs reported for any significant subcategories under key categories with the range of IEFs reported by developed country Parties for the latest inventory year (2023) in their 2025 submission ^c	See table I.6
Key categories	New key categories identified since the previous submission for level (latest year) and trend	See table I.7
Previous areas of improvement	Status of implementation of previous areas of improvement identified in the latest report on the technical expert review of the Party's biennial transparency report	NA^d

 $^{^{\}it a}$ Threshold calculated by the secretariat as 0.05 per cent of the national total GHG emissions for 2023, excluding LULUCF, or 500 kt CO₂ eq, whichever is lower (see para. 32 of the MPGs).

B. Comments of the Party on the initial assessment

7. The Party did not provide any general comments.

^b Statistical measure that indicates how many standard deviations a data point is from the mean.

^c Range defined by the median plus or minus two times the standard deviation, calculated from all available data points per category.

^d As at the time of publication of this report, information on status of implementation of previous areas of improvement was not yet available.

Annex

Findings of the initial assessment of Greece's 2025 national inventory report

Tables I.1–I.7 detail the findings of the initial assessment by the secretariat of the Party's NIR.

Table I.1 **Findings on recalculations**

				Inventory	Estimate in latest submission	Estimate in previous submission			Difference (kt
ID#	Category	CRT	Gas	year	(2025)	(2024)	Difference Unit	Difference (%)	$CO_2 eq)$
I.1.1.	2.A.2. Lime production	Table2(I)	CO ₂	2022	176.68	253.69	–77.01 kt	-30.4	-77.01
I.1.2.	2.B.10. Other	Table2(I)	CO_2	2022	49.34	493.40	–444.06 kt	-90.0	-444.06
I.1.3.	4.B.1. Cropland remaining cropland	Table4	Net CO ₂	2022	$-1\ 298.92$	-1508.71	209.79 kt CO ₂ eq	13.9	209.79
			emissions/removals						

Table I.2 **Findings on completeness**

				Inventory	
ID#	Sector, category or gas	CRT	Gas	year	Notation key Finding type
I.2.1.	1.B.2.a. Oil	Table1	N ₂ O	1990	IE, NE Reporting of "NE" detected
I.2.2.	1.B.2.a. Oil	Table1	N_2O	2023	IE, NE Reporting of "NE" detected
I.2.3.	3.D.1.e. Mineralization/immobilization associated with loss/gain of soil organic matter	Table3	N_2O	1990	NE Reporting of "NE" detected
I.2.4.	3.D.1.e. Mineralization/immobilization associated with loss/gain of soil organic matter	Table3	Total GHG emissions	1990	NE Reporting of "NE" detected
I.2.5.	3.D.1.e. Mineralization/immobilization associated with loss/gain of soil organic matter	Table3	N_2O	2023	NE Reporting of "NE" detected
I.2.6.	3.D.1.e. Mineralization/immobilization associated with loss/gain of soil organic matter	Table3	Total GHG emissions	2023	NE Reporting of "NE" detected
I.2.7.	4.A.2. Land converted to forest land	Table4	Net CO ₂ emissions/removals	1990	NE, NO Reporting of "NE" detected
I.2.8.	4.A.2. Land converted to forest land	Table4	Total GHG emissions/removals	1990	NE, NO Reporting of "NE" detected

				Inventory		
ID#	Sector, category or gas	CRT	Gas	year	Notation key	Finding type
I.2.9.	4.D.1. Wetlands remaining wetlands	Table4	Net CO ₂	1990	NE, NO	Reporting of "NE" detected
			emissions/removals			
I.2.10.	4.D.1. Wetlands remaining wetlands	Table4	Total GHG	1990	NE, NO	Reporting of "NE" detected
			emissions/removals			
I.2.11.	4.D.1. Wetlands remaining wetlands	Table4	Net CO ₂	2023	NE, NO	Reporting of "NE" detected
			emissions/removals			
I.2.12.	4.D.1. Wetlands remaining wetlands	Table4	Total GHG	2023	NE, NO	Reporting of "NE" detected
			emissions/removals			
I.2.13.	5.F.1. Long-term storage of carbon in waste disposal	Table5	CO_2	1990	NE	Reporting of "NE" detected
	sites					
I.2.14.	5.F.1. Long-term storage of carbon in waste disposal	Table5	Total GHG emissions	1990	NE	Reporting of "NE" detected
	sites					
I.2.15.	5.F.2. Annual change in total carbon storage	Table5	CO ₂	1990		Reporting of "NE" detected
I.2.16.	5.F.2. Annual change in total carbon storage	Table5	Total GHG emissions	1990		Reporting of "NE" detected
I.2.17.	5.F.3. Annual change in total carbon storage in HWP	Table5	CO_2	1990	NE	Reporting of "NE" detected
10.10	waste	m 11 c	T . LOUG	1000	NE	D .: COMEN 1 1
I.2.18.	5.F.3. Annual change in total carbon storage in HWP	Table5	Total GHG emissions	1990	NE	Reporting of "NE" detected
1210	waste	T-1-1-5	CO	2022	ME	D
I.2.19.	5.F.1. Long-term storage of carbon in waste disposal	rables	CO_2	2023	NE	Reporting of "NE" detected
I.2.20.	sites	Table 5	Total GHG emissions	2023	NIE	Domanting of "NE" datastad
1.2.20.	5.F.1. Long-term storage of carbon in waste disposal sites	Tables	Total GHG ellissions	2023	NE	Reporting of "NE" detected
I.2.21.	5.F.2. Annual change in total carbon storage	Table5	CO ₂	2023	NE	Reporting of "NE" detected
I.2.21. I.2.22.	5.F.2. Annual change in total carbon storage	Table5	Total GHG emissions	2023		Reporting of "NE" detected
I.2.23.	5.F.3. Annual change in total carbon storage in HWP		CO ₂	2023		Reporting of "NE" detected
1.2.25.	waste	Tables	CO2	2023	NE	Reporting of TVL detected
I.2.24.	5.F.3. Annual change in total carbon storage in HWP	Table5	Total GHG emissions	2023	NF	Reporting of "NE" detected
1.2.27.	waste	Tuoles	Total GITG Chilissions	2023	TVL	reporting of TVE detected
I.2.25.	Unspecified mix of HFCs and PFCs	Table10s6	_	1990	NO	Gas or sector not reported
I.2.26.	Unspecified mix of HFCs and PFCs	Table10s6		2023		Gas or sector not reported
I.2.27.	NF ₃	Table10s6		1990		Gas or sector not reported
I.2.28.	NF ₃	Table10s6	_	2023		Gas or sector not reported

Table I.3 Changes in notation keys reported since the previous submission

					Notation key	Notation key	
				Inventory	reported in latest	reported in previous	
ID#	Category	CRT	Gas	year	submission (2025)	submission (2024)	
No findings for this area							

 $\begin{tabular}{ll} Table I.4 \\ \begin{tabular}{ll} Differences between the sectoral and reference approaches for the latest reported year \\ \end{tabular}$

				Difference between
				reference and sectoral
ID#	CRT table	Fuel type	Description	approaches (%)
I.4.1.	Table1.A(c)	Other fossil fuels	Energy consumption	-100.0
I.4.2.	Table1.A(c)	Other fossil fuels	CO ₂ emissions	-100.0

Table I.5 Findings on time-series consistency

									Difference I	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.1.	1.A.1.b. Petroleum refining	Table1	CO_2	2012	2013	3 559.71	5 063.23	1 503.51 kt	1 503.51	42.2	3.5
I.5.2.	1.A.1.c. Manufacture of solid fuels and other energy	Table1	CO_2	1999	2000	6.19	104.04	97.85 kt	97.85	1 582.1	3.9
	industries										
I.5.3.	1.A.2.b. Non-ferrous metals	Table1	CO_2	2017	2018	759.08	321.52	–437.56 kt	-437.56	-57.6	-3.3
I.5.4.	1.A.2.d. Pulp, paper and print	Table1	CO_2	2003	2004	367.54	254.10	−113.44 kt	-113.44	-30.9	-3.1
I.5.5.	1.A.2.f. Non-metallic minerals	Table1	CO_2	2004	2005	5 358.68	7 323.02	1 964.35 kt	1 964.35	36.7	3.3
I.5.6.	1.A.3.a. Domestic aviation	Table1	CO_2	2019	2020	409.97	213.45	−196.52 kt	-196.52	-47.9	-3.0
I.5.7.	1.A.3.b. Road transportation	Table1	CO_2	2011	2012	17 545.19	14 231.96	−3 313.23 kt	-3 313.23	-18.9	-3.4
I.5.8.	1.A.3.b. Road transportation	Table1	N_2O	1999	2000	1.15	0.75	-0.40 kt	-105.18	-34.5	-4.0
I.5.9.	1.A.3.c. Railways	Table1	CO_2	2013	2014	56.35	134.62	78.26 kt	78.26	138.9	3.4
I.5.10.	1.A.3.c. Railways	Table1	CO_2	2018	2019	116.05	32.62	-83.43 kt	-83.43	-71.9	-3.2
I.5.11.	1.A.3.d. Domestic navigation	Table1	N_2O	1997	1998	0.32	0.48	0.16 kt	42.13	49.9	3.0
I.5.12.	1.A.4.a. Commercial/institutional	Table1	CO_2	2012	2013	1 352.92	828.54	-524.38 kt	-524.38	-38.8	-3.3
I.5.13.	1.A.4.b. Residential	Table1	CO_2	2012	2013	7 013.87	3 588.40	−3 425.47 kt	$-3\ 425.47$	-48.8	-3.6
I.5.14.	1.A.4.c. Agriculture/forestry/fishing	Table1	CO_2	2011	2012	1 739.46	890.28	-849.18 kt	-849.18	-48.8	-3.4
I.5.15.	1.A.4.c. Agriculture/forestry/fishing	Table1	N_2O	2011	2012	0.66	0.09	−0.57 kt	-151.21	-86.2	-4.7
I.5.16.	1.D.1.a. Aviation	Table1	CO_2	2019	2020	3 988.90	1 323.54	−2 665.37 kt	-2 665.37	-66.8	-4.3
I.5.17.	1.D.3. CO ₂ emissions from biomass	Table1	CO_2	2012	2013	5 708.36	4 710.22	–998.15 kt	-998.15	-17.5	-3.0

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.18.	2.A.1. Cement production	Table2(I)	CO_2	2010	2011	4 208.60	2 430.43	−1 778.17 kt	-1778.17	-42.3	-3.6
I.5.19.	2.A.2. Lime production	Table2(I)	CO_2	2007	2008	468.98	341.76	−127.22 kt	-127.22	-27.1	-3.4
I.5.20.	2.B.1. Ammonia production	Table2(I)	CO_2	1991	1992	620.50	218.32	–402.19 kt	-402.19	-64.8	-3.8
I.5.21.	2.B.2. Nitric acid production	Table2(I)	N_2O	2012	2013	0.99	0.07	–0.92 kt	-244.10	-93.0	-3.1
I.5.22.	2.B.10. Other	Table2(I)	CO_2	2021	2022	483.23	49.34	–433.89 kt	-433.89	-89.8	-3.2
I.5.23.	2.C.1. Iron and steel production	Table2(I)	CO_2	2008	2009	215.75	142.82	–72.93 kt	-72.93	-33.8	-3.2
I.5.24.	2.C.3. Aluminium production	Table2(I)	CO_2	2008	2009	250.32	192.39	–57.93 kt	-57.93	-23.1	-4.1
I.5.25.	2.F.3. Fire protection	Table2(I)	HFCs	2008	2009	29.61	105.68	76.06 kt CO ₂ eq	76.06	256.9	4.5
I.5.26.	2.F.4. Aerosols	Table2(I)	HFCs	2005	2006	26.99	96.07	69.08 kt CO ₂ eq	69.08	256.0	3.6
I.5.27.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-32	2012	2013	306.59	413.82	107.24 t	72.60	35.0	3.2
I.5.28.	2.F.3. Fire protection	Table2(II)	HFC-227ea	2008	2009	8.84	31.55	22.71 t	76.06	256.9	4.5
I.5.29.	2.F.4. Aerosols	Table2(II)	HFC-134a	2005	2006	20.76	73.90	53.14 t	69.08	256.0	3.6
I.5.30.	3.A.1.a. Dairy cattle	Table3	CH_4	1993	1994	24.21	19.41	–4.80 kt	-134.39	-19.8	-3.1
I.5.31.	3.A.4. Other livestock	Table3	CH_4	2013	2014	25.61	22.67	−2.94 kt	-82.39	-11.5	-4.6
I.5.32.	3.C. Rice cultivation	Table3	CH_4	2021	2022	5.92	4.36	−1.56 kt	-43.62	-26.3	-3.0
I.5.33.	3.D.1.a. Inorganic N fertilizers	Table3	N_2O	1992	1993	6.13	4.82	-1.30 kt	-345.64	-21.3	-3.2
I.5.34.	3.D.1.c. Urine and dung deposited by grazing animals	Table3	N_2O	2013	2014	3.41	3.22	–0.19 kt	-50.13	-5.5	-3.8
I.5.35.	3.D.1.d. Crop residues	Table3	N_2O	1990	1991	1.12	1.44	0.32 kt	83.76	28.2	3.6
I.5.36.	3.D.2. Indirect N ₂ O emissions from managed soils	Table3	N_2O	1992	1993	4.17	3.74	–0.43 kt	-114.78	-10.4	-3.1
I.5.37.	4.A.1. Forest land remaining forest land	Table4	CH ₄	2022	2023	1.99	16.89	14.90 kt	417.07	748.5	3.9
I.5.38.	4.A.2. Land converted to forest land	Table4	Net CO ₂	2006	2007	-116.34	5.98	122.32 kt CO ₂ eq	122.32	-105.1	3.4
			emissions/removals								
I.5.39.	4.B.2. Land converted to cropland	Table4	Net CO ₂	1999	2000	12.48	75.26	62.79 kt CO ₂ eq	62.79	503.3	3.6
			emissions/removals								
I.5.40.	4.B.2. Land converted to cropland	Table4	Net CO ₂	2001	2002	88.93	27.92	-61.00 kt CO ₂ eq	-61.00	-68.6	-3.4
			emissions/removals								
I.5.41.	4.C.1. Grassland remaining grassland	Table4	CH ₄	2006	2007	0.25	5.14	4.88 kt	136.76	1 926.8	3.3
I.5.42.	4.C.1. Grassland remaining grassland	Table4	CH ₄	2007	2008	5.14	0.54	–4.60 kt	-128.70	-89.5	-3.1
I.5.43.	4.C.2. Land converted to grassland	Table4	Net CO ₂	2014	2015	-512.77	$-1\ 250.68$	−737.91 kt CO ₂ eq	-737.91	143.9	-3.8
			emissions/removals								
I.5.44.	4.D.2. Land converted to wetlands	Table4	Net CO ₂	2022	2023	1.01	53.07	52.06 kt CO ₂ eq	52.06	5 178.6	4.5
			emissions/removals								
I.5.45.	4.F.2. Land converted to other land	Table4	Net CO ₂	2011	2012	84.33	128.23	43.90 kt CO ₂ eq	43.90	52.1	3.0
			emissions/removals								
I.5.46.	4.F.2. Land converted to other land	Table4	Net CO ₂	2012	2013	128.23	82.43	-45.81 kt CO ₂ eq	-45.81	-35.7	-3.4
			emissions/removals								

									Difference I	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.47.	4.G. HWP	Table4	Net CO ₂	1996	1997	-369.92	198.08	568.00 kt CO ₂ eq	568.00	-153.5	3.4
			emissions/remov	als							
I.5.48.	5.A.1. Managed waste disposal sites	Table5	CH_4	2000	2001	37.86	21.03	-16.83 kt	-471.27	-44.5	-3.6
I.5.49.	5.D.1. Domestic wastewater	Table5	CH_4	2000	2001	36.11	20.73	−15.38 kt	-430.63	-42.6	-4.4

Table I.6 Comparison between implied emission factors reported for key categories and the range of implied emission factors from the 2025 national inventory reports of developed country Parties

ID#	Category	CRT	Gas	Unit	IEF reported Comparison
I.6.1.	1.A.3.b. Road transportation – biomass	Table1.A(a)s3	CO ₂	t/TJ	63.017 Below range
I.6.2.	1.A.3.b. Road transportation – other fossil fuels	Table1.A(a)s3	CO_2	t/TJ	42.250 Below range
I.6.3.	3.B.3. Swine	Table3.B(a)	CH_4	kg CH ₄ /head/year	17.353 Above range
I.6.4.	3.B.3.a. Other (please specify)	Table3.B(a)	CH ₄	kg CH ₄ /head/year	17.353 Above range
I.6.5.	3.B.3.a. Other (please specify) – swine	Table3.B(a)	CH ₄	kg CH ₄ /head/year	17.353 Above range
I.6.6.	5.A.2. Unmanaged waste disposal sites	Table5.A	CH_4	t/t waste	0.943 Above range
I.6.7.	5.D.2. Industrial wastewater	Table5.D	CH ₄	kg/kg DC	0.204 Above range

Table I.7 **Identification of new key categories**

				Inventory
ID#	New key category	Gas	Criteria	year
I.7.1.	1.A.1. Fuel combustion – energy industries – liquid fuels	CO ₂	Trend	2023
I.7.2.	1.A.1. Fuel combustion – energy industries – solid fuels	CO_2	Trend	2023
I.7.3.	1.A.1. Fuel combustion – energy industries – gaseous fuels	CO_2	Trend	2023
I.7.4.	1.A.2. Fuel combustion – manufacturing industries and construction – liquid fuels	CO_2	Trend	2023
I.7.5.	1.A.2. Fuel combustion – manufacturing industries and construction – solid fuels	CO_2	Trend	2023
I.7.6.	1.A.2. Fuel combustion – manufacturing industries and construction – gaseous fuels	CO_2	Trend	2023
I.7.7.	1.A.2. Fuel combustion – manufacturing industries and construction – other fossil fuels	CO_2	Trend	2023
I.7.8.	1.A.3.b. Road transportation	CO_2	Trend	2023
I.7.9.	1.A.3.d. Domestic navigation – liquid fuels	CO_2	Trend	2023
I.7.10.	1.A.4. Other sectors – liquid fuels	CO_2	Trend	2023

				Inventory
ID#	New key category	Gas	Criteria	year
I.7.11.	1.A.4. Other sectors – gaseous fuels	CO_2	Trend	2023
I.7.12.	1.A.5. Other (not specified elsewhere) – liquid fuels	CO_2	Trend	2023
I.7.13.	1.B.1. Fugitive emissions from solid fuels	$\mathrm{CH_4}$	Trend	2023
I.7.14.	2.A.1. Cement production	CO_2	Trend	2023
I.7.15.	2.B.1. Ammonia production	CO_2	Trend	2023
I.7.16.	2.B.2. Nitric acid production	N_2O	Trend	2023
I.7.17.	2.B.10. Other	CO_2	Trend	2023
I.7.18.	2.F.1. Refrigeration and air conditioning	Aggregate	Trend	2023
		fluorinated gas	es	
I.7.19.	3.A. Enteric fermentation	$\mathrm{CH_4}$	Trend	2023
I.7.20.	3.B. Manure management	N_2O	Level	2023
I.7.21.	3.D.1. Direct N ₂ O emissions from managed soils	N_2O	Trend	2023
I.7.22.	4.C.2. Land converted to grassland	CO_2	Trend	2023
I.7.23.	4.G. HWP	CO_2	Trend	2023
I.7.24.	5.A. Solid waste disposal	CH_4	Trend	2023
I.7.25.	5.D. Wastewater treatment and discharge	CH_4	Trend	2023
			·	