

EXPERT MEETING TO ASSESS PROGRESS MADE IN THE PROCESS TO FORMULATE AND IMPLEMENT ANATIONAL ADAPTATION PANS (NAPs)

LESOTHO'S EXPERIENCE

MOKOENA FRANCE

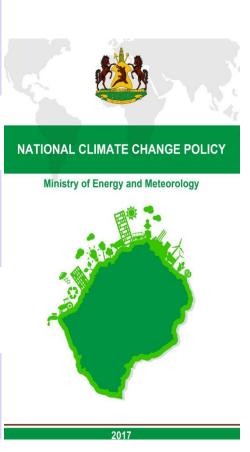
MINISTRY OF ENERGY AND METEOROLOGY

OUTLINE

- ➤ Key Risks and Vulnerabilities
- **≻**Timelines
- ➤ Other ongoing activities to inform NAP formulation
- ➤ Lessons Learned and Experiences
- ➤ Road Map

RISKS AND VULNERABILITY

Lesotho is


- semi-arid country
- prone to natural disasters and extreme climate and weather events;
- liable to drought and desertification;
- A countries with areas with fragile ecosystems, including mountainous ecosystems;
- Land-locked country.
- ✓ Water scarcity (2015/2016 people killed each other over water, Lesotho sells water to RSA and for Botswana negotiations in progress)
- ✓ Snow occur in summer (Nov 2015, Nov 2017 x 2, Jan 2018) crops and animals died
- ✓ Breakout of tropical diseases (Armyworm 2015, bloodworm 2017)

TIMELINE

Timeline	Milestone
Oct 2015	NAP process launching and stakeholder consultation
Oct 2016	Request support from GCF to formulate NAP – we used NAP guidelines in developing the proposal
Jun 2017	UN Environment recruited a consulting firm to assist Lesotho develop the proposal
10 Oct 2017	First Submission of NAP proposal to GCF
8 Feb 2018	GCF has not responded

OTHER ONGOING ACTIVITIES

Activity	Status
National CC Policy (2017 – 20270)	Adopted by Cabinet in Dec 2017
CCPIS	Drafted
CB and M&E Frameworks	Drafted
NSDPII	Drafting stage, engaged consultant to integrate CC
Development of CC Scenarios	TNC CCS report is being is undergoing validation
GCF Readiness Proposal	Technically cleared, maybe approved this month

Climate Change Scenarios Generation CLIMATE MODELS USED

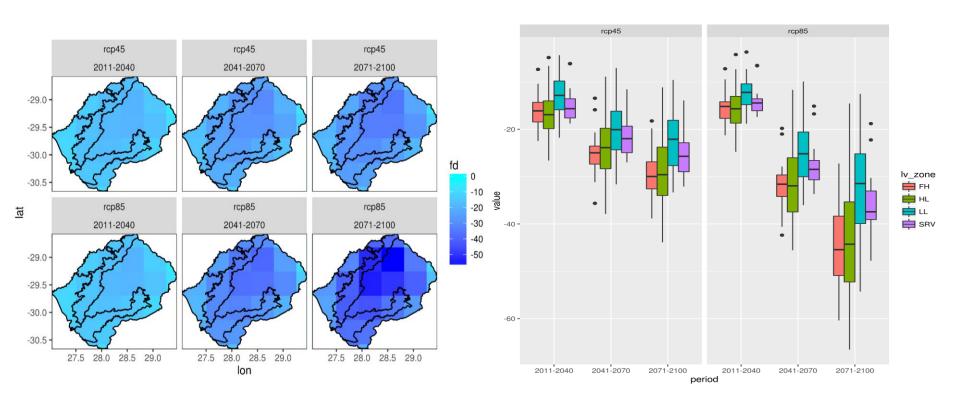
GCM	MODELING CENTRE/INSTITUTION						
CCCma-CanESM2	Canadian Centre for Climate Modelling and Analysi, CANADA						
CNRM-CERFACS-CNRM- CM5	Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, FRANCE						
MIROC-MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, JAPAN						
MOHC-HadGEM2-ES	Met Office Hadley Centre, UNITED KINGDOM						
MPI-M-MPI-ESM-LR	Max Planck Institute for Meteorology (MPI-M), GERMANY						
NCC-NorESM1-M	Norwegian Climate Centre, NORWAY						
NOAA GFDL-GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory, USA						
RCM	MODELING CENTRE/INSTITUTION						
SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre, SWEDEN							

ELEMENTS CONSIDERED

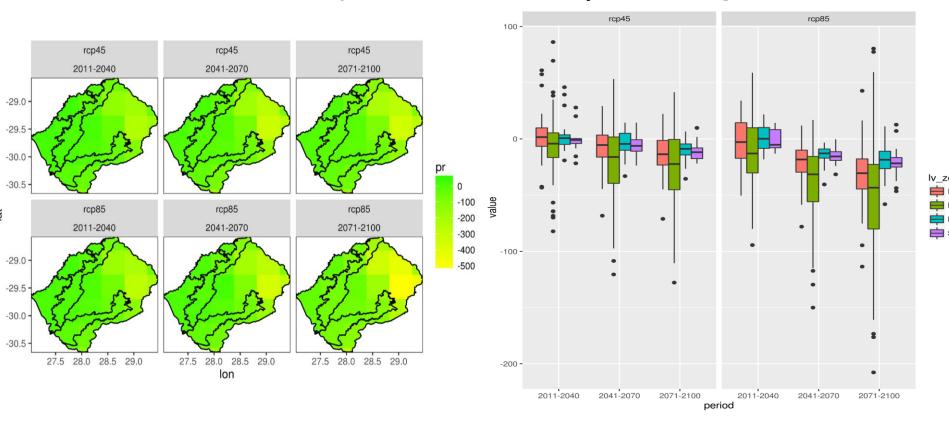
- Annual and seasonal (DJF,MAM,JJA,SON) means temps and precipitation
- New: 27 WMO Climate Extremes Indices based on temperature and precipitation

PERIODS

REFERENCE/BASELINE: 1971-2000


: FUTURE PERIODS:

PERIOD1: 2011 - 2040 NEAR TERM


PERIOD2: 2041 - 2070 MEDIUM TERM

PERIOD3: 2071 - 2100 LONG TERM

EXAMPLES: Number of Frost Days (FD)

EXAMPLES: Projected winter **pr** change

EXAMPLES: Projections – Super table

			HISTORICAL/				PROJECTIONS																
LV ZO	IND	EX	HINTCAST (1971-		L971-	RCP45										RCP85							
Ν̈́Ε			2000)			2011-2040			2041-2070			2071-2100			2011-2040			2041-2070			2071-2100		
	NAME	SEAS	MIN	MAX	MEAN	MIN	MAX	MEAN	MIN	MAX	MEAN	MIN	MAX	MEAN	MIN	MAX	MEAN	MIN	MAX	MEAN	MIN	MAX	MEAN
HL	cdd	ann	18.33	76.47	32.42	-7.7	8.93	1.59	-4.47	14.9	3.9	-2.94	17.07	6.61	-5.3	11.4	2.21	-4.9	16.5	5.83	-3.07	28.99	9.54
HL	csdi	ann	0.67	5.23	2.37	-3.23	2.14	-0.47	-4.43	1.1	-1.26	-4.55	1.07	-1.6	-3.47	1.86	-0.25	-4.56	0.2	-1.68	-5.23	-0.67	-2.33
HL	cwd	ann	10.1	34.2	18.22	-5.57	3.64	-0.46	-10.47	3.34	-0.86	-8.9	3.16	-1.47	-8.6	4.2	-1.29	-9.47	1.5	-1.45	-11.27	3.21	-1.57
HL	dtr	ann	1.44	10.88	8.35	-0.3	8	1.11	-0.2	8.42	1.33	-0.04	8.45	1.38	-0.23	8.15	1.14	-0.01	8.42	1.38	0.33	8.77	1.75
HL	fd	ann	19.33	116.77	62.55	-26.6	-4.83	-16.54	-37.9	-8.86	-24.11	-43.88	-11.13	20.10		-4.2	-15.71	-45.56	-11.66	-31.22	-66.56	-14.53	-43.45
HL	gsl	ann	245.53	341.47	298.89	9.07	39.64	24.66	16	57.84	36.6	16.27	65.67	41.97			25.07	20.1	72.5	45.46	22.6	89.61	57.05
HL	id	ann	0.1		2.11	-9.77	0	-1.76	0.0.	-0.06	-1.93	-9.87	-0.1	-1.98			2		-0.07	-1.98	-9.87	-0.1	-2.09
HL	pr	ann	673.44	4557.5	2153.7	-537.12	128.35		-627.18											-136.89	-940.76		
HL	pr	DJF	330.73	2007	922.95	-222.5	86.55	-14.99	-237.19	107.63	-26.11	-254.15			-315.61	174.16	-23.09	-271.27	135.07	-30.32	-308.08	62.69	-54.42
HL	pr	JJA		390.48			86.22		-120.58		-19.88				-94.43			-150.09	16.87		-207.73		-50.93
HL	pr	MAM		1220.7			27.4		-212.8	38.95	-57.36				-241.97			-246.84	61.25		-328.59		
HL	pr	SON	136.5	1175.6	497.56	-165.11	90.33		-222.49				102.89		-226.97			-222.81		0.20	-374.14		
HL	prcptot	ann	657.23			-539.41		-83.25								176.06					-942.09		
HL	r10mm	ann	17.13	143.1		-17	4.8	-2.81		6.4	-4.52		5.03						4.87		-32.74	2.84	-9.02
HL	r20mm	ann	4.23	88.63	00.00	-9.96	3.44		-11.36	4.8	-1.58	-13.03	6.9						4.5		-17.86	3.67	-3.26
HL	r95ptot	ann	143.81		418.79		34.73		-186.23	66.69	-16.2		114.79		-174.27	35.85			147.31		-231.24		
HL	r99ptot	ann		249.75			14.38	-5.88	-60.5	68.44	-1.84	-69.64	61.43	7.42	00.02		-7.93		63	5.78		78.57	7.19
HL	rnnmm	ann		225.03			8.6	-5.35		5.36	-11.12	-30.14	4.6						2.2			5	
HL	rx1day	ann		119.12			11.03	-0.35		10.3	0.41	-15.74	15.53						17.98	1.88		13.55	1.78
HL	rx5day	ann	81.97	309.43	168.32	-41.62	43.23	1.46	-38.6	40.11	2.5	-35.9	36.62	2.07	-48.68	28.24	-1.54	-32.97	55.37	2.16	-41.76	43.6	1.42

LESSONS LEARNED

- It takes long time to prepare GCF proposal to meet the requirements due to changing of templates - before the proposal could be registered by the GCF
- NAP guideline are useful in the development of the proposal itself
- Climate Changes Scenarios data is available for free but needs technical skills to download and manipulate. There is need to prepare a guide on how do access CCS data and which tools to use to develop products
- The resolution of the available data (50kmx50km) may not be enough for smaller countries and countries with complex topography like Lesotho
- ✓ It is good to have a NAP as a strategic document on adaptation

ROAD MAP

Timeline	Milestone
2018	Start formulation of NAP
Now – March 2018	Continue to fight for integration of adaptation in NSDPII considered ad cross-cutting issue
March 2018	Publish CCS
Feb – Mar 2018	Translation of CCP into Sesotho, Training journalists of CCP, CCP dissemination throughout the country
Mar 2018	Finalise CB and M&E Frames
2023	Review CCP and CCPIS

