INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Climate Change 2022

284

Mitigation of Climate Change

Structured expert dialogue (PR2-SED3) – Part II 8 June 2022 Bonn

Alaa Al Khourdajie, Keywan Riahi, Dipak Dasgupta

latt Bridgestock, Director and Architect at John Gilbert Architects]

Key findings of WG III AR6 – Part II :

WG III insights into the effect of steps taken by parties in order to achieve the long- term temperature goal of the convention

Three part presentation:

Historical Emissions

– Alaa Al Khourdajie

- Emissions pathways and net zero CO2 / GHGs Keywan Riahi
- Finance

– Dipak Dasgupta

Historical Emissions #1

b. Historical cumulative net anthropogenic CO₂ emissions per region (1850–2019)

Net CO₂ from land use, land-use change, forestry (CO₂-LULUCF)

(CO₂-FFI)

c. Net anthropogenic GHG emissions per capita and for total population, per region (2019)

Other GHG emissions

Historical Emissions #2

d. Regional indicators (2019) and regional production vs consumption accounting (2018)

	Africa	Australia Japan, New Zealand	Asia	Eastern Europe, West- Central Asia	Europe	Latin America and Caribbean	Middle East	North America	South-East Asia and Pacific	Southern Asia
Population (million persons, 2019)	1292	157	1471	291	620	646	252	366	674	1836
GDP per capita (USD1000ppp2017 per person) ¹	5.0	43	17	20	43	15	20	61	12	6.2
Net GHG 2019 ² (production basis)										
% GHG contributions	9%	3%	27%	6%	8%	10%	5%	12%	9%	8%
GHG emissions intensity (tCO ₂ -eq / USD1000 _{ppp} 2017)	0.78	0.30	0.62	0.64	0.18	0.61	0.64	0.31	0.65	0.42
GHG per capita (tCO ₂ -eq per person)	3.9	13	11	13	7.8	9.2	13	19	7.9	2.6
CO ₂ FFI, 2018, per person										$ \longrightarrow $
Production-based emissions (tCO2FFI per person, based on 2018 data)	1.2	10	8.4	9.2	6.5	2.8	8.7	16	2.6	1.6
Consumption-based emissions (tCO2FFI per person, based on 2018 data)	0.84	11	6.7	6.2	7.8	2.8	7.6	17	2.5	1.5

¹ GDP per capita in 2019 in USD2017 currency purchasing power basis.

² Includes CO₂FFI, CO₂LULUCF and Other GHGs, excluding international aviation and shipping.

The regional groupings used in this figure are for statistical purposes only and are described in Annex II, Part I.

•

٠

Historical Emissions #3

- Historical contributions to cumulative net anthropogenic CO2 emissions between 1850 and 2019 vary substantially across regions in terms of total magnitude, but also in terms of contributions to CO2-FFI (1650 ± 73 GtCO2-eq) and net CO2-LULUCF (760 ± 220 GtCO2-eq) emissions.
- Between 1850 and 2019, Developed Countries contributed 57% to cumulative CO2-FFI emissions, followed by Asia and Pacific 21%, Eastern Europe and West-Central Asia 9%, Latin America and Caribbean 4%, the Middle East 3%, and Africa 3%. (following the high level classification of regions and areas 6 regions)
- Least developed countries contributed 0.4%.
- Developed Countries still have the highest share of historic cumulative emissions (45%) when CO2-LULUCF emissions are included.

Key findings of WG III AR6 – Part II :

WG III insights into the effect of steps taken by parties in order to achieve the long-term temperature goal of the convention

Three part presentation:

Historical Emissions •

– Alaa Al Khourdajie

- Emissions pathways and net zero CO2 / GHGs – Keywan Riahi ٠ – Dipak Dasgupta
- Finance •

Net zero CO₂ and mean global warming

Net zero CO₂ and mean global warming

Net zero CO₂ and mean global warming

p50 [p5-p95] ⁽¹⁾			GHG emissions Gt CO2-eq/yr ⁽⁷⁾			GHG emissions reductions from 2019 % ⁽⁸⁾			Emissions milestones (9,10)				Cumulative CO ₂ emissions Gt CO ₂ ⁽¹³⁾		Cumulative net-negative CO ₂ emissions Gt CO ₂	Global mean temperature changes 50% probability ⁽¹⁴⁾ °C		Likelihood of global warming below (%)		staying
Category ^{(2, 3, 4} [# pathways]	⁹⁾ Category / subset label	WG I SSP & WG III IPs/IMPs alignment ^(5, 0)	2030	2040	2050	2030	2040	2050	Peak CO2 emissions (% peak before 2100)	Peak GHG emissions (% peak before 2100)	Net-zero CO2 (% net-zero pathways)	Net-zero GHGs ^(11, 12) (% net-zero pathways)	2020 to net-zero CO ₂	2020-2100	Year of net- zero CO2 to 2100	at peak warming	2100	<1.5°C	<2.0°C	<3.0°C
C1 [97]	limit warming to 1.5°C (>50%) with no or limited overshoot		31 [21-36]	17 [6-23]	9 [1-15]	43 [34-60]	69 [58-90]	84 [73-98]				2095-2100 (52%) [2050]	510 [330-710]	320 [-210-570]	-220 [-66020]	1.6 [1.4-1.6]	1.3 [1.1-1.5]	38 [33-58]	90 [86-97]	100 [99-100]
C1a [50]	with net-zero GHGs	SSP1-1.9, SP LD	33 [22-37]	18 [6-24]	8 [0-15]	41 [31-59]	66 [58-89]	85 [72-100]		-2025 (100%) 0-2025]	2050-2055 (100%) [2035-2070]	2070-2075 (100%) [2050-2090]	550 [340-760]	160 [-220-620]	-360 [-680140]	1.6 [1.4-1.6]	1.2 [1.1-1.4]	38 [34-60]	90 [85-98]	100 [99-100]
C1b [47]	without net-zero GHGs	Ren	29 [21-36]	16 [7-21]	9 [4-13]	48 [35-61]	70 [62-87]	84 [76-93]				[0%] []	460 [320-590]	360 [10-540]	-60 [-440-0]	1.6 [1.5-1.6]	1.4 [1.3-1.5]	37 [33-56]	89 [87-96]	100 [99-100]
	return warming to 1.5°C (>50%) after a high overshoot	Neg	42 [31-55]	25 [17-34]	14 [5-21]	23 [0-44]	55 [40-71]	75 [62-91]	2020-20 [2020-2030]	025 (100%) [2020-2025]	2055-2060 (100%) [2045-2070]) 2070-2075 (87%) [2055]	720 [530-930]	400 [-90-620]	-360 [-68060]	1.7 [1.5-1.8]	1.4 [1.2-1.5]	24 [15-42]	82 [71-93]	100 [99-100]
C3 [311]	limit warming to 2°C (>67%)		44 [32-55]	29 [20-36]	20 [13-26]	21 [1-42]	46 [34-63]	64 [53-77]	2020-20 [2020-2030]	025 (100%) [2020-2025]	2070-2075 (93%) [2055]	(30%) [2075]	890 [640-1160]	800 [510-1140]	-40 [-290-0]	1.7 [1.6-1.8]	1.6 [1.5-1.8]	20 [13-41]	76 [68-91]	99 [98-100]
C3a [204]	with action starting in 2020	SSP1-2.6	40 [30-49]	29 [21-36]	20 [14-27]	27 [13-45]	47 [35-63]	63 [52-76]		025 (100%) 0-2025]	2070-2075 (91%) [2055]	(24%) [2080]	860 [640-1180]	790 [480-1150]	-30 [-280-0]	1.7 [1.6-1.8]	1.6 [1.5-1.8]	21 [14-42]	78 [69-91]	100 [98-100]
C3b [97]	NDCs until 2030	GS	52 [47-56]	29 [20-36]	18 [10-25]	5 [0-14]	46 [34-63]	68 [56-82]			2065-2070 (97%) [2055-2090]	(41%) [2075]	910 [720-1150]	800 [560-1050]	-60 [-300-0]	1.8 [1.6-1.8]	1.6 [1.5-1.7]	17 [12-35]	73 [67-87]	99 [98-99]
C4 [159]	limit warming to 2°C (>50%)		50 [41-56]	38 [28-44]	28 [19-35]	10 [0-27]	31 [20-50]	49 [35-65]		025 (100%) 0-2030]	2080-2085 (86%) [2065]	(31%) [2075]	1210 [970-1490]	1160 [700-1490]	-30 [-390-0]	1.9 [1.7-2.0]	1.8 [1.5-2.0]	11 [7-22]	59 [50-77]	98 [95-99]
	limit warming to 2.5°C (>50%)		52 [46-56]	45 [37-53]	39 [30-49]	6 [-1-18]	18 [4-33]	29 [11-48]			(41%) [2080]	(12%) [2090]	1780 [1400-2360]	1780 [1260-2360]	0 [-160-0]	2.2 [1.9-2.5]	2.1 [1.9-2.5]	4 [0-10]	37 [18-59]	91 [83-98]
	limit warming to 3°C (>50%)	SSP2-4.5 Mod-Act	54 [50-62]	53 [48-61]	52 [45-57]	2 [-10-11]	3 [-14-14]	5 [-2-18]		2020-2025 (97%) 0-2090]				2790 [2440-3520]			2.7 [2.4-2.9]	0 [0-0]	8 [2-18]	71 [53-88]
C7 [164]	limit warming to 4°C (>50%)	SSP3-7.0 Cur-Pol	62 [53-69]	67 [56-76]	70 [58-83]	-11 [-18-3]	-19 [-31-1]	-24 [-412]		2090-2095 (56%) 40]	noi	net-zero	no net-zero	4220 [3160-5000]	no net-zero	temperature does not peak by	3.5 [2.8-3.9]	0 [0-0]	0 [0-2]	22 [7-60]
C8 [29] ()	exceed warming of 4°C (>=50%)	SSP5-8.5	71 [69-81]	80 [78-96]	88 [82-112]	-20 [-3417]	-35 [-6529]	-46 [-9236]		085 (90%))70]				5600 [4910-7450]		2100	4.2 [3.7-5.0]	0 [0-0]	0 [0-0]	4 [0-11]

															Cumulative	Global	mean			
p50 [p5-p95] ⁽¹⁾				GHG emissions Gt CO ₂ -eq/yr ⁽⁷⁾			from 201 % ⁽⁸⁾	eductions 9	Emissions milestones (9,10)				Cumulative CO ₂ emissions Gt CO ₂ ⁽¹³⁾							staying
Category ^(2, 3, 4) [# pathways]	Category / subset label	WG I SSP & WG III IPs/IMPs alignment ^{(5,} ⁶⁾	2030	2040	2050	2030	2040	2050	Peak CO2 emissions (% peak before 2100)	Peak GHG emissions (% peak before 2100)	Net-zero CO2 (% net-zero pathways)	Net-zero GHGs ^(11, 12) (% net-zero pathways)	2020 to net-zero CO ₂	2020-2100	Year of net- zero CO2 to 2100	at peak warming	2100	<1.5°C	<2.0°C	<3.0°C
C1 [97] (i	imit warming to 1.5°C (>50%) with no or limited overshoot		31 [21-36]	17 [6-23]	9 [1-15]	43 [34-60]	69 [58-90]	84 [73-98]				2095-2100 (52%) [2050]	510 [330-710]	320 [-210-570]	-220 [-66020]	1.6 [1.4-1.6]	1.3 [1.1-1.5]	38 [33-58]	90 [86-97]	100 [99-100]
Cla [50] .	with net-zero GHGs	SSP1-1.9, SP LD	33 VV [22-37]	/ith r [6-24]		ero (GHO	S 85 [72-100]		-2025 (100%) 0-2025]	2050-2055 (100%) [2035-2070]) 2070-2075 (100%) [2050-2090]		160 [-220-620]	-360 [-680140]	1.6 [1.4-1.6]	1.2 [1.1-1.4]	38 [34-60]		100 [99-100]
	without net-zero GHGs	Ren	29 VV [21-36]	/itho [7-21]	utene	et ze	ro G	HG	5			[0%] []	460 [320-590]	360 [10-540]	-60 [-440-0]	1.6 [1.5-1.6]	1.4 [1.3-1.5]	37 [33-56]	89 [87-96]	100 [99-100]
	return warming to 1.5°C (>50%) after a high overshoot	Neg	42 [31-55]	25 [17-34]	14 [5-21]	23 [0-44]	55 [40-71]	75 [62-91]	2020-20 [2020-2030]		2055-2060 (100% [2045-2070]	」) 2070-2075 (87%) [2055]	720 [530-930]	400 [-90-620]		1.7 [1.5-1.8]	1.4 [1.2-1.5]	24 [15-42]		100 [99-100]
			44 [32-55]	29 [20-36]	20 [13-26]	21 [1-42]		64 [53-77]	2020-20 [2020-2030]		2070-2075 (93%) [2055]					1.7 [1.6-1.8]		20 [13-41]		99 [98-100]
				29 [21-36]	20 [14-27]	27 [13-45]	47 [35-63]			025 (100%) 0-2025]	2070-2075 (91%) [2055]	(24%) [2080]				1.7 [1.6-1.8]		21 [14-42]		100 [98-100]
			52 [47-56]	29 [20-36]	18 [10-25]	5 [0-14]	46 [34-63]	68 [56-82]			2065-2070 (97%) [2055-2090]	(41%) [2075]	910 [720-1150]			1.8 [1.6-1.8]	1.6 [1.5-1.7]	17 [12-35]	73 [67-87]	99 [98-99]
			50 [41-56]	38 [28-44]	28 [19-35]	10 [0-27]		49 [35-65]					1210 [970-1490]	1160 [700-1490]		1.9 [1.7-2.0]	1.8 [1.5-2.0]	11 [7-22]	59 [50-77]	98 [95-99]
			52 [46-56]	45 [37-53]	39 [30-49]		18 [4-33]	29 [11-48]			(41%) [2080]	(12%) [2090]	1780 [1400-2360]	1780 [1260-2360]		2.2 [1.9-2.5]	2.1 [1.9-2.5]	4 [0-10]	37 [18-59]	91 [83-98]
			54 [50-62]			2 [-10-11]	3 [-14-14]	5 [-2-18]		2020-2025 (97%) 0-2090]				2790 [2440-3520]			2.7 [2.4-2.9]		8 [2-18]	71 [53-88]
				67 [56-76]				-24 [-412]		2090-2095 (56%) 40]	no		no net-zero	4220 [3160-5000]	no net-zero	temperature does not peak by				22 [7-60]
			71 [69-81]			-20 [-3417]		-46 [-9236]						5600 [4910-7450]		2100	4.2 [3.7-5.0]			4 [0-11]

p50 [p5-p95] ⁽¹⁾	GHG emissions Gt CO ₂ -eq/yr ⁽⁷⁾ GHG emissions reductions from 2019 % ⁽⁸⁾					Emissions milestones ^(9,10)				emis	ative CO ₂ ssions CO ₂ ⁽¹³⁾	Cumulative net-negative CO ₂ emissions Gt CO ₂	Global mean temperature changes 50% probability ⁽¹⁴⁾ °C		es global warm below (staying			
Category ^{(2, 3, 4} [# pathways]	Category / subset label	WG I SSP & WG III IPs/IMPs alignment ^{(5,} ⁶⁾	2030	2040	2050	2030	2040	2050	Peak CO2 emissions (% peak before 2100)	Peak GHG emissions (% peak before 2100)	Net-zero CO ₂ (% net-zero pathways)	Net-zero GHGs ^(11, 12) (% net-zero pathways)	2020 to	2020-2100	Year of net- zero CO2 to 2100	at peak warming	2100	<1.5°C	<2.0°C	<3.0°C
	limit warming to 1.5°C (>50%) with no or limited overshoot		31 [21-36]	17 [6-23]	9 [1-15]	43 [34-60]	69 [58-90]	84 [73-98]				2095-2100 (52%) [2050]	510 [330-710]	320 [-210-570]	-220 [-66020]	1.6 [1.4-1.6]	1.3 [1.1-1.5]	38 [33-58]	90 [86-97]	100 [99-100]
C1a [50]	with net-zero GHGs	SSP1-1.9, SP LD	33 [22-37]	18 [6-24]	8 [0-15]	41 [31-59]	66 [58-89]	85 [72-100]		-2025 (100%) 0-2025]	2050-2055 (100%) [2035-2070]	2070-2075 (100%) [2050-2090]	550 [340-760]	160 [-220-620]	-360 [-680140]	1.6 [1.4-1.6]	1.2 [1.1-1.4]	38 [34-60]	90 [85-98]	100 [99-100]
C1b [47]	without net-zero GHGs	Ren	29 [21-36]	16 [7-21]	9 [4-13]	48 [35-61]	70 [62-87]	84 [76-93]				[0%] []	460 [320-590]	360 [10-540]	-60 [-440-0]	1.6 [1.5-1.6]	1.4 [1.3-1.5]	37 [33-56]	89 [87-96]	100 [99-100]
C2 [133] C3 [311]	return warming to 1.5°C (>50%) after a high overshoot limit warming to 2°C (>67%)	Emis	44	29	20	21	to 20 simi	64 ·	2040.		2055-2060 (100%) [2045-2070] 2070-2075 (93%) [2055]) 2070-2075 (87%) [2055] (30%) [2075]	720 [530-930] 890 [640-1160]	400 C122 800 [510-1140]	and C1 same p	4.7			70	100 10 99 [98-100]
				29 [21-36]	20 [14	27 [13-45]	47 [35-63]			025 (100%) 0-2025]	²⁰⁷⁰⁻²⁰⁷⁵ (91%) ^{[205} C1a	and C1k	o hav	e thu	s simila	1.7 ař ^{(6-1.8}]		21 [14-42]		100 [98-100]
			52 [47-56]	29 [20-36]	18 [10-26]	5 [0-14]	46 [34-63]	68 [56-82]			2065 2070 (079/)	ulative C					1.6 [1.5-1.7]	17 [12-35]	73 [67-87]	99 [98-99]
			50 [41-56]	38 [28-44]	28 [19-36]	10 [0-27]		49 [35-65]					zero	1160 [700-1490]		1.9 [1.7-2.0]	1.8 [1.5-2.0]	11 [7-22]	59 [50-77]	98 [95-99]
			52 [46-56]	45 [37-53]	39 [30-4]		18 [4-33]	29 [11-48]			(41%) [2080]	(12%) [2090]	1780 [1400-2360]	1780 [1260-2360]		2.2 [1.9-2.5]	2.1 [1.9-2.5]	4 [0-10]	37 [18-59]	91 [83-98]
C6 [97]			54 [50-62]		52 [45-5 <mark>-]</mark>	2 [10 11]	3 [14]14]	5 [2 40]	2030-2035 (5 %) [202			h net zer ame time		2 2790 [2440-3520]			2.7 [2.4-2.9]		8 [2-18]	71 [53-88]
				67 [56-76]				-24 [-41—2]	2085-2090 (57%) [20	2090-2095 (56%) 40]		net-zero	no net-zero	4220 [3160-5000]	no net-zero	temperature does not peak by				22 [7-60]
			71 [69-81]			-20 [-3417]		-46 [-9236]						5600 [4910-7450]		2100	4.2 [3.7-5.0]			4 [0-11]

p50 [p5-p95] ⁽¹⁾				G emissi CO₂-eq/y	ions	GHG emissions reductions from 2019 % ⁽⁸⁾			Emissions milestones (9,10)				tive CO ₂ sions O ₂ ⁽¹³⁾	Cumulative net-negative CO ₂ emissions Gt CO ₂	-	re changes	global w	ihood of /arming /w (%)	staying
Category ^{(2, 3, 4} [# pathways]) Category / subset label	WG I SSP & WG III IPs/IMPs alignment ^{(5,} 0)	2030	2040	2050	2030	2040	2050	Peak CO2 emissions (% peak before 2100)Peak GHG emissions (% peak before 2100)	Net-zero CO2 (% net-zero pathways)	Net-zero GHGs ^(11, 12) (% net-zero pathways)	2020 to net-zero CO ₂	2020-2100	Year of net- zero CO2 to 2100	at peak warming	2100	<1.5°C <	<2.0°C	<3.0°C
	limit warming to 1.5°C (>50%) with no or limited overshoot		31 [21-36]	17 [6-23]	9 [1-15]	43 [34-60]	69 [58-90]	84 [73-98]			2095-2100 (52%) [2050]	510 [330-710]	320 [-210-570]	-220 [-66020]	1.6 [1.4-1.6]	1.3 [1.1-1.5]	38 [33-58]	90 [86-97]	100 [99-100]
Cla [50]	with net-zero GHGs	SSP1-1.9, SP LD	33 [22-37]	18 [6-24]	8 [0-15]	41 [31-59]	66 [58-89]	85 [72-100]	2020-2025 (100%) [2020-2025]	2050-2055 (100%) [2035-2070]	2070-2075 (100%) [2050-2090]	550 [340-760]	160 [-220-620]	-360 [-680140]	1.6 [1.4-1.6]	1.2 [1.1-1.4]	38 [34-60]	90 [85-98]	100 [99-100]
C1b [47]	without net-zero GHGs	Ren	29 [21-36]	16 [7-21]	9 [4-13]	48 [35-61]	70 [62-87]	84 [76-93]			[0%] []	460 [320-590]	360 [10-540]	-60 [-440-0]	1.6 [1.5-1.6]	1.4 [1.3-1.5]	37 [33-56]	89 [87-96]	100 [99-100]
C2 [133]	return warming to 1.5°C (>50%) after a high overshoot	Neg	42 [31-55]	25 [17-34]	14 [5-21]	23 [0-44]	55 [40-71]	75 [62-91]	C1a pathways	2055-2060 (100%) [2045-2070]	2070-2075 (87%) [2055]	720 [530-930]	400 [-90-620]	-360 [-680—60]	1.7 [1.5-1.8]	1.4 [1.2-1.5]	24 [15-42]		100 [99-100]
C3 [311]			44 [32-55]	29 [20-36]	20 [13-26]	21 [1-42]			eached about 1						1.7 [1.6-1.8]		20 [13-41]		99 [98-100]
C3a [204]				29 [21-36]	20 [14-27]	27 [13-45]	47 [35-63]	63 [52-76]	2020-2025 (100%) [2020-2: net zer	2070 2075 (04%)	(24%) [2080]				1.7 [1.6-1.8]		21 [14-42]		100 [98-100]
C3b [97]			52 [47-56]	29 [20-36]	18 [10-25]	5 [0-14]	46 [34-63]	68 [56-82]		2000-2090	h reliand			-000-0		- 1.0-1.7	17 [12-35]	73 [67-87]	99 [98-99]
			50 [41-56]	38 [28-44]	28 [19-35]	10 [0-27]		49 [35-65]	2020-2025 (100%) [2020-2030]	2080-201 em) [2065]	issions ii GH(1070 4 4001	1700 4 4001	eacn ne elow)	et zer [1.7-2.0]	O _{1.8} [1.5-2.0]	11 [7-22]	59 [50-77]	98 [95-99]
C5 [212]			52 [46-56]	45 [37-53]	39 [30-49]		18 [4-33]	29 [11-48]		(41%) [2080]	(12%) [2090]	1780 [1400-2360]	1780 [1260-2360]	0 [-160-0]	2.2 [1.9-2.5]	2.1 [1.9-2.5]	4 [0-10]	37 [18-59]	91 [83-98]
C6 [97]			54 [50-62]			2 [-10-11]	3 [-14-14]	5 [-2-18]	2030-2035 (96%) 2020-2025 (97%) [2020-2090]			Lo	[2440000000]	erm wa		[2.7 2.0]		cec	71 [53-88]
C7 [164]				67 [56-76]				-24 [-412]	2085-2090 (57%) 2090-2095 (56%) [2040]	no		no net-zero	4220 S [3160-5000]	ignifica	peak by	in C' [2.8-3.9]	[a] [0-0]		22 [7-60]
_{C8 [29}] 3			71 [69-81]			-20 [-3417]		-46 [-9236]	2080-2085 (90%) [2070]				5600 [4910-7450]		2100	4.2 [3.7-5.0]			4 [0-11]

Pathways reaching net zero GHGs return warming to lower levels in the long term

SPM C.2.4

At the time of global net zero GHG emissions, net negative CO 2 emissions counterbalance metric-weighted non-CO 2 GHG emissions. Typical emissions pathways that reach and sustain global net zero GHG emissions based on the 100-year global warming potential (GWP-100) 7 are projected to result in a gradual decline of global warming. About half of the assessed pathways that limit warming to 1.5°C (>50%) with no or limited overshoot (C1 category) reach net zero GHG emissions during the second half of the 21st century. These pathways show greater reduction in global warming after the peak to 1.2 [1.1–1.4] °C by 2100 than modelled pathways in the same category that do not reach net zero GHG emissions before 2100 and that result in warming of 1.4 [1.3–1.5] °C by 2100. In modelled pathways that limit warming to 2°C (>67%) (C3 category), there is no significant difference in warming by 2100 between those pathways that reach net zero GHGs (around 30%) and those that do not (high confidence). In pathways that limit warming to 2°C (>67%) or lower and that do reach net zero GHG, net zero GHG occurs around 10-40 years later than net zero CO 2 emissions (medium confidence). {Cross-Chapter Box 2 in Chapter 2, 3.3, Cross-Chapter Box 3 in Chapter 3; AR6 WGI **SPM D1.8**

Key findings of WG III AR6 – Part II :

WG III insights into the effect of steps taken by parties in order to achieve the long- term temperature goal of the convention

Three part presentation:

Historical Emissions

– Alaa Al Khourdajie

- Emissions pathways and net zero CO2 / GHGs Keywan Riahi
- Finance

– Dipak Dasgupta

Finance: Key Questions, 2022 (AR6) versus 2014 (AR5)

- How Big are measured annual climate finance flows? Public and private (USD 685 billion 2018, versus USD 359 billion 2012) (multiple sources)
- How Big are the Gaps in Financing? Investment Needs versus Flows to Achieve the Low-Carbon Transition (USD 3-5 trillion a year, versus est. USD 1.2 trillion earlier). Biggest gap in developing countries.
- What are the Barriers and Enabling Opportunities?
 - -Crises and Macroeconomic Headwinds (2020 Pandemic+ debt+ climate effects; versus 2008 GFC),
 - -Progress in USD 100 Billion Goal to Developing Countries (Weak, earlier n.a.)
 - -Progress in Aligning the Financial System (Weak, earlier n.a.)
 - *Continuing high fossil fuel investments which exceed low-carbon
 - *Gaps in financing and costs in developing countries highest
 - *Flows to low-income and vulnerable countries weakest (Just Transition)
 - *Credible signals required from governments (+ climate risk disclosure)
 - *Many Immediate and actionable steps/options feasible

Tracked financial flows fall short of levels needed (3-6 times bigger annually for 2020-2030) to achieve mitigation goals

Seven Urgent Options> Scaling Up Climate Finance to Developing Regions

- Accelerated financial support from developed to developing countries is critical enabler of low-GHG and just transitions: address high costs, terms and conditions of finance, and vulnerability to climate change
- <u>Scaled up public grants</u> for mitigation and adaptation funding for vulnerable countries, especially in Sub-Saharan Africa; cost-effective and high social returns in access to basic energy and related SDG goals
- Increased levels of public and publicly mobilized private finance in the context of unmet USD 100 billion-a-year goal
- <u>Public guarantees</u> to reduce risks, lower budgetary cost and leverage private flows at lower cost
- Support local capital markets development
- <u>Build greater trust</u> in international cooperation <u>processes</u> (definitions, information, capacity, conditions, partners)
- <u>Coordinated post-pandemic recovery</u> with increased climate finance flows, in developing regions facing high debt costs, debt distress and macroeconomic headwinds

Aligning the Financial System (Art. 2.1 (c)) will need more than 'climate risk disclosure'

- **Green bonds, ESG** (environmental, social and governance) and sustainable finance products have expanded since AR5, but finance flows remain below needs in all sectors and regions, transparency missing
- Finance flows for fossil fuels are still greater than those for climate adaptation and mitigation
- Sufficient global capital and liquidity to close global investment gaps, given the size of the global financial system
- **Deep barriers to redirect capital** to climate action both within and outside the global financial sector and given macroeconomic headwinds
- **Clear signaling by governments>stronger alignment of public finance and policy essential>reduce risk and uncertainty for investors**
- Central banks and financial regulators can do much more to support climate action
- Greater support for technology development, diffusion and transfer
- Role of multilateral and national **climate funds** and development banks
- Lowering financing costs for underserved groups, communities, gender-responsive such as green banks, funds and risk- sharing mechanisms
- Enhanced international cooperation partnerships, including sub-national regions, cities, and state and non-state actors

Climate and finance: risks and impacts

A TWO-SIDED RELATION: 1. RISK

Source: author's illustration based on AR6 WGIII Ch.15

Climate-financial risk Physical risk: Mitigation report 'overemphasizes' late (2050-2100) risks, beyond NT financial horizons Adaptation Report has NT risks but non-monetized

- Direct: increased frequency/magnitude of climaterelated hazards and chronic impacts → losses on physical assets and human lives
- Indirect: reduced food and water security → increased risk of conflicts → decreased value of land and businesses in affected areas

Transition risk: policy change & carbon price risks

- Orderly transition is ideal scenario.
- Disorderly transition: complexity of policy process implies possibility of late and sudden transition (+Stranded Assets) with unanticipated effects on prices and financial stability.
- The purpose of assessing transition risk is to avoid its materiality.
 Source: AR6 WGIII Ch.15

Source: AR6 WGIII Ch.15

Policy 'credibility' is central

POLICY CREDIBILITY CAN REDUCE UNCERTAINTY IN DECISION MAKING

POLICY SIGNALS

Early-Stage Risk Reduction in Capital Markets Critical

-Highest risks are at initial stages

-Grants and technology support can de-risk early project preparation

-Concessional finance, grants and guarantees can de-risk second stage

-Institutional investors pick-up the later and mature financing stage

-Facilitated by standardised national infrastructure style bonds, funds

-Partial credit and sovereign guarantees can play a key role -As well as overall policy support

-Cross-Border risks are the highest, because of 'home-bias'

INTERGOVERNMENTAL PANEL ON Climate change

Climate Change 2022

Mitigation of Climate Change

THANK YOU FOR YOUR ATTENTION

att Bridgestock, Director and Architect at John Gilbert Architects]