BR CTF submission workbook

Submission Year	2014	Party	NETHERLANDS
Submission Version	v2.0	Submission Level	Submitted
Submission Key	NLD_2014_V2.0	Submission Status	Closed
Submitted By	Harry Vreuls	Workbook Created	19.03.2014 03:38:21
Submitted Date	19.03.2014 03:37:12		

Contents

Table 1s1	
Table 1s2	
Table 1s3	
Table 1(a)s1	
Table 1(a)s2	
Table 1(a)s3	
Table 1(b)s1	
Table 1(b)s2	
Table 1(b)s3	
Table 1(c)s1	
Table 1(c)s2	
Table 1(c)s3	
Table 1(d)s1	
Table 1(d)s2	
Table 1(d)s3	
Table 2(a)	
Table 2(b)	
Table 2(c)	
Table 2(d)	
Table 2(e)I	
Table 2(e)II	
Table 2(f)	
Table 3	
Table 4	
Table 4(a)I_2011	
Table 4(a)I_2012	
Table 4(a)II	
Table 4(b)	
Table 5	
Table 6(a)	
Table 6(b)	Greenhouse gas projections: Scenario 'without measures' was not included.
Table 6(c)	
Table 7_2011	
Table 7_2012	
<u>Table 7(a)_2011</u>	
Table 7(a) 2012	
Table 7(b) 2011	
Table 7(b) 2012	
Table 8	

Table 1
Emission trends: summary ⁽¹⁾
(Sheet 1 of 3)

REENHOUSE GAS EMISSIONS		1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS EMISSIONS	CO 2	<i>CO</i> ₂	CO ₂	CO_2	CO ₂	CO ₂	CO ₂	CO_2	CO_2
	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent
CO ₂ emissions including net CO ₂ from LULUCF	162,234.95	166,877.94	165,235.28	169,437.53	169,371.65	173,588.26	180,378.62	174,502.92	176,246.49
CO ₂ emissions excluding net CO ₂ from LULUCF	159,235.89	164,238.96	162,316.09	166,712.47	166,672.97	170,738.03	177,695.87	171,546.19	173,381.14
CH ₄ emissions including CH ₄ from LULUCF	25,712.96	26,090.32	25,680.46	25,368.79	24,622.85	24,334.10	23,646.74	22,626.83	21,869.05
CH ₄ emissions excluding CH ₄ from LULUCF	25,712.42	26,089.87	25,680.12	25,368.24	24,622.29	24,333.53	23,646.16	22,626.23	21,868.45
N ₂ O emissions including N ₂ O from LULUCF	19,986.29	20,256.57	20,452.69	20,712.93	20,020.86	19,880.66	19,814.38	19,521.24	18,793.91
N ₂ O emissions excluding N ₂ O from LULUCF	19,986.24	20,256.52	20,452.66	20,712.87	20,020.80	19,880.61	19,814.32	19,521.18	18,793.85
HFCs	4,432.03	3,451.56	4,447.33	4,998.04	6,479.47	6,018.69	7,675.88	8,291.39	9,331.49
PFCs	2,264.48	2,244.88	2,042.85	2,068.47	1,989.67	1,937.82	2,155.33	2,343.91	1,829.24
SF ₆	218.28	133.91	143.09	149.90	191.20	286.78	295.07	324.66	304.63
Total (including LULUCF)	214,848.99	219,055.17	218,001.70	222,735.66	222,675.70	226,046.30	233,966.03	227,610.95	228,374.80
Total (excluding LULUCF)	211,849.32	216,415.69	215,082.14	220,010.00	219,976.40	223,195.45	231,282.63	224,653.56	225,508.79

		1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO 2	CO 2	CO_2	CO_2	CO ₂	CO ₂	CO ₂	CO_2	CO ₂
	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent
	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)
1. Energy	153,773.92	158,855.19	157,542.94	162,284.43	161,584.92	165,663.58	173,341.83	166,161.64	168,061.01
2. Industrial Processes	22,192.49	21,177.24	21,473.26	22,327.16	24,312.70	23,566.18	24,831.27	26,110.57	26,475.01
3. Solvent and Other Product Use	541.19	467.85	445.46	426.55	420.90	439.85	388.97	347.11	350.69
4. Agriculture	22,557.40	22,999.04	22,937.56	22,614.04	21,747.20	22,220.10	21,775.80	21,410.22	20,417.39
5. Land Use, Land-Use Change and Forestry ⁽⁵⁾	2,999.67	2,639.48	2,919.56	2,725.67	2,699.30	2,850.85	2,683.39	2,957.39	2,866.01
6. Waste	12,784.32	12,916.38	12,682.91	12,357.82	11,910.67	11,305.74	10,944.77	10,624.02	10,204.70
7. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total (including LULUCF)(5)	214,848.99	219,055.17	218,001.70	222,735.66	222,675.70	226,046.30	233,966.03	227,610.95	228,374.80

Note: All footnotes for this table are given on sheet 3.

¹ The common tabular format will be revised, in accordance with relevant decisions of the Conference of the Parties and, where applicable, with decisions of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol."

Table 1									NLD_	_BR1_v2.0
Emission trends: summary ⁽¹⁾ (Sheet 2 of 3)	CRF: NLD_0	CRF v1.4								
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS EMISSIONS	<i>CO</i> ₂	CO 2	CO_2	CO ₂	CO_2	CO ₂	CO_2	CO ₂	CO ₂	CO ₂
	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent
CO ₂ emissions including net CO ₂ from LULUCF	170,705.22	172,845.45	178,279.26	178,547.06	182,492.33	183,856.31	178,926.81	175,321.46	175,273.53	178,199.71
CO ₂ emissions excluding net CO ₂ from LULUCF	167,802.80	169,920.85	175,691.96	175,991.03	179,582.91	180,985.43	175,913.27	172,305.22	172,409.03	175,174.67
CH ₄ emissions including CH ₄ from LULUCF	20,837.18	19,918.85	19,140.37	17,958.40	17,116.08	16,621.76	16,101.28	15,727.79	15,843.79	16,085.61

20,836.57

18,069.78

18,069.72

4,893.61

1,470.53

295.33

19,918.23

17,399.05

17,398.99

3,891.67

1,580.60

216,271.66 215,930.95 217,117.61

295.33

19,139.74

16,338.78

16,338.71

1,562.64

1,488.61

307.95

213,368.56 213,005.67 214,529.62 213,535.36 214,314.87 215,514.61

17,957.76

15,496.10

15,496.04

1,656.14

2,185.55

248.85

216,092.10 217,225.01

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO 2	CO 2	CO ₂							
	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent	equivalent
	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)
1. Energy	162,386.40	164,698.77	170,982.96	171,323.57	174,821.38	176,104.86	171,002.40	167,747.42	167,617.75	171,506.22
2. Industrial Processes	21,226.12	20,261.49	16,703.61	17,071.94	15,503.83	15,958.12	15,752.68	15,487.19	14,775.53	10,243.41
3. Solvent and Other Product Use	350.48	306.94	268.54	248.57	227.00	220.90	212.99	212.21	208.50	206.58
4. Agriculture	20,006.13	18,849.29	18,495.34	17,461.05	17,098.38	17,078.13	16,951.38	16,911.62	16,730.22	16,769.64
5. Land Use, Land-Use Change and Forestry ⁽⁵⁾	2,903.10	2,925.28	2,587.99	2,556.74	2,910.14	2,871.62	3,014.29	3,017.00	2,865.26	3,025.82
6. Waste	9,399.43	8,889.18	8,079.17	7,430.21	6,664.27	6,152.60	5,554.85	5,184.19	4,866.99	4,587.23
7. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total (including LULUCF)(5)	216,271.66	215,930.95	217,117.61	216,092.10	217,225.01	218,386.23	212,488.59	208,559.63	207,064.26	206,338.90

Note: All footnotes for this table are given on sheet 3.

CH₄ emissions excluding CH₄ from LULUCF

N₂O emissions including N₂O from LULUCF

N₂O emissions excluding N₂O from LULUCF

Total (including LULUCF)

Total (excluding LULUCF)

HFCs

PFCs

SF₆

16,621.09

15,728.04

15,727.98

1,641.93

284.73

253.46

218,386.23

16,100.60

15,442.67

15,442.61

1,512.48

265.34

240.00

209,474.30 205,542.62

212,488.59

17,115.42

15,282.37

15,282.30

1,489.62

619.50

225.11

15,843.09

13,576.33

13,576.26

1,864.21

318.52

187.88

207,064.26 206,338.90

204,198.99 203,313.08

15,727.10

15,312.58

15,312.51

1,745.02

253.76

199.02

208,559.63

16,084.90

9,687.20

9,687.13

1,931.52

251.07

183.79

Table 1 Emission trends: summary ⁽¹⁾ (Sheet 3 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS EMISSIONS	2009	2010	2011	Change from base to latest reported year
	<i>CO</i> ₂	CO ₂ equivalent	CO_2	(%)
	equivalent	(Gg)	equivalent	
CO ₂ emissions including net CO ₂ from LULUCF	172,748.01	184,372.18	170,815.16	5.29
CO ₂ emissions excluding net CO ₂ from LULUCF	169,905.87	181,380.41	167,550.04	5.22
CH ₄ emissions including CH ₄ from LULUCF	16,124.38	15,936.83	15,262.25	-40.64
CH ₄ emissions excluding CH ₄ from LULUCF	16,123.66	15,936.10	15,261.51	-40.65
N ₂ O emissions including N ₂ O from LULUCF	9,425.68	9,207.58	9,105.36	-54.44
N ₂ O emissions excluding N ₂ O from LULUCF	9,425.61	9,207.51	9,105.29	-54.44
HFCs	2,072.04	2,259.88	2,132.84	-51.88
PFCs	167.97	208.86	182.85	-91.93
SF ₆	170.38	184.10	146.63	-32.83
Total (including LULUCF)	200,708.46	212,169.43	197,645.09	-8.01
Total (excluding LULUCF)	197,865.54	209,176.86	194,379.16	-8.25

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	CO ₂ equivalent (Gg)	CO ₂ equivalent (Gg)	CO ₂ equivalent (Gg)	(%)
1. Energy	166,638.01	177,856.01	163,872.14	6.57
2. Industrial Processes	9,957.70	10,409.25	10,444.88	-52.94
3. Solvent and Other Product Use	197.75	181.19	154.50	-71.45
4. Agriculture	16,711.62	16,638.47	16,028.63	-28.94
5. Land Use, Land-Use Change and Forestry ⁽⁵⁾	2,842.93	2,992.57	3,265.93	8.88
6. Waste	4,360.44	4,091.93	3,879.01	-69.66
7. Other	NA	NA	NA	0.00
Total (including LULUCF)(5)	200,708.46	212,169.43	197,645.09	-8.01

Notes :

(1) Further detailed information could be found in the common reporting format tables of the Party's greenhouse gas inventory, namely "Emission trends (CO_2)", "Emission trends (CH_4)", "Emission trends (N_2O)" and "Emission trends (HFCs, PFCs and SF_6)", which is included in an annex to this biennial report.

in an annex to this blenmar report.

(2) 2011 is the latest reported inventory year.

(3) 1 kt CO_2 eq equals 1 Gg CO_2 eq.

Abbreviation: LULUCF = land use, land-use change and forestry.

^a The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

^b Includes net CO_2 , CH_4 and N_2O from LULUCF.

Table 1 (a)
Emission trends (CO ₂)
(Sheet 1 of 3)

CRF: NLD_CRF__ v1.4

	Base year (1990)	1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	(<i>Gg</i>)	(Gg)							
1. Energy	151,037.75	156,048.86	154,709.38	159,347.58	158,582.01	162,557.87	170,181.06	163,542.22	165,514.21
A. Fuel Combustion (Sectoral Approach)	149,860.15	154,910.46	153,636.04	158,326.53	157,514.80		169,146.17	162,542.88	164,711.94
1. Energy Industries	52,501.43	53,110.71	53,061.28		58,024.91	61,416.34	62,381.14	63,403.50	65,722.01
2. Manufacturing Industries and Construction	33,008.39	32,722.07	33,317.08	32,577.32	31,092.14	28,840.37	29,292.19	28,228.72	28,181.10
3. Transport	25,993.57	26,279.84	27,563.23	28,173.51	28,652.05	29,166.05	29,899.08	30,297.90	31,041.93
4. Other Sectors	37,791.04	42,259.30	39,141.36		39,259.83	41,664.63	47,065.52	40,127.61	39,246.96
5. Other	565.72	538.55	553.10	538.36	485.87	512.10	508.24	485.14	519.94
B. Fugitive Emissions from Fuels	1,177.60	1,138.40	1,073.34	1,021.05	1,067.21	958.36	1,034.90	999.34	802.28
1. Solid Fuels	402.67	430.02	431.50	445.73	558.50	516.87	650.57	504.53	492.20
2. Oil and Natural Gas	774.93	708.38	641.85		508.71	441.49	384.33	494.81	310.08
2. Industrial Processes	7,881.69	7,948.29	7,388.58		7,874.49	7,937.88	7,318.97	7,827.71	7,677.55
A. Mineral Products	1,171.53	1,552.82	1,504.33		1,748.43	1,732.89	1,340.25	1,381.47	1,449.76
B. Chemical Industry	3,744.48	3,707.07	3,767.18	3,669.04	3,874.00	4,005.66	3,799.58	3,995.27	4,090.61
C. Metal Production	2,661.20	2,313.45	1,711.12		1,917.32	1,908.06	1,853.78	2,151.32	1,830.38
D. Other Production	72.48	49.24	53.98	50.19	29.36	22.37	49.31	48.27	41.25
E. Production of Halocarbons and SF6	72.40	(7.2T	55.70	50.17	27.50	22.31	17.51	10.27	11.23
F. Consumption of Halocarbons and SF6									
G. Other	232.00	325.71	351.98	290.25	305.38	268.91	276.05	251.38	265.56
3. Solvent and Other Product Use	316.44	241.81	218.13	210.02	216.47	242.29	195.84	176.26	189.37
4. Agriculture	510.44	241.01	210.15	210.02	210.47	272.29	175.04	170.20	107.57
A. Enteric Fermentation									
B. Manure Management									
C. Rice Cultivation									
D. Agricultural Soils									
E. Prescribed Burning of Savannas									
F. Field Burning of Agricultural Residues									
G. Other									
5. Land Use, Land-Use Change and Forestry(2)	2,999.07	2,638.98	2,919.19	2,725.07	2,698.68	2,850.22	2,682.75	2,956.74	2,865.35
A. Forest Land	-2,350.44	-2,688.53	-2,419.03	-2,621.72	-2,626.07	-2,493.53	-2,689.19	-2,431.75	-2,532.64
B. Cropland	122.34	123.05	123.88		125.44	126.26	127.05	127.90	128.66
C. Grassland	4,484.94	4,493.08	4,502.47	4,510.99	4,520.27	4,529.62	4,538.55	4.548.17	4,556.92
D. Wetlands	80.46		82.25		84.07	85.02	85.93	86.92	87.81
E. Settlements	458.61	462.95	467.99	472.55	477.55	482.59	487.39	492.59	497.30
F. Other Land	20.00		20.81	21.20	21.63	22.06	22.47	22.91	23.31
G. Other	183.15				95.79		110.56	109.99	103.99
6. Waste		IE, NA, NO							
0. Waste	IE, NA, NO	IL, NA, NO	IE, NA, NO	IL, NA, NO	IL, NA, NO	IE, NA, NO	IL, NA, NO	IE, NA, NO	IL, INA, INO
A. Solid Waste Disposal on Land	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
B. Waste-water Handling									
C. Waste Incineration	IE	IE	IE	IE	IE	IE	IE	IE	IE
D. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total CO2 emissions including net CO2 from LULUCF	162,234.95	166,877.94	165,235.28	169,437.53	169,371.65	173,588.26	180,378.62	174,502.92	176,246.49
Total CO2 emissions excluding net CO2 from LULUCF	159,235.89	164,238.96	162,316.09	166,712.47	166,672.97	170,738.03	177,695.87	171,546.19	173,381.14
Memo Items:									
International Bunkers	38,897.84	40,171.14	41,240.19	43,084.42	41,493.06	42,982.73	44,254.29	47,150.51	48,404.77
Aviation	4,540.46		5,648.73		6,534.56	7,584.14	8,079.78	8,739.60	9,560.09
Marine	34,357.38		35,591.45		34,958.50		36,174.51	38,410.91	38,844.69
Multilateral Operations	IE		IE		IE	IE	IE	IE	IE
CO2 Emissions from Biomass	4,001.86		4,028.01	4,224.72	4,159.68		4,930.70		5,638.87

Note: All footnotes for this table are given on sheet 3.

Table 1 (a) Emission trends (CO₂) (Sheet 2 of 3)

CRF: NLD_CRF__v1.4

$\begin{array}{r} 1999 \\\hline (G_g) \\\hline (G_g) \\\hline 160,021.63 \\\hline 159,356.86 \\\hline 61,821.12 \\27,823.32 \\32,033.52 \\37,029.39 \\\hline 649.50 \\\hline 664.77 \\445.62 \\219.15 \\7,584.32 \\1,499.55 \\4,038.95 \\1,726.95 \\51.35 \\\hline \end{array}$	2000 (Gg) 162,397.68 161,708.72 63,629.75 27,344.92 32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	2001 (Gg) 168,696.99 168,114.58 67,702.26 27,047.48 32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55 3,503.26	2002 (Gg) 169,092.60 167,541.34 67,067.71 27,432.83 33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	2003 (Gg) 172,607.18 171,096.69 68,536.71 27,772.75 34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09 1,414.12	2004 (Gg) 173,921.03 172,413.50 69,942.51 27,615.25 34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	2005 (Gg) 168,728.37 167,055.53 67,312.52 27,405.89 34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30 7,050.10	2006 (Gg) 165,449.24 163,814.84 62,408.97 27,871.27 35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	163,535.36 65,129.16 28,005.55 35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
160,021.63 159,356.86 61,821.12 27,823.32 32,033.52 37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	162,397.68 161,708.72 63,629.75 27,344.92 32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	168,696.99 168,114.58 67,702.26 27,047.48 32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	169,092.60 167,541.34 67,067.71 27,432.83 33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	172,607.18 171,096.69 68,536.71 27,772.75 34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	173,921.03 172,413.50 69,942.51 27,615.25 34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	168,728.37 167,055.53 67,312.52 27,405.89 34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30	165,449.24 163,814.84 62,408.97 27,871.27 35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	164,983.13 163,535.36 65,129.16 28,005.55 35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
159,356.86 61,821.12 27,823.32 32,033.52 37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	161,708.72 63,629.75 27,344.92 32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	168,114.58 67,702.26 27,047.48 32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	167,541.34 67,067.71 27,432.83 33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	171,096.69 68,536.71 27,772.75 34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	172,413.50 69,942.51 27,615.25 34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	167,055.53 67,312.52 27,405.89 34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30	163,814.84 62,408.97 27,871.27 35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	163,535.36 65,129.16 28,005.55 35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
61,821.12 27,823.32 32,033.52 37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	63,629.75 27,344.92 32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	67,702.26 27,047.48 32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	67,067.71 27,432.83 33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	68,536.71 27,772.75 34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	69,942.51 27,615.25 34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	67,312.52 27,405.89 34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30	62,408.97 27,871.27 35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	65,129.16 28,005.55 35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
27,823.32 32,033.52 37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	27,344.92 32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	27,047.48 32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	27,432.83 33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	27,772.75 34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	27,615.25 34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	27,405.89 34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30	27,871.27 35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	28,005.55 35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
32,033.52 37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	32,395.25 37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	32,891.79 39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	33,600.32 38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	34,272.90 40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	34,629.97 39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	34,639.76 37,322.06 375.30 1,672.84 598.54 1,074.30	35,553.35 37,600.23 381.03 1,634.40 565.80 1,068.60	35,193.11 34,836.76 370.79 1,447.77 319.30 1,128.47
37,029.39 649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	37,755.60 583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	39,999.08 473.96 582.41 412.17 170.24 6,837.14 1,528.55	38,941.42 499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	40,077.65 436.67 1,510.49 464.43 1,046.06 6,832.09	39,785.43 440.33 1,507.53 508.82 998.71 6,931.10	37,322.06 375.30 1,672.84 598.54 1,074.30	37,600.23 381.03 1,634.40 565.80 1,068.60	34,836.76 370.79 1,447.77 319.30 1,128.47
649.50 664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	583.19 688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	473.96 582.41 412.17 170.24 6,837.14 1,528.55	499.05 1,551.26 430.32 1,120.94 6,738.44 1,456.11	436.67 1,510.49 464.43 1,046.06 6,832.09	440.33 1,507.53 508.82 998.71 6,931.10	375.30 1,672.84 598.54 1,074.30	381.03 1,634.40 565.80 1,068.60	370.79 1,447.77 319.30 1,128.47
664.77 445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	688.96 421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	582.41 412.17 170.24 6,837.14 1,528.55	1,551.26 430.32 1,120.94 6,738.44 1,456.11	1,510.49 464.43 1,046.06 6,832.09	1,507.53 508.82 998.71 6,931.10	1,672.84 598.54 1,074.30	1,634.40 565.80 1,068.60	1,447.77 319.30 1,128.47
445.62 219.15 7,584.32 1,499.55 4,038.95 1,726.95	421.71 267.24 7,353.89 1,410.71 4,076.89 1,519.38	412.17 170.24 6,837.14 1,528.55	430.32 1,120.94 6,738.44 1,456.11	464.43 1,046.06 6,832.09	508.82 998.71 6,931.10	598.54 1,074.30	565.80 1,068.60	319.30 1,128.47
219.15 7,584.32 1,499.55 4,038.95 1,726.95	267.24 7,353.89 1,410.71 4,076.89 1,519.38	170.24 6,837.14 1,528.55	1,120.94 6,738.44 1,456.11	1,046.06 6,832.09	998.71 6,931.10	1,074.30	1,068.60	1,128.47
7,584.32 1,499.55 4,038.95 1,726.95	7,353.89 1,410.71 4,076.89 1,519.38	6,837.14 1,528.55	6,738.44 1,456.11	6,832.09	6,931.10			
1,499.55 4,038.95 1,726.95	1,410.71 4,076.89 1,519.38	1,528.55	1,456.11					7,294.13
4,038.95 1,726.95	4,076.89 1,519.38			1,414.14	1,463.52	1,446.82	6,724.96 1,411.94	1,416.10
1,726.95	1,519.38	5,505.20	3 400 77	3,412.11	3,657.29	3,745.83	3,717.40	3,622.23
<i>,</i>		1,466.75	3,400.77 1,543.96	1,668.83	1,467.92	1,476.39	1,243.48	1,948.83
51.55	48.97	42.82	31.79	46.09	41.17	33.45	1,243.48	29.03
	48.97	42.82	51.79	40.09	41.1/	55.45	19.09	29.03
267 52	207.04	205 76	205.91	200.04	201.20	247.50	222.44	277.95
								131.77
190.85	109.28	157.84	159.98	143.03	155.50	134.80	131.02	151.//
2 002 12	2 02 4 60	0.505.00	0.554.00	2 000 12	2 070 00	2 012 54	2.016.24	2 0 4 4 0
,							- ,	2,864.49
								-2,750.93
								162.09
,								4,447.88
								127.82
								780.70
								25.85
								71.08
IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
NA. NO	NA. NO	NA. NO	NA. NO	NA. NO	NA. NO	NA. NO	NA. NO	NA, NO
1.1.,1.0	1.1., 1.0	1.1.,1.0	1.1.1, 1.10	1.1., 1.0	111,110	1.1., 1.0	1.1.1, 1.0	111,110
IE	IE	IE	IE	IE	IE	IE	IE	IE
								NA
								NA
								175,273.53
								172,409.03
107,002.00	107,720.03	1,5,071.70	1,5,771.05	1,7,502.71	100,705.45	113,713.21	1,2,303.22	1,2,107.03
49 990 82	52 431 45	56 530 67	56 410 82	53 125 03	57 589 60	64 988 72	67 246 30	62,568.21
								11,058.70
								51,509.50
								IE
								9,617.18
	4,566.00 88.74 502.20 23.73 84.37 IE, NA, NO NA, NO IE NA, NO IE NA NA	196.85 169.28 196.85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2,902.42 2,924.60 -2,492.09 -2,477.85 129.46 129.19 4,566.00 4,563.16 88.74 88.45 502.20 500.43 23.73 23.61 84.37 97.62 1E, NA, NO NA, NO NA, NO NA, NO NA, NO NA 100 1 110,705.22 172,845.45 167,802.80 169,920.85 9,832.32 9,749.35 40,9990.82 52,431.45 9,832.32 9,749.35 40,158.49 42,682.10 <td>196.85169.28157.84196.85111111111111111111112,902.422,924.602,587.302,902.422,924.602,587.302,902.422,924.602,587.302,902.422,924.602,587.302,492.09-2,477.85-2,816.67129.46129.19130.144,566.004,563.164,573.8988.7488.4589.55502.20500.43506.2823.7323.6124.1084.3797.6280.0118.43797.6280.0116.70,705.21172,845.45178,279.26167,802.80169,920.85175,691.96167,802.80169,920.85175,691.9649,990.8252,431.4556,530.679,832.329,749.359,538.7240,158.4942,682.1046,991.95</td> <td>196.85169.28157.84159.98196.85111111111111111111111111111112.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.03129.46129.19130.14131.184.566.004.563.164.573.894.585.6388.7488.4589.5590.74502.20500.43506.28512.6888.7397.6280.0184.6284.3797.6280.0184.62E, NA, NQNA, NQ107.05.22172.845.45178.279.26176.90.23172.845.45178.279.26167.802.80169.920.85175.91.03167.902.2352.431.4556.530.67167.802.439.749.359.538.729.832.329.749.359.538.729.832.329.749.359.538.729.832.329.749.354.6428.9516EE16EE</td> <td>196.85169.28157.84159.98143.65II<</td> <td>196.85169.28157.84159.98143.65133.30III<</td> <td>196.85169.28157.84159.98143.65133.30134.80III<td< td=""><td>196.85169.28157.84159.98143.65133.30134.80131.0211<</td></td<></td>	196.85169.28157.84196.85111111111111111111112,902.422,924.602,587.302,902.422,924.602,587.302,902.422,924.602,587.302,902.422,924.602,587.302,492.09-2,477.85-2,816.67129.46129.19130.144,566.004,563.164,573.8988.7488.4589.55502.20500.43506.2823.7323.6124.1084.3797.6280.0118.43797.6280.0116.70,705.21172,845.45178,279.26167,802.80169,920.85175,691.96167,802.80169,920.85175,691.9649,990.8252,431.4556,530.679,832.329,749.359,538.7240,158.4942,682.1046,991.95	196.85169.28157.84159.98196.85111111111111111111111111111112.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.032.902.422.924.602.587.302.556.03129.46129.19130.14131.184.566.004.563.164.573.894.585.6388.7488.4589.5590.74502.20500.43506.28512.6888.7397.6280.0184.6284.3797.6280.0184.62E, NA, NQNA, NQ107.05.22172.845.45178.279.26176.90.23172.845.45178.279.26167.802.80169.920.85175.91.03167.902.2352.431.4556.530.67167.802.439.749.359.538.729.832.329.749.359.538.729.832.329.749.359.538.729.832.329.749.354.6428.9516EE16EE	196.85169.28157.84159.98143.65II<	196.85169.28157.84159.98143.65133.30III<	196.85169.28157.84159.98143.65133.30134.80III <td< td=""><td>196.85169.28157.84159.98143.65133.30134.80131.0211<</td></td<>	196.85169.28157.84159.98143.65133.30134.80131.0211<

Note: All footnotes for this table are given on sheet 3.

NLD_BR1_v2.0

07	2008
g)	(Gg)
983.13	168,496.90
535.36	166,867.00
129.16	65,204.12
05.55	27,539.12
193.11	35,486.36
336.76	38,283.99
370.79	353.40
147.77	1,629.91
319.30	710.07
128.47	919.84
294.13	6,544.91
416.10	1,459.67
522.23	3,521.98
948.83	1,213.82
29.03	33.36
77.05	216.00
277.95	316.08
131.77	132.86
364.49	3,025.04
750.93	-2,610.21
162.09	162.76
147.88	4,456.77
127.82	128.97
780.70	789.95
25.85	26.18
71.08	70.62
A, NO	IE, NA, NO
	, ,
A, NO	NA, NO
IE	IE
NA	NA
NA	NA
273.53	178,199.71
409.03	175,174.67
102.03	173,174.07
568.21	60,656.31
)58.70	11,173.09
509.50	49,483.22
IE	IE
517.18	10,945.82

Table 1(a) Emission trends (CO₂) (Sheet 3 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	(Gg)	(Gg)	(Gg)	%
1. Energy	163,611.64	174,753.77	160,850.98	6.50
A. Fuel Combustion (Sectoral Approach)	161,998.87	172,758.96	159,313.54	6.31
1. Energy Industries	64,234.27	66,236.95	62,061.15	18.21
2. Manufacturing Industries and Construction	24,942.14	27,226.98	25,744.29	-22.01
3. Transport	34,074.28	34,662.49	34,900.18	34.26
4. Other Sectors	38,428.17	44,305.46	36,253.25	-4.07
5. Other	320.01	327.09	354.67	-37.31
B. Fugitive Emissions from Fuels	1,612.77	1,994.80	1,537.44	30.56
1. Solid Fuels	546.82	972.43	637.15	58.23
2. Oil and Natural Gas	1,065.94	1,022.37	900.30	16.18
2. Industrial Processes	6,171.47	6,472.11	6,576.50	-16.56
A. Mineral Products	1,273.66	1,253.72	1,295.31	10.57
B. Chemical Industry	3,508.23	3,881.70	3,408.51	-8.97
C. Metal Production	1,075.65	997.54	1,547.97	-41.83
D. Other Production	29.75	29.07	18.83	-74.03
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	284.18	310.08	305.89	31.85
3. Solvent and Other Product Use	122.76	154.53	122.56	-61.27
4. Agriculture				
A. Enteric Fermentation				
B. Manure Management				
C. Rice Cultivation				
D. Agricultural Soils				
E. Prescribed Burning of Savannas				
F. Field Burning of Agricultural Residues				
G. Other				
5. Land Use, Land-Use Change and Forestry(2)	2,842.13	2,991.77	3,265.12	8.87
A. Forest Land	-2,801.13	-2,685.33	-2,433.87	
B. Cropland	163.39	164.06	164.70	
C. Grassland	4,465.06	4,473.92	4,482.37	
D. Wetlands	130.04	131.18	134.85	
E. Settlements	798.58	807.80		
F. Other Land	26.49	26.82	27.13	
G. Other	59.72	73.32	73.32	
6. Waste	IE, NA, NO			
A. Solid Waste Disposal on Land	NA, NO	NA, NO	NA, NO	0.00
B. Waste-water Handling				
C. Waste Incineration	IE	IE	IE	0.00
D. Other	NA	NA	NA	0.00
7. Other (as specified in Summary 1.A)	NA	NA	NA	0.00
Total CO2 emissions including net CO2 from LULUCF	172,748.01	184,372.18	170,815.16	5.29
Total CO2 emissions excluding net CO2 from LULUCF	169,905.87	181,380.41	167,550.04	5.22
Memo Items:				
International Bunkers	56,049.20	53,354.55	58,665.16	50.82
Aviation	10,411.09	10,168.31	10,447.85	
Marine	45,638.10	43,186.24	48,217.31	
Multilateral Operations	IE	IE	IE	
CO2 Emissions from Biomass	12,428.66	12,679.64	13,059.05	

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and forestry.

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

^b Fill in net emissions/removals as reported in CRF table Summary 1.A of the latest reported inventory year. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Table 1(b) Emission trends (CH₄) (Sheet 1 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year (1990)	1991	1992	1993	1994	1995	1996	1997	1998
	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)
1. Energy	114.67	116.90	116.62	119.05	120.59	123.79	125.19	99.08	95.13
A. Fuel Combustion (Sectoral Approach)	34.84	37.01	36.88	39.46	40.97	44.30	51.44	49.66	45.36
1. Energy Industries	2.78	3.24	3.19	3.51	3.52	3.82	4.34	4.50	4.44
2. Manufacturing Industries and Construction	2.76	2.71	2.77	2.74	2.78	2.74	2.96	2.95	3.08
3. Transport	7.56	6.52	6.23	6.04	5.75	5.56	5.26	4.74	4.48
4. Other Sectors	21.68	24.49	24.64	27.12	28.87	32.13	38.82	37.42	33.31
5. Other	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05
B. Fugitive Emissions from Fuels	79.83	79.88	79.74	79.59	79.62	79.49	73.75	49.42	49.77
1. Solid Fuels	1.59	1.59	1.59	1.59	1.60	1.60	1.61	1.60	1.42
2. Oil and Natural Gas	78.24	78.29	78.15	78.00	78.02	77.89	72.14	47.82	48.35
2. Industrial Processes	14.14	14.14	14.12	14.07	14.11	14.14	14.09	14.09	13.93
A. Mineral Products	NO	NO	NO	NO	NO	NO	NO	NO	NO
B. Chemical Industry	12.13	12.13	12.13	12.13	12.13	12.13	12.13	12.13	12.06
C. Metal Production	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
D. Other Production									
E. Production of Halocarbons and SF6									
F. Consumption of Halocarbons and SF6									
G. Other	2.01	2.02	1.99	1.94	1.98	2.01	1.97	1.96	1.87
3. Solvent and Other Product Use									
4. Agriculture	509.80	519.84	511.83	510.17	494.68	505.82	488.66	481.86	470.00
A. Enteric Fermentation	364.44	373.50		363.85	354.48	353.99	338.79	334.69	327.27
B. Manure Management	145.36			146.32	140.21	151.83	149.87	147.17	142.74
C. Rice Cultivation	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Agricultural Soils	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
E. Prescribed Burning of Savannas	NO	NO		NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Other	NA	NA		NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03
A. Forest Land	0.03	0.02		0.03	0.03	0.03	0.03	0.03	0.03
B. Cropland	NA, NE	NA, NE		NA, NE					
C. Grassland	NE	NE		NE	NE		NE	NE	NE
D. Wetlands	NE				NE		NE	NE	
E. Settlements	NE			NE	NE		NE	NE	
F. Other Land	NE				NE		NE	NE	NE
G. Other	NE				NE		NE	NE	NE
6. Waste	585.80			564.73	543.11	514.99	498.07	482.41	462.29
A. Solid Waste Disposal on Land	571.95	572.33		544.54	526.82	500.08	483.27	467.81	447.79
B. Waste-water Handling	13.79			18.24	13.40	11.48	11.31	11.03	10.97
C. Waste Incineration	IE				IE	IE	IE	IE	IE
D. Other	0.06			1.95	2.90		3.49	3.57	3.53
7. Other (as specified in Summary 1.A)	NA			NA	NA	NA	NA	NA	NA
Total CH4 emissions including CH4 from LULUCF	1,224.43	1,242.40		1,208.04	1,172.52	1,158.77	1,126.04	1,077.47	1,041.38
Total CH4 emissions excluding CH4 from LULUCF	1,224.40	1,242.37		1,208.01	1,172.49	1,158.74	1,126.01	1,077.44	1,041.35
Memo Items:	-,	-,,	-,	-,:	-,	-,	-,-20.01	-,	-,
International Bunkers	1.06	1.10	1.15	1.18	1.15	1.24	1.27	1.33	1.39
Aviation	0.22	0.23		0.30	0.31	0.36	0.38	0.42	0.45
Marine	0.22	0.23		0.88	0.84	0.88	0.88	0.42	0.43
Multilateral Operations	IE				IE		IE	IE	IE
CO2 Emissions from Biomass		112			112	112		IL	IL

Note: All footnotes for this table are given on sheet 3.

Table 1(b) Emission trends (CH₄) (Sheet 2 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)
1. Energy	87.09	83.13	81.87	78.90	78.37	76.78	80.97	82.36	98.16	114.90
A. Fuel Combustion (Sectoral Approach)	44.40	43.49	42.86	41.43	41.12	41.47	43.75	47.87	60.77	75.99
1. Energy Industries	4.32	4.39	4.72	4.98	4.60	5.05	5.97	5.23	4.80	4.82
2. Manufacturing Industries and Construction	3.02	3.03	2.83	2.72	2.72	2.64	2.64	2.67	2.65	2.67
3. Transport	4.22	3.64	3.41	3.24	3.02	2.79	2.67	2.56	2.46	2.42
4. Other Sectors	32.78	32.37	31.85	30.45	30.74	30.95	32.44	37.37	50.82	66.04
5. Other	0.07	0.06	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04
B. Fugitive Emissions from Fuels	42.69	39.64	39.01	37.46	37.24	35.30	37.21	34.49	37.39	38.91
1. Solid Fuels	1.16	1.06	1.11	1.06	1.08	1.10	1.12	1.08	1.09	1.04
2. Oil and Natural Gas	41.52	38.58	37.90	36.40	36.16	34.20	36.09	33.40	36.31	37.87
2. Industrial Processes	14.07	14.19	14.16	14.62	14.96	14.16	14.84	14.06	14.28	13.55
A. Mineral Products	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
B. Chemical Industry	12.18	12.33	12.31	12.81	13.11	12.39	13.07	12.27	12.52	11.83
C. Metal Production	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
D. Other Production										
E. Production of Halocarbons and SF6										
F. Consumption of Halocarbons and SF6										
G. Other	1.89	1.86	1.85	1.81	1.85	1.77	1.77	1.79	1.76	1.72
3. Solvent and Other Product Use										
4. Agriculture	466.70	451.26	453.94	431.17	427.08	430.51	429.61	428.83	433.90	442.89
A. Enteric Fermentation	326.60	313.33	319.49	301.49	303.50	304.28	303.56	302.87	306.81	312.83
B. Manure Management	140.10	137.93	134.44	129.68	123.58	126.23	126.05	125.96	127.09	130.07
C. Rice Cultivation	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Agricultural Soils	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
A. Forest Land	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
B. Cropland	NA, NE		NA, NE	NA, NE	NA, NE	NA, NE			NA, NE	NA, NE
C. Grassland	NE		NE		NE		,	,	NE	NE
D. Wetlands	NE		NE		NE	NE			NE	NE
E. Settlements	NE				NE				NE	NE
F. Other Land	NE		NE		NE				NE	NE
G. Other	NE		NE		NE	NE			NE	NE
6. Waste	424.36	399.90		330.44	294.62	270.04	241.28	223.66	208.09	194.60
A. Solid Waste Disposal on Land	409.66	385.73	347.64	316.30	294.02	256.31	228.03	223.00	195.48	182.23
B. Waste-water Handling	11.23	10.50		10.72	10.06	10.31	10.03	9.56	9.44	9.32
C. Waste Incineration	II.23	IE IE	IE	IO.72	IU.00	IU.31			9.44 IE	9.32 IE
D. Other	3.47	3.67	3.34	3.42	3.23	3.42		3.12	3.18	3.05
7. Other (as specified in Summary 1.A)	NA 002.25	NA	NA	NA	NA	NA	NA		NA	NA
Total CH4 emissions including CH4 from LULUCF	992.25	948.52	911.45	855.16	815.05	791.51	766.73	748.94	754.47	765.98
Total CH4 emissions excluding CH4 from LULUCF	992.22	948.49	911.42	855.13	815.02	791.48	766.70	748.91	754.43	765.95
Memo Items:		4 40		4 40		1.00	4.8-	1.05	1.40	
International Bunkers	1.43	1.48	1.57	1.58	1.48	1.59	1.76		1.68	1.64
Aviation	0.47	0.46		0.47	0.47	0.50	0.52		0.53	0.53
Marine	0.96	1.02	1.12	1.10	1.02	1.10		1.29	1.15	1.11
Multilateral Operations	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
CO2 Emissions from Biomass										

Note: All footnotes for this table are given on sheet 3.

Table 1(b) Emission trends (CH₄) (Sheet 3 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	(Gg)	(Gg)	(Gg)	%
1. Energy	115.58	118.67	115.00	0.29
A. Fuel Combustion (Sectoral Approach)	78.24	83.23	78.08	124.10
1. Energy Industries	5.29	5.45	5.03	80.66
2. Manufacturing Industries and Construction	2.58	2.62	2.51	-9.09
3. Transport	2.29	2.21	2.19	-71.00
4. Other Sectors	68.06	72.92	68.32	215.08
5. Other	0.03	0.03	0.03	-42.67
B. Fugitive Emissions from Fuels	37.34	35.44	36.92	-53.75
1. Solid Fuels	0.84	1.01	0.99	-37.55
2. Oil and Natural Gas	36.51	34.43	35.93	-54.08
2. Industrial Processes	12.85	13.85	13.40	-5.18
A. Mineral Products	NO	NO	NO	0.00
B. Chemical Industry	11.15	12.15	11.71	-3.43
C. Metal Production	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
D. Other Production				
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	1.69	1.69	1.69	-15.71
3. Solvent and Other Product Use				
4. Agriculture	454.75	454.54	437.06	-14.27
A. Enteric Fermentation	314.74	316.65	311.66	-14.48
B. Manure Management	140.01	137.89	125.41	-13.73
C. Rice Cultivation	NO	NO	NO	0.00
D. Agricultural Soils	NE, NO	NE, NO	NA	0.00
E. Prescribed Burning of Savannas	NO	NO	NO	0.00
F. Field Burning of Agricultural Residues	NO	NO	NO	0.00
G. Other	NA	NA	NA	0.00
5. Land Use, Land-Use Change and Forestry	0.03	0.03	0.04	36.35
A. Forest Land	0.03	0.03	0.04	36.35
B. Cropland	NA, NE	NA, NE	NA, NE	0.00
C. Grassland	NE	NE	NE	
D. Wetlands	NE	NE	NE	
E. Settlements	NE	NE	NE	
F. Other Land	NE	NE	NE	
G. Other	NE	NE	NE	
6. Waste	184.61	171.81	161.27	
A. Solid Waste Disposal on Land	173.79	161.13	150.77	
B. Waste-water Handling	9.85	9.70	9.48	
C. Waste Incineration	IE	IE	IE	
D. Other	0.97	0.97	1.02	
7. Other (as specified in Summary 1.A)	NA	NA	NA	· · · · · · · · · · · · · · · · · · ·
Total CH4 emissions including CH4 from LULUCF	767.83	758.90	726.77	
Total CH4 emissions excluding CH4 from LULUCF	767.79	758.86	726.74	
Memo Items:	101.17	, 50.00	, 20.74	10.05
International Bunkers	1.52	1.45	1.60	51.22
Aviation	0.50	0.48	0.50	
Marine	1.02	0.48	1.10	
Multilateral Operations	I.02	IE	I.IO IE	
CO2 Emissions from Biomass		112	112	0.00

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and fores

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the

percentage change in the final column of this table.

Table 1(c) Emission trends (N₂O) (Sheet 1 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year (1990)	1991	1992	1993	1994	1995	1996	1997	1998
	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)
1. Energy	1.06				1.52	1.63	1.72		1.77
A. Fuel Combustion (Sectoral Approach)	1.06		1.24		1.52	1.63	1.72		1.77
1. Energy Industries	0.45			0.47	0.51	0.54	0.59	0.60	0.63
2. Manufacturing Industries and Construction	0.10				0.09	0.08	0.08	0.08	0.08
3. Transport	0.33		0.55		0.75	0.84	0.87	0.90	0.90
4. Other Sectors	0.14				0.14	0.14	0.15	0.13	0.13
5. Other	0.03		0.03		0.03	0.03	0.03	0.03	0.03
B. Fugitive Emissions from Fuels	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
1. Solid Fuels	NA, NO	,		,	NA, NO	NA, NO	,	NA, NO	NA, NO
2. Oil and Natural Gas	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
2. Industrial Processes	22.90	22.91	23.08	24.71	24.13	22.86	22.87	22.67	22.71
A. Mineral Products	NO	NO	NO	NO	NO	NO	NO	NO	NO
B. Chemical Industry	22.89	22.90	23.07	24.70	24.12	22.85	22.85	22.65	22.69
C. Metal Production	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Other Production									
E. Production of Halocarbons and SF6									
F. Consumption of Halocarbons and SF6									
G. Other	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
3. Solvent and Other Product Use	0.73	0.73	0.73	0.70	0.66	0.64	0.62	0.55	0.52
4. Agriculture	38.23	38.98	39.32	38.39	36.64	37.41	37.14	36.42	34.02
A. Enteric Fermentation									
B. Manure Management	3.81	4.07	4.14	4.04	3.78	3.76	3.59	3.50	3.44
C. Rice Cultivation									
D. Agricultural Soils	34.42	34.91	35.18	34.35	32.86	33.65	33.55	32.92	30.59
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A. Forest Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B. Cropland	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE
C. Grassland	NE	NE	NE	NE	NE	NE	NE	NE	NE
D. Wetlands	NE	NE	NE	NE	NE	NE	NE	NE	NE
E. Settlements	NE	NE	NE	NE	NE	NE	NE	NE	NE
F. Other Land	NE	NE	NE	NE	NE	NE	NE	NE	NE
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE
6. Waste	1.56	1.60	1.60	1.61	1.63	1.58	1.57	1.59	1.60
A. Solid Waste Disposal on Land									
B. Waste-water Handling	1.55	1.57	1.54	1.53	1.51	1.45	1.43	1.45	1.46
C. Waste Incineration	IE	IE	IE	IE	IE	IE	IE	IE	IE
D. Other	0.00	0.03	0.06	0.08	0.12	0.14	0.14	0.14	0.14
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total N2O emissions including N2O from LULUCF	64.47	65.34	65.98	66.82	64.58	64.13	63.92	62.97	60.63
Total N2O emissions excluding N2O from LULUCF	64.47	65.34	65.98	66.82	64.58	64.13	63.92	62.97	60.63
Memo Items:									
International Bunkers	0.31	0.32	0.33	0.34	0.33	0.34	0.35	0.37	0.38
Aviation	0.04	0.04	0.05	0.05	0.05	0.06	0.07	0.07	0.08
Marine	0.27	0.28	0.28	0.29	0.27	0.28	0.28	0.30	0.30
Multilateral Operations	IE	IE	IE	IE	IE	IE	IE	IE	IE
CO2 Emissions from Biomass									

Note: All footnotes for this table are given on sheet 3.

Table 1(c) Emission trends (N₂O) (Sheet 2 of 3)

CRF: NLD_CRF__v1.4

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	(<i>Gg</i>)	(Gg)								
1. Energy	1.73	1.79	1.83	1.85	1.83	1.84	1.85	1.83	1.85	1.92
A. Fuel Combustion (Sectoral Approach)	1.73	1.79	1.83	1.85	1.83	1.84	1.85	1.83	1.85	1.92
1. Energy Industries	0.59	0.63	0.66	0.69	0.70	0.73	0.78	0.77	0.78	0.80
2. Manufacturing Industries and Construction	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.10
3. Transport	0.90	0.93	0.93	0.93	0.91	0.88	0.84	0.83	0.84	0.87
4. Other Sectors	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14
5. Other	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
B. Fugitive Emissions from Fuels	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
1. Solid Fuels	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO
2. Oil and Natural Gas	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
2. Industrial Processes	21.57	22.07	20.03	19.15	19.43	21.13	20.56	20.22	15.52	3.38
A. Mineral Products	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
B. Chemical Industry	21.54	22.04	20.01	19.12	19.40	21.10	20.53	20.19	15.49	3.35
C. Metal Production	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Other Production										
E. Production of Halocarbons and SF6										
F. Consumption of Halocarbons and SF6										
G. Other	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03
3. Solvent and Other Product Use	0.50	0.44	0.36	0.29	0.27	0.28	0.25	0.26	0.25	0.24
4. Agriculture	32.92	30.24	28.91	27.12	26.22	25.93	25.58	25.50	24.58	24.09
A. Enteric Fermentation										
B. Manure Management	3.48	3.26	3.16	3.14	2.70	2.84	2.97	2.87	3.08	3.18
C. Rice Cultivation										
D. Agricultural Soils	29.44	26.98	25.75	23.98	23.53	23.09	22.61	22.64	21.49	20.91
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A. Forest Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B. Cropland	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE
C. Grassland	NE	NE		NE	NE	NE	NE		NE	NE
D. Wetlands	NE	NE		NE		NE	NE			
E. Settlements	NE	NE	NE	NE		NE	NE	NE	NE	NE
F. Other Land	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
6. Waste	1.57	1.58	1.58	1.58	1.54	1.55	1.57	1.57	1.60	1.61
A. Solid Waste Disposal on Land										
B. Waste-water Handling	1.43	1.44	1.44	1.45	1.41	1.42	1.44	1.45	1.48	1.49
C. Waste Incineration	IE	IE		IE	IE	IE	IE		IE	IE
D. Other	0.14	0.15	0.13	0.14	0.13	0.14	0.13		0.13	0.12
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA		NA	NA
Total N2O emissions including N2O from LULUCF	58.29	56.13	52.71	49.99	49.30	50.74	49.82		43.79	31.25
Total N2O emissions excluding N2O from LULUCF	58.29	56.13	52.71	49.99	49.30	50.74	49.81	49.40	43.79	31.25
Memo Items:										
International Bunkers	0.40	0.41	0.45	0.45	0.42	0.45	0.51	0.53	0.49	0.48
Aviation	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09
	0.31	0.33	0.37	0.36		0.37	0.42		0.40	0.38
Marine										0.00
Marine Multilateral Operations	IE			IE		IE	IE			IE

Note: All footnotes for this table are given on sheet 3.

Table 1(c) Emission trends (N₂O) (Sheet 3 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	(<i>Gg</i>)	(Gg)	(Gg)	%
1. Energy	1.93	1.97	1.96	
A. Fuel Combustion (Sectoral Approach)	1.93	1.97	1.96	84.72
1. Energy Industries	0.83	0.84	0.83	85.79
2. Manufacturing Industries and Construction	0.10	0.10	0.09	-11.72
3. Transport	0.85	0.86	0.88	164.56
4. Other Sectors	0.14	0.15	0.13	-6.68
5. Other	0.02	0.02	0.02	-42.09
B. Fugitive Emissions from Fuels	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
1. Solid Fuels	NA, NO	NA, NO	NA, NO	0.00
2. Oil and Natural Gas	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
2. Industrial Processes	3.57	3.21	3.63	-84.16
A. Mineral Products	NO	NO	NO	0.00
B. Chemical Industry	3.53	3.17	3.59	-84.31
C. Metal Production	NO	NO	NO	0.00
D. Other Production				
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	0.03	0.04	0.04	272.55
3. Solvent and Other Product Use	0.24	0.09	0.10	-85.79
4. Agriculture	23.10	22.88	22.10	-42.20
A. Enteric Fermentation				
B. Manure Management	3.22	3.24	3.39	-11.02
C. Rice Cultivation				
D. Agricultural Soils	19.89	19.64	18.70	-45.65
E. Prescribed Burning of Savannas	NO	NO	NO	0.00
F. Field Burning of Agricultural Residues	NO	NO	NO	0.00
G. Other	NA	NA	NA	0.00
5. Land Use, Land-Use Change and Forestry	0.00	0.00	0.00	36.35
A. Forest Land	0.00	0.00	0.00	36.35
B. Cropland	NA, NE	NA, NE	NA, NE	0.00
C. Grassland	NE	NE	NE	0.00
D. Wetlands	NE	NE	NE	0.00
E. Settlements	NE	NE	NE	0.00
F. Other Land	NE	NE	NE	0.00
G. Other	NE	NE	NE	0.00
6. Waste	1.56	1.56	1.59	2.01
A. Solid Waste Disposal on Land				
B. Waste-water Handling	1.44	1.45	1.47	-5.12
C. Waste Incineration	IE	IE	IE	0.00
D. Other	0.12	0.11	0.11	4,896.55
7. Other (as specified in Summary 1.A)	NA	NA	NA	0.00
Total N2O emissions including N2O from LULUCF	30.41	29.70	29.37	-54.44
Total N2O emissions excluding N2O from LULUCF	30.41	29.70	29.37	-54.44
Memo Items:				
International Bunkers	0.44	0.42	0.46	51.59
Aviation	0.09	0.09	0.09	130.11
Marine	0.35	0.34	0.38	40.40
Multilateral Operations	IE	IE	IE	0.00
CO2 Emissions from Biomass				

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and fc

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 1 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year (1990)	1991	1992	1993	1994	1995	1996	1997	1998
	(<i>Gg</i>)	(Gg)							
Emissions of HFCs(3) - (Gg CO2 equivalent)	4,432.03	3,451.56	4,447.33	4,998.04	6,479.47	6,018.69	7,675.88	8,291.39	9,331.49
HFC-23	0.38	0.30	0.38	0.42	0.54	0.49	0.59	0.57	0.67
HFC-32	NO	NO	NO	NO	NO	0.00	0.00	0.01	0.01
HFC-41	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-43-10mee	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-125	NO	NO	NO	NO	NO	0.00	0.01	0.01	0.03
HFC-134	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-134a	NO	NO	0.02	0.01	0.04	0.04	0.11	0.17	0.12
HFC-152a	NO	NO	0.01	0.03	0.02	0.02	0.03	IE, NO	IE, NO
HFC-143	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-143a	NO	NO	NO	0.00	0.01	0.00	0.03	0.01	0.03
HFC-227ea	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-236fa	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
HFC-245ca	NO	NO	NO	NO	NO	IE, NO	IE, NO	IE, NO	IE, NO
Unspecified mix of listed HFCs ⁽⁴⁾ - (Gg CO ₂ equivalent)	NO	NO	NO	21.41	117.36	187.14	487.39	1,268.48	1,152.79
Emissions of PFCs(3) - (Gg CO2 equivalent)	2,264.48	2,244.88	2,042.85	2,068.47	1,989.67	1,937.82	2,155.33	2,343.91	1,829.24
CF_4	0.28	0.28	0.25	0.25	0.24	0.24	0.26	0.28	0.21
C ₂ F ₆	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.05	0.04
C ₃ F ₈	NO	NO	NO	NO	NO	NO	NO	NO	NO
C_4F_{10}	NO	NO	NO	NO	NO	NO	NO	NO	NO
c-C ₄ F ₈	NA, NO	NO	NO	NO	NO	NO	NO	NO	NO
C ₅ F ₁₂	NO	NO	NO	NO	NO	NO	NO	NO	NO
C ₆ F ₁₄	NO	NO	NO	NO	NO	NO	NO	NO	NO
Unspecified mix of listed $PFCs^{(4)}$ - (Gg CO ₂ equivalent)	18.26	21.00	24.15	27.77	31.94	37.03	51.10	101.26	113.87
Emissions of SF6(3) - (Gg CO2 equivalent)	218.28	133.91	143.09	149.90	191.20	286.78	295.07	324.66	304.63
SF ₆	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Note: All footnotes for this table are given on sheet 3.

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 2 of 3)

CRF: NLD_CRF__ v1.4

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	(Gg)									
Emissions of HFCs(3) - (Gg CO2 equivalent)	4,893.61	3,891.67	1,562.64	1,656.14	1,489.62	1,641.93	1,512.48	1,745.02	1,864.21	1,931.52
HFC-23	0.29	0.21	0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.02
HFC-32	0.01	0.01	0.03	0.01	0.02	0.02	0.02	0.02	0.02	0.02
HFC-41	IE, NO									
HFC-43-10mee	IE, NO									
HFC-125	0.05	0.06	0.08	0.07	0.07	0.09	0.09	0.10	0.11	0.12
HFC-134	IE, NO									
HFC-134a	0.16	0.16	0.20	0.23	0.27	0.32	0.34	0.36	0.38	0.39
HFC-152a	IE, NO	0.02	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00
HFC-143	IE, NO									
HFC-143a	0.04	0.08	0.05	0.05	0.06	0.07	0.08	0.09	0.10	0.10
HFC-227ea	IE, NO									
HFC-236fa	IE, NO									
HFC-245ca	IE, NO									
Unspecified mix of listed $HFCs^{(4)}$ - (Gg CO ₂ equivalent)	970.30	780.76	442.33	273.88	273.76	330.11	299.76	350.85	435.32	473.43
Emissions of PFCs(3) - (Gg CO2 equivalent)	1,470.53	1,580.60	1,488.61	2,185.55	619.50	284.73	265.34	253.76	318.52	251.07
CF ₄	0.15	0.16	0.15	0.24	0.05	0.01	0.01	0.01	0.01	0.01
C_2F_6	0.04	0.04	0.04	0.06	0.01	0.00	0.00	0.00	0.00	0.00
C ₃ F ₈	NO									
C_4F_{10}	NO									
c-C ₄ F ₈	NO									
$C_{5}F_{12}$	NO									
$C_{6}F_{14}$	NO									
Unspecified mix of listed $PFCs^{(4)}$ - (Gg CO ₂ equivalent)	147.10	193.35	162.71	119.70	180.25	179.04	178.19	194.46	221.66	179.51
Emissions of SF6(3) - (Gg CO2 equivalent)	295.33	295.33	307.95	248.85	225.11	253.46	240.00	199.02	187.88	183.79
SF ₆	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Note: All footnotes for this table are given on sheet 3.

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 3 of 3)

CRF: NLD_CRF__ v1.4

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	(<i>Gg</i>)	(Gg)	(Gg)	%
Emissions of HFCs(3) - (Gg CO2 equivalent)	2,072.04	2,259.88	2,132.84	-51.88
HFC-23	0.01	0.03	0.01	-96.24
HFC-32	0.02	0.03	0.02	100.00
HFC-41	IE, NO	IE, NO	IE, NO	0.00
HFC-43-10mee	IE, NO	IE, NO	IE, NO	0.00
HFC-125	0.13	0.14	0.13	100.00
HFC-134	IE, NO	IE, NO	IE, NO	0.00
HFC-134a	0.41	0.41	0.41	100.00
HFC-152a	0.02	0.00	0.00	100.00
HFC-143	IE, NO	IE, NO	IE, NO	0.00
HFC-143a	0.12	0.12	0.12	100.00
HFC-227ea	IE, NO	IE, NO	IE, NO	0.00
HFC-236fa	IE, NO	IE, NO	IE, NO	0.00
HFC-245ca	IE, NO	IE, NO	IE, NO	0.00
Unspecified mix of listed HFCs ⁽⁴⁾ - (Gg CO ₂ equivalent)	529.43	470.43	602.41	100.00
Emissions of PFCs(3) - (Gg CO2 equivalent)	167.97	208.86	182.85	-91.93
CF ₄	0.01	0.01	0.01	-96.13
C ₂ F ₆	0.00	0.00	0.00	-97.20
C ₃ F ₈	NO	NA, NO	NA, NO	0.00
C_4F_{10}	NO	NA, NO	NA, NO	0.00
c-C ₄ F ₈	NO	NA, NO	NA, NO	0.00
C ₅ F ₁₂	NO	NA, NO	NA, NO	0.00
C ₆ F ₁₄	NO	NA, NO	NA, NO	0.00
Unspecified mix of listed PFCs ⁽⁴⁾ - (Gg CO_2 equivalent)	125.18	151.16	100.67	451.28
Emissions of SF6(3) - (Gg CO2 equivalent)	170.38	184.10	146.63	-32.83
SF ₆	0.01	0.01	0.01	-32.83

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and forestry.

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

^cEnter actual emissions estimates. If only potential emissions estimates are available, these should be reported in this table and an indication for this be provided in the documentation box. Only in these rows are the emissions expressed as CO2 equivalent emissions.

^dIn accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual inventories", HFC and PFC emissions should be reported for each relevant chemical. However, if it is not possible to report values for each chemical (i.e. mixtures, confidential data, lack of disaggregation), this row could be used for reporting aggregate figures for HFCs and PFCs, respectively. Note that the unit used for this row is kt of CO2 equivalent and that appropriate notation keys should be entered in the cells for the individual chemicals.)

Table 2(a)

NLD_BR1_v2.0

Description of quantified economy-wide emission reduction target: base year^a

Party	letherlands				
Base year /base period	90				
Emission reduction target	% of base year/base period % of 1990 ^b				
	20.00				
Period for reaching target	BY-2020				

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Optional.

Table 2(b)NLD_BR1_v2.0Description of quantified economy-wide emission reduction target: gasesand sectors covered a

Ga	ises covered	Base year for each gas (year):
CO ₂		1990
CH ₄		1990
N ₂ O		1990
HFCs		1995
PFCs		1995
SF ₆		1995
NF ₃		
Other Gases (specify))	
Sectors covered ^b	Energy	Yes
	Transport ^f	Yes
	Industrial processes ^g	Yes
	Agriculture	Yes
	LULUCF	Yes
	Waste	Yes
	Other Sectors (specify)	

Abbreviations : LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b More than one selection will be allowed. If Parties use sectors other than those indicated above, the explanation of how these sectors relate to the sectors defined by the IPCC should be provided.

^{*f*} Transport is reported as a subsector of the energy sector.

^g Industrial processes refer to the industrial processes and solvent and other product use sectors.

Table 2(c)NLD_BR1_v2.0Description of quantified economy-wide emission reduction target: globalwarming potential values $(GWP)^a$

Gases	GWP values ^b					
CO ₂	2nd AR					
CH ₄	2nd AR					
N ₂ O	2nd AR					
HFCs	2nd AR					
PFCs	2nd AR					
SF ₆	2nd AR					
NF ₃	2nd AR					
Other Gases (specify)	Other Gases (specify)					

Abbreviations : GWP = global warming potential

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Please specify the reference for the GWP: Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) or the Fourth Assessment Report of the IPCC.

Table 2(d)

NLD_BR1_v2.0

Description of quantified economy-wide emission reduction target: approach to counting emissions and removals from the LULUCF sector^{*a*}

Role of LULUCF	LULUCF in base year level and target	Excluded
	Contribution of LULUCF is calculated using	

Abbreviation : LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

Table 2(e)INLD_BR1_v2.0Description of quantified economy-wide emission reduction target: market-based mechanismsunder the Convention a

Market-based mechanisms	Possible scale of contributions				
under the Convention	(estimated kt CO $_2$ eq)				
CERs	0.00				
ERUs	0.00				
AAUs ⁱ	0.00				
Carry-over units ^j	0.00				
Other mechanism units under the Convention (specify) ^d					

Abbreviations : AAU = assigned amount unit, CER = certified emission reduction, ERU = emission reduction unit.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

 d As indicated in paragraph 5(e) of the guidelines contained in annex I of decision 2/CP.17 .

^{*i*} AAUs issued to or purchased by a Party.

^{*j*} Units carried over from the first to the second commitment periods of the Kyoto Protocol, as described in decision 13/CMP.1 and consistent with decision 1/CMP.8.

Table 2(e)II

Description of quantified economy-wide emission reduction target: other market-based mechanisms^a

Other market-based mechanisms	Possible scale of contributions
(Specify)	(estimated kt CO $_2$ eq)

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

Table 2(f)

Description of quantified economy-wide emission reduction target: any other information^{*a,b*}

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b This information could include information on the domestic legal status of the target or the total assigned amount of emission units for the period for reaching a target. Some of this information is presented in the narrative part of the biennial report.

Table 3 Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities
CO2 Emission Trading System (ETS)	Energy	CO ₂	Cost-optimisation of CO2 reduction efforts	Regulatory	Implemented	The European Emission Trading system	2005	European Commission / National Government
SDE+ and other financial incentives of renewables	Energy	CO ₂	Stimulate the production of energy with renewable energy sources by subsidizing the as-yet unprofitable components of application	Economic Fiscal Voluntary Agreement	Implemented	Use a combination/package of instrument: SDE+ and other financial incentives of renewables likeGreen investment, EIA/VAMIL, MEP, Coal covenant, BLOW covenant, energy tax	2003	National government, provincial government
CO2 Emission Trading System & Long-term Agreement on Energy Efficiency for ETS enterprises (MEE)	Energy, Industry/industria l processes	CO ₂	Cost-optimisation of CO2 reduction efforts	Other (Economic)	Implemented		2005	European Commission / National government
Long-term Agreement on Energy Efficiency for non-ETS enterprises [MJA] & Fiscal measures for energy and other green investments	Industry/industria l processes	CO ₂	Improving energy efficiency and reduce CO2 emissions	Economic Fiscal Voluntary Agreement Regul atory		Long-term Agreement on Energy Efficiency for non-ETS enterprises [MJA] & Fiscal measures for energy and other green investments [EIA, MIA, VAMIL]	2001	National government / provincial governments
N2O Nitric acid production	Industry/industria l processes	N ₂ O	Reduction Programme Non- CO2 gases	Economic	Implemented	Specific governmental programme to reduce non-CO2 gases (Dutch acronym ROB)	1998	National Government
Decision biofuels as renewable energy for transport	Image: second		2009	European Commission / National government				
Efficient Driving Campaign & Trucks for future	Transport	CO ₂ , CH ₄ , N ₂ O	Increase the energy efficiency of driving by training and awareness	Other (Other (Education))	Implemented	The Dutch Eco Driving programme was started in 1999 and is based on a long-term strategy. From 2010 onwards, the implementation of the program was designated to the Institute for Sustainable Mobility (IVDM) for a period of four years in order to achieve a transfer of the program to the market In the demonstration programme 'truck of the future', various measures are examined that allow companies from the transport sector to save fuel	1999	National government

NLD_BR1_v2.0

Estimate of mitigation impact (not cumulative, in kt CO₂ eq)

9,400.00

64,600.00

7,100.00

4,400.00

5,600.00

2,300.00

400.00

Table 3 Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects

Name of mitigation action	a Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	<i>Type of</i> <i>instrument</i> ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities
EU CO2 emission standards for cars & Fiscal policy on car efficiency	Transport	CO ₂	To curb the CO2 emissions of transport by setting CO2 standards for cars within the European Union & stimulating the purchase of passenger cars with low CO2 emission through fiscal incentives	Other (Fiscal)	Implemented		2005	European Commission / National government
Convenant Clean & efficient Agrosectors	Agriculture	CO ₂ , CH ₄ , N ₂ O		Economic Fiscal Regulatory Resea rch Voluntary Agreement	•	This convenant with the agricultureal sector is a follow-up of voluntary agreements and convenants since the late 1990s	2007	National government
EU ETS & Sectoral emission trading system horticulture	Agriculture	CO ₂	ETS and a national sectoral trading system	Other (Voluntary Agreement)	Implemented		2005	European Commission / National government
Emission regulation CH4 emission gas engines	Agriculture	CH ₄	A regulation to curb the emission of CH4 from gas engines	Regulatory	Implemented	A follow-up regulation of the BEES regulation that started in 1990	2010	National government
Size of cattle stock and manure management	Agriculture	CH_4	Milk quota, livestock reduction; ended in 2015	Other (Other (voluntary))	Implemented		2008	National government

NLD_BR1_v2.0

Estimate of mitigation impact (not cumulative, in kt CO₂ eq)

900.00

1,900.00

1,200.00

900.00

400.00

Table 3 Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)
Ammonia and manure policy	Agriculture	N ₂ O	Reduce emissions through manure and ammonia management	Regulatory	Implemented	National and European policies since the 1997, whith changes over time	1997	National government	1,100.00
Landfill policy	Waste management/was te	CH ₄	Reduction in amount of landfilled waste, reduction of CH4 emissions from landfill sites	Other (Voluntary Agreement)	Implemented	In the early 1990s, the government introduced bans on the use of certain categories of waste for land-filling and since then the policy to reduce the land-filling has been strengthened	1995	National government	2,800.00
Energy performance standards (EPN) (new buildings) & Ecodesign directive)	Other (Built environment)	CO ₂	To stimulate energy savings in new building by setting minimum energy performance standards. To limit the environmental impact of energy- using and energy- related products by setting standards for the design of products	Regulatory	Implemented	Already in the 1990s the regulation on the energy perfomance of new builing started. The relevant EU Directives in this context are the Energy Performance of Buildings Directive (EPBD) and the Eco design Directive		European Commission / National government	100.00
Covenant energy efficiency in the built environment (More with Less; Koepel convenant)	Other (Built environment)		To stimulate energy savings in existing residential buildings through a package of instruments	Voluntary Agreement	Implemented	A wide variety of policy instruments were set up since 2005 in order to encourage the retrofitting of existing buildings	2005	National government	2,700.00
"Block-by-block incentive scheme" [Blok-voor-blok programma] & Innovation programme built environment	Other (Built environment)	CO ₂	Facilitating investments in the improvement of the energy quality of homes and to speed up application of renewable energy concepts in built environment through innovation		Implemented		2011	National government	0.00

Note : The two final columns specify the year identified by the Party for estimating impacts (based on the status of the measure and whether an expost or ex ante estimation is available).

Abbreviations: GHG = greenhouse gas; LULUCF = land use, land-use change and forestry.

^{*a*} Parties should use an asterisk (*) to indicate that a mitigation action is included in the 'with measures' projection.

^b To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors, cross-cutting, as appropriate.

^c To the extent possible, the following types of instrument should be used: economic, fiscal, voluntary agreement, regulatory, information, education, research, other.

^d To the extent possible, the following descriptive terms should be used to report on the status of implementation: implemented, adopted, planned.

^e Additional information may be provided on the cost of the mitigation actions and the relevant timescale.

^{*f*} Optional year or years deemed relevant by the Party.

Custom Footnotes

NLD_BR1_v2.0

Table 4Reporting on progress

	Total emissions excluding LULUCF	Contribution from LULUCF ^d	Quantity of units from market based mechanisms under the Convention		Quantity of units from other market base mechanisms	
Year ^c	$(kt \ CO_2 \ eq)$	$(kt \ CO_2 \ eq)$	(number of units)	$(kt \ CO_2 \ eq)$	(number of units)	$(kt \ CO_2 \ eq)$
(1990)	211,849.32	NA				
2010	209,176.86	363.54				
2011	194,379.16	380.01	1,106,010,063.00	1,106,010,063.00		
2012	NA	NA	1,199,933,933.00	1,199,933,933.00		

Abbreviation : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b For the base year, information reported on the emission reduction target shall include the following: (a) total GHG emissions, excluding emissions and removals from the LULUCF sector; (b) emissions and/or removals from the LULUCF sector based on the accounting approach applied taking into consideration any relevant decisions of the Conference of the Parties and the activities and/or land that will be accounted for; (c) total GHG emissions, including emissions and removals from the LULUCF sector. For each reported year, information reported on progress made towards the emission reduction targets shall include, in addition to the information noted in paragraphs 9(a--c) of the UNFCCC biennial reporting guidelines for developed country Parties, information on the use of units from market-based mechanisms.

^c Parties may add additional rows for years other than those specified below.

d Information in this column should be consistent with the information reported in table 4(a)I or 4(a)II, as appropriate. The Parties for which all relevant information on the LULUCF contribution is reported in table 1 of this common tabular format can refer to table 1.

Table 4(a)I

Progress in achieving the quantified economy-wide emission reduction targets – further information on mitigation actions relevant to the contribution of the land use, land-use change and forestry sector in 2011 ^{a,b}

	Net GHG emissions/removals from LULUCF categories ^c	Base year/period or reference level value ^d	Contribution from LULUCF for reported year	Cumulative contribution from LULUCF ^e	Accounting approach ^f
		$(kt CO_2 ec$	<i>q</i>)		
Total LULUCF					
A. Forest land					
1. Forest land remaining forest land					
2. Land converted to forest land					
3. Other ^g					
B. Cropland					
1. Cropland remaining cropland					
2. Land converted to cropland					
3. Other ^g					
C. Grassland					
1. Grassland remaining grassland					
2. Land converted to grassland					
3. Other ^g					
D. Wetlands					
1. Wetland remaining wetland					
2. Land converted to wetland					
3. Other ^g					
E. Settlements					
1. Settlements remaining settlements					
2. Land converted to settlements					
3. Other ^g					
F. Other land					
1. Other land remaining other land					
2. Land converted to other land					
3. Other ^g					
Harvested wood products					

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Parties that use the LULUCF approach that is based on table 1 do not need to complete this table, but should indicate the approach in table 2. Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

 c For each category, enter the net emissions or removals reported in the most recent inventory submission for the corresponding inventory year. If a category differs from that used for the reporting under the Convention or its Kyoto Protocol, explain in the biennial report how the value was derived.

^d Enter one reference level or base year/period value for each category. Explain in the biennial report how these values have been calculated.

^e If applicable to the accounting approach chosen. Explain in this biennial report to which years or period the cumulative contribution refers to.

^{*f*} Label each accounting approach and indicate where additional information is provided within this biennial report explaining how it was implemented, including all relevant accounting parameters (i.e. natural disturbances, caps).

^g Specify what was used for the category "other". Explain in this biennial report how each was defined and how it relates to the categories used for reporting under the Convention or its Kyoto Protocol.

Table 4(a)I

Progress in achieving the quantified economy-wide emission reduction targets – further information on mitigation actions relevant to the contribution of the land use, land-use change and forestry sector in 2012 ^{a, b}

	Net GHG emissions/removals from LULUCF categories ^c	Base year/period or reference level value ^d	Contribution from LULUCF for reported year	Cumulative contribution from LULUCF ^e	Accounting approach ^f
		$(kt CO_2 ec$	<i>q</i>)		
Total LULUCF					
A. Forest land					
1. Forest land remaining forest land					
2. Land converted to forest land					
3. Other ^g					
B. Cropland					
1. Cropland remaining cropland					
2. Land converted to cropland					
3. Other ^g					
C. Grassland					
1. Grassland remaining grassland					
2. Land converted to grassland					
3. Other ^g					
D. Wetlands					
1. Wetland remaining wetland					
2. Land converted to wetland					
3. Other ^g					
E. Settlements					
1. Settlements remaining settlements					
2. Land converted to settlements					
3. Other ^g					
F. Other land					
1. Other land remaining other land					
2. Land converted to other land					
3. Other ^g					
Harvested wood products					

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Parties that use the LULUCF approach that is based on table 1 do not need to complete this table, but should indicate the approach in table 2. Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

 c For each category, enter the net emissions or removals reported in the most recent inventory submission for the corresponding inventory year. If a category differs from that used for the reporting under the Convention or its Kyoto Protocol, explain in the biennial report how the value was derived.

^d Enter one reference level or base year/period value for each category. Explain in the biennial report how these values have been calculated.

^e If applicable to the accounting approach chosen. Explain in this biennial report to which years or period the cumulative contribution refers to.

^{*f*} Label each accounting approach and indicate where additional information is provided within this biennial report explaining how it was implemented, including all relevant accounting parameters (i.e. natural disturbances, caps).

^g Specify what was used for the category "other". Explain in this biennial report how each was defined and how it relates to the categories used for reporting under the Convention or its Kyoto Protocol.

Table 4(a)II

Progress in achievement of the quantified economy-wide emission reduction targets – further information on mitigation actions relevant to the counting of emissions and removals from the land use, land-use change and forestry sector in relation to activities under Article 3, paragraphs 3 and 4, of the Kyoto Protocol^{*a,b, c*}

GREENHOUSE GAS SOURCE AND SINK ACTIVITIES	Base year ^d	2008	Net 2009	emissions/removals ^e 2010	2011	Total ⁽⁶⁾
		•		(kt CO ₂ eq)		
A. Article 3.3 activities						

Note: 1 kt CO_2 eq equals 1 Gg CO_2 eq.

Abbreviations: CRF = common reporting format, LULUCF = land use, land-use change and forestry.

^a Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Developed country Parties with a quantified economy-wide emission reduction target as communicated to the secretariat and contained in document FCCC/SB/2011/INF.1/Rev.1 or any update to that document, that are Parties to the Kyoto Protocol, may use table 4(a)II for reporting of accounting quantities if LULUCF is contributing to the attainment of that target.

^c Parties can include references to the relevant parts of the national inventory report, where accounting methodologies regarding LULUCF are further described in the documentation box or in the biennial

 d Net emissions and removals in the Party's base year, as established by decision 9/CP.2.

^e All values are reported in the information table on accounting for activities under Article 3, paragraphs 3 and 4, of the Kyoto Protocol, of the CRF for the relevant inventory year as reported in the current submission and are automatically entered in this table.

^{*f*} Additional columns for relevant years should be added, if applicable.

^g Cumulative net emissions and removals for all years of the commitment period reported in the current submission.

^h The values in the cells "3.3 offset" and "Forest management cap" are absolute values.

^{*i*} The accounting quantity is the total quantity of units to be added to or subtracted from a Party's assigned amount for a particular activity in accordance with the provisions of Article 7, paragraph 4, of the Kyoto Protocol.

^{*j*} In accordance with paragraph 4 of the annex to decision 16/CMP.1, debits resulting from harvesting during the first commitment period following afforestation and reforestation since 1990 shall not be greater than the credits accounted for on that unit of land.

^k In accordance with paragraph 10 of the annex to decision 16/CMP.1, for the first commitment period a Party included in Annex I that incurs a net source of emissions under the provisions of Article 3 paragraph 3, may account for anthropogenic greenhouse gas emissions by sources and removals by sinks in areas under forest management under Article 3, paragraph 4, up to a level that is equal to the net source of emissions under the provisions of Article 3, paragraph 3, but not greater than 9.0 megatonnes of carbon times five, if the total anthropogenic greenhouse gas emissions by sources and removals by sinks in the managed forest since 1990 is equal to, or larger than, the net source of emissions incurred under Article 3, paragraph 3.

¹ In accordance with paragraph 11 of the annex to decision 16/CMP.1, for the first commitment period of the Kyoto Protocol only, additions to and subtractions from the assigned amount of a Party resulting from Forest management under Article 3, paragraph 4, after the application of paragraph 10 of the annex to decision 16/CMP.1 and resulting from forest management project activities undertaken under Article 6, shall not exceed the value inscribed in the appendix of the annex to decision 16/CMP.1, times five.

Custom Footnotes

Documentation Box:

NLD_BR1_v2.0 Source: NLD CRF v1.4

ccounting arameters ^h	Accounting quantity ⁱ

Table 4(b) **Reporting on progress^{a, b, c}**

	Units of market has a dim och aniones		Yea	r
	Units of market based mechanisms		2011	2012
		(number of units)	1,106,010,063.00	1,199,933,933.0
	Kyoto Protocol units	$(kt CO_2 eq)$	1,106,010,063.00	1,199,933,933.0
		(number of units)	1,057,489,053.00	1,102,807,330.0
	AAUs	(kt CO2 eq)	1,057,489,053.00	1,102,807,330.0
		(number of units)	6,912,193.00	51,471,631.0
Protocol		(kt CO2 eq)	6,912,193.00	51,471,631.0
rotocol inits ^d		(number of units)	41,608,817.00	45,654,972.0
unus	CERs	(kt CO2 eq)	41,608,817.00	45,654,972.0
tCERs	(number of units)	NO	N	
	tCERs	(kt CO2 eq)		
	1000	(number of units)	NO	N
	lCERs	(kt CO2 eq)		
	Units from market-based mechanisms under the	(number of units)		
	Convention	$(kt CO_2 eq)$		
Other units				
<i>d</i> , <i>e</i>		(number of units)		
	Units from other market-based mechanisms	$(kt CO_2 eq)$		
Total		(number of units)	1,106,010,063.00	1,199,933,933.0
		$(kt \ CO_2 \ eq)$	1,106,010,063.00	1,199,933,933.0

Abbreviations: AAUs = assigned amount units, CERs = certified emission reductions, ERUs = emission reduction units, ICERs = long-term certified emission reductions, tCERs = temporary certified emission reductions. Note: 2011 is the latest reporting year.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

 b For each reported year, information reported on progress made towards the emission reduction target shall include, in addition to the information noted in paragraphs 9(a-c) of the reporting guidelines, on the use of units from market-based mechanisms.

^c Parties may include this information, as appropriate and if relevant to their target.

^d Units surrendered by that Party for that year that have not been previously surrendered by that or any other Party.

^e Additional rows for each market-based mechanism should be added, if applicable.

Table 5

NLD_BR1_v2.0

Summary of key variables and assumptions used in the projections analysis^a

Key underlying a	ssumptions		Historical ^b						Projected			
Assumption	Unit	1990	1995	2000	2005	2010	2011	2015	2020	2025	2030	
GDP growth rate	%			3.94	2.05	1.60		1.77	2.09	1.41	1.50	
Population	thousands			15,863.95	16,305.53	16,574.99		16,941.20	17,228.78	17,488.35	17,687.80	
Population growth	%			0.80	0.20	0.50		0.20	0.30	0.20	0.20	
Number of households	thousands			6,589.66	6,858.72	7,172.44		7,425.52	7,680.02	7,924.63	8,098.99	
International oil price	USD / boe					59.51		81.00	89.99	97.00	102.49	
International coal price	USD / boe					31.75		41.49	46.57	50.38	53.34	
International gas price	USD / boe					17.65		18.61	19.40	20.07	20.62	

^{*a*} Parties should include key underlying assumptions as appropriate.

^b Parties should include historical data used to develop the greenhouse gas projections reported.

Table 6(a)

NLD_BR1_v2.0

Information on updated greenhouse gas projections under a 'with measures' scenario^a

		GHG emissions and removals ^b (kt CO ₂ eq)							
	Base year (1990)	1990	1995	2000	2005	2010	2011	2020	2030
Sector ^{d,e}									
Energy	127,518.67	127,518.67	136,120.90	131,939.36	136,045.14	142,880.38	128,653.70	149,399.48	136,907.22
Transport	26,255.25	26,255.25	29,542.68	32,759.41	34,957.27	34,975.64	35,218.45	32,575.42	32,056.74
Industry/industrial processes	24,062.18	22,733.68	24,006.04	20,568.43	15,965.67	10,590.44	10,599.38	11,458.63	12,044.02
Agriculture	22,557.40	22,557.40	22,220.10	18,849.29	16,951.38	16,638.47	16,028.63	15,800.00	15,200.00
Forestry/LULUCF	2,999.67	2,999.67	2,850.85	2,925.28	3,014.29	2,992.57	3,265.93	0.00	0.00
Waste management/waste	12,784.32	12,784.32	11,305.74	8,889.18	5,554.85	4,091.93	3,879.01	2,740.00	1,670.00
Other (specify)									
Gas									
CO ₂ emissions including net CO ₂ from LULUCF	162,234.95	162,234.95	173,588.26	172,845.45	178,926.81	184,372.18	170,815.16	NA	NA
CO ₂ emissions excluding net CO ₂ from LULUCF	159,235.89	159,235.89	170,738.03	169,920.85	175,913.27	181,380.41	167,550.04	186,013.52	173,747.98
CH ₄ emissions including CH ₄ from LULUCF	25,712.96	25,712.96	24,334.10	19,918.85	16,101.28	15,936.83	15,262.25	NA	NA
CH ₄ emissions excluding CH ₄ from LULUCF	25,712.42	25,712.42	24,333.53	19,918.23	16,100.60	15,936.10	15,261.51	14,170.00	12,420.00
N ₂ O emissions including N ₂ O from LULUCF	19,986.29	19,986.29	19,880.66	17,399.05	15,442.67	9,207.58	9,105.36	NA	NA
N ₂ O emissions excluding N ₂ O from LULUCF	19,986.24	19,986.24	19,880.61	17,398.99	15,442.61	9,207.51	9,105.29	9,300.00	9,260.00
HFCs	6,018.69	4,432.03	6,018.69	3,891.67	1,512.48	2,259.88	2,132.84	1,950.00	1,910.00
PFCs	1,937.82	2,264.48	1,937.82	1,580.60	265.34	208.86	182.85	280.00	280.00
SF ₆	286.78	218.28	286.78	295.33	240.00	184.10	146.63	260.00	260.00
Other (specify)									
Total with LULUCF ^f	216,177.49	214,848.99	226,046.31	215,930.95	212,488.58	212,169.43	197,645.09	2,490.00	2,450.00
Total without LULUCF	213,177.84	211,849.34	223,195.46	213,005.67	209,474.30	209,176.86	194,379.16	211,973.52	197,877.98

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

 a^{a} In accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", at a minimum Parties shall report a 'with measures' scenario, and may report 'without measures' and 'with additional measures' scenarios. If a Party chooses to report 'without measures' and/or 'with additional measures' scenarios they are to use tables 6(b) and/or 6(c), respectively. If a Party does not choose to report 'without measures' or 'with additional measures' scenarios then it should not include tables 6(b) or 6(c) in the biennial report.

Table 6(a)

Information on updated greenhouse gas projections under a 'with measures' scenario^a

GHG emissions and removals ^b							GHG emission projection	
$(kt CO_2 eq)$						(kt CO ₂ eq)		
se year 1990)	1990	1995	2000	2005	2010	2011	2020	2030

 b^{b} Emissions and removals reported in these columns should be as reported in the latest GHG inventory and consistent with the emissions and removals reported in the table on GHG emissions and trends provided in this biennial report. Where the sectoral breakdown differs from that reported in the GHG inventory Parties should explain in their biennial report how the inventory sectors relate to the sectors reported in this table.

^c 20XX is the reporting due-date year (i.e. 2014 for the first biennial report).

^d In accordance with paragraph 34 of the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", projections shall be presented on a sectoral basis, to the extent possible, using the same sectoral categories used in the policies and measures section. This table should follow, to the extent possible, the same sectoral categories as those listed in paragraph 17 of those guidelines, namely, to the extent appropriate, the following sectors should be considered: energy, transport, industry, agriculture, forestry and waste management.

^e To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors (i.e. cross-cutting), as appropriate.

^f Parties may choose to report total emissions with or without LULUCF, as appropriate.

Table 6(c)

NLD_BR1_v2.0

Information on updated greenhouse gas projections under a 'with additional measures' scenario^a

		GHG emissions and removals ^b							
		$(kt \ CO_2 \ eq)$							
	Base year (1990)	1990	1995	2000	2005	2010	2011	2020	2030
Sector ^{d,e}									
Energy	127,518.67	127,518.67	136,120.90	131,939.36	136,045.14	142,880.38	128,653.70	140,980.27	126,961.88
Transport	26,255.25	26,255.25	29,542.68	32,759.41	34,957.27	34,975.64	35,218.45	31,855.36	28,763.31
Industry/industrial processes	24,062.18	22,733.68	24,006.04	20,568.43	15,965.67	10,590.44	10,599.38	11,458.63	12,044.02
Agriculture	22,557.40	22,557.40	22,220.10	18,849.29	16,951.38	16,638.47	16,028.63	15,800.00	15,200.00
Forestry/LULUCF	2,999.67	2,999.67	2,850.85	2,925.28	3,014.29	2,992.57	3,265.93	0.00	0.00
Waste management/waste	12,784.32	12,784.32	11,305.74	8,889.18	5,554.85	4,091.93	3,879.01	2,740.00	1,670.00
Other (specify)									
Gas									
CO ₂ emissions including net CO ₂ from LULUCF	162,234.95	162,234.95	173,588.26	172,845.45	178,926.81	184,372.18	170,815.16	NA	NA
CO ₂ emissions excluding net CO ₂ from LULUCF	159,235.89	159,235.89	170,738.03	169,920.85	175,913.27	181,380.41	167,550.04	176,874.25	160,509.21
CH ₄ emissions including CH ₄ from LULUCF	25,712.96	25,712.96	24,334.10	19,918.85	16,101.28	15,936.83	15,262.25	NA	NA
CH ₄ emissions excluding CH ₄ from LULUCF	25,712.42	25,712.42	24,333.53	19,918.23	16,100.60	15,936.10	15,261.51	14,170.00	12,420.00
N ₂ O emissions including N ₂ O from LULUCF	19,986.29	19,986.29	19,880.66	17,399.05	15,442.67	9,207.58	9,105.36	NA	NA
N ₂ O emissions excluding N ₂ O from LULUCF	19,986.24	19,986.24	19,880.61	17,398.99	15,442.61	9,207.51	9,105.29	9,300.00	9,260.00
HFCs	6,018.69	4,432.03	6,018.69	3,891.67	1,512.48	2,259.88	2,132.84	1,950.00	1,910.00
PFCs	1,937.82	2,264.48	1,937.82	1,580.60	265.34	208.86	182.85	280.00	280.00
SF ₆	286.78	218.28	286.78	295.33	240.00	184.10	146.63	260.00	260.00
Other (specify)									
Total with LULUCF ^f	216,177.49	214,848.99	226,046.31	215,930.95	212,488.58	212,169.43	197,645.09	2,490.00	2,450.00
Total without LULUCF	213,177.84	211,849.34	223,195.46	213,005.67	209,474.30	209,176.86	194,379.16	202,834.25	184,639.21

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} In accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", at a minimum Parties shall report a 'with measures' scenario, and may report 'without measures' and 'with additional measures' scenarios. If a Party chooses to report 'without measures' and/or 'with additional measures' scenarios they are to use tables 6(b) and/or 6(c), respectively. If a Party does not choose to report 'without measures' or 'with additional measures' or 'with additional measures' scenarios then it should not include tables 6(b) or 6(c) in the biennial report.

Table 6(c)

Information on updated greenhouse gas projections under a 'with additional measures' scenario^a

GHG emissions and removals ^b							GHG emission projections	
$(kt \ CO_2 \ eq)$							(kt CO ₂ eq)	
Base year (1990)	1990	1995	2000	2005	2010	2011	2020	2030

b Emissions and removals reported in these columns should be as reported in the latest GHG inventory and consistent with the emissions and removals reported in the table on GHG emissions and trends provided in this biennial report. Where the sectoral breakdown differs from that reported in the GHG inventory Parties should explain in their biennial report how the inventory sectors relate to the sectors reported in this table.

^c 20XX is the reporting due-date year (i.e. 2014 for the first biennial report).

In accordance with paragraph 34 of the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on d national communications", projections shall be presented on a sectoral basis, to the extent possible, using the same sectoral categories used in the policies and measures section. This table should follow, to the extent possible, the same sectoral categories as those listed in paragraph 17 of those guidelines, namely, to the extent appropriate, the following sectors should be considered: energy, transport, industry, agriculture, forestry and waste management.

^e To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors (i.e. crosscutting), as appropriate.

^f Parties may choose to report total emissions with or without LULUCF, as appropriate.

NLD BR1 v2.0
Table 7Provision of public financial support: summary information in 2011^a

					Year							
		Eur	ropean euro - EUR				USD^{b}					
Allocation channels			Climate-speci	fic ^d				Climate-specific ^d				
	Core/general ^c	Mitigation	Adaptation	Cross-cutting ^e	<i>Other</i> ^f	Core/ general ^c	Mitigation	Adaptation	Cross-cutting ^e	<i>Other</i> ^f		
Total contributions through multilateral channels:	1,181,538,000.00	1,174,000.00		57,501,000.00		1,476,924,000.00	1,468,000.00		71,878,000.00			
Multilateral climate change funds ^g	43,401,000.00	970,000.00		13,112,000.00		54,251,000.00	1,213,000.00		16,390,000.00			
Other multilateral climate change funds ^h	3,241,000.00	970,000.00		261,000.00		4,051,000.00	1,213,000.00		326,000.00			
Multilateral financial institutions, including regional development banks	941,667,000.00			39,396,000.00		1,177,084,000.00			49,245,000.00			
Specialized United Nations bodies	196,470,000.00	204,000.00		4,993,000.00		245,589,000.00	255,000.00		6,243,000.00			
Total contributions through bilateral, regional and other channels		101,748,613.00	12,754,517.00	55,580,905.00			127,185,767.00	15,943,146.00	69,476,133.00			
Total	1,181,538,000.00	102,922,613.00	12,754,517.00	113,081,905.00		1,476,924,000.00	128,653,767.00	15,943,146.00	141,354,133.00			

Abbreviation: USD = United States dollars.

^{*a*} Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should provide an explanation on methodology used for currency exchange for the information provided in table 7, 7(a) and 7(b) in the box below.

^c This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

d Parties should explain in their biennial reports how they define funds as being climate-specific.

 $^{e\,}$ This refers to funding for activities which are cross-cutting across mitigation and adaptation.

^f Please specify.

^g Multilateral climate change funds listed in paragraph 17(a) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

^h Other multilateral climate change funds as referred in paragraph 17(b) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

Custom Footnotes

Each Party shall provide an indication of what new and additional financial resources they have provided, and clarify how they have determined that such resources are new and additional. Please provide this information in relation to table 7(a) and table 7(b).

Documentation Box:

NLD_BR1_v2.0

Table 7Provision of public financial support: summary information in 2012^a

					Year						
			European euro - EUR			USD^{b}					
Allocation channels			Climate-s	pecific ^d				Climate-specific	d		
	Core/ general ^c	Mitigation	Adaptation	Cross-cutting ^e	<i>Other</i> ^f	Core/ general ^c	Mitigation	Adaptation	Cross-cutting ^e	<i>Other</i> ^f	
Total contributions through multilateral channels:	986,117,000.00	1,111,000.00		76,135,000.00		1,408,866,000.00	1,587,000.00		108,765,000.00		
Multilateral climate change funds ^g	69,306,000.00	884,000.00		38,471,000.00		99,009,000.00	1,262,000.00		54,958,000.00		
Other multilateral climate change funds ^h	5,491,000.00	884,000.00		1,050,000.00		7,845,000.00	1,262,000.00		1,500,000.00		
Multilateral financial institutions, including regional development banks	735,421,000.00			32,786,000.00		1,050,601,000.00			46,839,000.00		
Specialized United Nations bodies	181,390,000.00	227,000.00		4,878,000.00		259,256,000.00	325,000.00		6,968,000.00		
Total contributions through bilateral, regional and other channels		77,152,467.00	41,119,163.00	54,444,362.00			110,217,810.00	58,741,662.00	77,777,657.00		
Total	986,117,000.00	78,263,467.00	41,119,163.00	130,579,362.00		1,408,866,000.00	111,804,810.00	58,741,662.00	186,542,657.00		

Abbreviation: USD = United States dollars.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should provide an explanation on methodology used for currency exchange for the information provided in table 7, 7(a) and 7(b) in the box below.

^c This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

d Parties should explain in their biennial reports how they define funds as being climate-specific.

 e This refers to funding for activities which are cross-cutting across mitigation and adaptation.

^f Please specify.

^g Multilateral climate change funds listed in paragraph 17(a) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

^h Other multilateral climate change funds as referred in paragraph 17(b) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

Custom Footnotes

Each Party shall provide an indication of what new and additional financial resources they have provided, and clarify how they have determined that such resources are new and additional. Please provide this information in relation to table 7(a) and table 7(b).

Documentation Box:

Table 7(a)Provision of public financial support: contribution through multilateral channels in 2011^a

		Total a							
Donor funding	Core/ger	ieral ^d	Climate-sp	ecific ^e	Status ^b	Funding source ^f	<i>Financial</i>	Type of support ^{f, g}	Sector ^c
	European euro - EUR	USD	European euro - EUR	USD		0	instrument ⁷	51 5 11	
Total contributions through multilateral channels	1,181,538,000.00	1,476,924,000.00	58,675,000.00	73,346,000.00					
Multilateral climate change funds ^g	43,401,000.00	54,251,000.00	14,082,000.00	17,603,000.00					
1. Global Environment Facility	40,160,000.00	50,200,000.00	12,851,000.00	16,064,000.00	Provided	ODA	Grant	Cross-cutting	Other (Environmen
2. Least Developed Countries Fund					Provided				
3. Special Climate Change Fund									
4. Adaptation Fund									
5. Green Climate Fund									
6. UNFCCC Trust Fund for Supplementary Activities									
7. Other multilateral climate change funds	3,241,000.00	4,051,000.00	1,231,000.00	1,539,000.00					
Montreal Protocol	2,425,000.00	3,031,000.00	970,000.00	1,213,000.00	Provided	ODA	Grant	Mitigation	Other (Environmen
GEF non-ODA	816,000.00	1,020,000.00	261,000.00	326,000.00	Provided	OOF	Grant	Cross-cutting	Other (Environmen
Multilateral financial institutions, including regional development banks	941,667,000.00	1,177,084,000.00	39,396,000.00	49,245,000.00					
1. World Bank	357,574,000.00	446,967,000.00	12,140,000.00	15,175,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. International Finance Corporation	18,752,000.00	23,440,000.00			Provided	ODA	Grant	Cross-cutting	Cross-cutting
3. African Development Bank	21,308,000.00	26,635,000.00	767,000.00	959,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
4. Asian Development Bank	15,912,000.00	19,890,000.00	573,000.00	716,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
5. European Bank for Reconstruction and Development	19,112,000.00	23,890,000.00	688,000.00	860,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
6. Inter-American Development Bank	15,912,000.00	19,890,000.00	573,000.00	716,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
7. Other	493,097,000.00	616,372,000.00	24,655,000.00	30,819,000.00					
EDF Association	163,230,000.00	204,038,000.00	8,162,000.00	10,202,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
ODA Budget European Union	329,867,000.00	412,334,000.00	16,493,000.00	20,617,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Specialized United Nations bodies	196,470,000.00	245,589,000.00	5,197,000.00	6,498,000.00					
1. United Nations Development Programme	158,324,000.00	197,905,000.00	3,315,000.00	4,144,000.00					
Core	66,300,000.00	82,875,000.00	3,315,000.00	4,144,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Specific programmes	92,024,000.00	115,030,000.00			Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. United Nations Environment Programme	7,749,000.00	9,687,000.00	1,428,000.00	1,786,000.00					
Core	7,142,000.00	8,928,000.00	1,428,000.00	1,786,000.00	Provided	ODA	Grant	Cross-cutting	Other (Environmen
Specific programmes	607,000.00	759,000.00			Provided	ODA	Grant	Cross-cutting	Other (Environmen
3. Other	30,397,000.00	37,997,000.00	454,000.00	568,000.00					
FAO Core	2,500,000.00	3,125,000.00	250,000.00	313,000.00	Provided	ODA	Grant	Cross-cutting	Agriculture
FAO Specific programmes	3,982,000.00	4,978,000.00			Provided	ODA	Grant	Cross-cutting	Agriculture
IFAD Core	20,000,000.00	25,000,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
IFAD Specific programmes	2,328,000.00	2,910,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
UN Habitat Specific programmes	1,360,000.00	1,700,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
UNCCD Core	139,000.00	174,000.00	28,000.00	35,000.00	Provided	ODA	Grant	Mitigation	Other (Water)
UN ISDR Core	88,000.00	110,000.00	176,000.00	220,000.00	Provided	ODA	Grant	Mitigation	Other (Water)

Abbreviations: ODA = official development assistance, OOF = other official flows.

^{*a*} Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^c Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

^d This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

^e Parties should explain in their biennial reports how they define funds as being climate-specific.

^f Please specify.

^g Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

NLD_BR1_v2.0

Table 7(a)Provision of public financial support: contribution through multilateral channels in 2012^a

		Total a	mount						
Donor funding	Core/ger	ieral ^d	Climate-sp	ecific ^e	Status ^b	Funding source ^f	Financial	Type of support ^{f, g}	Sector ^c
2 choi jinning	European euro - EUR	USD	European euro - EUR	USD	Status	1 mung source	instrument ^f	Type of support	Secior
Total contributions through multilateral channels	986,117,000.00	1,408,866,000.00	77,246,000.00	110,352,000.00)				
Multilateral climate change funds ^g	69,306,000.00	99,009,000.00	39,355,000.00	56,220,000.00)				
1. Global Environment Facility	38,815,000.00	55,450,000.00	12,421,000.00	17,744,000.00	Provided	ODA	Grant	Cross-cutting	Other (Environment)
2. Least Developed Countries Fund	25,000,000.00	35,714,000.00	25,000,000.00	35,714,000.00	Provided	ODA	Grant	Cross-cutting	Other (Environment)
3. Special Climate Change Fund									
4. Adaptation Fund									
5. Green Climate Fund									
6. UNFCCC Trust Fund for Supplementary Activities									
7. Other multilateral climate change funds	5,491,000.00	7,845,000.00	1,934,000.00	2,762,000.00)				
GEF non-ODA	3,282,000.00	4,689,000.00	1,050,000.00	1,500,000.00	Provided	OOF	Grant	Cross-cutting	Other (Environment)
Montreal Protocol	2,209,000.00	3,156,000.00	884,000.00	1,262,000.00	Provided	ODA	Grant	Mitigation	Other (Environment)
Multilateral financial institutions, including regional development banks	735,421,000.00	1,050,601,000.00	32,786,000.00	46,839,000.00)				
1. World Bank	158,230,000.00	226,043,000.00	5,696,000.00	8,138,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. International Finance Corporation	7,671,000.00	10,959,000.00			Provided	ODA	Grant	Cross-cutting	Cross-cutting
3. African Development Bank	28,568,000.00	40,811,000.00	1,028,000.00	1,469,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
4. Asian Development Bank	23,255,000.00	33,221,000.00	837,000.00	1,196,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
5. European Bank for Reconstruction and Development	23,855,000.00	34,078,000.00	859,000.00	1,227,000.00	Provided	ODA	Grant	Cross-cutting	
6. Inter-American Development Bank	23,255,000.00	33,221,000.00	837,000.00	1,196,000.00	Provided	ODA	Grant	Cross-cutting	
7. Other	470,587,000.00	672,268,000.00	23,529,000.00	33,613,000.00)				
EDF Association	140,720,000.00	201,029,000.00	7,036,000.00	10,051,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
ODA Budget European Union	329,867,000.00	471,239,000.00	16,493,000.00	23,562,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Specialized United Nations bodies	181,390,000.00	259,256,000.00	5,105,000.00	7,293,000.00)				
1. United Nations Development Programme	125,170,000.00	178,901,000.00	3,200,000.00	4,570,000.00)				
Core	63,990,000.00	91,414,000.00	3,200,000.00	4,570,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Specific programmes	61,180,000.00	87,487,000.00			Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. United Nations Environment Programme	7,142,000.00	10,203,000.00	1,428,000.00	2,041,000.00)				
Core	7,142,000.00	10,203,000.00	1,428,000.00	2,041,000.00) Provided	ODA	Grant	Cross-cutting	Other (Environment)
3. Other	49,078,000.00	70,152,000.00	477,000.00	682,000.00					
FAO Core	2,500,000.00	3,571,000.00	250,000.00	357,000.00		ODA	Grant	Cross-cutting	Agriculture
FAO Specific programmes	5,615,000.00	8,029,000.00			Provided	ODA	Grant	Cross-cutting	Agriculture
IFAD Core	17,500,000.00	25,000,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
IFAD Specific programmes	21,530,000.00	30,788,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
UN Habitat Specific programmes	800,000.00	1,144,000.00			Provided	ODA	Grant	Mitigation	Other (Water)
UNCCD Specific programmes	133,000.00	190,000.00	27,000.00	39,000.00	Provided	ODA	Grant	Mitigation	Other (Water)
UN ISDR Core	1,000,000.00	1,430,000.00	200,000.00	286,000.00	Provided	ODA	Grant	Mitigation	Other (Water)

Abbreviations: ODA = official development assistance, OOF = other official flows.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^c Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

d This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

 e^{e} Parties should explain in their biennial reports how they define funds as being climate-specific.

^f Please specify.

^g Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

NLD_BR1_v2.0

Provision of public financial support: contribution through bilateral, regional and other channels in 2011^a

	Total am	ount						
Recipient country/ region/project/programme ^b	Climate-sp	ecific ^f	Status ^c	Funding source ^g	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
region/project/programme	European euro - EUR	USD		source	instrument	support		injormation
Fotal contributions through bilateral,	170,084,035.00	212,605,046.00						
egional and other channels								
Worldwide / Mitigation	89,484,508.00	111,855,635.00	Provided	ODA	Grant	Mitigation	Cross-cutting	
Worldwide / Adaptation	12,754,517.00	15,943,146.00	Provided	ODA	Grant	Adaptation	Cross-cutting	
Benin /	27,680.00	34,600.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation	
Ethiopia /	896,354.00	1,120,443.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Other (Environment)	
Ghana /	2,800,000.00	3,500,000.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Water and sanitation, Other (Environment)	
Mozambique /	1,650,000.00	2,062,500.00	Provided	ODA	Grant	Cross-cutting	Energy	
Senegal /	4,400,000.00	5,500,000.00	Provided	ODA	Grant	Cross-cutting	Energy, Other (Environment)	
South Africa /	145,107.00	181,384.00	Provided	ODA	Grant	Mitigation	Energy	
South Sudan /	4,680.00	5,850.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation	

Provision of public financial support: contribution through bilateral, regional and other channels in 2011^a

	Total amo	ount						
Recipient country/ region/project/programme ^b	Climate-spe	ecific ^f	Status ^c	Funding source ^s	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
regionaprojecaprogramane	European euro - EUR	USD		source	instrumenti	support		injormation
Zambia /	1,193,500.00	1,491,875.00	Provided	ODA	Grant	Mitigation	Energy	
Africa / Regional programmes	23,455,146.00	29,318,932.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Forestry, Water and sanitation	
Bangladesh /	4,292,780.00	5,365,976.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation	
Indonesia /	9,948,681.00	12,435,852.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation, Other (Environment)	
Kyrgyzstan /	4,000.00	5,000.00	Provided	ODA	Grant	Mitigation	Agriculture	
Mongolia /	580,690.00	725,862.00	Provided	ODA	Grant	Cross-cutting	Energy, Other (Environment)	
Pakistan /	673,998.00	842,498.00	Provided	ODA	Grant	Mitigation	Energy	
Sri Lanka /	1,000.00	1,250.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation, Other (Waste)	

Provision of public financial support: contribution through bilateral, regional and other channels in 2011^a

	Total amo	ount						
<i>Recipient country/</i> region/project/programme ^b	Climate-spe	ecific ^f	Status ^c	Funding source ^g	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
regionsprojecuprogramme	European euro - EUR	USD		source	instrument	support		ingormation
Viet Nam /	1,615,897.00	2,019,871.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation, Other (Environment)	
Asia Pacific / Regional programmes	10,247,500.00	12,809,375.00	Provided	ODA	Grant	Mitigation	Energy	
Bolivia /	2,813,160.00	3,516,450.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Water and sanitation, Other (Environment)	
Brazil /	39,238.00	49,047.00	Provided	ODA	Grant	Cross-cutting	Forestry, Other (Environment)	
Colombia /	1,012,747.00	1,265,934.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Other (Environment)	
Guatemala /	681,479.00	851,849.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation, Forestry, Other (Environment)	
Suriname /	493,876.00	617,346.00	Provided	ODA	Grant	Cross-cutting	Forestry, Other (Environment)	

Provision of public financial support: contribution through bilateral, regional and other channels in 2011^a

	Total amount Climate-specific ^f							
Recipient country/ region/project/programme ^b			Status ^c	Funding source ^g	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
region project programme	European euro - EUR	USD		source	instrument	support		injormation
Latin America and the Caribbean / Regional programmes	867,497.00	1,084,371.00	Provided	ODA	Grant	Cross-cutting	Forestry, Water and sanitation	

Abbreviations: ODA = official development assistance, OOF = other official flows; USD = United States dollars.

^{*a*} Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should report, to the extent possible, on details contained in this table.

^c Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^d Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

^e Parties should report, as appropriate, on project details and the implementing agency.

^f Parties should explain in their biennial reports how they define funds as being climate-specific.

^{*g*} Please specify.

^h Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Provision of public financial support: contribution through bilateral, regional and other channels in 2012^a

	Total amou	nt	1					
<i>Recipient country/</i> region/project/programme ^b	Climate-speci	fic ^f	Status ^c	Funding source ^g	Financial instrument ⁸	Type of support ^{g, h}	Sector ^d	Additiona information
	European euro - EUR	USD						
Fotal contributions through bilateral, regional and other channels	172,715,992.00	246,737,129.00						
Worldwide / Mitigation	74,613,475.00	106,590,678.00	Provided	ODA	Grant	Mitigation		
Worldwide / Adaptation	41,119,163.00	58,741,662.00	Provided	ODA	Grant	Adaptation		
Burundi /	1,279,640.00	1,828,057.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture	
Benin /	70,614.00	100,877.00	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation	
Ethiopia /	4,418,101.00	6,311,572.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Other (Environment)	
Ghana /	2,827,031.00	4,038,616.00	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Water and sanitation, Other (Environment)	
Kenya /	2,037,769.00	2,911,098.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation, Other (Biodiversity)	
Morocco /	19,927.00	28,467.00	Provided	ODA	Grant	Cross-cutting	Water and sanitation	
Mali /	181,619.00	259,455.00	Provided	ODA	Grant	Cross-cutting	Energy, Other (Environment)	
Mozambique /	1,251,932.00	1,788,474.00	Provided	ODA	Grant	Cross-cutting	Energy	
Senegal /	3,460,425.00	4,943,465.00	Provided	ODA	Grant	Cross-cutting	Energy, Other (Environment)	
South Africa /	33,022.00	47,174.00	Provided	ODA	Grant	Mitigation	Energy	

Provision of public financial support: contribution through bilateral, regional and other channels in 2012^a

	Total amoun	nt						
<i>Recipient country/</i> region/project/programme ^b	Climate-speci	ific ^f	Status ^c	Funding source ^g	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
	European euro - EUR	USD						
Africa / Regional programmes	18,396,011.00	26,280,016.00 P	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation	
Bangladesh /	10,233,607.00	14,619,438.00 P	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation	
Indonesia /	2,585,988.00	3,694,268.00 P	Provided	ODA	Grant	Cross-cutting	Energy, Agriculture, Water and sanitation, Other (Environment)	
Mongolia /	94,552.00	135,075.00 P	Provided	ODA	Grant	Cross-cutting	Energy, Other (Environment)	
Pakistan /	759,970.00	1,085,672.00 P	Provided	ODA	Grant	Mitigation	Energy	
Viet Nam /	789,915.00	1,128,450.00 P	Provided	ODA	Grant	Cross-cutting	Water and sanitation, Other (Environment)	
Asia Pacific / Regional programmes	1,746,000.00	2,494,286.00 P	Provided	ODA	Grant	Mitigation	Energy	
Bolivia /	2,635,312.00	3,764,731.00 P	Provided	ODA	Grant	Cross-cutting	Agriculture, Water and sanitation, Other (Environment)	
Brazil /	83,742.00	119,631.00 P	Provided	ODA	Grant	Cross-cutting	Forestry, Other (Environment)	
Colombia /	2,226,822.00	3,181,175.00 P	Provided	ODA	Grant	Cross-cutting	Agriculture, Forestry, Other (Environment)	

Provision of public financial support: contribution through bilateral, regional and other channels in 2012^a

	Total a	mount								
Recipient country/ region/project/programme ^b	Climate-specific ^f		$Climate-specific^{f}$		Status ^c	Funding source ^g	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e
regionsprojecuprogramme	European euro - EUR	USD						information		
Suriname /	576,000.00	822,857.00	Provided	ODA	Grant	÷	Forestry, Other (Environment)			
Latin America and the Caribbean / Regional programmes	1,275,355.00	1,821,935.00	Provided	ODA	Grant	-	Forestry, Water and sanitation			

Abbreviations: ODA = official development assistance, OOF = other official flows; USD = United States dollars.

^{*a*} Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should report, to the extent possible, on details contained in this table.

^c Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^d Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

^e Parties should report, as appropriate, on project details and the implementing agency.

^f Parties should explain in their biennial reports how they define funds as being climate-specific.

^{*g*} Please specify.

^h Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Table 8

Provision of technology development and transfer support^{*a,b*}

Recipient country and/or region	Targeted area	Measures and activities related to technology transfer	Sector ^c	Source of the funding for technology transfer	Activities undertaken by	Status	Additional information ^d

^{*a*} To be reported to the extent possible.

^b The tables should include measures and activities since the last national communication or biennial report.

^c Parties may report sectoral disaggregation, as appropriate.

^d Additional information may include, for example, funding for technology development and transfer provided, a short description of the measure or activity and co-financing arrangements.

Table 9

Provision of capacity-building support^a

Recipient country/region	Targeted area	Programme or project title	Description of programme or project b,c
Ethiopia, Senegal, Uganda, Burkina Faso, Kenya, United Republic of Tanzania	Mitigation	African Biogas Partnership Program – ABPP	The African Biogas Partnership Program (ABPP) builds a commercial biogas sector in six African countries. Since its start in 2009, 15,000 biogas installations have been constructed, providing households with clean energy, organic fertilizer, and a safer and healthier living environment.
Eritrea, Ethiopia, Côte d'Ivoire, Kenya, Kyrgyzstan, Liberia, Sierra Leone, Tajikistan, Turkmenistan	Adaptation	Capacity building programme Red Cross/Red Crescent Associations	This capacity building programme of the Red Cross/Red Crescent was financed from 2003. This programme focused on six countries in East and West Africa as well as Central Asia. During the International Conference of the Red Cross in 2007 it was decided to continue and extend the programme towards issues of resilience to disasters and climate change. The Netherlands then made another pledge.
Africa	Mitigation	PPIAF Climate Change Agenda 2011-2013	The PPIAF (Public-Private Infrastructure Advisory Facility) is a multi-donor fund of the World Bank, which offers technical assistance to developing countries in preparation of infrastructure development through public-private partnerships. PPIAF focuses the creation of an enabling environment for infrastructure development by the private sector. Dutch support to PIAFF is channelled through the 'Integrating Climate Change Agenda with Public Private Partnerships Programme'. Infrastructure is a necessary condition for economic growth. It unlocks international and regional markets, saves time and means for business, contributes to self-reliance, rise in production as well as improvement of welfare.
Bolivia	Adaptation	VIVIR CON EL AGUA – Management of flood risks in the Beni	he main problem in Beni area are the annual floods caused by intense rainfall in the basins of local rivers, the Andean basins of the Chapare and Yungas and large-scale flooding that occurs in the years of El Niño and La Niña.
Africa, Middle East and North Africa, Asia Pacific, Latin America and the Caribbean, LDCs, SIDS	Adaptation	DMH/HH WW/ISDR	ISDR aims to improve political and financial attention to Disaster Risk Reduction (DRR). Eventually, this will contribute to the Hyogo Framework of Action (HFA, which was designed in the UN after the 2004 tsunami). DRR is supposed to be integrated in policy and local institutions should be encouraged to focus on disaster management. DDR should be an integral aspect of national response to disasters and reconstruction.
Latin America and the Caribbean, Asia Pacific, Africa, Bangladesh, Benin, Bolivia, Burkina Faso, Burundi, Cambodia, Ethiopia, Ghana, Honduras, Indonesia, Kenya, Liberia, Madagascar, Malawi, Mali, Mozambique, Nepal, Nicaragua, Peru, Rwanda, Senegal, Uganda, Viet Nam, United Republic of Tanzania	Mitigation	ENDEV - Energising Development: connecting millions to energy services.	The main goal of EnDev is to provide energy access for poor households, social institutions and small and medium enterprises. This must be renewable energy (wind, solar, biomass, hydropower) and it should enhance the livelihoods and, where possible, the income of the poor people targeted by the projects. In addition to improved livelihoods, better health is also an important impact of the EnDev projects. Every year, an estimated 500,000 women worldwide die because of air pollution and fire accidents as a consequence of indoor wood cooking. The use of improved cooking stoves with chimneys provided by EnDev can help significantly reduce this number
Bolivia	Adaptation	Apoyo al Plan Estratégico Institucional de la Fundación Amigos de la Naturaleza (PEI- FAN)	The FAN project focuses on the management of protected areas for biodiversity conservation and the generation of scientific research and legislation with respect to biodiversity. The project stimulates communal and municipal reinforcement for biodiversity conservation in relation to the effects of climate change. The implementation is based on the development and examination of instruments for spatial management of protected areas, mitigation and adaptation and the role of institutions on three levels: national, departmental and municipal. The project also strives to offer a platform for flexible service to further the implementation of national biodiversity strategies.

Table 9Provision of capacity-building support^a

Recipient country/region	Targeted area	Programme or project title	Description of programme or project b,c
Viet Nam	Adaptation	Ho Chi Min City Flood and Inundation Management Project	Vietnam is one of the most disaster-prone countries in the world and together with coastal typhoons flood is the natural disaster that causes most suffering. Not surprisingly the areas most prone to these disasters are some of the poorest parts of the country. Some solutions have already been implemented or are currently implemented, such as a drainage project, environmental sanitation programme and the flood control programme supported by the Government of Vietnam (with support of JICA, World Bank and ADB). However, further measures and assistance are urgently required. Dutch expertise on water is useful, as the Netherlands is a country with a vast experience in flood management. Implementation of the project should contribute to alleviating flooding and inundation problems of HCMC through an integrated approach for flood and inundation management and by strengthening the technical and management capabilities of the Ho Chi Min City Steering Centre of Flood Control Programme and relevant Vietnamese agencies.
Mali	Adaptation	PASARC /NEF	Make significant progress in reducing poverty and hunger by targeting 100,000 people, spread over 14,300 households in 200 communities in the Mopti region. Additionally, the programme will strengthen the capacity of communities to address the sources of conflict and promote reconciliation between different ethnic groups, emphasizing stability and social cohesion. The investment fund aims to ensure better food security through enhanced water management efficiency and other measures that increase the resilient to climate change of the population.
Viet Nam	Adaptation	Flood Management and Mitigation Programme	The Flood Management and Mitigation Programme (FMMP) builds on the Mekong River Commission's (MRC) Flood Management and Mitigation Strategy Implementation Programme (FMMSIP). The FMMP provides support through technical assistance, training and capacity building to identify flood risks in time and provide and install warning mechanisms.
Africa, Middle East and North Africa, Asia Pacific, Latin America and the Caribbean, LDCs, SIDS	Mitigation	Climate and Development Knowledge Network (CDKN)	The Climate and Development Knowledge Network (CDKN) aims to make policy and programmes of developing countries meet climate change adaptation requirements in 2020. The aim of this network is to deliver demand-driven knowledge on adaptation and low carbon development to developing countries.
Mali, Benin, Ethiopia, Rwanda, Kenya, Sudan, Egypt, Congo, Mozambique, Indonesia, Pakistan, India, Brazil	Adaptation	UNDP Cap-Net Phase 3	Cap-Net is UNDP's global network to strengthen capacity building at the local level towards sustainable management and development of water resources and improved access to water supply and sanitation. Better resource and service management will result in a more sustainable use of increasingly scarce water resources, a reduction in water pollution, more productive water use, prevention of conflicts over water access and improved health.
Ethiopia, Philippines, Guatemala, India, Indonesia, Kenya, Mali, Nicaragua, Uganda	Adaptation	Partners for Resilience	'Partners for Resilience' consists of five Dutch organisations that aim to increase the resilience of citizens against natural disasters, climate change and deterioration of ecosystems. The alliance strongly believes in the role and importance of resilience to reach sustainable development in countries that are vulnerable to climate-related natural disasters. Resilience defines how people cope with natural disasters, but similarly how societies adapt to mitigate negative impact. By investing in the resilience of people, human suffering, degradation of ecosystems and material damage is reduced or even prevented. These five organisations have decided to work together and apply for government subsidy, which has been granted in November 2010.

Table 9**Provision of capacity-building support**^a

Recipient country/region	Targeted area	Programme or project title	Description of programme or project b,c
Afghanistan	Adaptation	ICARDA	ICARDA contributes to economic growth and poverty alleviation in dry regions through sustainable increase in agricultural production. The main target group are the 'resource poor' who have insufficient means for their daily living, who are dependent on agriculture and herding of cattle and are vulnerable to food insecurity. Through research and technological development ICARDA contributes to agricultural productivity, an increase in the average income from agriculture and cattle herding and the sustainable use of natural resources.
Indonesia	Adaptation	Joint Cooperation Program Hydro Climate (JCP)	The Joint Cooperation Programme is part of the 'Water Mondiaal' Programme within the framwork of the Dutch National Water Plan (2010-2015), within which Dutch expertise on water is transferred abroad. Indonesia is one of the five delta areas that take part in this collaboration. The JCP stimulates the sustainable development of agriculture, fisheries, forestry, sanitation, water management and coast protection. JCP emphasizes the need to take climate change into account in national, regional and global political- economic framework, to secure sustainable socio-economic development.
LDCs	Adaptation	Contribution to the Least Developed Countries Fund for Climate Change	The goal of the Least Developed Countries Fund (LDCF) is to support the Least Developed Countries (LDC's) to become climate resilient by integrating adaptation measures in development policies, plans, programmes, projects and actions. The LDCF was established to address the special needs of the Least Developed Countries (LDC's) under the Climate Convention. The LDCF was tasked with financing the preparation and implementation of National Adaptation Programs of Action (NAPAs). NAPAs use existing information to identify a country's priorities for adaptation actions. Consistent with the NAPAs, the LDCF focuses on reducing the vulnerability of those sectors and resources that are central to development and livelihoods, such as water; agriculture and food security; health; disaster risk management and prevention; infrastructure; and fragile ecosystems. NAPA implementation projects under LDCF are designed entirely in accordance with country priorities and executed by national stakeholders, and involving active participation of vulnerable communities.
Africa, Middle East and North Africa, Asia Pacific, Latin America and the Caribbean, LDCs, SIDS	Adaptation	World Resources Institute (WRI)	The Dutch government supports WRI's work on international climate change issues. WRI's climate programme affects international climate policy to a large extent. 8 countries are using the National Adaptation Capacity framework as part of their adaptation plans.

^{*a*} To be reported to the extent possible.

 b^{b} Each Party included in Annex II to the Convention shall provide information, to the extent possible, on how it has provided capacity-building support that responds to the existing and emerging capacity-building needs identified by Parties not included in Annex I to the Convention in the areas of mitigation, adaptation and technology development and transfer.

^c Additional information may be provided on, for example, the measure or activity and co-financing arrangements.