

Ministry of Environmental Protection and Natural Resources of Ukraine

UKRAINE'S GREENHOUSE GAS INVENTORY 1990-2023

Annual National Inventory Report for Submission under the United Nations Framework Convention on Climate Change and the Paris Agreement

FOREWORD

The Ukraine's Greenhouse Gas (hereinafter GHG) Inventory Report (hereinafter - National Inventory Report, NIR) is submitted for consideration of the Secretariat of the United Nations Framework Convention on Climate Change (UNFCCC). The National Inventory Report contains the balance of GHG emissions and removals for the period from 1990 through 2023 with a detailed description of the methods applied and findings of scientific researches of national circumstances. The National Inventory Report was prepared in the framework of the national inventory system, which includes the complex of all the organizational, legal, and procedural mechanisms adopted by Ukraine for estimating anthropogenic GHG emissions and removals aimed to comply with the Modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement contained in the Annex to the Decision 18/CMA.1, and taking into account the guidance on the common reporting tables (hereinafter CRT) and outlines contained in Annex I and Annex V respectively of the Decision 5/CMA.3.

The state authority responsible for preparation, approval, and submission of the National Inventory Report is the Ministry of Environmental Protection and Natural Resources of Ukraine (hereinafter - MEPR).

Ministry of Environmental Protection and Natural Resources of Ukraine

35 Vasylia Lypkivskogo str., Kyiv Phone: +38 (044) 206-33-02 Fax: +38 (044) 206-31-39 E-mail: <u>zaput@mepr.gov.ua</u>

The National Inventory Report was prepared by the MEPR and the Budget Institution "National Center for GHG Emission Inventory" (hereinafter referred to as BI "NCI").

We thank everyone who was involved in preparing of this report for their contribution and support. The list of authors can be found in Chapter 14 of this report.

CONTENT

EXECUTIVE SUMMARY	9
ES.1 Background information on greenhouse gas inventories	9
ES.2 SUMMARY ON NATIONAL TRENDS OF EMISSIONS AND REMOVALS	
ES.3 OVERVIEW OF SOURCE AND SINK CATEGORY EMISSION ESTIMATES AND TRENDS	13
ES.4 Other Information.	15
ABBREVIATIONS AND ACRONYMS	17
1 INTRODUCTION	20
1.1 Background information on greenhouse gas inventories and climate change.	20
1.1.1 Background information on climate change	
1.1.2 Background information on greenhouse gas inventories	26
1.2 Institutional arrangements for National Inventory Report preparation,	
INCLUDING LEGAL AND PROCEDURAL ARRANGEMENTS FOR INVENTORY PLANNING, PREPARAT	ION,
AND MANAGEMENT	27
1.2.1 Overview of institutional, legal, and procedural aspects of preparing the National Inventory Report	27
1.2.2 Planning, preparation, and management of the process of greenhouse gas inventory	
1.2.3 Quality assurance, quality control and planning of inspections. Details of the QA/QC	-
1.2.4 Changes in the National Inventory System	
1.3 Inventory preparation	
1.3.1 The basic stages of the inventory	
1.3.2 Planning and control of activities on greenhouse gas inventory and report developm	ent
1.4 Brief general description of methodologies and data sources used	
1.5 Brief description of Key Categories	
1.6 EVALUATION OF THE TOTAL UNCERTAINTY OF THE NATIONAL INVENTORY REPORT, INCLU	
DATA ON THE OVERALL UNCERTAINTY FOR THE ENTIRE INVENTORY	
1.7 GENERAL ASSESSMENT OF COMPLETENESS	
2 TRENDS IN GREENHOUSE GAS EMISSIONS	51
2.1 Trends in total greenhouse gas emissions by gas	
2.1.1 Emissions of carbon dioxide	
2.1.2 Methane emissions	
2.1.3 Emissions of nitrous oxide	56
2.1.4 Emissions of hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and nitrog trifluoride	
2.1.5 Trends in emissions of precursor gases and SO ₂	58
2.2 Emission trends by sector	
3 ENERGY (CRT SECTOR 1)	64
3.1 Sector Overview	
3.2 FUEL COMBUSTION ACTIVITIES (CRT CATEGORY 1.A)	
3.2.1 Reference CO ₂ emission calculation approach. Comparison of sectoral and reference	
approaches	
3.2.3 Use of fuels as a raw material and non-energy use of fuels	
3.2.4 CO ₂ sequestration	
3.2.5 CO ₂ emissions from biomass	
3.2.6 National features	
3.2.7 Energy Industries (CRT category 1.A.1)	70
3.2.8 Manufacturing Industries and Construction (CRT category 1.A.2)	74

3.2.9 Transport (CRT category 1.A.3)	77
3.2.10 Other Sectors (CRT category 1.A.4)	83
3.3 FUGITIVE EMISSIONS FROM FUELS (CRT CATEGORY 1.B)	86
3.3.1 Solid Fuels (CRT category 1.B.1)	87
3.3.2 Oil and Natural Gas (CRT category 1.B.2)	92
3.4 MULTILATERAL OPERATIONS	
4 INDUSTRIAL PROCESSES AND PRODUCT USE (CRT SECTOR 2)	98
4.1 Sector Overview	98
4.2 MINERAL INDUSTRY (CRT CATEGORY 2.A)	
4.2.1 Cement Production (CRT category 2.A.1)	
4.2.2 Lime Production (CRT category 2.A.2)	
4.2.3 Glass Production (CRT category 2.A.3)	
4.2.4 Other Process Uses of Carbonates (CRT category 2.A.4.)	
4.3 CHEMICAL INDUSTRY (CRT CATEGORY 2.B)	
4.3.1 Ammonia Production (CRT category 2.B.1)	
4.3.2 Nitric Acid Production (CRT category 2.B.2)	
4.3.3 Adipic Acid Production (CRT category 2.B.3)	
4.3.4 Caprolactam, Glyoxal, and Glyoxylic Acid Production (CRT category 2.B.4)	
4.3.5 Carbide Production and Use (CRT category 2.B.5)	
4.3.6 Titanium Dioxide Production (CRT category 2.B.6)	
4.3.7 Soda Ash Production (CRT category 2.B.7)	
4.3.8. Petrochemical and Carbon Black Production (CRT category 2.B.8)	
4.3.9 Fluorochemical Production (CRT category 2.B.9)	
4.4 METAL INDUSTRY (CRT CATEGORY 2.C)	
4.4.1 Iron and Steel Production (CRT category 2.C.1)	120
4.4.2 Ferroalloys Production (CRT category 2.C.2)	123
4.4.3 Aluminium Production (CRT category 2.C.3)	
4.4.4 Magnesium Production (CRT category 2.C.4)	126
4.4.5 Lead Production (CRT category 2.C.5)	126
4.4.6 Zinc Production (CRT category 2.C.6)	127
4.5 Non-energy Products from Fuels and Solvent Use (CRT category 2.D)	
4.5.1 Lubricant Use (CRT category 2.D.1)	128
4.5.2 Paraffin Wax Use (CRT category 2.D.2)	129
4.5.3 Other (CRT category 2.D.3)	
4.6 Electronics Industry (CRT category 2.E)	
4.7 PRODUCT USES AS SUBSTITUTES FOR OZONE-DEPLETING SUBSTANCES (CRT CATEGOR	
4.7.1 Refrigeration and Air Conditioning Systems	
4.7.2 Foam Blowing Agents (CRT category 2.F.2)	
4.7.3 Fire protection (CRT category 2.F.3)	
4.7.4 Aerosols (CRT category 2.F.4)	
4.7.5 Solvents (CRT category 2.F.5)	
4.7.6 Other Applications of Substitutes for Ozone-Depleting Substances (CRT category	
	154
4.8 OTHER PRODUCT MANUFACTURE AND USE (CRT CATEGORY 2.G)	
4.8.1 Electrical Equipment (2.G.1 CRT)	
4.8.2 SF ₆ and PFCs from Other Product Uses (CRT category 2.G.2)	
4.8.3 N ₂ O from Product Uses (2.G.3 CRT)	
4.9 OTHER (CRT CATEGORY 2.H)	
4.9.1 Pulp and Paper Production (CRT category 2.H.1)	
4.9.2 Food and Beverages Industry (CRT category 2.H.2)	161
5 AGRICULTURE (CRT SECTOR 3)	163
5.1 Sector Overview	163

5.2 Enteric Fermentation (CRT category 3.A)	165
5.2.1. Category description	165
5.2.2 Methodological issues	167
5.2.3 Uncertainty and time-series consistency	170
5.2.4 Category-specific QA/QC procedures	172
5.2.5 Category-specific recalculations	174
5.2.6 Category-specific planned improvements	
5.3 MANURE MANAGEMENT (CRT CATEGORY 3.B)	
5.3.1. Category description	
5.3.2 Methodological issues	
5.3.3 Uncertainty and time-series consistency	
5.3.4 Category-specific QA/QC procedures	
5.3.5 Category-specific recalculations	
5.3.6 Category-specific planned improvements	
5.4 RICE CULTIVATION (CRT CATEGORY 3.C)	
5.4.1. Category description	
5.4.2 Methodological issues	
5.4.3 Uncertainty and time-series consistency	
5.4.4 Category-specific QA/QC procedures	
5.4.5 Category-specific quige procedures 5.4.5 Category-specific recalculations	
5.4.6 Category-specific planned improvements	
5.5 AGRICULTURAL SOILS (CRT CATEGORY 3.D)	
5.5.1. Category description	
5.5.1 Category description 5.5.2 Methodological issues	
5.5.3 Uncertainty and time-series consistency	
5.5.4 Category-specific QA/QC procedures	
5.5.5 Category-specific qa/qc procedures	
5.5.6 Category-specific recalculations	
5.5.6 Prescribed Burning of Savannas (CRT category 3.E)	
5.7 FIELD BURNING OF AGRICULTURAL RESIDUES (CRT CATEGORY 3.F)	
5.7 FIELD BURNING OF AGRICULTURAL RESIDUES (CRT CATEGORY 3.F)	
5.8.1. Category description	
5.8.2 Methodological issues	
<u> </u>	
5.8.3 Uncertainty and time-series consistency	
5.8.4 Category-specific QA/QC procedures	
5.8.5 Category-specific recalculations	
5.8.6 Category-specific planned improvements	
5.9 UREA APPLICATION (CRT CATEGORY 3.H)	
5.9.1. Category description	
5.9.2 Methodological issues	
5.9.3 Uncertainty and time-series consistency	
5.9.4 Category-specific QA/QC procedures	
5.9.5 Category-specific recalculations	
5.9.6 Category-specific planned improvements	201
6 LAND USE, LAND-USE CHANGE AND FORESTRY (CRT SECTOR 4)	202
6.1 Sector Overview	202
6.1.1 Land-use change matrix	
6.2 Forest Land (CRF category 4.A)	
6.2.1 Category description	214
6.2.2 Methodological issues	215
6.2.3 Uncertainties and time-series consistency	217
6.2.4 Category-specific QA/QC procedures	218
6.2.5 Category-specific recalculations	220

6.2.6 Category-specific planned improvements	220
6.3 CROPLAND (CRF CATEGORY 4.B)	
6.3.1 Category description	
6.3.2 Methodological issues	
6.3.3 Uncertainties and time-series consistency	
6.3.4 Category-specific QA/QC procedures	
6.3.5 Category-specific recalculations	
6.3.6 Category-specific planned improvements	
6.4 GRASSLAND (CRF SECTOR 4.C)	
6.4.1 Category description	
6.4.2 Methodological issues	
6.4.3 Uncertainties and time-series consistency	
6.4.4 Category-specific QA/QC procedures	
6.4.5 Category-specific recalculations	
6.4.6 Category-specific planned improvements	
6.5 WETLANDS (CRF SECTOR 4.D)	
6.5.1 Category description	
6.5.2 Methodological issues	
6.5.3 Uncertainties and time-series consistency	
6.5.4 Category-specific QA/QC procedures	
6.5.5 Category-specific recalculations	
6.5.6 Category-specific planned improvements	
6.6 SETTLEMENTS (CRF SECTOR 4.E)	
6.6.1 Category description	234
6.6.2 Methodological issues	
6.6.3 Uncertainties and time-series consistency	235
6.6.4 Category-specific QA/QC procedures	235
6.6.5 Category-specific recalculations	235
6.6.6 Category-specific planned improvements	235
6.7 OTHER LAND (CRF SECTOR 4.F)	235
6.7.1 Category description	235
6.7.2 Methodological issues	236
6.7.3 Uncertainties and time-series consistency	236
6.7.4 Category-specific QA/QC procedures	236
6.7.5 Category-specific recalculations	236
6.7.6 Category-specific planned improvements	237
6.8 Harvested Wood Products (HWP, CRF sector 4.G)	237
6.8.1 Category description	237
6.8.2 Methodological issues	239
6.8.3 Uncertainties and time-series consistency	241
6.8.4 Category-specific QA/QC procedures	241
6.8.5 Category-specific recalculations	241
6.8.6 Category-specific planned improvements	241
7 WASTE (CRT SECTOR 5)	242
·	
7.1 SECTOR OVERVIEW	
7.2 SOLID WASTE DISPOSAL (CRF CATEGORY 5.A)	
7.2.1 Category description	
7.2.2 Methodological issues	
7.2.3 Uncertainties and time-series consistency	
7.2.4 Category-specific QA/QC procedures	
7.2.5 Category-specific recalculations	
7.2.6 Category-specific planned improvements	
7.3 BIOLOGICAL TREATMENT OF SOLID WASTE (CRF CATEGORY 5.B)	

7.3.1 Category description	. 255
7.3.2 Methodological issues	
7.3.3 Uncertainties and time-series consistency	
7.3.4 Category-specific QA/QC procedures	
7.3.5 Category-specific recalculations	
7.3.6 Category-specific planned improvements	.261
7.4 INCINERATION AND OPEN BURNING OF WASTE (CRF CATEGORY 5.C)	261
7.4.1 Category description	.261
7.4.2 Methodological issues	
7.4.3 Uncertainties and time-series consistency	
7.4.4 Category-specific QA/QC procedures	.270
7.4.5 Category-specific recalculations	.270
7.4.6 Category-specific planned improvements	.270
7.5 WASTEWATER TREATMENT AND DISCHARGE (CRF CATEGORY 5.D)	
7.5.1 Category description	. 270
7.5.2 Methane emissions from domestic wastewater treatment (CRF sub-category 5.D.1.1)	.271
7.5.3 Nitrous Oxide Emissions from Human Wastewater (CRF category 5.D.1.2)	. 280
7.5.4 Industrial Wastewater Treatment and Discharge (CRF category 5.D.2)	. 285
8 OTHER (CRT SECTOR 6)	296
9 INDIRECT CO ₂ AND NITROUS OXIDE EMISSIONS	297
10 RECALCULATIONS AND IMPROVEMENTS	298
11 INFORMATION ON CHANGES IN THE NATIONAL GHG INVENTORY SYSTEM	.300
12 AUTHORS	301
13 REFERENCES	302
ANNEX 1 KEY CATEGORIES	312
ANNEX 2 METHODOLOGY FOR EMISSION ASSESSMENT IN THE ENERGY SECT	OR
	321
A2.1 THE METHOD TO DETERMINE GHG EMISSIONS FROM STATIONARY FUEL COMBUSTION	221
A2.1 THE METHOD TO DETERMINE OTIO EMISSIONS FROM STATIONARY FUEL COMBUSTION	
A2.2.1 Statistical reporting form No. 4-MTP "Report on fuel use and stocks"	
A2.2.1 Statistical reporting form No. 11-MTP "Report on results of fuel, heat, and electrici	
consumption"	
A2.2.3 Fuel and energy balances of Ukraine	
A2.3 FUEL STRUCTURE	
A2.4 METHODS TO DETERMINE THE FUEL COMBUSTION VOLUME BY CRT CATEGORIES	
A2.4.1 Stationary fuel combustion	
A2.4.2 Mobile fuel combustion	
A2.5 EMISSION FACTORS	
A2.6 DETERMINATION OF PHYSICAL AND CHEMICAL PARAMETERS OF NATURAL GAS AND POWE	
GENERATING COALS	
CET VERGITATION COTTES	
A2.6.1 Natural gas	
A2.6.1 Natural gas	
A2.6.2 Hard coal	
A2.6.2 Hard coal	.336
A2.6.2 Hard coal	336 337
A2.6.2 Hard coal	336 337 337
A2.6.2 Hard coal	336 337 337
A2.6.2 Hard coal	336 337 337
A2.6.2 Hard coal	336 337 337 337

A2.10 OTHER MATTERS RELATED TO ACTIVITY DATA IN ENERGY SECTOR IN 2014-2023	346
ANNEX 3	347
A3.1 INDUSTRIAL PROCESSES AND PRODUCT USE (CRT SECTOR 2)	347
A3.1.1 Results of GHG inventory in the Industrial Processes and Product Use sector	
A3.1.2 Determination of the amount of limestone and dolomite use	
A3.1.3 Method of CO ₂ emission factor determination for coke use	
A3.1.4 Carbon balance in the blast furnace process	
A3.2 AGRICULTURE (CRT SECTOR 3)	
A3.2.1 Livestock	380
A3.2.2 Enteric Fermentation	393
A3.2.3 Manure Management	408
A3.2.4 Rice Cultivation	446
A3.2.5 Agricultural Soils	447
A3.2.6 Liming	452
A3.2.7 Urea Application	453
A3.2.8 Emission factors	
A3.2.9 Emissions	468
A3.2.10 Recalculations	
A3.3 LAND USE, LAND USE CHANGE AND FORESTRY (CRT SECTOR 4)	
A3.3.1 Methodological issues of the land-use category Forest land	
A3.3.2 Methodological issues for the land-use categories Cropland and Grassland	
A3.3.3 Methodological aspects of the HWP category	
A3.4 WASTE (CRT SECTOR 5)	
A3.4.1 Waste management reporting responding to the state statistical	
A3.4.2 Information on the amount of solid waste disposed at SWDS and methane emissic adopted for estimations in general and by landfill categories for the period of 1900-202. A3.4.3 The content of biodegradable components, DOC and MCF parameters, recycling well as methane emissions for MSW landfill categories in the period of 1990-2023	3 540 g, as
ANNEX 4 FUEL BALANCES	546
A4.1 BALANCE OF NATURAL GAS	546
A4.2 COAL BALANCE	
A4.3 THE COKING COAL, COKE AND COKE GAS BALANCE	
ANNEX 5 COMPLETENESS ASSESSMENT	
ANNEX 6 SUPPLEMENTARY INFORMATION	
A6.1 THE LEGAL FRAMEWORK FOR IMPLEMENTATION OF UKRAINE'S COMMITMENTS UNDER UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE AND THE KYOTO PROTOIN TERMS OF THE NATIONAL INVENTORY OF ANTHROPOGENIC EMISSIONS AND REMOVALS OF GREENHOUSE GASES	OCOL
ANNEX 7 UNCERTAINTIES	555
ANNEX 8 INFORMATION ON IMPROVEMENTS IN THE NATIONAL INVENTOR	
A8.1 Consideration of the recommendations of the expert review team (ERT) presented in the Report of the individual review of the inventory submission of Ukraine submitted in 2023 (ARR 23)	572
A8.2 IMPROVEMENT PLAN FOR THE NATIONAL INVENTORY	585

EXECUTIVE SUMMARY

ES.1 Background information on greenhouse gas inventories

Verkhovna Rada (Parliament) of Ukraine has ratified the United Nations Framework Convention on Climate Change (UNFCCC) on October 29, 1996. Ukraine became a Party to the UNFCCC on August 11, 1997. In accordance with Articles 4 and 12 of the UNFCCC, Ukraine as a Party to the UNFCCC have the commitments to develop, periodically update, publish, and submit to the UNFCCC Secretariat national inventories of anthropogenic emissions by sources and removals by sink of all GHGs not regulated under Montreal Protocol.

This report is part of the Ukraine's Greenhouse Gas Inventory. It presents calculation results of national GHG emissions and removals in the period of 1990-2023 and describes the methods used to perform the calculations.

The duties of ensuring the inventory of anthropogenic GHG emissions by sources and removals by sink at the national level in order to prepare the NIR, as well as its approval and submission to the UNFCCC Secretariat, as mentioned above, is assigned to the MENR.

The inventory covers emissions of seven GHGs:

- carbon dioxide (CO₂);
- methane (CH₄);
- nitrous oxide (N₂O);
- hydrofluorocarbons (HFCs);
- perfluorocarbons (PFCs);
- sulfur hexafluoride (SF₆);
- nitrogen trifluoride (NF₃).

As well as following precursor gases:

- carbon monoxide (CO);
- nitrogen oxides (NO_x);
- non-methane volatile organic compounds (NMVOCs)
- sulfur dioxide (SO₂).

Chapter 1 provides background information on climate change and general information on GHG inventories. This chapter provides a brief description of the basic principles and methods of GHG emission and removal estimations, description of key quality assurance and quality control categories and procedures (QA/QC). The final part of this chapter is focused on assessment of the overall uncertainty of the NIR and its completeness.

Chapter 2 describes and explains trends in both total emissions and removals of GHGs and precursors, as well as detailing by gas and by sector.

Chapter 3 to 9 describe specific sectors and categories of GHG sources and sinks. These chapters describe methods that were used to estimate GHG emissions and removals, sources of activity data and emission factors, QA/QC procedures applied, emission recalculations conducted, and planned improvements in the context of the specific categories.

Chapter 10 contains detailed information regarding recalculations of GHG emissions, and improvements made comparing with previous submission.

In addition to the main chapters as described above, the NIR contains eight annexes containing more detailed information, not included in these chapters: in-depth analysis of the key categories; description of the methods for calculating emissions in particular categories; comparison of emissions in case of the reference and sectoral approaches and analysis of any discrepancies arising; assessment of completeness and uncertainty of the inventory; consideration of recommendations and encouragements, gained from ERT during the process of annual inventory review.

ES.2 Summary on national trends of emissions and removals

Since 2014 until early 2022 slightly over 7 % of the territory of Ukraine temporarily remained out of control of the Government of Ukraine¹ as a result of the occupation and attempted annexation of Crimea and armed invasion by the Russian Federation. The temporary occupation by the Russian Federation territory of Ukraine is steadfastly condemned by international community, territorial changes by force are not recognized, sanctions remain in place till full compliance of the RF with international law. In particular, the UN General Assembly resolution 68/262 of March 27, 2014 «Territorial Integrity of Ukraine» confirmed the internationally recognized borders of Ukraine and the absence of any legal basis to change the status of the Autonomous Republic of Crimea and the city of Sevastopol. The same stance was confirmed by the UN General Assembly resolution 71/205 "Situation of human rights in the Autonomous Republic of Crimea and the city of Sevastopol (Ukraine)" of December 19, 2016, which unambiguously defines Russia as an occupying power. Besides that, numerous documents in support of Ukraine's territorial integrity within its internationally recognized borders were approved by the Committee of Ministers of the Council of Europe, Parliamentary Assembly of the Council of Europe, OSCE Parliamentary Assembly and other international organizations.

Moreover, full-scale invasion of Ukraine by the Russian Federation increased this share up to around 20 %. Although the Government of Ukraine gained back the control of around 8 % of its territory, this caused a huge impact in every sphere.

The collection of official statistics and other data is not an exclusion. In many places offices and archives were physically destroyed. In other cases, the data is absent due to lack of activity or because it was not possible to collect it. Moreover, the Law of Ukraine № 2115-IX as of 3.03.2022 "On the Protection of the Interests of Entities Submitting Reports and Other Documents During the Period of Martial Law or a State of War" established the obligation of reporting of financial and other data no later than 3 months after the end of martial law. Before that the entities cannot be prosecuted for breaching the obligation to report on data. This includes the data used in the GHG inventory.

In order to fulfill the completeness principle, the GHG inventory team used splicing techniques to derive data for entire territory of Ukraine. This includes extrapolation, substitution and other methods, recommended by Chapter 5 Volume 1 of 2006 IPCC.

GHG emissions and removals trends in 2022-2023 obviously were impacted by the full-scale invasion of Ukraine. Many industries and activities were disrupted by the warfare leading to decrease of GHG emissions related to these activities. Moreover, in the end of 2022 and in 2023 Russian Federation started targeted attacks on the energy production facilities leading to even stronger decrease of GHG emission trend from Energy sector.

The largest share of GHG emissions in the base year is carbon dioxide -71.8 % with LU-LUCF. Methane emissions in 1990 were 22.8 %, and those of nitrous oxide -5.3 %. In 2023 carbon dioxide remained the largest emitted gas -57.7 % of all GHG emissions, with 28.3 % and 12.8 % of methane and nitrous oxide respectively.

CO₂ emissions take place in all sectors, as well as removals of CO₂ in the LULUCF sector. CO₂ emissions in 1990 amounted to 568.41 Mt and decreased as of 2023 by 80.6 %, to the level of 128.00 Mt (Table ES.2.1). The economic decline that followed the collapse of the USSR in 1991 led to initial significant reduction of energy consumption, and thus in decreasing of CO₂ emissions. In the period from 2000 through 2007, CO₂ emissions stabilized with a slight upward trend. Despite the increase in CO₂ emissions in this period was due to growth of the economy, the emissions are not directly correlated with the rate of economic development. This was due to restructuring of the economy, outstripping growth in the trading, services, and the financial sector compared to industrial production, which made a significant contribution to GDP growth in this period. The second important

¹ On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

² https://zakon.rada.gov.ua/laws/show/2115-20#Text

factor that had a significant impact on CO₂ emission trends in this period was modernization of production, which made possible to reduce energy consumption, and, correspondingly, CO₂ emissions, i.e. carbon-intensity of major commodity group production.

CO₂ emission trend in 2008-2021 was determined by the influence of the global financial and economic crisis in 2008-2009 and a temporary occupation by the Russian Federation part of territory of Ukraine in 2014, which largely determined commodity production in the major exportoriented industries (metallurgy, chemical, mechanical engineering, etc.), which in turn affect supply sectors - electric power generation, mining (ore and coal mining)³. Recover of economy after strict anti-COVID-19 measures in 2020 resulted in increase of GHG emissions in all sectors, except Waste.

Totals of CO₂ in 2015-2021 are presenting the results of number of factors, connected with overall economy growth of Ukraine, structure and amounts of fuels used in Energy and industry products outputs.

Moreover, during the entire time series since 1990 to 2013 GHG removals were decreasing in LULUCF and in 2013-2016, 2018-2019 the sector became a net source, what was connected mainly with national practices of cropland and grassland management, as well as forestry.

Table ES.2.1 contains data on direct action GHG emissions expressed in the carbon dioxide equivalent.

11

³ On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

Table ES.2.1. GHG emissions, Mt CO₂-eq.

Gas	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022	2023	Current year compared to base year, %
CO ₂ (excluding LULUCF)	706.5	390.2	285.7	313.5	294.4	223.8	234.1	223.3	231.9	222.2	207.1	210.6	143.0	139.3	-80.3
CH ₄	209.3	159.5	135.6	117.8	97.7	71.6	77.0	74.5	78.7	81.6	83.6	83.0	66.9	62.8	-70.0
N ₂ O	48.5	29.9	20.6	22.4	24.6	28.6	31.3	30.1	33.0	34.8	33.1	37.7	27.0	28.5	-41.4
HFCs*	NO	NO	14.4	271.9	715.3	826.3	943.7	1076.5	1483.2	1849.2	2000.4	2245.1	2329.8	2423.1	100
PFCs*.**	212.0	160.1	104.0	128.0	24.0	NO	NO	NO	NO	NO	NO	NO	NO	NO	-100
SF ₆ *	0.0	0.1	0.4	4.6	10.0	20.2	25.1	29.4	34.5	40.0	44.6	50.3	54.2	57.2	727229.5
NF ₃ *	NO	NO	NO	NO	NO	NO	NO	-							
Net CO ₂ from LU- LUCF	-48.1	-46.3	-33.6	-18.5	-21.2	3.9	5.9	-2.7	6.9	4.9	-16.1	-5.6	-15.9	-11.3	-76.4
CO ₂ (including LULUCF)	658.4	343.9	252.0	295.0	273.2	227.8	240.0	220.6	238.8	227.1	191.0	205.0	127.2	128.0	-80.6
Total (excluding LULUCF)	964.4	579.4	441.7	453.9	417.2	324.8	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9	-75.9
Total (including LULUCF)	916.5	533.4	408.3	435.7	396.2	328.9	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7	-75.8
Total (excluding LULUCF), including indirect CO ₂	964.4	579.4	441.7	453.9	417.2	324.8	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9	-75.9
Total (including LULUCF), including indirect CO ₂	916.5	533.4	408.3	435.7	396.2	328.9	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7	-75.8

^{*}emissions quoted in kt CO₂-eq.

** there are no PFC emissions, as cooling agents containing the gas were not imported in 2011-2023

ES.3 Overview of source and sink category emission estimates and trends

In Ukraine, GHG emissions occur in the following sectors set by the IPCC:

- Energy;
- Industrial Processes and Product Use (IPPU);
- Agriculture;
- Land Use, Land Use Change and Forestry (LULUCF);
- Waste

The largest GHG emissions in Ukraine take place in the Energy sector. In 2023, the share of this sector accounted for around 74 % without the LULUCF sector. About 74 % of emissions in this sector account for emissions in the Fuel Combustion category, which include the categories of Energy Industries, Manufacturing Industries and Construction, Transport, Other Sectors, and Other, as well as 26 % – emissions in the category of Fugitive Emissions from Fuels.

It should be noted that the share of GHG emissions in the category of Fugitive Emissions from Fuels in total GHG emissions in the Energy sector gradually increased in the period of 1990-2000: from 19.2 % in 1990 to 30.1 % in 2000. This period is characterized by aging of the infrastructure and industrial capital of the country. Since 2001, the proportion of emissions associated with fugitive fuels was gradually decreasing. It is connected to the decrease of extraction of fossil fuels in Ukraine, decrease of transit of natural gas as well as decrease of use of natural gas by population due to increase of the prices.

Global pandemic of COVID-19 and measures against the disease slowed the economy resulting in decrease of GHG emissions in Energy sector in 2020. Particularly it affected energy industries, transport and other sectors.

In 2022-2023 energy industry facilities were heavily attacked by Russian Federation. That caused even stronger decline in GHG emissions in the sector.

The GHG emission structure (without LULUCF) is shown in Figure ES.3.1.

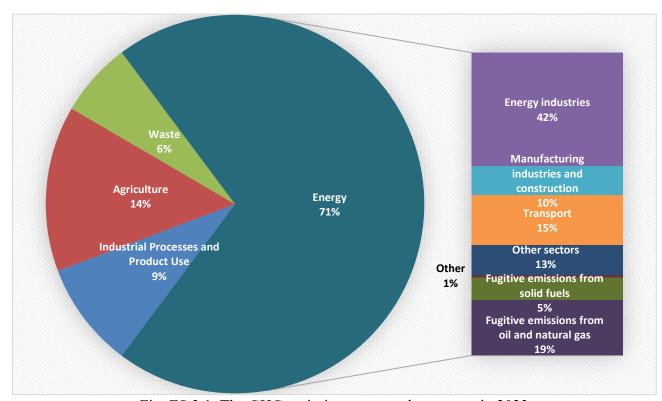


Fig. ES.3.1. The GHG emission structure by sources in 2023

The economic decline that followed the collapse of the USSR in 1991 led to significant reduction of production, energy consumption, and thus to lower CO₂ emissions. In the period between

2000 and 2007, there was some stabilization with a slight increase in production, and in the period since 2008, due to the global financial and economic crisis, there was a drop in production and, thus, in CO₂ emissions. In 2022 emissions in the IPPU sector decreased by 84.2 % compared to the base year. The key reasons for the reduction of emissions are the decreased production level due to the outflow of investment capital, unstable export dynamics, contraction of the domestic market, as well as the discrepancies in established "raw material-production-sales" connections in the regions of the country. Significant impact on industry development has situation on the East of the country. It is not only connected with catastrophic industry production drop in Donetsk and Lugansk regions. For neighboring regions, which had strong production-sales connections with temporarily occupied industrial parts of Donetsk and Lugansk regions, it is challenging to compensate those losses by other supply chains.

As for 2023 the full-scale invasion of Ukraine by the Russian Federation led to a deep crisis in the productional industries, both at the level of producers and consumers, who either completely stopped production/consumption or significantly reduced it, which impacted to a sharp decline of emissions compared to pre-invasion times, as well for base year.

The share of the Agriculture sector in total GHG emissions without LULUCF was 14.2 % in 2023. The major sources of emissions in the Agricultural sector are enteric fermentation and agricultural soils, 20.3 % and 71.4 % of the total emissions in the sector in 2023, respectively. Emissions in this sector decreased by 63.2 % compared to the base year, and increased by 1.4 % compared to the previous year mainly due to the fluctuation of agricultural activities (livestock, harvested area, applied fertilizers etc.) that associated with economic and political factors during the reporting period, and full-scale invasion of Ukraine by Russian Federation.

Changes in emissions over the reporting period in category 3.A Enteric Fermentation (-83.2 and -6.11 % to base and previous years respectively) is associated with the change in the livestock number.

The significant rate of methane emissions fluctuation in the category 3.B Manure Management in comparison with emissions in the other categories in the period of 1990-2023 is directly related to partial replacement in the structure of manure distribution in cattle breeding enterprises of liquid slurry MMS with solid storage: in 1990 the percentage of cattle manure in liquid slurry amounted to 21.0 % of the total produced manure, while in 2023 – to only about 8.1 %.

The conditions that arose as a result of full-scale invasion of Ukraine by Russian Federation are extremely unfavorable for sustainable rice cultivation. Methane emission's fluctuation in category 3.C Rice Cultivation caused by a harvested area variation. In 2023 these values have decreased sharply from 27.7 kha in 1990 to 5.7 kha.

The amount of applied fertilizers, number of harvesting area under the crops and their productivity are the key factors that determine fluctuations of nitrous oxide emissions in category 3.D Agricultural Soils. Full-scale invasion of Ukraine by Russian Federation led to a significant reduction in the area where field crops were grown. Therefore, in 2023, there is a reduction in N₂O emissions by 30.41% compared to the base year and slight increasing by 3.88% compared to the previous year.

The LULUCF sector includes both emissions and removals of carbon dioxide, as well as emissions of CH₄, and N₂O. The LULUCF sector in 2023 is a net sink. Net CO₂ removals in the sector in 2023 is equal to 11.2 Mt CO₂-eq. and in the base 1990 year – 47.9 Mt CO₂-eq. The main reason for such shift is change in agriculture management system on croplands, what has resulted in change from 20.3 Mt CO₂-eq. of removals in 1990 to 24.6 Mt CO₂-eq. of emissions in 2023. Particularly, significant influence has the areas, yield, and structure of harvested crops from those lands, as well as fertilizers applied.

Also, big influence has decrease in peat extraction areas and volumes, what caused decrease in GHG emissions from 12.3 Mt CO₂-eq. in 1990 to 0.1 Mt CO₂-eq. in 2023.

Moreover, rapid changes in land use, especially those resulting in emissions from living biomass, has significant impact on general level of emissions in the sector.

The contribution of the Waste sector in total emissions is 6.4 %. The main source of CH₄ emissions is landfills of municipal solid waste (MSW), and that of emissions of N₂O – human sewage. In relation to the base year, emissions in the sector decreased by 12.5 % in 2023.

Fig. ES.3.2 presents emissions as positive values and removals as negative.

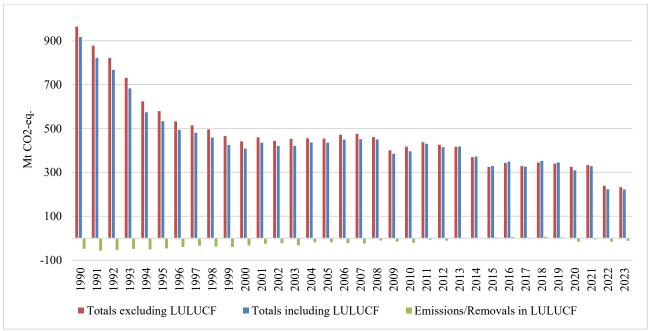


Fig. ES.3.2. Total GHG emissions (+) and removals (-) with and without the LULUCF sector, Mt CO₂-eq.

Table ES.3.1 reflects trends in aggregate GHG emissions by sector for the period of 1990-2023.

Table ES.3.1. Trends in aggregate direct action GHG emissions by sector, Mt CO₂-eq.

Sector	1990	1995	2000	2005	2010	2015	2020	2021	2022	2023	Current year com- pared to base year, %
Energy	740.1	442.5	321.7	323.8	293.5	215.4	213.6	215.4	170.4	164.0	-77.8
IPPU	117.7	57.9	67.2	80.9	75.7	57.1	57.5	60.3	21.6	21.1	-82.1
Agriculture	89.6	62.6	36.8	32.7	31.5	36.2	37.7	41.7	32.5	33.0	-63.2
LULUCF (removals)	-47.9	-46.0	-33.4	-18.2	-21.0	4.1	-15.5	-5.4	-15.7	-11.2	-76.7
Waste	16.9	16.3	15.9	16.5	16.5	16.1	16.4	16.1	14.8	14.8	-12.5
Total (in- cluding LU- LUCF)	916.5	533.4	408.3	435.7	396.2	328.9	309.7	328.1	223.5	221.7	-75.8
Total (ex- cluding LU- LUCF)	964.4	579.4	441.7	453.9	417.2	324.8	325.2	333.5	239.2	232.9	-75.9
Total (in- cluding LU- LUCF), in- cluding indi- rect CO ₂	916.5	533.4	408.3	435.7	396.2	328.9	309.7	328.1	223.5	221.7	-75.8
Total (excluding LU- LUCF), in- cluding indi- rect CO ₂	964.4	579.4	441.7	453.9	417.2	324.8	325.2	333.5	239.2	232.9	-75.9

ES.4 Other Information

This section indicates sulfur dioxide and precursors emissions: nitrogen oxides, carbon monoxide, NMVOC. Precursor emissions take place in the Energy, IPPU, as well as Agriculture and LU-LUCF sectors. Table ES.4.1 reflects trends in summary precursors emissions and sulfur dioxide for the period of 1990-2023.

Table ES.4.1. Summary information on precursors emissions, kt

Gas	1990	1995	2000	2005	2010	2015	2020	2021	2022	2023	Change, %
NO _x	2248.9	1080.7	843.6	879.7	754.5	552.3	554.8	564.8	500.5	500.3	-77.8
СО	4339.6	1720.1	1224.2	1296.6	1167.2	944.7	979.6	773.5	727.3	712.9	-83.6
NMVOC	3539.0	2006.3	1491.9	1551.7	1210.6	857.5	680.6	691.9	638.8	662.7	-81.3
SO ₂	1561.3	821.5	719.6	799.8	841.3	743.7	657.5	663.5	493.1	456.7	-70.7

Comparing with 1990, precursors and sulfur dioxide emissions in Ukraine decreased by 70.7-83.6 %. The main source of emissions of these gases is the Energy sector.

Estimations of indirect N_2O were also conducted which take place in Energy and IPPU sectors. The estimations are presented below, and detailed description as well as full time series are reported in Chapter 9.

Table ES.4.2. Summary information on indirect CO₂ and N₂O emissions, kt

Gas	1990	1995	2000	2005	2010	2015	2020	2021	2022	2023	Change, %
Indirect CO ₂	NO,NE	-									
Indirect N ₂ O	11.8	6.0	4.1	4.3	3.7	2.7	2.6	2.6	2.4	2.4	-79.7

ABBREVIATIONS AND ACRONYMS

2006 IPCC Guidelines – 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories;

2013 Wetlands Supplement – 2013 Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands;

AC – aircraft;

AD – activity data;

AFBR – Average Fuel Brand Representative;

AMS – Automated Monitoring Systems;

API – American Petroleum Institute;

AR – afforestation and reforestation;

ARR – report of the individual review of the annual submission of Ukraine;

BI «NCI» – Budget Institution «National Center for GHG Emission Inventory»;

BOD - Biochemical Oxygen Demand;

BOF – Basic Oxygen Furnaces;

CE – coal equivalent;

Cherkasky NIITEKHIM – Cherkasy Institute of Technical and Economic Information in the Chemical Industry;

CHP – combined heat and power plants;

CKD – Cement Kiln Dust;

CMP – Conference of Parties serving as the meeting of the Parties to the Kyoto Protocol;

COD - Chemical Oxygen Demand;

COP – Conference of Parties;

CRF – common reporting format;

CRT – common reporting tables;

CS – country specific;

CSC – Carbon stock change;

D – deforestation;

DC – decreasing coefficients;

DDB – departure database;

DOM – dead organic matter;

EAF – Electric Arc Furnaces;

EF – emission factor;

ERT – Expert Review Team;

FAO – Food and Agriculture Organization of the United Nations;

FEB – fuel and energy balance;

FM – forest management;

FMRL – forest management reference level;

GDP – gross domestic product;

GDS – system of gas distribution;

GE – gross energy;

GFFM – Gas fire fighting modules;

GHG – greenhouse gas;

GMS – gas metering stations;

GTS – gas transportation system;

GWP – Global Warming Potential;

HP – heating plants;

HWP – harvested wood products;

IA – Inhalation anesthesia;

IAC – Inter-Agency Commission of Climate Change and Ozone Layer Protection;

ICAO – International Civil Aviation Organization;

IE – Included elsewhere;

IEA – International Energy Agency;

IPPU – Industrial Processes and Product Use;

IS – International Standards;

JI projects – Joint Implementation projects;

KP Supplement – 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the KP;

LKD - Lime dust correction factor;

LPG – Liquefied Petroleum Gas;

LULUCF – Land Use, Land Use-Change and Forestry;

MCF – Methane correction factor;

MCTDU – Ministry for Communities and Territories Development of Ukraine;

MDMex – amount of manure excreted by animals in dry matter;

MEEP – Ministry of Energy and Environmental Protection of Ukraine;

MENR – Ministry of Ecology and Natural Resources of Ukraine;

MEPR – Ministry of Environmental Protection and Natural Resources of Ukraine;

Minecoenergo – Ministry of Energy and Environmental Protection of Ukraine;

MMS – manure management system;

MSW – municipal solid waste;

NA – Not applicable;

NAASU – National Academy of Agrarian Sciences of Ukraine;

NASU - National Academy of Sciences of Ukraine;

NCEA – National Classification of Economic Activities:

NCV – Net Calorific Value;

NE – Not estimated;

NG – natural gas;

NID – National Inventory Document;

NIR – National Inventory Report;

NJSC "Naftogaz" – National Joint-stock company "Naftogaz";

NO – Not occurring;

ODU – Oxidised During Use;

OHF – Open Hearth Furnaces;

OPF – One-component polyurethane foams;

PUF – Polyurethane foams;

PUL – limit of potential underestimation;

PV – Photovoltaic cells;

QA – quality assurance;

QC – quality control;

RD – revaluated data;

RPUF – Rigid polyurethane foams;

SAC – air-conditioning systems;

SC "Ukrtransgaz" – State Company "Ukrtransgaz";

SE "DergavtotransNDIproect" - State Enterprise "The State Road Transport Research Institute"

SE "UkrRTC "Energostal" – State Enterprise «Ukrainian Research & Technology Center of Metallurgy Industry «Energostal»;

SECB - Scientific Engineering Centre "Biomass" Ltd.;

SEIA – State Environmental Investment Agency;

SESU – The State Emergency Service of Ukraine;

SKD – Semi Knocked Down;

SOC – soil organic carbon;

SOM – soil organic matter;

SSSU – The State Statistics Service of Ukraine;

TEA – type of economic activity;

TFT-FPD – Flat panel displays on thin film transistors;

TPP – thermal power plants;

UGS – underground gas storages;

Ukrderzhlisproekt – Ukrainian State Project Forest Inventory Production Association;

URIFFM – Ukrainian Order "Sign of Honour" Research Institute of Forestry and Forest Melioration named after G.M. Vysotsky;

USSR – Union of Soviet Socialist Republics;

VPP – vacuum pump plants;

WIP – waste incineration plant;

WWTP – Waste water treatment plant;

XPS – Extruded polystyrene foam

1 INTRODUCTION

1.1 Background information on greenhouse gas inventories and climate change

1.1.1 Background information on climate change

Climate of Ukraine is a temperate continental one, with subtropical Mediterranean climate at the South Coast of the Crimea. Generally, Ukraine gets sufficient amounts of heat and moisture, which create favourable natural and climatic conditions in its territory. However, those conditions have been changing substantially throughout recent decades, bringing about serious threats and challenges for country's sustainable development due to increased risks for human health, life and activities, natural ecosystems, and economy sectors.

The main manifestations of regional climate changes in Ukraine within the global warming processes include significant rise of air temperatures, changes of thermal regime and structure of precipitation, increased number of hazard meteorological phenomena and extreme weather events, which all result in losses for country's population and various economy sectors.

Global warming during recent decades is unequivocal, and the first decade of the 21st century turned out to be the warmest in the period of instrumental weather observations (since 1850). In the Northern hemisphere, the period of 1983 to 2012 was probably the warmest 30-year period in the last 1400 years [20].

Intensive increase of surface air temperatures has been also observed in Ukraine since mid-20th century. The rate of change of the average as well as minimum, and maximum annual temperatures in the country was 0.3°C/10 years in 1961-2013. Since late 1990s, a stable transition of the annual air temperature anomaly to above 0°C is observed (Fig.1.1). The period of late 20th and early 21st century was possibly the warmest one for the duration of instrumental weather observations in Ukraine (since 1890s) [3, 8, 13, 15, 17, 19].

Unfortunately, it is not possible to obtain reliable meteorological data for the whole territory of Ukraine since 2014 after the occupation and attempted annexation of Crimea. Information on hydrometeorological parameters from observation stations is not transmitted to Ukrainian Hydrometeorological Center, and, as a result, unavailable for aggregation. Therefore, the data on regional effects of the global climate change in Ukraine are limited by the year 2013.

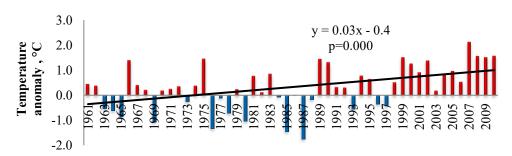


Fig. 1.1. Anomalies of annual air temperature in Ukraine with respect to the 1961–1990 reference period [3]

The summer and winter seasons are the main contributors to the change of annual temperature in Ukraine. Their average temperatures increased by 1.3 and 0.9°C, respectively, in 1991-2013 (Fig.1.2). Also, the air temperature rise was the highest in January (2.3°C) and July (1.4°C). The average temperature in spring increased by 0.8°C mostly due to temperature anomaly observed in March. There was only a minor change of autumn temperature (0.4°C) [3].

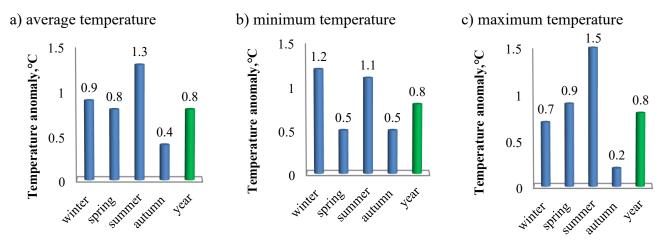


Fig.1.2. Anomalies of average (a), minimum (b) and maximum (c) air temperatures per seasons and year in 1991-2013 with respect to the 1961–1990 reference period [3]

Rise of the average annual and monthly air temperatures was determined by the increase of minimum and maximum temperatures throughout the whole year [3]. Also, as seen from Fig.1.2, a greater growth of minimum temperature is observed during a cold period (by 1.2°C in winter), while a growth of maximum temperature is evident for a warm period (by 1.5°C in summer). The average maximum temperature in spring increased by 0.9°C, while the minimum ones by 0.5°C. Minimum and maximum air temperatures in autumn have changed much less [3].

The change of temperature regime in Ukraine features regional aspects. The common pattern of the annual air temperature change in Ukraine in 1991-2013 with respect to the reference period is a growth in the magnitude of temperature anomalies moving from the south to the north and northeast [3]. Rising of annual air temperatures in the country's northeast was significantly greater than averaged over the whole country and made 1.2-1.4°C, while the magnitude of such changes was half as much (0.6°C) in Ukraine's south and in the Carpathian region. Annual air temperature at the South Coast of the Crimea changed insignificantly [3] (Fig.1.3).

Change in the isotherm positions reflects the spatial features of temperature regime change. Thus, the annual isotherms of 6°C and 7°C passed through the northeastern part of Ukraine in 1961-1990, isotherm of 8°C was located in the central regions of the country, and 9°C – in the southern regions. In 1991-2013, each isotherm shifted by 1°C almost throughout the territory of Ukraine [3], but the greatest changes are observed in the far northeast, where the isotherms of 6°C and 7°C are no longer presented, the isotherm of 8°C moved 300-400km northwards being passed through the northern regions of the country, the isotherm of 8°C instead of 7°C emerged in the west, and the isotherms of 9°C and 10°C instead of 8°C and 9°C appeared in the south (Fig.1.3).

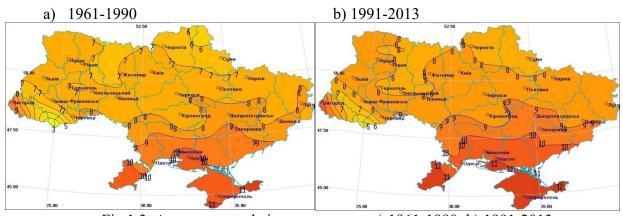


Fig.1.3. Average annual air temperatures: a) 1961-1990; b) 1991-2013

The seasonal changes of temperature regime in Ukraine also demonstrate regional variations. Winters in the second half of the 20th through early 21st century became warmer over the whole territory of Ukraine (Fig.1.4). The average winter air temperature increased by more than 1°C in 1991-

2013 compared to 1961-1990 over a significant part of country's territory [3]. In the north of the country, this growth exceeded 1.4°C, and positive temperature anomalies amounted to 1.6°C and above in the northern Sumy and Chernihiv oblasts. In the Autonomous Republic of Crimea, winter temperature increased by 0.2-0.6°C. Rising of average winter air temperature was caused mainly by the significant growth of minimum temperature. Positive anomalies of the average maximum temperature are also observed in the whole territory of the country in winter, but they are significantly lower than those of the minimum temperature.

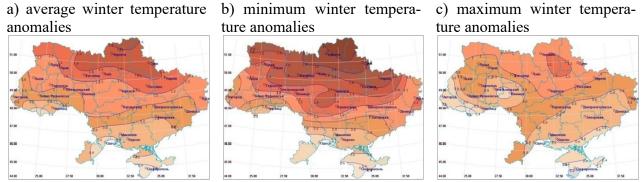


Fig. 1.4. Anomalies (°C) of average, minimum and maximum winter air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Spring season became warmer in 1991-2013 compared to 1961-1990 almost over the whole territory of Ukraine with the exception of the southernmost parts of the Crimea [3]. The highest growth of average spring air temperatures (1.0°C and above) is observed in the far northeast of the country and in the Zhytomyr region (Fig.1.5). Some lowering of temperatures is observed in the Crimea, especially in the south of the peninsula. The average minimum air temperature in spring increased almost over the whole territory of the country, except the Luhansk oblast. Two regions stand apart, viz., the Volhynian-Podolian Upland and the left bank of the Dnipro River, where those changes are the most significant and make 0.6-0.8°C and above. The average maximum spring temperatures increased in the whole territory of the country in 1991-2013. The most significant changes are observed in the north, west, and southwest of the country amounting to 1.0-1.2°C and above [3].

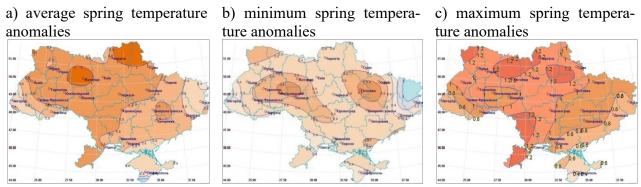


Fig. 1.5. Anomalies (°C) of average, minimum and maximum spring air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Summers were much hotter in Ukraine compared to reference period in the second half of the 20th through early 21st century (Fig.1.6). A significant rise in the average summer air temperatures is observed ranging from 0.8-1.0°C in the east of the country to 1.4°C and above in the Transcarpathian region, in the Odesa oblast, and the South Coast of the Crimea [3]. Rise of the maximum summer air temperatures is significantly greater and intensifying from the east to the west and southwest of the country from 1.2-1.4°C to 1.6-1.8°C and above. The minimum summer air temperatures were also rising over the whole territory of the country. The anomalies of the average summer minimum temperatures were growing from the north and northeast to the south and southwest from 0.4-0.8°C to 1.2°C and above in 1991-2013 (Fig.1.6).

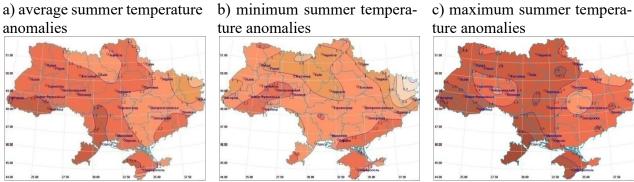


Fig. 1.6. Anomalies (°C) of average, minimum and maximum summer air temperatures in 1991-2013 with respect to the 1961–1990 reference period

Autumn temperatures also increased in Ukraine in 1991-2013 compared to the reference period, however, those changes are minor and their maximum values do not exceed 0.5°C [3]. Such changes are observed in the northeastern, central, eastern, and southern regions of Ukraine. Changes of the minimum temperature are inhomogeneous over the territory with the maximum values of positive anomalies reaching 0.6°C and above in the Volhynian-Podolian Upland and the northern part of the Volynska oblast, left bank of the Dnipro River, and north coast of the Sea of Azov [3]. The average minimum air temperatures in autumn changed marginally or even decreased in some areas in the northwest and far east of the country. Changes in the average maximum autumn temperatures were negligible in recent decades [3] (Fig.1.7).

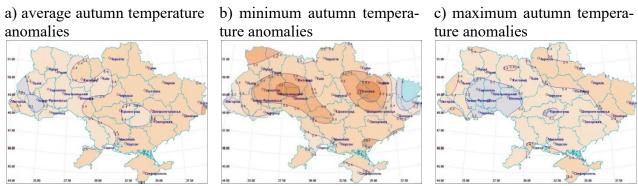


Fig. 1.7. Anomalies (°C) of average, minimum and maximum autumn air temperatures in 1991-2013 with respect to the 1961–1990 reference period

The trend is also observed in Ukraine towards increasing the duration of a warm period when average daily temperatures exceed 0°C [8]. In the Southern Steppe, in the Crimea and Subcarpathia, the warm period has become nearly two weeks longer (12 days) compared to the reference period. Moving further north, the period duration is growing. These changes already amount to 15-18 days in the Forest Steppe zone, and 22-24 days in the western and eastern Polissia. The greatest changes were observed in the central Polissia, where the warm period duration amounted to 278 days at the beginning of the 21st century, which is 40 days longer than the baseline long-time average value. Significant changes in the duration of the warm period were due to its earlier start in spring (by 13-19 days) and later end in all regions of Ukraine [8, 15].

Significant rising of air temperature in the warm period has led to an increase in the number of days with mean daily air temperatures above 15°C and, consequently, to an extended duration of the recreation period. A trend of increasing the frequency and duration of periods with high air temperatures (above 25, 30, 35°C – heat waves) is also observed, that significantly influences the human health and livelihood in Ukraine [4, 8, 15].

Rising of air temperatures in the warm period is not only observed near the ground, but also in the lower troposphere and leads to an increased convection intensity, and, consequently, to increased frequency and intensity of convective weather phenomena, such as thunderstorms, heavy rainfall, hail, squalls, and whirlwinds [1, 2, 6, 13, 15, 19]. These phenomena are sometimes recorded

in the months and seasons, when they did not occur before, and extend to the territories, where they have never been observed.

Due to rising of both the minimum and maximum air temperatures in the cold period, the number of days with subzero temperatures, freezing cold days with minimum temperatures dropping below -10, -20, -25°C, as well as the duration of extremely cold periods have decreased [17]. Rising of air temperatures in the cold period has significantly impacted on the frequency and intensity of extreme weather events and natural disasters of the cold period, such as shower snowfall, sleet, glaze and rime deposits. A trend towards their increase is observed in many regions of Ukraine [2, 6, 13-15, 19].

In the recent decades, the average and maximum wind speed is lowering that leads to decreasing the frequency of such related hazardous weather phenomena as blizzards and dust storms [2, 6, 13, 15, 19]. Reduction of wind speed accompanied by rise of air temperatures results in reduction of cold discomfort in winter and reduced severity of winters. At the beginning of the 21st century, winters have changed from the "moderately severe" to "lightly severe" category over the significant part of the Ukrainian territory.

In contrast to air temperatures, the change in annual precipitation sums was negligible in Ukraine (3-5%). The variations of annual precipitation in the recent period were within the climatic normal variability, but the amplitude of inter-annual variations decreased [4-6, 8, 13, 15, 19]. Notwithstanding the insignificant changes in the annual precipitation sums, their seasonal and monthly values have been redistributed. The greatest changes were observed in autumn, when a significant increase in the amount of precipitation was recorded (about 20%) with maximum in October. The winter precipitation decreased slightly. At the same time a number and intensity of hazardous and heavy precipitation events increased, especially in the warm period [2, 5, 6, 8, 13, 19].

Rising of air temperatures and non-uniform distribution of precipitation events, which are characterized as shower and local in the warm period and fail to ensure efficient accumulation of moisture in the soil, have led to an increased frequency and intensity of drought phenomena. Combined with other anthropogenic factors, this could result in growth of the area of risky farming and even desertification of certain areas in the southern regions of Ukraine. In the last 20 years, the incidence of droughts has nearly doubled. It is observed a dangerous trend towards increasing a occurrence of droughty conditions even within the zone of sufficient moistening, which covers the Polissia and northern part of the Forest Steppe [8,12,15,18]. In particular, the paper [22] provides an assessment of the degree of drought intensity for the territory of Ukraine based on the analysis of the satellite drought index ID (Index of Drought) for the period 2000-2020. The analysis revealed changes in biodiversity of ecosystems and, accordingly, the processes transformation of Ukraine's physical and geographical zones. Particularly, semi-desert zone arose in the South of Ukraine that did not exist before. The borders of other zones moved to the North and West (fig. 1.8).

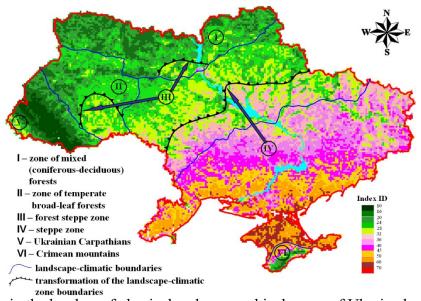


Fig. 1.8. Changes in the borders of physical and geographical zones of Ukraine based on the analysis of the satellite drought index ID for the periods 2015-2020 [22]

The change of the temperature and precipitation regimes impacts on the physiological processes, which determine the life of the forest flora and fauna, leads to respective changes in the biota, which is a sensitive indicator of environmental conditions [6]. Phenological changes have been recorded in Ukraine, such as earlier flowering and shedding of leaves, and repeat development. The geographic ranges of plant species are changing significantly, and invasive species appear and spread rapidly. The latter include numerous hazardous weeds, allergens, agents of disease [6].

Rising of air temperatures accompanied by deficit of moisture has an adverse effect on woodlands, especially on growth of trees, increased incidence of diseases, and lead to drying of forests. The hazard of wild fires is growing. This hazard is exacerbated by increased thunderstorm activity [3,4,7,16].

The temperature regime change has a significant impact on energy supplies for human life and activities of the population. A shortening of the cold period and significant rising of winter air temperature results in a reduced duration of a heating season and lower demand for the thermal energy generation [8, 15]. At the same time, rising of air temperatures in the warm period leads to increased electricity consumption for cooling and air conditioning.

The regional effects of climate change are of special interest, which currently goes beyond the scope of scientific issues alone. Since different types of ecosystem response to the transformation of planetary processes, including those caused by anthropogenic effect, are recorded in different areas, there arises an acute need to identify their key trends and regularities. Such analysis is necessary for increasing the accuracy and reliability of forecasting all possible regional climate changes to address comprehensive applied tasks and implement local programs of adaptation to the climate change impact on climate dependent economy sectors.

To carry out a comprehensive analysis of possible regional differences of climatic conditions in Ukraine in the 21st century, the ensembles of ten regional climate models (RCMs) for air temperature and of four RCMs for precipitation sums from the European project FP-6 ENSEMBLES for the scenario of greenhouse gas emissions IPCC SRES A1B have been elaborated. Absolute values for the forecast periods have been adjusted based on the simulated changes and the data of the gridded dataset E-Obs for the recent period of 1991-2010, employing the additive and multiplicative methods. The RCM ensembles have been developed by researchers of the Ukrainian Hydrometeorological Institute and identified as being optimal for the analysis and forecasting of the regional features of respective climate characteristics over the territory of Ukraine [21]. The analysis under climate projections has been conducted based on all nodes in the model grid of 25x25km separately and averaging over five selected regions and the country's territory in the whole. Individual regions West, North, East, South, and Center have been identified based on similarity of physiographic conditions and accounting for the country's administrative and territorial structure. Such zoning will contribute to subsequent use of research findings for strategic planning of socioeconomic development of individual regions, as well as for development and implementation of the climate change mitigation and adaptation actions.

Three 20-year forecast periods have been examined: 2011-2030, 2031-2050, and 2081-2100. The analysis of projections of average air temperatures has shown (Fig.1.9) that in the nearest period of 2011-2030, the average temperature over the territory of Ukraine will rise by 0.4-0.5°C, ranging from 0.1°C in the western region in spring and up to 0.8°C in the northeast in summer. In the next 20-year period (2031-2050), the average temperature for the territory will increase by 1.2-1.5°C against the present climate, ranging from 0.7°C in the west in spring and to 1.9°C in the northeast in winter. By the end of the century (2081-2100), the average temperature for the territory will rise by 2.9-3.3°C, with the minimum value of 2.1°C in the western region in spring, and the maximum temperature increase by 4.3°C in the southern region and in the south of the eastern region in summer. The smallest changes are projected for the western region in all seasons, as well as for all regions in spring for the whole century [9, 10, 11].

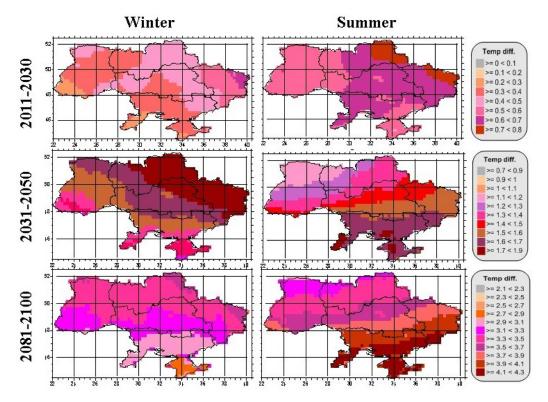


Fig. 1.9. Changes of air temperatures in winter and summer during the three forecast periods (2011-2030, 2031-2050, and 2081-2100) against the present period of 1991-2010 for ensemble with ten RCMs

The main trends of the projected climate conditions in Ukraine in the 21st century are as follows. There will be no winter climatic season in the far west and southern region by the end of the century, as average temperatures in winter months above 0°C have been obtained. At the same time, average monthly summer temperatures above 25°C are projected for the central, eastern, and southern regions by the end of this century. As is apparent from the obtained values, the change of climatic conditions will significantly impact the duration of climatic seasons in Ukraine in the future.

As regards the moisture regime, both increase and decrease of average monthly and seasonal precipitation is projected for the territory in all the reviewed periods. In the nearest period (until 2030), precipitation will be decreasing by up to 20 % in the central, northern, and southern regions in summer and autumn, and will be increasing by up to 42 % in the west, north, and east in winter and spring. By the middle of the century (2031-2050), precipitation will be decreasing by up to 30 % in the central, southern, and eastern regions in summer, and increasing by up to 50 % in the western, northern, and eastern regions and in the eastern part of the southern region in winter and spring. By the end of the century (2081-2100), precipitation will be decreasing by up to 40 % in the southern, central, and eastern regions in summer and will be increasing by more than 40 % and up to 50 % in the west and north in the winter and spring seasons. Therefore, the maximum increase of average monthly precipitation is expected in winter and spring in the country's west and north in all the forecast periods. A decrease in the amount of precipitation is projected in the summer and autumn seasons in the central, southern, and eastern regions in all future periods.

1.1.2 Background information on greenhouse gas inventories

Ukraine signed the UNFCCC in June 1992 year, and became Annex I Party of the UNFCCC in August 1997 year.

According to Decision 3/CP.5 adopted at the 5th session of the UNFCCC Conference of Parties, each of Annex I Parties must submit its annual National Inventory Report, which includes detailed and complete information for the entire time series in accordance with the guidelines of the UNFCCC.

The National Inventory Report was prepared in accordance with the revised "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories" (FCCC/CP/2013/10/Add.3), taking into account the structure of the report proposed in the appendix to Annex I of Decision 24/CP.19 ("An outline and general structure of the national inventory report") and "Modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement" contained in the Decision 18/CMA.1.

GHG emission assessment in Ukraine was carried out under general methodological guidance of the 2006 IPCC Guidelines.

Submission to the UNFCCC Secretariat contains also GHG inventory results in the common reporting tables (CRT) according to the adopted format by the Decision 5/CMA.3.

The inventory covers emissions of seven GHGs: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆), nitrogen trifluoride (NF₃).

There is data on precursor emissions also - carbon monoxide (CO), nitrogen oxides (NO_x), and non-methane volatile organic compounds (NMVOCs), as well as data about emissions of sulfur dioxide (SO₂).

To bring emissions of various gases to the carbon dioxide equivalent, the inventory used IPCC data on values of the global warming potentials of GHGs, contained in AR5 in accordance with the guidance provided by the Decision 18/CMA.1 and 6/CP.27.

1.2 Institutional arrangements for National Inventory Report preparation, including legal and procedural arrangements for inventory planning, preparation, and management

1.2.1 Overview of institutional, legal, and procedural aspects of preparing the National Inventory Report

In order to ensure regulatory and organizational support for GHG inventory, the President Decree was signed, and several Resolutions of the Cabinet of Ministers of Ukraine were adopted. According to Decree of the President of Ukraine of September 12, 2005 of No. 1239/2005 the MENR is authorized as the coordinator of activities for the implementation of Ukraine's commitments under the UNFCCC and Kyoto Protocol to it. To execute the Decree, the Cabinet of Ministers of Ukraine adopted two Resolutions.

Resolution of the Cabinet of Ministers of Ukraine of April 21, 2006 of No. 554 established procedures for the national anthropogenic GHG emissions and removals not controlled by Montreal Protocol evaluation system, and defined its objectives and functions. Later this Resolution of the Cabinet of Ministers of Ukraine was amended (in line with the new Resolutions of the Cabinet of Ministers of Ukraine of July 16, 2012 No. 630, of December 04, 2019 No. 630, of September 09, 2020 No. 826). The changes mainly concerned the ways of the national system's functioning – additional information (data) request procedure for estimation of anthropogenic GHG emissions and removals, indicating the limited timing for data transfer (provision) by providers (in this case, these are public authorities and institutions, plants, etc.) – within 30 days from the date of receipt of the request.

In turn by the Order of the MENR of January 31, 2017 No. 35 «On approval of the Structure of the Ministry of Ecology and Natural Resources of Ukraine», amendments were introduced that influenced the structure of the central apparatus of the MENR, namely the Department of Climate Change and Ozone Layer Protection was set up.

According to Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MENR to the Ministry of Energy and Environmental Protection of Ukraine (hereinafter – MEEP).

In turn by the Order of the MEEP of February 11, 2020 No. 83 «On approval of the Structure and number of independent structural units of the MEEP», amendments were introduced that influenced the structure of the central apparatus of the MEEP, namely the Directorate of Climate Change and Ozone Layer Protection was set up.

According to Resolution of the Cabinet of Ministers of Ukraine of May 27, 2020 No. 425 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MEEP to the Ministry of Energy of Ukraine and create a Ministry of Environmental Protection and Natural Resources of Ukraine (hereinafter – MEPR).

In accordance by the Order of the MEPR of July 08, 2020 No. 2 and the Order of the MEPR of August 29, 2022 No. 327, the new structure was approved, namely the Department of Climate Policy and Ozone Layer Protection was set up.

In accordance by the Order of the MEPR of August 29, 2022 No. 327 in redaction of December 01, 2022 No. 511, the new MEPR apparatus structure was approved, namely the Department of Industrial Pollution Prevention and Climate Policy was set up.

In turn by the Order of the MEPR of February 06, 2025, the new structure was approved, namely the Climate Change Unit.

For more details on these functions, see the information in the Generalized Scheme of the National GHG Inventory System in Ukraine (Fig. 1.10).

1.2.2 Planning, preparation, and management of the process of greenhouse gas inventory

One of foundational documents within the system of inventory process planning, including preparation of the NIR with its further submission and support during review by the UNFCCC Secretariat, as well final archiving, is Order of the Ministry of Environmental Protection of May 31, 2007 of No. 268 About approving the Work Plan for Annual Preparation and Maintenance of the National Inventory of Greenhouse Gas Emissions and Removals and the Work Plan to Maintain and Control the Quality of Activity Data and Calculations for the Annual Preparation of the National Inventory Report of Emissions and Removals of Greenhouse Gases.

Until September 09, 2014, the SEIA of Ukraine served as the only national body, that was responsible for preparation of the NIR and its submission to the Secretariat of the UNFCCC. In line with the functions delegated to it, the SEIA of Ukraine carried out general planning of the inventory, as provided for in Resolution 19/CMP.1. In particular, it defined and allocated specific responsibilities in the inventory development process, including duties directly associated with the choice of methodologies, collection of primary data, data on activities of ministries, agencies, and other entities, processing and archiving of data, as well as Quality Assurance and Quality Control procedures. As part of the planning, the SEIA of Ukraine considered the ways to improve the quality of functioning of the National System for estimating GHG emissions and removals and of preparing the NIR. For that operational and medium-term planning were applied.

According to Resolution of the Cabinet of Ministers of Ukraine of September 10, 2014 No. 442 «On Optimizations of Central Executive Authorities», the decision was made on elimination of the SEIA of Ukraine and delegating its functions to the MENR. Consequently, after amendments to the Ministry's apparatus by Order of the MENR of January 31, 2017 No. 35 the Department of Climate Change and Ozone Layer Protection was formed. The Department of climate policy functioned before October 31, 2016 in accordance with the order of the mayor of May 12, 2015 № 147.

According to Resolution of the Cabinet of Ministers of Ukraine of September 02, 2019 No. 829 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to rename of the MENR to the MEEP.

Consequently, after amendments to the Ministry's apparatus by Order of the MEEP of February 11, 2020 No. 83 the Directorate of Climate Change and Ozone Layer Protection was formed.

According to Resolution of the Cabinet of Ministers of Ukraine of May 27, 2020 No. 425 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to create a MEPR. In turn by the Order of the MEPR of July 08, 2020 No.2, the new structure was approved, namely the Department of Climate Policy and Ozone Layer Protection was

set up. Subsequently, by Order of the Ministry of Natural Resources dated August 29, 2022 No. 327 in redaction of December 01, 2022 No. 511, the new MEPR apparatus structure was approved with the Department of Industrial Pollution Prevention and Climate Policy. In turn by the Order of the MEPR of February 06, 2025, the new structure was approved, namely the Climate Change Unit.

Creation, development, and functioning of the national system of inventory of anthropogenic GHG emissions and removals are governed by the applicable Ukrainian legislation. The National Inventory System includes:

- > State and private organizations and enterprises, as well as private entrepreneurs and individuals who being primary subjects of holding or control of GHG sources and sinks shall submit activity data for GHG inventory, as well results of its production activities by type of products;
- ➤ Public and private corporations being primary subjects of holding or control of GHG sources and sinks, or including primary subjects of primary subjects of holding or control of GHG sources and sinks, which submit activity data for GHG inventory within the corporation by individual GHG sources or sinks and their categories, as well as results of its production activities by type of products;
- Industrial, regional, and local governmental agencies, which in line with the acting regulatory framework of Ukraine and within their authority shall collect statistical information and submit to the request of the MEPR respective aggregated activity data for GHG inventory in accordance with the forms agreed with the Department of Climate Policy and Ozone Layer Protection of MEPR;
- ➤ Research institutions involved into collection and preliminary processing of data on GHG emissions and removals or into development of calculation methods;
 - independent experts and organizations involved in public discussion of the inventories;
 - > civic and non-governmental organizations involved in public discussion of inventories;
- ➤ the Budget Institution «National Center for GHG Emission Inventory», which in cooperation with other actors in the systems, conducts inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level;
- ➤ Inter-Agency Commission on implementation of the UNFCCC, which reviews and approves reporting documents submitted to the UNFCCC Secretariat;
- ➤ MEPR is the main body in the system of central executive authorities regarding development and enforcement of the national policy in the field of environmental protection, provides legal regulation within this area, reviews and approves reporting documents submitted to the UNFCCC Secretariat. Within its assigned tasks, the MEPR provides is responsible for inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level in order to prepare the NIR, as well as approval and submission to the UNFCCC Secretariat of the NIR. As a structural unit of the MEPR, the Climate Change Unit is still performing its duties.

Funding of preparation of the NIR is provided from the state budget of Ukraine.

Preliminary version of the National Inventory Report and the CRT tables are published by the MEPR on its official website to inform public organizations and all stakeholders so that they could submit their comments and suggestions for improvement. Simultaneously with uploading of the document on the website for free access, requests are sent to independent experts (senior specialists) in the field of GHG inventory in order to obtain expert judgements on particular categories, as one of the components of QA procedures. Stakeholder organizations and experts can submit their comments and suggestions to the draft version of the National Inventory Report within 30 days, which is followed by their presentation for public hearing (discussion). The final version of the NIR – revised and updated with regard to received recommendations – is submitted for consideration by the Inter-Agency Commission of Climate Change and Ozone Layer Protection in accordance with Resolution of the Cabinet of Ministers of Ukraine of September 23, 2020 of No. 879. As a result of consideration by the Inter-Agency Commission, the MEPR submits the official version of the NIR and CRT tables to the UNFCCC Secretariat.

A generalized diagram of the National Inventory System in Ukraine is shown below in Fig. 1.10.

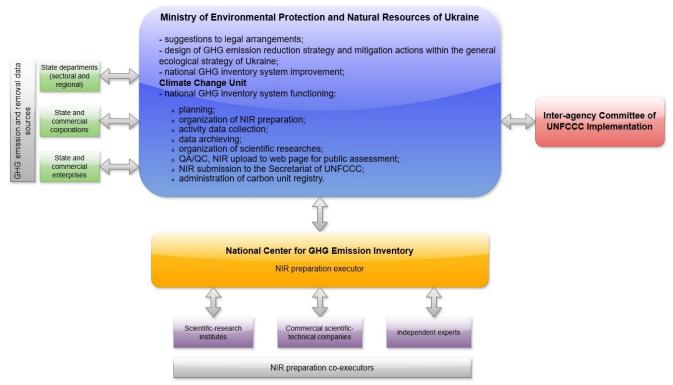


Fig. 1.10. Generalized diagram of the National Inventory System in Ukraine

Capacity building and knowledge exchange

In the framework of the project Clima East CEEF2015-041-UA "Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of motor fuels in the transport sector" performed by SE «GosavtotransNIIproekt», a science-based platform was developed for the transition to higher levels of GHG emissions calculation in category 1.A.3.b Road Transportation, taking into account national specific features of fuel use by mobile sources is under formation (ERT Note, «Report on the individual review of the inventory submission of Ukraine submitted in 2015", paragraph E.13, p. 8).

Scientific research "Verification of motor fuel consumption by road transport within the context of annual National Inventory Report preparation" was accomplished by the Institute of Industrial Ecology. The work was performed on the contract between the Institute of Industrial Ecology and Embassy of Denmark in Ukraine acting on behalf of the Danish Energy Agency. The research performed calculation of physical and chemical properties of fuels (gasoline, diesel fuel, LPG, LNG). Fuel consumption by road and off-road transport was also estimated, what has allowed to perform GHG emission calculation by Tier 3 method for entire time series for years 1990-2016.

Scientific research "Development of Data Base on Energy Statistics of Ukraine for 1990-2016 and Improvement the Transparency of National Reporting on GHG Emissions in Energy Sector" was accomplished by the non-governmental organization "Bureau of integrated analysis and forecasting". The work was performed on the contract between the non-governmental organization "Bureau of integrated analysis and forecasting" and Royal Danish Embassy in Ukraine on behalf of Ministry of Energy, Utilities and Climate of The Danish Energy Agency. The research developed a Data Base on Energy Statistics of Ukraine for 1990-2016 and Improvement the Transparency of National Reporting on GHG Emissions in Energy Sector.

Within the framework of expert facility project Clima East, supported by EU, two projects were accomplished in LULUCF sector: "Improving reporting system for carbon storage and emissions accounting from harvested wood products (HWP) in the National GHG inventory" and "Development of the GHG emissions inventory in the forestry sector in order to improve national reporting of Ukraine according to the requirements of the UNFCCC and the Kyoto Protocol".

The first report aimed in developing recommendations for GHG inventory methodology on HWP best suited for Ukrainian conditions. Also, recommendations were developed to accommodate

national statistics into methodology, as well as to the national statistics in order to be more consistent with the methodology.

The second report provided recent scientific approach towards Carbon stock change estimations, developed by International Institute for Applied System Analysis, Austria. The experts made pilot calculations based on state forest accounting of 2011 year. Moreover, recommendations were developed on possible alternative approaches of monitoring of GHG emissions and removals in forests, as well as to forest policy makers with regard to future forest inventories.

1.2.3 Quality assurance, quality control and planning of inspections. Details of the QA/QC plan

QA/QC in the national inventory system is based on planning, preparation, quality control and subsequent improvements, and is an integral part of the inventory process.

For this purpose, regular checks of transparency, consistency, comparability, completeness of data, calculations, measures to identify and eliminate errors, as well as to store inventory information are conducted (performed), which represent the QA/QC system.

The system complies with Tier 1 procedures described in Chapter 6, «Quality Assurance/Quality Control and Verification» of 2006 IPCC Guidelines, and expanded with a number of QA/QC procedures specially designed taking into account sector specifics in accordance with Tier 2.

For more detailed information on implementation of QC procedures for individual categories, see the relevant sections of the NIR.

1.2.3.1 QA/QC procedures

In the framework of the National Inventory System, throughout the NIR development cycle, including its final submission to the UNFCCC Secretariat, implementation of QA/QC procedures is an important component, compliance with which is provided and clearly defined by the internal documents – the general plan of measures for the development of NIR and additional plan for QA/QC. More specified information can be found in Chapter 1.3.2 «Planning and control of activities on greenhouse gas inventory and report development».

Organization of this work is regulated in accordance with the regulations, guidelines, requirements, and procedures outlined in the 2006 IPCC Guidelines and consideration of recommendations provided by the ERT, authorized by the Secretariat of UNFCCC.

It should also be noted that in Ukraine there are further efforts being made to implement requirements of International Standards (IS) ISO 9000 into the National Inventory System.

Constantly in the action plan for the NIR preparation on the stages of QC special attention is given to errors likelihood minimization in the calculations, correspondence of data in the NIR and CRT tables in all the sectors. In particular, enhancements have been considered and introduced into QC reporting forms.

The QA/QC process at all stages of the work performed with documentation and final archiving of all information, including results of support of NIR through all stages of the ERT review.

General view of the QA/QC system for the NIR is presented in Fig. 1.11.

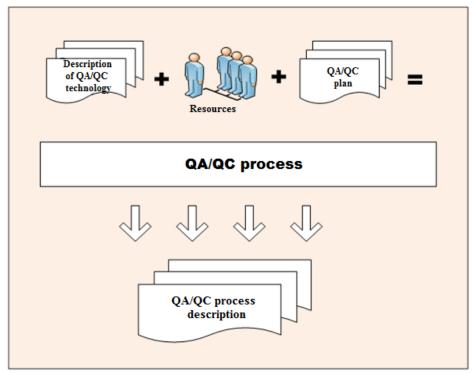


Fig. 1.11. The quality assurance/control system of the NIR

The QA/QC system of Ukraine includes the following basic components:

- QA/QC technology, which determines the QA/QC methods and QA/QC supporting tools.
- **Resourcing** experts, involved in implementation of the QA/QC plan with the QA/QC technique available in accordance with distribution of the roles, described in «Roles and Responsibilities».
- QA/QC plan, which is maintained by the GHG inventory QA/QC manager, determines the specific quality objectives and required activities to ensure QA/QC. The plan sets out quality assurance and control activities, responsibilities, and timing for performance of the necessary QA/QC activities.
- QA/QC process (implementation), which includes physical conducting of QA/QC based on the available technique with the available resources in accordance with the plan for all the phases of data collection, compilation, public discussion, independent review, and submission of annual emission assessment cycle reporting.
- Description of the QA/QC process documenting and archiving, which provide information about the process at a certain detailing level delivery for further use.

The Scope of the QA/QC plan

The QA/QC plan covers all activities at all stages of QA/QC that are integral parts of the process of development and review support of the National Inventory Report.

Quality objectives

The key objective of the QA/QC plan is to ensure that estimates of GHG emissions and removals are:

- > **Transparent** regarding data sources, used to perform the estimates, calculation methods applied, as well as documentation of QA/QC activity implementation process;
- ➤ Complete, i.e. they will include all possible emissions/removals, socio-economic indicators and policies, as well as activities for all the required years, gas categories, and scenarios;
- ➤ Consistent taking into account emission trends for the entire time series and with regard to internal consistency of emission data aggregation;
- ➤ Comparable with other emission estimates provided through use of new reporting templates, correct level of IPCC categories etc.;
 - Accurate in application of methods and use of the appropriate IPCC recommendations.

Roles and responsibilities

In the process of implementation of the various QA/QC activities, specific responsibilities are assigned to the various roles in the process of emission assessment:

- ➤ QA/QC manager supports the QA/QC plan, establishes quality objectives, coordinates QA/QC activities, manages data supplies from providers, sectoral experts, and independent experts, supports cross-cutting QA/QC activities;
- ➤ Sectoral experts conduct sector-specific QC activities and report to the QA/QC manager. Sectoral experts also must cooperate with data providers and other stakeholders to review estimations and conduct QA/QC for data provided;
- > Outsourced expert consultants are the organizations and individuals who perform QA/QC consultancy activities;
- > External expert reviewers are the organizations and individuals who perform peer reviews and provide feedbacks on NIR by specific sectors.

1.2.3.2 Quality control and documentation

QC of the NIR takes place throughout the data collection, compilation, and reporting cycle. The data check system used in the NIR is illustrated in Figure 1.12.

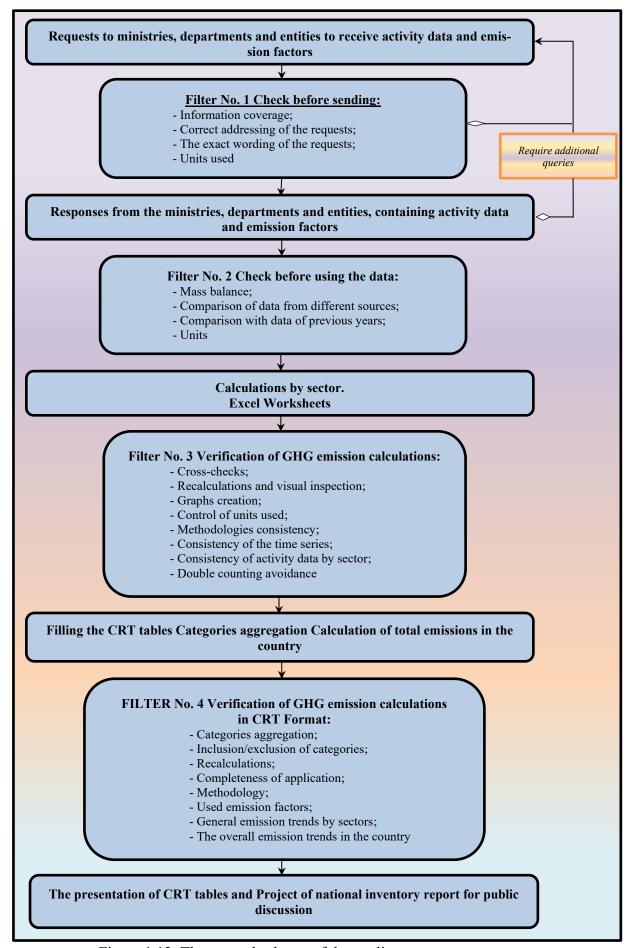


Figure 1.12. The general scheme of the quality assurance process

Checks and documentations are supported by data storage and processing designed specifically for NIR compilation, which include:

- External information database, which is part of the data repository, data storage. It contains information about suppliers of activity data, detailed specification requirements for data, including templates and data provision procedure, as well as incoming activity data, provided by suppliers for the NIR to estimate emissions in the process of inventory compilation. All input and output information for each annual inventory report are stored in the relevant sections of the repository.
- ➤ Individual data processing and QC performance tools that are used to convert the majority of input data into the corresponding aggregated activity data and, using emission factors, to estimate emissions in Ukraine.

QC procedures may be general with possible broadening to procedures of particular categories. They include sector-specific checks (e.g. the energy/weight balance, country-specific emission factors).

Data processing tools are electronic spreadsheets that include the information necessary to perform OC procedures.

➤ The key information database is used to store all emission estimates for reporting, including the CRT format, responses to non-regulated questions, and description of review or recalculation procedures. This guarantees it that conversion of historical data can be easily traced and summarized in the reports. Most of the data are imported into the database directly from data processing tools (the spreadsheets described above). All the key data for each annual NIR are stored in the relevant sections of the repository.

Archiving. As part of inventory management, good practice recommends documenting and archiving all information required to prepare national GHG inventory estimates in accordance with requirements of the 2006 IPCC Guidelines, as well as timely provision of required information requested by the ERT.

At the end of each annual reporting cycle, all repository files, spreadsheets, regulatory and methodological documents, electronic data sources, notification records, paper data sources, output files representing all the calculations for complete time series «freezing» and archiving. Electronic data are stored on hard disks, for which backup is performed regularly. Paper information is archived in a shelved storage, while the repository stores an electronic record of all archived elements.

In general QC measures prescribed in the QA/QC plan are based on 2006 IPCC Guidelines (Chapter 6, «Quality Assurance/Quality Control and Verification», Tab. 6.1) and are described in Table 1.1.

Table 1.1 Types of quality control activities

	Type of control activity
1.	Check whether assumptions and criteria for the selection of activity data, emission factors, and other estimation parameters were documented
2.	Check for errors in data input transition and references
3.	Check the correctness of emissions and removals calculations
4.	Check whether parameters and units are correctly recorded and that appropriate conversion factors are used
5.	Check the integrity of database files
6.	Check for consistency in data between source categories
7.	Track of inventory data correctness among processing steps
8.	Check whether uncertainties in emissions and removals are estimated and calculated correctly
9.	Conduct time series consistency check
10.	Conduct completeness checks
11.	Conduct trend checks
12.	Conduct review of internal documentation and archiving

The development of NIR is performed with checks according to the scheme of Fig. 1.13 with types of QC activities described in table 1.1.

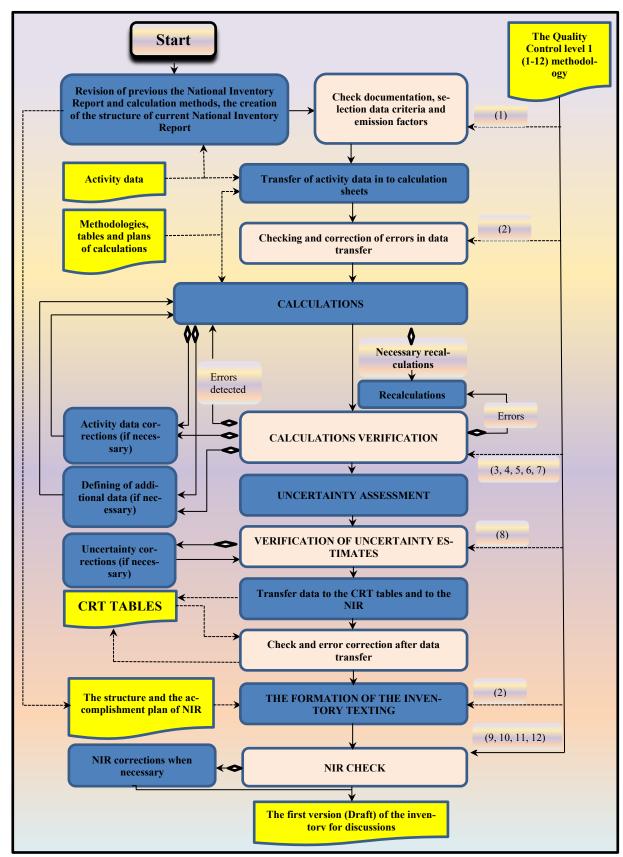


Figure 1.13. Diagram of general development and QC processes

QC procedures were carried out during preparation of the NIR by its developers, involving, if necessary, experts from other organizations for consultancy and required additional information. Within the framework of QC, the approved reporting forms were used in the form of reports, notices and electronic files (tables).

Sector experts have carried out the main part of QC procedures, particularly comprehensive checks of source data, emissions factors, calculations, completeness of documentation etc. The entity responsible for QA/QC inspected general trends, compliance with the methodologies used, etc.

Sectoral experts also carried out detailed checks for specific source categories (Tier 2), especially for the key ones, namely:

- 1) comparison of activity data, emission factors and volumes for the entire time series. Major changes were identified and analyzed (more than 5 %) in different data sources, the results using the current and simplified methods, etc.
- 2) comparison of the results of emission calculation obtained using different approaches (for example, comparison of calculations using the «top down» and «bottom up» approaches in the in the categories 1.A.3.a Domestic aviation, 1.D.1.a International aviation in the Energy sector);
 - 3) assessment of applicability of 2006 IPCC default factors to the national circumstances;
- 4) comparison of national emission factors and 2006 IPCC default factors and definition of the specific national conditions that result in discrepancies in the coefficients;
 - 5) comparison of the data with those of the previous year and time-series trends;
- 6) comparison of data from different sources, especially for the categories with high levels of uncertainty. A comparison was made with data from international or foreign sources in the absence of alternative data at the national level.

Improvements in quality control area

Planned improvements of the QC system are associated with implementation of MS ISO 9000.

Particular attention is given to activities aimed at improving the existing estimation and quality control techniques if discrepancies detected in after checks performed. Fig. 1.14 shows a diagram of the process of analyzing check findings, searching for causes of detected inconsistencies, found errors fixing and reviewing action plans, in particular related to the need to plan and implement corrections of control or calculation techniques, as well as other corrective and preventive actions (for example, checking calculation results in terms of MS ISO 9000 terminology).

In this diagram, the following aspects are considered:

- the methodology and results of the calculations are subject to check;
- check is performed using a specific method;
- found inconsistency requires further analysis it is possible that that is caused by defects of the check method;
- if existence of discrepancies in calculation results is confirmed, in addition to correction of the calculation results, a search for causes of the detected inconsistencies is initiated;
- causes of inconsistencies of calculation results can vary, for example, the calculation method used may be imperfect, negligence or lack of qualification of the executor. Inconsistency may also result from a combination of causes;
- in the case of proved detection of discrepancies, it makes sense to analyze whether these causes have not resulted in other, so far hidden, negative consequences;
- analysis results form the basis for development of the so-called corrective or preventive actions, which, if requiring substantial resources and time to implement them, may results in amendments to the action plan.

Methodologies of control operations must be compliant with methods of basic technological operations (data conversion, calculation, report generation), the results and the process of their preparation being subject to inspection for control operations.

The outcome of control operations is the conclusion on sufficient quality of the primary operation controlled or description of inconsistencies found between the audited operations and requirements placed upon them.

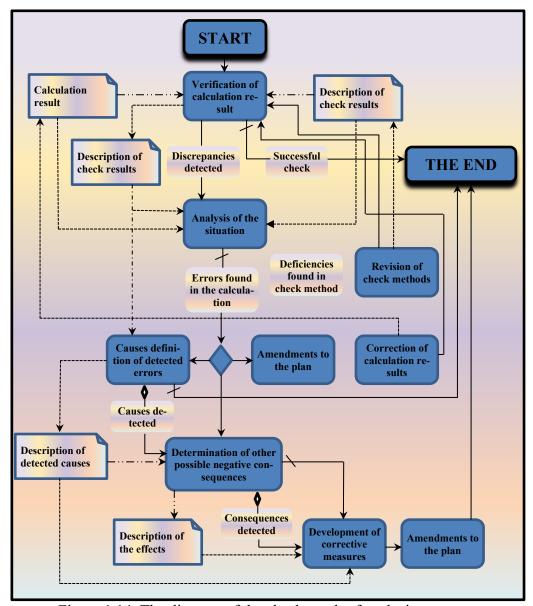


Figure 1.14. The diagram of the check result of analysis process

In case of detection of such discrepancies, the situation should be analyzed and make sure it is not due to possible drawbacks in the check methodology. If such drawbacks are observed, it is necessary to correct the defective control techniques and to repeat this control operation.

Emergence of inconsistencies may be random or non-random. The fact that appearance of inconsistencies may be non-coincidental determines the need of search and identification of their causes.

The identified reason that resulted in the specific inconsistencies found within this technological step may result in similar discrepancies in other similar technological operations, most often this is due to errors in method descriptions or to the tools of realization of the key technological operations that are performed repeatedly. This makes it necessary to conduct pre-emptive targeted search and elimination of such inconsistencies in the similar technological operations results of which have not yet been subject to checks, which may significantly increase effectiveness of the quality control system.

With consideration of abovementioned, within an advanced quality control technique, response to identified inconsistencies may include:

- 1) analytical work to search for causes of detected discrepancies and their possible further consequences;
- 2) development and implementation of measures to eliminate detected nonconformities and normalize the process of executing the activities, which in MS ISO 9000 are referred to corrective actions;

3) in the case of identifying possible potential inconsistencies, response to them should include development and implementation of appropriate measures, which in MS ISO 9000 are referred to preventive actions.

1.2.3.3 Quality assurance (validation, verification)

QA procedures provide an independent expert peer review of the level 1 or conducting more extensive independent expert review or audits as additional QA procedures corresponding to the level 2, within the available resources.

QA was carried out by the involvement of the central executive authorities, organizations, institutions and independent experts with the aim of obtaining review reports, expert judgements, feedback to the inventory as a whole and separate category.

Among involved in the QA process executors (participants) should be highlighted:

- > Secretariat of the Cabinet of Ministers of Ukraine;
- ➤ Verkhovna Rada Committee for Environmental Policy, Environmental Management;
- ➤ National Security and Defense Council of Ukraine;
- ➤ Ministry of Agrarian Policy and Food of Ukraine;
- ➤ Ministry of Economy of Ukraine;
- ➤ Ministry of Energy of Ukraine;
- ➤ Ministry of Health of Ukraine;
- ➤ Ministry of Foreign Affairs of Ukraine;
- ➤ Ministry of Finance of Ukraine;
- → Ministry for Communities and Territories Development of Ukraine (hereinafter MCTDU);
 - ➤ Ministry of Education and Science of Ukraine;
 - > State Customs Service of Ukraine;
- > State Service of Ukraine for Geodesy, Cartography and Cadastre (hereinafter StateGeo-Cadastre);
 - > State Statistics Service of Ukraine;
 - > State Agency on Energy Efficiency and Energy Saving of Ukraine;
 - > State Forest Resources Agency of Ukraine;
 - ➤ National Academy of Sciences of Ukraine (hereinafter NASU);
 - > State Water Resources Agency of Ukraine;
 - > State Emergency Service of Ukraine;
- ➤ Ukrainian Hydrometeorological Institute of National Academy of Sciences and State Emergency Service of Ukraine;
 - ➤ Public Organization «Bureau of complex analysis and forecasts «BIAF»;
 - ➤ Institute of General Energy of NASU;
- ➤ State Enterprise "The State Road Transport Research Institute" (hereinafter SE "DergavtotransNDIproect") of MCTDU;
- > State Enterprise «Ukrainian Research & Technology Center of Metallurgy Industry «Energostal» (SE «UkrRTC «Energostal»);
- > State Enterprise «Cherkassy State Research Institute for technical and economic information in chemical industry»;
- ➤ Institute of Animal biology of National Academy of Agrarian Sciences of Ukraine (hereinafter NAASU);
 - ➤ Institute of Animal Science of NAASU;
 - ➤ Thermal Energy Technology Institute of NASU;
- ➤ National Scientific Centre «Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine»;
- ➤ Ukrainian Order "Sign of Honour" Research Institute of Forestry and Forest Melioration named after G.M. Vysotsky (hereinafter URIFFM);
 - ➤ Scientific Engineering Centre "Biomass" Ltd. (hereinafter SECB).

External review

Independent external review of the National Inventory Report is generally seen in the framework of Tier 1 Quality Assurance procedures. In preparation of the GHG inventory, external review is performed in two stages:

- 1) At the first stage, developers come up with a draft of the NIR, which is placed on the MEPR website (https://mepr.gov.ua) for public discussion with all interested organizations and individuals. Additionally, a notice with a link to the draft NIR is sent to the relevant ministries and entities, to leading experts in the field of GHG inventory for delivery their comments and suggestions.
- 2) At the second stage, after the NIR's update to consider the comments received during the public discussion, specialized research organizations and independent experts in the respective sectors are involved for external review of the used activity data, emission factors and calculation methods of GHG inventory in key categories that received significant recommendations during inventory preparation in previous years and in the current year. The set of documents submitted for review, in addition to the current version of the NIR, includes Excel sheets with GHG emission and removals. Moreover, the current estimates of emissions by sectors, if possible, are presented and discussed at various seminars and conferences, as an additional step of external review.

The following describes the results of QA performed for categories of the National Inventory Report.

Inter-Agency Commission of Climate Change and Ozone Layer Protection

The Inter-Agency Commission of Climate Change and Ozone Layer Protection (hereinafter – IAC) was established by Resolution of the Cabinet of Ministers of Ukraine of September 23, 2020 No. 879 (with changes, according to the Order of the Cabinet of Ministers of Ukraine of April 18, 2023 No. 331-p) to organize development and coordination of implementation of the national strategy and national action plan for implementation of Ukraine's commitments under the UNFCCC and KP, Paris Agreement, Vienna Convention for the Protection of the Ozone Layer, Montreal Protocol on Substances that Deplete the Ozone Layer and etc.

The key tasks of IAC include the preparation of proposals for the implementation of state policy of climate change and ozone layer protection; identification of ways and mechanisms of solving problematic, issues that aroused during the implementation of state policy of climate change and ozone layer protection; etc.

In accordance with the assigned tasks, the Commission carries out work organization and proposals consideration for implementation of climate change and ozone layer protection issues of state policy; coordination of central executive institutions, regarding development of the project plans and national targeted programs for adaptation to climate change; consideration of reporting and other documents to be submitted to the UNFCCC Secretariat, Ozone Secretariat (Secretariat for the Vienna Convention for the Protection of the Ozone Layer) and Montreal Protocol on Substances that Deplete the Ozone Layer, etc.

According to the existing legal document, namely Resolution of the Cabinet of Ministers of Ukraine of September 23, 2020 No. 879 (with changes, according to the Order of the Cabinet of Ministers of Ukraine of April 18, 2023 No. 331-p) the IAC includes Chairman of the Commission, First Deputy Chairman of the Commission, Deputy Chairman of the Commission, Secretary of the Commission and other Commission members. The Cabinet of Ministers of Ukraine approves the Commission Staff. The Chairman of the Commission approves its personnel and make necessary changes to it.

The IAC shall include:

- Minister of Environmental Protection and Natural Resources of Ukraine Chairman of the Commission;
 - Deputy Minister of Economy First deputy Chairman of the Commission;
- Deputy Minister of Environmental Protection and Natural Resources Deputy Chairman of the Commission;
 - Head of the profile structural unit of the MEPR Secretary of the Commission;
 - Deputy Minister of health of Ukraine;
 - Deputy Minister of Foreign Affairs of Ukraine;

- Deputy Minister of Finance of Ukraine;
- Deputy Minister for Communities and Territories Development of Ukraine;
- Deputy Minister of Education and Science of Ukraine;
- Deputy Minister of Agrarian Policy and Food of Ukraine;
- Deputy Minister of Energy of Ukraine;
- Deputy Chairman of the State Customs Service;
- Deputy Chairman of the State Service of Ukraine for Geodesy, Cartography and Cadastre of Ukraine;
 - Deputy Chairman of the State Statistic Service of Ukraine;
 - Chairman of the State Agency on Energy Efficiency and Energy Saving of Ukraine;
 - First deputy Chairman of the State Forest Resources Agency of Ukraine;
- Chairman of the Verkhovna Rada Committee for Environmental Policy, Environmental Management (if agreed);
 - People's Deputies of Ukraine (if agreed);
- Representative of the staff of the National Security and Defense Council of Ukraine (if agreed);
 - Representative of the Secretariat of the Cabinet of Ministers of Ukraine.

According to the current Ukrainian regulations and procedures, the NIR is finalized with consideration of the recommendations obtained from external review, including in the process of public discussion. The NIR submits to the IAC for its final approval. Based on the decision adopted by the IAC, the MEPR submits the official NIR and CRT tables to the UNFCCC Secretariat.

1.2.3.4 Confidential information handling

In accordance with the Law of Ukraine from September 17, 1992 of No. 2614-XII «About the State Statistics», spreading of information on the basis of which it is possible to figure out confidential information about an individual respondent, as well as any information that allows to indirectly identify confidential information about an individual respondent is prohibited. Therefore, some statistical data on goods produced at fewer than three companies, as well as data on GHG emissions in production of various types of products data on whose activities are confidential and for which default emission factors are applied for GHG inventory are not separately shown in the NIR. Production of most types of these products in Ukraine leads to precursors emissions or negligible GHG emissions. The categories that include production of these types of products are not key ones and are in the sector IPPU (CRT Sector 2), therefore, for estimating emissions in these categories, mostly default emission factors are used.

To reflect GHG emissions in categories for which activity data is considered as confidential information, the following methods were used in preparation of the inventory:

- ➤ merging of emissions as categories belonging to the same group (for example, combining emissions of CO₂ from production of calcium carbide and silicon carbide, combining emissions in the category 2.B.8 Petrochemical and Carbon Black Production;
 - > using information obtained from public sources;
 - > using information obtained directly from enterprises;
 - > using estimated activity data;
 - > using default emission factors.

As a result of applying the latter four methods, in this NIR it was possible to significantly reduce the number categories GHG emission in which were previously merged. Thus, GHG emissions are merged in only two cases:

- ➤ in production of calcium carbide and silicon carbide (data on CO₂ emissions data are presented in category 2.B.5 Carbide Production);
- ➤ in production of ethylene, polystyrene, propylene, polyethylene, and polypropylene in category 2.B.8 Petrochemical and Carbon Black Production;
 - in production of aluminium in category 2.C.3 Aluminium production;
 - in production of zinc in category 2.C.6 Zinc production.

During the technical review of the National Inventory Report, Ukraine presents data on activities, emission factors and GHG emissions in the categories that Ukraine considers as confidential information in accordance with the procedure referred to in the Code of Practice for the Treatment of Confidential Information in the Technical Review of Greenhouse Gas Inventories of Parties to Annex I of the Convention (Annex II to Resolution 12/CP.9).

1.2.4 Changes in the National Inventory System

As it has been repeatedly pointed out above, currently under par. 2 of Resolution of the Cabinet of Ministers of Ukraine of May 27, 2020 No. 425 «Some Issues of Optimization of the System of Central Executive Government Bodies», the decision was made to create MEPR.

According to par. 1 and subparagraphs 3.1, 3.2, 4.57-4.62 of Resolution of the Cabinet of Ministers of Ukraine of June, 25, 2020 No. 614 «Some issues of Ministry of Environmental Protection and Natural Resources of Ukraine», the central executive body responsible for preparation, approval, and submission to the UNFCCC Secretariat of information on implementation of Decisions of the Conference of Parties of the UNFCCC and Meetings of the KP Parties and Paris Agreement is the MEPR, which is guided and coordinated by the Cabinet of Ministers of Ukraine. One of the structural units of the MEPR is the Climate Change Unit, which has been assigned as responsible for the preparation of the National inventory of anthropogenic GHG emissions and removals.

Moreover, within its assigned tasks, the MEPR is responsible for inventory of anthropogenic GHG emissions by sources and removals by sinks at the national level in order to prepare the NIR, as well as its approval and submission to the UNFCCC Secretariat.

1.3 Inventory preparation

1.3.1 The basic stages of the inventory

The process of preparation of the NIR includes the basic stages:

- 1. Determining information needs to comply with the methodological requirements stipulated by 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- 2. Preparation and sending of information queries to select data sources using official correspondence, telephone, and e-mail.
- 3. Identification of potential data sources, including organizations and independent experts.
- 4. Preparation and sending special queries and follow-up work on sources, including contracts for consulting services.
- 5. Obtaining information, its check to establish completeness and compliance with the query form. Analysis of the information obtained on the possibility of its immediate use for calculation of emissions and reductions.
- 6. Investigation of anomaly discrepancies in the data appeared through sharp changes in the time series of activity data or significant deviations compared to previous inventories. Clarification of data provided as a response to additional queries and receiving consultations from experts on issues of National Inventory Report preparation.
 - 7. Preparation of information to be used in the calculations.
 - 8. Conducting calculations to determine GHG emissions and removals.
 - 9. Elimination of errors and omissions in the calculations.
- 10. Preparation of a preliminary version of the NIR (draft of NIR) in accordance with regard to format of the revised "Guidelines on Preparation of National Communications of the Parties included in Annex I to the Convention, Part I: UNFCCC guidelines for reporting annual greenhouse gas inventories" (FCCC/CP/2013/10/Add.3).
- 11. Upload of the draft National Inventory Report on the website of the MEPR and to obtain comments and suggestions from stakeholders and independent experts.
 - 12. Further development of the draft NIR with regard to comments received.

- 13. Preparation of the final version of the NIR.
- 14. Provision of the NIR for consideration of the IAC.
- 15. Submission of the NIR by the MEPR to the UNFCCC Secretariat.
- 16. Documentation and archiving of all data used in preparation of the NIR.

1.3.2 Planning and control of activities on greenhouse gas inventory and report development

Annual development and support of the NIR are considered as a separate project, an important aspect of management of which is planning.

The annual plan of development of the NIR is a dynamic information object, in which it is possible to consider changes from year to year in the structure of the following NIR and within the work on its development, and to monitor and, if necessary, quickly adjust the course of actual preparation process of the next NIR.

In line with the information presented paragraph 1.2.3.1 "QA/QC procedures", planning development of the NIR to be submitted in 2025 is covered in internal use documents based on typical annual inventory preparation plans and inventory QA and QC activities, namely:

- 1) 2024-2025 Action Plan to prepare generalized data on GHG emissions on the territory of Ukraine for the National Inventory Report of Anthropogenic GHG Emissions by Sources and Removals by Sinks in Ukraine for the period of 1990-2023 (submitted in 2025);
- 2) 2024-2025 QA/QC Action Plan when preparing generalized data on GHG emissions on the territory of Ukraine for the National Inventory Report of Anthropogenic GHG Emissions and Removals by Sinks in Ukraine for the period of 1990-2023 (submitted in 2025).

These documents have framework feature, being designed to serve for high-level project management, and is presented in the form of a consolidated schedule, which allows you to include the desired combination of the three types of works:

- core work on development of intermediate or final results (data);
- control work on checks on compliance between the processes on performing basic operations and their results and methodological and regulatory requirements;
- corrective works to remove detected discrepancies in intermediate or final results of core work and, if necessary, adjustment of the work plan in real time.

The planning and control of greenhouse gas inventory activities is presented in Table 1.2.

Table 1.2. Planning and control of activities on greenhouse gas inventory

	radio 1.2.1 terming and control of activities on greening ase gas inventory				
#	Year	Month	Stages NIR preparation		
1.	2024-2025	May - De-	Quality assurance and quality control. QA/QC is conducted at all preparation stages		
		cember	of the generalized data on greenhouse gas emissions on the Ukraine territory with the		
			involvement of sectoral experts and regulated by a QA/QC plan. The QC procedures		
			of different levels detail are provided while conducting data quality control. Manda-		
			tory compliance with general procedures for quality control (according to the types of		
			control activities), quality assurance (independent peer review by departments and		
			experts) and documentation, archiving, reporting are planned.		
2.	2024	June -De-	The activity data collection by sectors. The activity includes the processes of prepar-		
		cember	ing a list of data providers, information request and mailing forms, obtaining the nec-		
			essary data, analyzing the received information for completeness and correctness.		
			This process is carried out at the same time with the organization of joint meetings		
			with data providers.		
3.	2024	June - De-	Interaction with data providers. If necessary, joint consultations and meetings are		
		cember	planned with data providers to ensure completeness, data correctness and their timely		
			receiving.		
4.	2024-2025	September -	Accomplishment of calculations by sectors. Calculations by sectors in accordance		
		February	with the selected methodologies with simultaneous verification and adjustment of		
			calculations are performed.		
5.	2025	January -	Preparation of generalized data on GHG emissions. This activity includes entering		
		February	the results of calculations into electronic reporting forms (CRT), preparing NIR sec-		
			tions and annexes, forming a complete document.		
6.	2024	February -	Submission of generalized data on GHG emissions to the Ministry of Environmental		

#	Year	Month	Stages NIR preparation
		April	Protection and Natural Resources of Ukraine for the purpose of further independent
			review by departments and independent experts. Refinement of the generalized data
			taking into account comments and suggestions, with subsequent transfer to the Minis-
			try of Environmental Protection and Natural Resources of Ukraine.
7.	2025		Archiving of data on greenhouse gas emissions on the Ukraine's territory.
8.	2025		Support of the National Inventory Report of Anthropogenic GHG Emissions by
			Sources and Removals by Sinks in Ukraine during all stages of verification by the
			Secretariat of the UNFCCC.
9.			Research works. Participation in scientific and technical councils on issues of consid-
			eration and adoption of intermediate and final results of research works, aimed at im-
			proving the national system of assessment of anthropogenic emissions and absorption
			of greenhouse gases.
10.	2024-2025		Scientific and methodical work (the so-called supporting stage). The activity includes
			carrying out scientific and methodical work by sectors, the result of which is the analy-
			sis of methodologies during the entire period of data preparation on greenhouse gas
			emissions on the Ukraine's territory, as well as a participation in activities aimed at in-
			creasing experts' professional skills.

1.4 Brief general description of methodologies and data sources used

A detailed description of methodological approaches that were used for estimating GHG emissions and removals is described in the relevant sections of this report. Estimates GHG and precursor emissions were performed using the first, second, and third level approaches. Thus, volumes of emissions in key categories were determined mostly using second-level approaches.

Table 1.3 presents generalized information about assessment methods for estimation of GHG emissions and removals in this inventory.

Table 1.3. Generalized information about assessment methods for estimation of GHG emissions and removals

CRT cate-	Name of the emission category	Comment on the method applied
1.A	Fuel Combustion Activities	T1, T2, T3
1.A.1	Energy Industries	T1, T2, T3
1.A.2	Manufacturing Industries and Construction	T1, T2
1.A.3	Transport	T1, T2, T3
1.A.4	Other sectors	T1, T2
1.A.5	Other (not elsewhere specified)	T1
1.B	Fugitive Emissions from Fuels	CS, T1, T2, T3
1.B.1	Solid Fuels	CS, T1, T2, T3
1.B.2	Oil and natural gas and other emissions from energy production	T1, T2
1.C	CO ₂ Transport and storage	The category is not calculated
2.A	Mineral industry	T1, T2, T3
2.B	Chemical Industry	T1, T2, T3, EMEP/EEA
2.C	Metal Industry	T1, T3, EMEP/EEA
2.D	Non-energy products from fuels and solvent use	T1, EMEP/EEA
2.E	Electronics industry	The category is not calculated
2.F	Product uses as substitutes for ODS	T1a, T1, T2
2.G	Other product manufacture and use	CS, T2,T3
2.H	Other	EMEP/EEA
3.A	Enteric Fermentation	T1, T2
3.B	Manure management	CS, T1, T2
3.C	Rice Cultivation	T1
3.D	Agricultural Soils	CS, T1, T2
3.E	Prescribed burning of savannas	The category is not calculated
3.F	Field burning of agricultural residues	The category is not calculated*
3.G	Liming	T1
3.H	Urea Application	T1
4.A	Forest Land	CS, T1, T2
4.B	Cropland	CS, T1, T3
4.C	Grassland	CS, T1, T3

CRT cate-	Name of the emission category	Comment on the method applied
4.D	Wetlands	T1
4.E	Settlements	T1
4.F	Other Land	T1
4.G	Harvested Wood Products	T1
4.H	Other	The category is not calculated
5.A	Solid waste disposal	Т3
5.B	Biological Treatment of Solid Waste	T1
5.C	Incineration and open burning of waste	T1, T2
5.D	Wastewater Treatment and Discharge	CS, T1, T2
5.E	Other	The category is not calculated

Legend:

T1, T2, T3 – Tiers 1, 2, and 3, respectively, according to 2006 IPCC

M – model-based methodology CS – national methodology

EMEP/CORINAIR – methodology for GHG inventory

Table 1.4 indicates the key sources of information from which activity data for calculation of GHG emissions and removals was obtained.

Table 1.4. Summary of the key sources of activity data for estimating GHG emissions and removals

Name of the data source	Name of the activity data
State Statistics Service of Ukraine	Amount of fuel consumed.
	Calorific value of the key fuels.
	Volume of production, import, export, and changes in fuel stocks.
	Volume of oil and natural gas transportation through main oil and gas pipelines.
	Production, import, and export of industrial products.
	Livestock by species and sex and age groups in agricultural enterprises and households by regions.
	Consumption of feed by cows, gender and bulls, and other cattle in agricultural enterprises
	and households in Ukraine by regions.
	Milk yield of cows and sheep.
	Amount of wool produced per sheep.
	Gross harvesting, yield, and total harvested area of agricultural crops.
	Amount of nitrogen and organic fertilizers applied into the soil in Ukraine by regions.
	Grouping of agricultural enterprises by presence of livestock.
	Volume of timber harvesting.
	Production, import, and export of harvested wood products
	Disturbance areas in the forests of Ukraine.
	Statistical reporting form No. 1 – waste "Waste Management" (amount of 1st - 4th class
	of hazard waste, including industrial organic waste at solid municipal waste landfills).
	Average annual consumption of food products by population of Ukraine.
Ministry of Energy of Ukraine	Information about the coal industry of Ukraine.
	Information about the oil and gas system of Ukraine.
	Information on methane recovery from landfills.
	Information on the morphology and density of waste.
	Information on household wastewater.
	Information on the volumes of activities performed during the period starting from 1990.
State Customs Service	Imports and exports of products containing hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride.
State Institution "Center of medical sta-	Information on the number of surgeries performed in Ukraine.
tistics of Ministry of health of Ukraine"	
Ministry of Defense of Ukraine	Information on fuel consumption for the needs of the Ministry of Defense.
·	Information on the volumes of activities performed during the period starting from 1990.
Energy generation companies	Technical and economic indicators of activity of condensing thermal power plants.
JSC "Naftogaz of Ukraine"	Information about the oil and gas system of Ukraine.
Ukrainian State Air Traffic Services	Aircraft departures information (database).
Enterprise (SE "Ukraeroruh")	
Industrial enterprises	Data of mineral, chemical and metallurgy, cement, ceramics, glass production, as well as
	data on use of hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride.

^{*} The Burning of agricultural residues in Ukraine is prohibited under the Code of Administrative Offenses (Art. 77-1) and the Law of Ukraine On Air Protection (Art. 16, 22). Fires that occur in agricultural areas are defined as natural fires (wild fires). Therefore, the emissions from them accounted for in LULUCF.

Name of the data source	Name of the activity data
Ministry for Communities and Territo-	Statistical reporting form No.1-TPV "Report on Solid Waste Management".
ries Development of Ukraine	Information on the implementation of modern methods and technologies in the field of
	household waste management in Ukraine.
	Information on the volumes of activities performed during the period starting from 1990.
State Water Resources Agency of	Statistical form No. 2-TP "Report on Water Use" (data on volumes of treated household
Ukraine	and industrial wastewater).
	Data on the area of cultivated peat soils.
State Service of Ukraine for Geodesy,	Information on areas of land use.
Cartography and Cadastre of Ukraine	
State Forest Resources Agency of	Information on the volumes of activities performed during the period starting from 1990,
Ukraine	which falls under the activities of paragraphs 3 and 4, Article 3 of Kyoto Protocol.
	Information about forests and forest management activities in the forests of the State For-
	est Resources Agency of Ukraine.
	Areas of forest fires in forests of the State Forest Resources Agency of Ukraine.
Territorial Public Administration	Information on the livestock and its structure in agricultural enterprises and household
	farms, grouping of agricultural enterprises based on the livestock, feed consumption in
	agricultural enterprises and household farms.
	Information about technical parameters of existing Municipal Solid Waste landfills and
	the amount of Municipal Solid Waste deposited.
	Information about thermal disposal of medical waste.
Regional Departments of the State	Information about the number of fires on agricultural crops by regions.
Emergency Service of Ukraine	
Institute of Public Administration and	Data on fire areas on grasslands and non-forest wetlands.
Research in Civil Protection	
State Enterprise «Agency of Animal	Data on the livestock of rams and wethers in the sheep herd structure by agricultural
Identification and Registration»	enterprises and household farms.
State Agency of Ukraine on the Exclu-	Data on forest land in the exclusion zone.
sion Zone Management	Information on the volumes of activities performed during the period starting from 1990.
Ukrainian state forest inventory and	Information about forests of the State Forest Resources Agency of Ukraine and some
management planning association	other forest users.
"Ukrderzhlisproekt"	D-4 41 41- MCW 1 4211-
Companies for methane recovery at the	Data on the methane recovery at the MSW landfills.
landfills	

100-year time-horizon global warming potentials from the Fifth Assessment Report of IPCC were used as required by the Decision 6/CP.27.

1.5 Brief description of key categories

In accordance with the requirements of the 2006 IPCC Guidelines, key categories analysis was performed. The assessment is based on Tier 1 approach, which includes analysis of the emission level and trends. The results of key category analysis for 2023 with and without the LULUCF sector are presented in Tables 1.5 and 1.6, respectively. A detailed analysis of the key categories is presented in Annex 1.

Table 1.5. Key category analysis, excluding LULUCF sector (2023)

IPCC source category	Gas	Level	Trend
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	+	+
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂		+
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	+	+
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO_2		+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO_2	+	
1.A.3.b Road Transportation	CO ₂	+	+
1.A.3.d Domestic Navigation - Liquid Fuels	CO_2		+
1.A.3.e Other Transportation	CO ₂	+	+
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	+	+
1.A.4 Other Sectors - Liquid Fuels	CO_2		+
1.A.4 Other Sectors - Solid Fuels	CO_2		+
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CO ₂		+
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	+	+

IPCC source category	Gas	Level	Trend
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	+	+
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO_2	+	+
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	+	+
2.A.1 Cement Production	CO_2	+	+
2.B.1 Ammonia Production	CO_2	+	+
2.B.2 Nitric Acid Production	N ₂ O	+	
2.C.1 Iron and Steel Production	CO_2	+	+
2.F.1 Refrigeration and Air conditioning	HFC	+	+
3.A Enteric Fermentation	CH ₄	+	+
3.B Manure management	CH ₄	+	
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	+	+
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	+	+
5.A Solid Waste Disposal	CH ₄	+	+
5.D Wastewater Treatment and Discharge	CH ₄	+	+

Table 1.6. Key category analysis, including LULUCF sector (2023)

IPCC source category	Gas	Level	Trend
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	+	+
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂		+
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO_2	+	+
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	+	+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂		+
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	+	+
1.A.3.b Road Transportation	CO ₂	+	
1.A.3.e Other Transportation	CO_2	+	+
1.A.4 Other Sectors - Gaseous Fuels	CO_2	+	+
1.A.4 Other Sectors - Liquid Fuels	CO_2		+
1.A.4 Other Sectors - Solid Fuels	CO_2		+
1.B.1 Fugitive emissions from Solid Fuels	CH4	+	+
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	+	
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO_2	+	
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH4	+	+
2.A.1 Cement Production	CO_2	+	
2.B.1 Ammonia Production	CO_2	+	+
2.B.2 Nitric Acid Production	N ₂ O	+	
2.C.1 Iron and Steel Production	CO_2	+	+
2.F.1 Refrigeration and Air conditioning	HFC	+	+
3.A Enteric Fermentation	CH ₄	+	+
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	+	+
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	+	+
4.A.1 Forest Land Remaining Forest Land	CO_2	+	+
4.A.2 Land Converted to Forest Land	CO_2		+
4.B.1 Cropland Remaining Cropland	CO ₂	+	+
4.C.1 Grassland Remaining Grassland	CO_2		+
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO ₂		+
4.E.2 Land Converted to Settlements	CO ₂	+	+
4.G Harvested Wood Products	CO ₂	+	+
5.A Solid Waste Disposal	CH4	+	+
5.D Wastewater Treatment and Discharge	CH4	+	+

1.6 Evaluation of the total uncertainty of the National Inventory Report, including data on the overall uncertainty for the entire inventory

Uncertainty estimate was performed using the first level approach, provided in 2006 IPCC Guidelines.

The results indicate that the net emissions in **1990** year including the sector Land use, land-use change and forestry (LULUCF) is 916472.68 kt CO₂ equivalent with an uncertainty of 5.21 %;

excluding the LULUCF sector – 964369.85 kt CO₂ equivalent with an uncertainty of 3.66 %.

The results indicate that the net emissions in **2023** year including the sector Land use, land-use change and forestry (LULUCF) is 221693.25 kt CO₂ equivalent with an uncertainty of 17.45 %; excluding the LULUCF sector – 232854.53 kt CO₂ equivalent with an uncertainty of 9.31 %.

Based on totals of years 1990 and 2023, the average trend including the LULUCF sector is 75.81 % reduction of emissions; excluding the LULUCF sector - 75.85 % reduction of emissions. The trend uncertainty including the LULUCF sector is 4.60 %; excluding the LULUCF sector - 2.03 %.

For more detailed information see Tables A7.1-A7.2 of Annex 7. Uncertainty analysis for the base 1990 year, see Tables A7.3-A7.4 of Annex 7.

Summary data characterizing the uncertainty with the inventory by sector is shown below, in Tables 1.7 and 1.8 respectively.

Table 1.7. The uncertainty of the inventory by main sectors (including LULUCF)

Sector	Share in total emissions for 1990, %	Share in total emissions for 2023, %	The percentage uncertainties of the emissions for 1990, %	The percentage uncertainties of the emissions for 2023, %
Energy	80.76	73.97	2.65	4.87
Industrial processes and product use	12.84	9.51	0.53	0.87
Agriculture	9.78	14.87	2.56	7.24
LULUCF	-5.23	-5.03	3.52	14.45
Waste	1.85	6.69	1.00	4.31

Table 1.8. The uncertainty of the inventory by main sectors (excluding LULUCF)

Sector	Share in total emissions for 1990, %	Share in total emissions for 2023, %	The percentage uncertainties of the emissions for 1990, %	The percentage uncertainties of the emissions for 2023, %
Energy	76.75	70.43	2.52	4.64
Industrial processes and product use	12.20	9.05	0.50	0.83
Agriculture	9.29	14.15	2.43	6.90
Waste	1.76	6.37	0.95	4.11

The lowest percentage of emissions uncertainty in 2023 year is observed in the Industrial processes and product use sector.

1.7 General assessment of completeness

The total national aggregate of estimated emissions for all gases and categories considered insignificant remains below 0.1 per cent of the national total GHG emissions.

As ERT noted, the category 3.B.2.5 Indirect N_2O Emissions is not a mandatory category. Due to the fact that, there are no national and default EF, to evaluate the significance is not real for this category.

GHG emission in category 5.C.2 Open Burning of Waste in 2023 amounted to 43.34 kt CO₂-eq., which is 0.020 % of the national total GHG emissions including LULUCF and 0.019 % of the national total GHG emissions excluding LULUCF (please, see table 1.9).

Table 1.9. The total national aggregate of estimated emissions for all gases and categories

considered insignificant

Category		Chemical formula	Approximated AD, kt	EF	Emissions, kt	Emissions, kt CO ₂ -eq.
3.B.5	Indirect N ₂ O Emissions	N ₂ O	NA	NA	NE	NE
3.D.1.b.ii	Sewage Sludge Applied to Soils	N ₂ O	NA	NA	NE	NE
3.G.2	Dolomite CaMg(CO ₃) ₂	CO_2	NA	NA	NE	NE
		CO_2		_	28.87	28.87
5.C.2	Open Burning of Waste	N ₂ O	68.5	0.15 g/kg	0.00758	2.0087
		CH ₄		0.5 g/t	0.445	12.46
TOTAL		CO ₂ -eq.				43.34
Total CO ₂ equivalent emission with LULUCF		%				0,020
Total CO ₂ equivalent emission without LULUCF		%				0,019

The main reasons for the use of notation key (NE, IE) in the GHG inventory in certain categories, are:

Methodology absence (NE):

- when calculating emissions of carbon dioxide (CO₂) in the categories 1.B.1.a.i.2 Post-Mining Activities, 1.B.1.a.ii.1 Mining Activities, 1.B.1.a.ii.2 Post-Mining Activities, 1.B.2.a.v Distribution of Oil Products, 3. Sectors/Totals Agriculture, Indirect emissions, 3.G.2 Dolomite CaMg(CO₃)₂, Sectors/Totals, Land use, land-use change and forestry, Indirect emissions, 5.C.2.a.i Municipal Solid Waste, 5.C.2.a.ii Other (please specify), 5.C.2.b.i Municipal Solid Waste, 5.C.2.b.ii Other (please specify);
- when calculating emissions of methane (CH4) in the categories 1.B.2.a.v Distribution of Oil Products, 2.B.1 Ammonia Production, 2.B.5.b Calcium Carbide, 3.A.4.g Other livestock > Poultry, 4(II).A.1. Forest land remaining forest land > Drained Organic Soils, 4(II).B.1. Cropland remaining cropland > Drained Organic Soils, 4(II).C.1. Grassland remaining grassland > Drained Organic Soils, 5.C.2.a.i Municipal Solid Waste, 5.C.2.a.ii Other (please specify), 5.C.2.b.i Municipal Solid Waste, 5.C.2.b.ii Other (please specify);
- when calculating emissions of nitrous oxide (N₂O) in the categories 3.B.5 Indirect N₂O Emissions, 3.D.1.b.ii Sewage sludge applied to soils > Sewage Sludge Applied to Soils, 4(IV).D.1. Wetlands remaining wetlands > Wildfires, 5.C.2.a.i Municipal Solid Waste, 5.C.2.a.ii Other (please specify), 5.C.2.b.ii Municipal Solid Waste, 5.C.2.b.ii Other (please specify).

> Included elsewhere (IE):

- when calculating emissions of carbon dioxide (CO₂) in the categories 1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.B.2.c.i.2 Gas, 1.B.2.c.i.3 Combined, 1.B.2.c.ii.3 Combined, 1.A Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels), 1.AD Feedstocks, reductants and other non-energy use of fuels / Naphtha, 2.B.5.a Silicon carbide, 2.C.1.d Sinter, 2.C.1.e Pellet, 4(II).A.1. Forest land remaining forest land > Drained Organic Soils, 4(II).B.1. Cropland remaining cropland > Drained Organic Soils, 4(II).C.1. Grassland remaining grassland > Drained Organic Soils, 4(II).D.1.a. Peat extraction remaining peat extraction > Drained Organic Soils, 4(IV).D.2. Land converted to wetlands > Wildfires;
- when calculating emissions of methane (CH₄) in the categories 1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (biomass, gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel

oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.B.2.c.i.2 Gas, 1.B.2.c.i.3 Combined, 1.B.2.c.ii.3 Combined, 1.A Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels), 4(IV).B.2. Land converted to cropland > Wildfires, 4(IV).C.2. Land converted to grassland > Wildfires, 4(IV).D.2. Land converted to wetlands > Wildfires

- when calculating emissions of nitrous oxide (N2O) in the categories 1.A.3.b.ii Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iii Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants), 1.A.3.b.iv Motorcycles (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene), 1.A.4.c.ii Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass), 1.A.4.c.iii Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass), 1.A Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels), 1.B.2.c.ii.3 Combined, 4(IV).B.2. Land converted to cropland > Wildfires, 4(IV).C.2. Land converted to grassland > Wildfires, 4(IV).D.2. Land converted to wetlands > Wildfires;
- when calculating emissions of **HFC-134a** (CH₂FCF₃) in the category 2.F.4.a Metered dose inhalers.

More detailed information is given in table 1 of Annex 5.1.

According to the classification of notation keys given in the UNFCCC reporting guidelines on annual GHG inventories*:

- NO (Not occurring) for activities or processes, which within a country do not occur;
- ➤ NE (*Not estimated*) for possible GHG emissions by sources and removals by sinks, in respect of which the assessment was not carried out;
- NA (*Not applicable*) for activities in a particular category of source/sink, which does not lead to emissions or removals of a specific gas;
- ➤ IE (*Included elsewhere*) for activities or categories of GHG emissions included in the inventory but not presented separately for this category.

50

^{*} Guidelines for the preparation of national communications by parties included in Annex I to the Convention, part I: Guidelines of the UNFCCC for the submission of reports on annual inventories, FCCC/CP/2002/8

2 TRENDS IN GREENHOUSE GAS EMISSIONS

2.1 Trends in total greenhouse gas emissions by gas

Dynamics of GHG emissions demonstrate the trend, which may be considered in several phases over the period of 1990-2023. During the first phase (1990-1999), a catastrophic decline in GDP and reduction in energy consumption were observed, which led to a decrease in GHG emissions. In the second phase (2000-2007), there was stabilization of the trend and a gradual increase in emissions, which is due to the economic growth (including GDP growth), but there is no direct correlation between the growth in emissions and in GDP. Primarily, this is due to structural changes in the economy, an increased role of trade, services, and the financial sector in comparison with industrial production. During the third phase (2008-2013), GHG emissions depended on the factor of the global financial crisis (2008-2009), which largely affected production volumes in key export-oriented sectors: metallurgy, chemical, machine building, which, in turn, affected other sectors - power generation and mining. In 2014 GHG emissions sharply declined - by about 11 % compared with 2013 with continued trend of decline in 2015 by 11.5 % compared with 2014. Among the key factors of the sharp drop should be mentioned an occupation and attempted annexation of Crimea and armed invasion by the Russian Federation, what led to a considerable reduction in industrial production, and, as a consequence, reduction in energy consumption⁴. That also led to interruption of supply and trade connections of industries on temporarily occupied by the Russian Federation territory of Ukraine with industries of other regions in the country.

Emissions in 2020 was impacted mostly by COVID-19 pandemic and the consequences of restrictions against spread of disease and lower yields of agricultural crops. For example, emissions from transport, which was severely impacted by anti-COVID-19 measures, have fallen by 10.3 % compared to 2019. Lower yields of agricultural crops together with higher mineral fertilizers application in 2020 resulted in rapid decline of GHG emissions in Cropland category by 64 % compared with 2019.

Emission trends in 2021 in general is characterized by the recovery from the global pandemic and intensification of production in different sectors of the economy of Ukraine. This, in turn, resulted in total increase of emissions by 6 % compared with 2020.

Emission trends in 2022-2023 are mainly impacted by the full-scale invasion of Ukraine by the Russian Federation. There are particular activities (mineral, chemical, metal industries, fuel consumption in energy) that were strongly affected resulting in significant decrease of GHG emissions. Total emissions in 2023 decreased by 32 % compared with 2021. Heavy attacks against Ukrainian energy generation facilities resulted in decrease of GHG emissions in this sector particularly and in total overall.

Table 2.1 and Fig. 2.1 show a trend of total emissions of carbon dioxide, methane, and nitrous oxide in Ukraine, including LULUCF sector. The share of HFCs, the SF_6 in total emissions is equal to about 1.1 % in 2023, and PFCs and NF_3 emissions in Ukraine do not occur.

51

⁴ On 18 January 2018, the Parliament of Ukraine adopted the law "On the peculiarities of State policy on ensuring Ukraine's State sovereignty over temporarily occupied territories in Donetsk and Luhansk regions", which defines the legal status of certain areas of the Donetsk and Luhansk regions as temporarily occupied territories of Ukraine

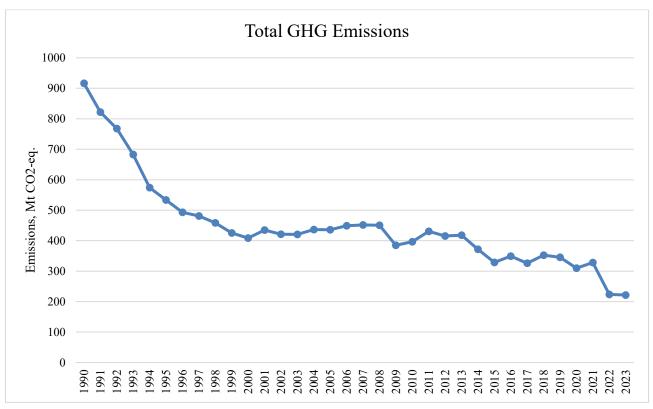


Fig. 2.1. GHG emissions in Ukraine (including LULUCF), Mt CO₂-eq.

Table 2.1. Dynamics of total greenhouse gas emissions in Ukraine (Mt CO₂-eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
CO ₂ emissions without net CO ₂ from LU- LUCF	706.5	633.2	589.5	510.5	419.6	390.2	351.8	340.6	328.9	298.6	285.7	303.9	295.9
CO ₂ emissions with net CO ₂ from LULUCF	658.4	577.3	535.2	462.2	369.4	343.9	311.9	306.6	290.7	258.5	252.0	278.6	273.0
CH ₄ emissions without CH ₄ from LULUCF	209.3	200.4	191.5	181.9	171.1	159.5	154.8	148.6	144.3	145.7	135.6	133.8	125.5
CH ₄ emissions with CH ₄ from LULUCF	209.3	200.5	191.5	181.9	171.2	159.5	154.9	148.6	144.3	145.7	135.6	133.9	125.5
N ₂ O emissions without N ₂ O from LULUCF	48.4	43.8	40.6	38.0	32.8	29.6	25.7	25.3	22.9	20.9	20.4	21.9	22.3
N ₂ O emissions with N ₂ O from LULUCF	48.5	44.0	40.8	38.2	33.0	29.9	25.9	25.5	23.2	21.2	20.6	22.2	22.5
HFCs*	NO	6	12	13	14	28	62						
PFCs*	212	169	128	129	145	160	129	132	108	92	104	101	89
SF ₆ *	0.01	0.02	0.03	0.06	0.07	0.07	0.07	0.13	0.20	0.32	0.43	0.48	1.10
NF ₃ *	NO												
Total (without LULUCF)	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
Total (with LULUCF)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2
Total (without LULUCF, with indirect)	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
Total (with LULUCF, with indirect)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2
Net CO ₂ from LULUCF	-47.9	-55.7	-54.1	-48.1	-49.9	-46.0	-39.6	-33.7	-37.9	-39.9	-33.4	-24.9	-22.6

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
CO ₂ emissions without net CO ₂ from LU- LUCF	307.2	310.6	313.5	333.1	336.8	326.0	277.6	294.4	308.4	304.4	297.5	257.7	223.8
CO ₂ emissions with net CO ₂ from LULUCF	274.7	291.6	295.0	310.6	313.1	315.3	261.7	273.2	301.3	293.5	298.9	260.2	227.8
CH ₄ emissions without CH ₄ from LULUCF	126.1	122.5	117.8	115.5	115.2	107.6	98.3	97.6	99.1	92.8	87.2	79.9	71.6
CH ₄ emissions with CH ₄ from LULUCF	126.1	122.5	117.8	115.5	115.3	107.6	98.3	97.7	99.1	92.9	87.2	80.0	71.6
N ₂ O emissions without N ₂ O from LULUCF	19.6	21.9	22.1	22.3	22.1	26.4	23.8	24.5	29.4	28.0	30.8	30.6	28.5
N ₂ O emissions with N ₂ O from LULUCF	19.8	22.1	22.4	22.6	22.4	26.7	24.1	24.6	29.6	28.2	31.0	30.7	28.6
HFCs*	101	179	272	378	526	612	636	715	826	852	914	896	826
PFCs*	69	84	128	100	139	157	48	24	NO	NO	NO	NO	NO
SF ₆ *	2.05	3.17	4.60	4.41	5.36	9.62	9.65	10.01	8.67	11.33	12.93	17.24	20.25
NF ₃ *	NO												
Total (without LULUCF)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9
Total (without LULUCF, with indirect)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF, with indirect)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9
Net CO ₂ from LULUCF	-32.2	-18.7	-18.2	-22.2	-23.3	-10.4	-15.6	-21.0	-6.9	-10.7	1.5	2.7	4.1

	2016	2017	2018	2019	2020	2021	2022	2023
CO ₂ emissions without net CO ₂ from LU-LUCF	234.1	223.3	231.9	222.2	207.1	210.6	143.0	139.3
CO ₂ emissions with net CO ₂ from LULUCF	240.0	220.6	238.8	227.1	191.0	205.0	127.2	128.0
CH ₄ emissions without CH ₄ from LULUCF	77.0	74.5	78.7	81.6	83.3	83.0	66.9	62.8
CH ₄ emissions with CH ₄ from LULUCF	77.0	74.5	78.7	81.6	83.6	83.0	66.9	62.8
N ₂ O emissions without N ₂ O from LULUCF	31.2	29.9	32.9	34.6	32.8	37.6	26.9	28.3
N ₂ O emissions with N ₂ O from LULUCF	31.3	30.1	33.0	34.8	33.1	37.7	27.0	28.5
HFCs*	944	1077	1483	1849	2000	2245	2330	2423
PFCs*	NO							
SF ₆ *	25.12	29.43	34.47	39.99	44.63	50.34	54.23	57.21
NF ₃ *	NO							
Total (without LULUCF)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7
Total (without LULUCF, with indirect)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF, with indirect)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7
Net CO ₂ from LULUCF	6.0	-2.5	7.1	5.1	-15.5	-5.4	-15.7	-11.2

^{*}emissions presented in kt CO₂-eq.

2.1.1 Emissions of carbon dioxide

Fig. 2.2 shows a trend of CO₂ emissions for the time series 1990-2023 in Ukraine. CO₂ emissions with LULUCF in 2023 amounted to 127.99 Mt, what is 5 times lower compared with 1990 (658.41 Mt).

CO₂ emissions in the Energy sector in 2023 amounted to 122.25 Mt, what is 79.4 % lower than the value in the base year. In 1990, CO₂ emissions were 592.25 Mt and by 65.2 % consisted of emissions from fuel combustion compared to total emissions in the country. Such structure of CO₂ emissions was due to the high energy intensity of the economy. The economic decline that followed the collapse of the Soviet Union as well as structural changes in the sector and economy led to a significant reduction in energy consumption and CO₂ emission reduction in the Energy sector in the period from 1990 to 2023.

Carbon dioxide emissions in IPPU sector in 2023 amounted to 16.56 Mt, what is 85.1 % lower than the value in the base year and 3.5 % than the value in 2022. The largest source of CO₂ emissions in the IPPU sector is the Metal Industry that amounts to 47.7 % of total CO₂ emissions in sector. CO₂ emissions in sector in the period from 1990 to 2023 have decreased significantly due to a reduction in production output caused by the collapse of the USSR, economic crises and full-scale invasion of Ukraine by the Russian Federation.

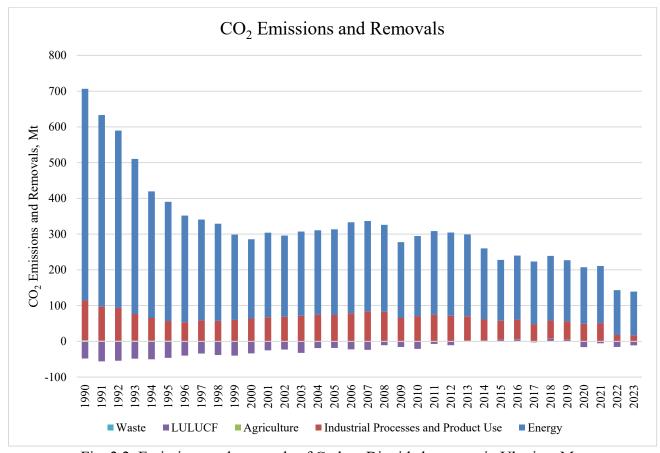


Fig. 2.2. Emissions and removals of Carbon Dioxide by sector in Ukraine, Mt

2.1.2 Methane emissions

Emissions of CH₄ are the second largest after CO_2 considering their share in total GHG emissions. In 2023, CH₄ emissions in Ukraine amounted to 62.77 Mt CO_2 -eq. Compared to 1990, when the emissions were 209.31 Mt CO_2 -eq., the emissions decreased by 70.0 %. In the last reporting year, the most significant source of methane emissions was the Energy sector – 64.7 %, and significant emissions were observed in Waste (22.0 %) and Agriculture (13.0 %) as well.

The largest CH₄ emissions in the Energy sector come from coal mines, as well as from production, transportation, storage, distribution, and consumption of oil and natural gas. Since 1990,

methane emissions in category 1.B Fugitive emissions from fuels decreased by more than 3 times – from 4.96 to 1.44 Mt.

In agriculture, the main source of CH4 emissions is cattle enteric fermentation. The economic decline led to reduction in agricultural production, and consequently to reduced methane emissions in the Agriculture sector in 2023 to 291.63 kt, what is almost six times lower than in 1990.

In the Waste sector, the greatest emissions of CH₄ occur during anaerobic decomposition of solid municipal waste, as well as from waste water. Compared to 1990, emissions from solid waste disposal sites increased by 14.2 %, and emissions from waste water decreased by 34.4 %.

Methane emissions in IPPU take place during the production of pig iron, silicon carbide, methanol, carbon black, ethylene, coke, and some other products. The volumes of CH₄ emissions in the sector over the period of 1990 – 2023 decreased from 48.28 to 6.3 kt (by 87.03 %) due to decrease of production volumes. Emissions of CH₄ in the LULUCF occur in very small amounts due to wild-fires and drainage of organic soils (see Fig. 2.3).

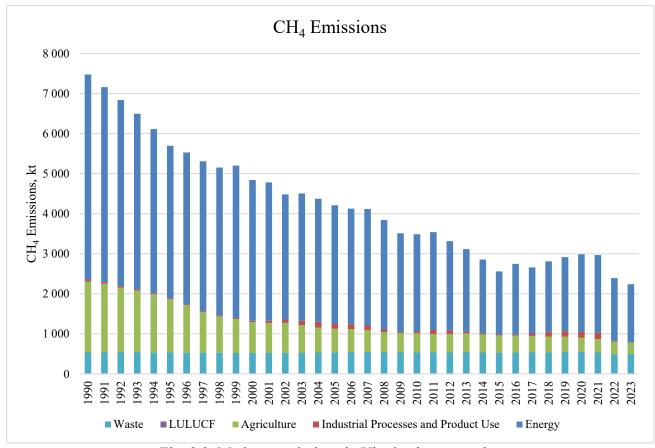


Fig. 2.3. Methane emissions in Ukraine by sector, kt

2.1.3 Emissions of nitrous oxide

Nitrous oxide emissions in Ukraine in 2023 amounted to 28.45 Mt CO₂-eq., which is lower than in 1990 by 41.4 % (48.54 Mt CO₂-eq.). Compared with 2022, emissions of nitrous oxide increased by 5.2 %. The largest source of nitrous oxide emissions in Ukraine, as in the previous submissions, is the Agriculture sector – 85.3 % of total nitrous oxide emissions in 2023. Emissions from this sector occur from agricultural soils and the activities of manure management.

The second largest sector by nitrogen oxide emissions is IPPU sector -6.6 % of the totals in 2023. The key sources of emissions in this sector are production of nitric and adipic acid, as well as use of nitrous oxide for medical purposes. In the Energy sector emissions of N_2O had a 4.0 % of share in total emissions of the gas.

Moreover, N_2O emissions occur in the Waste sector (3.5 %), as well as small quantities in LULUCF (0.6 %).

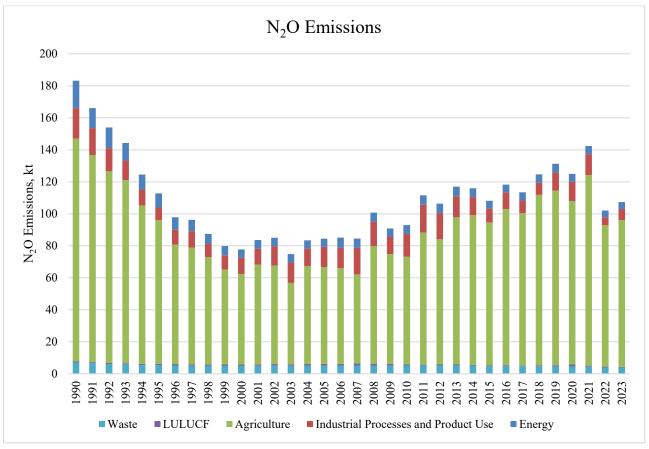


Fig. 2.4. Nitrous oxide emissions in Ukraine by sector, kt

2.1.4 Emissions of hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride

Emissions of HFCs, PFCs, SF₆, and NF₃ in Ukraine are not as significant as other GHGs in terms of volumes in comparison with total GHG emissions (1.1 % of the total emissions in 2023). HFCs emissions are associated with production and maintenance of refrigerators, air conditioners, use of fire extinguishing systems, foams and aerosols. PFCs emissions are associated with aluminium production, and emissions of sulfur hexafluoride – with use of gas-insulated high-voltage switches. Fig. 2.6 presents the diagram of HFCs, PFCs, and SF6 emissions in IPPU sector. From 1990 to 1996 inclusive, there were no HFCs emissions in the country, until 1996 HFCs were not used under these categories. Emissions of PFCs and SF₆ in 1990 amounted to 211.99 and 0.01 kt CO₂-eq. respectively. The sharp increase in HFCs emissions since 2000 is due to the beginning of intensive use of these gases in fire extinguishing and foam materials, and in SF₆ emissions - to an increased number of gasinsulated high-voltage circuit breakers in operation in electric networks of Ukraine. The sharp increase in HFCs emissions in 2017-2019 after the decreasing trend in 2015 – 2016 explains by recovery of economy of Ukraine from previous declines that resulted in growth of import of HFCs-contained equipment, but those growth of import stopped in 2020 due to decrease in import of Ukraine conducted with starting of world pandemia in 2020. The increase of the emissions in 2022-2023 are associated with growth in HFCs imports in some categories as well as with HFCs that stayed in operated equipment.

In 2023, there were no PFCs imports to Ukraine since there was no production need for it. Thus, PFCs emissions in 2023 are zero.

There are no emissions of NF₃ due to absence of activities related to production of photovoltaic elements in Ukraine, according to data obtained from the companies that use photovoltaic elements in their production processes.

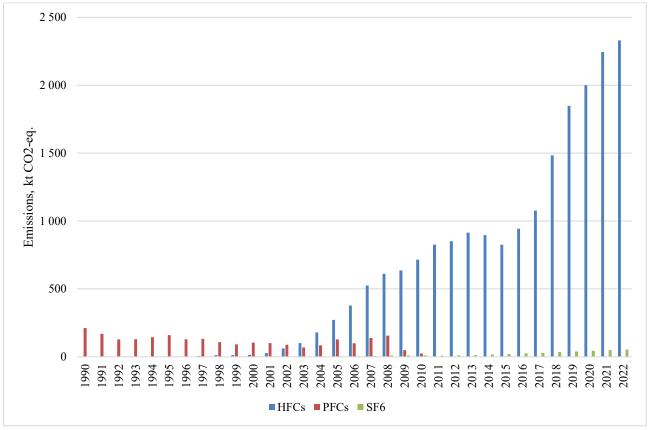


Fig. 2.5. Emissions of PFCs, HFCs and SF6 in Ukraine, kt CO2-eq.

2.1.5 Trends in emissions of precursor gases and SO₂

Fig. 2.6 presents trends for all precursor emissions (nitrogen oxides, carbon monoxide, non-methane volatile organic compounds) and sulfur dioxide in 1990-2023. In 1990, more than 90 % of NOx, CO and SO₂ emissions occurred the Energy sector, almost all the rest - in the sector IPPU, since in the LULUCF sector emissions of these gases occur in very small amounts from wildfires, and in the Agriculture sector they do not occur at all. The leading pace of SO₂ emission reduction compared with GHG emissions in the period of 1990-2023 are mainly related with substitution of fuel oil (with a significant content of sulfur) by natural gas (sulfur content of which is small) in the fuel balance of Ukraine.

CO emission trends are explained by two key factors. The leading trend of CO emission reduction compared with GHG emissions associated primarily with coal substitution by natural gas in private households. At the same time, the influence of this factor is recently offset by an increase in the volume of fuel consumption by road transport, which is the main source of CO emissions in the Energy sector.

NMVOC emissions are observed in the sectors Energy, IPPU and Agriculture, as well as in the LULUCF sector in small amounts during biomass burning.

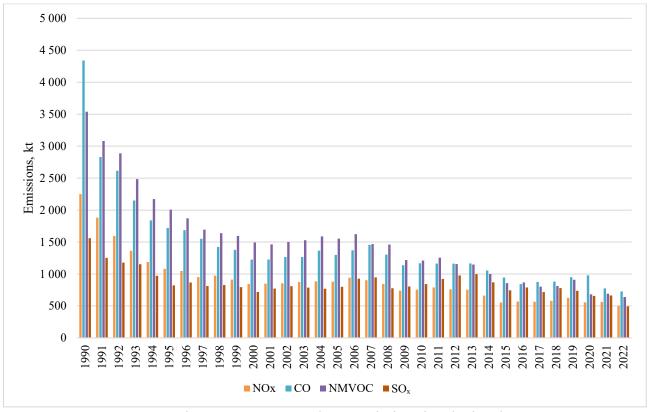


Fig. 2.6. Precursor and SO₂ emissions in Ukraine, kt

2.2 Emission trends by sector

Figure 2.7 and Table 2.2 present GHG emissions and removals in Ukraine by sector for the time series from 1990 to 2023.

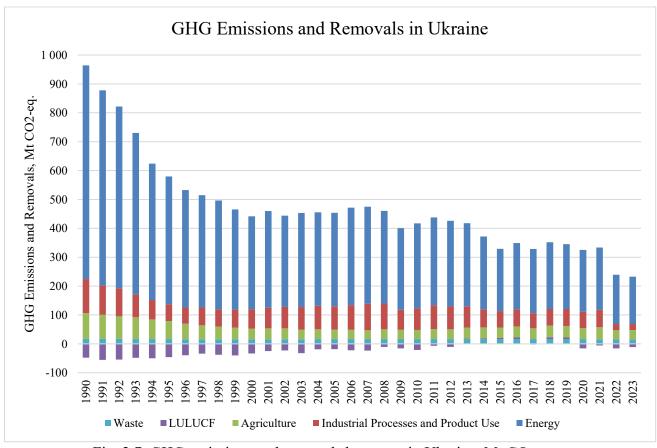


Fig. 2.7. GHG emissions and removals by sector in Ukraine, Mt CO₂-eq.

Table 2.2. Greenhouse gas emissions in Ukraine by sector (Mt CO₂-eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Energy	740.1	675.8	629.3	559.8	472.0	442.5	406.5	388.7	376.9	347.0	321.7	334.4	315.8
Industrial Processes and Product Use	117.7	100.9	97.0	78.9	66.9	57.9	56.3	61.8	59.9	62.7	67.2	71.7	74.5
Agriculture	89.6	84.0	78.6	75.1	68.5	62.6	53.5	48.0	43.5	39.7	36.8	37.6	37.4
LULUCF (removals)	-47.9	-55.7	-54.1	-48.1	-49.9	-46.0	-39.6	-33.7	-37.9	-39.9	-33.4	-24.9	-22.6
Waste	16.9	16.9	16.8	16.7	16.4	16.3	16.2	16.0	16.0	15.9	15.9	16.0	16.1
Total (without LULUCF)	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
Total (with LULUCF)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2
Total (without LULUCF, with indi-	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
rect)	304.4	677.0	021./	730.0	023.7	379.4	332.4	314.0	490.2	403.3	441./	737.0	773.0
Total (with LULUCF, with indirect)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Energy	325.8	323.7	323.8	337.3	335.5	321.3	282.6	293.5	303.6	296.8	288.2	252.1	215.4
Industrial Processes and Product Use	78.2	81.5	80.9	85.2	92.3	88.8	69.3	75.7	82.4	78.8	73.6	62.8	57.1
Agriculture	33.0	33.7	32.7	32.2	30.1	33.9	32.1	31.5	35.3	34.2	38.1	38.0	36.2
LULUCF (removals)	-32.2	-18.7	-18.2	-22.2	-23.3	-10.4	-15.6	-21.0	-6.9	-10.7	1.5	2.7	4.1
Waste	16.2	16.4	16.5	16.6	16.8	16.6	16.4	16.5	16.4	16.3	16.6	16.3	16.1
Total (without LULUCF)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9
Total (without LULUCF, with indirect)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF, with indirect)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9

	2016	2017	2018	2019	2020	2021	2022	2023
Energy	229.9	222.5	231.4	224.5	213.6	215.4	170.4	164.0
Industrial Processes and Product Use	58.9	52.6	57.4	58.9	57.5	60.3	21.6	21.1
Agriculture	38.2	37.3	39.9	40.0	37.7	41.7	32.5	33.0
LULUCF (removals)	6.0	-2.5	7.1	5.1	-15.5	-5.4	-15.7	-11.2
Waste	16.3	16.4	16.3	16.8	16.4	16.1	14.8	14.8
Total (without LULUCF)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7
Total (without LULUCF, with indirect)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF, with indirect)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7

The largest contribution to GHG emissions has the Energy sector. Its share in the total emissions for the period of 1990-2023 fluctuated within the range of 65.0-83.0 % with the LULUCF sector, and of 64.6-77.0 % without the LULUCF sector. Decline of emissions in the sector in 2023 compared to 1990 is 77.8 % - from 740.11 to 163.99 Mt CO₂-eq. Compared to 2022 the GHG emissions has decreased by 3.7 %.

The largest source of GHG emissions in the Energy sector is energy industries, which accounted for 35.9-44.2 % of total GHG emissions in the sector. Particularly, along with the tendency of emission reduction in industrial categories, the share of emissions from coal burning in energy generation increased annually. GHG emissions from transport activity (category 1.A.3) amounted from 9.9 % to 16.8 % from Energy sector during the whole time series. The share of GHG emissions in the category 1.A.4 "Other Sectors" in 1990-2023 was 8.5-15.0 %. Reduction of emissions in this category in the recent years is related to reduction of fuel consumption in the commercial as well as residential sectors. It should be noted that in the category 1.A.5 "Other", which corresponds to emissions from use of fuels for military purposes, in the period of 1990-2013 emissions were insignificant and amounted to around 0.01 %. In 2014-2021, the share of emissions from this category increase to 0.2 % of the total emissions of the Energy sector and to 0.5 % in 2022-2023.

Emissions in category 1.B Fugitive emissions were 19.2-31.0 % of total sector's emissions. In 2023 the share of emissions in the category was 25.8 %.

The share of emissions in IPPU sector in the period of 1990 - 2023 ranged from 9.5 % to 20.4 % of the total national GHG emissions, including LULUCF (or 9.0-19.4 % excluding LULUCF). Total GHG emissions in the sector decreased from 117.7 Mt CO₂-eq. in 1990 to 21.08 Mt CO₂-eq. in 2023, i.e. by 82.1 %.

The largest source of carbon dioxide emissions in this sector is iron, steel, ammonia, cement and ferroalloys production. During the period of 1990-2004, there was steel production and export growth with a simultaneous decrease of volumes of open-hearth steel production. The growth of steel production led to the growth of emissions associated with the technological process, and decrease in open-hearth steel production - to reduction of emissions related to energy consumption. The main factor that caused the increase in CO₂ emissions in 2005-2007 was the increase in production volumes. The period of 2008-2009 is characterized by a sharp decline in production volumes due to the global economic crisis. As a result of the crisis, Ukrainian producers reduced production volumes and started to close down open-hearth furnaces, which led to further decrease of emissions associated with energy consumption, because the liquid oxygen gasification technology gained popularity. At the same time, reducing iron production led to transfer of blast furnaces into the idle mode that caused to the increase of significance of the technological process in the total emissions in 2009-2022. The increase in total emissions in 2021 compared to 2020 is associated with a growth in industrial production by Ukrainian enterprises, as well as an increase in imports of industrial products. The decreasing trend of emissions in 2022 and 2023 compared to pre-2022 period is associated with the fullscale invasion of Ukraine by the Russian Federation which led to a deep crisis in the productional industries, both at the level of producers and consumers, who either completely stopped production/consumption or significantly reduced it.

The share of Agriculture sector in the total volume of emissions during 1990-2023 varied in the range from 6.7 % to 14.9 % (or 6.3 - 14.2 % excluding LULUCF). The emissions fluctuation in the sector is related to a change in the number of livestock animals and their herd structure; redistribution of manure shares by MMS; varying amounts of fertilizer and liming materials applied; areas under certain crops and their productivity.

LULUCF sector is a net sink in 2023. The value of removals reaches 8.6 % of the total emissions in the country in 1999, then gradually decreased to emissions in 2013. Fluctuating trend around net-zero continues until 2020 after which net removals are observed.

In 2023 net GHG removals are 11.16 Mt CO₂-eq., in the contrast with the removals in 1990 (47.90 Mt CO₂-eq.), but in 2013-2016 and 2018-2019 emissions up to 2.1 Mt CO₂-eq. occurred. Such dynamic is related to first of all GHG emissions dynamic from mineral soils in Cropland category. In 2023 the emissions of 24.55 Mt CO₂-eq. took place on contrast with 19.21 Mt CO₂-eq. of emissions in 2022. Emissions in 2023 are 44.86 Mt CO₂-eq. higher, than the level of 1990, when 20.30 Mt CO₂-

eq. GHG removals occurred. Such variability in emissions relates to instability of volumes of agricultural crop production, change in structure of crops and level of fertilizers applied, especially organic, between the years.

Moreover, forest fires, drainage of organic soils in forests and in Cropland and to a lesser extent in Grassland land-use categories have its influence. It should also be noted that in 1990 a large share of GHG emissions in this category had emissions from non-energy peat extraction, resulting in 12.27 Mt CO₂-eq., but by 2023 the decline in peat production and peat areas reduced the emissions down to the level of 0.13 Mt CO₂-eq.

The share of the Waste sector is small, ranged from 1.8 % to 6.7 % of the total national emissions. The main source of methane emissions in this sector are municipal solid waste disposal sites, wastewater and sludge treatment systems, namely WWTP, latrines, sludge-drying beds. The emissions fluctuation in the sector is related to a change in the volumes of waste disposing, insufficiently treated wastewater, industrial production, number of population and amount of collected biogas at the large country's landfills. The latter leads to a methane recovery from 1 to 7 % of the total emissions of the sector. The full-scale invasion of Ukraine by the Russian Federation led to a significant drop in industrial production, as well as a decrease in the population on the territory of Ukraine and, accordingly, to a decrease in greenhouse gas emissions, particular in category 5.D "Wastewater treatment" in 2022-2023.

Table 2.2. Greenhouse gas emissions in Ukraine by sector (Mt CO₂-eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Energy	740.1	675.8	629.3	559.8	472.0	442.5	406.5	388.7	376.9	347.0	321.7	334.4	315.8
Industrial Processes and Product Use	117.7	100.9	97.0	78.9	66.9	57.9	56.3	61.8	59.9	62.7	67.2	71.7	74.5
Agriculture	89.6	84.0	78.6	75.1	68.5	62.6	53.5	48.0	43.5	39.7	36.8	37.6	37.4
LULUCF (removals)	-47.9	-55.7	-54.1	-48.1	-49.9	-46.0	-39.6	-33.7	-37.9	-39.9	-33.4	-24.9	-22.6
Waste	16.9	16.9	16.8	16.7	16.4	16.3	16.2	16.0	16.0	15.9	15.9	16.0	16.1
Total (without LULUCF)	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
Total (with LULUCF)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2
Total (without LULUCF, with indi-	964.4	877.6	821.7	730.6	623.7	579.4	532.4	514.6	496.2	465.3	441.7	459.8	443.8
rect)	904.4	877.0	021.7	730.0	023.7	379.4	332.4	314.0	490.2	403.3	441.7	439.6	443.6
Total (with LULUCF, with indirect)	916.5	822.0	767.6	682.5	573.8	533.4	492.9	480.9	458.4	425.4	408.3	434.8	421.2

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Energy	325.8	323.7	323.8	337.3	335.5	321.3	282.6	293.5	303.6	296.8	288.2	252.1	215.4
Industrial Processes and Product Use	78.2	81.5	80.9	85.2	92.3	88.8	69.3	75.7	82.4	78.8	73.6	62.8	57.1
Agriculture	33.0	33.7	32.7	32.2	30.1	33.9	32.1	31.5	35.3	34.2	38.1	38.0	36.2
LULUCF (removals)	-32.2	-18.7	-18.2	-22.2	-23.3	-10.4	-15.6	-21.0	-6.9	-10.7	1.5	2.7	4.1
Waste	16.2	16.4	16.5	16.6	16.8	16.6	16.4	16.5	16.4	16.3	16.6	16.3	16.1
Total (without LULUCF)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9
Total (without LULUCF, with indirect)	453.1	455.3	453.9	471.3	474.8	460.7	400.3	417.2	437.7	426.1	416.5	369.1	324.8
Total (with LULUCF, with indirect)	420.9	436.5	435.7	449.1	451.5	450.3	384.7	396.2	430.8	415.4	418.0	371.8	328.9

	2016	2017	2018	2019	2020	2021	2022	2023
Energy	229.9	222.5	231.4	224.5	213.6	215.4	170.4	164.0
Industrial Processes and Product Use	58.9	52.6	57.4	58.9	57.5	60.3	21.6	21.1
Agriculture	38.2	37.3	39.9	40.0	37.7	41.7	32.5	33.0
LULUCF (removals)	6.0	-2.5	7.1	5.1	-15.5	-5.4	-15.7	-11.2
Waste	16.3	16.4	16.3	16.8	16.4	16.1	14.8	14.8
Total (without LULUCF)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7
Total (without LULUCF, with indirect)	343.3	328.8	345.0	340.3	325.2	333.5	239.2	232.9
Total (with LULUCF, with indirect)	349.3	326.3	352.1	345.4	309.7	328.1	223.5	221.7

3 ENERGY (CRT SECTOR 1)

3.1 Sector Overview

The "Energy" sector includes emissions from combustion of carbonaceous fuels (category 1.A "Fuel Combustion Activities"), as well as greenhouse gases produced as a result of leaks in extraction, processing, storage, transportation, and consumption of fuels (category 1.B "Fugitive Emissions from Fuels").

In the reporting year, GHG emissions in the "Energy" sector amounted to $163.99 \, \text{Mt}$ of CO_2 -eq. or approximately $70.4 \, \%$ of all GHG emissions in Ukraine (excluding sinks in the "LULUCF" sector), and decreased by $77.84 \, \%$ vs the baseline 1990. Compared with $2022 \, \text{emissions}$ decreased by $3.7 \, \%$.

Fig. 3.1 shows changes in GHG emissions in the "Energy" sector. In 1990, the proportion of carbon dioxide, methane, and nitrous oxide in the total emissions in the sector accounted for 80.02 %, 19.36 % and 0.61 %, while in 2023 - 74.55 %, 24.75 % and 0.70 %, respectively.

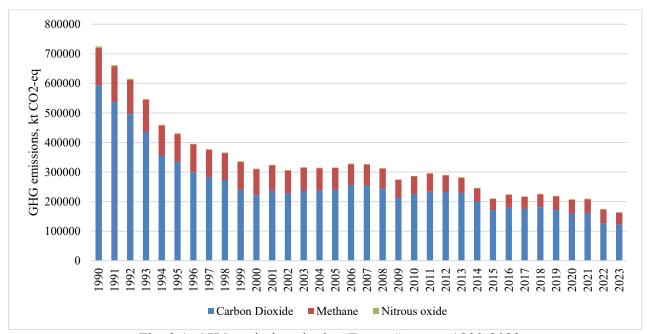


Fig. 3.1. GHG emissions in the "Energy" sector, 1990-2023

In 2023, approximately 74.2 % of emissions in the sector accounted for emissions in category 1.A "Fuel Combustion Activities", and emissions in category 1.B "Fugitive Emissions from Fuels" – 25.8 % (Table 3.1).

		ı	ı		I	I
Category	1990	1995	2000	2005	2010	2012
1 Energy total, including:	740.11	442.52	321.72	323.83	293.50	296.80
	2018	2019	2020	2021	2022	2023
	231.39	224.54	213.64	215.39	170.36	163.99
1.A Fuel Combustion Activities	1990	1995	2000	2005	2010	2012
	597.76	335.24	222.05	239.34	223.60	232.50
	2018	2019	2020	2021	2022	2023
	180.49	171.14	157.45	159.26	124.82	121.63
1.B Fugitive Emissions from Fuels	1990	1995	2000	2005	2010	2012
	142.35	107.28	99.66	84.49	69.89	64.30
	2018	2019	2020	2021	2022	2023
	50.90	53.40	56.19	56.13	45.54	42.36

Table 3.1. GHG emissions in the "Energy" sector, Mt of CO₂-eq.

The dynamics of GHG emissions in the "Energy" sector in the period of 1990-2023 were diverse on certain parts of the time series.

In 1990-1993 GHG emissions were gradually and rapidly reducing, which is due to the inertia of the collapse of the Ukrainian SSR economy and of the Soviet Union as a whole.

In 1994, there was the greatest reduction of GHG emissions – by 15.7 % compared to the previous year 1993, followed by a slowdown of annual reductions till 2000, inclusive. This period is characterized by a sharp reduction in production capacity and idle periods for enterprises, as well as gradual "aging" of the industrial capital and the national infrastructure.

In the period of 2000-2007, there was a slight increase of GHG emissions along with a faster rate of capacity buildup in the production sector. Over the reporting period, GHG emissions increased by 7.1%, due to a number of macro-economic, political, administrative, and social factors. Among the key reasons, the following should be noted: opening of new international markets with tough competition, political and economic measures to improve energy efficiency in the energy sector in Ukraine, international economic and personnel cooperation on energy efficiency and energy saving, energy price trends, transition to private property management.

Since 2007, the key influence on the trend of annual GHG emissions was exerted by the global economic crisis of 2008, which affected the non-production sector mostly, as well as the situation in the global markets of energy-intensive products (e.g. metallurgy), and the policy of natural gas substitution with coal by introducing the pulverized coal injection technology.

Recent years are characterized by general decline in industrial production aggravated by COVID epidemic and war, and corresponding reduce of production and GHG emissions in the energy sector.

3.2 Fuel Combustion Activities (CRT category 1.A)

Category 1.A "Fuel Combustion Activities" includes emissions from combustion of carbonaceous fuels.

The estimation of CO₂ emissions in accordance with [1] was performed by two methods – sectoral and baseline. Estimation of other GHG emissions was held with the sectoral approach.

In 2023, emissions from fuel combustion amounted to 121,63 Mt of CO₂-eq. and decreased as compared to 1990 by 79.65%, compared to 2022 emissions decreased by 2,55 %.

More detailed information is presented in Fig. 3.2.

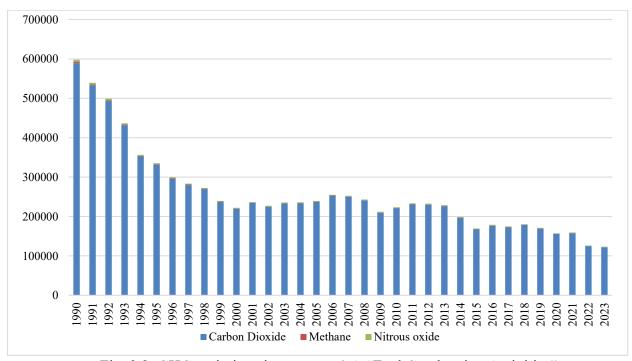


Fig. 3.2. GHG emissions in category 1.A "Fuel Combustion Activities" (sectoral approach, kt CO₂-eq.), 1990-2023

The key source of greenhouse gases is category 1.A.1 "Energy Industries", which in 1990 accounted for 45.61 % of all emissions in the category and in 2023 - 50.41 %; the share of 1.A.2 "Manufacturing Industries and Construction" was 18.6% in 1990 and 13.0% in 2023; 1.A.3 "Transport" – 18.61% and 22.18%, respectively; 1.A.4 "Other sectors" – 17.12% and 13.67%, respectively, the contribution of 1.A.5 "Other" was negligible until 2013, in 2023 it amounted to 0.72% (according to Table 3.2).

Table 3.2. GHG emissions in category 1.A "Fuel Combustion Activities", Mt of CO₂-eq.

					-5,					,	2 - 1	
Category	1990	1995	2000	2005	2010	2012	2018	2019	2020	2021	2022	2023
1.A Fuel Combustion Activities total, including:	597.76	335.24	222.05	239.34	223.61	232.50	180.49	171.14	157.47	159.26	124.82	121.63
1.A.1 Energy Industries	272.63	194.68	115.76	120.76	121.38	131.17	98.72	92.19	86.37	85.21	69.01	61.32
1.A.2 Manufacturing Industries and Construction	111.25	24.99	31.23	36.79	22.60	22.92	18.40	18.61	19.82	21.01	13.24	15.84
1.A.3 Transport	111.43	49.05	34.44	39.09	40.10	39.25	34.87	37.63	31.73	33.57	27.20	26.97
1.A.4 Other sectors	102.34	66.45	40.57	42.61	39.51	38.03	28.02	22.35	19.08	19.08	14.50	16.63
1.A.5 Other	0.11	0.06	0.06	0.08	0.03	0.12	0.48	0.36	0.45	0.38	0.87	0.87

Changes in the structure of emissions from fuel combustion in the period of 1990-2023 by IPCC categories are presented in the diagram (Fig. 3.3).

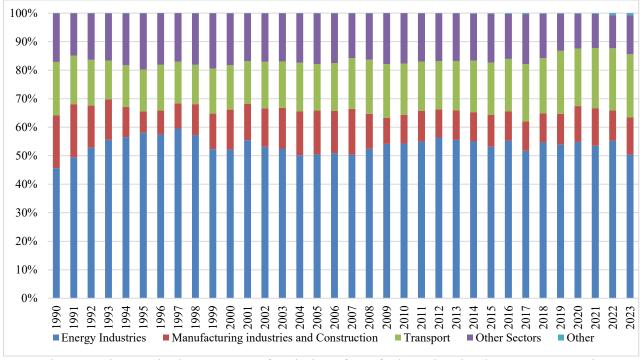


Fig. 3.3. Changes in the structure of emissions from fuel combustion by IPCC categories

3.2.1 Reference CO₂ emission calculation approach. Comparison of sectoral and reference approaches

As a cross-check of the total amount of CO₂ emissions from fuel combustion, comparison of the results of the reference and sectoral approach application was performed (see Table 3.3).

The emission estimation for the reference approach was held in accordance with equation 6.1 [1].

The emission factors for estimation of GHG emissions under the reference approach were NCV and the carbon content same as the values applied in the sectoral approach (see Annex A2.5). Exceptions are emission factors for coals, which were determined as the average for Ukraine as a weighted average value for the coal used in TPPs and for other needs in the country as a whole.

Carbon withdrawal was held in several stages. In the first stage under the reference approach carbon related to non-energy use of fuels according to form 4-MTP was withdrawn.

Due to the fact that emissions from use of coke in ferrous metal production and of natural gas in ammonia production are estimated in accordance with [1] in categories 2.C.1 and 2.B.1 respectively, at the second stage for an adequate comparison of the approaches the carbon contained in coke and natural gas used for the processes above was defined as withdrawn (stored) carbon.

For 2023 the information on production, imports, exports and carbon excluded is available from appropriate statistical forms and from enterprises but the information on stock change is not available because of absence of the form 4-MTP and IEA questionnaires for 2023.

Table 3.3. Comparison of CO₂ emissions from fuel combustion determined using the refer-

ence and sectoral approaches

Year	CO ₂ emissions determined using the reference approach, Mt	CO ₂ emissions determined using the sectoral approach, Mt	Discrepancy between sectoral and reference approaches, %
1990	608.89	588.77	3.42
1991	607.27	533.14	13.91
1992	525.63	493.09	6.60
1993	418.70	431.68	-3.01
1994	349.85	352.27	-0.69
1995	342.88	331.26	3.51
1996	283.00	296.01	-4.39
1997	267.35	279.77	-4.44
1998	258.89	269.52	-3.94
1999	239.97	236.75	1.36
2000	229.81	219.70	4.60
2001	232.06	234.10	-0.87
2002	243.29	224.75	8.25
2003	232.21	233.15	-0.40
2004	242.71	233.57	3.91
2005	249.79	237.07	5.36
2006	259.67	252.26	2.94
2007	260.54	249.92	4.25
2008	245.66	240.51	2.14
2009	209.75	209.51	0.12
2010	219.17	221.30	-0.96
2011	232.55	231.00	0.67
2012	225.91	230.10	-1.82
2013	217.05	226.23	-4.06
2014	196.82	196.49	0.17
2015	176.60	167.61	5.37
2016	174.44	176.67	-1.26
2017	166.17	172.61	-3.73
2018	175.56	178.37	-1.58
2019	166.51	168.94	-1.44
2020	155.07	156.44	-0.44
2021	150.20	157.48	-4,62
2022	125.44	123.11	1.90
2023	114,09	120.18	-5.07

3.2.2 International Bunker Fuels (CRT category 1.D.1)

3.2.2.1 International Aviation (CRT category 1.D.1.a)

The approach applied to distribution of GHG emissions between domestic and international aviation is consistent with the approach described in [1]. Emissions from international aviation include emissions from aircraft operations where the departure or destination airports are located outside Ukraine. For more details on the technique of estimating GHG emissions from air transport, as well as the input data, see Annex A2.7.

In 2022 (with the exception of January and February) and 2023 flights of domestic aviation were forbidden due to the full-scale invasion of Ukraine. For trends on GHG emissions from domestic and international aviation see Fig. 3.9.

3.2.2.2 International Waterway Navigation (CRT category 1.D.1.b)

National statistics do not include data on international bunker waterway transportations. In this connection, the indirect estimation method was used, which is based on use of data on total consumption of fuels by water transport (form 4-MTP) and the sea transport cargo turnover (coastal/international transportation) plus the river one (domestic/foreign traffic) [16-29].

The distribution of fuels for international transportation was performed based on the formula:

$$FC_{1.d,1,b} = FC_{H50} \cdot k_{1.d,1,b} \tag{3.1}$$

Where:

*FC*_{1.d.1.b} is consumption of fuels by international waterway transport (gasoil, fuel oil), tons;

FC_{H50} - consumption of fuels by TEA H50 "Water Transport" for transportation needs (gasoil, fuel

 $K_{I,d,l,b}$ - the factor of fuel distribution into international/coastal transportation, in relative terms, which is defined by the following expression: $k_{1.d.1.b} = \frac{PR_{int} + PS_{int}}{PR + PS}$

$$k_{1.d.1.b} = \frac{\bar{P}R_{int} + PS_{int}}{PR + PS} \tag{3.2}$$

Where:

*PR*_{int} is the volume of cargo transportation by international river transport, thd tons;

*PS*_{int} is the volume of cargo transportation by international sea transport, thd tons;

PR - total volume of cargo transportation by river transport, thd tons;

PS - total volume of cargo transportation by sea transport, thd tons.

The volumes of cargo transportation were taken from statistical yearbooks [16-29].

The correlation between cargo turnover and GHG emissions for international navigation is presented in fig. A.3.4.

The method used for estimating the emissions corresponds to Tier 2 for CO₂ emissions from diesel combustion and Tier 1 – for fuel oil and non-CO₂ gases in accordance with [1].

Because of absence of necessary statistical information for 2023 GHG emissions from international water transport in 2023 are assumed to be equal to emissions in 2022.

GHG emissions from international water transport in 2023 amounted to 7,24 kt of CO₂-eq., which is 220.69 times lower than in 1990. GHG emissions from domestic and international navigation for 1990-2023 are presented in the Fig.3.11.

The correlation between cargo turnover and GHG emissions is presented in the Fig.3.4.

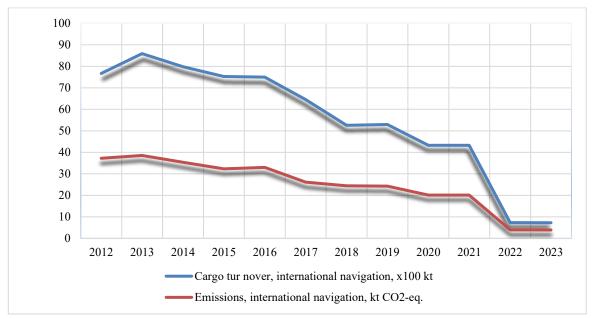


Fig 3.4 The correlation between cargo turnover and GHG emissions for international navigation

3.2.2.3 Category-specific recalculations

No recalculations were performed in the category.

3.2.3 Use of fuels as a raw material and non-energy use of fuels

Emissions in category 1.A "Fuel Combustion Activities" include emissions from fuel combustion for heat and electricity production in industrial processes, transportation, etc. However, fuel is also used for non-energy needs (for example, as solvents, lubricants, etc.; as feedstock for ammonia, rubber, plastic production, etc.; as a reducing agent – coke in the blast furnaces). Emissions from non-energy fuel use are presented in the sector "IPPU" in the following sub-categories:

- 2.B.1 "Ammonia Production" natural gas as a raw material in production of ammonia;
- 2.C.1 "Iron and Steel Production" non-energy use of coke in production of pig iron in the blast furnace process;
- 2.C.2 "Ferroalloys Production" coke in production of ferroalloys;
- 2.B.8 "Petrochemical and Carbon Black Production" coal raw material for carbon black production;
- 2.D.1 "Lubricants Use" non-energy use of oils;
- 2.D.2 "Paraffin Wax Use" non-energy use of paraffin in manufacture of industrial products.

To improve transparency of accounting for emissions from coke use, the balance of coking coal, coke, and coke gas was built, which is presented in Annex A4.4.

The amount of fuel that was used for non-energy needs was determined on the basis of statistical reporting form 4-MTP, where enterprises enter information on fuel quantities used as raw materials for chemical, petrochemical, and other non-fuel production. The exception is natural gas and coke, where the volumes of their use as raw materials were determined according to data of companies producing ammonia, cast iron, steel and carbon black, respectively.

Thus, fuel used for non-energy purposes were not considered in calculation of GHG emissions in category 1.A "Fuel Combustion Activities".

3.2.4 CO₂ sequestration

Ukraine does not conduct sequestration of CO₂ released during combustion of carbon-containing fuels for long-term storage purposes, for example, in geological formations. For this reason, no estimation of the volume of sequestered CO₂ in the "Energy" sector was performed.

3.2.5 CO₂ emissions from biomass

In accordance with [1], CO₂ emissions from combustion of biomass for energy purposes were not included into the total emissions in the "Energy" sector but are presented separately, as reference data. Emissions of CH₄ and N₂O from biomass for energy purposes are accounted for in category 1.A "Energy Industries".

In the emission calculations, biomass includes charcoal, firewood, briquettes and pellets from wood, sawdust briquettes, and biodiesel from oils, sugar and starch crops, and other types of primary fuels (sawdust, bark, corn cobs, etc.).

The method of estimating emissions from biomass, activity data and emission factors are presented in Annex A2.

3.2.6 National features

National characteristics of energy statistics of Ukraine, as well as changes in its structure during the period of 1990-2023, are described in Annexes A2.1-A2.2 and form the basis for processing of input data within the current GHG inventory.

3.2.7 Energy Industries (CRT category 1.A.1)

3.2.7.1 Category Description

In 2023, emissions in category 1.A.1 "Energy Industries" amounted to 61,32 Mt of CO_2 -eq., and decreased by 77.51 % compared with the baseline 1990 (see Table 3.4); they decreased by 11.15 % compared to 2022.

					0 1			0)					
Emission category	1990	1995	2000	2005	2010	2012	2018	2019	2020	2021	2022	2023	
1.A.1 Energy Industries, total	272.63	194.68	115.76	120.76	121.38	131.17	98.72	92.19	86.37	85.21	69.01	61.32	
1.A.1.a Electricity and Heat Production	255.47	187.72	108.05	111.55	111.71	123.03	93.54	87.80	82.07	80.92	65.59	58.53	
1.A.1.b Petroleum Refining	6.36	1.88	1.40	1.23	0.87	0.57	0.37	0.35	0.39	0.42	0.19	0	
1.A.1.c Manufacture of Solid Fuel and Other En- ergy Industries	10.80	5.09	6.31	7.98	8.80	7.58	4.81	4.04	3.92	3.87	3.23	2.79	

Table 3.4. GHG emissions in the category 1.A.1 "Energy Industries", Mt of CO₂-eq.

3.2.7.1.1 Public Electricity and Heat Production (CRT category 1.A.1.a)

This category includes emissions from stationary fuel combustion in production of electricity and heat by TPPs, CHPs, HPs, waste incinerators.

In view of the fact that in the constantly changing structure of the Ukrainian economy lots of power generation facilities of industrial enterprises have been repeatedly transferred to the balance sheet of other companies, thus without changing the actual technological components they were accounted for in other types of economic activities, so with the view of harmonizing the time series category 1.A.1.a "Electricity and Heat Production" also includes activities of enterprises.

In the category "Electricity and Heat Production", GHG emissions in 2023 amounted to 58.53 Mt of CO₂-eq., having decreased with respect to 2022 by 10.76 %, and decreased by 77.09 % compared with the baseline 1990.

GHG emissions in category 1.A.1.a by fuels groups are presented in Fig. 3.5

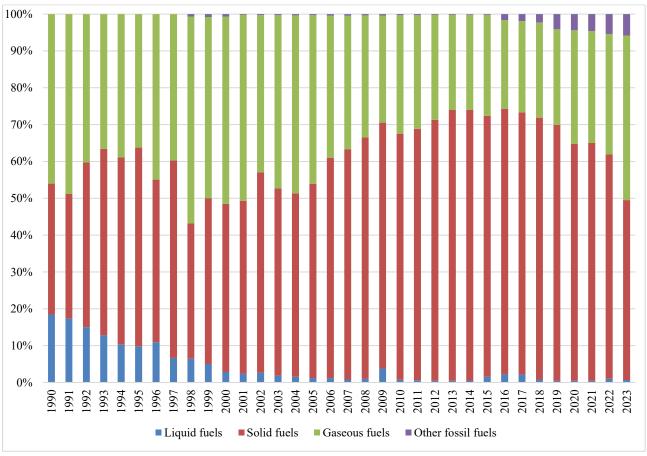


Fig. 3.5. GHG emissions in category 1.A.1.a by fuel groups, % of the category

The structure of GHG emissions in the category 1.A.1.a "Electricity and Heat Production" by energy facilities for 1998-2023 is presented in Fig. 3.6.

For the whole period 1998-2023, the largest share of GHG emissions in the category corresponds to TPPs – from 42.8 % to 62.1 %, for the rest: CHPs – from 11.9 % to 15.8 %, HPs – from 22.1 % to 45.3 %.

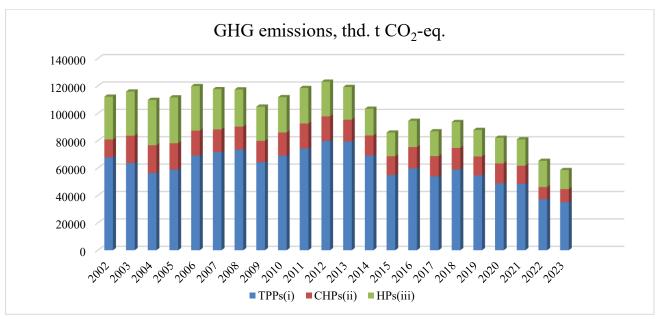


Fig.3.6. The structure of GHG emissions in the category 1.A.1.a "Electricity and Heat Production" by energy facilities, 2002-2023

It should be noted that during recent years the specific fuel consumption (GHG emissions per MWh electricity produced) has the value of 1.0 t CO₂ eq/MWh and even higher because all TPPs

blocks are older than 40–60 years and, in order to extend the lifetime, operating steam temperatures are lower, which leads to a higher fuel consumption.

3.2.7.1.2 Petroleum Refining (CRT category 1.A.1.b)

Enterprises in this category include petroleum refineries and gas processing plants. This category accounts for burning fuels directly for technological processes. The key types of fuels in this category are natural gas, refinery feedstock and fuel oils.

In this category there was no activity data for 2023.

3.2.7.1.3 Manufacture of Solid Fuels and Other Energy Industries (CRT category 1.A.1.c)

This category includes emissions from fuel combustion at the enterprises that are engaged in production of energy materials and other energy industries.

The current inventory in the category takes into account emissions from coal bed methane recovery (with generation of heat and power).

Emissions in this category in 2023 amounted to 2.79 Mt of CO₂-eq, which is 11.43 % lower than the same indicator in 2022 and 79.92 % lower than the baseline 1990.

3.2.7.2 Methodological Issues

GHG emissions from fossil fuel combustion in all categories were calculated using the methodology described in Annex 2. The key principles for definition of activity data are presented in section A2.2, analysis of the statistical base in Ukraine – in section A2.1, emission factors – in section A2.5, summary data on use of fuels in Ukraine in 2023 – in section A2.9. National circumstances for 2014 - 2023 are provided in Annex A2.10.

Because of absence of some statistical information for 2023 the missing data for GHG emissions estimation in 2023 were calculated on the basis of 2022 data using such drivers as electric energy, heat and refinery production.

3.2.7.2.1 Electricity and Heat Production (CRT category 1.A.1.a)

GHG emissions from coal combustion at the TPPs were estimated based on the methodology, developed by Coal Energy Technology Institute of NASU [11] according to which the country-specific NCV, oxidation factor and carbon content as well as mass combusted were determined for the period 1990-2023, see Annex A2.6.2.

Other fuels consumed in subcategories "Electricity Generation" (i), "Combined Heat and Power Generation" (ii), and "Heat Plants" (iii) were identified based on national statistical forms, see Annex A2.2.

Due to the fact that the national statistics for 1990-1997 does not make it possible to disaggregate data on fuel consumption into the sub-categories "Electricity Generation" (i), "Combined Heat and Power Generation" (ii), and "Heat Plants" (iii), emissions in the category "Electricity and Heat Production" were not disaggregated by the sub-categories for this period.

Estimation of CO₂ emissions for coal combusted at the TPPs was performed in the manner corresponding to Tier 3 [1]; for natural gas, coal coke, gasoline, diesel and LPG – to Tier 2; for other fuels – to Tier 1.

Calculation of emissions of non-CO₂ gases for all fuels was held under Tier 1 [1].

This category also includes GHG emissions from waste incineration to produce heat energy. In the total CO₂ emissions from combustion of waste of non-biogenic origin at waste incineration plants were taken into account. CO₂ emissions from combustion of biogenic waste at incineration plants are separately presented as burning of biomass in accordance with [1].

3.2.7.2.2 Petroleum Refining (CRT category 1.A.1.b)

This category includes emissions from combustion of fuels, the energy of which is directly used for oil refining technological processes. The key fuels in the category are: natural gas, refinery feedstock and fuel oils.

The data on energy use of fuel in this sub-category up to 2016 (see A.2.2) are based on the total fuel consumption for oil refining by fuels under form 11-MTP. GHG estimations for the period 2016-2022 were carried out by surrogate method on the basis of IEA data on refinery intake. In this category there was no activity data for 2023.

Estimation of CO₂ emissions was held under the method corresponding to Tier 1 in accordance with [1].

3.2.7.2.3 Manufacture of Solid Fuels and Other Energy Industries (CRT category 1.A.1.c)

This category includes all GHG emissions from use of solid fuel production and other activities in the energy sector.

Estimation of CO₂ emissions from combustion of natural gas, gasoline, diesel and LPG was held under the method corresponding to Tier 2 in accordance with [1], for other fuels, as well as for non-CO₂ gases – to Tier 1.

GHG emissions from coal bed methane recovery were estimated according to the equation 5.2, Volume 1, Chapter 5 [1]. The input data on coal bed methane recovery up to 2012 are shown in the table 3.19. GHG emissions from coal bed methane for the period 2013-2023 were calculated by surrogate method on the basis coal production data.

3.2.7.3 Uncertainties and Time Series Consistency

Uncertainties of activity data and emission factors are presented in Table 3.5.

Table 3.5. Uncertainties of activity data and emission factors in category 1.A.1 "Energy Industries"

T of f ol	II-soutsinter of activity data 0/	Uncertainties of emissions factors, %						
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N ₂ O				
Liquid fuel	8.43	2	150	500				
Solid fuel	8.99	5	150	500				
Gaseous fuel	6.44	5	150	500				
Other types of fuels	46.67	5	150	500				
Biomass	45.30	5	150	500				

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according to the methodology [1].

Estimated total GHG emission uncertainty in this category is 6.91 %.

The most significant impact on the overall uncertainty of GHG emission estimation in this category is produced by CO₂ emission estimation uncertainty in the category "Electricity and Heat Production" – the uncertainty of emission factors and activity data for solid fuel.

3.2.7.4 Category-specific QA/QC Procedures

As part of QA/QC procedures, in addition to the general QA/QC procedures, the following were performed:

 comparison of data on fuel consumption according to forms of statistical reporting 4-MTP and 11-MTP for 2010-2015;

- comparison of data on coal consumption for the period of 2003-2021 obtained from public power stations, with statistics. The average discrepancy for the specified period is about 1 %. A more conservative value was used for calculation;
- in collaboration with SSSU's specialists, analysis of statistical reporting forms containing the source data for GHG emission calculation was conducted;
 - balance sheets for various types of fuel were developed (see Annex 4).

3.2.7.5 Category-specific Recalculations

In this category, no recalculations were made.

3.2.7.6 Category-specific Planned Improvements

In this category, no improvements are planned.

3.2.8 Manufacturing Industries and Construction (CRT category 1.A.2)

3.2.8.1 Category Description and Methodological Issues

This category includes GHG emissions from stationary combustion of fossil fuels used for industrial purposes in industry, construction, and extraction of non-energy materials.

In 2023, emissions in category 1.A.2 "Manufacturing Industries and Construction" amounted to 15.84 Mt of CO₂-eq., and decreased by 85.76 % compared with 1990 (see Table 3.6). Compared with 2022 emissions increased by 19.64 %.

Table 3.6. GHG emissions in category 1.A.2 "Manufacturing Industries and Construction",

Mt of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2012	2018	2019	2020	2021	2022	2023
1.A.2 Manufacturing Industries and Construction total, including:	111.25	24.99	31.23	36.79	22.60	22.92	18.40	18.60	19.82	21.01	13.24	15.84
1.A.2.a Iron and Steel	55.35	15.39	25.19	24.59	13.42	13.92	10.17	10.60	11.06	11.38	7.17	7.53
1.A.2.b Non-Ferrous Metals	0.65	0.61	0.47	0.67	0.63	0.36	0.90	0.84	0.84	0.93	0.59	0.62
1.A.2.c Chemicals	3.52	1.57	0.79	1.11	0.82	0.99	0.56	0.49	0.38	0.41	0.26	0.31
1.A.2.d Pulp, Paper and Print	0.14	0.20	0.01	0.05	0.04	0.05	0.05	0.04	0.05	0.05	0.03	0.04
1.A.2.e Food Processing, Beverages, and Tobacco	3.64	2.42	0.90	0.83	0.58	0.63	0.58	0.52	0.53	0.58	0.37	0.45
1.A.2.f Non-Metal Minerals	16.10	2.61	2.29	5.83	4.27	4.07	3.62	3.98	4.31	4.74	2.99	4.2
1.A.2.g Other Industries	31.85	2.20	1.56	3.72	2.84	2.90	2.51	2.13	2.65	2.92	1.84	2.7

Changes in the structure of emissions from fuel combustion in the period of 1990-2023 by category 1.A.2 are presented in the diagram (Fig. 3.7)

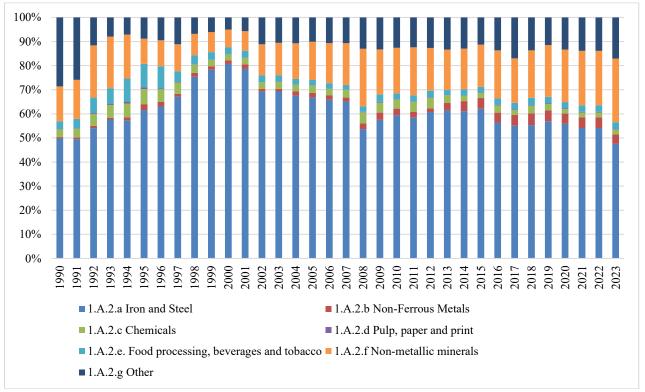


Fig.3.7. Changes in the structure of emissions from fuel combustion in category 1.A.2 "Manufacturing Industries and Construction", %

Emissions that result from use of fossil fuels or their processing products as raw materials or chemical reagents are recorded in CRT sector 2 "IPPU". The same sector accounts for emissions from technological (energy and non-energy components) use of natural gas for the purpose of production of ammonia, as well as coke for recovery of iron ore, since iron, steel and ammonia production processes [5, 6] in Ukraine are characterized by use of fuel resource data directly in the production borders of enterprises of the types and therefore, in accordance, with [1].

Consumption of different types of fuel changed over the time series for a number of reasons: sharp changes in prices for specific types of fuel, an increase in the relative consumption of LPG, a general decline in industry.

Because of absence of some statistical information for 2023 the missing data for GHG emissions estimation in 2023 were calculated on the basis of 2022 data using such drivers as production of pig iron and general industrial production.

3.2.8.1.1 Iron and Steel (CRT category 1.A.2.a)

In accordance to 2006 IPCC Guidelines [1], emissions from energy and non-energy use of coke in the blast furnace process for iron production were accounted in the "IPPU" sector.

In 2023, GHG emissions in this category amounted to 7.53 Mt of CO₂-eq, which is 5.10 % higher than the same indicator in 2022 and 86.39 % lower than in 1990.

3.2.8.1.2 Non-Ferrous Metals (CRT category 1.A.2.b)

Non-ferrous metallurgy in Ukraine, in contrast to the ferrous one, accounts for a small share of both emissions and fuel resource consumption. However, the sector is characterized by higher energy intensity.

The major share in production of non-ferrous metals belongs to zinc and lead.

Production of primary aluminium in Ukraine stopped in May 2010. However, GHG emission trends in the category of "Non-Ferrous Metals" were not impacted by that, as the key source of electric power at enterprises producing aluminium was power plants.

In 2023, GHG emissions amounted to 0.62 Mt of CO₂-eq, increased by 5.10 % compared to 2022 and 5.99 % lower than in 1990.

3.2.8.1.3 Chemicals (CRT category **1.A.2.c**)

The key products of the chemical industry in Ukraine are ammonia, mineral fertilizers (carbamide, ammonium nitrate, and others), acids (sulfuric, nitric, and others), soda, as well as plastics and rubber products. The chemical industry is one of the largest industrial consumers of natural gas in Ukraine after the thermal power industry and the ferrous industry. Natural gas used for production of ammonia is accounted for in IPPU according to [1].

In 2023, GHG emissions in this category amounted to 0.31 Mt of CO₂-eq., which is 18.4 % higher than the same indicator in 2022 and 11.41 times lower than in 1990.

3.2.8.1.4 Pulp, Paper, and Print (CRT category 1.A.2.d)

This category includes emissions resulting from energy use of fuels by enterprises producing paper and paperboard, products from them, as well as use for publishing and printing for production needs.

Due to the fact that pulp, paper, and printing industries in Ukraine tend to use centralized energy supply systems, waste paper is virtually not used at these plants for energy purposes but consumed as raw materials for reproduction, handed over as waste paper, as well as transferred to other enterprises.

In 2023, GHG emissions in this category amounted to 0.04 Mt of CO₂-eq., which is 18.3 % higher than the same indicator in 2022 and 3.56 times lower than in 1990.

3.2.8.1.5 Food Industry, Beverages, and Tobacco (CRT category 1.A.2.e)

In category 1.A.2.e "Food Processing, Beverages, and Tobacco" GHG emissions from use of fuels for production of industrial products were accounted. The key source of emissions in this category are companies engaged in the sugar, baking, and dairy industries, as well as the beverage industry.

In 2023, GHG emissions in this category amounted to 0.45 Mt of CO₂-eq., which is 23.4 % higher than the same indicator in 2022 and 8.05 times lower than in 1990.

3.2.8.1.6 Non-Metal Minerals (CRT category 1.A.2.f)

This category includes GHG emissions from use of fuels for production of glass products, materials for construction and other non-metal materials.

In 2023, GHG emissions in this category amounted to 4.2 Mt of CO₂-eq., which is 40.1 % lower than the same indicator in 2022 and 3.85 times lower than in 1990.

3.2.8.1.7 Other Industries (CRT category 1.A.2.g)

These industries include emissions from use of fuels for production of industrial products by the Ukrainian enterprises not covered in categories 1.A.2.a - 1.A.2.f namely: construction, machinery, wood products, furniture, electronics, textiles, and so on.

In 2023, GHG emissions in this category amounted to 2.7~Mt of CO_2 -eq., which is 47.2~% higher than the same indicator in 2022 and 11.78 times lower than in 1990.

3.2.8.2 Methodological Issues

GHG emissions from fuel combustion in all the categories were calculated using the methodology described in Annex 2, and are based on statistical data on consumption of fuels presented in

the statistical reporting form 4-MTP. National circumstances for 2014-2023 are provided in Annex A2.10.

Because of absence of some statistical information for 2023 the missing data for GHG emissions estimation in 2023 were calculated on the basis of 2022 data using such drivers as production of pig iron and general industrial production.

3.2.8.3 Uncertainties and Time Series Consistency

Uncertainties of activity data and emission factors are present in Table 3.7.

Table 3.7. Uncertainties of activity data and emission factors in category 1.A.2 "Manufac-

turing Industries and Construction"

Type of fuel	Uncertainty of activity data 9/	Uncertainties of emissions factors, %						
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N ₂ O				
Liquid fuel	10.89	2	150	500				
Solid fuel	14.66	5	150	500				
Gaseous fuel	12.36	5	150	500				
Other types of fuels	30.22	5	150	500				
Biomass	30.14	5	150	500				

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according to the methodology [1].

Estimated total GHG emission uncertainty in this category is 9.64 %.

3.2.8.4 Category-specific QA/QC Procedures

In addition to general QA/QC procedures, in this category an analysis of statistical reporting forms containing the original data for the calculation of GHG emissions was held together with specialists from the SSSU.

3.2.8.5 Category-specific Recalculations

In this category, no recalculations were made

3.2.8.6 Category-specific Planned Improvements

No improvements are planned.

3.2.9 Transport (CRT category 1.A.3)

3.2.9.1 Category Description

Category 1.A.3 "Transport" includes emissions from fuel combustion in all modes of transport in Ukraine.

In 2023, emissions in category 1.A.3 "Transport" amounted to 26.97 Mt of CO₂-eq. Compared to 1990, emissions decreased by 75.79 %, to the previous 2023 – lower by 0.83 %.

The largest contribution into GHG emissions in category 1.A.3 "Transport" in 2023 was made by emissions in categories 1.A.3.b "Road Transport" and 1.A.3.e "Other Types of Transportation" -75.05 % and 22.89 %, respectively (see Table 3.8).

Table 3.8. GHG emissions in category 1.A.3 "Transport", Mt of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2012	2019	2020	2021	2022	2023
1.A.3 Transport to- tal, including:	111.43	49.05	34.44	39.09	40.10	39.25	37.63	31.73	33.57	27.20	26.97

Emission category	1990	1995	2000	2005	2010	2012	2019	2020	2021	2022	2023
1.A.3.a Civil Aviation	0.68	0.11	0.07	0.20	0.17	0.20	0.18	0.16	0.19	0.03	0.00
1.A.3.b Road Transport	61.27	20.70	15.76	22.13	28.85	29.07	26.63	23.35	24.96	20.71	20.24
1.A.3.c Railways	3.79	1.30	1.37	0.87	0.54	0.38	0.53	0.42	0.42	0.44	0.56
1.A.3.d Waterway Transport	3.27	0.43	0.20	0.20	0.10	0.08	0.08	0.08	0.08	0.01	0.01
1.A.3.e Other types of transport	42.43	26.51	17.04	15.69	10.43	9.53	10.16	7.71	7.92	6.00	6.16

Changes in the structure of emissions from fuel combustion in the period of 1990-2023 in category 1.A.3 are presented in the diagram (Fig. 3.8).

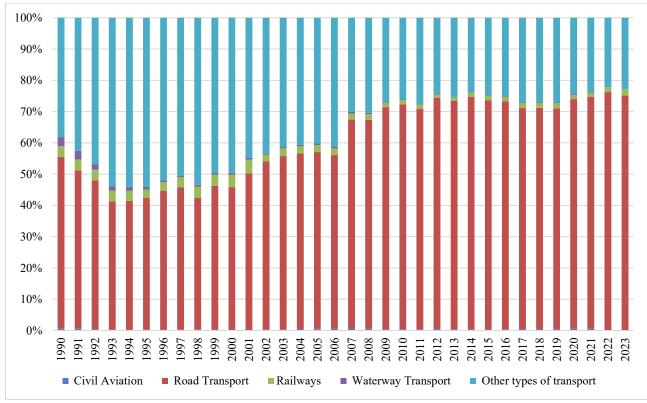


Fig.3.8. Changes in the structure of emissions from fuel combustion in category 1.A.3 "Transport", %

3.2.9.2 Methodological Issues

Activity data of fuel consumption by CRT category at mobile fuel combustion for 2023 are presented in Table A2.3.

Because of absence of some statistical information for 2023 the missing data were calculated on the basis of 2022 data using such drivers as import and export of fuels for categories 1.A.3.b and 1.A.3.e.ii, quantity of transported cargo and passengers for category 1.A.3.c. For category 1.A.3.e.i the calculation was carried out on the basis of the data received from Ukraine's gas transmission system operator.

3.2.9.2.1 Civil Aviation (CRT category 1.A.3.a)

This category includes emissions from combustion of fuel used by civil aviation aircrafts and does not include emissions from fuel used by ground transport and stationary combustion plants at airports.

Emission estimation was conducted separately for aircraft which use jet fuel and those equipped with piston engines, in which aviation gasoline is used.

For more details on the technique of estimating GHG emissions from air transport, as well as the raw data, see Annex A2.7.

In 2022 (with the exception of January and February) and 2023 flights of domestic aviation were forbidden due to the full-scale invasion of Ukraine. For trends on GHG emissions from domestic and international aviation see Fig. 3.9.

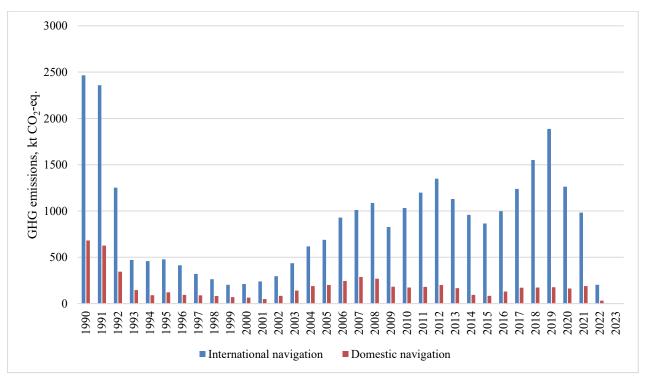


Fig. 3.9. GHG emissions from domestic and international aviation, 1990-2023

Estimation of CO_2 emissions from jet kerosene was held under the method corresponding to Tier 3; of CH_4 and N_2O – Tier 2; from aviation gasoline – to Tier 1, in accordance with [1]. The departure database (DDB) was provided by State enterprise of air traffic services of Ukraine.

3.2.9.2.2 Road Transportation (CRT category 1.A.3.b)

This category includes emissions from combustion of fuel by road transport, including vehicles owned by individuals.

In category 1.A.3.b "Road Transport", GHG emissions in 2023 amounted to 20.24 Mt of CO₂-eq., which is 2,25 % lower than the same indicator in 2022, and decreased by 66,96 % compared with 1990. GHG emissions, as well as their structure by fuels used are presented in Fig. 3.10.

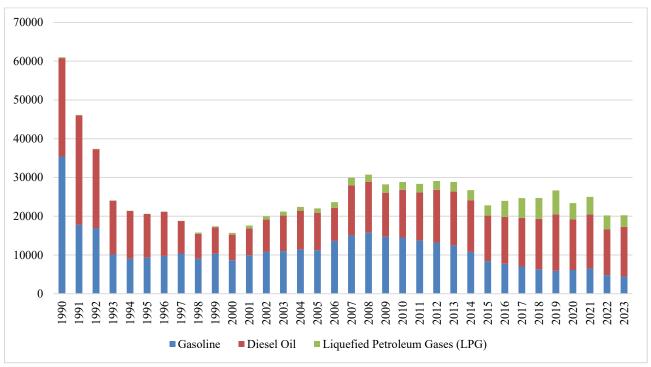


Fig. 3.10. GHG emissions in category 1.A.3.b "Road Transport" by fuels, for 1990-2023, kt CO₂-eq.

Emissions in the category for the entire time series of 1990-2023 were calculated based on data on energy use of fuels according to form 4-MTP, as well as on data on sale of gasoline and gas oil to population through the network of petrol stations [16-29] taking into account the analytical study [14] using the national EFs for gasoline, diesel and LPG which corresponds to Tier 2 for CO₂ emissions and using Tier 1 for other gases according to [1]. More details on the methodological aspects used in the categories are described in Annex A2.4.2 and A2.6.3.

Due to the changes in the form 4-MTP in 2016 the fuel volumes for 2016 - 2023 were calculated by surrogate method on the basis of 2015 and the IEA data on consumption of gasoline, diesel oil and LPG, so the time series consistency is ensured.

National circumstances for 2014 - 2023 are provided in Annex A2.10.

3.2.9.2.3. Railways (CRT category 1.A.3.c)

This category includes emissions from combustion of fuel consumed for thermal traction of railway rolling stock. In Ukraine diesel fuel is used as the fuel for locomotives. This category does not include emissions associated with production of the electricity needed for electric train drives.

In 2023, emissions in the category amounted to 0.56 Mt of CO_2 -eq., which is 25.77 % higher than in 2022, and to the baseline 1990 – decreased by 6.8 times.

Emissions in this category were evaluated using the procedure described in Annex 2.4. The method for estimating emissions corresponds to Tier 2 for CO_2 emissions from diesel combustion and tier 1 – for non- CO_2 gases in accordance with [1].

It is worth noting that in 2009 there was a precipitous reduction of emissions in the category (during the year - by 40%), due to the effects of the global economic crisis of 2008 – a decrease in industrial production and, accordingly, decline in demand for freight transportation.

National circumstances for 2014 - 2023 are provided in Annex A2.10.

3.2.9.2.4 Navigation (CRT category 1.A.3.d)

This category includes emissions from combustion of fuel consumed for propulsion drives of sea and river vessels. This category includes emissions from enterprises assigned with code designation H50 "Waterway Transport".

GHG emissions from bunker fuels used for sea transport are not included in the total emissions and are considered as reference data.

The distribution of fuels for domestic transportation was performed based on the formula:

$$FC_{1.A.3.d} = FC_{H50} \cdot k_{1.A.3.d}; \tag{3.3}$$

Where:

 $FC_{1.A.3.d}$ is consumption of fuels by domestic waterway transport (gasoil, fuel oil), tons;

 FC_{H50} - consumption of fuels by TEA H50 "Water Transport" for transportation needs (gasoil, fuel oil), tons;

 $k_{1.A.3.d}$ - the factor of fuel distribution into coastal transportation, in relative terms, which is defined by the following expression:

$$k_{1.A.3.d} = \frac{PR_h + PS_h}{PR + PS}; (3.4)$$

Where:

 PR_h is the volume of cargo transportation by domestic river transport, kt;

PSh is the volume of cargo transportation by domestic sea transport, kt;

PR - total volume of cargo transportation by river transport, kt;

PS - total volume of cargo transportation by sea transport, kt.

The volumes of cargo transportation were taken from statistical yearbooks [16-29].

In 2023, emissions in category amounted to 13,86 kt of CO_2 -eq which is the same as in 2022 and to the baseline 1990 – having decreased by 235.6 times. GHG emissions from domestic and international navigation for 1997 - 2023 are presented in the Fig.3.11.

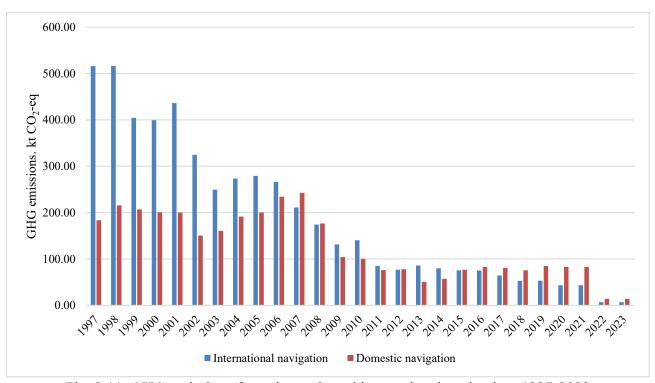


Fig. 3.11. GHG emissions from domestic and international navigation, 1997-2023

The correlation between cargo turnover and GHG emissions for domestic navigation is presented in the Fig.3.12.

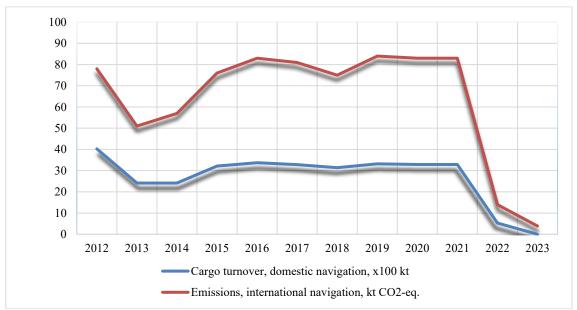


Fig. 3.12 The correlation between cargo turnover and GHG emissions for domestic navigation

The fluctuations in navigation were due to fluctuations in national economy. National circumstances for 2012 - 2023 are provided in Annex A2.10.

3.2.9.2.5 Other Types of Transportation (CRT category 1.A.3.e)

This category includes emissions from combustion of natural gas by drives of gas pumping units of compressor stations of main gas pipelines, as well as activities of off-road vehicles.

Pipeline Transportation (CRT category 1.A.3.e.i). This sub-category includes emissions from combustion of natural gas by drives of gas pumping units of gas mains. The volume of this gas was determined according to data of the SC "Ukrtransgaz", NJSC "Naftogaz", SSSU and Ukraine's gas transmission system operator.

In 2023, emissions in the sub-category amounted to 0.52~Mt of CO_2 -eq., having decreased with respect to 2022 by 33.48 % and to the baseline 1990- decreased by 17.95 times.

Estimation of CO₂ emissions in the sub-category was held under the method corresponding to Tier 2 in accordance with [1] and for non-CO₂ gases - to Tier 1.

Off-Road Transport (CRT category 1.A.3.e.ii). This category includes emissions from fuel combustion in the drives of the so-called in-house transport of all sectors of the economy. In-house transport, in particular, includes heavy vehicles of mining enterprises.

This category also includes emissions from fuel combustion in drives of combines, tractors, and other machinery used in field of agricultural work, regardless of the sectors of the economy in which they are used.

In 2023 emissions in the sub-category amounted to 5.12 Mt of CO_2 -eq., which is 7.95 % higher than the same indicator in 2022, and to the baseline 1990 – decreased in 5.96 times.

Estimation of CO₂ emissions in the sub-category was held under the method corresponding to Tier 2 for CO₂ emissions from gasoline, diesel and LPG combustion and Tier 1 – for non-CO₂ emissions in accordance with [1] for other greenhouse gases.

Due to the changes in the form 4-MTP in 2016 the Off-Road Transport fuel volumes were calculated by surrogate method on the basis of 2015 and the IEA data on consumption of gasoline, diesel oil and LPG, so the time series consistency is ensured. National circumstances for 2014 - 2023 are provided in Annex A2.10.

3.2.9.3. Uncertainties and Time Series Consistency

Uncertainties of activity data and emission factors are present in Table 3.9.

Table 3.9. Uncertainties of activity data and emission factors in category 1.A.3 "Transport"

Type of fuel	Uncertainty of activ-	Uncertainties of emissions factors, %						
	ity data, %	CO ₂	CH ₄	N ₂ O				
Liquid fuel	17.56	4.9	15.46	10.95				

Estimated total GHG emission uncertainty in this category is 17.1 %.

The most significant impact on the overall uncertainty of GHG emission estimation in this category is produced by CO_2 emission estimation uncertainty in the category 1.A.3.b "Road Transport".

3.2.9.4 Category-specific QA/QC Procedures

The general quality control procedures under [1] were applied. The analysis of forms of statistical reporting containing the original data for GHG emission calculation was conducted together with the SSSU specialists.

Methodology issues in category 1.A.3.b "Road Transport" were analyzed by specialized experts from SE "DerzhavtotransNDIproject".

3.2.9.5 Category-specific Recalculations

In this category, no recalculations were made.

3.2.9.6 Category-specific Planned Improvements

The expecting recovery of road transport data base will give the opportunity to carry out appropriate calculations according to COPERT program.

3.2.10 Other Sectors (CRT category 1.A.4)

3.2.10.1 Category Description

In 2023, GHG emissions in category 1.A.4 "Other Sectors" amounted to 16.63 Mt of CO₂-eq., in comparison with the baseline 1990 decreased by 83.75 %, compared to 2022 increased by 14.67 %. The key source of emissions in 2022 is sub-category 1.A.4.b "Residential Sector", which accounted for approximately 94.9 % of the total emissions (see Table 3.10).

Table 3.10. GHG emissions in category 1.A.4 "Other Sectors", Mt of CO₂-eq.

Emission category	1990	1995	2000	2005	2010	2014	2017	2018	2019	2020	2021	2022	2023
1.A.4 Other Sectors total, including:	102.34	66.45	40.57	42.61	39.50	32.76	30.81	28.02	22.35	19.08	19.08	14.50	16.63
1.A.4.a Commercial/Institutional Sector	38.73	23.83	6.54	4.65	2.73	1.66	2.88	2.52	2.15	0.66	0.66	0.50	0.57
1.A.4.b Residential Sector	59.78	41.63	33.86	37.78	36.56	30.80	27.50	25.11	19.87	18.06	18.06	13.72	15.78
1.A.4.c Agriculture/Forestry/Fishery/Fishing	3.83	0.99	0.16	0.18	0.21	0.30	0.42	0.39	0.33	0.37	0.37	0.28	0.27

The significant decreasing of emissions in the Commercial/Institutional and Residential sectors during 1990-2000 is due to the collapse of the USSR, need to save energy and decrease of population. Then the fluctuations are connected with economic crisis and migration and decline of population. The significant decreasing of emissions in 2022, 2023 is due to the full-scale invasion of Ukraine.

Changes in the structure of emissions from fuel combustion in category 1.A.4 are presented in the diagram (Fig. 3.13).

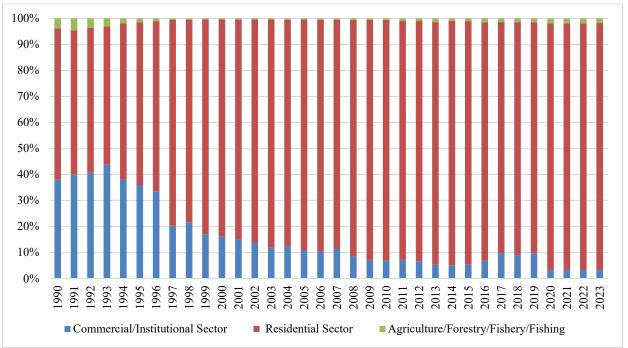


Fig. 3.13. Changes in the structure of emissions from fuel combustion in category 1.A.4 "Other Sectors", %

Changes in the structure of fuel consumption in subcategory 1.A.4.b "Residential Sector" are presented in the diagram (Fig. 3.14).

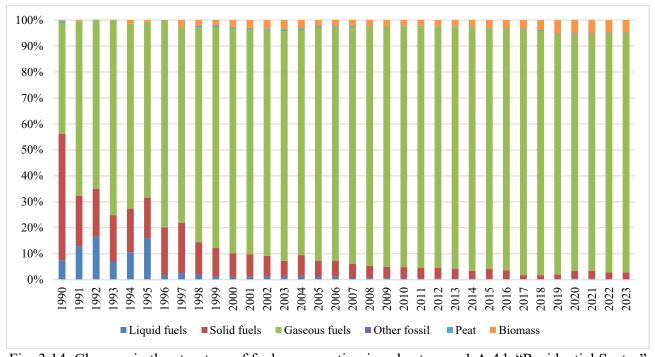


Fig. 3.14. Changes in the structure of fuel consumption in subcategory 1.A.4.b "Residential Sector"

3.2.10.2 Methodological Issues

Emissions related to fuel combustion were evaluated using the procedure described in Annex 2. National circumstances for 2014 - 2023 are provided in Annex A2.10.

Because of absence of appropriate statistical information GHG emissions in 2023 in these categories were calculated on the basis of fuel consuming and the volume of product production available from public sources.

3.2.10.2.1 Commercial/Institutional Sector (category 1.A.4.a)

The GHG emissions were estimated on the basis of data on the amount of fuel burned used for own needs by the business sector and public administration bodies, which includes activities of hotels and restaurants, financial institutions, governmental bodies, education facilities, etc. A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.2.2 Residential Sector (category 1.A.4.b)

The GHG emissions were estimated on the basis of data on the amount of fuel used for domestic needs of population. GHG emissions from individuals' vehicles are included in category 1.A.3.b "Road Transport". A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.2.3 Agriculture/Forestry/Fishery/Fishing (category 1.A.4.c)

This category includes emissions from stationary fuel combustion in industrial production in agriculture, forestry and fisheries. A detailed algorithm of source data determination is presented in Annex A2.

3.2.10.3 Uncertainties and Time Series Consistency

Uncertainties of activity data and emission factors are present in Table 3.11.

Table 3.11. Uncertainties of activity data and emission factors in category 1.A.4 "Other Sectors"

		Uncertainties of emissions factors, %						
Type of fuel	Uncertainty of activity data, %	CO_2	CH ₄	N_2O				
Liquid fuel	8.04	2	150	500				
Solid fuel	12.39	5	150	500				
Gaseous fuel	11.06	5	150	500				
Other types of fuels	30.00	5	150	500				
Biomass	30.39	5	150	500				

Quantification of the uncertainty was performed on the basis of the above uncertainty values of activity data and emission factors according the methodology of [1].

Estimated total GHG emission uncertainty in this category is 11.85%.

The most significant impact on the overall uncertainty of emissions in this category is produced by CO₂ emission uncertainty in category 1.A.4.b "Residential Sector", mainly the uncertainty in consumption of gaseous fuel. This is due, primarily, to absence of individual meters at lots of private house-holds.

3.2.10.4 Category-specific QA/QC Procedures

The general quality control procedures [1] were applied, plus cooperation with the SSSU was established, and analysis of forms of statistical reporting containing the original data for GHG emission calculation was conducted together with the SSSU 's specialists.

3.2.10.5 Category-specific Recalculations

In this category, no recalculations were made.

3.2.10.6 Category-specific Planned Improvements

In this category, no improvements are planned.

3.2.11 Unspecified Categories (CRT category 1.A.5)

3.2.11.1 Category Description

This category includes GHG emissions from sources not included in the other categories. In 2022, GHG emissions in category 1.A.5 "Unspecified Categories" amounted to 0.87 Mt of CO₂-eq., which is the same as in 2022 and to the baseline 1990 – increased by 8.2 times (see Table 3.12).

Table 3.12. Greenhouse gas emissions in category "Unspecified Categories", kt of CO₂-eq.

Category	1990	1995	2000	2005	2010	2014	2017
	105.92	57.26	59.00	84.42	31.60	397.68	533.70
1.A.5	2018	2019	2020	2021	2022	2023	
	475.57	360.12	449.53	384.43	872.75	872.75	

3.2.11.2 Methodological Issues

Emissions related to fuel combustion were evaluated using the procedure described in Annex 2. Category 1.A.5 "Unspecified Categories" includes emissions from use of fuels by the Armed Forces of Ukraine.

3.2.11.3 Uncertainties and Time Series Consistency

Uncertainties of activity data and emission factors are present in Table 3.13.

Table 3.13. Uncertainties of activity data and emission factors in category 1.A.5 "Unspecified Categories"

Type of fuel	Uncertainty of activity	Uncertai	nties of emissions fact	ors, %
Type of fuel	data, %	CO_2	CH ₄	N ₂ O
Liquid fuel	50	2	150	500

Estimated total GHG emission uncertainty in this category is 49.89 %.

3.2.11.4 Category-specific QA/QC Procedures

The general quality control procedures stipulated in [1] were applied.

3.2.11.5 Category-specific Recalculations

No recalculations were performed in the category.

3.3 Fugitive Emissions from Fuels (CRT category 1.B)

Fugitive emissions from fuels are the result of GHG leakages during extraction, treatment, transportation, storage, and consumption of fossil fuels. This category also includes emissions from flaring of hydrocarbons. In 2023 emissions in category 1.B "Fugitive Emissions from Fuels" accounted for 42.36 Mt of CO₂-eq., and decreased by 70.24 % compared to 1990. From 2022, emissions in this category have decreased by 6.98%. More detailed information is presented in Fig. 3.15.

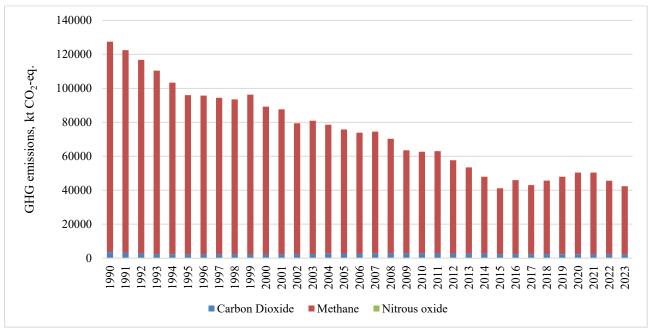


Fig. 3.15. Greenhouse gas emissions in category 1.B "Fugitive Emissions from Fuels" (sectoral approach)

Table 3.14. Emissions in category 1.B "Fugitive Emissions from Fuels", Mt CO₂-eq.

Emission cate- gory	1990	1995	2000	2005	2011	2014	2017	2018	2019	2020	2021	2022	2023
1.B Fugitive Emissions from fuels (total), in- cluding:	142.35	107.28	99.66	84.50	70.23	53.44	47.88	50.90	53.40	56.19	56.13	45.54	42.36
1.B.1 Solid fuels	69.81	42.82	36.88	29.02	26.52	20.86	14.54	14.68	14.17	12.22	12.48	12.39	12.44
1.B.2 Oil and Natural Gas	72.54	64.46	62.78	55.47	43.70	32.54	33.35	36.22	39.23	43.97	43.64	33.15	29.92

3.3.1 Solid Fuels (CRT category 1.B.1)

3.3.1.1 Category Description

The key source of emissions in category 1.B.1 "Solid Fuels" is methane emissions that occur during extraction of coal at mines.

3.3.1.2 Coal Mining and Handling (CRT category 1.B.1.a)

3.3.1.2.1 Underground Mines

In order to improve accuracy of GHG emission estimation in this category, until 2014 Makiivka State Scientific and Research Institute for Safety in Mines (MakNDI) was involved and performed research work for the purpose of inventory of GHG emissions in the coal industry. Inventory of methane emissions at Ukrainian mines was carried out based on results of measuring the actual flow rate of methane in outgoing air flows of gas mines and the production rate of methane captured by vacuum pump plants (VPP) on the surface, which corresponds to Tier 3 [1].

1.B.1.a.1.i Mining Activities. The volume of coal bed methane (including recovery and flaring) from 1990 to 2000 are taken from [8]. For 2003 - 2012 information is taken from scientific research work [4] and shown in Table 3.19, for 2001 and 2002 – Interpolation based on 2000 and 2003 and data on coal production. For calculation of emissions from 2013 to 2023 the surrogate data

method was used based on 2012 and data on coal production for 2013 - 2023 taken from the statistical form 1-P and public sources.

In 2023, methane emissions from underground mining activities amounted to 438.48 kt and compared to 1990 they decreased by 82.23 %, and equal to the same indicator in 2022.

The leading pace of GHG emission reduction in this category in comparison with raw coal production is explained by a decrease in the proportion of active methane containing mines, as well as due to execution of Joint Implementation projects (JIP).

Table 3.19 provides detailed information on utilization of mine methane in Ukraine during 2003-2012.

<u>1.B.1.a.1.ii Post-Mining Activities.</u> In the process of coal production and transportation, methane is produced. The major part of it is released from the exposed surface of the mined bed (40-60%) and chipped coal into the workspace of stope and conveyor (runway) drift (20-30%).

The amount of released methane is registered by stationary monitoring devices in outgoing streams of the stope and production area. The amount of methane released from chipped coal during its transportation from the production areas to the shafts is registered by control devices in outgoing air flows of mines.

Coal transportation onto the earth's surface at highly productive mines usually does not exceed 8 hours. Thus, methane emissions from coal taking place during its transportation to the surface are accounted for in the category "Mining Activities" (CRT category 1.B.1.a.1.i).

On the surface, methane continues releasing from coal, but measuring its production rate is not possible.

According to [1], to calculate methane emissions in the period after coal production the amount of coal production should be multiplied by the corresponding emission factor. In 2001, Donetsk Expert and Technical Center (DETC) of the State Mine Surveillance Committee conducted a special study of the methane emission factor for the period after coal mining [8]. The general methane emission factor obtained as a result for all Ukrainian mines was 2.4 m3/t which was used in the inventory.

The amount of the post-mining methane emission factor set is close to the average value from the range recommended in [1].

In 2023, post-mining methane emissions amounted to 48.2 kt and compared to 1990 they decreased by 77.4 %, and equal to the same indicator in 2022.

<u>1.b.1.a.1.iii</u> Abandoned <u>Underground Mines.</u> After completion of coal mining, methane release from the rock array under mining operations phases out, but it may remain at a relatively high level for a long time. Therefor after cessation of mines, ventilation and filling (flooding) of shafts, gas may accumulate in worked-out spaces under certain geological conditions, creating excessive pressure in them. Methane gradually fills in all the worked-out space, up to the top horizon, and then starts penetrating through fissured rocks and abandoned mines to the surface, into buildings and constructions.

CH₄ emissions from abandoned mines were calculated by "State Makeevka Research Institute for Labor Safety in Mining" as the maximum total flow rate of methane measured in the course of the year (in m³/min) restated as annual emissions based on 365 days/year.

For calculation of methane emission in this category for 2013-2023 the surrogate data method based on 2012 information was used. The amount of GHG emissions was evaluated being inversely to coal mined in 2013 - 2023 respectively.

Methane emissions from abandoned underground mines in 2023 amounted to 4.21 kt, which is 29.8% lower than in 1990 and equal to the same indicator in 2022.

3.3.1.2.2 Surface Coal Mining

In determining methane emissions from coal mines conducting surface coal mining, data of the companies were used, while emission factors were used by default in accordance with [1], namely:

- 1.2 m³/t for open-pit coal mining;
- $0.1 \text{ m}^3/\text{t}$ for coal processing and transportation (in open-pit mining).

3.3.1.3 Solid Fuel Transformation (CRT category 1.B.1.b)

This category includes CO₂ emissions associated with the loss of coke oven gas in the process of coke production.

Until 2016 the amount of coke oven gas losses was taken from column 6 "Losses caused by the lack of accounting, non-use, and due to other factors", section 5 "Losses of energy materials and products of oil refining in extraction, production, transformation, processing, transportation, and distribution" in form 4-MTP. For calculation emission in this category from 2016 to 2023 the surrogate data method was used based on 2016 and data on coke production for 2016 – 2023.

The carbon content is taken by default in accordance with [1], and the NCV - in accordance with statistical form 11-MTP.

Carbon dioxide emissions associated with loss of coke oven gas in production of coke in 2023 amounted to 120.54 kt, which is 71.0 % lower than in 1990 and 73,9 % higher than in 2022.

3.3.1.4 Other (CRT category 1.B.1.c)

This category includes CO₂ and CH₄ emissions associated with coal bed methane flaring. Table 3.19 provides detailed information on methane flaring and recovery (p. 3.2.7.2.3) in Ukraine during 2003-2012. The surrogate data method was used based on 2012. GHG emissions were estimated according to equation 5.2 (vol. 2, chap. 5) [1], on the basis of activity data indicated in the Table 3.15. In 2023 emissions in the sub-category amounted to 40.8 kt of CO₂-eq. which is the same indicator as in 2022.

Table 3.15. The amount of coal mine methane utilization in Ukraine, 2003-2012

	Table 5.15. The amou	01 0001				tilized met			ar			
#	Mine	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Note
1	named after O.Zasyadko		2220	2195	26.212	59.663	40.308	39.850	52571	36995	20317.77	Gasifier, gas station
2	named after V.Bazhanov SE "Makeevugol"	5890	6920	7605	6963	5676	6920	9061	10358	6649.34	3035.36	Boiler room
3	"Holodna Balka" SE "Makeevugol"	5210	5350	5730	6120	5030	5640	6600	4380	7094.74	7766.09	Boiler room
4	"Chaikino" SE "Makeevugol"	1920	2113	2420	2230	2970	2170	1790	410	1892.16	2295.69	Boiler room
5	named after S.Kirov SE "Makeevugol"	975	880	790	740	1120	1020	840	1800	944.19	205.83	Boiler room
6	"Kalynovska East" SE "Makeevugol"	-	-	-	710	-	-	-	-	-	-	Boiler room
7	named after M.Kalinin SE "DVEK"	1130	1130	1132	1132	1132	1132	1132	1132	1132	-	Boiler room
8	"Hrustalska" SE "Donbassantratsit"	2670	2670	2670	2670	2670	2670	2670	2670	2670	2670	Boiler room
	"Scheglovska Hlyboka"							12324	8704	8893	4481.76	Boiler room, shaft heating
9	m/a "Donbass"	2256	4177	4590	5530	7957	9131	1400	1096	1259	3634	Flaring
	in a Bonouss										3278	Gasifier
	No.22 "Komunarska"							4630	6500	13100	13600	Flaring
10	m/a "Donbass"							2189	3400	2600	4800	Gasifier
	III a Bollouss						300	683	1400	1500	3100	Boiler room
			8919	18084	17013	20025	14805	14658	19473	11971	6207.2	Boiler room
11	m/a "Pokrevske"									-	16153.4	Cogeneration
										5468	1287.3	Flaring
12	"Komsomolets Donbassa"						1522	5859	7569	8257	9194.16	Flaring
12	Komsomolets Donoassa								2295	2613	2297.5	Boiler room
13	"Krasnolimanska"		602	2200	6058	6547	5279	8605	8910	10236	20068.31	Boiler room
14	"Sukhodolska Vostochnaya" PJSC "Krasnodonugol"				1564	2184	3194	2006	2705	12273	6587.17	Boiler, flaring
15	named after N. P. Barakov PJSC "Krasnodonugol"	5282	5282	6685	5945	5240	5134	3772	4916	4263	4755.14	Boiler room
16	"Molodogvardiiska" PJSC "Krasnodonugol"								580	2738	2879.1	Flaring
17	"Samsonovska Zapadnaya"							1140	2175	6470	6711.46	Flaring

Ukraine's Greenhouse Gas Inventory 1990-2023

#	Mine	Amount of utilized methane, thousand m ³ /year									Note	
#	Mine	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Note
	PJSC "Krasnodonugol"											
18	"Stopovaya", PJSC "DTEK"										500	Boiler room
	Total, thousand m ³	25333	40263	54101	82887	120214	99225	119209	143044	149018.43	145825.24	

3.3.1.5 Uncertainties and Time Series Consistency

Continuous automatic monitoring of methane content in outgoing flows, periodic quality control of mine air and of correctness of its distribution in mine workings are performed at gas mines of Ukraine. At high-category and hazardous mines due to sudden outbursts, daily monitoring of gas release is conducted.

All VPPs, continuous automatic monitoring of methane content is conducted. Lots of mines are equipped with stationary captured gas mixture flow measurement devices.

The uncertainty of the results of methane emission from mines estimates is 15.54 %. Uncertainty of carbon dioxide emissions is estimated as 7.89 %.

The key contribution into the uncertainty is made by the uncertainty of estimates of methane emission at mining and handling, above all – the uncertainty of methane emission factors for underground coal mining.

3.3.1.6 Category-specific QA/QC Procedures

Common quality control procedures stipulated in [1] were applied, plus the advice and recommendations from line experts of the laboratory for degassing of coal mines at State Makeevka Research Institute for Labor Safety in Mining provided in 2014.

3.3.1.7 Category-specific Recalculations

In this category, no recalculations were made.

3.3.1.8 Category-specific Planned Improvements

In this category, no improvements are planned.

3.3.2 Oil and Natural Gas (CRT category 1.B.2)

Emissions in this category are related to leaks from exploration, extraction, transportation, processing, storage, and consumption of oil and natural gas.

3.3.2.1 Oil (CRT category 1.B.2.a)

3.3.2.1.1 Category description

In 2023, oil production in Ukraine was 2.1 Mt, which is 40.0 % higher compared to the same indication for 2022.

There are 6 refinery enterprises in Ukraine. Up to 2009 they all worked. But during 2009-2012 five of them were stopped. Now there are no refinery working. The volume of oil transit through the country amounted to 13,6 Mt. The oil pipeline system includes 19 pipelines up to 1220 mm in diameter with a total length of 3507 km, 28 oil pumping stations (176 stations units), 79 in-service tanks and offshore oil terminal "Yuzhny". Input system capacity is 114 Mt/year, output – 56,3 Mt/year.

In 2023, GHG emissions in the category amounted to $1.73\ 2.40\ Mt$ of CO_2 -eq. The decrease with respect to 1990 is $48.8\ \%$ and increase to $2022-38.7\ \%$.

3.3.2.1.2 Methodological issues

The data used for emission estimation in this category are presented in Table 3.16.

To estimate emissions in this category were used average Tier 1 default emission factors that presented in Table 3.17.

Oil transportation in Ukraine is carried out only by pipelines. The negligible part of oil may be transported by other means of transport. The transformation of the amount of transported oil from mass units used by oil transportation enterprises into volumetric units was conducted based on the density of the Urals export blend -0.865 t/m^3 and Azeri Light -0.855 t/m^3 .

CH₄ emissions from oil handling were taken by default according to [1]. To determine the carbon dioxide of oil handling, no factors are indicated in IPCC methodologies, so emissions in this category were not estimated.

The products of oil refining contain only negligible amounts of methane, therefore CH₄ emissions during transportation and distribution of petroleum products were not estimated. In the absence of approved IPCC methodologies, CO₂ emissions for this type activity were not estimated either.

The only refinery in operation during 2012-2022 has a depth of oil refining of 81.5% and produced gasoline and diesel oil EURO-5. This refinery stopped operating in June 2022.

Table 3.16. Activity data for emission estimation in the category "Oil" (1.B.2.a)

able 3.16. Activity data for emission estimation in the category "Oil" (1.B.2.a)					
Year	Oil production, Mt	The volume of oil transporta- tion through main pipelines, Mt	The volume of oil processing at refineries, Mt		
1990	4.1	114.0	59.0		
1991	3.9	94.9	54.6		
1992	3.6	78.0	38.3		
1993	3.3	66.9	23.5		
1994	3.2	68.5	19.6		
1995	3.0	65.3	16.9		
1996	3.0	64.6	13.5		
1997	2.9	64.1	12.8		
1998	2.7	65.4	13.4		
1999	2.7	65.2	11.0		
2000	2.6	64.0	9.1		
2001	2.6	63.6	16.1		
2002	2.6	48.0	20.2		
2003	2.8	56.7	21.9		
2004	3.0	55.3	22.0		
2005	3.1	46.7	18.4		
2006	3.3	44.9	14.4		
2007	3.3	50.9	14.1		
2008	3.2	41.0	10.8		
2009	2.9	38.5	11.2		
2010	2.6	29.8	11.3		
2011	2.4	25.2	8.9		
2012	2.3	17.3	4.7		
2013	2.2	17.6	3.7		
2014	2.1	16.9	3.0		
2015	1.9	16.8	2.7		
2016	1.6	14.6	2.8		
2017	1.5	16.0	3.6		
2018	1.6	15.4	3.9		
2019	2.1	15.5	3.8		
2020	2.2	15.7	4.1		
2021	1.7	15.7	4.1		
2022	1.5	12.7	1.6		
2023	2.1	13.6	0		

Table 3.17. Emission factors for fugitive emissions from oil operation

CRT	Category or sub-		CO_2			CH ₄			N ₂ O			NMVOC		Units of meas-
category	category	min	max	average	min	max	average	min	max	average	min	max	average	ure
1.B.2.a.1	Well Drilling	1.0E-04	1.7E-03	9.0E-04	3.3E-05	5.6E-04	3.0E-04		ND		8.7E-07	1.5E-05	7.9E-06	Gg per 10 ³ m ³ total oil production
Exploration	Well Testing	9.0E-03	1.5E-01	8.0E-02	5.1E-05	8.5E-04	4.5E-04	6.8E-08	1.1E-06	5.8E-07	1.2E-05	2.0E-04	1.1E-04	Gg per 10 ³ m ³ total oil production
1.B.2.a.2 Production	Conventional Oil	1.1E-07	4.3E-03	2.2E-03	1.5E-06	6.0E-02	3.0E-02		NA		1.8E-06	7.5E-02	3.8E-02	Gg per 10 ³ m ³ conventional oil production
1.B.2.a.3 Transport	Pipelines		4.9E-07		5.4E-06				NA			5.4E-05		Gg per 10 ³ m ³ oil transported by pipeline
*1.B.2.a.4	Refining				90	1400	745							kg/PJ
Refining / Storage	Storage Tanks	-			20	250	135	-		-			kg/PJ	
1.B.2.c.1.i Oil	Conventional Oil / Venting	9.5E-05	1.3E-04	1.1E-04	7.2E-04	9.9E-04	8.6E-04		NA		4.3E-04	5.9E-04	5.1E-04	Gg per 10 ³ m ³ conventional oil production
1.B.2.c.2.i Oil	Conventional Oil / Flaring	4.1E-02	5.6E-02	4.9E-02	2.5E-05	3.4E-05	3.0E-05	6.4E-07	8.8E-07	7.6E-07	2.1E-05	2.9E-05	2.5E-05	Gg per 10 ³ m ³ conventional oil production

NA – Not Applicable. ND – Not Determined – in accordance with 2006 IPCC Guidelines * - 1.B.2.a.4 – emission factors were taken by default according to 1996 IPCC Guidelines

3.3.2.2 Natural gas (CRT category 1.B.2.b)

3.3.2.2.1 Category description

The gas transportation system (GTS) of Ukraine consists of 33.39 thousand km of gas pipelines, including 20.89 thd km main pipeline and 12.20 thd km gas pipeline branches, 12 underground gas storages, 702 gas pumping units (including electric ones - 158) with the total capacity of 5.443 MW, a developed system of gas distribution and gas metering stations. The capacity of the gas transportation system at the inlet is 287.7 billion m³ per year, at the outlet – 178.5 billion m³ per year, including 140 billion m³ per year to the European countries. The transportation volume according to international contracts in 2023 amounted to 14.65 billion m³.

Natural gas production in 2023 amounted to 18700 billion m³, which is 6.7 % lower than the level of 2022. For 2023, the activity data about natural gas production was taken from public sources.

In 2023, GHG emissions in the category amounted to 27.26 Mt of CO₂-eq., the decrease with respect to 1990 is 59.5 %, and 12.7 % lower than the same indicator in 2022.

3.3.2.2.2 Methodological issues

The activity data used for emission estimation in this category are presented in Table 3.18. To estimate emissions in this category average Tier 1 default emission factors were used that presented in Table 3.19.

Emissions from consumer leakages were calculated using the default factors according to 1996 IPCC Guidelines.

The methods of estimation of GHG emissions from transportation and distribution of natural gas are presented in section A2.8.

Year	Natural gas production, mln m ³	Household consumption of natu- ral gas, bln m ³	Natural gas consumption by other con- sumers, bln m ³
2010	20528	17.8	38.2
2011	20651	17.7	39.3
2012	20492	17.3	35.3
2013	21313	20.0	25.9
2014	220481	17.0	24.7
2015	216731	12.3	20.0
2016	217411	12.1	19.8
2017	217611	12.3	18.5
2018	225581	11.7	20.1
2019	21996¹	9.2	19.3
2020	215271	8.8	25.7
2021	209931	8.8	25.7
2022	200581	6.1	17.7
2023	18700¹	8.2	11.6

Table 3.18. Activity data for emission estimation in the category "Natural Gas" (1.B.2.b)

1 - in view of analytical study [26]

To calculate greenhouse gas emissions at transportation, distribution and consumption of natural gas, data on the composition of natural gas in the GTS of Ukraine received from PJSC "Ukrtransgaz", PJSC "Ukrgazvydobuvannya" and JSC "Transmission System Operator of Ukraine" (see A2.6.1, A2.8) were used. Transmission and storage are estimated based on losses which are provided by the SSSU and the value of the losses depends on the state of the gas transmission system, accident rate, upgrades etc. which contribute to the trend in the natural gas transmission.

Because of absence of some statistical information for 2023 GHG emissions in categories 1.B.2.b.4) and 1.B.2.b.5) were calculated based on public sources.

In recent years national circumstances have not allowed for the calculation of emissions from natural gas exploration, production, and processing industries using higher tiers but Tier 1.

Table 3.19. Emission factors for fugitive emissions from gas operation

	Category or		CO ₂			CH ₄			N ₂ O			NMVOC		Units of
CRT category	sub-category	min	max	average	min	max	average	min	max	average	min	max	average	measure
1.B.2.b.1 Exploration	Well Drilling	1.0E-04	1.7E-03	9.0E-04	3.3E-05	5.6E-04	3.0E-04		ND		8.7E-07	1.5E-05	7.9E-06	Gg per 10 ³ m ³ total oil produc- tion
1.B.2.b.1 Exploration	Well Testing	9.0E-03	1.5E-01	8.0E-02	5.1E-05	8.5E-04	4.5E-04		-		1.2E-05	2.0E-04	1.1E-04	Gg per 10 ³ m ³ total oil produc- tion
1.B.2.b.2 Production	Gas Production / Fugitives	1.4E-05	1.8E-04	9.7E-05	3.8E-04	2.4E-02	1.2E-02		NA		9.1E-05	1.2E-03	6.5E-04	Gg per 10 ⁶ m ³ gas pro- duction
1.B.2.b.3 Processing	Gas Processing / Fugitives	1.5E-04	3.5E-04	2.5E-04	4.8E-04	1.1E-03	7.9E-04		NA		2.2E-04	5.1E-04	3.7E-04	Gg per 10 ⁶ m ³ raw gas feed
*1.B.2.b.6 Other	Non-residen- tial Gas Con- sumed		-		175000	384000	279500		-			-		kg/PJ
1.B.2.0.0 Office	Residential Gas Con- sumed		-		87000	192000	139500		-			-		kg/PJ
1 P 2 - 2 :: C	Gas Production / Flaring	1.2E-03	1.6E-03	1.4E-03	7.6E-07	1.0E-06	8.8E-07	2.1E-08	2.9E-09	1.2E-08	6.2E-07	8.5E-07	7.4E-07	Gg per 10 ⁶ m ³ gas pro- duction
1.B.2.c.2.ii Gas	Gas Processing / Flaring	1.8E-03	2.5E-03	2.2E-03	1.2E-06	1.6E-06	1.4E-06	2.5E-08	3.4E-08	3.0E-08	9.6E-07	1.3E-06	1.1E-06	Gg per 10 ⁶ m ³ raw gas feed

NA – Not Applicable. ND – Not Determined – in accordance with 2006 IPCC Guidelines * - 1.B.2.b.6 – emission factors were taken by default according to 1996 IPCC Guidelines

3.3.2.3 Venting and Flaring (CRT category 1.B.2.c)

The activity data used for emission estimation of venting at oil facilities and venting and flaring at gas facilities are the same as the activity data of 1.B.2.a and 1.B.2.b categories.

The default IEFs are taken from the Table 4.2.5. chapter 4 [1].

Emissions from venting at gas facilities are included in 1.B.2.b.4 "Transmission and storage" and 1.B.2.b.5 "Distribution".

3.3.2.4 Uncertainties and time-series consistency

The uncertainty of carbon dioxide emissions in the category is 13.39 %.

The uncertainty of methane emissions is 29.26% and is caused, above all, by the uncertainty of methane emission factors for consumption of natural gas by industrial consumers and power plants. The uncertainty of nitrous oxide emissions is 8.56 %.

3.3.2.5 Category-specific QA/QC procedures

The general quality control procedures stipulated in [1] were applied. Comparison of data from various literary sources was held, consultations with independent experts in the gas industry, as well as with specialists of the leading companies operating in the oil and gas industry were conducted.

3.3.2.6 Category-specific recalculations

In this category, no recalculations were made.

3.3.2.7 Category-specific planned improvements

In this category, the developing of country-specific EFs for sub-categories 1.B.2.b and 1.B.2.c are planned.

3.4 Multilateral operations

The statistical reporting forms do not include data on activities of ex-territorial organizations. In this regard, in CRT category 1.D.2 "Multilateral Operations", it is indicated that this activity does not take place.

4 INDUSTRIAL PROCESSES AND PRODUCT USE (CRT SECTOR 2)

4.1 Sector Overview

GHG emissions in this sector include emissions from manufacture of industrial products, as well as from use of limestone, dolomite and soda in various technological processes. Emissions from fuel combustion for heat and electricity production in manufacture of industrial products are included into the "Energy" sector, except for emissions from the energy and non-energy components of use of coke for pig iron production (2.C.1) and the energy and non-energy components of use of natural gas in ammonia production (2.B.1), according to 2006 IPCC guidelines [1] (Block 1.1, Chapter 1, Volume 3). And indirect N_2O emissions calculated in accordance with 2006 IPCC guidelines [1] (Chapter 7.3, Volume 1).

GHG emissions was carried out for:

- Mineral Production and Use;
- Chemical Industry;
- Metal Production;
- Solvent and Non-Energy Product from Fuels Use;
- Electronic Equipment Production;
- Consumption of Substitutes for Ozone-Depleting Substances;
- Other Production and Use;
- Pulp Production and Food Industry.

GHG emission data for Ukraine are presented in Table 4.1

Table 4.1. GHG emissions in the sector Industrial Processes and Product Use

Cor	1990	2022	2022	Change, %	compared
Gas	1990	2022	2023	to 1990	to 2022
CO ₂ , kt	111084.50	17157.12	16555.38	-85.10	-3.51
CH ₄ , kt CO ₂ -eq.	1 351.81	722.45	175.33	-87.03	-75.73
N_2O , kt CO_2 -eq.	5 043.48	1294.82	1867.07	-62.98	44.19
HFC, kt CO ₂ -eq.	-	2329.77	2423.14	-	4.01
PFC, kt CO ₂ -eq.	211.99	-	-	-	-
SF ₆ , kt CO ₂ -eq.	0.0079	54.23	57.21	727229.5	5.51
Total direct action greenhouse gases, kt CO ₂ -eq.	117 691.79	21558.38	21078.12	-82.09	-2.23
NO _x , kt	36.78	7.16	9.59	-73.93	33.94
CO, kt	89.20	24.70	24.55	-72.48	-0.61
NMVOC, kt	460.01	69.92	93.91	-80.24	30.03
SO ₂ , kt	118.97	17.94	17.91	-84.95	-0.17
Indirect N ₂ O, kt CO ₂ -eq.	4.93	0.96	1.28	-73.93	33.90

Fig. 4.1 presents diagrams for emissions of CO_2 , CH_4 , and N_2O , and Fig. 4.2 – in the major categories of the sector, respectively, in production and use of mineral products, production of chemical products, and manufacture of metals (including emissions of perfluorocarbons from aluminium production) and non-energy product from fuels, other nitrous oxide a hydrofluorocarbons and sulphur hexafluoride use.

Fig. 4.1. Emissions of CO₂, CH₄, and N₂O in the sector Industrial Processes and Product Use, kt CO₂-eq

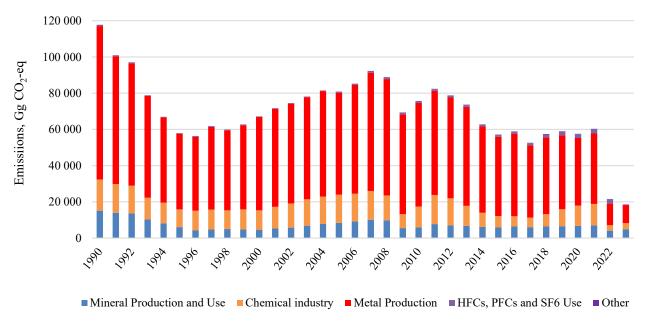


Fig. 4.2. Direct action greenhouse gas emissions in the major categories of the sector Industrial Processes and Product Use, kt CO₂-eq

In 2023, emissions in the IPPU sector decreased by 2.23 % compared to the previous year and by 82.09 % compared to the base year. This decline resulted from the full-scale invasion of Ukraine by the Russian Federation, which led to a 36.9 % drop in industrial production in 2022, according to SSSU data, followed by a slight increase of 6.8 % in 2023. In 2022, production in the metal industry declined by 66.5 %, the chemical industry by 62 %, and the production of mineral products fell by 66.4 %. These industries, which are the main sources of emissions in this sector, showed a slight increase in 2023. Emissions in the sector compared to the baseline year also have decreased significantly due to a reduction in production output caused by the collapse of the USSR. Data on GHG emissions in the sector Industrial Processes and Product Use for the entire reporting period are shown in Table A3.1.1.1, Annex 3. Among all the categories, the greatest amount of CO₂ emissions is observed in production of pig iron and steel, ferroalloys, ammonia, cement, and lime. CH₄ emissions in the industrial sector are mainly associated with chemical products and pig iron production, and N₂O emissions – with nitric acid production and use of nitrous oxide for medical purposes.

Fig. 4.3 shows the precursor and SO₂ emission diagrams in the sector Industrial Processes and Product Use.

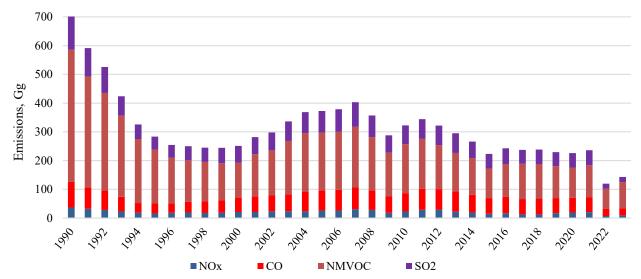


Fig. 4.3. Indirect action greenhouse gases and SO₂ emissions in the sector Industrial Processes and Product Use, kt

4.2 Mineral Industry (CRT category 2.A)

Emissions in this category are related with use of carbonate raw materials in the production and use of a variety of mineral industry products such as Cement, Lime, Glass and Ceramic production as well as Soda ash use. The main CO₂ emissions occur in all these categories as well SO₂ and NMVOC from Cement and Glass production respectively. The key sources of CO₂ emissions are Cement and Lime production where the emissions occur from the processes related with clinker and lime production, the correlation of CO₂ emissions and amounts of these products production are shown on fig 4.4.

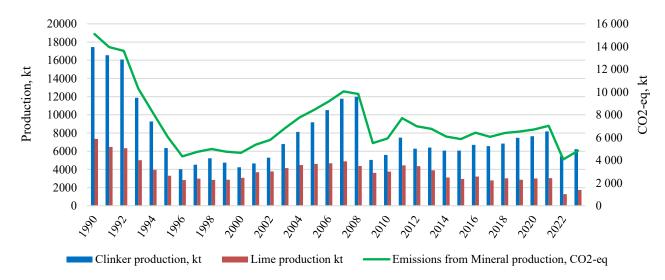


Fig. 4.4. CO₂ emissions from Key categories in Mineral industry, kt

Emissions from Glass and Ceramic production as well as from Soda ash use are not shown on the fig 4.4. due to the fact that their contributions to the emissions in Mineral industry category are not as significant as those indicated in graph above and they are not key categories.

The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in Mineral industry are shown by each subcategory in relevant chapters.

4.2.1 Cement Production (CRT category 2.A.1)

4.2.1.1 Category description

Cement production is the main production of mineral products. Cement is a hydraulic binding substance that solidifies upon addition of water and is used in concrete for adhesion of sand and gravel. The raw material for cement production is the mixture of minerals consisting of calcium oxide, silicon oxide, aluminium oxide, and iron oxide. The basic composition of the raw material - limestone, chalk, marl, clay shale, or clay.

The main chemical processes in cement production start with dissolution of calcium carbonate at the temperature of 900°C, resulting in formation of calcium oxide (CaO), and released carbon dioxide (CO₂). This is followed by the clinker production process: at high temperatures (typically 1400-1500°C), calcium oxide reacts with silicon dioxide, aluminium oxide, and iron oxide forming silicates, aluminates, and calcium ferrites, which constitute the clinker. After that, clinker is rapidly cooled.

Carbon dioxide (CO₂) is released as a byproduct of the carbonate calcination reaction. In production of cement, SO₂ emissions also occurs.

Cement in Ukraine is produced by 12 enterprises-producers. Most of the enterprises-producers work basing on imported clinker. Projects that promote emission reduction have been implemented at a number of the enterprises-producers. These projects introduce use of alternative raw materials (ARM) that do not contain carbonates (use of blast furnace slag, peat, waste tires etc.) and transition to the dry production process, which entails a reduction of fuel consumption and of emissions from decarbonization.

The changing in the emissions and factors in 2012 - 2021 was due to decrease in use of non-carbonate raw material components in the production and the fact that some of the enterprises use imported clinker. The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in clinker and cement production respectively. Table 4.2 shows the basic data on the results of GHG inventory in cement production.

Table 4.2. The basic data on the results of GHG inventory in cement production in 2023

Category code	2.A	1	
Cement production, kt	833	1.59	
Clinker production, kt		621	3.15
CaO content in clinker, %		66.	197
MgO content in clinker, %		1.	22
Gases		CO ₂	SO_2
Emissions, kt		3329.95	2.50
Change in emissions compared to the previous year	ır, %	13.82	24.39
Change in emissions compared to the baseline year	r, %	-64.58	-63.34
Emissions, % of the total emissions in the sector		20.11	13.96
Key category ("l" - level, "t" - trend)		L	
Detail level (Tier)		2	1
Correction factor for cement kiln dust, p.u.		1.02	
Emission factor, t/t		0.525	0.0003
Conditioned emission factor, t/t		0.536	
Method for determination of the emission factor	CS		
Uncertainty of activity data, %			
Uncertainty of the emission factor, %			
Uncertainty of the emission estimation, %	20.79		

Activity data, emission factors, and GHG emissions throughout the time series in this category are shown in Table A3.1.1.2, Annex 3.1.1.

4.2.1.2 Methodological issues

For estimation of CO₂ emissions, the emission estimation method using data of the amount of produced clinker (Tier 2 method) [1] was used on the basis of data obtained from enterprises-producers. Data about cement production were obtained from enterprises-producers too. For 2014 - 2022, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of cement and clinker production. Emission factor was derived, based on Tier 2 method, taking into account CaO (66.197 %) and MgO (1.22 %) content of the clinker and, as well as the fraction of CaO and MgO of non-carbonate raw material components (0.960 % and 0.0 %) for 2023 respectively which were obtained from enterprises-producers. Cement kiln dust correction factor (CKD) was determined by default according to 2006 IPCC Guidelines [1].

Decrease in use of volumes of non-carbonate raw material components in production of clinker at the enterprises-producers resulted in an increase of CO_2 emission factors in 2013-2018. In accordance with data obtained from enterprises-producers starting from 2019 the non-carbonate raw material components use was resumed.

SO₂ emissions from cement production were determined using the method of the Revised Guidelines IPCC [5] based on cement production data, using the default emission factor of 0.3 kg of SO₂ per ton of cement.

4.2.1.3 Uncertainties and time series-consistency

The key factors that determine the uncertainty in cement production are:

- accuracy of results of the chemical analysis of clinker composition, which influences the uncertainty of the emission factor;
- accuracy of analysis of the CKD amount returned to the kiln.
- accuracy of determining the volume of clinker production.

Each of these factors, in accordance with data of the 2006 IPCC Guidelines [1], adds its uncertainty at the level of 2-5 %. Uncertainty of the CO_2 emission factor at clinker production is taken to be 5.408 % based on analysis of the content of CaO and MgO in clinker, as well as the CKD correction factor uncertainty of 0.859 %.

The uncertainty of activity data in accordance with [1] was taken at the level of 20.06 %, the overall uncertainty of CO_2 emission estimation at cement production in Ukraine can be set at the level of 5.734 %.

4.2.1.4 Category-specific QA/QC procedures

General and detailed QA/QC procedures were applied to calculation of GHG emissions from cement production. Among the detailed quality control procedures, the following were performed:

- comparison of data of cement and clinker production provided by SSSU with data of the enterprises-producers and Ukrainian Association of Enterprises and Organizations of Cement Industry "Ukrcement";
- comparison of the national CO₂ emissions factors with the default emission factors.

4.2.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.2.2 Lime Production (CRT category 2.A.2)

4.2.2.1 Category description

Lime is used in construction, agriculture, and industry for steel, magnesium, copper, soda ash, and sugar production. The largest consumer of lime is the metallurgical industry.

The reduction of slaked lime production in the period from 2011 to 2023 occurred as a result of changes in the market conditions - the reduced volume of slaked lime consumption as a final product in the construction industry, agriculture, and a reduction in the amount of slaked lime used for water softening in all industries. The sharp decline of the lime production as well as the market capacity in 2022, 2023 was caused by the full-scale invasion of Ukraine by the Russian Federation which led to a deep crisis in the lime market, both at the level of key producers and consumers, who either completely stopped production/consumption or significantly reduced it. The inter-annual deviations that occur in lime production in 1990/1991 by 11.9 % are connected with the reduction in production output caused by the collapse of the USSR in 1991, as well as increase in 2011 compared with 2010 by 18.5 % are due to recovery in production after global financial and economic crisis in 2008-2009. The inter-annual changes in 2013/2014 by 20.6 % are connected with the economic decrease as a result of the political crisis in Ukraine that began in 2013, which had a significant impact on production in this industry.

The key process in lime production is calcination of limestone (CaCO₃) and dolomite (CaCO₃*MgCO₃) made in kilns. There is slaked lime and quicklime, construction and technology (different in the chemical and mechanical composition), calcite (CaO) and dolomite (CaO*MgO) ones. Quicklime (CaO) is the product of burning and processing of natural calcium carbonates, mainly limestone. Slaked lime Ca(OH)₂ is the product of quicklime hydration.

CO₂ is the only GHG emitted in lime production, and the emission volume is directly dependent on the amount and type of produced lime. Table 4.3 shows the basic data on the results of GHG inventory in lime production.

Table 4.3. The basic data on the results of GHG inventory in lime	production in	n 2023
Category code	2.A.2	

Category code	2.A.2
Lime production, kt	1777.10
Emissions of CO ₂ , kt	1337.74
Change in CO ₂ emissions compared to the previous year, %	35.51
Change in CO ₂ emissions compared to the baseline year, %	-73.88
Emissions, % of the total emissions in the sector	8.08
Key category ("l" – level, "t" – trend)	No
Detail level (Tier)	2
Emission factor, t/t	0.772
Method for determination of the emission factor	T2
Uncertainty of activity data, %	28.38
Uncertainty of the emission factor, %	16.06
Uncertainty of the emission estimation, %	32.54

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.3, Annex 3.1.1.

4.2.2.2 Methodological issues

CO₂ emissions from lime production were determined in accordance with 2006 IPCC Guidelines [1] (Tier 2 method).

Data of total amounts of lime production in Ukraine were obtained from SSSU [24], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of lime production in 2014 - 2023. The ratio between volumes of production of lime with a high content of calcium and

dolomitic lime (85/15) and the content of CaO and MgO in these types of lime was taken by default in accordance with [1]. Humidity of slaked lime calculated based on dry weight was taken as 28 %, in accordance with [1].

The total emission factors are not equal to the constant value, as quicklime and slacked lime activity is slightly different, and the ratio of quicklime and slacked lime changes from year to year.

4.2.2.3 Uncertainties and time series-consistency

The uncertainty of CO₂ emission factors in of quicklime and slacked production lime associated with determining of the content of CaO and MgO for all types of lime, as well as the correction for slaked lime according to [1] is taken at the level of 16.06 %.

Since data of the total volume of lime production in Ukraine were obtained from SSSU, the uncertainty of the activity data of quicklime and slaked lime production is taken to be at 28.28 %.

The uncertainty of the data of application of the correction factor for lime dust was taken at the level of 0.859 %.

The total uncertainty of CO₂ emission from lime production estimation amounted to 32.54 %.

4.2.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to calculation of GHG emissions from lime production.

- statistical reporting data analysis using alternative sources such as data of the Ukrainian Association of Lime Industry;
 - analysis of the time series of activity data and CO₂ emissions.

4.2.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.2.3 Glass Production (CRT category 2.A.3)

4.2.3.1 Category description

Glass is an inorganic product produced by melting the raw material, forming it to the desired shape, and cooling without crystallization. Silicate glass is the main type of glass produced. The key raw materials for glass production, use of which results in greenhouse gas emissions, are soda ash (Na₂CO₃), limestone, (CaCO₃), and dolomite (CaCO₃*MgCO₃). When assessing GHG emissions from glass production, emissions from use of limestone and dolomite, as well as emissions from use of soda ash in glass production are accounted for. The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in glass production respectively.

In the process of glass production, take place CO₂ and NMVOC emissions. Table 4.4 shows the basic data on the results of GHG inventory in glass production.

Table 4.4. The basic data on the results of GHG inventory in glass production in 2023

Category code	7 code 2.A.3			
Glass production, kt	656.33			
Gas	CO ₂	NMVOC		

Category code	2.4	A.3
Emissions, kt	128.04	2.98
Change in emissions compared to the previous year, %	-31.54	-33.38
Change in emissions compared to the baseline year, %	0.57	-0.20
Emissions, % of the total emissions in the sector	0.77	3.17
The key category	No	
Detail level (Tier)	3	1
Emission factor, t/t	0.193	0.0045
Method for determination of the emission factor	CS	D
Uncertainty of activity data, %	22.85	
Uncertainty of the emission factor, %	2.31	
Uncertainty of the emission estimation, %	22.97	

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.4, Annex 3.1.1.

4.2.3.2 Methodological issues

The amount of glass produced was taken in accordance with data obtained from SSSU [24] and data obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of glass production in 2014 - 2023. The greatest amount of CO₂ emissions in glass production is due to production of flat glass, cans and bottles. Statistics data about window glass production in Ukraine have been confidential since 2004. Therefore, NIR provides information on the total amount of glass produced and the total CO₂ emissions. Volumes of production of other types of glass do not exceed one percent of the total amount of glass.

To estimate emissions in this category, the scientific-research work "Development of methods for estimation and determination of carbon dioxide emissions from limestone and dolomite use" [8] was used, the findings of which were applied to improve accuracy of emission estimates for limestone and dolomite use. A research of activity data and national CO₂ emission factors for glass production was conducted, findings of which made it possible to specify the inventory data by specifying the content of CaCO₃ and MgCO₃ in limestone and dolomite, which are used in production of flat glass, cans, and bottles, as well as the amount of limestone and dolomite use in glass production for the different years. The soda ash content in furnace charge was obtained from the manufacturing enterprises by each type of glass. To avoid double accounting of soda ash use in Ukraine the amounts of soda ash used for glass production were excluded from category 2.A.4.b. Other Process Uses of Carbonates.

NMVOC emissions were defined using the default emission factor of 4.5 kg per tonne of glass recommended by the Revised Guidelines [5].

4.2.3.3 Uncertainties and time series-consistency

The key factors of the uncertainty in glass production are:

- use of the average estimation of the weight of bottles and cans to determine their production in weight units;
 - CaCO₃ and MgCO₃ content in limestone and dolomite;
 - specific consumption of the furnace charge.

As a result of the scientific-research work [8], the uncertainty of activity data in glass production is set at 22.85 %, and the uncertainty of CO₂ emission factors – at the level of 2.31 %. Thus, the uncertainty of CO₂ emission from glass production amounts to 22.97 %.

4.2.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from glass production.

4.2.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.2.4 Other Process Uses of Carbonates (CRT category 2.A.4.)

4.2.4.1 Ceramics Production (CRT category 2.A.4.a)

4.2.4.1.1 Category description

In this category, CO₂ emissions from limestone (CaCO₃) and dolomite (CaCO₃*MgCO₃) use in manufacture of ceramics are estimated. Table 4.5 shows the results of the GHG inventory for use of limestone and dolomite. The sharp reduction of emissions in 2022, 2023 are connected with the full-scale invasion of Ukraine by the Russian Federation which led to decrease in ceramics production respectively.

Table 4.5. Basic data on CO₂ emission inventory results for use of limestone and dolomite in 2023

Category code	2.A	.4.a	
Type of product	Cera	mics	
Type of product	Limestone	Dolomite	
Use, kt	4.38	44.66	
Production, kt	136	9.96	
Emissions of CO ₂ , kt	24	.02	
Change in CO ₂ emissions compared to the previous year, %	10	.84	
Change in CO ₂ emissions compared to the baseline year, %	-78	3.51	
Emissions, % of the total emissions in the sector	0.	.15	
The key category	N	lo	
Detail level (Tier)		1	
Emission factor, t/t	0.0	175	
Method for determination of the emission factor]	D	
Uncertainty of activity data, %	20.4		
Uncertainty of the emission factor, %	5.0		
Uncertainty of the emission estimation, %	2	1.0	

4.2.4.1.2 Methodological issues

Data of ceramics production and limestone and dolomite use in manufacture of ceramics were taken based on data obtained from the producing companies and the SSSU [2], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of ceramics production in 2014 - 2023. Estimation of CO₂ emissions in production of ceramics was performed in accordance with 2006 IPCC Guidelines [1].

The values of emission factors from limestone and dolomite use in ceramics production were taken by default in accordance with 2006 IPCC Guidelines [1].

4.2.4.1.3 Uncertainties and time series-consistency

The uncertainty of data of limestone and dolomite use in ceramics production was set at 20.4 %. The uncertainty of CO₂ emission factors was set at 5 %. The uncertainty of emission estimation in limestone and dolomite use in ceramics production amounts to 21.0 %.

4.2.4.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from ceramic production.

4.2.4.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.4.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.2.4.2 Other Uses of Soda Ash (CRT category 2.A.4.b)

4.2.4.2.1 Category description

Soda ash (sodium carbonate Na₂CO₃) produces in Ukraine at one plant with using Solvay process (the synthesis process). Soda ash is widely used as a raw material in many industries, mainly in glass production, as well as in chemical industry and detergents production. The interannual deviations in emissions from Soda Ash use are related with changes in soda ash consumption in Ukrainian industries, such as Glass production and other industries related with soda ash use. Those changes are associated with sharp changes in amounts of import, export and production of soda ash. Table 4.6 shows the results of the GHG inventory in other soda ash use.

Table 4.6. Basic data of CO₂ emission inventory results for other soda ash use in 2023

Category code	2.A.4.b
Soda ash use, kt	54.42
Emissions of CO ₂ , kt	22.59
Change in CO ₂ emissions compared to the previous year, %	63.54
Change in CO ₂ emissions compared to the baseline year, %	-92.10
Emissions, % of the total emissions in the sector	0.14
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.415
Method for determination of the emission factor	D
Uncertainty of activity data, %	22.4
Uncertainty of the emission factor, %	7.0
Uncertainty of the emission estimation, %	23.4

4.2.4.2.2 Methodological issues

CO₂ emissions from soda ash use were estimated in accordance with Revised Guidelines IPCC [5] (Tier 1) with default emission factor of CO₂ emissions equal to 0.415 t CO₂ / t soda ash use.

Data of soda ash use was determined on the basis of balance equation with the use of data of soda production, export and import with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of soda ash production in 2014 - 2023. Data of soda export and import was

obtained from SSSU [22]. Data of soda production was taken from annual report of enterprise-producer. To avoid double accounting of soda ash use in Ukraine the amounts of soda ash used for glass production were included to the category 2.A.3 Glass production.

4.2.4.2.3 Uncertainties and time series-consistency

The uncertainty of data of soda production, exports and imports obtained from statistic data was set at 22.4 %. Uncertainty of the default emission factor of CO₂ emissions was taken at 7 %. In this case the uncertainty of CO₂ emission in soda ash use was taken 23.4 %.

4.2.4.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from soda ash use.

4.2.4.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.2.4.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3 Chemical Industry (CRT category 2.B)

Emissions in this category are related with production of various inorganic and organic chemicals such as Ammonia, Nitric and Adipic acid production, as well as Caprolactam, Carbide, Titanium dioxide and Petrochemical and carbon black production. The main CO₂ emissions occur in all these categories excluding Nitric, Adipic acid and Caprolactam production where only N₂O occurs as well as CH₄ emission from Carbide and Petrochemical and carbon black production. The precursors and SO₂ emissions occur in almost all these categories. The key sources of emissions are Ammonia and Nitric acid production with CO₂ and N₂O emissions respectively where the emissions are related with the production processes, the correlation of emissions in CO₂-eq and amounts of these products production are shown on fig 4.5.

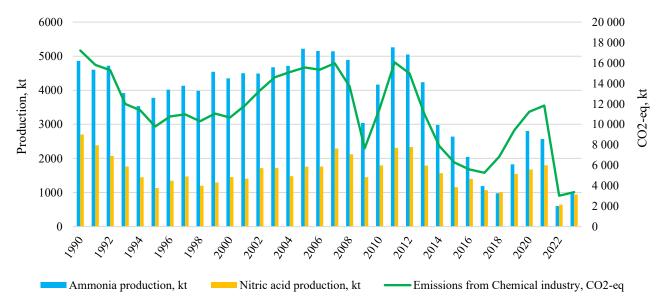


Fig. 4.5. CO₂-eq emissions from Key categories in Chemical industry, kt

Emissions from Adipic acid, Caprolactam, Carbide, Titanium dioxide production, as well as

Petrochemical and carbon black production are not shown on the fig 4.5. due to the fact that their contributions to the emissions in Chemical industry category are not as significant as those indicated in graph above and they are not key categories.

The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in Chemical industry are shown by each subcategory in relevant chapters.

4.3.1 Ammonia Production (CRT category 2.B.1)

4.3.1.1 Category description

The feedstock for ammonia production in Ukraine is natural gas. The process for ammonia production is based on ammonia synthesis from nitrogen and hydrogen at the temperatures of 380-450°C and the pressure of 250 atm. using an iron catalyst:

$$N2 (g.) + 3H2 (g.) = 2NH3 (g.)$$

Nitrogen is obtained from air. Hydrogen is produced by reduction of water (steam) using methane from natural gas.

Ammonia is used in industry as a raw material for production of nitric acid, nitrogen and complex fertilizers, explosives, dyes, polymers, soda (based on the ammonia method), and other chemical products, as well as a refrigerant.

CO₂ emissions from ammonia production are related to the key categories. To improve accuracy of CO₂ emission estimation, consumption of natural gas as a raw material was taken according to data from six enterprises-producers of ammonia.

SO₂ emissions and precursors: CO, NO_x, NMVOC also occurs in ammonia production. Table 4.7. shows the basic data on the results of GHG inventory in ammonia production. The sharp decline of the ammonia production was caused by the full-scale invasion of Ukraine by the Russian Federation which led to a deep crisis of the producers and consumers, who either completely stopped production/consumption or significantly reduced it.

Table 4.7. The basic data on the results of GHG inventory in ammonia production in 2023

Category code		Ĭ	2.B.1		
Ammonia production, kt	972.39				
Consumption of natural gas, M m ³			1032.2	4	
Gases	CO_2	CO	NO_x	NMVOC	SO_2
Emissions from production, kt	1505.6	0.0058	0.97	0.087	0.029
Change in emissions compared to the previous year, %	61.78		6	1.39	
Change in emissions compared to the baseline year, %	-84.63	-80.01			
Emissions, % of the total emissions in the sector	9.09	0.024	10.12	0.093	0.16
Key category ("l" - level, "t" - trend)	T	L			
Method for determination of the emission factor	T3	D	D	D	D
Detail level (Tier)	3	2	2	2	2
Emission factor at production, t/t	1.55	0.000006	0.001	0.00009	0.00003
Uncertainty of activity data, %	2				
Uncertainty of the emission factor, %	7				
Uncertainty of data on use of urea, %	5				
Uncertainty of the emission estimation, %	8.83				

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.5, Annex 3.1.1.

4.3.1.2 Methodological issues

Carbon dioxide emissions from ammonia production are calculated in accordance with 2006 IPCC Guidelines (Tier 3 method), according to which consumption of natural gas in calculations is

accounted for not only as a raw material component, but also as an energy one to create high-temperature environment. Since ammonia production processes in Ukraine are characterized by use of fuel resource (natural gas) data directly within the production boundaries of the single enterprise, emissions from energy and non-energy use of natural gas in ammonia production – in the subdivision into raw material and energy use of natural gas were accounted in this category and in order to avoid double accounting excluded from category 1.A.2.c (Energy sector).

To account the amount of the excluded CO_2 , used for urea (carbamide) production, data of urea production from enterprises and the stoichiometric CO_2 to urea ratio (44/60) were used, in accordance with 2006 IPCC Guidelines [1].

The net calorific value of natural gas was taken in accordance to passports-certificates of physical and chemical properties of natural gas in gas production and gas transportation companies of Ukraine. The determination method and the national value of carbon content in natural gas are presented in Annex P2.5. The value of carbon content in natural gas for 1990-2003 year was taken equal to the value of 2004 in accordance with recommendations of ARR 2014, para 30 and ARR 2015 para E.10 due to the fact that the passport certificates data for the 1990-2003 year is absent the corresponding information and justification for the assumption is included in Annex A.2.11.1.

The data of amounts of ammonia and urea production as well as natural gas consumption were determinate by data received from manufacturers in 2023.

Estimation of NMVOC, CO, NO_x, and SO₂ emissions from ammonia production was carried out in accordance with 2019 EMEP/EEA Emission Inventory Guidebook [6] using the default emission factors.

4.3.1.3 Uncertainties and time-series consistency

The key factors that determine the uncertainty in ammonia production are:

- The source of obtained activity data of natural gas consumption for ammonia production;
- The total fuel requirement (NCV/ton ammonia);
- The uncertainty of data of CO₂ extracted for further use (urea production);

The uncertainty of data of natural gas consumption for ammonia production obtained from enterprises and used as activity data for estimating CO_2 emissions is taken at the level of 2 %. The uncertainty of the emission factor defined as the total fuel requirement (NCV/ton of ammonia) is 7 %, as for the average value of specific energy consumption (for modern and older plants). The uncertainty of data on CO_2 extracted for further use (urea production) is taken at the level of 5 %. The total uncertainty of CO_2 emission from ammonia production estimation amounted to 9.11 %.

4.3.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in ammonia production. In the framework of quality control procedures, the following were performed:

• comparison of the national CO₂ emissions factors with the default IPCC factors.

4.3.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.2 Nitric Acid Production (CRT category 2.B.2)

4.3.2.1 Category description

Nitric acid (HNO₃₎ is used for production of fertilizers, explosives, in the paint and varnish industry, for etching non-ferrous metals, and so on.

Nitric acid production technology is based on catalytic oxidation of ammonia with the oxygen in the air composition. Thus, the key process steps are:

• contact oxidation of ammonia to obtain nitrogen oxide:

$$4NH_3 + 5O_2 = 4NO + 6H_2O;$$

• oxidation of nitrogen monoxide to dioxide and absorption of the mixture of "nitrous gases" by water:

$$2NO + O_2 = 2NO_2;$$

 $3NO_2 + H_2O = 2HNO_2 + NO$

The resulting concentration of nitric acid is 55-58%. As a result of the production, N_2O and NO_x are emitted as by-products.

Currently, nitric acid in Ukraine produces by five companies based on the use of two techniques: on medium pressure units in a pressurized system (7.3 kg/cm²) and on low-pressure units (3.5 kg/cm²) under the combined method.

Nitrous oxide forms by catalytic oxidation of ammonia and is an undesirable byproduct of nitric acid production. Provided using an efficient catalyst, usually 92-96 % (maximum - 98 %) of the fed ammonia converts into nitrogen oxide. The rest of the amount of the ammonia comes into unwanted reactions that lead to formation of nitrous oxide and other substances. These byproducts (including nitrous oxide) are emitted into the atmosphere. Emission calculations were made in view of 100 % concentration nitric acid.

Table 4.8 shows the basic data on the results of GHG inventory in nitric acid production.

The inter-annual deviations that occurs in nitric acid production in 2006/2007 by 30.3 % are conducted with an increase in the working capacity of enterprises due to an increase in the consumption of feedstock for the production of nitric acid in 2007, as well as the changes in 2010/2011 by 28.6 % that occurred as a result by the recovery in production on the enterprises after global financial and economic crisis in 2008-2009 which impacted on the decrease in production of nitric acid in 2009 compared with 2008 by 31.56 %. The inter-annual changes in 2012/2013 by 23.4 % are connected with the economic decrease as a result of the political crisis in Ukraine that began in 2013. The increase in nitric acid production in 2018 compared with 2017 by 9.6 % as well as in 2018/2019 by 52.8 % is due to gradual growth in the working capacity at the enterprises because of increase in the consumption of feedstock for the production of nitric acid associated with a gradual recovery from the crisis that began in 2013 in accordance with data obtained from enterprises-producers. The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in nitric acid production respectively.

In the framework of JI projects in enterprises producing nitric acid in Ukraine were installed secondary catalysts (manufacturer Umicore) for catalytic destruction of nitrous oxide, with the purpose to decomposition of N_2O emissions. At the same time automated emissions monitoring systems (AMS) have been installed.

Table 4.8. The basic data on the results of GHG inventory in nitric acid production in 2023

Category code	2.B.2		
Nitric acid production, kt	940.38		
Gases	N ₂ O	NOx	
Emissions from production, kt	6.58	7.05	
Change in emissions compared to the previous year, %	46.35	46.35	
Change in emissions compared to the baseline year, %	-62.88	-73.88	
Emissions, % of the total emissions in the sector	93.39	73.52	
Key category ("l" – level, "t" – trend)	L		
Detail level (Tier)	2	2	

Method for determination of the emission factor	CS/D	D
Emission factor, kg/t	7.0/5.0	12/7.5
Uncertainty of activity data, %	2	
Uncertainty of the emission factor, %	22.36	
Uncertainty of the emission estimation, %	22.45	

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.6, Annex 3.1.1.

4.3.2.2 Methodological issues

The amount of nitric acid produced in 1990 - 2023 was taken in accordance with data obtained from enterprises. Nitric acid in Ukraine produces by five companies based on the use of two techniques: on four plants with medium pressure units and on one plant with a low-pressure unit. N_2O emissions was calculated with using default emission factors (5 kg/t for low pressure and 7 kg/t for medium pressure units) in accordance with 2006 IPCC Guidelines [1]. Nitric acid production on the plant with a low-pressure unit was stopped since 2014 therefore N_2O and NO_x emissions were not reported for 2015 onward.

Estimation of emissions of nitrogen oxides was conducted in accordance with 2019 EMEP/EEA emission inventory guidebook [6] using default emission factors.

4.3.2.3 Uncertainties and time-series consistency

In accordance with the Guidelines [1], the values of the activity data uncertainty are taken at the level of 2%. The values of the uncertainty of emission factors for this category were taken at the level of 22.36%, in accordance with the recommendations of the 2006 IPCC Guidelines [4]. Thus, the total uncertainty of the estimates of nitrous oxide emissions from nitric acid production amounts to 22.45%.

4.3.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in production of nitric acid.

4.3.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.3 Adipic Acid Production (CRT category 2.B.3)

4.3.3.1 Category description

Adipic acid (HOOC(CH₂)4COON) is a dicarboxylic acid, which is produced by oxidation of a mixture of cyclohexanone and cyclohexanol with nitric acid in the presence of a vanadium catalyst. The oxidation process with nitric acid releases nitrous oxide as an undesirable byproduct (N₂O).

Adipic acid production is also accompanied by emissions of NMVOC, CO, and NO_x.

In Ukraine, the technique of thermal destruction of N_2O is used at adipic acid production. The unit for thermal destruction of N_2O was developed by Severodonetsk branch of the "Institute of

Nitric Industry" together with BASF, which was the supplier of the technology and equipment for adipic acid production.

The reduction in the amount of production of adipic acid and, therefore, of emissions in 2009 was due to the economic crisis and the general decline in industrial production in that period.

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", adipic acid has not been produced since 2013, so the emissions in this category were not estimated. Data of adipic acid production in Ukraine for the whole time series are shown in the table A3.1.1.7 in Annex 3 and the CRT tables.

4.3.3.2 Methodological issues

Data of adipic acid production were provided by the enterprises-producers. For estimation of N_2O emissions from adipic acid production, 2006 IPCC Guidelines [1], using Tier 2 method with default emission factors were used. Estimation of emissions of NMVOC, CO, and NO_x was conducted in accordance with 2019 EMEP/EEA emission inventory guidebook [6] using default emission factors.

4.3.3.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", adipic acid has not been produced since 2013, so the uncertainties in this category were not calculated.

4.3.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in adipic acid production.

4.3.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.4 Caprolactam, Glyoxal, and Glyoxylic Acid Production (CRT category 2.B.4)

4.3.4.1 Category description

This section is dedicated to production of three chemicals – caprolactam, glyoxal, and glyoxylic acid, which are potentially important sources of nitrous oxide (N_2O) emissions in the countries where they are produced.

In Ukraine, glyoxal and glyoxylic acid are not produced. Almost all of the annual production of caprolactam ($C_6H_{11}NO$) is consumed as the monomer for nylon-6 fibres and plastics (Kirk-Othmer, 1999; p.310), with a substantial proportion of the fibre used in carpet manufacturing.

Mostly, caprolactam is produced by the Raschig method, as a result of Beckmann rearrangement (conversion of a ketone oxime into an amide, usually using sulphuric acid as a catalyst) by the addition of hydroxylamine sulphate to cyclohexanone. Hydroxylamine sulphate is produced from ammonium nitrate and sulphur dioxide. Ammonia gas and air are fed to a converter where ammonia is converted to hydroxylamine disulphonate by contacting it with ammonium carbonate and sulphur dioxide in series. Ammonium carbonate is produced by dissolving ammonia and carbon dioxide in water, and sulphur dioxide by burning sulphur. The disulphonate is hydrolysed to hydroxylamine

sulphate and ammonium sulphate. The addition of hydroxylamine sulphate to cyclohexanone produces cyclohexanone oxime which is converted to caprolactam by the Beckmann rearrangement.

4.3.4.2 Methodological issues

According to the activity data provided by enterprises-producers and by the State Enterprise "Cherkasky NIITEKHIM", caprolactam has not been produced since 2014, so the emissions in this category were not estimated. For estimation of N₂O emissions from caprolactam production for 1990 - 2013, 2006 IPCC Guidelines [1], using Tier 1 method with default emission factor was used.

4.3.4.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprises and by the State Enterprise "Cherkasky NIITEKHIM", caprolactam has not been produced since 2014, so the uncertainties in this category were not calculated.

4.3.4.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in caprolactam production.

4.3.4.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.4.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.5 Carbide Production and Use (CRT category 2.B.5)

4.3.5.1 Category description

2023

Calcium carbide CaC₂ is obtained by calcination of a mixture of limestone with coal dust in electric furnaces and subsequent recovery of lime. Silicon carbide is produced in electric furnaces at 2000 - 2200°C from the mixture of quartz sand (51-55 %), coke (35-40 %) with the addition of sodium chloride (1-5 %) and sawdust (5-10 %). In this category, CO₂ emissions occur from limestone in production of CaC₂ and SiC, as well as in the lime recovery process and calcium carbide utilization. In production of silicon carbide, also occurs CH₄ emissions. The data about silicon and calcium carbide production in Ukraine is confidential. Table 4.9 shows data on CO₂ emissions from production and use of calcium carbide and CH₄ emissions from silicon carbide production.

Table 4.9. The basic data on the results of GHG inventory in carbide production and use in

Category code	2.B.5			
Carbide Production and Use, kt	С			
Greenhouse gas	CO ₂	CH ₄		
Emissions, kt	43.42	0.192		
Change in emissions compared to the previous year, %	0.43	0.43		
Change in emissions compared to the baseline year, %	27.30	-64.44		
Emissions, % of the total emissions in the sector	0.26	3.07		
The key category	No			
Detail level (Tier)	1	1		

Category code	2.	B.5
Method for determination of the emission factor	D	D
Uncertainty of activity data, %	5	5
Uncertainty of the emission factor, %	10	10
Uncertainty of the emission estimation, %	11.180	

4.3.5.2 Methodological issues

The data of calcium and silicon carbide production were provided by the enterprises-producers and SSSU [2]. For calculation of emission factors of CO₂ and CH₄ for silicon carbide production, as well as in calcium carbide using, the default factors were used [1].

4.3.5.3 Uncertainties and time-series consistency

The uncertainty of the default CO₂, CH₄ emission factors is taken at the level of 10 %. The uncertainty of the data of calcium and silicon carbide production provided by the enterprises-producers is taken at the level of 5 %.

Thus, the total uncertainty of CO_2 and CH_4 emissions in calcium carbide and silicon carbide production amounts to 11.180 %.

4.3.5.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in production and use of calcium carbide.

4.3.5.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.5.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.6 Titanium Dioxide Production (CRT category 2.B.6)

4.3.6.1 Category description

Titanium dioxide (TiO₂) is one of the most commonly used white pigments. The main use is in paint manufacture followed by paper, plastics, rubber, ceramics, fabrics, floor covering, printing ink, and other miscellaneous uses.

There are three processes that are used in the production of TiO_2 that lead to process greenhouse gas emissions: titanium slag production in electric furnaces, synthetic rutile production using the Becher process, and rutile TiO_2 production via the chloride route. Titanium slag used for production of anatase TiO_2 is produced from electric furnace smelting of ilmenite. Where titanium slag is used the acid reduction step is not required as the electric furnace smelting reduces the ferric iron contained as an impurity in ilmenite. Rutile TiO_2 may be produced by further processing of the anatase TiO_2 .

Process emissions arise from the reductant used in the process. Production of synthetic rutile can give rise to CO_2 emissions where the Becher process is used. This process reduces the iron oxide in ilmenite to metallic iron and then reoxidises it to iron oxide, and in the process separates out the titanium dioxide as synthetic rutile of about 91 to 93 percent purity (Chemlink, 1997). Black coal is used as the reductant and the CO_2 emissions arising should be treated as industrial process emissions. The main route for the production of rutile TiO_2 is the chloride route. Rutile TiO_2 is produced through

the carbothermal chlorination of rutile ore or synthetic rutile to produce titanium tetrachloride (TiCl₄) and oxidation of the TiCl₄ vapours to TiO₂. Table 4.10 shows the basic data on the results of GHG inventory in titanium dioxide production.

Table 4.10. The basic data on the results of GHG inventory in dioxide titanium production in 2023

Category code	2.B.6			
Titanium Dioxide Production, kt	84.70			
Gases	CO_2	NO_x	CO	SO_x
Emissions, kt	113.49	0.008	13.47	0.097
Emission factors, t/t	1.34	0.0001	0.159	0.00114
Change in emissions compared to the previous year, %	-1.36			
Change in emissions compared to the baseline year, %	-49.85			
Emissions, % of the total emissions in the sector	0.69	0.08	54.87	0.22
The key category	No			
Detail level (Tier)	1	2	2	2
Method for determination of the emission factor	D D D			D
Uncertainty of activity data, %	25			
Uncertainty of the emission factor, %	5			
Uncertainty of the emission estimation, %	25.5			

4.3.6.2 Methodological issues

Data of titanium dioxide production was obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of titanium dioxide production in 2017-2023. For estimation of CO_2 emissions from titanium dioxide production, 2006 IPCC Guidelines [1] with default emission factors were used. Calculation of NO_x , CO and SO_x emissions was performed for the first time in accordance with 2019 EMEP/EEA emission inventory guidebook [6] using default emission factors.

4.3.6.3 Uncertainties and time-series consistency

The uncertainty of production data is estimated at 25%. The uncertainty of the default CO₂ emission factors is set at 5 %. Thus, the uncertainty of CO₂ emission from titanium dioxide production in Ukraine amounts to 25.5 %.

4.3.6.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in production of titanium.

4.3.6.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.6.6 Category-specific planned improvements

In this category, no improvements are planned.

4.3.7 Soda Ash Production (CRT category 2.B.7)

4.3.7.1 Category description

In Ukraine, soda ash production takes place at one plant with Solvay process (the synthesis process) which involves capturing carbon dioxide released during the occurrence of side reactions (such as calcining limestone with metallurgical grade coke or anthracite) and return it to the process, assessment of CO₂ emissions from the production process does not performs, which does not disagree with the requirements of the IPCC, according to research work "Development of the method of calculation and determination of GHG emissions in the chemical industry with the construction of particular time-series" [7].

4.3.8. Petrochemical and Carbon Black Production (CRT category 2.B.8)

4.3.8.1 Category description

In this category, estimation of carbon dioxide and methane emissions in carbon black, ethylene and methanol production, as well as precursors (CO, NO_x, NMVOCs) and SO₂ in manufacture of chemical products: carbon black, ethylene, vinyl chloride monomer, methanol, polystyrene, propylene, polypropylene, polyethylene, sulfuric acid, and phthalic anhydride was made.

According to the data obtained from enterprises-producers carbon black in Ukraine produces with using (default) furnace black with thermal treatment process and it uses as a reinforcing component in production of rubbers and other plastic masses. In production of carbon black occurs emissions of CO₂, CH₄, and all precursors GHGs - NO_x, CO, SO₂ and NMVOCs. Since 2007, statistics of carbon black production in Ukraine is confidential. Data of carbon black production in 2023 were provided by the enterprises-producers.

Ethylene (C_2H_4) is a product of oil and natural gas refining. It used as a raw material in production of polyethylene, ethyl alcohol, and polyvinyl chloride. In ethylene production occurs CO_2 , CH_4 , and NMVOC emissions. Since 2003, statistics of ethylene production in Ukraine is confidential. According to the data obtained from only one plant producer of ethylene in Ukraine there was no production in 2009, 2013 - 2016. Production has been resumed since 2017. However, with the beginning of the full-scale invasion of Ukraine by the Russian Federation, the enterprise stopped the production of chemical products. The lack of production in 2009 is explained by the global financial and economic crisis in 2008 - 2009 and the economic decrease as a result of the political crisis in Ukraine that began in 2013, which has had a significant impact on production in major industries.

According to the data obtained from enterprises-producers methanol (methyl alcohol) CH₃OH was produced with using (default) conventional steam reforming without primary reformer process. It is used for denaturing ethyl alcohol, formaldehyde production and as a solvent and reagent in organic synthesis. In production of methanol occurs CO₂ and CH₄ emissions. Since 2006, statistics of methanol production in Ukraine is confidential. Data of methanol production in 2023 was provided by the enterprise-producer.

According to the data obtained from enterprise-producer VCM (vinyl chloride monomer) in Ukraine produces with using (default) balanced process for VCM production with integrated VCM production plant which is used for further production of polyvinyl chloride. In vinyl chloride monomer production occurs CO₂, CH₄, and NMVOC emissions. Data about vinyl chloride monomer production in Ukraine is confidential. According to the data obtained from only one plant producer of vinyl chloride monomer in Ukraine there was no production in 2009 and since 2014 till 2016, in 2017 - 2023 production resumed. However, with the beginning of the full-scale invasion of Ukraine by the Russian Federation, the enterprise stopped the production of chemical products. The lack of production in 2009 is explained by the global financial and economic crisis in 2008 - 2009 and the economic decrease as a result of the political crisis in Ukraine that began in 2013, which has had a significant impact on production in major industries.

Polystyrene is obtained by catalytic dehydrogenation of ethylbenzene in the presence of catalysts and it is used in plastics and synthetic rubbers production. In production of polystyrene occurs only NMVOC emissions. Since 2008, statistics of polystyrene production in Ukraine is confidential. Data of polystyrene production in 2023 were provided by SSSU [24].

Propylene (C₃H₆) is found in cracking, petroleum pyrolysis gases, in coke gases. It is obtained by extraction from oil refinery gases, as well as through catalytic dehydrogenation of propane,

light gasolines. It is used as a raw material in the petrochemical industry, in plastics, rubber, motor fuel and solvents production. In propylene production only NMVOC emissions take place. Since 2003, statistics of propylene production in Ukraine is confidential. Since 2013 till 2016, propylene has not been produced in Ukraine, due to lack of raw materials for production caused by the economic decrease as a result of the political crisis in Ukraine that began in 2013, which was confirmed with data provided by the SE "Cherkasky NIITEKHIM. According to the data provided by enterprise-producer and SSSU [2] propylene production in 2017 - 2023 was resumed. However, with the beginning of the full-scale invasion of Ukraine by the Russian Federation, the enterprise stopped the production of chemical products.

Polypropylene is obtained by polymerizing propylene in the presence of metal catalysts. It is used for films (especially packaging ones), containers, pipes, technical equipment parts, household items, electrical insulation and non-woven materials production. In production of polypropylene, only NMVOC emissions take place. Since 2005, statistics of polypropylene production in Ukraine is confidential. Since 2013 till 2016, polypropylene has not been produced in Ukraine, due to lack of raw materials for production caused by the economic decrease as a result of the political crisis in Ukraine that began in 2013 which was confirmed with data provided by the SE "Cherkasky NIITEKHIM", in 2017 - 2023 polypropylene production resumed, according to data obtained from SSSU [24].

Polyethylene is produced by polymerization of ethylene at high temperature and pressure in the presence of catalysts. It is used primarily as a packaging material. In polyethylene production only NMVOC emissions take place. Since 2005, statistics of polyethylene production in Ukraine is confidential information. Data of polyethylene production in 2022 (for January and February only) was received from the enterprise-producer. With the beginning of the full-scale invasion of Ukraine by the Russian Federation, the enterprise stopped the production of chemical products.

Sulfuric acid (H₂SO₄) is produced by catalytic oxidation of SO₂. In Ukraine, sulfuric acid produces by chemical, coke enterprises and metallurgy ones. It is used in mineral fertilizers, various salts and acids production, in organic synthesis, in petroleum, metal, textile, and leather industries. In production of sulfuric acid only SO₂ emissions take place. To assess GHG emissions of sulfuric acid production, data provided by the SSSU [24] was used.

Phthalic anhydride is a raw material for a wide range of plasticizers, water-soluble polyester resins production, the raw material for which is orthoxylene or naphthalene. In 2010, phthalic anhydride production from naphthalene use was stopped in Ukraine. In 2011, phthalic anhydride was produced only from orthoxylene. In production of phthalic anhydride only NMVOC emissions take place. Since 2006, statistics of phthalic anhydride production in Ukraine is confidential. Since 2013, phthalic anhydride has not been produced in Ukraine, which was confirmed with data provided by the SE "Cherkasky NIITEKHIM".

The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in chemical products production respectively.

Table 4.11 shows the basic data on the results of GHG inventory in this category.

Table 4.11. The basic data on the results of GHG inventory in the category Petrochemical and Carbon Black Production in 2023

Category code	2.B.8					
Gases	CO_2	$\mathrm{CH_4}$	NO_x	CO	NMVOC	SO_2
Emissions in production, kt	68.38	0.002	0.39	0.078	0.019	2.073
Change in emissions compared to the previous year, %	-64.73	-99.99	-36.96	-36.96	-91.29	-7.39
Change in emissions compared to the baseline year, %	-96.52	-99.94	-89.96	-99.00	-97.22	-95.94
Emissions, % of the total emissions in the sector	0.41	0.03	4.07	0.32	0.02	11.58
in the sector						
Key category ("l" - level, "t" - trend)	No	No				
Detail level (Tier)	1	1	2	2	2	2
Method for determination of the emission factor	D	D	D	D	D	D
The uncertainty of the activity data, %	17.52	17.52				
The uncertainty of the emission factor, %	15.00	17.40				
The total uncertainty for the category, %	23.06	24.69				

GHG emission data throughout the entire time series in this category are shown in Table A3.1.1.8, Annex 3.1.1.

4.3.8.2 Methodological issues

For calculation of CO₂ and CH₄ emissions from the petrochemical industry 2006 IPCC Guidelines [1] with the default emission factors was used. Indirect GHG emission estimation in the category was conducted in accordance with 2019 EMEP/EEA Emission Inventory Guidebook [6] (Tier 2 method) and the scientific-research work "Development of methods for calculation and determination of GHG emissions in the chemical industry with the construction of particular time series"[7] performed by State Enterprise "Ukrainian Research Institute of Transport Medicine" of the Ministry of Health of Ukraine, using the method of calculation of Cherkassy NIITEKHIM. The activity data were provided by the enterprises-producers, SE "Cherkassy NIITEKHIM", SSSU [2] and SSSU [24], with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of the amounts of petrochemical products production in 2014.

4.3.8.3 Uncertainties and time-series consistency

Out of GHGs, in this category carbon dioxide and methane emissions from carbon black, ethylene, and methanol production are accounted. The uncertainty of activity data is estimated for CO₂ at 17.52% and for CH₄ at 17.52% The uncertainty of the default emission factors is set for CO₂ at 15.00% and for CH₄ at 17.40%. Thus, the total uncertainty of CO₂ emission from category Petrochemical and Carbon Black Production amounts for CO₂ at 23.06% and for CH₄ at 24.69%.

4.3.8.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in chemical production.

4.3.8.5 Category-specific recalculations

In this category, no recalculations were made.

4.3.8.6 Planned improvements

In this category, no improvements are planned.

4.3.9 Fluorochemical Production (CRT category 2.B.9)

In accordance with the scientific-research works: by the Ukrainian Research Institute of Medicine and Transport of the Ministry of Health of Ukraine "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride"[7] and by Cherkasy NIITEKHIM" - "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride" [13] there is no fluorochemical production in Ukraine, therefore emissions in this category are not estimated.

4.4 Metal Industry (CRT category 2.C)

Emissions in this category are the result from the production of metals such as Iron, Steel, Sinter, Pellets, Ferroalloys, Aluminium, Lead and Zinc production, as well as limestone and dolomite use. The main CO₂ emissions occur in all these categories as well as CH₄ emission from Iron, Sinter and Ferroalloys production and PFCs emissions from Aluminium production. The precursors and SO₂ emissions occurs only from Iron and Steel production. The key sources of emissions are Iron, Steel

and Ferroalloys production with CO₂ and CH₄ emissions respectively where the emissions are related with the production processes, the correlation of emissions in CO₂-eq and amounts of these products production are shown on fig 4.6.

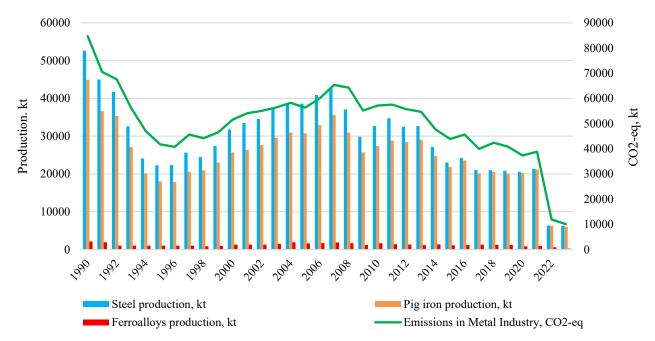


Fig. 4.6. CO₂-eq emissions from Key categories in Metal industry, kt

Emissions from Sinter, Pellets, Aluminium, Lead and Zinc production are not shown on the fig 4.6. due to the fact that their contributions to the emissions in Metal industry category are not as significant as those indicated in graph above and they are not key categories.

The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in Metal industry are shown by each subcategory in relevant chapters.

4.4.1 Iron and Steel Production (CRT category 2.C.1)

4.4.1.1 Category description

Category Iron and Steel production is the key category and the largest source of GHG emissions in the sector.

The greatest emissions occur from pig iron production, which is produced by reduction of iron ore in blast furnace process. Carbon contained in coke is used both as fuel, and as a reducing agent. In accordance with 2006 IPCC Guidelines [1], emissions from energy and non-energy use of coke in the blast furnace process for iron production were accounted in the sector "Industrial Processes and Product Use". Table 4.12 shows the basic data on the results of GHG inventory in iron and steel production.

Table 4.12 Basic data on the	results of GHG inventor	y in iron and steel	production in 2023

Category code		2.C.1						
Iron production, kt		6003.00						
Steel production, kt		6226.80						
Sinter production, kt		9353.00						
Pellet production, kt		9128.47						
Consumption of natural gas, M m3				0.435				
Limestone use, kt				2301.7				
Dolomite use, kt		0.3						
Gases	All GHGs	CO_2	CH ₄ (pig iron)	CH ₄ (sin- ter)	NO _x	СО	NMVOC	SO ₂

Category code				2.C.1				
Emissions, kt	9694.34	9524.7	5.40	0.65	0.59	7.82	2.22	12.05
Change in emissions compared to the previous year, %	-11.88	-12.03	-4.19	15.44	-3.83	-4.23	-0.18	-4.15
Change in emissions compared to the baseline year, %	-88.02	-88.05	-86.64	-84.65	-85.73	-86.64	-86.64	-86.62
Emissions, % of the total emissions in the sector		57.53	86.24	10.38	6.15	31.85	2.36	67.29
Key category ("l" - level, "t" - trend)		L/T	No	No				
Detail level (Tier)		3	1	1	1	1	1	1
Emission factor for pig iron, t/t		1.29	0.0009	0.00007				
Emission factor for steel, t/t		0.124						
Emission factor for limestone, kg/t		0.4337						
Emission factor for dolomite, kg/t		0.4645						
Method for determination of the emission factor		CS	D	D	D	D	D	D
Uncertainty of activity data, %		5.27		5				
Uncertainty of the emission factor, %		4.54	2	.0				
Uncertainty of the emission estimation, %		6.95	20).6				

The decrease in emissions from iron and steel production in 2021 compared to the baseline year was due to reduction in the volume of their production after the collapse of the USSR. The growth of emissions in 2021 compared to 2020 – to an increase in the iron and steel production, as well as in coke consumption for iron production and, as a result, the reduction of pulverized coal consumption in 2021 after start of its application at metallurgical enterprises of after the 2008/2009 crisis. Activity data, emission factors, and GHG emissions for the entire time series in this category are listed in Tables A3.1.1.9, annex A3.1.1.10. The sharp decline of iron and steel production was caused by the full-scale invasion of Ukraine by the Russian Federation which led to a deep crisis of the producers and consumers, who either completely stopped production/consumption or significantly reduced it.

4.4.1.2 Methodological issues

4.4.1.2.1 Iron Production

In GHG inventory, Tier 3 method was used in this category in accordance with 2006 IPCC Guidelines [1]. The activity data of the amount of iron produced were obtained from enterprises producers. The amounts of coke, coal, and natural gas consumption for iron production were taken with using extrapolation method, based on data of the decrease of pig iron production in Ukraine in 2021-2023 obtained from Association "Ukrmetalurgprom", in accordance with 2006 IPCC Guidelines, Chapter 5.3 Resolving data gaps [1].

The carbon content in iron and coke was taken in accordance with the data obtained from the enterprises-producers. In the calculations, the national value of carbon content in natural gas was used, the determination method and the value of which are presented in Annex 2.5. The net calorific value of natural gas was taken in accordance to passports, certificates of physical and chemical properties of natural gas in gas production and gas transportation companies of Ukraine. The carbon content of coal was taken on the basis of the values of net calorific value of coal and sulfur content in coal in accordance with data obtained from the enterprises-producers. The ore used for iron production in Ukraine does not contains carbon. In the estimation assessment, the scientific-research works were used: "Development of methods of estimation and prediction of GHG emissions at the metallurgical enterprises of Ukraine" [10] and "Development of the method of estimation and determination of carbon dioxide emissions in iron and steel production" [13]. Use of these scientific-research works made it possible to specify all the details of production components at each Ukrainian enterprise. Since iron production processes in Ukraine are characterized by use of fuel resource (coke) directly within the production boundaries of the single enterprise, emissions from energy and nonenergy use of coke in iron production – in subdivision into raw material and energy use of the coke were accounted in this category and in order to avoid double accounting excluded from category 1.A.2.a (Energy sector).

Annex 3.1.3 presents the method of determining the emission factor when using coal and coke, and Annex 3.1.4 – the carbon balance in the blast furnace process developed as a result of the research [10] conducted for 2023.

The methane emission factor in iron production, in accordance with [3], was assumed to be 0.9 kg per ton of pig iron. The emission factors for precursors in this category were taken as equal to the default values in 2019 EMEP/EEA Emission Inventory Guidebook [6].

4.4.1.2.2 Steel Production

Emissions from steel production were determined in accordance with the Guidelines [1] for each type of steel production (in basic oxygen furnaces (BOF), electric arc furnaces (EAF), and open hearth furnaces (OHF)), taking into account the specific consumption of iron and carbon content in each type of steel (Tier 3 method) in accordance with data obtained from enterprises-producers. For 2016, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of steel production and iron, scrap metal and carbon electrodes consumption. As a result of conducted scientific-research work [10], it was found out that in the steel production, it is also necessary to account the carbon that enters to steel making furnaces with scrap metal. Therefore, the calculation was extended with the component that takes into account the carbon entering the furnace with scrap metal. The amounts of iron, and scrap metal consumption for steel (in basic oxygen furnaces (BOF) and electric arc furnaces (EAF) production were determinate by using specific values of these amounts for emission calculations in 2022, 2023 due to the lack of all data received from manufacturers in 2022, 2023.

The emission factors for precursors in this category were taken as equal to the default values in 2019 EMEP/EEA Emission Inventory Guidebook [6].

4.4.1.2.3 Sinter and Pellet Production

In statistical reporting Form 4-MTP [20], coke consumption in sinter and pellet production is shown along with coke consumption for iron production. Therefore, emissions from sinter and pellet production are accounted together with the emissions from iron production.

Estimation of methane emissions from sinter production was carried out in accordance with the recommendations [1] using the default factor. According to 2019 EMEP/CORINAIR Emission Inventory Guidebook [6], assessment of NMVOC emissions from sinter and pellets production with the default factors was conducted, the emissions were combined with the total emissions of precursors in the category.

4.4.1.2.4 Limestone and Dolomite Use

This category accounts CO₂ emissions from limestone and dolomite use as fluxes in sinter, pellets, iron, and steel production, which were combined with the total in the category. The amount of limestone, dolomite limestone, and dolomite used in metallurgy was taken on the basis of data obtained from the iron, steel, sinter and pellets enterprises-producers.

In the estimations in the category, the scientific-research works were used: "Development of methods of estimation and prediction of greenhouse gas emissions at the metallurgical enterprises of Ukraine" [10] and "Development of the method of estimation and determination of carbon dioxide emissions in limestone and dolomite use" [8] developed by SE "State Ecology Academy of Postgraduate Education and Management" and SE "UkrRTC "Energostal". The obtained results of these scientific-research works made possible to specify the details of all components used as fluxes in metallurgical production at each Ukrainian enterprise, as well as data of the content of CaCO₃ and MgCO₃ in limestone, dolomite limestone, and dolomite, on the basis of which the emission factors and CO₂ emissions were identified. The activity data and estimation results are presented in Annex 3.1.2.

The value of the total ${\rm CO_2}$ emission factor in limestone and dolomite use in 2023 resulted 0.4337 t/t.

4.4.1.3 Uncertainties and time-series consistency

The key factors that impacted on the value of the uncertainty of the activity data for iron and steel production are:

- accuracy of measurements of the mass/volume of reducers and manufactured products;
- uncertainties caused by the recalculation of masses;
- uncertainties caused by generalization of activity data.

The key factors that impacted on the value of the uncertainty of emission factors for iron and steel production are:

- uncertainty of the data of carbon content in raw materials, reducing agents, and manufactured products;
 - accuracy of determining the net calorific value of the fuel used as a reducing agent;
 - uncertainty caused by the representative nature of the sample for measurement;
- uncertainties caused by generalization of data on physical and chemical properties of reducing agents and the products.

The findings of study [10] made possible to estimate the uncertainty of the activity data obtained for iron production at the level of 2.17 % and of steel – at the level of 0.77 %.

The uncertainty of emission factors for iron and steel production is estimated at the level of, respectively, 2.73 % and 1.64 %.

Taking into account emissions from iron and steel production, the total uncertainty of the activity data for production of iron and steel is 5.27 %, the uncertainty of emission factors -4.54 %, and the uncertainty of emission volumes -6.95 %.

The uncertainty of the methane emission factor in iron production is taken to be 20 %. Given the uncertainty of the activity data (5 %), the total uncertainty of the methane emission estimation in iron production amounted to 20.6 %.

4.4.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to estimation of carbon dioxide emissions from iron and steel production, including:

- analysis of the time-series of the activity data (iron and steel production volumes) and emission factors:
- comparison of data of iron production obtained from SSSU [2] with those provided by Association "Ukrmetalurgprom";
- carbon balance analysis in the blast furnace process (Annex 3.1.4);
- analysis of the coke balance in Ukraine (Annex 2.8).

4.4.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.4.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.4.2 Ferroalloys Production (CRT category 2.C.2)

4.4.2.1 Category description

Ferroalloys are semi-finished metal production products - iron alloys with silicon, manganese, chromium, and other elements used in steel production (for deoxidation and alloying of steel, binding of harmful impurities, ensuring the desired metal structure and properties). Ferroalloys differ

in content of the key elements, carbon, and impurities. Ferroalloys are obtained through pyrometal-lurgical methods of basic metal and iron oxides reduction. The most common method of producing ferroalloys is the electrothermal one. By the type of the reducing agent, it is subdivided into carbon-reduction one, producing carbon ferroalloys (8.5 % C) and all silicon alloys, and metallo-thermal one (conventionally including the silicothermic one), which produces alloys with low carbon content (0.01-2.5 %C). Ferroalloy smelting is carried out in three-phase electric ore reduction and refined furnaces of the open and closed types.

The alloys production technology provides for a continuous process with periodic releases of smelting products. Solid pure coke and coal carbon is used as a reducing agent in accordance with the direct reduction technology. Thus, the reduction product is carbon mono-oxide and dioxide (CO and CO_{2).} There are only ferrosilicon, ferromanganese, ferrosilicomanganese (silicon manganese) and ferronickel production in Ukraine. Table 4.13 shows the basic data of GHG inventory for carbon dioxide and methane in production of ferroalloys in Ukraine. The sharp reduction of emissions in 2022 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in ferroalloys production respectively.

Table 4.13. The basic data on the results of GHG inventor	ry in ferroalloys production in 2023
---	--------------------------------------

Category code	2.0	C.2
Ferroalloys Production, kt	219.84	
Limestone use, kt	0.214	
Gas	CO_2	$\mathrm{CH_4}$
Emissions, kt	351.45	0.010
Change in emissions compared to the previous year, %	-60.60	-54.58
Change in emissions compared to the baseline year, %	-90.05	-98.27
Emissions, % of the total emissions in the sector	2.12	0.16
Key category ("1" - level, "t" - trend)	No	
The level of detail for ferroalloys (Tier)	3	1
Emission factor, t/t	1.49	0.001
Method for determination of the emission factor for ferroalloys	CS	D
Uncertainty of activity data, %	21.2	5.3
Uncertainty of the emission factor, %	5	31.3
Uncertainty of the emission estimation, %	21.8	31.7

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table 3.1.1.11, Annex 3.1.1.

4.4.2.2 Methodological issues

As the activity data in the inventory of emissions in this category, statistical data of ferroal-loys production provided by SSSU [2] and the five largest Ukrainian ferroalloy enterprises were used, with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of amounts of ferroalloys production for 2014.

The national emission factors are determined on the basis of the data of ferroalloys production, the weight of the used ore, concentrate, sinter, reducing agents, slag-forming materials and waste, as the carbon content in reducing agents, ore, concentrate, sinter, and ferroalloys obtained from the five largest ferroalloys enterprises-producers. The amounts of ferroalloys production, the weight of the used ore, concentrate, sinter, reducing agents, slag-forming materials and waste, as the carbon content in reducing agents, ore, concentrate, sinter, and ferroalloys production for one of this enterprises-manufacturers were determinate by using specific values of these amounts for calculations in 2022, 2023 due to the lack of data received from this manufacturer in these years.

The methodology of calculating emissions in this category corresponds to Tier 3, described in [1]. In calculations, the scientific-research work "Development of methodological recommendations of greenhouse gas emission factors assessment by refining the data of the composition of reducing agents used in ferroalloys production and the carbon content in ore, slag-forming materials, and waste" [9] was used, applying the calculation methodology of the SE "UkrRTC "Energostal", which

made possible to clarify the details of all components used as reducing agents, slag-forming materials, waste, and fluxes in production of various types of ferroalloys at all enterprises in Ukraine. In ferroalloys production, limestone is used as flux, emissions from the use of which are accounted in the total emissions from ferroalloys production in Table 4.19. Besides emissions from use of limestone in ferroalloys production are presented in A3.1.2 Determination of the amount of limestone and dolomite use.

For estimation of CH₄ emissions from ferroalloys production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.4.2.3 Uncertainties and time-series consistency

The key factors that determine uncertainty of the inventory results in this category are the uncertainty of:

- activity data of the enterprises (production of ferroalloys by type);
- data on the weight of the reducing agent used, of slag materials and waste, as well as on the carbon content in them;
 - statistical activity data.

The uncertainty of activity data of the enterprises is estimated at 21.2 %. The uncertainty of the data to estimate the weighted average rate of carbon dioxide emissions in ferroalloys production at all enterprises of the sector is estimated at 5 %. The uncertainty of data to estimate the average weighted methane emission factor in ferroalloys production is 31.25 %. The uncertainty of activity data for methane emission assessment is estimated at 5.25 %. The uncertainty of estimates of carbon dioxide emissions in production of ferroalloys for 2023 was 21.8 %. The uncertainty of estimates of methane emissions in production of ferroalloys for 2023 was 31.68 %.

4.4.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in ferroalloys production: analysis of the time-series of activity data (ferroalloy production volumes) and emissions.

4.4.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.4.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.4.3 Aluminium Production (CRT category 2.C.3)

4.4.3.1 Category description

This section is dedicated to aluminium production which is a potentially important source of carbone dioxide (CO_2), and CF_4 and C_2F_6 emissions in the countries where they are produced. At the only aluminium plant in Ukraine from 2011 to 2023, aluminium production was stopped due to lack of cost-effectiveness and high cost of electricity. Estimation of GHG emissions from 2011 till 2022 was no performed in this category. The data about aluminium production in Ukraine is confidential.

4.4.3.2 Methodological issues

Data of aluminium production was provided by the enterprise-producer. According to 2006 IPCC Guidelines [1] Tier 1 method for estimation of CO_2 emissions and Tier 2 method for estimation of CF_4 and C_2F_6 emissions from aluminium production, were used.

4.4.3.3 Uncertainties and time-series consistency

According to the activity data provided by producing enterprise aluminium has not been produced since 2010, so the uncertainties in this category were not calculated.

4.4.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in aluminium production.

4.4.3.5 Category-specific recalculations

In this category, no recalculations were made

4.4.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.4.4 Magnesium Production (CRT category 2.C.4)

There is no magnesium production in Ukraine, therefore emissions in this category are not estimated.

4.4.5 Lead Production (CRT category 2.C.5)

4.4.5.1 Category description

Lead is one of the softest and most ductile heavy metals. Lead uses in manufacture of protective sheaths of electric cables, sulfuric acid production equipment. Lead alloys are used for manufacture of bearings, batteries, they are used as a basis for manufacture of printing metal. The smelting process represents the reduction reaction of the lead oxide which produces CO₂. In this category, calculations of CO₂ emissions were performed for the entire time series since 1990. Table 4.14 shows the basic data of GHG inventory for carbon dioxide in lead production in Ukraine. The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in lead production respectively.

Table 4.14. The basic data on the results of GHG inventory in lead production in 2023

Category code	2.C.5
Lead Production, kt	2.82
Gas	CO_2
Emissions, kt eq.	1.46
Change in emissions compared to the previous year, %	-53.70
Change in emissions compared to the baseline year, %	-93.37
Emissions, % of the total emissions in the sector	0.009
The key category	No
The level of detail for lead (Tier)	1
Emission factor, t/t	0.52
Method for determination of the emission factor for lead	D
Uncertainty of activity data, %	20
Uncertainty of the emission factor, %	50
Uncertainty of the emission estimation, %	53.85

4.4.5.2 Methodological issues

Data of lead production in 2023 were obtained from SSSU [24]. For estimation of CO₂ emissions from lead production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.4.5.3 Uncertainties and time-series consistency

The uncertainty of activity data of the enterprises is estimated at 20 %. The uncertainty of data of the default carbon dioxide emission factor in lead production is estimated at 50%. The uncertainty of estimates of carbon dioxide emissions in lead production for 2023 was 53.85%.

4.4.5.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions from lead production.

4.4.5.5 Category-specific recalculations

In this category, no recalculations were made.

4.4.5.6 Category-specific planned improvements

In this category, no improvements are planned.

4.4.6 Zinc Production (CRT category 2.C.6)

4.4.6.1 Category description

Zinc is brittle metal, it melts at 419°C, it does not naturally exist as a native metal. Zinc extracted from polymetal ores containing 1-4% of Zn in the form of sulfide. Possessing anti-corrosion properties, zinc uses for galvanizing steel sheet, telegraph wires, pipes for various purposes, it is a component of some pharmaceuticals. CO₂ emissions from zinc production form during the smelting process. The data about zinc production in Ukraine is confidential. Between 1998 and 2005, there was no zinc production in Ukraine. The sharp reduction of emissions in 2022, 2023 are caused by the full-scale invasion of Ukraine by the Russian Federation which led to decrease in zinc production respectively.

Table 4.15 shows the basic data of the inventory for carbon dioxide in zinc production in Ukraine.

Table 4.15. The basic data on the results of GHG inventory in zinc production in 2023

Category code	2.C.6
Zinc Production, kt	C
Gas	CO_2
Emissions, kt eq.	0.10
Change in emissions compared to the previous year, %	-53.70
Change in emissions compared to the baseline year, %	-99.59
Emissions, % of the total emissions in the sector	0.0006
The key category	No
The level of detail for zinc (Tier)	1
Emission factor, t/t	1.72
Method for determination of the emission factor for zinc	D
Uncertainty of activity data, %	20
Uncertainty of the emission factor, %	50
Uncertainty of the emission estimation, %	53.85

4.4.6.2 Methodological issues

Data of zinc production in 2023 were obtained from SSSU [24]. For estimation of CO₂ emissions from zinc production, 2006 IPCC Guidelines [1] with default emission factors were used.

4.4.6.3 Uncertainties and time-series consistency

The uncertainty of activity data of the enterprises is estimated at 20 %. The uncertainty of data of the default carbon dioxide emission factor in zinc production is estimated at 50%. The uncertainty of estimates of carbon dioxide emissions in zinc production for 2023 is 53.85%.

4.4.6.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in zinc production.

4.4.6.5 Category-specific recalculations

In this category, no recalculations were made.

4.4.6.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5 Non-energy Products from Fuels and Solvent Use (CRT category 2.D)

Emissions in this category are estimating as a result of the first use of fossil fuels as a product for primary purposes such as Lubricant, Paraffin Wax, Asphalt and Solvent use. The main CO₂ emissions occur only from Lubricant and Paraffin Wax use. In other categories only the precursors and SO₂ emissions occurs. The subcategories in this category are not the key sources of emissions. The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in this category are shown by each subcategory in relevant chapters.

4.5.1 Lubricant Use (CRT category 2.D.1)

4.5.1.1 Category description

Category description

Lubricants are mostly used in industrial and transportation applications. Lubricants are produced either at refineries through separation from crude oil or at petrochemical facilities. They can be subdivided into (a) motor oils and industrial oils, and (b) greases, which differ in terms of physical characteristics (e.g., viscosity), commercial applications, and environmental fate. The inter-annual deviations that occur in lubricants use for 1996, 1997, 1998 was associated with start of the importation to Ukraine of lubricants use since 1996 as well as the changes in 2007 which occurred due to sharp growth of production and importation of lubricants in Ukraine. The sharp decline of lubricants consumption was caused by the full-scale invasion of Ukraine by the Russian Federation which led to a deep crisis of the producers and consumers, who either completely stopped production/consumption or significantly reduced it. Table 4.16 shows the basic data on the results of GHG inventory in lubricant use.

Table 4.16. The basic data on the results of GHG inventory in lubricant use in 2023

Category code	2.D.1
Lubricant Use, TJ	6592.58
Emissions of CO ₂ , kt	96.69
Change in CO ₂ emissions compared to the previous year, %	3.74
Change in CO ₂ emissions compared to the baseline year, %	-68.28
Emissions, % of the total emissions in the sector	0.58
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.59
Method for determination of the emission factor	D
Uncertainty of activity data, %	22.36
Uncertainty of the emission factor, %	50.09
Uncertainty of the emission estimation, %	54.85

Activity data, emission factors, and GHG emissions throughout the entire time-series in this category are shown in Table A3.1.1.13, Annex 3.1.1.

4.5.1.2 Methodological issues

Estimation of emissions from lubricants use was carried out in accordance with 2006 IPCC Guidelines (Tier 1) with application of ODU and the default carbon content factor [1]. The data of lubricants non-energy consumption in 2023 was taken with using extrapolation method, based on data of crude oil production in Ukraine in 2020-2023, in accordance with 2006 IPCC Guidelines, Chapter 5.3 Resolving data gaps [1]. To avoid double counting between the Energy and IPPU sectors, data of lubricants non-energy consumption from 1990 till 2021 are not accounted in emission estimations in the "Energy sector". For 2014 - 2023, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of lubricants consumption.

4.5.1.3 Uncertainties and time-series consistency

The uncertainty of data of lubricants consumption obtained from statistical data is taken at 22.36%. The uncertainty of the default emission factors (ODU) is set at 50.09%. The uncertainty of CO₂ emissions from lubricant use in Ukraine amounts to 54.85%.

4.5.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation for GHG emissions in lubricant use.

4.5.1.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.2 Paraffin Wax Use (CRT category 2.D.2)

4.5.2.1 Category description

This category includes such products as petroleum jelly, paraffin waxes and other waxes, including ozokerite (mixtures of saturated hydrocarbons, solid at ambient temperature). Paraffin

waxes are separated from crude oil during the production of light (distillate) lubricating oils. Paraffin waxes are categorized by oil content and the amount of refinement. Solid paraffins are recovered from crude oil production in production of light (distillation) lubricating oils, and they are sub-classified based on oil content and purity. Waxes are used in a number of different applications, for example, in applications such as: candles, corrugated boxes, paper coating, board sizing, food production, wax polishes, surfactants (as used in detergents) and many others. Emissions from the use of waxes derive primarily when the waxes or derivatives of paraffins are combusted during use (e.g., candles). The sharp decline of solid paraffin wax consumption was caused by the full-scale invasion of Ukraine by the Russian Federation which led to a deep crisis of the producers and consumers, who either completely stopped production/consumption or significantly reduced it. Table 4.17 shows the basic data on the results of GHG inventory in wax use.

Table 4.17. The basic data on the results of GHG inventory	in solid	paraffin wax	use in 2023

Category code	2.D.2
Solid Paraffin use, TJ	515.96
Emissions of CO ₂ , kt	7.57
Change in CO ₂ emissions compared to the previous year, %	31.63
Change in CO ₂ emissions compared to the baseline year, %	-93.84
Emissions, % of the total emissions in the sector	0.05
The key category	No
Detail level (Tier)	1
Emission factor, t/t	0.590
Method for determination of the emission factor	D
Uncertainty of activity data, %	22.36
Uncertainty of the emission factor, %	100.12
Uncertainty of the emission estimation, %	102.59

Activity data, emission factors, and GHG emissions throughout the entire time-series in this category are shown in Table A3.1.1.14, Annex 3.1.1.

4.5.2.2 Methodological issues

Estimation of emissions from solid paraffins use was carried out in accordance with 2006 IPCC Guidelines (Tier 1) with application of ODU and the default carbon content factor [1]. The data of paraffin waxes production in 2023 was taken with using extrapolation method, based on data of crude oil production in Ukraine in 2020-2023. The data of exports, and imports of paraffin waxes were obtained from SSSU [22]. For 2014-2023, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of paraffins consumption.

To convert consumption data in mass units into the conventional energy units (TJ), default coefficients of calorific value according to the Guidelines in Section 1.4.1.2, Chapter 1, Volume 2 (Energy) were used.

4.5.2.3 Uncertainties and time-series consistency

The uncertainty of data of production, exports, and imports of lubricants obtained from statistical data is estimated at 22.36%. The uncertainty of the default factors (ODU) and the carbon content is taken at the level of 100.12% due to the fact that the factors are associated with highly limited information of national use of solid paraffins. Thus, the uncertainty of CO₂ emission from solid paraffins use in Ukraine amounts to 102.59%.

4.5.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in paraffin wax use.

4.5.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.3 Other (CRT category 2.D.3)

4.5.3.1 Solvent use (CRT category 2.D.3.a)

4.5.3.1.1 Category description

The category Solvents Use, accounts emissions from paints and solvents use in industry and households. Solvents and paints contain substances, use of which results in emissions into the air of non-methane volatile organic compounds (NMVOC). Besides, this sector also includes NMVOC emissions from production and processing of certain chemical products.

In the current inventory, in GHG emission estimations for the period of 1990-2013 results obtained in the framework of the scientific-research work "Development of methods for estimation determination of greenhouse gas emissions from use of varnishes and paints" (the performer – Innovation Center "Ecosystem") [14] were used.

NMVOC emissions in the Solvents Use category in 2023 amounted to 47.85 kt, having decreased compared to the baseline 1990 (274.46 kt) by -82.56 %. The significant reduction in emissions is due to the sharp decline in oil processing and consumption of paints and varnishes for industrial and household purposes.

4.5.3.1.2 Varnishes and Paints Use

4.5.3.1.2.1 Category description

The category Varnishes and Paints Use includes emissions occurring in manufacturing processes associated with paints, varnishes, enamels, fillers, and primers use. The key sectors, technologies that involve use of these processes in Ukraine are: machine engineering, wood processing, repair and construction, and textile industry. As a result of doing business in these sectors, NMVOCs emitted into the air as vapor of volatile organic solvents at painting – 20-30 %, while drying – the rest of the volatile component [4-6].

Use of paints and varnishes (coatings) in Ukraine is in general technologically homogeneous. NMVOC emissions from the use of coatings depend of the following factors: the coating method, productivity of the production equipment, and coatings composition. They are calculated separately for decorative and industrial coatings, due to significant technological differences [15].

In accordance to results of the current inventory, NMVOC emissions from paints use in Ukraine in 2023 amounted to 40.99 kt, having decreased compared to the baseline 1990 (154.16 kt) by 73.41 % due to the significant reduction in activities related to use of coatings of all types with the exception of those used for painting rolled metal.

4.5.3.1.2.2 Methodological issues

In this inventory, for the time series of 1990 - 2023 NMVOC emissions from use of paints was estimated in accordance with the Methodology for determination of greenhouse gas emissions from use of varnishes and paints, developed in 2013 within the scientific-research work [14], which was implemented by the Innovation Center "Ecosystem".

The basis of NMVOC emission calculations in this category, in accordance with [14], was the principles described in 2013 EMEP/EEA [6], and the emission equation, which meets the requirements and methodological approaches of Tier 2. NMVOC emissions are calculated according to the equation:

$$Q_t = \left(P \cdot \frac{K_{org}}{100} \cdot \frac{K_{porg}}{1000}\right) + \left(P \cdot \frac{K_w}{100} \cdot \frac{K_{p_w}}{1000}\right),\tag{1}$$

where: Q_t - volume of NMVOC emissions in the inventory year, t;

P – set amount of coating consumption;

 K_{org} – share of organically soluble coatings in the product consumption structure;

 K_w – share of water soluble coatings in the consumption structure;

 K_{Porg} – NMVOC emission factor for organically soluble coatings;

 K_{Pw} – NMVOC emission factor for water soluble coatings.

Due to the nature of coating use and characteristics of the industry structure in Ukraine, as well as in view of EMEP/EEA recommendations, in equation (1) the optimal format for disaggregation of activity data in the category of coating use into subcategories is used, namely:

- by the key uses of coatings, which at the same time are the key air pollutants in this category: decorative coatings (construction and building, household use), as well as industrial coatings (protective coatings for metal surfaces, treatment and painting of timber, automotive, repair of motor vehicles, painted rolled metal, other industrial use);
- by solvent type (organic-based coatings, water-based coatings);
- by the coating use structure according to the type of use and the type of solvent;
- by the inventory number in the time-series of 1990-2023.

The basis of the activity data is data of the amount of coating consumption in Ukraine in 1990 - 2023 taken based on production, exports, and imports data obtained from SSSU [2, 22].

NMVOC emission factors (K_{Porg} and K_{Pw}). Given that after work using coatings NMVOCs contained in the coatings get into the air in full, the NMVOC emission factor is their content in coatings. In Ukraine, there is no regulatory or technical documentation that would regulate the limit parameters of volatile organic compounds in coatings. The only exceptions are oil paints, for which the ceiling standards of the volatile matter are set in accordance with GOST 10503-71, GOST 8292-85. For thick-milled oil paints, the figure is between 6 and 11%, for ready to use oil paints - from 12 to 19%. For oil paints, the volatile substance is mostly an organic solvent. Accordingly, we assume that the limits of volatile substance content in oil paints meet the limits of volatile organic substances in the commercial product. At the same time, starting from 2007, according to the State Classifier of Industrial Products SCIP 016-1997, a number of adjustments were introduced into the statistical reporting on the commodity group "Paints and Varnishes Dissolved in a Different Medium", for statistical reporting of organically soluble coating producers.

Scientific-research work [14] analyzes and systematizes the state standards, as well as producers data of the content of volatile organic compounds in paints in Ukraine, the results of the research are summarized in Table 4.18.

Table 4.18. Content of volatile organic compounds in coatings in Ukraine

	Th 4	NMVOC emission factor, g/kg				
Type of coating	The sector where the coating is applied	Organically soluble (K _{Porg})	Water soluble (K _{Pw})			
Decemptive contine	I*	230	33			
Decorative coating	II*	230	33			
	III*	740	33			
	IV*	800	33			
T 1	V*	500	33			
Industrial coating	VI*	720	33			
	VII*	480	33			
	VIII*	740	33			

^{**}I - for construction and building (professional coating); II - household use of coating (non-professional coating); III - protective covers for metal surfaces; IV - treatment and painting of timber; V - automotive; VI - repair of motor vehicles of all kinds; VII - painted rolled metal; VIII - other industrial coating.

4.5.3.1.2.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.5.3.1.2.4 Category-specific QA/QC procedures

For estimation of emissions in the category, the following quality control procedures were applied:

- comparison of activity data from different sources;
- comparison of emission along the time-series and analysis of activity data trends.

4.5.3.1.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.3.1.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.3.1.3 Degreasing and Dry Cleaning

4.5.3.1.3.1 Category description

NMVOC emissions in this category are related to technical kerosene and white spirits use for degreasing, as well as to trichlorethylene and tetrachlorethylene (perchlorethylene) use by drycleaning companies. NMVOC emissions from degreasing and dry-cleaning processes in 2023 amounted to 0.69 kt, which is 96.3% less than the same indicator for 1990 (18.41 kt). Emission data for the entire time series are displayed in Fig. 4.7.

Decrease of emissions is due to a sharp decline in white spirit and technical kerosene production, which is not set-off by the slight increase of imports in this commodity group.

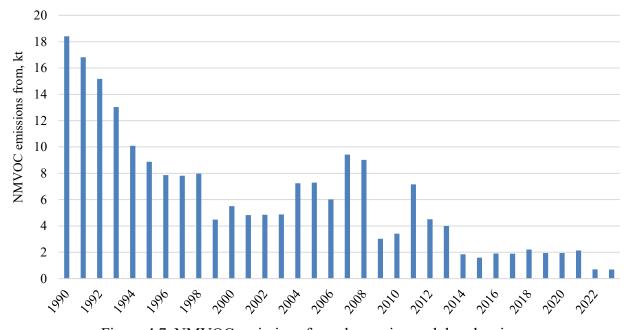


Figure 4.7. NMVOC emissions from degreasing and dry cleaning

4.5.3.1.3.2 Methodological issues

To calculate NMVOC emissions from degreasing processes, data on final consumption in Ukraine of the most common degreasing means are needed: white spirit and technical kerosene. The data of white spirit and technical kerosene were taken from SSSU [24]. Data of trichlorethylene and tetrachlorethylene (perchlorethylene) imports were provided by SSSU [22]. The NMVOC emission factor for degreasing agents was taken as default value of 1.0; for chemicals used in dry cleaning – 0.8, according to [16].

4.5.3.1.3.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.5.3.1.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions in the category.

4.5.3.1.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.3.1.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.3.1.4 Chemical Products: Production and Processing

4.5.3.1.4.1 Category description

The category covers NMVOC emissions from production and processing of various chemical products. In this inventory, estimation of NMVOC emissions from the following industries are included:

- oil refining;
- production of benzene and xylene;
- production of paints and varnishes;
- production of chemical fibers and threads;
- manufacture of glass fibers
- production of rubber products, tire, and rubber footwear.

Due to the fact that Ukraine has a well-developed chemical industry, NMVOC emissions in this category are significant (petrol oil, cyclohexane, acetone, cyclohexanone, etc.). In 2023, NMVOC emissions from production and processing of chemical products amounted to 6.2 kt, which is 93.95 % less in relation to the baseline 1990 (101.9 kt). The emissions decrease in the periods of 1990 - 2000 and 2004 - 2021 are due to the persistent downward trend in oil refining in Ukraine. Detailed information of emissions in the category is presented in Fig. 4.8.

Figure 4.8. NMVOC emissions from chemical production and processing

The data of volumes of chemical production and were taken according to SSSU [24]. The amounts of primary oil refining were obtained from enterprises-producers.

Due to the fact that there is insufficient information regarding the calculation of the national emission factors in this category, to assess NMVOC emissions, emission factors by industry types listed in the inventory of the Republic of Belarus (Table 3.1 [17]) were used, which are similar to Ukrainian chemical industry technologies.

4.5.3.1.4.3 Uncertainties and time-series consistency

For emissions in this category, uncertainties were not estimated.

4.5.3.1.4.3 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of emissions.

4.5.3.1.4.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.3.1.4.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.3.2 Road paving with asphalt (CRT category 2.D.3.b)

4.5.3.2.1 Category description

In the category Road paving, road bitumen is accounted for, which is produced by oxidation of products of direct oil distillation and selective separation of petroleum products (asphalts at deasphalting or selective purification extracts), as well as at compounding of these oxidized and non-oxidized products, or as a residue of direct oil distillation. GHG emissions take place in road bitumen production at enterprises and when paving asphalt. In road bitumen production, SO₂, NOx, CO, and NMVOC emissions take place, and while laying asphalt - only NMVOC. No GHGs occurs in this category. Table 4.19 shows the basic data on the results of GHG inventory in road paving with asphalt.

Table 4.19. The basic data on the results of GHG inventory in road paving with asphalt in 2023

Category code		2.]	D.3.b	
Production of road bitumen, kt	17.21			
Gases	NOx	CO	NMVOC	SO_2
Emissions from production, kt	0.0006	0.003	0.00039	0.0003
Emissions from paving, kt			0.275	
Change in emissions compared to the previous year, %	-31.4			
Change in emissions compared to the baseline year, %	-99.2			
Emissions at production, % of the total in the sector	0.0062	0.012	0.0004	0.0017
Method for determination of the emission factor	D	D	D	D
Detail level (Tier)	1	1	1	1
Emission factor at production, t/t	0.0000356	0.0002	0.000023	0.0000177
Emission factor at paving, kg/t			0.016	

4.5.3.2.2 Methodological issues

Road bitumen production volumes were obtained from SSSU [2]. In accordance with 2019 EMEP/EEA recommendations [6] the default emission factors of GHG emissions for asphalt production were used.

4.5.3.2.3 Uncertainties and time-series consistency

The uncertainty of NO_x, CO, NMVOC and SO₂ emission estimation results was not determined in this category.

4.5.3.2.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions at road paving with asphalt.

4.5.3.2.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.3.2.6 Category-specific planned improvements

In this category, no improvements are planned.

4.5.3.3 Asphalt roofing (CRT category 2.D.3.c)

4.5.3.3.1 Category description

Petroleum bitumen is produced by oxidation of residual products of direct distillation of crude oil and their mixtures with asphalts and extracts of oil production. Therefore, this bitumen is also called oxidized bitumen.

For roofing materials production, treating and coating oil bitumen are used. In the process of their production emissions of CO and NMVOCs occurs. No GHGs occurs in this category. According to the data obtained, there was no roofing bitumen production in Ukraine in 2023 (see Table 4.20).

Table 4.20. The basic data on the results of GHG inventory in construction and roofing bitumen production in 2023

Category code 2.D.3.c С Bitumen Production, kt CO **NMVOC** Gases 0.00 0.00Emissions, kt Change in emissions compared to the previous year, % -100.0 Change in emissions compared to the baseline year, % -100.0 Emissions, % of the total emissions in the sector 0.00 0.00 Method for determination of the emission factor D D Detail level (Tier) Emission factor, n/t 0.00001 0.000005

4.5.3.3.2 Methodological issues

Data of production volumes of construction and roofing bitumen separately were obtained from enterprises-producers. Data of road petroleum bitumen and bitumen for special purposes production, as well as general information about petroleum bitumen production were obtained from SSSU [2].

Estimation of CO and NMVOC emissions was conducted in accordance with 1996 IPCC Guidelines [5] (section 2.7.1.1), using the default emission factors for oxidized bitumen.

4.5.3.3.3 Uncertainties and time-series consistency

The uncertainty of CO and NMVOC emission estimation results was not determined in this category.

4.5.3.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions from construction and roofing bitumen production.

4.5.3.3.5 Category-specific recalculations

In this category, no recalculations were made.

4.5.3.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.6 Electronics Industry (CRT category 2.E)

In Ukraine, the electronics industry, which includes production of flat panel displays on thin film transistors (TFT-FPD) and photovoltaic cells (PV) are absent. Ukraine only conducts SKD assembly of photovoltaic panels. There is no emission assessment in this category.

4.7 Product Uses as Substitutes for Ozone-Depleting Substances (CRT category 2.F)

In this section, estimation of HFC emissions used in refrigeration and air conditioning systems, foam blowing agents, fire protection, aerosols, and solvents was made.

Inventory of HFC and PFC emissions in this category was conducted in accordance with the scientific-research works: by the Ukrainian Research Institute of Medicine and Transport of the Ministry of Health of Ukraine "Development of methods of estimation and determination of emissions of

hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride"[7] and by Cherkasy NIITEKHIM" - "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride" [12]. The studies clarified the details of all components used as refrigerants, blowing agents, fire protection agents, and gas propellants, as well as to clarify activity data and emission factors as a result of their application in manufacture, installation, and operation of the equipment where they are used.

Since HFCs and PFCs are not produced in Ukraine, potential emissions of these gases are determined only by their imports and exports.

4.7.1 Refrigeration and Air Conditioning Systems

4.7.1.1 Refrigeration Equipment

4.7.1.1.1 Category description

The category of refrigeration equipment includes domestic, commercial, industrial, and transport (including maritime) equipment (systems, installations, machinery, plants, etc.). In 2023, the level of disaggregation of the refrigeration equipment category was deepened to four key subcategories.

In 2022 in subcategory of domestic refrigerators only manufacturer in Ukraine, which as a refrigerant used isobutane R-600a and HFC-134a to check tightness of evaporator units of domestic refrigerators ceased its activities, therefore in 2023 refrigerants for domestic refrigerators were not consumed.

More than 20 producers in Ukraine manufacture commercial and industrial refrigeration equipment. As part of the NIR preparation, industrial activity of producers of cooling systems whose production structure is dominated by autonomous systems was analyzed.

According to data obtained from the State Customs Service of Ukraine in production of autonomous commercial equipment, they use HFC-134a, HFC-404a and also HFC-507a and in some years, such as 2012–2013, there was a separate delivery of HFC-143a and HFC-125 refrigerants in containers used for new filling of equipment. As for industrial refrigeration equipment from year to year there was importation approximately 60 per cent for HFC-134a and 40 per cent for HFC-404a, plus in some years there was a separate delivery of HFC-143a and HFC-125 refrigerants in containers for additional charging of equipment. Industrial refrigeration equipment in 2000–2001 was supplied in small quantities and contained HFC-143a and HFC-134a as refrigerants. Imports of refrigeration equipment containing HFC-125 began in 2002, as well as refrigerant HFC-404a start since 2004.

As the refrigerants in transport refrigeration HFC-134a, HFC-404a also in some years HFC-410a, HFC-402a, HFC-452a and HFC-507a were used.

Data on activities in the refrigeration equipment category are based on data received from refrigeration equipment manufacturers, as well as the data obtained from SSSU. Table 4.21 summarizes results of GHG inventory in production and operation of refrigeration equipment in Ukraine.

Table 4.21. Basic data on results of GHG inventory in production and operation of refrigeration equipment in Ukraine in 2023

Category code		2.F.1.A	.1.A 2.F.1.B 2.F.1.C 2.F.1.D								
Types of refrigeration equipment		Commercial Don			nestic Industrial				Tran	sport	
Gas*	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 134a				HFC -125	HFC- 143a	HFC- 32
	Activity data										
Filled into new manufac- tured products (primary filling + tightness test), t	43.57	2.99	3.49	0.0	5.8	0.00071	0.00081	1.07	0.58	0.62	0.004
HFC-balance after the initial filling, t	42.70	2.93	3.41	0.0	5.67	0.00068	0.00079	1.07	0.61	0.65	0.004

Category code		2.F.1.A		2.F.1.B		2.F.1.C		2.F.1.D			
Types of refrigeration equipment	(Commerci	al	Domestic		Industria	1		Tran	sport	
Gas*	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC- 134a	HFC- 125	HFC- 143a	HFC- 134a	HFC -125	HFC- 143a	HFC- 32
Amount of HFC in exported equipment, t	6.1	0.0031	0.0026	0.0	1.15	-	-	ı	-	-	-
Amount of HFC in imported equipment, t	14.32	8.18	6.23	20.33	1.52	0.34	0.26	0.003	0.000	0.00	0.00
In operating systems (average annual stocks)	359.34	71.02	60.85	1103.28	35.32	2.34	1.49	16.84	12.09	13.91	0.016
		C	Category o	characterist	ics and es	timated fac	ctors				
Key category	L/T			1	1				ı	1	
Detail level (Tier)	2a	2a	2a	2b	2b	2a	2b	2a	2a	2a	2a
Method for determination of the emission factor	D	D	D	D	D	D	D	D	D	D	D
Emission factor at primary (initial) filling, %	2	2	2	0.5	3	3	3	2	2	2	2
Emission factor when testing equipment for tightness, %	HFCs are not applied			100	HFCs are not applied						
Emission factor at operation of the equipment, %	15	15	15	0.5	25	25	25	15	15	15	15
Initial charge remaining factor, %	80	80	80	70	100	100	100	50	50	50	50
Average life of equipment	15	15	15	18	25	25	25	15	15	15	15
				GHG	emissions						
HFCs emissions											
at the primary (initial) fill- ing of the equipment (from manufacturing), t	0.87	0.06	0.06	0.0	0.18	0.00002	0.000025	0.021	0.01	0.012	0.00007
at exploitation of the equipment (from stocks), t	53.90	10.65	9.04	5.52	8.83	0.58	0.373	2.53	1.81	2.08	0.0024
from liquidation of the equipment, t	34.48	3.46	5.28	57.74	-	-	-	0.30	0.41	0.49	-
Emissions of HFCs in the refrigeration equipment category, total, t	89.26	14.17	14.37	63.26	9.01	0.59	0.373	2.84	2.24	2.59	0.0025
Global Warming Potential (GWP), t CO _{2-eq.} /t	1300	3170	4800	1300	1300	3170	4800	1300	3170	4800	677
GHG emissions, kt of CO _{2-eq}	116.0	44.93	68.99	82.23	11.7	1.87	1.79	3.69	7.10	12.42	0.003
Change in emissions compared to the previous year, %	11.53	-3.04	-6.96	-27.61	-9.27	-12.27	-8.93	-23.99	-33.2	-33.76	-9.44
			U	ncertainty	level estir	nation					
Uncertainty of activity data, %		34.02		26.13	39.78			39	.49		
Uncertainty of the emission factor, %		24.37		20.6	32.78			24	.37		
Total uncertainty of the emission estimation, %		41.85		33.27	51.54				46	5.40	

^{*} Mixed fluoro-gases are represented by components.

4.7.1.1.2 Methodological issues

4.7.1.1.2.1 Commercial, domestic and industrial refrigeration

Estimation of hydrofluorocarbon emissions from domestic, commercial and industrial refrigeration for production, operation and liquidation of refrigeration equipment was performed with using method 2a and 2b.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained or calculated on the basis of the raw data obtained from enterprises-producers of refrigeration equipment. For 2014 - 2023, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

Estimation of HFC emissions in production was based on data of the enterprises-producers on the amount of HFCs used for initial filling and tightness testing of the equipment (if such technical operation was executed). When calculating the total of HFCs in the current stock of equipment, the average factor of filling a piece of equipment with refrigerant is used, which was adopted taking into account the amount of filling for each type of cooling systems. Estimation of emissions from operation of imported equipment, which constitutes the current HFC bank in the refrigeration equipment category, was made based on the stock of refrigeration equipment imported into Ukraine by the key types of equipment and the estimated total content of the cooling agent based on the relevant factors. The calculations of emissions from disposal in domestic refrigeration was calculated using the default factor, in accordance with IPCC 2006 guidelines [1] and scientific-research work [12]. The calculation of emissions from liquidation of the equipment from domestic refrigeration was performed since 2017 in relation with use of assumed life time of the domestic equipment as 18 years, what is related with unstable economic situation in Ukraine which influenced on the reducing of the purchasing ability of the population and accordingly the increase of average lifetime of the refrigerators due to the lack of replacement of refrigerators and an increase in the amount of services provided to the population for the repair of domestic refrigerators in accordance with expert assessment [23] of the scientific research institute Cherkassy NIITECHIM what allow to use of 18 years as lifetime which does not contradict with IPCC 2006 ranges from 12 to 20 years.

4.7.1.1.2.2 Transport refrigeration

Estimation of emissions from manufacturing, exploitation and disposal in transport refrigeration was carried out in accordance with IPCC 2006 guidelines [1] according to the Tier 2a using the default factor. The activity data were obtained from the main companies using HFCs as a refrigerant in automobile and railroad refrigerators for 2014 - 2023, such as "Ukrzaliznytsia" and largest certified companies of the installation of refrigeration equipment on motor vehicles, with using the method of extrapolation to determine the amount of used HFCs in 2000 – 2014 in accordance with IPCC 2006, Chapter 5: Time series consistency, Section 5.3 Resolving data gaps.

Emissions in 1990-1999 years did not occur, because according to customs statistics HFCs used as refrigerant in refrigerating equipment to Ukraine were not imported, as indicated in scientific-research work [13].

4.7.1.1.3. Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the refrigeration equipment category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM",

Cherkasy 2012) [12], based on the specific characteristics of source and calculated data formation in 2020.

The calculated uncertainty of the activity data in the category of domestic refrigeration equipment in 2023 amounted to 26.13 %, of commercial refrigeration systems - 34.02 %, of industrial cooling systems – 39.79 % and transport refrigeration – 39.49 %. The uncertainty of the default HFC emission factors used in the subcategory of domestic refrigeration equipment in 2023 was 20.6 %, commercial refrigeration systems – 24.37 %, industrial cooling systems – 32.78 % and transport refrigeration – 24.37 %. The total emission estimation uncertainty in 2023 made up in the domestic refrigeration sub-category – 33.27 %, commercial refrigeration systems – 41.85 %, industrial cooling systems – 51.54 % and transport refrigeration – 46.40 %.

4.7.1.1.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.7.1.1.5. Category-specific recalculations

In this category, no recalculations were made.

4.7.1.1.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.1.2 Mobile Air-Conditioning

4.7.1.2.1 Category description

The object of HFC emission estimates in this category is mobile air-conditioning systems (SAC) for road, railway, and maritime transport. The key consumer niche in this category is mobile air-conditioning systems for road transport (99%).

In 2023, 11 vehicle manufacturers operated in Ukraine (passenger cars, trucks, and buses). The level of capacity utilization of the existing enterprises and, accordingly, the volume of production and sales of domestically produced vehicles in the period under review reduced significantly compared with the previous years. Manufacture of vehicles equipped with air-conditioning decreased in the reporting year.

The refrigerant used in automotive and bus air conditioning systems was exclusively HFC-134a.

In accordance with recommendation of ARR 2023 I.13 calculation of emissions was conducted with concerning of refilling of the MAC from year to year starting from 2001 due to the fact that the average refilling period for mobile air conditioners in Ukraine is 2-3 years.

In Ukraine, production of transport air-conditioning (for railway transportation, heavy vehicles in the construction and mining industries) is performed by six companies, three of them use HFC-134a, HFC-407Cc in production of air-conditioning systems.

Manufacture of air conditioning systems for river and marine vehicles in 2023 in Ukraine was performed by 2 producers. They mainly used fresh or sea water as refrigerants for main air cooling.

Table 4.22. Basic data on results of GHG inventory in production and operation of vehicle SACs in Ukraine in 2023

Category code	2.F.1.E				
	Mobile Air Conditioning Systems				
Category (type of equipment)	for au- tomo- tive ve- hicles	for	for sea and river transport		
Gas	HFC- 134a	HFC-32	HFC- 125	HFC- 134a	
Activity	y data				
Use of the refrigerant in MAC manufacturing (primary filling), t	1.223	0.014	0.000	0.422	NA
HFC stock after the initial filling, t	1.216	0.014	0.000	0.420	NA
Amount of HFCs in exported MACs as parts of vehicles, t	102.73	0.0	0.0	0.0036	NA
Amount of HFCs in imported MACs as parts of vehicles, t	388.16	0.00004	0.000049	0.00009	NA
Amount of HFCs refilled for MACs in vehicles, t	120.45	NA	NA	NA	NA
HFC stock in MACs as parts of vehicles, t	2331.4	0.16	0.13	1.43	NA
Category characteristics	and estin	nated factor	·s	•	•
Key category	T		2a		
Detail level (Tier)	2a		2a		
Method for determination of the emission factor	D		D		
Emission factor at primary (initial) filling, %	0.5		0.7		
Emission factor when testing equipment for tightness, %	1.5	Н	FCs are not u	ised	
Emission factor at operation of the equipment, %	15		15		5
Emission factor at refilling of the equipment, %	2		NA 50		NA 50
Disposal emission factor, %	50 18		50 25		50 15
Average lifetime of the equipment, years GHG en			23		13
HFCs emissions	118810118				
at the primary (initial) filling of the equipment, t	0.006	0.00007	0.00007	0.0021	NA
at operation of the equipment, t	349.71	0.024	0.019	0.245	NA
at the refiling of the equipment, t	2.41	NA	NA	NA	NA
at liquidation of the equipment, t	188.53	-	-	-	NA
Emissions of HFCs in category, total, t	538.25	0.024	0.019	0.247	NA
GWP, t CO _{2-eq} /t	1300	677	3170	1430	NA
GHG emissions, kt of CO _{2-eq}	699.72	0.016	0.061	0.321	NA
Change in emissions compared to the previous year, %	13.86	-6.73	-15.23	14.14	NA
Uncertainty	estimatio	1			
Uncertainty of activity data, %	26.13		34.33		NA
Uncertainty of the emission factor, %	23.45		29.15		NA
Uncertainty of the emission estimation, %	35.11	45.04 NA			

4.7.1.2.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in the category of mobile air-conditioning systems was performed for production and operation of air conditioning systems as parts of vehicles using Tier 2a approach. Disaggregation objects in this category were SACs for vehicles and rail transport.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Estimation of emissions in production was based on data of the producing companies on the amount of HFCs used for initial MAC filling and tightness testing of the equipment (if such a technical operation was executed). When calculating the total of HFCs in the current stock of vehicles, the average coefficient of filling a piece of equipment with refrigerant was used, which was adopted

taking into account the amount of filling for each type and class of MAC. Estimation of emissions from operation of SACs imported are part of vehicles, which constitutes the current HFC bank in this category, was made based on the stock of vehicles imported into Ukraine by the key types of equipment and the estimated total content of HFCs in it based on the relevant factors. Estimation of emissions from liquidation of equipment was carried out in accordance with IPCC 2006 guidelines [1] using the default factor. Estimation of emissions from refiling of the equipment was carried out in accordance with IPCC 2006 guidelines [1] using the default factor with using extrapolation methods [1], for 2001 – 2010 and 2014 - 2017 based on the data obtained from enterprises-importers and the current bank of HFC134a.

Official data of the SSSU [22] were used to calculate HFC emissions from imported vehicles. The calculation did not include automobiles "VAZ", "GAZ", "UAZ", "Daewoo" produced in Russia or Uzbekistan, as well as cars of domestic and foreign brands produced in Ukraine.

Activity data for the MAC sub-category for rail transport and heavy machinery were calculated based on input national statistics on exports and imports, as well as on production of rail vehicles [1, 23]. According to the data obtained from enterprises in 2020 there was no HFC-125 and HFC-32 use for primary filling in rail transport and heavy machinery. In 2021 the use of the HFC-125 and HFC-32 for primary filling in rail transport and heavy machinery resumed in accordance with data obtained from enterprises. For 2014 - 2023, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

Calculation of emissions for railway transport from production was performed on the basis of the data of the amount of HFCs used for the initial MAC filling. When calculating the total HFC stock in the operated fleet of railway transport, the maximum refrigerant filling of the equipment unit factor (6 kg) was used, which was adopted taking into account data obtained from experts in the field of air conditioning and ventilation systems in railway transport.

The use of the 18 years as the assumed life time for automotive vehicles in estimates for subcategory Mobile Air Conditioning is related to the fact that, according statistical studies, in the current unstable economic situation in Ukraine, the small sales of new cars and the insignificant importation of old cars into the country led to a significant aging of the vehicle fleet, resulting in an average lifetime of cars from 17 to 20 years. Taking into account the national circumstances like unstable economic situation after the collapse of the USSR in 1991 automobile vehicles in Ukraine were produced at only one plant, which does not produce cars with air-conditioned equipment till 2000. In accordance with scientific research work [13] the import of the air conditioned cars in Ukraine starts in 1998. Due to the fact that data of imports of HFCs in automobile vehicles in Ukraine for 1998-1999 are not available, the data obtained from SSSU [22] of the total import of cars from Europe and other countries were used, which covers all imports, both public and private. Since the import of cars in 1998 - 1999 compared to 2000 was not significant, and accordingly the use of HFC in automotive air conditioners was also insignificant, a conservative decision was taken into account for HFCs emissions use from automobile air-conditioners beginning from 2000, since there was more accurate information starting from the year 2000. And according to the data received from the SSSU [22], import of cars before 1998 was very insignificant, it was assumed that cars with air conditioners containing HFCs were not imported to Ukraine until 1998. But, according to recommendation of ARR 2017 (I.16, 2017) basing on information of the import of cars in 1998 – 1999, obtained from SSSU [22] and using extrapolation methods, the calculation of emissions from Mobile air conditioning systems in automotive vehicles for the period of 1998 – 1999 was made. The values of the bank in existing equipment for 2000 was calculated taking into account the estimates of HFCs included in imported automobile vehicles in 1998 and 1999 basing on the data of the total import of cars obtained from the SSSU [22] in accordance with scientific-research work [12].

4.7.1.2.3. Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the mobile air-conditioning system (MAC) category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factor of hydrofluorocarbons

(HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12].

For each MAC category (road, railway vehicles), the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors in 2022 were determined.

The uncertainty level of activity data in the MAC subcategory for the road transport in 2023 amounted to 26.13 %, that of default emission factors – 23.45 %, the total emission estimation uncertainty for the MAC category for road transport accounted for 35.11 %.

The uncertainty level in the MAC sector for road transport in 2022 remained at the level of the previous year: the uncertainty of activity data -26.13 %, the default emission factors -23.45 %, the total emission estimation uncertainty in the sub-category -35.11 %.

The key factors contributing into uncertainty of activity data estimation in the MAC subcategory of railway transport are:

- the difficulty of assessing the amount of actually operated railway vehicles with HFC-containing air conditioning systems during the reporting year,
- the difficulty of identifying the amount of imported railway transport vehicles equipped with MACs with HFC refrigerants.

The uncertainty level of activity data in the SAC subcategory for the railway transport in 2023 amounted to 34.33 %, that of default emission factors – 29.15 %, the total emission estimation uncertainty for the MACs category for railway transport accounted for 45.04 %.

4.7.1.2.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.7.1.2.5. Category-specific recalculations

In this category, no recalculations were made.

4.7.1.2.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.1.3. Stationary Air Conditioning

4.7.1.3.1 Category description

The currently available in Ukraine stock of equipment for stationary air conditioning (SAC) includes: stationary domestic (residential), semi-industrial, and industrial air conditioning systems (for non-domestic purposes).

The key type of air-conditioning equipment is domestic split systems. They are not produced in Ukraine, and the consumer demand in this market segment is met entirely due to importation of the equipment. In small volumes, domestic mobile floor air conditioners are imported to Ukraine.

The customs sampling object was stationary air conditioning systems of various types, namely:

- domestic split systems and mobile floor air conditioners;
- semi-industrial conditioning systems (external units, systems containing refrigeration units);
- industrial air conditioning systems, including autonomous (with a built-in refrigeration unit) ones.

In accordance with provisional main finding I.14 of the Review of the 2023 annual submission of Ukraine calculation of emissions from industrial air conditioning systems was made for the

2002 - 2010 due to the shift of the amounts of "filled into new manufactured products", "average annual stocks" as well as emissions from industrial refrigeration category to semi-industrial and industrial AC category. The input data characterizing the status of the stationary air conditioning category, as well as data on results of the GHG inventory in 2023 in Ukraine are summarized in Table 4.23

Table 4.23 Basic data on results of GHG inventory in production and operation of stationary

air-conditioning equipment in Ukraine in 2023

Category code 2.F.1.F							
Category (type of equipment)	Domestic air conditioners (split systems, floor domestic air-conditioners) Semi-industrial air conditioner			oners			
Gas*	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-
	32	134a	125	32	125	134a	143a
Activity data							
Use of a refrigerant in equipment manufac- turing (primary filling + tightness test), t When testing tightness, HFCs are not used	-	-	-	-	-	-	-
HFC-balance after the initial filling, t	-	ı	-	-	-	-	-
Amount of HFC in exported equipment, t	-	ı	-	-	-	-	-
Amount of HFC in imported equipment, t	531.98	-	372.68	45.1	28.36	14.21	0.002
HFC balance in operated equipment, t	5864.93	30.92	3538.38	353.55	207.82	136.15	2.31
Categor	y characte	eristics and	estimated f	actors			
Key category	T						
Detail level (Tier)	2a	2a	2a	2a	2a	2a	2a
Method for determination of the emission factor	D	D	D	D	D	D	D
Emission factor at primary (initial) filing, %	0.7	0.7	0.7	1.0	1.0	1.0	1.0
Emission factor when testing equipment for tightness, %			HFO	Cs are not u	ised		
Emission factor at operation of the equipment, %	5	5	5	15	15	15	15
Disposal emission factor, %	70	70	70	70	70	70	70
Average lifetime of the equipment, years	15	15	15	25	25	25	25
	GH	IG emission	IS			l	1
HFCs emissions							
at the primary (initial) filling of the equipment (from manufacturing), t	-	-	-	-	-	-	-
at exploitation of the equipment (from stocks), t	293.25	1.55	176.92	53.03	31.17	20.42	0.347
from liquidation of the equipment, t	44.23	1.83	44.29	-	-	-	-
Emissions of HFCs in the air conditioning category, total, t	337.47	3.37	221.21	53.03	31.17	20.42	0.347
GWP, t CO _{2-eq} /t	677	1300	3170	677	3170	1300	4800
GHG emissions, kt of CO _{2-eq}	228.47	4.383	701.24	35.90	98.82	26.55	1.67
Change in emissions compared to the previous year, %	5.63	9.47	7.68	-2.56	-1.57	-5.09	-14.92
	Uncertain	nty level est	<u>imation</u>				
Uncertainty of activity data, %		20.80				.44	
Uncertainty of the emission factor, %	14.14				29	.93	
Uncertainty of the emission estimation, %	25.15			51.96			

^{*} Mixed fluoro-gases are represented by components.

4.7.1.3.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in this category was carried out using method 2a.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained from State Custom Service of Ukraine on import and export of air-conditioning equipment in 2023 and from companies producing conditioning equipment. For 2014 - 2023, the analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] was taken into account in adjustment of amounts of hydrofluorocarbons consumption, export and import.

When calculating the total of HFCs in the current stock of equipment, the average coefficient of filling a piece of equipment with refrigerant is used, which was adopted taking into account the amount of filling for each type and capacity class of SAC. For domestic air conditioners, the factor of 1.5 kg/unit was used, for semi-industrial and industrial ones – 5 kg/unit of equipment.

Estimation of emissions from operation of imported equipment, which constitutes the current HFC bank in this category, was made based on the stock of equipment imported into Ukraine by the key types of equipment and the estimated total content of HFCs in it based on the relevant factors.

Estimation of emissions from liquidation of equipment was carried out in accordance with IPCC 2006 guidelines [1] using the default factor.

4.7.1.3.3. Uncertainty factors and time-series

The uncertainty level of the activity data and emission factors in the air-conditioning system category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12].

For each sub-category of stationary air conditioning systems, the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors in 2022 were determined.

In the sub-category of domestic air-conditioning systems, the main uncertainty factors were:

- complexity of statistical data samples for identification of the commodity-product range and establishing import volumes of stationary air conditioning systems with HFC-containing refrigerants;
- complexity of identification of equipment for domestic, industrial, and semi-industrial air-conditioning in analysis of customs statistics, in particular for those manufacturers and trademarks where there is a diversified range of commodities and consumer equipment;
- possible inaccuracies in determination of the average lifetime of equipment for stationary air conditioning in Ukraine with HFC refrigerants, taking into account the different conditions of operation of the equipment.

The calculated uncertainty of activity data in 2022 was 20.8 % in the category of domestic air-conditioning systems, of the default coefficients used -14.14 %, the combined uncertainty of GHG emission estimation is 25.15 %.

The key uncertainty factors for activity data in the sub-category of semi-industrial and industrial air conditioners were:

- lack of official statistical reporting on production in Ukraine of semi-industrial and industrial air-conditioning systems;
- complexity of identification of industrial and semi-industrial air-conditioning equipment, the absence of unambiguous criteria for grading of such equipment;
- high levels of individualization of technical and consumer parameters of semi-industrial, and especially industrial SACs (selection of the refrigerant type, the period of filling the system with refrigerant, high conditionality of typical emission factors at system filling and operation, etc.);
- difficulty of establishing the average operation period of the equipment in Ukraine.

The calculated uncertainty level of activity data in the sub-category in 2022 was 44.44 %, of the default coefficients used -29.93 %, the combined uncertainty of GHG emission estimation is 51.96 %. The high uncertainty level of the activity data is due to complexity of analyzing foreign trade statistics, which in the reporting year are often fragmented and do not allow for an accurate count of the number of air conditioning equipment imported to Ukraine.

4.7.1.3.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.7.1.3.5. Category-specific recalculations

In this category, no recalculations were made.

4.7.1.3.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.2 Foam Blowing Agents (CRT category 2.F.2).

4.7.2.1 Category description

Disaggregation of activity and GHG emission data in this category was based on production and imports of all types of foam materials and products based on them where hydrofluorocarbon-based foaming agents are used. These subcategories are:

- one-component polyurethane foams (OPF);
- panels and sandwich panels made of rigid polyurethane foams (RPUF);
- rigid polyurethane foam (PUF insulation by spraying, pouring, injection);
- extruded polystyrene foam (XPS).

In 2023, hydrofluorocarbons HFC-134a, HFC-245fa, HFC-365mfc, HFC-227ea, HFC-152a were used as blowing agents for production and in composition of imports of foam materials (products).

In the subcategory of one-component polyurethane foams in 2023 one producer operated, which used as a blowing agent a mixture of propane-butane, Freons R-22 and R-406. Imports of OPFs containing HFCs were minimal.

In the subcategory of PUF panels and sandwich panels in 2023, out of the 15 producers operating 10 companies used as blowing agents CO₂(H₂O), pentane, HCFC 141b-based polyols. Imports of PUF panels and sandwich panels comprising HFC as the blowing agent were estimated on the basis of an analytical sample of customs statistics data and expert estimates.

In the subcategory of rigid insulation PUF produced by spraying, pouring, injection, in Ukraine there are around 160 enterprises in various fields of specialization that carry out technological and production work forming rigid polyurethane foam insulation for various purposes: for warehouse and industrial premises, electrical products, refrigeration equipment, automotive industry, and others.

In the subcategory of XPS, in 2023 2 manufacturers of XPS plates operated and used as the blowing agent carbon dioxide alone or as a mixture with ethyl alcohol, and a mixture of chlorofluorocarbons and hydrochlorofluorocarbons (R22, R-142, R-406) with isobutane R-600A.

Formation of activity data in the category of foamed materials (products) production was based on data obtained directly from manufacturers, as well as from other representative sources. They included data on the amounts of hydrofluorocarbons use for production of foamed materials (products), trademarks and formulations of HFC-containing polyols, etc. Table 4.24 summarizes results of GHG inventory in production and use of foamed HFC-containing materials.

Table 4.24. Basic data on results of GHG inventory in production and use of foamed HFC-containing materials in 2023

taining materials in	1 2023								
Category code		I			2.F.2			I	
Type of foamed materials (prod- ucts)	OPF	wich made	and sand- panels of PUF		RPUF insulation by spraying, pouring, injection				d foamed tyrene
Gas	HFC- 134a	HFC- 134a	HFC- 245fa	HFC- 134a	HFC- 245fa	HFC- 365mfc	HFC- 227ea	HFC- 134a	HFC- 152a
			A	ctivity da	ta	T			
HFC amount used in production of foamed materials (products), t	0.0	11.04	0.0	32.72	0.0	0.0	8.85	0.0	0.0
HFC amount contained in exports of foamed materials (products), t	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.092
HFC amount contained in imports of foamed materials (products), t	24.2	1.01	1	0.0	0.0	0.0	0.0	0.411	186.43
HFC stock as of the end of 2023, t	0.0	30.64	21.4	482.20	131.39	134.41	119.05	138.2	1994.0
				ristics and			·	1	_
Key category	No	No	No	No	No	No	No	No	No
Detail level (Tier)	2a	2a	2a	2a	2a	2a	2a	2a	2a
Method for deter- mination of the emission factor	D	D	D	D	D	D	D	D	D
Emission factor for the first year,%	100.0	12.5	12.5	25.0	25.0	25.0	25.0	40.0	40.0
Emission factor from the stock,%	0.0	0.5	0.5	1.5	1.5	1.5	1.5	3.0	25.0
Average service life of the material (product) during operation, years	1	50	50	50	50	50	50	50	50
			GF	IG emissi	ons				
HFCs emissions									
in manufacture of foamed materials (products), t	0.0	1.38	0.0	8.18	0.0	0.0	2.21	0.0	0.0
in operation of foamed materials (products), t	24.2	0.153	0.107	7.23	1.971	2.02	1.79	4.15	498.5
Emissions of HFCs in category, total, t	24.2	1.53	0.107	15.41	1.971	2.02	4.00	4.15	498.5
GWP, t CO _{2-eq} /t	1300	1300	858	1300	858	804	3350	1300	138
GHG emissions, kt of CO _{2-eq}	31.46	1.99	0.09	20.34	1.69	1.62	13.39	5.39	68.79
Change in emissions compared to the previous year (increase/decrease rate), %	11.4	10	0.28	7.81 9.97			97		
			Uncert	ainty esti	mation				
Uncertainty of activity data, %	22.07	28	.35	29.15 11.70			.70		
Uncertainty of the emission factor, %	7.07	36	5.05	32.02 20.0			0.0		
Uncertainty of the emission estimation, %	22.63	45	.86	43.30 23.17			.17		

4.7.2.2. Methodological issues

Estimation of hydrofluorocarbon emissions in the category of foam blowing materials was performed by subcategories using 2a method. All the subcategories, except for one-component polyurethane foams, are closed pore foams.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data were obtained or calculated from the raw data obtained from SSSU [22, 25] for production of foams in 2023 as well as from State Custom Service of Ukraine on import of HFC-152a for Extruded foamed polystyrene in 2023.

To estimate the volume of HFC imports in composition of polyols, representative data on the composition of polyol blends of the set trademarks were used.

To calculate the scope of HFC imports as part of foamed materials (products), a variety of estimation factors were used depending on characteristics of each sub-category.

In some foamed material sub-categories, amounts – usually minor – of imports with an unidentified foam blowing agent were detected. The concession method was applied to them based on expert judgment regarding the proportion of foam materials that could contain hydrofluorocarbons as blowing agents.

For each sub-category of foamed materials, default emission factors for production and operation were applied, as well as the average data on the lifetime of the materials (products).

The calculation of the HFC-152a emissions from its use in Extruded foamed polystyrene production was performed with using default emission factors for production and operation, as well as the average data on the lifetime of the materials (products) were applied for HFC-152a emission calculation in accordance with 2006 IPCC Guidelines [1]. The calculations of HFC-152a emissions from Extruded foamed polystyrene production were performed from 2011 according to the data of HFC-152a import provided by State Custom Service of Ukraine. In accordance with data obtained from State Custom Service of Ukraine the import of HFC-152a for Extruded foamed polystyrene production for 1990 – 2010 was absent.

4.7.2.3. Uncertainties and time-series consistency

The uncertainty levels of the activity data and emission factors in the foamed materials category and its subcategories were determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12].

For each subcategory of foamed materials, the specific uncertainty factors that affected calculation of the uncertainty level of the activity data and emission factors, as well as the total emission estimation uncertainly levels, in 2023 were determined and applied.

The general uncertainty factors in almost all subcategories of foamed materials (products) were: difficulty of identifying foam blowing agents in general and HFC-based ones, in particular in imports of polyols, foam blowing materials (products).

The range of the activity data uncertainty levels in the category of foamed materials in the context of individual subcategories in 2023 was from 11.70 to 29.15 %; of default HFC emission factors – from 7.07 to 36.05 %, of emission estimates – from 22.63 to 45.86 %.

4.7.2.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use. An expert judgement from a group of experts of SE "Cherkasky NIITEKHIM" was obtained for this category.

4.7.2.5. Category-specific recalculations

In this category, no recalculations were made.

4.7.2.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.3 Fire protection (CRT category 2.F.3)

4.7.3.1 Category description

In the fire extinguisher category, use of hydrofluorocarbons as extinguishing agents in gas (flooding) extinguishing systems was considered.

Out of the list of hydrofluorocarbons permitted for use in Ukraine as an extinguishing agent in gas fire-extinguishing system, in 2023 only HFC-125 and HFC-227ea were applied.

Manufacture of fire-fighting equipment using HFCs as a fire extinguishing agent in 2023 was carried out only by specialized enterprises.

Formation of activity data in the fire extinguisher category was based on data obtained directly from manufacturers of gas extinguishing systems, namely:

- information on the amount of use of fluorine gases (by type) for production of gas fire-fighting modules (GFFM);
- information on the amount of filling with fluorine gases firefighting modules of various sizes derived from technical specifications.

Documented activity data were provided by producers of GFFMs.

Enterprise data were used to determine the HFC stock and emissions from operation of the existing fleet of gas extinguishing systems in Ukraine.

The object of the sample was charged gas extinguishing units containing HFC-125 and HFC-227ea. Table 4.25 summarizes results of GHG emission inventory in production and operation of gas extinguishing systems using HFCs.

Table 4.25. Basic data on results of GHG inventory in production and operation of gas fire-

fighting modules (GFFMs) in 2023

Category code	2.F	2.F.3		
Type of equipment	Gas fire fighting n	Gas fire fighting modules (GFFMs)		
Extinguishing agent (gas)	HFC-125	HFC-227ea		
Activity data				
Use of HFCs in equipment production, t	7.79	9		
Amount of HFC in exported equipment, t	-	-		
Amount of HFC in imported equipment, t	9.28	9.07		
HFC stock in the operated equipment as of the end of 2020, t	230.38	223.38		
HFC stock in the operated equipment as of the end of 2021, t	238.24	232.52		
Category characteristics and estin	mated factors			
Key category	No	No		
Detail level (Tier)	1a	1a		
Method for determination of the emission factor	D	D		
Emission factor at operation of the equipment, %	4	4		
Average life of equipment	15	15		
GHG emissions				
HFCs emissions				
at operation of the equipment, t	9.53	9.30		
at liquidation of the equipment, t	0.0	0.0		
Emissions of HFCs in category, total, t	9.53	9.30		
GWP, t CO _{2-eq} /t	3170	3350		
GHG emissions, kt of CO _{2-eq}	30.21	31.16		

Change in emissions compared to the previous year (increase/decrease rate), %	3.41	4.09		
Uncertainty level estimation				
Uncertainty of activity data, %	16.70			
Uncertainty of the emission factor, %	not performed			
Uncertainty of the emission estimation, %	16.70			

4.7.3.2 Methodological issues

Estimation of hydrofluorocarbon emissions in this category was performed for production and operation of gas fire extinguishing systems using 1a level method.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

Activity data in 2023 in the category of fire fighting systems were obtained or calculated on the basis of input data:

- on volumes of equipment production and the content of the fire-extinguishing agent received from fire-fighting equipment manufacturing enterprises and to the statistics of imports of the State Custom Service of Ukraine;
- on HFC volumes imported to replenish available GPPSs with fire extinguishing agents.

The sampling object was a gas fire extinguishing unit (production, export, import) charged with fire extinguishing hydrofluorocarbon agents (HFC-125 and HFC-227ea).

4.7.3.3 Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the fire extinguisher category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factor of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12], based on the specific characteristics of input and calculated data formation in 2022.

For the category of gas fire extinguishing, specific of activity and emission data uncertainty factors were established, which were included into the formula for calculating the combined uncertainty level.

The key causes of activity data uncertainty assessment the gas fire extinguisher category was:

- complexity of obtaining data on the amount of HFC use for maintenance of existing gas extinguishing systems (the current period);
- complexity of identifying and calculating the data on the volume of HFC imports into Ukraine (by type) as part of gas fire extinguishing systems.

Activity data in the gas fire extinguisher category were provided by the manufacturing enterprises.

When calculating emissions in this category, the default emission factors recommended by the IPCC were used.

The calculated total uncertainty of activity data and emission estimates in the category of gas fire extinguishers in 2023 was 16.70%.

4.7.3.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.7.3.5 Category-specific recalculations

In this category, no recalculations were made

4.7.3.6 Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.4 Aerosols (CRT category 2.F.4)

4.7.4.1 Category description

In 2021 in Ukraine use of hydrofluorocarbons (HFC-134a) in this category was observed exclusively in production and consumption of medical aerosols for inhalation and for other purposes (metered-dose aerosol inhalation, aerosols for external use, etc.).

In Ukraine, three producers of aerosols for medical purposes operated in 2022, which used HFC-134a in production as a propellant gas. Ukraine only imported inhalation and other aerosol medications containing HFC-134a as the propellant gas. HFC-152a was not imported to Ukraine.

Formation of activity data for production of aerosol formulations for medical purposes was based on data obtained directly from the manufacturers. They included data on production volumes of aerosols for medical purposes containing HFC-134a (in aerosol bottles and in tons by product names), HFC volumes used in manufacture of medical aerosols, the content of the propellant gas. Documented activity data were obtained in this category from all manufacturers.

In 2023, only HFC-134a was used in production and importation of aerosol formulations for medical purposes, HFC-227ea was not included into the composition of the imported aerosols. Table 4.26 summarizes results of GHG inventory in production and use of HFC-containing aerosols.

Table 4.26. Basic data on results of GHG inventory in production and use of HFC-containing aerosols in 2023

Category code	2.F.4			
	Aerosols			
Category	Aerosols for medi-	Aerosols for industrial purposes		
	cal purposes			
Gas	HFC-134a	HFC-134a	HFC-152a	
Activity data				
HFC amount used in production of aerosols, t	22.24	-	-	
HFC amount contained in exports of aerosols, t	3.37	-	-	
HFC amount contained in aerosol supplies for the domestic market, t	-	-	-	
HFC amount contained in imports of aerosols, t	58.02	-	-	
Net consumption of HFCs contained in aerosols, t	76.88	-	-	
Category characteristics and estin	nated factors	1	l	
Key category	No	-	-	
Detail level (Tier)	2a	-	-	
Method for determination of the emission factor	D	-	-	
Emission factor for the first year,%	50	-	-	
Emission factor from the stock,%	50	-	-	
Average service life of the material (product) during operation, years	2	-	-	
GHG emissions		•		
HFCs emissions				
at aerosol use, t	57.83	-	-	
Emissions of HFCs in category, total, t	57.83	-	-	
GWP, t CO _{2-eq} /t	1300	-	-	
GHG emissions, kt of CO _{2-eq}	75.2	-	-	
Change in emissions compared to the previous year (increase/decrease rate),%	5.30	-	-	
Uncertainty estimatio	n	•		

Uncertainty of activity data, %	6.70	
Uncertainty of the emission factor, %	5.39	Not determined
Uncertainty of the emission estimation, %	27.24	

4.7.4.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in the category of aerosols was carried out using 2a level method.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF $_6$) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

The calculation of the volume of production, exports, and imports of aerosols for medical purposes included counting of the number of produced, exported, and imported products by trade names of the drugs in vials and in tons (gross weight).

Estimation of GHG emissions in this category was based on calculation of net consumption of HFCs in composition of aerosols in the current period based on the default emission factor for the propellant gas of 50% during the first year, and the HFC stock as of the beginning of the year (50% from the previous year's indicator). Emissions from HFC amount used in production of aerosols are included with emissions from stock.

In 2022, the decrease dynamics in HFC emissions from the category of aerosol products for medical purposes in Ukraine resumed. This trend is likely to be situational and is due, in addition to the purchasing power, to the administration of the domestic pharmaceutical market.

4.7.4.3. Uncertainties and time-series consistency

The uncertainty levels of the activity data and emission factors in the aerosol category were determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12].

The key uncertainty factors in this category in 2023 were:

- a certain complexity of calculation and possible discrepancies in analytical data processing when converting the quantitative volume of imports of aerosol formulations for medical purposes into the identical measurement units (spray bottles), if another unit is specified in the customs declaration (weight, value);
- unclear identification of data on the composition of aerosol formulations for medical purposes for individual commodity items and the weight fraction of the propellant gas per unit of accounting (spray bottle) contained in the drug use documentation.

Obtaining comprehensive input data from producing companies for 2023 on the composition of aerosol formulations for medical purposes ensured the lowest level of uncertainties in this category.

The total uncertainty of activity data in the aerosol category was 6.70% in 2023, the uncertainty of the default HFC emission factor for this category was 5.39%. The total uncertainty of emission data in the aerosol category was 8.60%.

4.7.4.4. Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in HFC use.

4.7.4.5. Category-specific recalculations

In this category, no recalculations were made.

4.7.4.6. Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.7.5 Solvents (CRT category 2.F.5)

4.7.5.1 Category description

In 2011, a blended solvent for washing refrigerators and air conditioners of the trade mark Solkane, containing 65% of HFC-365mfc was imported into Ukraine as a trial batch. The inventory in this subcategory were performed only in 2011, the results please see in NIR 2013 section 4.21.5, as well as in relevant CRT tables.

In Ukraine, homogeneous solvents and/or mixed (heterogeneous) solvents using HFCs as the primary solvent or blend solvent were not imported in 2012 - 2023, therefore, estimation of GHG emissions in this category was not performed.

4.7.5.2 Methodological issues

Estimation of emissions of hydrofluorocarbons in the category of solvents was carried out using 2a level method.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

4.7.5.3 Uncertainties and time-series consistency

According to the data provided by State Custom Service of Ukraine as well as SSSU and by the State Enterprise "Cherkasky NIITEKHIM", homogeneous solvents and/or mixed (heterogeneous) solvents using HFCs as the primary solvent or blend solvent were not imported to Ukraine since 2012, so the uncertainties in this category were not calculated.

4.7.5.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in caprolactam production.

4.7.5.5 Category-specific recalculations

In this category, no recalculations were made.

4.7.5.6 Category-specific planned improvements

In this category, no improvements are planned.

4.7.6 Other Applications of Substitutes for Ozone-Depleting Substances (CRT category 2.F.6)

As a result of the analysis of imports and domestic sales of HFCs and sulfur hexafluoride in 2023, no data on use of these gases used in other industries were obtained.

Therefore, estimation of GHG emissions in this category was not performed.

4.8 Other Product Manufacture and Use (CRT category 2.G)

Emissions in this category are estimating from sulphur hexafluoride (SF₆) from the manufacture and use of electrical equipment and a number of other products and emissions of nitrous oxide (N_2O) use for medical purposes. The main SF₆ emissions occurs only from its use in gas-insulated equipment and N_2O from its use in surgical operations. The subcategories in this category are not the key sources of emissions. The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in this category are shown by each subcategory in relevant chapters.

4.8.1 Electrical Equipment (2.G.1 CRT)

4.8.1.1 Category description

Sulphur hexafluoride (SF_{6}) is used for transmission and distribution of electric power in switching systems and high voltage equipment (52-380 kV), as well as in medium voltage systems (10-52 kV).

Ukraine has no own production of sulfur hexafluoride (SHF/SF_{6).} It is imported to Ukraine in volumes necessary for production of own gas-insulated equipment, annual assembly and installation of new equipment, as well as for repair and normal operation of the existing fleet of gas-insulated equipment.

A bulk of imported sulfur hexafluoride (over 65%) is used for repair and operation of the available fleet of gas-insulated equipment at electrical substations of the Ministry of Energy and Mines, the Ministry of Infrastructure, industrial enterprises in other sectors. Around 20% of SF₆ imported to Ukraine was used in production of gas-insulated equipment: transformers and gas-insulated switchgears. Ukraine has no own production of gas-insulated circuit breakers. Industrial consumption SF₆ is mainly concentrated in the two segments: production of complete gas-insulated switchgears, production of complete gas-insulated transformer substations, and production of gas-insulated current and voltage transformers. Table 4.27 summarizes results of GHG inventory in production and operation of gas-insulated equipment.

Table 4.27. Basic data on results of GHG inventory in production and operation of gas-in-sulated equipment in 2023

Category code	2.G.1				
Category (type of equipment)	Gas-insulated equipment				
Gas	Sulfur hexafluoride				
Activity data					
The amount of SF ₆ imported into Ukraine in 2022, t	0.0				
Number SF ₆ used in production of gas-insulated equipment (filling stage), t	0.44				
Amount of SF ₆ in exported gas-insulated equipment, t	-				
Amount of SF ₆ in imported gas-insulated equipment, t	0.0				
Amount of SF ₆ in installed gas-insulated equipment (nameplate capacity of new equipment put into operation in 2023), t	27.49				
Amount of SF ₆ in operated gas-insulated equipment (nameplate capacity of operated equipment as of the end of 2022), t	461.29				
Amount of SF ₆ in operated gas-insulated equipment (nameplate capacity of operated equipment as of the end of 2023), t	486.47				
Category characteristics and estimated factors					
Key category	No				
Detail level (Tier)	2a, 3a				
Method for determination of the emission factor	D				
SF ₆ emission factor in production of gas-insulated equipment (the filling stage),%	0.5				
The emission factor at assemblage (installation) of gas-insulated equipment,%	0.0				
Emission factor at operation of gas-insulated equipment,%	0.5				
Average lifetime of the equipment, years	30-40				
GHG emissions					
SF ₆ emissions					

Category code	2.G.1
Category (type of equipment)	Gas-insulated equipment
Gas	Sulfur hexafluoride
at manufacture of the equipment (the filling stage), t	0.002
at installation (assembly) of gas-insulated equipment, t	0.0
at operation of gas-insulated equipment, t	2.43
SF ₆ emissions in the gas-insulated equipment category, total, t	2.43
GWP, t CO ₂ e/t	23500
GHG emissions, kt of CO ₂ e	57.21
Growth/reduction of emissions compared to the previous year (+/-),%	5.51
Uncertainty level estimation	
Uncertainty of activity data, %	34.104
Uncertainty of the emission factor, %	18.0
Uncertainty of the emission estimation, %	38.56

4.8.1.2 Methodological issues

Estimation of sulfur hexafluoride emissions in this category was conducted at production and operation of gas-insulated equipment with Tier 2a assessment method and partially the mass-balance Tier 3a method, based on the need.

As a methodological basis, "The methodology of calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level (State Enterprise "Cherkasky NIITEKHIM", 2012) [12] was used, which is based on 2006 IPCC Guidelines [1] and 2000 IPCC Guidelines [4].

The activity data in 2023 in this category were obtained from manufacturers of high-voltage gas-insulated switchgears, 0.4-110 kV gas-insulated transformers, and gas-insulated equipment using companies and using the method of substitution due to the lack of concretely data for 2023 in accordance with data obtained from State Custom Service of Ukraine. Data on actual volumes of sulfur hexafluoride used in production of gas-insulated equipment in 2022 were also obtained from the enterprises-producers with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of volumes of sulfur hexafluoride in 2014 - 2023.

During the inventory in the subcategory, the SF₆ emission factor (0.5%) in production of gas-insulated equipment was used, which was established on the basis of factual data obtained from manufacturers using Tier 3a method (the mass-balance method).

In accordance with the "Methodology for calculating emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) at the national level" (State Enterprise "Cherkasky NIITEKHIM", Cherkasy, 2012) [12], the SF₆ emission factor in operation was established on the basis of data from gas-insulated equipment producing and supplying enterprises.

For complete gas-insulated switchgear, as a rule, the zero SF₆ emission factor during operation is applied (for the exception of emergency equipment repairs), or a factor not more than 0.1 %.

For some imported second-generation gas-insulated equipment (current and voltage transformers), the SF_6 emission factor is set at less than 0.1 %.

To calculate SF₆ emissions during operation of gas-insulated equipment in this category in 2023, the average factor of 0.5 % was applied.

4.8.1.3 Uncertainties and time-series consistency

The uncertainty level of the activity data and emission factors in the gas-insulated equipment category was determined based on the Methods of determination and results of calculations for estimating the uncertainty of activity data and emission factors of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) in the major categories (SE "Cherkasky NIITEKHIM", Cherkasy 2012) [12], based on the specific characteristics of input and calculated data formation in 2016.

Activity data in the gas-insulated equipment category were submitted by the producing companies, consumer companies, and importers of the equipment for the domestic market.

In 2023, the key activity data uncertainty factors in the category of gas-insulated electrical equipment were:

- the difficulty of obtaining comprehensive data on availability of the gas-insulated element with SF₆ in gas-insulated electrical equipment imported to Ukraine (for individual production companies);
- possible partial identification of the consumer range and data collected from enterprises consuming gas-insulated electrical equipment;
- possible inaccuracies in calculation of the nameplate capacity of newly installed and operated gas-insulated equipment.

The calculated activity data uncertainty level in the category of gas-insulated equipment amounted to 34.104 % for the period indicated.

The uncertainty of the default emission factors in the category of gas-insulated equipment in 2022 was 18 %.

The overall uncertainty of sulfur hexafluoride emission estimation was 38.56 % in 2023.

4.8.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of GHG emissions in SF₆ use.

4.8.1.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.8.1.6 Category-specific planned improvements

See in Annex A8.2 Improvement plan for NIR.

4.8.2 SF₆ and PFCs from Other Product Uses (CRT category 2.G.2)

In accordance with the scientific-research works: by the Ukrainian Research Institute of Medicine and Transport of the Ministry of Health of Ukraine "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride"[7] and by Cherkasy NIITEKHIM" - "Development of methods of estimation and determination of emissions of hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride" [12] as well as from data obtained from State Custom Service of Ukraine there is no SF₆ and PFCs from other product uses in Ukraine, therefore emissions in this category are not estimated.

4.8.3 N₂O from Product Uses (2.G.3 CRT)

4.8.3.2.1 Category description

In this category, nitrous oxide emissions from its use for medical purposes (anesthesia) are estimated. Nitrous oxide emissions in 2023 amounted to 0.463 kt.

Medical nitrous oxide at ambient temperature and atmospheric pressure is a gas. In production, transportation, and up to the direct application in hospitals, it is stored in the liquefied form in bombs under high pressure. The bombs are 10 liter seamless hermetically sealed containers of carbon steel in accordance with GOST 949-73 with the base material content of 6.2 kg. All nitrous oxide used in medical institutions fully gets into the air, since after its use as an inhalation anesthetic the gas is exhaled by the patient (elimination -100%) with no utilization, and 100% of its volume releases into the environment.

4.8.3.2 Methodological issues

In this inventory, for the first time in the time series of 1990-2023, estimation of nitrous oxide emissions from its use for medical purposes is done under the algorithm developed by the State Enterprise "Ukrainian Research Institute of Transport Medicine of the Ministry of Health of Ukraine" and described in the scientific-research work "Development of methodological recommendations on definition of indicators of nitrous oxide use for medical purposes" [18], with using national emission factors.

In accordance with the algorithm, annual nitrous oxide emissions from its use for medical purposes are determined according to equation:

$$Q(t) = XO \cdot IA \cdot IA_{N_2O} \cdot N , \qquad (2)$$

where: Q(t) - the volume of nitrous oxide emissions from its use for medical purposes in year t, kt;

XO - the number of surgeries conducted, surgeries/year;

IA - the share of inhalation surgeries in the structure of the total number of surgical procedures performed;

 IA_{N2O} - the proportion of nitrous oxide use as an anesthetic in the structure of inhalation surgeries made;

N - the amount of nitrous oxide used per inhalation surgery with its application, kg.

The data on surgical operations performed in Ukraine in the period of 1990 - 2023 were analyzed and systematized in the expert estimation⁵ in accordance with data obtained from the Ministry of Health of Ukraine with using data from official statistic with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of number of surgical operations in 2014 - 2023. The detailed information is presented in Table 4.45 below. In general, the number of surgical operations has gradually decreased from 4280.605 thousand in 1990 to 3086.921 thousand in 2021. However, in the last two years, an increase has been observed: 3410.73 thousand in 2022 and 4066.35 thousand in 2023. This trend is due to a number of reasons: an increase in the general morbidity rate in the population until 2013, the growing number of patients who require surgical operations, the number of detected tumors, diseases of the blood circulatory system and the urinary tract, as well as introduction into the surgical practice of new technologies in line with an increase in the scope of planned surgical care and, accordingly, a decrease for these reasons from 2014 to 2021.

The share of inhalation surgeries (IA). The value of the IA factor for the time-series of 1990-2023 was calculated in the expert estimation¹, according to which this factor gradually increased from 0.15 in 1990 and reached the value of 0.51 in 2023, which is displayed in table 4.28 below. This trend is typical for the majority of countries in the world and was supported by improvement of the material and technical base of medical and preventive treatment facilities of Ukraine: only in the last few years Ukraine received and distributed more than 800 anesthesia and respiratory devices, which allows for inhalation anesthesia.

The proportion of nitrous oxide use as an anesthetic (IA_{N_2O}). The value of the IA_{N_2O} factor for the time-series of 1990-2023 was calculated in the expert estimation¹, according to which this factor gradually increased from 0.100 in 1990 and reached the value of 0.279 in 2023, which is displayed in table 4.28. This trend is due to the relatively low cost of using nitrous oxide as an anesthetic.

The amount of nitrous oxide used per inhalation surgery (N). In the scientific research work [18], it was found that the average weight of nitrous oxide used per inhalation surgery is 0.8 kg. The value of the factor is based on the analysis of nitrous oxide use in 81 health facilities of Ukraine.

⁵ A. Fedoruk, MD, Professor of Surgery and Urology Department, Bukovysky State Medical University, deputy chief physician at the medical unit of Chernivtsi city hospital.

Table 4.28. Use of nitrous oxide for medical purposes in Ukraine, 1990 - 2023

1 4010 4.20.	+.26. Ose of introus oxide for intedical purposes in Okraine, 1990 - 2025				
Year	The total number of surgical operations	The share of inhalation anesthesia	The proportion of inha- lation anesthesia using		
1001	(XO), thousand	(IA)	N ₂ O (IA _{N2O})		
1990	4280.605	0.15	0.100		
1991	4395.58	0.15	0.100		
1992	4799.39	0.15	0.100		
1993	4768.744	0.15	0.100		
1994	4709.829	0.15	0.100		
1995	4608.056	0.15	0.100		
1996	4555.423	0.15	0.100		
1997	4379.378	0.15	0.100		
1998	4488.427	0.15	0.100		
1999	4569.398	0.15	0.100		
2000	4905.764	0.15	0.150		
2001	4840.657	0.15	0.150		
2002	4860.692	0.15	0.150		
2003	4973.975	0.15	0.150		
2004	5026.678	0.15	0.150		
2005	5044.089	0.15	0.150		
2006	5053.335	0.18	0.263		
2007	5112.678	0.18	0.263		
2008	5481.381	0.18	0.263		
2009	4915.107	0.51	0.279		
2010	4951.215	0.51	0.279		
2011	4934.49	0.51	0.279		
2012	4907.676	0.51	0.279		
2013	4894.296	0.51	0.279		
2014	4277.608	0.51	0.279		
2015	4300.679	0.51	0.279		
2016	4280.791	0.51	0.279		
2017	4256.299	0.51	0.279		
2018	4171.564	0.51	0.279		
2019	3862.909	0.51	0.279		
2020	2960.356	0.51	0.279		
2021	3086.921	0.51	0.279		
2022	3410.730	0.51	0.279		
2023	4066.356	0.51	0.279		

4.8.3.3 Uncertainties and time-series

The range of activity data and emission factor uncertainty estimates in the category Other Applications is displayed in table 4.29. and was determined in accordance with 2006 IPCC Guidelines [1].

Table 4.29. The range of uncertainty estimates

Parameter	Estimated	uncertainty
rarameter	"_"	"+"
Activity data		
The number of surgical operations, XO	5	5
Completeness of the sampling and data processing time se-	7.8	7.8
ries	7.8	7.8
The balance of domestic consumption of nitrous oxide	10	10
Uncertainty of activity data	13.63	13.63
Emission factors		
The share of inhalation surgeries, IA	10	10
The proportion of nitrous oxide use as an anesthetic, IA _{N2O}	26.42	26.42
Uncertainty of nitrous oxide emission factors	28.25	28.25
Standard uncertainty of N ₂ O emissions	31.37	31.37

4.8.3.4 Category-specific QA/QC procedures

For estimation of emissions in the category, the following quality control procedures were applied:

- comparison of activity data from different sources;
- comparison of emission along the time-series and analysis of activity data trends;

4.8.3.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.8.3.6 Category-specific planned improvements

In this category, no improvements are planned.

4.9 Other (CRT category 2.H)

Emissions in this category are estimating from pulp, paper, food and beverages production. In this category only the precursors and SO_2 emissions occurs. The subcategories in this category are not the key sources of emissions. The activity data collection, methodological issues as well as QA/QC procedures etc. by the categories included in this category are shown by each subcategory in relevant chapters.

4.9.1 Pulp and Paper Production (CRT category 2.H.1)

4.9.1.1 Category description

2023

Pulp and paper industry produces various types of paper and cardboard manufacturing technology of which consists in obtaining paper mass from fibrous material - pulp. The raw material for paper pulp is wood. In pulp and paper production emissions of NMVOCs, NO_x, CO, and SO₂ occurs. Since 2011, pulp has not been produced in Ukraine. Table 4.35 shows the basic data on the results of GHG inventory in paper production.

Table 4.30. The basic data on the results of GHG inventory in paper and pulp production in

Category code	2.H.1			
Gases	NO_x	CO	NMVOC	SO_2
Emissions from production, kt	0.578	3.18	1.1566	1.1566
Change in emissions compared to the previous year,%	15.52			
Change in emissions compared to the baseline year,%	22.18			
Emissions, % of emissions in the sector	6,03	12,95	1,23	1,23
The key category		=	No	
Detail level (Tier)	1	1	1	1
Method for determination of the emission factor	D	D	D	D
Emission factor at production, t/t	0.001	0.0055	0.002	0.002

4.9.1.2 Methodological issues

Emissions of NMVOC, NO_x, CO, and SO₂ in paper manufacture were determined in accordance with 2019 EMEP/EEA recommendations [6]. Data on the amounts of paper production in

Ukraine were obtained from Ukraine Association of Paper Production. The default GHG and SO₂ emission factors were used.

4.9.1.3 Uncertainties and time-series consistency

Since in pulp and paper production GHG emissions do not happen, the uncertainty of emission estimation results in this category was not calculated.

4.9.1.4 Category-specific QA/QC procedures

General QA/QC procedures were applied to calculation of GHG emissions from paper production.

4.9.1.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.9.1.6 Category-specific planned improvements

In this category, no improvements are planned.

4.9.2 Food and Beverages Industry (CRT category 2.H.2)

4.9.2.1 Category description

The food industry produces a wide range of products based on application of various technological processes. Food composition includes organic substances that during processing emit into the atmosphere as NMVOCs. The greatest amount of NMVOCs is emitted in production of alcoholic beverages, bakery products, edible fats, meat and fish products. Table 4.31 presents activity data, emission and NMVOC emission factors at production of food and beverages in Ukraine.

Table 4.31. NMVOC emissions in production of food and beverages in 2023

Category code	2.H.2
Food Production, kt	10316.31
Beverage Production, 10 ³ hl	17451.98
Gas	NMVOC
Emissions from products, kt	28.01
Emissions from beverages, kt	11.30
Total emissions, thousand tons	39.31
Change in emissions compared to the previous year, %	15.40
Change in emissions compared to the baseline year, %	-69.50
The key category	No
Detail level (Tier)	2
Method for determination of the emission factor	D

Activity data, emission factors, and GHG emissions throughout the entire time series in this category are shown in Table A3.1.1.17, Annex 3.1.1.

4.9.2.2 Methodological issues

Estimation of NMVOC emissions in food and beverage industries was made in accordance with the recommendations 2019 EMEP/EEA Guidelines [6] using default emission factors. NMVOC emission estimation was performed for production of bread and bakery products, flour confectionery

products, fodder for animals, margarine and solid edible fats, sugar, meat, fish and poultry, spirits, wine and beer. The data used for the estimation of emissions were provided by the SSSU [24], with using data from official statistic with using analytical study, which includes different approaches, particularly extrapolation, expert judgement and other math and statistical methods [19] for adjustment of number of food and beverages in 2015 - 2023.

4.9.2.3 Uncertainties and time-series consistency

Since in food and beverages production GHG emissions do not happen, the uncertainty of NMVOC emission estimation results in this category was not calculated.

4.9.2.4 Category-specific QA/QC procedures

General QA/QC procedures were applied for estimation of NMVOC emissions at food and beverage production.

4.9.2.5 Category-specific recalculations

In this category, no emission recalculations were made.

4.9.2.6 Category-specific planned improvements

In this category, no improvements are planned.

5 AGRICULTURE (CRT SECTOR 3)

5.1 Sector Overview

The following emission source categories considered in the Agriculture sector:

- 3.A Enteric Fermentation;
- 3.B Manure Management;
- 3.C Rice Cultivation;
- 3.D Agricultural Soils;
- 3.E Prescribed Burning of Savannas;
- 3.F Field Burning of Agricultural Residues;
- 3.G Liming;
- 3.H Urea Application.

Total emissions of direct GHG (CO₂, CH₄, N₂O) in the sector and by categories are reported in Table 5.1. In categories 3.E Prescribed Burning of Savannas and 3.F Field Burning of Agricultural Residues, emissions not estimated, since the savannas ecosystem does not exist in the territory of Ukraine, and burning of crop residues in Ukraine is legally prohibited under the Code of Administrative Offenses (art. 77-1) and the Law of Ukraine on Air Protection (art. 16, 22).

Table 5.1. Changes in GHG emissions in the Agriculture sector

Cotogowy	Emi	issions, kt CO ₂ -	Trend, %		
Category	1990	2022	2023	by 1990	by 2022
3.A Enteric Fermentation	45,230.87	7,117.04	6,682.12	-85.23	-6.11
3.B Manure Management	7,176.14	2,250.66	2,183.53	-69.57	-2.98
3.C Rice Cultivation	242.40	11.62	47.31	-80.48	307.14
3.D Agricultural Soils	33,810.37	22,651.66	23,529.49	-30.41	3.88
3.E Prescribed Burning of Savannas *	NO	NO	NO	-	_
3.F Field Burning of Agricultural Residues **	NO	NO	NO	_	_
3.G Liming	2,592.08	110.00	65.95	-97.46	-40.05
3.H Urea Application	568.93	356.57	446.89	-21.45	25.33
Total for the sector	89,620.79	32,497.55	32,955.28	-63.23	1.41

^{* –} the emissions not estimated;

The total GHG emissions in the sector have decreased by -63.23 % compared to the base year. However, a slight increase of GHG emissions (near 1.41 %) has occurred in 2023 in comparison with previous year (Table 5.1). The political and economic situation are the key factor for the observed decrease in emissions during the reported period.

The highest emissions in the agricultural sector of Ukraine in reported year observed in 3.D Agricultural Soils and 3.A Enteric Fermentation categories, which make up 71.4 and 20.3 % (Fig. 5.1). The next largest category is 3.B Manure Management, which accounts for 6.6 % of the emissions. Contribution of the other categories is negligible and accounts for only 1.7 %.

The key gases in the sector are methane and nitrous oxide (Fig. 5.2), which accounted for 55.29 and 41.18 % in 1990, and 24.78 and 73.67 % of the emissions in the last reported year, respectively.

The reduction in emissions of GHG over the period of 1990-2023 is primarily due to the decrease in the number of livestock, in the amount of fertilizer applied to soils, as well as to a change in treatment of animal manure as a result of the collapse of the Soviet Union with the ensuing economic crisis and especially the current political and economic situation.

^{** –} field burning of crop residues prohibited by the Ukrainian legislation.

One of the reasons for the emissions growth in 2001-2002 by comparison with 2000 was stabilization of swine livestock due to renewed operation of some pig farms, procurement from other countries of breeding animals, and increased subsidies. In 2003, as a result of impact of natural and economic factors, the livestock of animals in household farms declined sharply. In particular, compared with the previous year, the average annual livestock of cattle decreased by 17 %, pigs – by 10 %. The determining factor for the reducing of agricultural animal's number in 2003 were extreme weather conditions (extreme cold and small amount of snow), which led to deep freezing of the ground and the subsequent decrease in the yield of harvested acreage of forage crops for livestock. In general, 2003 characterized by rapid changes in sales prices for live animals, feed grain, and other fodder.

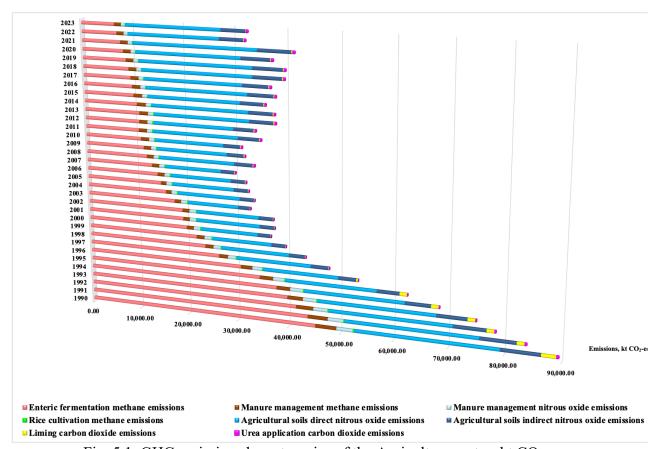


Fig. 5.1. GHG emissions by categories of the Agriculture sector, kt CO₂-eq.

The growth in direct N_2O emissions from agricultural soils in 2008 was due to an increase in the amount of crop residues going into the soil, which in turn is due to the highest in the period of Ukraine's independence gross harvest of grain and leguminous crops, which amounted to 53.3 Mt. In addition, in 2003-2021 there was an increase in the standardly introduced nitrogen fertilizers (except 2009 and 2015). Active hostilities since 2022 have caused a significant reduction in the amount of applied fertilizers.

One of the main reasons of methane emissions decline in the 3.B Manure Management category in comparison with emissions in the other categories is partial replacement from liquid systems to solid storage in the manure management structure in cattle-raising enterprises. Thus, the percentage of cattle manure stored in liquid systems at agrienterprises in 1990 was 21.0 % of the total manure produced. In 2023, the corresponding proportion of manure in liquid systems was approximately 8.0 %, and the rest of the manure mostly remained on pasture/range/paddock or in solid storage. Since the potential of methane production in liquid systems is significantly higher than in case of solid storage, emission factors for the period of 1990-2023 sharply reduced. At the same time, methane emissions in the category in question in the reporting period decreased by 64.8 %.

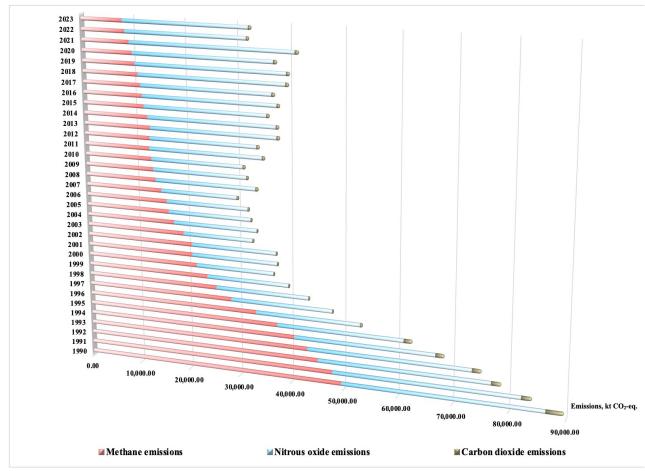


Fig. 5.2. The ratio of direct GHG emissions in the Agriculture sector, kt CO₂-eq.

5.2 Enteric Fermentation (CRT category 3.A)

5.2.1. Category description

Inventory of methane emissions from enteric fermentation in Ukraine includes such types of farm animals (Table 5.2) as cattle, sheep, swine, and other animals (goats, horses, mules and asses, rabbits, fur-bearing animals, camels and buffaloes). Ruminants (such as cattle) produce a largest part of CH₄ emissions from enteric fermentation. Emissions from poultry are not estimated, as 2006 IPCC Guidelines [1] offer no methodology for their calculation.

Table 5.2. Review of category 3.A Enteric Fermentation

Cotomorni	Method	Emission	Can	The key	Emissi	Trend,																						
Category	applied	factor	Gas	category	1990	2023	%																					
3.A.1 Cattle	T 2	CS			1,509.31	215.98	-85.69																					
3.A.2 Sheep	T 2	CS			56.00	5.97	-89.33																					
3.A.3 Swine	T 1	D			29.53	8.13	-72.47																					
3.A.4 Other animals:	T 1	D			20.55	8.56	-58.33																					
fur-bearing animals	T 1	D			0.14	0.07	-51.20																					
rabbits	T 1	D	CH ₄	Level/Trend	4.27	3.07	-27.96																					
camels	T 1	D			0.03	0.04	44.67																					
mules and asses	T 1	D			0.19	0.12	-37.71																					
buffaloes	T 1	D																Í			Í			1		0.05	0.02	-65.88
horses	T 1	D			13.43	2.84	-78.85																					
goats	T 1	D			2.45	2.40	-1.87																					

Next data collected for GHG emissions estimating:

- the type of animals (Table 5.3, Annex 3.2.1) and their number;
- the type of the digestive system of the animals;
- feed digestibility;
- feeding situation: confined, grazing, pasture conditions;
- animal weight and their average weight gain per day;
- milk production and fat content;
- wool growth;
- animal activity and average amount of work performed per day;
- percentage of females that give birth in a year and number of offspring.

Table 5.3. Characteristics of animal species and their sources

Animal species	Data source	Reporting form	Note*
Cattle	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.1
Sheep	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.2
Swine	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.3
Fur-bearing animals	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Rabbits	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Buffaloes	Regional state administrations	Livestock of the animals at January 1	Annex 3.2.1.2.5
Goats	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Camels	FAO	Average annual population	Annex 3.2.1.2.5
Horses	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5
Mules and asses	FAO	Average annual population	Annex 3.2.1.2.5
Poultry	SSSU	Livestock of the animals at January 1	Annex 3.2.1.2.5

^{* –} found in Annex 3.2 Agriculture.

EF for cattle sex-age groups and sheep calculated in accordance with corresponding methodology (Annex 3.2.8, Tables A3.2.8.1 and A3.2.8.2). Cattle and sheep EF fluctuations mainly caused by changes of energy expenses and other several data (live weight, milk yield, wool production etc.).

Methane emissions from enteric fermentation in the base, several intermediate and last years reported in Annex 3.2.9 (Table A3.2.9.1).

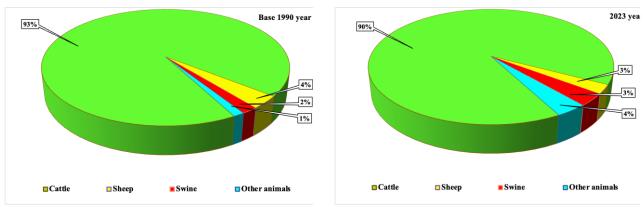


Fig. 5.3. Contribution of animal groups into the total methane emissions from enteric fermentation, %

Analysis of Table A3.2.9.1 lead to the conclusion that the highest emissions in this category produced by cattle enteric fermentation, providing for over 91 % of the total GHG emissions in this category. The next largest source of methane emission is enteric fermentation of sheep, swine and other animals, the total contribution to the overall emissions of which is much smaller (Fig. 5.3).

5.2.2 Methodological issues

5.2.2.1. The methodology for CH₄ emissions estimation from cattle enteric fermentation

Methane emissions from cattle enteric fermentation (Annex 3.2.9, Table A3.2.9.1) estimated according to Tier 2 from 2006 IPCC Guidelines [1]. Institute of Animal Science of the NAASU since 1985 explores different methodologies for calculation GHG from cattle enteric fermentation hold their adaptation with the conditions of Ukraine. We will be able to improve quality of emissions estimation from cattle enteric fermentation after testing the results of their research.

Equation 10.19 [1] used for GHG emissions calculation from cattle enteric fermentation (Table 5.4).

Cattle EF (Annex 3.2.8, Table A3.2.8.1) calculated in accordance with Equation 10.21 [1].

<u>Gross energy intake</u>. Calculation of GE (Annex 3.2.2, Table A3.2.2.1), according to Equation 10.16 [1], required definition of the following components:

- net energy required by the animal for maintenance (Equation 10.3 [1]);
- net energy for animal activity (Equation 10.4 [1]);
- net energy for lactation (Equation 10.8 [1]);
- net energy required for pregnancy (Equation 10.13 [1]);
- ratio of net energy available in a diet for maintenance to digestible energy consumed (Equation 10.14 [1]);
 - net energy needed for growth (Equation 10.6 [1]);
- ratio of net energy available for growth in a diet to digestible energy consumed (Equation 10.15 [1]);
 - digestible energy expressed as a percentage of GE (Table 5.4).

Activity data sources that used for cattle sex-age groups gross energy estimation reported in Table 5.4.

Table 5.4. Characteristics of AD sources for cattle GE estimation

AD name	Symbol	Source	Note
Weight coefficient for each cattle sex-age group	Cf 2006 IPCC Guideline		Table 10.4
Coefficient corresponding to ani- mal's feeding situation for each cattle sex-age group	Ca	2006 IPCC Guidelines	Table 10.5
Coefficient for live body weight of an adult animal	C	2006 IPCC Guidelines	A coefficient with a value of 0.8 for females, 1.0 for castrates and 1.2 for bulls
Average live body weight of the animals in the population	Weight (for Equation 10.3) or BW (for Equation 10.6)	Country specific standards [3-5]	Annex 3.2.2, Tables A3.2.2.2 - A3.2.2.4
Mature live body weight of an adult animal in moderate body condition	MW	Country specific standards [3-5]	Annex 3.2.2, Tables A3.2.2.2 - A3.2.2.4
Average daily weight gain of the animals in the population	WG	Country specific standards [3-5]	Annex 3.2.2, Table A3.2.2.5
Amount of milk produced	Milk	SSSU ("Milk production", Table No.15) and analyti- cal study [2]	Annex 3.2.2, Table A3.2.2.6
Fat content of milk	Fat	SSSU	Annex 3.2.2, Table A3.2.2.6
Pregnancy coefficient	C pregnancy	2006 IPCC Guidelines	Table 10.7
Digestible energy	DE	SSSU; expert judgment from the NAASU (№13700/10-16 on 13 Dec 2016)	Annex 3.2.2, Table A3.2.2.7

<u>Livestock</u>. In line with the requirements of [1], data of the SSSU used as the information base to estimate the average annual cattle livestock (Table 5.3; Annex 3.2.1.3, Tables A3.2.1.3.1 and A3.2.1.3.2).

<u>Methane conversion factor</u>. Methane conversion factor (Y_m) for cattle (for dairy cows and other cattle as 6.5 %) used from Table 10.12 [1].

5.2.2.2. The methodology for CH₄ emissions estimation from sheep enteric fermentation

Tier 2 used for methane emissions from sheep enteric fermentation calculation [1]. According to them, to estimate methane emissions, it is necessary to determine:

- the amount of GE intake (Annex 3.2.2, Table A3.2.2.8);
- number of sheep (Table 5.3; Annex 3.2.1.3, Table A3.2.1.3.1);
- methane conversion factor (Table 10.13 [1]).

Estimation of methane emissions from sheep enteric fermentation (Annex 3.2.9, Table A3.2.9.1) carried out according to Equation 10.19 of 2006 IPCC Guidelines [1].

Sheep EF by sex-age groups calculated in accordance with Equation 10.21 [1] and reported in Table A3.2.8.2 (Annex 3.2.8).

<u>Gross energy intake</u>. Calculation of GE, according to Equation 10.16 [1], required definition of the following components:

- net energy required by the animal for maintenance (Equation 10.3 [1]);
- net energy for animal activity (Equation 10.5 [1]);
- net energy for lactation (Equation 10.9 [1]);
- net energy required for pregnancy (Equation 10.13 [1]);
- ratio of net energy available in a diet for maintenance to digestible energy consumed (Equation 10.14 [1]);
 - net energy needed for growth (Equation 10.7 [1]);
 - net energy required for production of wool during a year (Equation 10.12 [1]);
- ratio of net energy available for growth in a diet to digestible energy consumed (Equation 10.15 [1]);
 - digestible energy expressed as a percentage of GE (Table 5.5).

Activity data sources that used for seep sex-age groups gross energy estimation reported in Table 5.5.

Table 5.5. Characteristics of AD sources for sheep GE estimation

AD name	Symbol	Source	Note		
Weight coefficient for each sheep sex-age group	Cf	2006 IPCC Guidelines	Table 10.4		
Coefficient corresponding to animal's feeding situation for each sheep sex-age group	C _a	2006 IPCC Guidelines	Table 10.5		
Coefficient for live body weight of an adult animal	С	2006 IPCC Guidelines	A coefficient with a value of 0.8 for females, 1.0 for castrates and 1.2 for bulls		
Average live body weight of the animals in the population	Weight	Country specific standards [6-7]	Annex 3.2.2, Ta- bles A3.2.2.9 - A3.2.2.12		
The weight gain	WG lamb	2006 IPCC Guidelines	Equation 10.7		
The live bodyweight at weaning	BW i	Country specific standards [6-7]	See description below		

AD name	Symbol	Source	Note
The live bodyweight at 1-year old or at slaughter (live-weight) if slaughtered prior to 1 year of age	$\rm BW_{f}$	Country specific standards [6-7]	See description below
Constants for sheep net energy for growth calculation	a, b	2006 IPCC Guidelines	Table 10.6
Amount of milk produced	Milk	SSSU ("Milk production", Table No.15) and analytical study [2]	Annex 3.2.2, Table A3.2.2.9
The net energy required to produce 1 kg of milk	EV milk	Country specific standards [9]	4.75 MJ × kg ⁻¹
Annual wool production per sheep	Production wool	SSSU [10] and analytical study [2]	Annex 3.2.2, Table A3.2.2.9
The energy value of each kg of wool produced	EV wool	2006 IPCC Guidelines	A default value of 24 MJ × kg ⁻¹
Pregnancy coefficient	C pregnancy	2006 IPCC Guidelines	Table 10.7
Digestible energy	DE	Expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017)	67.5 %

For the purposes of the inventory, average values of live weight of ewes and rams were used [6-7], estimated based on the average live weight of sheep by breeds and breed types, their breed composition structure.

Weaning of lambs for the purpose of feeding and fattening is done at the age of 3 months (live weight -24 kg). The live weight of lambs at weaning at the age of 4 months for the purpose of herd replacement on average is 30 kg, of young replacement stock at the age of 1 year (mostly female lambs) -50 kg, of feeding livestock at slaughter - approximately 49 kg, and of wethers -60 kg [6-7].

Information about the method of sheep feeding obtained based on an expert judgment of the National University of Life and Environmental Sciences of Ukraine.

Maintenance of sheep characterized by long (on average about 270 days) grazing in large pastures. Sheep grazing is accompanied by constant migrations (several kilometers a day), as a consequence they spend a considerable amount of energy to receive fodder. The rest of time sheep stay in sheep pens, around which they arrange a fold for the animals' feeding and walking (the pasture-stall system). A number of farms in the steppe zone of the country successfully apply the pasture-semistall system with partial grazing of sheep in winter dry and cold weather with temperatures down to -8°C on winter crops, natural pastures, swamps. Ewes a month before calving and for 3 weeks after, as well as youngsters, not grazed. Sheep pasture system not practiced in Ukraine due to the high rate of land plowing [8].

Milking capacity of ewes depends on the breed, individual characteristics, age (yields increased up to the age of five years and then go down), maintenance conditions, and feeding [8]. The lactation period of sheep in the conditions of Ukraine is on average 4 months. According to the SSSU, the milking herd of ewes founded in the several key regions: Vinnytska, Ivano-Frankivska, Odesska, Chernivetska Oblast, and the Autonomous Republic of Crimea.

To estimate the rate of sheep milk production, data from SSSU observations ("Milk production", Table No.15) and analytical study [2] were used, but with adjustments to account for the sheep milk used in the suckling period for feeding lambs. In particular, in the estimations it assumed that the amount of milk consumed by lambs prior to weaning from ewes on average is 60 kg (expert assessment based on materials of the Ukrainian literature review [7-8]). The energy value of sheep milk taken in accordance with [9] as equal to 4.75 MJ/kg.

There are no statistics in the country on the proportion of sheep that give birth to one, two, or three lambs in the total population of ewes, which are required to determine the net energy required for pregnancy (NE_p). Therefore, it assumed that all the ewes during the year are pregnant, and the coefficient corresponding to the average number of lambs born in a year defined based on Table A3.2.2.9 (Annex 3.2.2). The average value of the pregnancy coefficient ($C_{pregnancy} = 0.087290$) was calculated using the default values from Table 10.7 [1].

The value of digestibility of fodders for sheep (for good pastures, well preserved forages and feeding regimes based on forage with the addition of grain) was taken as 67.5 % on base of expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017).

<u>Livestock</u>. SSSU data used as the information base to estimate the average annual sheep livestock (Table 5.3; Annex 3.2.1.3, Table A3.2.1.3.1).

<u>Methane conversion factor</u>. Default methane conversion factors from Table 10.13 [1] used for GHG estimation. According to this table, the methane conversion factor is 0.065 rel. units for animals older than 1 year, and for youngsters it is 0.045 rel. units. Since the livestock of sheep fattening are both youngsters (83.5 %) and adult animals (16.5 %) [6], the weighted average calculated, which corresponds to the mark 0.0483 rel. units.

5.2.2.3. The methodology for CH₄ emissions estimation from other animals enteric fermentation

Estimation of GHG emissions from the vital activity of animal species like goats, horses, swine, mules and asses, rabbits, fur-bearing animals, camels and buffaloes (Annex 3.2.9, Table A3.2.9.1) was performed under Tier 1 method (Equation 10.19) with the default emission factors (Table 10.10) [1]. EF for rabbits and fur-bearing animals estimated in accordance with specific emission estimation method of 2006 IPCCC (Volume 4.10, Chapter 10.2.4, p. 10.23). Mules and asses are the similarly by digestive system for rabbits, and swine – for fur-bearing animals. The emission factors used to calculate emissions reported in Table A3.2.8.3 (Annex 3.2.8).

Average annual livestock values of agricultural animals, such as horses, goats, swine, mules and asses, rabbits, fur-bearing animals, camels and buffaloes, that used for the GHG inventory are reported in Table A3.2.1.3.1 (Annex 3.2.1.3).

Data on the live weight of rabbits were obtained from analysis of literature materials [8] and make up 3.8 kg (the average for all breeds bred in Ukraine). The value of the live weight of furbearing animals was calculated as weighted average between the data on the weight of minks -2.1 kg, polar foxes -5.0 kg, foxes -4.9 kg, and nutria -6.5 kg [8]. As animals with a similar digestive system for rabbits were mules and asses, whose live weight is 130 kg, for fur-bearing animals – swine (the live weight -50 kg).

5.2.3 Uncertainty and time-series consistency

Uncertainty estimated in accordance with the Tier 1 methodology from 2006 IPCC Guidelines [1].

The uncertainty of emission estimation in category 3.A Enteric Fermentation is determined by uncertainties of AD and EF. Ranges and sources of uncertainty of input data used in calculation of national EF from cattle and sheep enteric fermentation reported in Table 5.6.

Table 5.6. The uncertainty of input data used in calculation of national emission factors from

cattle and sheep enteric fermentation, %

Indicator	Measurement unit	Uncertainty	Source
		Cattle	
Statistical data on livestock	thsd. head	6	Expert judgment based on SSSU data
Cf coefficient	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C _a coefficient corresponding to animal's feeding situation	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C coefficient	dimensionless	20	2006 IPCC Guidelines [1]
Average live body weight data of the animals in the population (Weight/BW)	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]

Indicator	Measurement unit	Uncertainty	Source
MW mature live body weight of an adult animal in moderate body condition	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]
WG average daily weight gain of the animals in the population	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [3-5, 11]
Statistical data on milk production	$kg \times day^{-1} \times head^{-1}$	6	Expert judgment based on SSSU data
Fat content of milk	%	6	Expert judgment based on SSSU data
C pregnancy pregnancy coefficient	dimensionless	20	2006 IPCC Guidelines [1]
DE digestible energy	%	± 20	2006 IPCC Guidelines [1]
		Sheep	
Statistical data on livestock	thsd. head	6	Expert judgment based on SSSU data
Cf coefficient	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C _a coefficient corresponding to animal's feeding situation	$MJ \times day^{-1} \times kg^{-1}$	20	2006 IPCC Guidelines [1]
C coefficient	dimensionless	20	2006 IPCC Guidelines [1]
WG lamb weight gain	kg	1-35	Range of average body weight values depending on the breed and sex-age indicators, according to data of [6-9]
BW i live bodyweight at weaning	kg	4-7	Values depending according to [9]
BW f live bodyweight at 1-year old or at slaughter	kg	10-18	Values depending according to [9]
a, b constants for sheep net energy for growth calcula- tion	dimensionless	20	2006 IPCC Guidelines [1]
Statistical data on milk production	$kg \times day^{-1} \times head^{-1}$	6	Expert judgment based on SSSU data
EV _{milk} net energy required to produce 1 kg of milk	$MJ \times kg^{-1}$	16	Value range according to data of [7]
Statistical data on wool production	$kg \times day^{-1} \times head^{-1}$	6	Expert judgment based on SSSU data
EV wool energy value of each kg of wool produced	$MJ \times kg^{-1}$	± 20	2006 IPCC Guidelines [1]
C pregnancy pregnancy coefficient	dimensionless	27	2006 IPCC Guidelines [1]
DE digestible energy	%	± 20	2006 IPCC Guidelines [1]
Methane conversion factor	rel. u	7-9	2006 IPCC Guidelines [1]

Estimation of GHG emissions for the reporting period carried out with the same method and the same degree of detail. Time series data collected and processed according to the agreed procedures.

The significant reduction in the cattle livestock of agricultural enterprises as a result of the collapse of the Soviet Union and the subsequent restructuring of the agricultural sector led to the situation where the key impact on the trend of methane emissions from enteric fermentation is exerted by livestock dynamics in households (Fig. 5.4). Fig. 5.5 illustrates the dependence of the methane emission trend in category 3.A Enteric Fermentation on the cattle livestock, which is the major factor to regulate emissions.

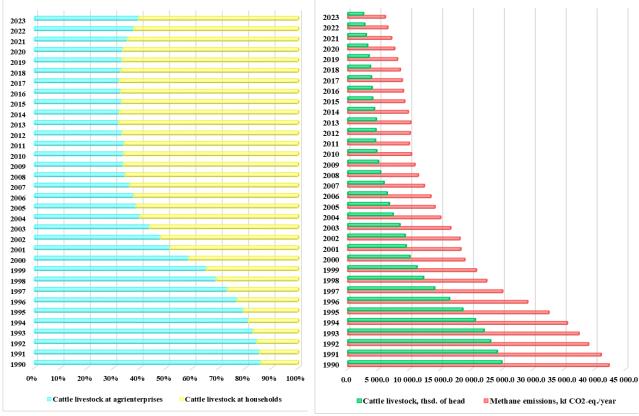


Fig. 5.4 Cattle livestock distribution between different kinds of farms

Fig. 5.5 Dependence of methane emission trends in category 3.A Enteric Fermentation on cattle population

5.2.4 Category-specific QA/QC procedures

Quality control and assurance carried out with general and detailed procedures, which include comparisons of activity data with similar FAO data, check of national EF by comparing them with the respective default coefficients [1] and coefficients of countries with similar conditions, etc.

Check of the GE values calculated for each sex-age group of cattle and sheep carried out by means of their conversion into food consumption units in the dry matter (kg × day⁻¹ × head⁻¹) and comparison with live weight values of the corresponding cattle groups. According to results of the estimations conducted, daily dry matter intake for all groups of cattle and sheep is within the range specified in 2006 IPCC Guidelines [1].

Table 5.7. Comparison of methane emission factors from enteric fermentation with emission coefficients of Central and Eastern Europe countries*, $kg \times head^{-1} \times yr^{-1}$

Indicator	Ukraine	Federal Republic of Germany	French Republic	Czech Republic	Slovak Republic	Hungary
Mature dairy cattle	114.14	140.26	126.92	148.79	122.12	134.38
Mature non-dairy cat- tle**	41.54	48.72	52.86	69.43	57.57	54.61
Sheep	8.19	6.36	12.91	8.00	11.66	8.00

^{*} Source: NIR of the Central and Eastern Europe countries, data for 2022, Ukraine - 2023 data.

Methane emission factors from enteric fermentation of mature dairy cattle according to the CRT data compared with the default factor [1]. The difference in the estimations is due to differences in input data and the approaches used to estimate them.

^{**} For reporting, Ukraine uses option B, therefore the emission factors shown for growing cattle, given its dominant share in the structure of non-dairy cattle herds.

A comparison of enteric fermentation EF for dairy and non-dairy cattle with the similar coefficients of Central and Eastern Europe countries has shown that they are in the same range (Table 5.7).

Also, a cross-analysis of factor time series and the totals of emissions from enteric fermentation of cattle was conducted according to CRT data (Fig. 5.6).

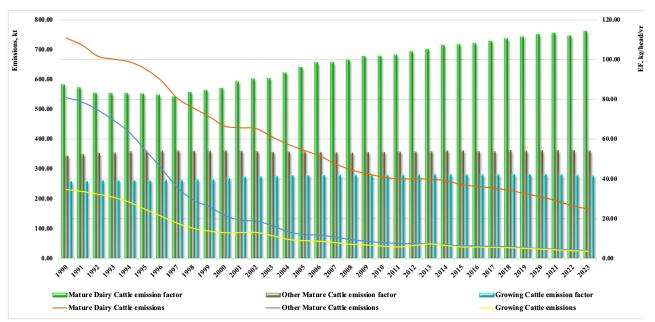


Fig. 5.6. Emission values and methane emission factors dynamics from cattle enteric fermentation

The results of comparison of national EF from sheep enteric fermentation according to CRT data with the default factors indicate the discrepancy within 0.6-12.0 % (the average for the reporting period -6 %). Furthermore, the foregoing comparison of the sheep enteric fermentation EF's, with the similar coefficients of Central and Eastern Europe countries has shown that they are in the same range (Table 5.7). The discrepancy of the factors in this case may be explain by the significant changes in the sheep livestock structure along the time series. In particular, the percentage of ewe and gimmers 1 year old and older population in the total herd structure in all categories of farms increased from 42 % in 1990 up to 68 % in 2023 with the proportional decrease in the share of growing sheep, to which the lowest EF apply.

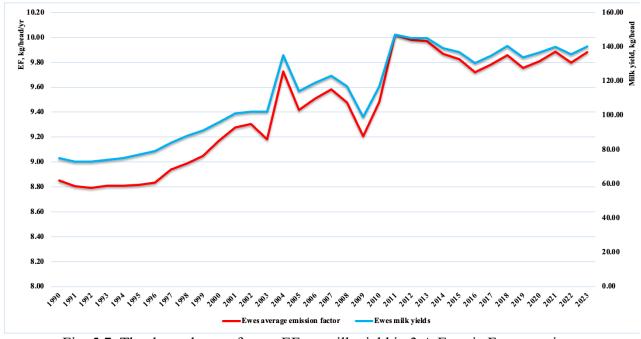


Fig. 5.7. The dependence of ewes EF on milk yield in 3.A Enteric Fermentation

The coefficients of methane emissions from enteric fermentation of ewes and gimmers are directly dependent on the amount of milk production, as shown on Fig. 5.7.

5.2.5 Category-specific recalculations

Methane emissions in 3.A Enteric Fermentation category were recalculated and reported in Annex 3.2.10 (Table A3.2.10.1).

Clarification of livestock and herd structure are the reasons for the methane emissions recalculation in the current category.

5.2.6 Category-specific planned improvements

The Institute of Animal Science of the NAASU since 1985 explores different methodologies for calculation GHG from cattle enteric fermentation hold their adaptation with the conditions of Ukraine. We will be able to improve quality of emissions estimation from cattle enteric fermentation after testing the results of their research.

5.3 Manure Management (CRT category 3.B)

5.3.1. Category description

An important area of stock-raising is manure management, which leads to emissions of various GHG (Table 5.8), namely: methane (CH₄), nitrous oxide (N₂O), and non-methane volatile organic compounds (NMVOCs).

Table 5.8. Review of category 3.B Manure Management

Catagomi	Method ap-	Emission	Cas	The key	Emissi	ons, kt	Trend,
Category	plied	factor	Gas	category	1990	2023	%
3.B.1 Manure Management	CS, T 1, T 2	CS, D	CH ₄	Level	145.69	51.29	-64.80
3.B.2 Manure Management	CS, T 1, T 2	CS, D	N ₂ O	No	11.69	2.82	-75.87
3.B.2 Manure Management	T 1	D	NMVOC	No	198.79	54.64	-72.52

As a result of vital activity of a complex set of microorganisms in anaerobic conditions, methane fermentation takes place (the decomposition process of organic substances to end products, in particular to methane and carbon dioxide). The level of methane emissions from manure depends on the following key factors:

- manure storage conditions (in the liquid or solid form);
- type of climate (cold, temperate, or warm);
- composition of feed rations for animals;
- type of manure (cattle, swine, sheep, poultry manure, etc.);
- dry matter content in manure.

While agricultural enterprises in Ukraine mainly comply with the practice of manure storage in the liquid and in solid form, in the private sector manure is only stored in the solid form in clamps or remains in pastures. Methane emissions from solid storage are much lower than in the case of liquid storage, since a large part of it decomposed under aerobic conditions. However, such conditions become favorable for formation of another $GHG-N_2O$. This gas can be produced both when there is access of oxygen as a result of oxidative processes of NH_3 nitrification into NO_3 , and in anaerobic conditions due to recovery denitrification processes.

There is a big fluctuation of GHG emissions in 3.B Manure Management category for a reporting period (Annex 3.2.9, Table A3.2.9.2).

Along the reported period, a sharp reduction of CH₄ emissions from manure compared to the base 1990 observed. Primarily, this explained by the reduction in the main livestock species and groups due to the economic crisis in Ukraine that followed the collapse of the USSR. Besides, the downward trend of emissions in this category determined by the change in the manure management practice over the time series.

The main source of nitrous oxide emissions is the manure that is stored in the solid form. The significant reduction in N₂O emissions from all MMS during the reporting period was due to the reduced population of animals and decreased amount of nitrogen in the composition of manure stored in the solid form.

Fluctuation key for NMVOC emissions is animal's livestock.

5.3.2 Methodological issues

5.3.2.1 Methane emissions from Manure Management

Research paper "Development of the method to estimate and determine methane and nitrous oxide emissions as a result of manure management of animal and poultry: the final report on completion of the II (second) phase of the research work" [12] was conducted to evaluate national opportunities for estimation of CH₄ emissions from manure management. IPCC methodologies, some national methodological approaches, country specific and default EF's recommended by this paper.

Emissions of methane (Annex 3.2.9, Table A3.2.9.2) from manure estimated according to Equation 10.22 of 2006 IPCC Guidelines [1] and determines by the emission factor and livestock population (Table 5.3; Annex 3.2.1.3, Tables A3.2.1.3.1 and A3.2.1.3.2).

The information base on the population of animals for CH₄ emissions estimation (Annex 3.2.1.2) are statistical materials (Findings of cattle registry, Table No.7; Statistical reported data: "Number of agricultural animals as of January 01" [38]; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock at agrienterprises and household's specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

Cattle, sheep, swine, and poultry methane EF's calculated in accordance with Equation 10.23 [1] and reported in Annex 3.2.8 (Table A3.2.8.4). Default EF from Tables 10.14 - 10.16 [1] used for estimation methane emissions from manure management of other animals and reported in Annex 3.2.8 (Table A3.2.8.3).

The next components used for EF estimation:

- maximum methane producing capacity (Annex 3.2.3, Table A3.2.3.1);
- volatile solid excretion rates (Equation 10.24 [1] for cattle and sheep and Equation 5.1 for swine and poultry; Annex 3.2.3, Table A3.2.3.3);
 - methane conversion factors (Table 10.17 [1]; Table 5.10);
 - manure management system usage (Annex 3.2.3 Table A3.2.3.2).

<u>Maximum methane-producing capacity of the manure</u>. Expert judgment was a source base for values of maximum methane-producing capacity for manure produced by cattle, sheep, swine, and poultry livestock (B₀). Its values reported in Table A3.2.3.1 of Annex 3.2.3.

<u>Volatile solid excretion rate</u>. The amount of volatile dry substances, which emitted from the cattle and sheep manure, calculated according to Equation 10.24 [1]. For swine and poultry, this factor obtained with Equation 5.1.

$$VS = MDM_{ex} \times (1 - ASH), \tag{5.1}$$

where:

VS – volatile solid excretion per day on a dry-organic matter basis, kg VS day⁻¹ (Annex 3.2.3, Table A3.2.3.3);

MDMex – amount of manure excreted by animals in dry matter, kg of dry mater day⁻¹ (Annex 3.2.3, Table A3.2.3.1);

ASH – the ash content (inorganic component) of manure calculated as a fraction of the dry matter feed intake (Annex 3.2.3, Table A3.2.3.1).

Estimation of cattle, sheep, swine and poultry VS required definition of gross energy, digestible energy, urinary energy, ash content and amount of manure excreted by animals. Its sources reported in Table 5.9.

Table 5.9. Characteristics of AD sources for VS estimation

AD name	Symbol	Source	Note
		Cattle	
Gross energy intake	GE	3.A Enteric Fermentation category (Chapter 5.2.2.1)	Table 5.4 Table A3.2.2.1 (Annex 3.2.2)
Digestible energy	DE	SSSU; expert judgment from the NAASU (№13700/10-16 on 13 Dec 2016)	Table 5.4 Table A3.2.2.7 (Annex 3.2.2)
Urinary energy expressed as fraction of GE	UE × GE	2006 IPCC Guidelines [1]	0.04 (Equation 10.24 description)
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1
		Sheep	
Gross energy intake	GE	3.A Enteric Fermentation category (Chapter 5.2.2.2)	Table 5.5 Table A3.2.2.8 (Annex 3.2.2)
Digestible energy	DE	Expert judgment from the NAASU (№20009/10-17 on 04 Aug 2017)	67.5 %
Urinary energy expressed as fraction of GE	UE × GE	2006 IPCC Guidelines [1]	0.02 (Equation 10.24 description)
ASH content of manure	ASH	Expert judgment *	Annex 3.2.3 Table A3.2.3.1
		Swine	
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1
Amount of manure excreted by animals in dry matter **	MDMex	Expert judgment from the NAASU (№30432/10-17 on 28 Nov 2017) ***	Annex 3.2.3 Table A3.2.3.1
		Poultry	
ASH content of manure	ASH	Expert judgment	Annex 3.2.3 Table A3.2.3.1
Amount of manure excreted by animals in dry matter	MDMex	Expert judgment from the NAASU (№30432/10-17 on 28 Nov 2017) ***	Annex 3.2.3 Table A3.2.3.1

^{* –} to determine the proportion of ASH in sheep manure, data on the content of organic substances in sheep manure (28 %) and its moisture content (64.6 %) resulting from the conducted studies [19-20] were used;

<u>Methane conversion factor</u>. Default values of methane conversion factor (MCF) for each manure management system (MMS) used from the Table 10.17 [1]. MCF values for cattle, swine, sheep and poultry, that determined by current manure management systems, reported in Table 5.10.

Table 5.10. The kinds of manure management systems* that used in various types of live-stock owners and their methane conversion factor values

^{** –} for swine at households, in accordance with the standards [14], the amount of manure excreted in dry matter is 30 % more than for agricultural enterprises, due to the peculiarities of feeding (diets of swine at agricultural enterprises dominated by concentrated fodders, whereas in households – multi-component fodders);

^{*** –} the source of swine and poultry MDMex values is a judgment from the NAASU (№30432/10-17 on 28 Nov 2017), where they show an algorithm of its calculation according to "Departmental standards of technological design" [14-16].

Animal species	MMS type	MCF value, %
	Liquid system with natural crust cover	10
C vid. i vid. i	Solid storage	2
Cattle in agrienterprises	Pasture/Range/Paddock**	1
	Composting	0.5
	Solid storage	2
Cattle in households	Pasture/Range/Paddock**	1
	Uncovered anaerobic lagoon	66
	Liquid system with natural crust cover	10
	Liquid system without natural crust cover	17
Swine in agrienterprises	Solid storage	2
	Composting	0.5
	Aerobic treatment	0
Swine in households	Solid storage	2
Sheep	Solid storage	2
(at all types of livestock owners)	Pasture/Range/Paddock**	1
D. I	Poultry manure without litter	1.5
Poultry in agrienterprises	Composting	0.5
D 1: 1 1 11	Poultry manure without litter	1.5
Poultry in households	Pasture/Range/Paddock**	1
Buffaloes	Solid storage	2
(at all types of livestock owners)	Pasture/Range/Paddock**	1
Horses	Solid storage	2
(at all types of livestock owners)	Pasture/Range/Paddock**	1
Goats	Solid storage	2
(at all types of livestock owners)	Pasture/Range/Paddock**	1
Mules and Asses	Solid storage	2
(at all types of livestock owners)	Pit storage below animal confinements	3
Camels	Solid storage	2
(at all types of livestock owners)	Pit storage below animal confinements	3
Rabbits	Solid storage	2
Fur farming	Solid storage	2

^{* –} the manure management systems characteristic according to 2006 IPCC Guidelines [1];

<u>Manure management system</u>. The main institution that collected all kinds of agricultural data is SSSU. But SSSU do not collect MMS data (fraction of livestock category manure handled using manure management system). To estimate these data the expert judgment from National University of Life and Environmental Sciences used as an alternative source for the time series MMS values estimation (Annex 3.2.3, Table A3.2.3.2).

There is a necessity to verify this expert judgment, because ERT has some important comments to it (ARR 2019, A 11-A 13 on p. 16; ARR 2017, A 10 on p. 19, A 23 on p. 47 and other). To solve this issue, MEPR has an offer to include a relevant research study to the List of high-priority improvements. However, due to the difficult political and economic situation in the country, conducting of this study is currently impossible and its timing is unknown yet. That is why for current MMS estimation this expert judgment used as main source with only one correction*.

^{** -} emissions from manure in Pasture/Range/Paddock are reported in 3.D Agricultural Soils.

^{*} According to recommendation from «Potential Problems formulated in the course of the review of the 2015 and 2016 annual submissions of Ukraine and of the report to facilitate the calculation of the assigned amount for the second commitment period (10 September 2016)» MMS types for cattle manure managing were changed (MMS "Uncovered anaerobic lagoon", that recommended by expert judgment, was changed to "Liquid/Slurry" in accordance with official responses from several largest cattle enterprises).

This judgment based on departmental standards of technological design of livestock MMS operating on the farms and complexes [9, 11, 14-16] and used some indirect SSSU data.

Due to lack of data, the cattle and swine manure distribution by systems estimated in accordance with the following sources:

- SSSU data of the agricultural animal's livestock (Findings of cattle registry, Table No.7; Statistical reported data: "Number of agricultural animals as of January 01" [38]; Statistical bulletin: "The status of livestock in Ukraine" [13]);
- SSSU data of the statistical collection on the grouping of enterprises based on the available cattle and swine livestock (Statistical yearbook: "Animal Production of Ukraine" [10]);
 - Statistical form "NO.1-Waste";
- Departmental standards of technological design of livestock MMS operating on the farms and complexes [11, 14, 16].

Departmental standards of technological design [16] determines a cattle and swine manure management systems planning at agrienterprises. The introduction of livestock enterprises is not allowed without the simultaneous introduction of MMS, which must conform to the manure characteristic and amount of its allocation. The amount and properties of manure depend on the type, age, diet and method of animals keeping and litter using.

According to standards [16], systems for manure managing have considered with the next marks: physical composition, removal method, storing method and duration, using method.

The manure with litter, manure without litter and slurry manure depends according to the method animals keeping.

Manure removal is carried by mechanical (conveyors, scraper installations, bulldozers) and hydraulic (uninterrupted gravity-flowing and periodic gravity-flowing systems) methods. Their using depends on period of manure storage, and animals keeping and feeding.

The storage period of all types of manure depends on the structure, humidity and technology of its storage and is 4–8 months for cattle manure and 8–12 months for swine manure.

Cattle and swine manure mostly used as natural fertilizer, and for biofuels production.

The choice of cattle and swine manure managing system is determined by the specific feasibility study and finally is a typical indicator of farm specialization and capacity. Values of cattle and swine manure, that handled in each MMS, reported in Annex 3.2.3 (Table A3.2.3.8).

Cattle and swine enterprises have several directions: dairy (only for cattle), beef, pregnancy/maternity, breeding etc. However, it is typically, that agricultural enterprises have a combined specialization, where these directions are combined. As a result, several manure managing systems can simultaneously use in a particular farm. But, only one specialization is a basic direction and defines the type of farm main manure managing system (other types of system can be ignored).

A farm capacity, except their specialization, is another criterion for MMS determination. Feasibility study determines [11, 14, 16] operating conditions of farms with different capacity (Table 5.11). SSSU provides a specific classification of cattle and swine enterprises (Annex 3.2.1.4, Table A3.2.1.4.1) in accordance with their capacity (they are grouped to simplify the report).

A judgment analysis states that manure storage practices at agricultural enterprises is significantly differ from manure storage practices at households (Table 5.10). Thus, the agricultural enterprises mainly comply with the practice of manure storage in the liquid and in solid forms, and in the private sector manure is only stored in the solid form in clamps or remains in pastures. In this regard, the data for these categories of farms estimated separately.

Solid and liquid systems, composting, and pasture/range/paddock are typical for cattle manure managing at agrienterprises. Manure stored in unconfined piles or stacks for a several months processed in solid systems. That manure fraction, which stored as excreted or with some minimal addition of water in either tanks or earthen ponds without mixing, is processed in liquid systems. According to expert judgment (No25334/10-16 on 11 Oct 2016), the period of manure storage in liquid systems is mainly up to 6 months.

Swine manure at agrienterprises managed in solid and liquid systems, by composting and aerobic treatment or uncovered anaerobic lagoons. There is typical manure specification for solid and liquid systems. Liquid manure with either forced or natural aeration or without aeration in lagoons properly stored in aerobic (aerobic treatment) and anaerobic (uncovered anaerobic lagoons) lagoons.

Table 5.11. Cattle and swine manure managing systems harmonization with the farm capac-

ity [16]

Farm capacity	Manure removal system [16]	Manure managing system [1]	Note
Cattle at agrienterprises			
No more than 999 heads	Mechanical	Solid storage	Stable and stable-pasture types of cattle keeping with application of litter; outdoor keeping; calves keeping; maternity
More than 999 heads	Hydraulic	Liquid system	Cattle keeping without litter; silage, root crops, bard, pulp and green mass used for feeding
Swine at agrienterprises			
No more than 4999 heads	Mechanical	Solid storage	Swine keeping with litter; keeping technology provides, that feeding waste (mainly stems and tops) mixed with manure; maternity
5000-5999 heads	Hydraulic	Liquid system	Liquid and dry compound feeds used for feeding (without silage and green mass); keeping technology provides, that any feeding waste don't mix with manure
More than 5999 heads	Hydraulic	Uncovered anaerobic lagoon / Aerobic treatment	Liquid and dry compound feeds used for feeding (without silage and green mass); keeping technology provides, that any feeding waste don't mix with manure; accumulates for biofuel production

It is country specific that solid systems and pasture/range/paddock used for cattle and only solid systems – for swine manure managing at households.

At agricultural enterprises, poultry manure usually removed mechanically by a belt conveyor or a delta transporter in case the poultry kept in coop, and with the help of a bulldozer in case of floor keeping, and it is stored in piles or manure pits in the solid form.

For other types of animals (sheep, buffaloes, horses, goats, rabbits, fur-bearing animals, camels, mules and asses), there is also the common practice of manure management in the solid storage, pit storage below animal confinements, and pasture/range/paddock.

Manure in households is kept exclusively in clamps with litter (straw, sawdust, peat), or remains in paddocks. After several months of storage, the rotten manure brought to the field [17]. Therefore, the livestock and poultry manure rate by the MMS in households estimated according to expert estimation.

Duration of the grazing period depends on the regions where farm animals kept, while the average for Ukraine is 165 days [18]. According to [9, 11, 14-16], approximately 50 % of the annual amount of cattle and poultry manure remain on pasture, range or paddock. The same value for the amount of manure on pasture, range or paddock used in the calculations for goats, horses, and buffaloes (expert judgment from National University of Life and Environmental Sciences). As a fact that the majority of sheep, camels, mules and asses kept in Steppe, which have a high enough average annual temperature, the calculations reflect the fact that 74 % of the annual amount of sheep manure and 92 % of camels, mules and asses manure remain on pasture, range or paddock (the IPCC default data on distribution of manure of these animals by systems are representative for the Ukraine conditions).

5.3.2.2 Nitrous oxide and NMVOC emissions from Manure Management

5.3.2.2.1 Nitrous oxide emissions from Manure Management

Direct and indirect emissions estimated for a full N_2O evaluation from manure management systems (Annex 3.2.9, Table A3.2.9.2).

Research paper "Development of the method to estimate and determine methane and nitrous oxide emissions as a result of manure management of animal and poultry: the final report on completion of the II (second) phase of the research work" [12] was conducted to evaluate national opportunities for estimation of N₂O emissions from manure management. This paper recommends the IPCC methodologies, some national methodological approaches, country specific and default EF.

Direct N_2O emissions from manure management systems

Direct N₂O emissions from MMS estimated according to Equation 10.25 [1]. Thus, the estimate of nitrous oxide emissions in this category requires determination of the following indicators: livestock of cattle and poultry; amount of Nex in the composition of animal manure; shares of animal manure distribution by MMS; emission factors for each MMS.

Default [1] nitrous oxide EF from MMS reported in Table A3.2.8.5 (Annex 3.2.8).

The information base on the population of animals for N₂O emissions estimation (Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3) are statistical materials (Findings of cattle registry, Table No.7; Statistical reported data: "Number of agricultural animals as of January 01" [38]; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock in agrienterprises and household's specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

The same values of MMS for each animal group (Annex 3.2.3, Table A3.2.3.2) reported in Chapter 5.3.2.1 Methane emissions from Manure Management.

Based on the data available in Ukraine, the amount of Nex (Annex 3.2.3, Table A3.2.3.4) in manure composition of cattle sex-age groups was calculated in accordance with Equations 10.31-10.33. Cattle GE values (Annex 3.2.2, Table A3.2.2.1) for this estimation used from 3.A Enteric Fermentation (see Chapter 5.2.2.1). Crude protein fraction in diet of each cattle sex-age group calculated according to the judgment from the NAASU (№13700/10-16 on 13 Dec 2016) and reported in Table A3.2.3.7 (Annex 3.2.3). Database of milk production is SSSU source "Table No.15: Milk production", and for fat content in milk − expert judgment, which reported in Table A3.2.2.6 of Annex 3.2.2. Typical values of live weight for each sex-age cattle group reported in Annex 3.2.2 (Tables A3.2.2.3 and A3.2.2.4). These values used for "Mature Dairy Cattle", "Other Mature Cattle" and "Growing Cattle" live weight calculation (Annex 3.2.2, Table A3.2.2.2).

Fodder consumption structure (Annex 3.2.3, Table A3.2.3.6) at all livestock owners and ratio of cattle sex-age groups at agrienterprises and households are the key drivers for Nex estimation. Agrienterprises and households have a fundamental difference in the cattle diet structure. The share of concentrated and succulent fodders at agrienterprises is over 60 % (more than 30 % of each type of fodders). Other fodders share mainly not more than 10 %. Another situation is typical for households, where the share of concentrated fodders -9 %, succulent fodders -12 %, coarse fodders -30 % and other fodders -49 %.

Sheep, swine and poultry Nex estimation based on the amount of manure excreted in dry matter and the proportion of nitrogen in it. These values calculated in accordance with the Equation 5.2 and reported in Annex 3.2.3 (Annex 3.2.3, Table A3.2.3.5):

$$N_{ex} = MDM_{ex} \times fn \times 365, \tag{5.2}$$

where:

Nex – annual average N excretion per head, kg N animal⁻¹ yr⁻¹;

MDMex – amount of manure excreted by animals in dry matter, kg of dry mater day⁻¹ (Annex 3.2.3, Table A3.2.3.1);

fn – fraction of nitrogen in manure dry matter from species/group of animals, dimensionless (Annex 3.2.3, Table A3.2.3.5).

The values of the amount of manure excreted in dry matter for swine and poultry were the same as those that used in Chapter 5.3.2.1 Methane emissions from Manure Management (also, see Table 5.9). Their source is a judgment from the NAASU (№30432/10-17 on 28 Nov 2017), where they show an algorithm of its calculation according to "Departmental standards of technological design" [14-16]. The source of sheep MDMex values (Annex 3.2.3, Table A3.2.3.1) is a NAASU judgment (№13700/10-16 on 13 Dec 2016).

The values of nitrogen fractions in dry matter (Annex 3.2.3, Table A3.2.3.5) of sheep, swine and poultry manure are standard [9, 14-16, 21].

For goats (Nex = 17.987), horses (Nex = 41.282), mules (Nex = 14.235), camels (Nex = 30.098) and buffaloes (Nex = 44.384) values of annual average N excretion per head estimated in accordance with Tables 10.19, 10A-6, 10A-9 and Equation 10.30 [1]. Nex for rabbits (Nex = 8.1) takes from Table 10.19 [1].

National statistics do not provide data to determine the population of fur-bearing species before 2004 (only total number of fur-bearing animals for 1990-2003, and fur-bearing livestock by species from 2004). In accordance with the ERT's recommendation (ARR 2015, Table 5, A.12), the weighted average Nex was calculated for fur-bearing animals from 2004. Furthermore, it is possible to calculate only average Nex for 1990-2003. There was a big difference between Nex values for 1990-2003 and 2004-present. That is why Nex rates for 1990-2003 have been revised with consideration with ERT recommendation (ARR 2016, Table 3, A.9) and taken as 4.672625 kg × head ⁻¹ × yr ⁻¹. Nex values for 1990-present period reported in Annex 3.2.3 (Annex 3.2.3, Table A3.2.3.4).

The amount N excretion determination per each MMS was performed using animal livestock values, the amount of Nex per head ×yr⁻¹ and the proportion of manure processed in the corresponding system. Nex for cattle, sheep, swine and poultry was calculated on a more disaggregated level – separately for each gender and age groups of animals in the various farm's categories. This approach takes into account the characteristics of different manure management sex and age groups of animals in the agricultural enterprises and households (Table 5.10), the corresponding average annual number of livestock and Nex (Annex 3.2.3, Tables A3.2.3.4-A3.2.3.5), and MMS typical share of processed manure (Annex 3.2.3, Table A3.2.3.2).

Indirect N₂O emissions from manure management systems

Indirect N_2O emissions includes the number of emissions that have occurred as a result of GHG leaching and volatilization from MMS. There is no national factor of N losses due to runoff and leaching during solid and liquid storage. That is why, the indirect N_2O emissions estimated from MMS volatilization only.

Manure management N_2O indirect emissions estimated according to Equation 10.27, where EF_4 – default value, and $N_{Volatilization-MMS}$ calculations based on Equation 10.26 [1].

Default value of fraction of managed manure nitrogen for livestock category that volatilizes as NH₃ and NO_X in the manure management system used for *N* _{Volatilization-MMS} estimation. SSSU sources used for animal's livestock estimation. This data reported in Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3. Annual average N excretion values used from previous section "Direct N₂O emissions from manure management systems" of current chapter. The same values of MMS for each animal group (Annex 3.2.3, Table A3.2.3.2) applied in Chapter 5.3.2.1 Methane emissions from Manure Management.

5.3.2.2.2 NMVOC emissions from Manure Management

To determine emissions of non-methane volatile organic compounds (NMVOC) from manure management systems, Tier 1 method was used [22]. In accordance with the methodological guidelines, estimation of NMVOC emissions from manure carried out according to Equation 5.3 [22]:

$$E_{pollutant_animal} = AAP_{animal} \times EF_{pollutant_animal}$$
(5.3)

where:

 $E_{pollutant_animal}$ – pollutant emissions for each livestock category, tons yr⁻¹ (Annex 3.2.9, Table A3.2.9.2);

 AAP_{animal} – number of animals of a particular category that are present, on average, within the year;

*EF*_{pollutant animal} – emission factor for each livestock species/category.

The information base on the population of animals for NMVOC emissions estimation (Annex 3.2.1.2 and Tables A3.2.1.3.1-A3.2.1.3.2 of Annex 3.2.1.3) are statistical materials (Findings of cattle registry, Table No.7; Statistical reported data: "Number of agricultural animals as of January 01" [38]; Statistical bulletin: "The status of livestock in Ukraine" [13]; Statistical yearbook: "Animal Production of Ukraine" [10] and analytical study [2]. Cattle, swine, sheep, and poultry livestock at agrienterprises and household's specialization by categories performed in accordance with Tables A3.2.1.1.1 and A3.2.1.1.2 of Annex 3.2.1.1.

Table 5.12. Tier 1 EF for NMVOC by default

Liverteel	Tier 1 default EF for	NMVOC, kg AAP-1. a-1
Livestock	with silage feeding	without silage feeding
Dairy cattle	17.937	8.047
Other cattle ¹	8.902	3.602
Fattening swine ²	-	0.551
Sows	-	1.704
Sheep	0.279	0.169
Goats	0.624	0.542
Horses	7.781	4.275
Mules and asses	3.018	1.470
Laying hens (laying hens and parents)	-	0.165
Broiler chickens (broilers and parents)	-	0.108
Other poultry (ducks, geese, turkeys) ³	-	0.489
Fur-bearing animals	-	1.941
Rabbits	-	0.059
Reindeer ⁴	-	0.045
Camels	-	0.271
Buffaloes	9.247	4.253

¹ Includes young cattle, beef cattle and suckling cows

Tier 1 standardized emission factors for NMVOC used by default [34] and reported in Table 5.12.

5.3.3 Uncertainty and time-series consistency

Uncertainty assessment calculated according to Tier 1 method [1].

Uncertainty of the inventory results in this category is determined by: the population of animals; the amount of volatile solid substances and nitrogen the composition of manure; the maximum methane producing potential; manure distribution by manure management systems; methane conversion factors; nitrous oxide emission factors; emission factors for NMVOCs.

² Includes piglets from 8 kg to slaughtering

³ Based on data for turkeys

⁴ Assume 100% grazing

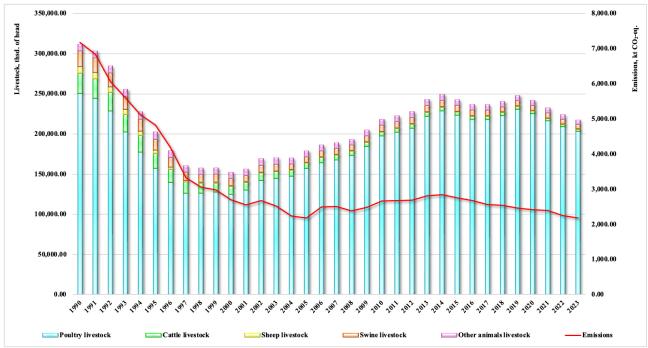


Fig. 5.8. Emission trends in category 3.B Manure Management, and those of cattle, swine, poultry and other animals' livestock

The uncertainty of statistical data on the number of cattle and poultry evaluated at the level of 6 %. According to the expert judgment, the accuracy of standards of manure and litter excretion in the dry matter, of nitrogen fractions and ASH in it, as well as of data on manure distribution by species and sex-age groups of animals in the public and private sectors corresponds to the statistic uncertainty. Default uncertainty of methane emissions factors for goats, horses, camels, buffaloes, asses and mules, as well as rabbits and fur-bearing animals is 30 % [1].

The accuracy of national data on the number of emissions of volatile solid substances and nitrogen in the composition of manure/litter of cattle, pigs, sheep, and poultry calculated based on the standards corresponds to the mark of 7 %.

Table 5.13 shows uncertainties of the input data for estimating methane emission factors from manure and their sources.

Table 5.13. The uncertainty of data for calculation of national factors of CH₄ emission from

Manure Management, %

Indicator	Measurement unit	Uncertainty	Source
Excretion of manure and litter	kg/head per day	5	State regulatory data
The proportion of ASH in manure and litter	rel. u	5	State regulatory data
The proportion of volatile solid substances and nitrogen in sheep manure	rel. u	5	Expert judgment
The maximum potential of methane emission from manure and litter	m³/kg of VS	15	2006 IPCC Guidelines
Methane conversion factor for uncovered anaerobic lagoons	rel. u	56	2006 IPCC Guidelines
Methane conversion factor for solid storage	rel. u	50	2006 IPCC Guidelines
Methane conversion factor for liquid system with natural crust cover	rel. u	42	2006 IPCC Guidelines
Methane conversion factor for pas- ture/range/paddock	rel. u	50	2006 IPCC Guidelines
Distribution of manure and litter by systems	rel. u	5	Expert judgment

The accuracy of default nitrous oxide emission factors based on [1] and constituted 55.7 %, and the estimated uncertainty of methane emission factors from manure was 20.1 %.

Estimation of methane and nitrous oxide emissions in category 3.B Manure Management in the reporting period was performed based on the same method, with the same level of detail. For activity data collection and processing for the entire time series, the SSSU applied harmonized methodologies. Fig. 5.8 shows diagrams of methane and nitrous oxide emissions from manure management, as well as that of the main types of livestock farm animals during the reporting period.

Against the background of the catastrophic decline in cattle population in the reporting period (approximately 5 times), a growth of poultry and swine population observed in recent years. Such divergent population trends are largely due to higher competitiveness of swine and poultry meat products in the market.

5.3.4 Category-specific QA/QC procedures

The general and detailed quality control and assurance procedures were applied to estimation of emissions in category 3.B Manure Management. In particular, according to the recommendations [1], a cross-check of the national values of volatile solids and nitrogen excreted during the reporting period was held by means of their comparison with the respective default values in 2006 IPCC Guidelines [1].

As part of the quality control procedures, national methane emission from manure factors were compared with the factors of Comparison of methane emission factors from enteric fermentation with emission coefficients of Central and Eastern Europe countries (Table 5.14). The main reasons of the EF's differences are the type of manure management systems and their range.

Table 5.14. Comparison of emission factors in 3.B Manure Management category*, kg/head

per year

oci year							
Emission factor	Ukraine	Federal Republic of Germany	French Republic	Republic of Austria	Czech Republic	Slovak Republic	Hungary
		3.B Manure Man	agement (meti	hane emissions)			
Mature dairy cattle	4.38	23.60	16.14	17.09	12.04	10.68	32.71
Other mature cattle **	1.27	7.77	4.68	7.03	3.75	2.15	10.83
Sheep	0.22	0.28	0.38	0.31	0.19	0.34	0.30
Swine	5.87	4.60	6.80	1.25	1.83	3.27	2.65
Other livestock	0.05	0.04	0.04	0.04	0.11	0.03	0.03
	3	.B Manure Manageme	ent (direct niti	ous oxide emiss	ions)		
Mature dairy cattle	0.33	0.61	0.68	0.79	0.63	1.49	1.11
Other mature cattle **	0.11	0.33	0.30	0.48	0.32	0.46	0.51
Sheep	0.02	0.03	0.05	0.07	0.04	0.06	0.08
Swine	0.07	0.05	0.01	0.09	0.04	0.09	0.05
Other livestock	0.002	0.002	0.002	0.003	0.004	0.003	0.004
3.B Manure Management (indirect nitrous oxide emissions)							
Atmospheric deposition	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Nitrogen leaching and run-off	NE	0.01	0.01	NO	0.01	0.01	0.01

^{*} Source: NIR of the countries, data for 2022, Ukraine – 2023 data.

The key factor determining trends of emissions from manure management of the main types of farm animals – cattle and swine – is the degree of utilization of liquid and anaerobic systems at agricultural enterprises. Moreover, a correlation analysis was conducted for national methane emission factors from manure of cattle and swine and the shares of these animals' manure by liquid and anaerobic systems for the reporting period (Fig. 5.9 and 5.10).

^{**} For reporting, Ukraine uses option B, therefore the emission factors reported for growing cattle, given its dominant share in the structure of non-dairy cattle herds.

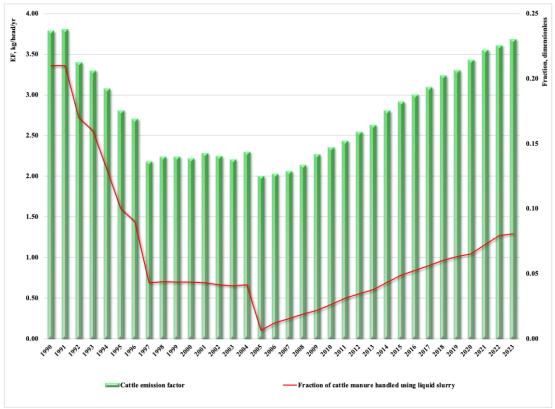


Fig. 5.9. Comparison of cattle emission factors and the shares of manure in MMS

Based on its results, it can be note that the trends of the emission factors and manure shares managed in anaerobic lagoons are closely related.

It should be noted that since 2005 (Fig. 5.9), there is a certain growth observed in the share of cattle manure in anaerobic systems in the manure management system distribution structure in the public sector (except for the last year). This pattern is due to the trend emerging in the recent years of expansion and construction of new large specialized dairy farms. Moreover, since 2006 there has been a clear trend of an increase in the share of swine manure processed in the liquid form, which is associated with the leading rate of swine population increase at large complexes with the capacity of 5,000 heads and more and manure storage systems in lagoons and manure pits in the slurry form, against the background of the total population of swine at agrienterprises.

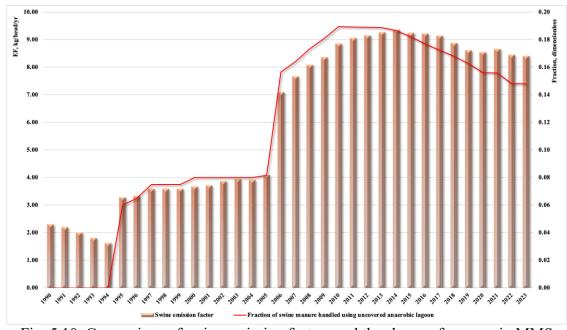


Fig. 5.10. Comparison of swine emission factors and the shares of manure in MMS

As part of quality assurance procedures, an independent expert review of the approaches and source data used to calculate emissions in category 3.B Manure Management performed.

5.3.5 Category-specific recalculations

Time series GHG emissions in 3.B Manure Management category recalculated and reported in Annex 3.2.10 (Table A3.2.10.2).

Clarification of MS values and recalculations in the 3.A Enteric Fermentation category are the reason for recalculations in the current category.

5.3.6 Category-specific planned improvements

Detailed MS data for cattle, swine and poultry in agrienterprises manure distribution are not available. Special research is required to improve report in this category. To solve this issue, MEPR has an offer to include a relevant research study to the List of high-priority improvements. This study should resolve the following issues: MS determination in accordance with 2006 IPCC Guidelines; quantitative indicators of cattle, swine and poultry manure (tones), and its distribution (%).

Due to the difficult political and economic situation in the country, conducting of this study is currently impossible and its timing is unknown yet. However, all available data collected as a preliminary stage of this study.

5.4 Rice Cultivation (CRT category 3.C)

5.4.1. Category description

Rice cultivation is one of minor methane sources in Ukraine (Annex 3.2.9, Table A3.2.9.3). This fact explains the negligible GHG in category 3C Rice Cultivation (Table 5.15).

The annual amount of methane released from rice cultivation areas [1] depends on factors such as the area of rice fields, rice variety, the number of harvests, the duration of the culture cultivation, the water regime before and during the period of cultivation, the fertilization system, soil type, temperature. The key factor that affects the emissions volume is the area of rice fields (Annex 3.2.4, Table A3.2.4.1).

Table 5.15 Review of category 3C Rice Cultivation

Catagomi	Method ap-	Emission	Gas	The key	Emissio	ns, kt	Trend,
Category	plied	factor	Gas	category	1990	2023	%
Rice Cultivation	T1	D	CH ₄	No	8.66	1.69	-80.48

In Ukraine, areas of rice fields are negligible. They were the lowest in 2022 and amounted to 1,400 hectares, and the largest – in 2011, 29,600 ha. In general, Ukraine has reducing rice cultivation areas. Changes in the rice harvesting areas directly cause the dynamics of methane emissions in the entire time series (Fig. 5.11) and determine the trend.

A sharp reduction in harvested rice acreage in 2014-2023 was due to absence of activity in the Autonomous Republic of Crimea and Kherson region.

5.4.2 Methodological issues

Methane emissions from rice cultivation were calculated according to Tier 1 of the 2006 IPCC Guidelines [1] based on SSSU data (Annex 3.2.4, Table A3.2.4.1) on rice harvested area and the number of organic fertilizers brought into the soil for this crop, as CH₄ emissions from rice cultivation are not the key category.

Based on information obtained from rice farms, rice fields in Ukraine characterized as constantly flooded ones. The commonly used types are those where the vegetation period is 120 days. Rice harvested once a year. Soil types used for rice cultivation – alkaline and brownstone alkaline.

Compost used as an organic fertilizer for rice (fermented fertilizers). Data on application of organic fertilizers for rice in 1991-1992 and 1994-1995 are not available from statistics, so the interpolation method was applied (Annex 3.2.4, Table A3.2.4.1).

A basic Equation 5.1 [1] used for calculations, and an adjusted daily emission factor (Annex 3.2.8, Table 3.2.8.6) was determined based on Equation 5.2 [1] of the 2006 IPCC Guidelines.

As a start point for calculations of the adjusted daily emission factor, the basic emission factor for fields without flooding for less than 180 days prior to rice cultivation and those continuously flooded during the rice cultivation period without organic fertilizers (EF_c) used. Its default value is 1.30 kg of CH₄ ha⁻¹ per day (with the error range of 0.80 - 2.20, Table 5.11 of 2006 IPCC Guidelines) [1].

Several factors used for calculations:

- scaling factor to account for differences in water regimes during the cultivation period (SF_w) used as default data from Table 5.12 [1];
- scaling factor to account for differences in the water regime before the season, before the cultivation period (SF_p) from Table 5.13 [1];
- scaling factor both for the type and amount of organic fertilizers applied (SF_o) that was calculated according to Equation 5.3. (Table 5.14) [1].

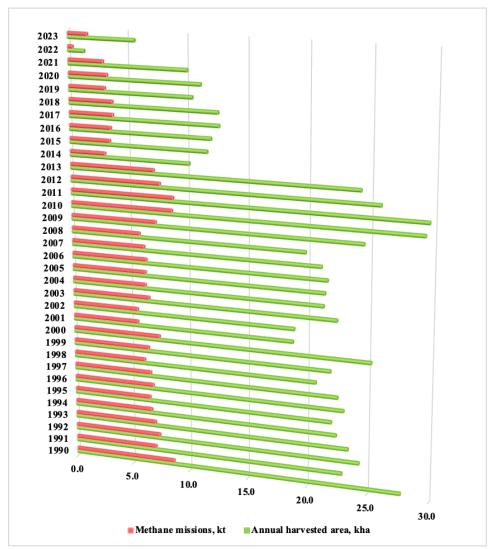


Fig. 5.11. Methane emissions and harvested area values fluctuation in 3C Rice Cultivation category

The input data, which used for methane emissions estimation from rice cultivation, reported in Table 5.16.

1990 1995 2000 2005 2010 2015 Indicator 2020 2023 The baseline emission factor for continuously flooded fields without organic fertiliz-1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 ers (EFc), kg of CH4 ha-1 per day The scaling factor to account for differences in water regime during the cultivation period 1 1 1 1 1 1 1 1 (SF_w) The scaling factor to account for the differ-1.9 1.9 1.9 1.9 1.9 ences in water regime in the pre-season be-1.9 1.9 1.9 fore the cultivation period (SF_p) The scaling factor should vary for both type 1.0021 1.0000 1.0000 and amount of organic amendment applied 1.0544 1.0132 1.0009 1.0000 1.0000 The adjusted daily emission factor for a particular harvested area (EF_i), kg of CH₄ ha⁻¹ 2.60 2.50 2.48 2.47 2.47 2.47 2.47 2.47 The cultivation period of rice (t), days 120 120 120 120 120 120 120 120

Table 5.16 Activity data for estimation of methane emissions from rice cultivation

5.4.3 Uncertainty and time-series consistency

Uncertainty estimation performed on base of Tier 1 method according to the methodology set out in Section 5.5.4, Volume 4 of the 2006 IPCC Guidelines [1].

The sources of uncertainty related to methane emissions from rice cultivation are various indicators (Table 5.17).

Table 5.17. Uncertainties in category 3.C Rice Cultivation

Indicator	Uncertainty, %
The scaling factor should vary for both type and amount of organic amendment applied (SF_o)	35.0
The baseline emission factor for continuously flooded fields without organic fertilizers (EF_c)	47.0
The scaling factor to account for differences in water regime during the cultivation period (SF_w)	23.0
The scaling factor to account for the differences in water regime in the pre-season before the cultivation period (SF_p)	14.0
The adjusted daily emission factor for a particular harvested area (EF_i)	15.14
The cultivation period of rice (t)	5
The annual rice harvested area (A)	6

To calculate the uncertainty of the conversion factor for compost, the basic emission factor for continuously flooded fields, the scaling factor to account for water regimes differences during the period of rice cultivation, and the scaling factor to account for differences in water regimes before the season, before the cultivation period, the corresponding error ranges used from Tables 5.11-5.14 of the 2006 IPCC Guidelines [1].

Over the entire reporting period, the same approach to collection of the basic information applied, and calculation of GHG emissions held on based of Tier 1 procedure from the 2006 IPCC Guidelines [1], which allowed forming consistent time series.

5.4.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of methane emissions as a result of rice cultivation.

Comparison of data on rice harvested areas with the same values used for estimation of emissions in the LULUCF sector showed that these data coincide.

5.4.5 Category-specific recalculations

Any recalculations of GHG emissions performed in the category 3C. Rice Cultivation.

5.4.6 Category-specific planned improvements

Any improvements planned in this category.

5.5 Agricultural Soils (CRT category 3.D)

5.5.1. Category description

Nitrous oxide emissions from soils occur naturally as a result of the microbial processes of ammonification, nitrification, and denitrification. However, application of nitrogenous fertilizer (nitrogen fertilizers, manure, crop residues) contributes into an increase in the amount of nitrogen involved in the processes of ammonification, nitrification, and denitrification, and ultimately – amount the N_2O emitted [23]. N_2O emissions in category 3.D Agricultural Soils reported in Table A3.2.9.4 of Annex 3.2.9 (also see Table 5.18).

Table 5.18. Review of category 3.D Agricultural Soils

Catagoriu	Method	Emission	Gas	The key cat-	Emissions, kt		Trend,
Category	applied	factor	Gas	egory	1990	2023	%
3.D.1.1 Inorganic N Fertilizers	T1	D	N ₂ O		28.89	19.81	-31.43
3.D.1.2 Organic N Fertilizers	T1	D	N ₂ O		8.46	2.26	-73.30
3.D.1.3 Urine and Dung Deposited by Grazing Animals	T1	D	N ₂ O		10.76	2.81	-73.85
3.D.1.4 Crop Residues	CS	D	N ₂ O	Level/Trend	46.26	30.05	-35.04
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	T2	D	N ₂ O		NA	9.99	
3.D.1.6 Cultivation of Organic Soils	T1	D	N ₂ O		5.99	5.93	-1.07
3.D.2.1 Atmospheric Deposition	T2	D	N ₂ O	Level/Trend	7.07	3.63	-48.71
3.D.2.2 Nitrogen Leaching and Run-off	T1	D	N ₂ O	Level/ Helid	20.16	14.32	-28.98

During the observation period, there was redistribution of the share of emissions among sources in category 3.D Agricultural Soils (Fig. 5.12).

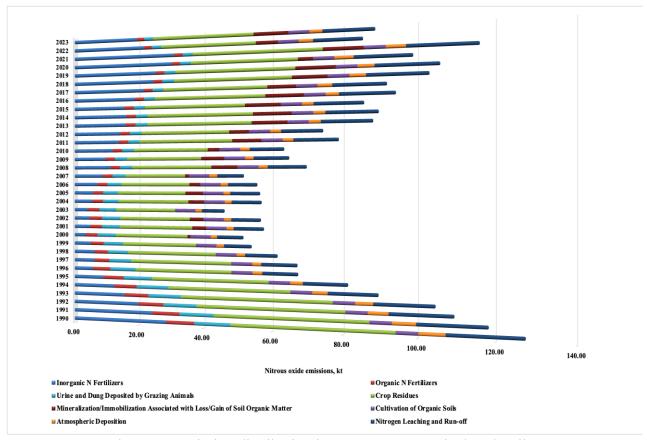


Fig. 5.12. Emission distribution in category 3.D Agricultural Soils

The key reasons for redistribution of shares of emissions in the category are the increase in emissions from crop residues and the reduction in other GHG sources, especially use of inorganic N fertilizers.

5.5.2 Methodological issues

5.5.2.1 Direct nitrous oxide emissions from agricultural soils

Sources of direct nitrous oxide emissions are [23]:

- application inorganic N Fertilizers (F_{SN});
- application organic N Fertilizers (F_{ON});
- urine and dung deposited by grazing animals (F_{PRP});
- crop residues, including nitrogen fixation (F_{CR});
- N mineralization associated with loss of soil organic matter resulting from change of land use or management of mineral soils (F_{SOM});
 - cultivation of organic soils (Fos).

Research paper "Development of the method to estimate and determine nitrous oxide emissions from agricultural soils: the final report on completion of the II (second) phase of the research work" [23] conducted to evaluate national opportunities for estimation of N₂O emissions from agricultural soils. This paper recommended IPCC methodology [1], some national methodological approaches and default EF's (Annex 3.2.8, Table A3.2.8.7).

Direct emissions of N₂O estimated in accordance with Equation 11.1 from 2006 IPCC Guidelines [1].

Annual direct N_2O -N emissions from N inputs to managed soils

To calculate annual direct emissions of N_2O -N as a result of nitrogen application to managed soils, Equation 11.1 [1] used.

This equation will provide the values of F_{SN}, F_{ON}, F_{CR} and F_{SOM} for rice and the other crops. Activity data for determining the annual amount of inorganic N fertilizers, organic N fertilizers, N of crop residues and the N of mineralized soils for crops (and separately rice) are given in appropriate forms and SSSU bulletin and the results of analytical study [2].

According to Equation 11.1 [1], the indicators of the annual amount of nitrogen from inorganic fertilizers and manure, compost, sewage sludge and other organic nitrogen-containing additives brought under rice and the annual amount of nitrogen in crop residues of rice allocated separately and marked as FR.

<u>Synthetic fertilizer</u>. Nitrogen emissions from application of nitrogen fertilization calculated according to method that based on data from the statistical bulletin: "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] and analytical study [2]. FAO data (http://fao-stat.fao.org) and interpolation (Annex 3.2.5, Table A3.2.5.2) used for the years for which there are no statistical data (1991-1992 and 1994-1995). For managed soil application several types of synthetic N fertilizers used in Ukraine: ammonium hydroxide, calcium nitrate, ammonium nitrate, sodium nitrate, urea and others. However, SSSU provide only total annual amount values of these synthetic fertilizers (without their division into species) in 1990-2017 and from 2018 reports more detailed data where includes main kinds of simple and complex N fertilizers. The calculation of the annual amount of inorganic N fertilizers does not provide accounting losses of nitrogen in the ammonia and NO_X compounds form as the correction occurs during the EF determination [1].

Organic fertilizer. The annual amount of manure, compost, sewage sludge, and other organic nitrogen-containing additives introduced into soils was determined based on Equation 11.3 [1]. It should be noted that organic fertilizers (F_{ON}) consist only from annual amount of animal manure N (F_{AM}) and compost N (F_{COMP}; N₂O emissions from applied to soils compost N are reported in CRT Table 3.D as "[3. Agriculture] [3.D. Agricultural soils] [3.D.1. Direct N₂O emissions from managed soils] [3.D.1.b. Organic N fertilizers] [3.D.1.b.iii. Other organic fertilizers applied to soils]"). Since 2018, SSSU has changed the reporting form and more detailed data on the amount of applied organic fertilizers by the types (silt and sapropel, peat and its substrates, other types of organic fertilizers) has become available. However, similar data for 1990-2017 are still unavailable.

The annual amount of nitrogen in introduced into soils manure determined by Equation 11.4 [1]. Calculation of the amount of nitrogen in treated manure introduced into the soil, used for feeding, as fuel, or in construction based on Equation 10.34 [1]. National statistics do not keep records of the amount of treated manure used for feeding, construction, and as fuel, so Frac Feed, Frac Fuel, and Frac CNST not used for $N_{MMS\ Avb}$ estimation.

Estimation of the amount of N in the managed manure, which inputted into the soil, carried out without considering Composting MMS as compost taken into account when calculating the annual total amount of N in the compost F_{COMP} .

Moreover, the SSSU does not collect a data of the amount of N in sewage that introduced into soils (F_{SEW}). Also, they do not have a data on the amount of other organic improvers that used as fertilizers (F_{OOA}). Thus, these figures were not taken into account for estimation of the annual amount of manure, compost, sewage sludge, and other organic nitrogen-containing additives introduced into soils (F_{ON}).

Nitrogen, which inputted with the compost, taken into account only in F_{COMP} . Thus, the total annual amount of N in the compost F_{COMP} includes a compost that produced from plant residues and compost obtained through the managed manure.

The amount of N in compost that applied to soils calculated according to Equation 10.25 [1] using the values and the coefficient for the Composting MMS.

<u>Crop residues</u>. Estimation of nitrogen in crop residues carried out according to the national methodology, based on data on the biomass of plant residues plowed into the soil and the nitrogen content in them. Estimations of the amount of crop residues plowed into the soil carried out based on Levin's method quoted in the research paper [25] on the base of yield data for the key agricultural crop products. The amount of crop residues in crop sowed depends on biological properties of the

cultivated plants, ecological (mainly soil and climate) conditions, the agricultural technologies and productivity levels, ways of sowing, seeding rates, and a number of other reasons. Therefore, when conducting the research, the results of which shown in Levin's paper, an attempt made to take into account the factors indicated above. For that sake, regression equations developed to determine the mass of plant residues based on the key product yields. The dependence of the amount of plant residues on crop growth is not always straightforward, so the biomass structure and the equations calculated for two yield levels – high and low. The advantage of Levin's method is that it provides for not only determination of the mass of side-products (hay, straw, tops, etc.) and surface residues (stubble) of crops, but also the mass of roots, making it possible to more comprehensively account for nitrogen in crop residues returned to soil. The values of the amount of plowed in side-products, stubble, and roots (in kilograms per hectare) for each crop calculated using the regression equations were then multiplied by the corresponding proportions of nitrogen and the total harvested area under the crop to assess the volume of nitrogen mineralized in soils in composition of plant residues in the national scope.

The number of side-products entering the soil was accounted for based on findings of the studies that showed that plowed in side-products are those of corn for grain, soybeans, potatoes, vegetables, sunflowers, as well as food and fodder melons. Straw, tops, and other side-products of other agricultural crops are harvested as forage or bedding for animals.

Estimation of nitrogen emissions as a result of crop residue return into soil was performed based on Equation 5.4 [25]:

$$F_{CR} = \sum_{i} \{ [(a_i \times P_i + b_i) \times f_{ai} \times (1 - Frac_{Remove}) + (c_i \times P_i + d_i)] \times f_{ai} + (x_i \times P_i + y_i) \times f_{ri} \} \times S_i \times 10^2$$
(5.4)

where:

i – agricultural crop type index;

 P_i – yield of crop i, kg ha⁻¹;

 S_i – total harvested area under crop i with correction to the area that affected by the fires, ha;

 a_i and b_i – regression coefficients for side-products of crop i;

 c_i and d_i – regression coefficients for surface residues of crop i;

 x_i and y_i – regression coefficients for roots of crop i;

 f_{ai} – the proportion of nitrogen in the mass of side-products and surface residues of crop i, rel. u;

 f_{ri} – the proportion of nitrogen in the mass of roots of crop i, rel. u;

 EF_I – nitrous oxide emission factor for mineralization of plant residues in soil, kg of N₂O-N kg⁻¹ N;

Frac_{Remove} – the number of side-products residues of a crop removed for feeding, bedding, and construction, kg of N kg⁻¹ of N;

44/28 – the stoichiometric ratio between nitrogen content in N₂O-N and N₂O.

The values of yield and total harvested area of agricultural crops taken from the Statistical bulletin: "The area, gross harvesting and yields of crops, fruits, berries and grapes" [26] and analytical study [2]. The statistical bulletin contains data on all agricultural enterprises whose activities aimed at production of marketable agricultural products.

The estimations assumed that about 25 % of harvested areas under perennial grasses and herbage of cultivated pastures and hayfields renewed annually [27]. Similarly, to herbs, it assumed that each year 50 % of areas under biennial vegetables for seeds are renewed.

The sources of data on nitrogen fractions in underground and above-ground residues of most crops were national publications [17, 28-30]. For melons, coriander, broad beans, chick-peas, lathyrus and mung bean, spring rye, rice, barley, rape seeds, mustard and camelina, tobacco and wild tobacco, castor-oil beans, soybeans, sorghum, beans, and lupine data on nitrogen content were used in accordance with [1] or based on expert judgment.

For the crops where Levin's method offers no regression coefficients, the same data for biologically similar crops used. The information base for determining taxonomic similarity of crops was

the reference book for identification of crop plants [31-32]. In particular, for soybean, vicia, beans, lupine, broad beans and chick-peas, lathyrus, mung bean data on pea (the legume family) used, for spring rye – data on winter rye were used, for rice – barley data, for sorghum – data on millet (the family of cereals), for crown flax – data on flax-fiber (the flax family), for tobacco and wild tobacco – potato data (the Solanaceae family), for rape seed, mustard, and camelina – data on annual grasses (the cruciferous family). In the absence of regression coefficients for the food and feed melons (the gourd family), the calculation based on vegetables. For vegetables, regression coefficients for coriander (Umbelliferae) used. Castor (the Euphorbiaceae family) correlated with sunflower (oilseed crops). In hayfields and managed pastures in the general herbage, there are perennial gramineous and leguminous grasses, so the corresponding regression coefficients used in the estimations.

Fires events stratified by timing of burning: before or after crop harvesting. If fires occurred before the crops have been harvest that is accounted by SSSU in the Statistical bulletin [26], where areas and yield of harvested crops reported. In the case of fires after crop harvest, regional departments of the SESU provided data of areas, which used for harvested area adjustment.

Regression coefficients depending on the crop yields, as well as the proportion of nitrogen in side-products, stubble and roots reported in Table A3.2.5.3 (Annex 3.2.5).

In the inventory, it assumed that the entire nitrogen accumulated by nitrogen-fixing rhizobia in roots of legumes accounted for when estimating emissions from mineralization of plant residues in soil.

<u>Mineralized N</u>. Country specific C:N ratio of the soil organic matter and ΔC used for F_{SOM} estimation according to Equation 11.8 [1]. More detail information about F_{SOM} estimation reported in Chapter 6.3 and Annex 3.3.2.

For N₂O-N_{N Input} direct emissions, calculation default factors used from 2006 IPCC Guidelines [1].

Annual direct N_2O -N emissions from managed organic soils

The 2013 Wetlands Supplement contains updated EFs for direct N_2O emissions from drained organic soils in all land use. However, country specific AD not harmonized with 2013 Wetlands Supplement EFs. That is why estimation of GHG emissions from managed organic soils can based only on 2006 IPCC Guidelines.

The annual direct emissions of N_2O -N from cultivated organic soils calculations based on histosols area data and default EF (Table 11.1 of 2006 IPCC Guidelines) according to Equation 11.1 [1].

Data on areas of peat soils covering all of their types obtained from the State Agency of Water Resources of Ukraine. They are the most reliable ones, because they are based on information obtained directly the regional offices (Annex 3.2.5, Table A3.2.5.4).

Annual direct N₂O-N emissions from urine and dung inputs to grazed soils

Emissions of N_2O -N from animal manure on pastures (N_2O - N_{PRP}) estimated in accordance with Equation 11.1 [1]. In general, the methodology for estimating emissions in this category is similar to calculation of emissions from the other systems within category 3.B Manure Management. However, since manure from animals on pasture remains unharvested, emissions from this source should be estimated under category 3.D Agricultural Soils.

The annual amount of nitrogen from urine and litter deposited on pasture, range, and paddock by grazing animals was calculated according to Equation 11.5 [1], which is based on use of national data on the amount of $N_{\rm ex}$ in the MMS composition of manure (see Chapter 5.3.2).

The amount of nitrogen excreted in manure composition of species/category of cattle, sheep, swine, and poultry (N_{ex}) was calculated based on the amount of manure excreted in dry matter and the proportion of nitrogen in it using the Equations (10.31-10.3 from [1] and 5.2), as presented above (see Chapter 5.3.2.2.1) and reported in Tables A3.2.3.4-A3.2.3.5 of Annex 3.2.3.

The applied values of the proportion of total annual nitrogen emissions for each cattle species/category, which remains on pasture or paddock (MMS _(T, PRP)) were the same as in 3.B.1 Manure Management (methane emissions) category (see Annex 3.2.3, Table A3.2.3.2).

To estimate the emissions of N_2O -N from animal manure on pastures (N_2O - N_{PRP}), a default EF for N_2O emissions from nitrogen in urine and manure left by animals on pasture, range, and paddock was used [1].

5.5.2.2 Indirect nitrous oxide emissions from agricultural soils

Research paper "Development of the method to estimate and determine nitrous oxide emissions from agricultural soils: the final report on completion of the II (second) phase of the research work" [23] conducted to evaluate national opportunities for estimation of N₂O emissions from agricultural soils. This paper recommended IPCC methodology [1], country specific and default EF's (Annex 3.2.8, Table A3.2.8.7).

In addition to direct N_2O emissions from managed soils that happen directly from soil receiving nitrogen, N_2O emissions also occur through two indirect pathways – as nitrogen deposition from the atmosphere in the form of NH_3 and NO_{X_3} , and by leaching/runoff of introduced or deposited nitrogen.

The following sources of nitrogen for indirect N_2O emissions from managed soils that occur as a result of agricultural nitrogen introduction considered next positions:

- N of synthetic fertilizers (F_{SN});
- N of organic matter that applied as fertilizer (F_{ON});
- N of urine and dung deposited on pasture, range and paddock by grazing animals (F_{PRP});
- -N in crop residues (above- and below-ground), including N-fixing crops and forage/pasture renewal returned to soils (F_{CR});
- N mineralization associated with loss of soil organic matter resulting from change of land use or management on mineral soils (F_{SOM}).

The type of N sources and their characteristic reported above in Chapter 5.5.2.1 Direct nitrous oxide emissions from agricultural soils.

Volatilization

Assessment of indirect N_2O emissions as a result of deposition from the atmosphere of nitrogen volatilized from managed soils was conducted according to Equation 11.1 [1].

Values of the annual amount of N from synthetic (F_{SN}) and organic (F_{ON}) fertilizers, and N from urine and dung left on pasture, range, and paddock by animals (F_{PRP}) calculated according to the corresponding equations, as described in Chapter 5.5.2.1 Direct nitrous oxide emissions from agricultural soils.

To estimate indirect N_2O emissions as a result of deposition from the atmosphere of nitrogen volatilized from managed soils, country specific share of nitrogen in synthetic fertilizers, which is volatilized as NH_3 and NO_X , used [33]. A spring application of synthetic N fertilizers is a widespread practice of it using, because inputting N, which inputted in autumn, leached in nitrate form. Gaseous losses of N make up 5-24 % [33] when fertilizers apply under the crop. A country specific middle value (14.5 %) of this diapason used for GHG emissions calculation (Annex 3.2.8, Table A3.2.8.7).

The share of nitrogen in organic nitrogen fertilizers introduced and nitrogen from urine and dung left by grazing animals, which volatilized as NH₃ and NO_X and the EF for N₂O emissions estimation from N volatilization taken as default values from 2006 IPCC Guidelines [1].

Leaching/Runoff

 $N_2\mathrm{O}$ emissions from leaching and runoff of introduced or deposited nitrogen estimated using Equation 11.10 [1].

As described in Chapter 5.5.2.1 Direct emissions of nitrous oxide from agricultural soils, according to the respective equations the next values are calculate:

- F_{SN} (N from synthetic fertilizers);

- F_{ON} (organic fertilizers);
- F_{PRP} (N from urine and dung deposited by grazing animals on pasture, range and paddock);
- F_{CR} (N returned to soils with crop residues, including from N-fixing crops);
- F_{SOM} (annual amount of N in mineral soils that is mineralized, in association with loss of soil C from soil organic matter as a result of changes to land use or management).

To estimate indirect N₂O emissions from leaching and runoff of introduced or deposited nitrogen, default values (Annex 3.2.8, Table A3.2.8.7) of the share of the total nitrogen added to managed soils or mineralized in cultivated soils that is lost through leaching and runoff, and EF for N₂O emissions from nitrogen leaching and runoff were applied [1].

5.5.3 Uncertainty and time-series consistency

Uncertainty assessment calculated in accordance with Tier 1 method [1].

The accuracy of emission data by source sub-categories within category 3.D Agricultural Soils depends on the AD and EF uncertainty. The uncertainty of statistical data on the amount of introduced mineral nitrogen fertilizers, crop yields, and harvested crop areas can used at the level of 6 % [2].

Table 5.19 shows uncertainties of the values nitrogen loss shares and their sources.

Table 5.19. The uncertainty of data of the fractions of nitrogen losses in category 3.D Agricultural Soils

Indicator	Uncertainty, %	Source
The fraction of nitrogen lost as NH ₃ and NO _X at application of synthetic N fertilizers into soil	66	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure storage in anaerobic lagoons	75	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at liquid systems	38	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X in solid storage	33	Value range according to data of [33] and expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure storage in other systems	33	Expert judgment
The fraction of nitrogen lost as NH ₃ and NO _X at manure introduction into soil	50	2006 IPCC Guidelines [1]
The fraction of nitrogen lost as NH ₃ and NO _X from manure on pasture	50	2006 IPCC Guidelines [1]
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Polissia	10	Expert judgment
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Wooded Steppe	35	Value range according to data of [33]
The fraction of nitrogen lost through leaching/runoff from introduced mineral nitrogen fertilizers in the Steppe	60	Value range according to data of [33]
The fraction of nitrogen lost through leaching/runoff from organic fertilizers introduced	43	Value range according to data of [33]

Uncertainties of activity data and default emission factors in category 3.D Agricultural Soils reported in Table 5.20.

The same method with the same degree of detail used for the entire time series direct emissions estimation in 3.D Agricultural Soils category. The coordinated procedures for activity data collection and processing that used at the SSSU during the reporting period ensure a good succession of time-series.

Table 5.20. Activity data and emission factors uncertainties of reporting year in category 3.D Agricultural Soils, %

Name of the emission source	Activity data	Emission factors
Direct N ₂ O emissions	3.53	84.14
Indirect N ₂ O emissions	6.20	55.90

5.5.4 Category-specific QA/QC procedures

General and detailed quality control and assurance procedures applied for estimation of direct and indirect N_2O emissions from agricultural soils. In particular, in accordance with the recommendations of [1], a comparison of data of the SSSU on the amount of N fertilizers introduced in the country with the same data from FAO was held. The comparison showed that during the years for which there is a statistical database, SSSU and FAO data on the amount of N fertilizers introduced virtually coincide for 1996-1999 (the difference is within 0.2 %) and closely coincide for 1994-1995 and 2005-2008. At the same time, for 1993, 2000-2004 and 2009-2023 these AD differ by 5-42 %, which may be due to use of the SSSU's preliminary data.

Such SSSU data as the amount of nitrogen introduced into soil as a component of fertilizer, crop yields and harvested areas are in line with the same data used in estimations for the LULUCF sector.

Moreover, the calculations performed analyzed the correlation between direct and indirect emissions, as well as between emissions from atmospheric deposition of nitrogen and leaching/runoff. The analysis showed that these data are well-agreed (the correlation coefficient in the both cases is close to one).

Assurance of the quality of direct emissions from agricultural soil estimations ensured by independent peer review of the national methodologies to estimate emissions at mineralization of plant residues by specialized experts.

5.5.5 Category-specific recalculations

Time series direct and indirect N_2O emissions in 3.D Agricultural Soils category recalculated as reported in Table A3.2.10.3 (Annex 3.2.10).

Recalculations in the 3.B Manure Management category and $\Delta C_{Mineral,\,LU}$ clarification in the LULUCF sector are the reasons for recalculations in the current category.

5.5.6 Category-specific planned improvements

Information about number of applied sewage sludge and other organic amendments are not available on database of SSSU and regional state agricultural departments. The issue of sewage sludge and other organic amendments using as an alternative type of organic fertilizer studies in the scientific articles. However, information about these studies' recommendations implementation is not available. It is planned to collect more data and improve this issue.

5.6 Prescribed Burning of Savannas (CRT category 3.E)

Estimation of GHG emissions in category 3.E Prescribed Burning of Savannas is not performed due to the fact that "Savannas" as an ecosystem does not exist in the territory of Ukraine.

5.7 Field Burning of Agricultural Residues (CRT category 3.F)

As above-mentioned in the text (Chapter 5.1), burning of agricultural residues in Ukraine is prohibited under the Code of Administrative Offenses (Art. 77-1) and the Law of Ukraine On Air Protection (Art. 16, 22).

In croplands, there are periodical fires that lead to burning of biomass from residues of various agricultural crops and, consequently, GHG emissions. The cause character of fires shows that

we have classified them as wildfires. That is why emissions from burning of agricultural residues biomass on agricultural soils accounted in Cropland category of the LULUCF sector.

5.8 Liming (CRT category 3.G)

5.8.1. Category description

The contribution of category 3.G Liming in total GHG emissions is insignificant, which allows for estimation of CO₂ emissions with Tier 1 methodology (Table 5.21; Annex 3.2.9, Table A3.2.9.5).

Table 5.21. Review of category 3.G Liming

Catagory	Method ap-	Emission	Con	The key	Emission	ns, kt	Trend,
Category	plied	factor	Gas	category	1990	2023	%
Liming	T1	D	CO_2	No	2592.08	65.95	-97.46

Emissions of carbon dioxide (CO₂) from the liming of agricultural soils (Fig. 5.13) decreased significantly over the time series.

The dynamics of emission reduction clearly demonstrate a sharp reduction from 1990 to 1991 and stabilization till 1995. From 1995 till 1997 there was the next stage of CO₂ emission reduction. The reduction of carbon dioxide emissions continued till 2003, but with smoother dynamics. Since 2004, there was a trend towards a gradual increase in the CO₂ emissions. However, in comparison with the previous year, in 2023 carbon dioxide emissions decreased by 40.05 %; this was caused by the dynamics of annual inputted liming materials (Annex 3.2.6, Table A3.2.6.1).

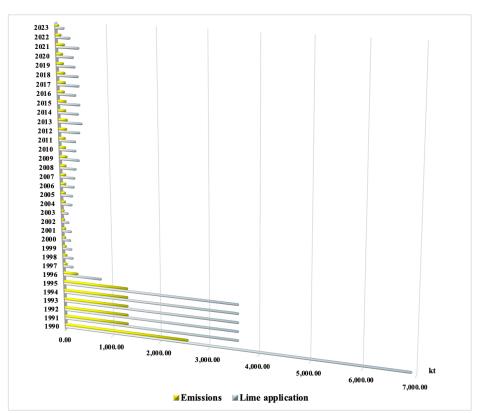


Fig. 5.13. Carbon dioxide emissions from liming of agricultural soils and their dependence on the amount of introduced liming materials

Liming used to reduce soil acidity and improve plant growth in managed systems, in particular on agricultural soils and in managed forests.

In accordance with the letters from National Academy of Agrarian Sciences of Ukraine ($N_{2}12881/5/20$ of 28.08.2020 and $N_{2}30016/10/21$ of 15.07.2021) improving the quality of acidic soils

in Ukraine is carried out by their liming with lime fertilizers. The raw materials for the lime fertilizers production are natural limestone rocks and industrial waste.

Natural limestone rocks are represented by hard (limestone, dolomite, chalk) and soft (calc-sinter, marl, clay marl, powder dolomite) rocks. Also used products of processing of natural limestone rocks – quicklime and slaked lime.

As a raw for the lime fertilizers production used some kinds of industrial waste, which contain Ca^{+2} and Mg^{+2} , such as defecation dirt, shale and peat ash, cement kiln dust, ets.

5.8.2 Methodological issues

Emissions estimation performed in accordance to Equation 11.12 of the 2006 IPCC Guidelines Tier 1 procedure [1].

The input data that used for the relevant calculations were:

- the annual amount of liming materials (Annex 3.2.6, Table A3.2.6.1);
- the active substance share;
- emission factor.

Sources of data on liming materials (lime fertilizers) that applied to acidic agricultural soils were Statistical bulletin: "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] and analytical study [2]. For those years where statistics are not available, the interpolation method used. However, national statistics do not collect a data about kinds of liming fertilizers that used for liming acidic agricultural soils (collected data only in full weight of lime materials). So, information about actual kinds of liming fertilizers, their number, which was applied, and content of inert materials in them are not available for all report period.

Two conservative judgments were made according to country specific practices of lime fertilizers application and evaluation of inert materials content in them:

- limestone fertilizers contain not less than 85 % of the active substance [19-20] and this coefficient used for estimation the amount of liming materials in weight of active matter;
- dolomite used as liming material, but its number is insignificant and it is impossible to identify/calculate it.

As the liming is performed by introduction of liming fertilizers that mostly contain $CaCO_3$, it was decided to use the default emission factor from the 2006 IPCC Guidelines to evaluate CO_2 emissions from liming, that is 0.12 [1].

5.8.3 Uncertainty and time-series consistency

The uncertainty assessment performed based on Tier 1 procedure of the 2006 IPCC Guidelines [1]. Table 5.22 shows uncertainties of AD and the EF for category 3.G Liming.

Table 5.22. Uncertainties of reporting year in category 3.G Liming

Category	Uncertainty, %
Amount of liming materials introduced	6
Emission factor	50

Estimation of direct emissions in category 3.G Liming for the entire time series carried out using the same method with the same degree of detail.

5.8.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions in category 3.G Liming. In 3.G Liming category, a well-correlated link between the AD and GHG emissions can be traced (Fig. 5.13).

5.8.5 Category-specific recalculations

Time series CO₂ emissions in 3.G Liming category recalculated as reported in Table A3.2.10.4 (Annex 3.2.10).

Clarification of annual amount of liming materials is a reason for recalculations in the current category.

5.8.6 Category-specific planned improvements

AD detailing and EF clarification are the main improvements in this category.

5.9 Urea Application (CRT category 3.H)

5.9.1. Category description

Urea (or Carbamide) – $CO(NH_2)_2$ used as nitrogen fertilizer in all soil and climatic zones of Ukraine. It attributed to the group of amide fertilizers and the most concentrated solid nitrogen fertilizer. It characterized by insignificant losses of nitrogen in soil. In soil, the amide form transformed into ammonia one, and then – into the nitrate one, which conditions its use for crops with a long vegetation season.

National characteristics of agricultural practices condition limited use of urea as a nitrogen fertilizer, which makes it possible to apply Tier 1 method (Table 5.23; Annex 3.2.9, Table A3.2.9.5).

After the economic crisis caused by the collapse of the USSR, from 1990 to 1999 there was a decline in the amount of urea used and the related emissions in Ukraine (Fig. 5.14).

Table 5.23. Review of category 3.H Urea Application

Catagomi	Method ap-	Emission	Gas The key		Emissio	Trend,	
Category	plied	factor	Gas	category	1990	2023	%
Urea Application	T 1	D	CO_2	No	568.93	446.89	-21.45

Since 2000, the amount of urea introduced into agricultural soils and, consequently, that of emissions gradually increased and in 2008 exceeded the indicators of the baseline 1990. In 2004. 2009 and 2022, the emissions decreased sharply due to unfavorable economic conditions.

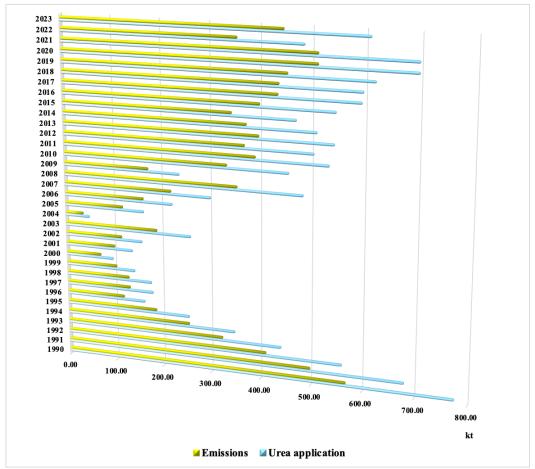
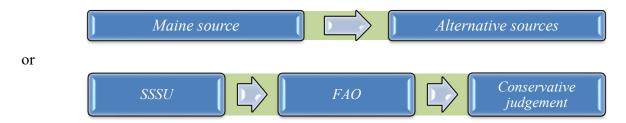


Fig. 5.14. Carbon dioxide emissions from urea application on agricultural soils and their dependence on the amount of introduced urea


5.9.2 Methodological issues

Emissions estimation performed in accordance to Equation 11.13 of the 2006 IPCC Guidelines Tier 1 procedure [1].

The input data that used for the relevant calculations are the annual amount of urea used as fertilizer (Annex 3.2.7, Table A3.2.7.1) and emission factor.

The main sources of data are the SSSU and analytical study [2]. However, SSSU do not collect a data of amount of urea that used as a fertilizer on agricultural soils during the 1990-2017 period (the statistical bulletin "The application of synthetic and organic fertilizers for harvest of agricultural crops" [24] contains this data from 2018). Therefore, alternative sources of data (FAO (http://faostat3.fao.org/download/R/RF/E), conservative judgement) used for AD collection.

AD sources ranged in the next line:

That is why for reporting period AD collected from different sources:

- 1990-2001 – estimated data – as a share (conservative coefficient, which is 0.2, according to country specific practice) of the total annual number of the applied N fertilizers in the active substance;

- -2002-2004 FAO data;
- 2005-2007 estimated data as an interpolation between 2004 and 2008;

- -2008-2011 FAO data;
- 2012-2017 estimated data as an interpolation between 2011 and 2018;
- 2018-onwards SSSU data and analytical study [2].

N content in urea as 46% used to estimate data on urea application.

Analysis of AD sources show that for 1990-2017 used only alternative sources.

SSSU and FAO reported data for 2018-2021, but these sources have some data difference (FAO reported data without decimals). However, FAO reported that these data is "Official data from questionnaires and/or national sources and/or COMTRADE (reporters)", so the SSSU data is used as the main one. This solution is in line with "AD sources range".

Urea AD include urea that applied as fertilizer on Cropland (for agricultural crops: cereal crops, leguminous crops, industrial crops, roots and tubers, vegetables, food melons, fodder crops and other) and Grassland (hayfields and cultivated pastures).

A default EF from the 2006 IPCC Guidelines to evaluate CO₂ emissions from urea application was used, which is 0.20 [1].

5.9.3 Uncertainty and time-series consistency

The uncertainty assessment performed based on Tier 1 procedure of the 2006 IPCC Guidelines [1]. Table 5.24 shows uncertainties of AD and the EF for category 3.H Urea Application.

Table 5.24. Uncertainties of reporting year in category 3.H Urea Application

Category	Uncertainty, %
Amount of urea applied	6
Emission factor	50

Estimation of CO₂ emissions in category 3.H Urea Application for the entire time series carried out using the same method with the same degree of detail.

5.9.4 Category-specific QA/QC procedures

The general quality control and assurance procedures were applied to estimation of GHG emissions in category 3.H Urea Application.

In 3.H Urea Application category, a well-correlated link between the AD and GHG emissions can be traced (Fig. 5.14).

5.9.5 Category-specific recalculations

Any recalculations of GHG emissions performed in 3.H Urea Application.

5.9.6 Category-specific planned improvements

SSSU data (data on amount of urea used as a fertilizer on agricultural soils) accumulation over the following years will provide an opportunity for AD reviewing.

6 LAND USE, LAND-USE CHANGE AND FORESTRY (CRT SECTOR 4)

6.1 Sector Overview

In the sector of land use, land-use change and forestry (LULUCF), not only greenhouse gas emissions are accounted, but also removals in land-use categories in accordance with recommendations of the Guidelines [1]. Throughout the reporting period except 2013-2016 and 2018-2019, the resulting GHG removals were observed in the sector, while in 2013-2016 and 2018-2019 the sector was a net source (Fig. 6.1).

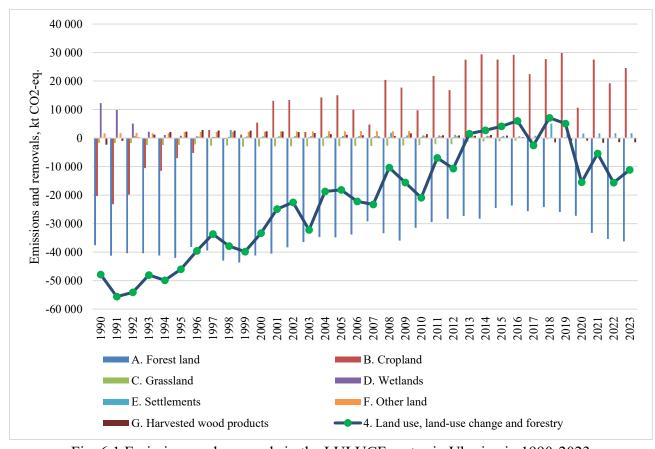


Fig. 6.1 Emissions and removals in the LULUCF sector in Ukraine in 1990-2023

The resulting values for the LULUCF sector vary from -55.7 Mt CO₂-eq. removals in 1991 to -11.2 Mt CO₂-eq. of removals in 2023 with peak of emissions (7.1 Mt CO₂-eq.) in 2018.

Land-use areas representation in GHG inventory in the LULUCF sector was performed based on Approach 2. Ukraine is currently seeking for possibilities to change activity data gathering procedure and its further processing aiming to address recommendations from the ERT. It was expected to be finalized in 2019 submission however due to technical difficulties and uncertainty of funding this is expected to be finalized later. Current NIR is prepared using previous activity data sources and approaches.

The total area of land use categories in the national statistical reporting form 16-zem was used (previously been called 6-zem) as the source data for area presentation according to IPCC classification. Table 6.3 shows total areas of land-use categories for Ukraine as a whole, which were used in construction of land-use change matrix (Table 6.4).

After subtraction of areas with anthropogenic influence from the totals of corresponding land-use categories of 16-zem statistical form unmanaged areas were derived. In CRF tables for stated

land-use categories information regarding areas is presented by components – "managed" and "unmanaged" lands, where it is required by 2006 IPCC Guidelines. Table 6.2 presents detailed information sources and how they were used during the inventory preparation.

In the land-use category Forest Land, a total GHG removal level is 23.7-43.7 Mt CO₂-eq. throughout the time series. Among different factors, which influence the trend, the most significant are:

- intensity of wood harvesting;
- frequency, intensity and the nature of fires and other disturbances of forest stands;
- change in land area converted into this category.

GHG emissions and removals trend in Cropland category varies between -23.2 Mt CO₂-eq. removals in 1991 and 24.6 Mt CO₂-eq. emissions in 2023 with the highest level of emissions in the category 29.8 Mt CO₂-eq. in 2019.

Significant Cropland category trend changes are caused mostly by CSC in mineral soils from crop grow. Particularly since 1990 there was change from 6.8 Mt C of removals to 6.4 Mt C of emissions totally in mineral soil pool. That change is caused mainly by switch of crops to more soil exhausting with lower rates of organic fertilizers application (fig. 6.2 and 6.3). Moreover, there is a variety in yield of crops harvested between years. More detailed data on AD for Cropland and Grassland categories are provided in the Annex 3.3.2.

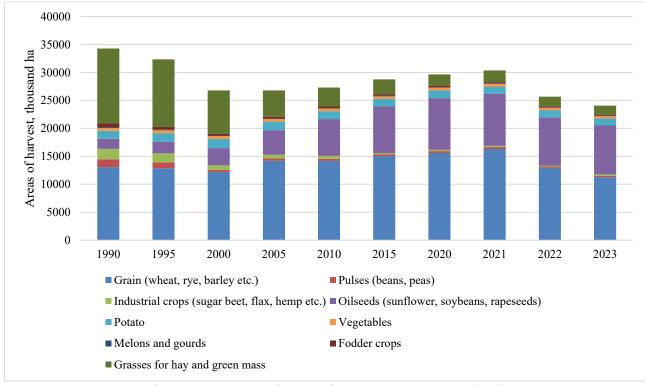


Fig. 6.2. Structure of areas of crops grown on Croplands

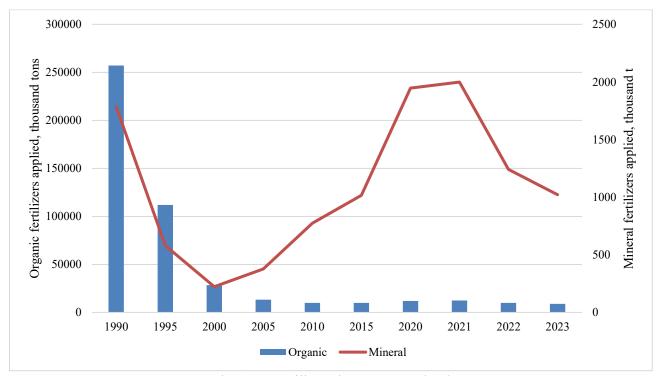


Fig. 6.3. Fertilizers input to Cropland

Grassland category is a net sink for the time series 1990-2021 with 1.7 Mt CO₂-eq. removals in 1990 with increase of removals in 1999-2003 to 2.9 Mt CO₂-eq., and then drop in removals to 0.1 Mt CO₂-eq. in 2021. In 2022-2023 the category became a net source with emissions of 79 kt CO₂-eq. in the most recent year. The most significant reasons for such trend are CSC in mineral soil pool, caused by land-use changes to Grassland category and change in areas and management of pastures and hayfields, as well as dynamics of areas of land conversions to the Grassland.

Throughout the time series since 1990, emissions in the category Wetlands decreased in line with reduction in the area of peat extraction. Significant impact on GHG emissions has peat extraction process. Since 1990 peat extraction areas, as well as amounts of extracted peat for non-energy use, has decreased by several times (Fig. 6.1 and 6.4). Consequently, the drop occurred from 12.3 Mt CO₂-eq. to 0.1 Mt CO₂-eq.

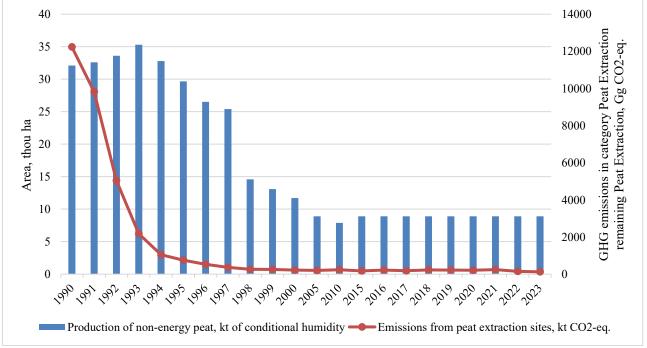


Fig. 6.4 Peat extraction areas and emissions in the category Wetlands

Emissions in categories Settlements and Other Land occur when there are land-use changes only. Due to significance of areas converted there are emissions up to 5.0 Mt CO₂-eq. in 2018 and 2.8 Mt CO₂-eq. in 2006-2009 in these categories respectively.

Indirect N_2O emissions were estimated from all land-use categories. In Ukraine those emissions occur in LULUCF sector during conversions between land-use categories.

The share of carbon in harvested wood products (category 4.G) is presented in figure 6.5.

The switch of removals to emissions within the time series is caused by reorientation of industrial roundwood use – from internal use within the country to export, which has grown from around 693 m³ in 1992 (the earliest available data) to 3.5 million m³ in 2014. Restriction of export of raw roundwood resulted in export of industrial roundwood as low as 400 m³ in 2023, while production increased from 4.7 million m³ in 1997-1999 to 8.2 million m³ in 2021. Similar trend is observed in sawnwood production: decline by around 66 % – from 7.4 million m³ in 1990 to 1.8 million m³ in 2014, but then increase to 3.2 million m³ in 2023.

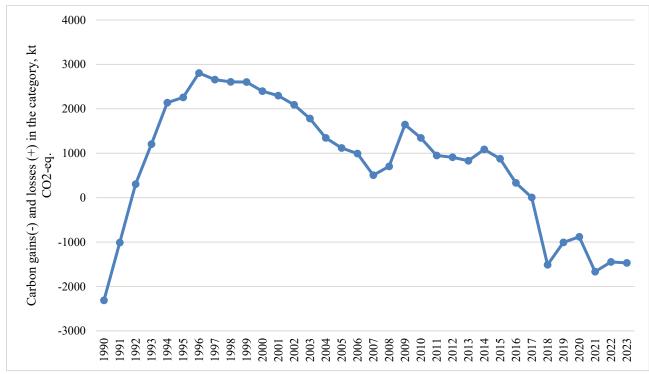


Fig. 6.5 HWP contribution into the total emissions/removals in the LULUCF sector

6.1.1 Land-use change matrix

For the GHG inventory, land-use areas representation is presented using Approach 2 according to IPCC land classification [1]:

- 1) Forest Land;
- 2) Cropland;
- 3) Grassland;
- 4) Wetlands;
- 5) Settlements;
- 6) Other Land.

Current NIR was prepared using approach and data sources as in 2017 submission. Ukraine's efforts on transition to use of remote sensing data is described in chapter 6.1.2 of NIR submitted in 2019. Unfortunately, results had low accuracy and time series consistency to be used as a main source of data for land-use change matrix.

The main source of information for this distribution of land in Ukraine is statistical reporting form No. 16-zem (previously it was 6-zem). Definitions of land-use categories adopted in the national statistical practice [2] and their alignment with those proposed in the methodology [1] are presented in Table 6.1.

It should be noted that every land use category is divided into the two components:

- land constantly remaining in the respective category (i.e., for more than 20 years);
- land converted from one category to another. By default, the land remains in this category for 20 years before moving on to the respective category [1].

Table 6.1. Land systematization in statistical reporting form No.16-zem

1 40	C 0.1. L	dia systematiza	ation in statistical reporting form No. 16-zem
Land-use category under 2006 IPCC Guidelines	Column#in form No. 16-zem	Category name	Category description
4.B. Cropland	4	Arable lands	Land systematically cultivated and used for sowing perennial grasses, as well as for bare fallow and greenhouses. "Arable land" does not include hayfields and pastures plowed for the purposes of their radical improvement and constantly used for grass forage crops for mowing hay and grazing, as well as areas between rows of gardens used for sowing
4.B. Cropland	5	Fallow lands	Land previously plowed, and later (for more than a year starting from the autumn) they were not used for planting of agricultural crops and were not prepared for conversion into the "bare fallow" category
4.B. Cropland	9	Perennial crops	Perennial plantations created to produce fruits, berries
4.C. Grass- land	7	Hayfields	Agricultural land systematically used for hay mowing, including plots covered with tree and shrub vegetation by 20% or less
4.C. Grass- land	8	Pastures	Agricultural land systematically used for grazing, including plots covered with tree and shrub vegetation by 20% or less
4.A. Forest Land	16	Forest areas, covered with woody vegeta- tion	Areas of forest plots, covered by woody and shrub vegetation with crown cover 40% in young stands and 30% in older stands of area.
4.A. Forest Land	17	Forest areas, not covered with woody vegetation	Areas of forest plots, temporarily or permanently not covered by forest vegetation (due to unevenness of landscape, forest management, natural disturbances etc.). It includes recently reforested/afforested areas, nurseries, forest roads, fire breaking open areas, open areas assigned for afforestation/reforestation and other.
4.A. Forest Land	15	Shrubs	Land covered with shrub vegetation
4.E. Settlements	25-42	Lands with buildings, in- frastructure, cemeteries and other	All land occupied by industrial facilities, built-up with residential houses, roads, mines, open extraction sites, and any other facilities established for various types of human activities, including the areas for their maintenance
4.D. Wet- lands	12, 20- 24	Open water	Marshes, lakes, rivers, artificial water bodies etc.
4.F. Other Land	10-11, 13-14	Open land without vege- tation or with little vegeta- tion	Land not included into the above categories (rocks, sand, solonchaks, and other land)

sector

Table 6.2. National statistical forms and databases used for GHG inventory in the LULUCF

Data source	Content	Category and the way of application
Land-use cat	egory Forest Land	
Database	Information on the afforestation, including the main features of species and natural areas, with the geo-coordinate pegging of the sites by forestry enterprises, with cartographic images, as well as characteristics of the anthropogenic component confirmed with documents. Based on use of: • information of the Ukrainian State Forest Inventory and Management Planning Association; • land-use change matrix for definition of the land conversion vector and the share of each of the categories in these conversions, in the national statistical practice this information is not available	4.A, 4.B.2.1, 4.C.2.1, 4.D.2.1, 4.E.2.1, 4.F.2.1. Data on the area, species composition by natural and climatic zones and territorial administrative information
3-lg	"Forest management" (annual). Contains information on amounts of harvesting from forests	4.A.
Land-use cat	regories Cropland and Grassland	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains data on the area of territories with anthropogenic activities, which are subject to reporting under the GHG inventory	4.B.1, 4.C.1.
29-sg	"Agricultural crop harvesting" (annual). The data for each of the agricultural crops grown in the reporting year includes: • areas harvested; • gross harvest in weight after processing; • crop yield	4.B.1, 4.C.1.
9-sg	"Application of mineral and organic fertilizers, gypsum and liming" (annual). The data includes: • amounts of applied nitrogen fertilizers, presented in active substance; • amounts organic fertilizers applied; • amounts of liming	4.B.1, 4.C.1.
Land-use cat	tegory Wetlands	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains totals of landuse category areas considered for the purposes of the balance of the territories, as well as operated peat extraction areas	4.D.1
1-Π	"Industrial production in Ukraine". Contains data on peat obtained from peat extraction, which is used in agriculture	4.D.1
Land-use cat	egory Settlements and Other Land	
F16-zem	"Report on availability of lands and their distribution by land owners, land users, land plots, and economic activities" (annual). Contains totals of landuse category areas considered for the purposes of the balance of the territories	4.E.1, 4.F.1

Table 6.3. Areas of land-use categories (based on reporting form No. 16-zem), kha

Year	Forests and other forest-covered areas	Agricultural land (except hayfields and pastures)	Hayfields and pastures	Open wet- lands and inland wa- ters	Settlements	Open land with- out vegetation and with special vegetation
1990	10221.5	35847.3	7232.2	3319.1	2420.3	1314.5
1991	10248.2	35731.2	7329.6	3337.3	2409.2	1299.4
1992	10306.6	35897.9	7311.8	3338.0	2308.2	1192.4
1993	10331.0	35706.2	7473.2	3340.4	2386.2	1117.9
1994	10352.2	35639.6	7504.2	3347.8	2403.2	1107.9
1995	10357.8	35605.5	7523.9	3353.5	2312.7	1201.5
1996	10372.0	35478.8	7628.8	3350.7	2334.4	1190.2
1997	10380.2	35328.6	7773.0	3355.4	2336.9	1180.8
1998	10397.6	35277.9	7789.6	3372.2	2442.0	1075.6
1999	10403.3	35229.1	7838.1	3372.2	2457.4	1054.8

Year	Forests and other forest-covered areas	Agricultural land (except hayfields and pastures)	Hayfields and pastures	Open wet- lands and inland wa- ters	Settlements	Open land with- out vegetation and with special vegetation
2000	10413.6	35147.9	7910.0	3370.7	2456.2	1056.5
2001	10426.2	35115.2	7924.4	3374.2	2449.4	1065.5
2002	10438.9	35083.6	7938.8	3372.8	2463.0	1057.8
2003	10457.5	35040.5	7968.4	3374.0	2459.3	1055.2
2004	10475.9	35017.7	7968.2	3378.2	2458.3	1056.6
2005	10503.7	34992.1	7950.6	3382.9	2467.5	1058.1
2006	10539.9	34954.7	7938.9	3391.1	2470.2	1060.1
2007	10556.3	34935.5	7933.5	3397.4	2476.6	1055.6
2008	10570.1	34926.8	7918.1	3400.5	2489.0	1050.4
2009	10591.9	34914.2	7899.6	3402.6	2499.1	1047.5
2010	10601.1	34899.0	7892.9	3403.4	2512.5	1046.0
2011	10611.3	34890.9	7886.0	3402.9	2523.2	1040.6
2012	10621.4	34885.9	7870.1	3403.1	2535.2	1039.2
2013	10624.4	34888.9	7855.6	3404.5	2542.6	1038.9
2014	10630.3	34883.2	7848.3	3409.0	2550.4	1033.7
2015	10633.1	34885.9	7840.5	3408.7	2552.9	1033.8
2016	10663.8	34875.3	7833.8	3408.7	2561.6	1011.8
2017	10675.0	34869.6	7820.9	3408.7	2577.6	1003.2
2018	10685.6	34952.0	7577.0	3406.7	2827.7	905.9
2019	10686.8	34977.3	7534.2	3398.1	2858.4	900.1
2020	10689.3	34987.1	7506.3	3398.1	2881.9	892.2
2021	10692.5	34996.9	7478.4	3398.1	2905.3	883.8
2022	10694.5	35006.6	7450.5	3398.1	2928.7	876.5
2023	10700.4	35016.4	7422.6	3398.1	2952.1	865.2

The national statistical system currently does not reflect the actual change in land-use categories and the nature of the change of management practices for the lands that are part of the land-use categories. Therefore, the conservative decision was made to assume that the difference between category areas in the accounting year and in the previous year is the area that was converted from one category into another. Thus, it is distributed among the categories that increased in size, proportionally to the area increase. For activities related to deforestation or afforestation, actual data from the database was used. The aggregated land-use change matrix is shown in Table 6.4.

Since 2010, the lands in the subcategories of "converted" that were converted in 1990 are included into the respective subcategories of "remaining", maintaining the conversion period proposed by the IPCC - 20 years.

Table 6.4. The land-use change matrix with cumulative approach between categories for the time series of 1990-2021, kha

Category after conversion							
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
			1990	0.00	0.00	0.01	10.212.00
Forest Land	10 211.94	0.04	0.01	0.00	0.08	0.01	10 212.08
Cropland	9.55	35 847.26	194.23			100.16	36 151.21
Grassland			7 037.96	2 210 10			7 037.96
Wetlands				3 319.10	2 420.22		3 319.10
Settlements Other Land					2 420.22	1 214.33	2 420.22 1 214.33
Total	10 221.50	35 847.30	7 232.20	3 319.10	2 420.30	1 314.50	60 354.90
Total	10 221.30	33 847.30	1 232.20 1991	3 319.10	2 420.30	1 314.30	00 334.90
Forest Land	10 230.85	0.14	0.02	0.00	0.28	0.04	10 231.33
Cropland	15.92	35 731.06	273.70	14.85	0.28	100.16	36 135.69
Grassland	13.72	33 /31.00	7 037.94	14.03		100.10	7 037.94
Wetlands			7 037.74	3 319.10			3 319.10
Settlements	0.61		7.60	1.42	2 408.92		2 418.55
Other Land	0.83		10.34	1.93	2 100.52	1 199.19	1 212.29
Total	10 248.20	35 731.20	7 329.60	3 337.30	2 409.20	1 299.40	60 354.90
1000	10 2 10.20	00 701120	1992	2 22 7.2 0		1 2931.10	00001190
Forest Land	10 282.73	2.94	0.50	0.04	5.98	0.93	10 293.11
Cropland	15.92	35 728.26	273.70	14.85		100.16	36 132.89
Grassland	0.51	13.14	7 019.67	0.06			7 033.38
Wetlands				3 319.06			3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.22		2 389.64
Other Land	3.92	78.99	10.34	2.26		1 091.31	1 186.82
Total	10 306.60	35 897.90	7 311.80	3 338.00	2 308.20	1 192.40	60 354.90
			1993				
Forest Land	10 299.97	2.94	0.54	0.04	6.00	0.93	10 310.42
Cropland	21.08	35 536.56	389.93	16.58	56.17	100.16	36 120.47
Grassland	0.51	13.14	7 019.63	0.06			7 033.34
Wetlands				3 319.06			3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.20		2 389.62
Other Land	5.92	78.99	55.51	2.93	21.83	1 016.81	1 181.99
Total	10 331.00	35 706.20	7 473.20	3 340.40	2 386.20	1 117.90	60 354.90
			1994				
Forest Land	10 314.62	2.95	0.54	0.04	6.01	0.93	10 325.09
Cropland	26.77	35 469.95	416.88	23.01	70.95	100.16	36 107.73
Grassland	0.51	13.14	7 019.63	0.06			7 033.34
Wetlands	2.52			3 319.06	2 2 2 2 2 2		3 319.06
Settlements	3.52	74.56	7.60	1.73	2 302.19	1.006.01	2 389.60
Other Land	6.78	78.99	59.55	3.90	24.05	1 006.81	1 180.08
Total	10 352.20	35 639.60	7 504.20	3 347.80	2 403.20	1 107.90	60 354.90
F 41 1	10.212.60	2.06	1995	0.06	6.02	0.00	10 222 27
Forest Land	10 312.69	2.96	0.55	0.06	6.03	0.98	10 323.27
Cropland	28.83	35 435.84	422.27	24.57	70.95	125.78	36 108.24
Grassland Wetlands	0.51	13.14	7 019.61	0.06 3 319.04			7 033.32 3 319.04
Settlements	8.99	74.56	21.91	5.87	2 211.67	67.98	2 390.99
Other Land	6.78	78.99	59.55	3.90	24.05	1 006.76	1 180.03
Total	10 357.80	78.99 35 605.50	7 523.90	3.90	24.05	1 201.50	60 354.90
1 Otal	10 33 / .80	33 003.30	1996	3 333.30	2 312./0	1 201.30	00 334.90
Forest Land	10 317.84	3.07	2.32	0.22	7.48	1.49	10 317.84
Cropland	36.97	35 309.03	516.67	24.57	90.48	125.78	36.97
Grassland	0.51	13.14	7 017.84	0.06	70.70	143.70	0.51
Wetlands	0.31	13.17	2.09	3 316.08	0.43		0.18
11 Chanus	0.10		4.09	5 510.00	U.TJ	l	0.10

	Category after conversion						
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Settlements	8.99	74.56	21.91	5.87	2 210.22	67.98	8.99
Other Land	7.50	78.99	67.97	3.90	25.79	994.95	7.50
Total	10 372.00	35 478.80	7 628.80	3 350.70	2 334.40	1 190.20	60 354.90
Daniel I and	10 210 62	3.09	2.35	0.22	7.40	1.52	10 210 (2
Forest Land Cropland	10 318.63 43.94	35 158.81	652.38	28.99	7.48 92.83	1.52	10 318.63 43.94
Grassland	0.51	13.14	7 017.82	0.06	92.63	123.76	0.51
Wetlands	0.18	13.11	2.09	3 316.08	0.43		0.18
Settlements	8.99	74.56	21.91	5.87	2 210.22	67.98	8.99
Other Land	7.94	78.99	76.46	4.18	25.94	985.51	7.94
Total	10 380.20	35 328.60	7 773.00	3 355.40	2 336.90	1 180.80	60 354.90
			1998		1		
Forest Land	10 331.65	3.09	3.75	2.63	27.51	1.52	10 370.16
Cropland	45.37	35 108.11	657.77	34.46	127.01	125.78	36 098.50
Grassland	0.51	13.14	7 016.42	0.06	0.42		7 030.13
Wetlands Settlements	0.18 8.99	74.56	2.09 21.91	3 313.67 5.87	0.43 2 190.19	67.98	3 316.37 2 369.51
Other Land	10.89	78.99	87.67	15.51	96.86	880.31	1 170.24
Total	10.89	35 277.90	7 789.60	3 372.20	2 442.00	1 075.60	60 354.90
Total	10 377.00	33 211.90	1999	3 3 7 2 . 2 0	2 442.00	1 073.00	00 334.90
Forest Land	10 333.10	3.09	3.77	2.65	27.53	1.52	10 371.66
Cropland	48.35	35 059.31	691.78	34.46	137.81	125.78	36 097.48
Grassland	0.51	13.14	7 016.40	0.06			7 030.11
Wetlands	0.18		2.09	3 313.65	0.43		3 316.35
Settlements	8.99	74.56	21.91	5.87	2 190.17	67.98	2 369.49
Other Land	12.16	78.99	102.16	15.51	101.46	859.51	1 169.81
Total	10 403.30	35 229.10	7 838.10	3 372.20	2 457.40	1 054.80	60 354.90
E-mark I am d	10 338.40	3.11	2000 3.90	2.65	27.53	1.62	10 377.21
Forest Land Cropland	53.19	34 978.09	761.37	2.65 34.46	137.81	1.62 127.42	36 092.34
Grassland	0.51	13.14	7 016.27	0.06	137.61	12/.42	7 029.98
Wetlands	0.27	13.17	3.37	3 312.15	0.43	0.03	3 316.25
Settlements	9.07	74.56	22.93	5.87	2 188.97	68.01	2 369.42
Other Land	12.16	78.99	102.16	15.51	101.46	859.42	1 169.71
Total	10 413.60	35 147.90	7 910.00	3 370.70	2 456.20	1 056.50	60 354.90
			2001				
Forest Land	10 345.95	3.16	3.98	2.66	27.56	1.65	10 384.96
Cropland	57.37	34 945.34	773.29	37.36	137.81	134.87	36 086.04
Grassland	0.51	13.14	7 016.19	0.06		0.00	7 029.90
Wetlands	0.27	74.56	3.37	3 312.14	0.43	0.03	3 316.24
Settlements Other Land	9.94	74.56	25.41	6.48	2 182.14	69.56	2 368.08
Other Land Total	12.16 10 426.20	78.99 35 115.20	102.16 7 924.40	15.51 3 374.20	101.46 2 449.40	859.38 1 065.50	1 169.68 60 354.90
Total	10 420.20	33 113.20	2002	3 3 7 4 . 2 0	2 443.40	1 003.30	00 334.90
Forest Land	10 351.79	3.16	4.17	2.67	27.96	1.65	10 391.40
Cropland	62.70	34 913.74	784.47	37.36	148.37	134.87	36 081.50
Grassland	0.51	13.14	7 016.00	0.06			7 029.71
Wetlands	0.51		3.87	3 310.73	0.90	0.03	3 316.04
Settlements	9.94	74.56	25.41	6.48	2 181.74	69.56	2 367.69
Other Land	13.46	78.99	104.88	15.51	104.03	851.68	1 168.57
Total	10 438.90	35 083.60	7 938.80	3 372.80	2 463.00	1 057.80	60 354.90
E1	10.265.21	2.26	2003	2.72	27.06	1.72	10 405 06
Forest Land Cropland	10 365.21	3.26 34 870.54	4.17 810.29	2.73 38.40	27.96 148.37	1.73 134.87	10 405.06 36 069.69
Grassland	67.21 0.51	13.14	7 016.00	0.06	140.37	134.8/	7 029.71
Orassianu	0.51	13.14	/ 010.00	0.00	1		/ 047./1

		ategory afte	r conversion				
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Wetlands	0.51		3.87	3 310.67	0.90	0.03	3 315.97
Settlements	10.32	74.56	27.63	6.57	2 178.04	69.56	2 366.68
Other Land	13.73	78.99	106.44	15.58	104.03	849.01	1 167.79
Total	10 457.50	35 040.50	7 968.40	3 374.00	2 459.30	1 055.20	60 354.90
T 1 1	10.276.16	2.05	2004	2.72	20.21	1.02	10.416.06
Forest Land	10 376.16	3.85	4.17 810.29	2.73 42.39	28.21	1.83	10 416.96
Cropland Grassland	74.29 0.58	34 847.15 13.14	7 015.80	0.09	148.37	136.20 0.01	36 058.69 7 029.62
Wetlands	0.58	13.14	3.87	3 310.67	0.90	0.01	3 315.97
Settlements	10.63	74.56	27.63	6.74	2 176.79	69.62	2 365.97
Other Land	13.73	78.99	106.44	15.58	104.03	848.91	1 167.69
Total	10 475.90	35 017.70	7 968.20	3 378.20	2 458.30	1 056.60	60 354.90
10001	10 175.50	33 017.70	2005	3 3 7 6.20	2 130.30	1 020.00	00 33 1.30
Forest Land	10 396.29	3.86	4.19	2.75	28.29	1.83	10 437.21
Cropland	78.84	34 821.54	810.29	45.18	153.82	137.09	36 046.76
Grassland	3.70	13.14	6 998.17	2.00	3.75	0.62	7 021.39
Wetlands	0.51		3.87	3 310.65	0.90	0.03	3 315.96
Settlements	10.63	74.56	27.63	6.74	2 176.71	69.62	2 365.89
Other Land	13.73	78.99	106.44	15.58	104.03	848.91	1 167.69
Total	10 503.70	34 992.10	7 950.60	3 382.90	2 467.50	1 058.10	60 354.90
			2006				
Forest Land	10 411.90	3.86	4.27	2.75	28.37	1.86	10 453.01
Cropland	94.52	34 784.14	810.29	51.42	155.88	138.62	36 034.86
Grassland	8.61	13.14	6 986.40	3.96	4.39	1.10	7 017.60
Wetlands	0.51	74.56	3.87	3 310.65	0.90	0.03	3 315.96
Settlements	10.63	74.56	27.63	6.74	2 176.63	69.62	2 365.81
Other Land	13.73	78.99	106.44	15.58	104.03	848.88	1 167.66
Total	10 539.90	34 954.70	7 938.90 2007	3 391.10	2 470.20	1 060.10	60 354.90
Forest Land	10 403.65	3.86	4.28	2.86	28.46	2.01	10 445.12
Cropland	110.78	34 764.94	810.29	55.58	160.10	138.62	36 040.31
Grassland	13.18	13.14	6 980.99	5.13	5.58	1.10	7 019.12
Wetlands	0.51	13.11	3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 176.54	69.62	2 365.73
Other Land	17.55	78.99	106.44	16.55	105.02	844.23	1 168.79
Total	10 556.30	34 935.50	7 933.50	3 397.40	2 476.60	1 055.60	60 354.90
			2008				
Forest Land	10 389.16	3.86	4.28	2.86	36.41	2.01	10 438.58
Cropland	119.18	34 756.24	810.29	56.50	163.78	138.62	36 044.61
Grassland	28.05	13.14	6 965.59	6.76	12.10	1.10	7 026.74
Wetlands	0.51		3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 168.59	69.62	2 357.78
Other Land	22.57	78.99	106.44	17.10	107.22	839.03	1 171.36
Total	10 570.10	34 926.80	7 918.10	3 400.50	2 489.00	1 050.40	60 354.90
Forget I and	10 272 12	2 07	2009	206	26.42	2.01	10 422 57
Forest Land	10 373.12 133.20	3.87	4.28	2.86 57.28	36.43	2.01 138.62	10 422.57
Cropland Grassland	48.64	34 743.63 13.14	810.29 6 947.09	7.90	167.52 17.59	1.10	36 050.55 7 035.47
Wetlands	0.51	13.14	3.87	3 310.54	0.90	0.03	3 315.84
Settlements	10.63	74.56	27.63	6.74	2 168.57	69.62	2 357.76
Other Land	25.79	78.99	106.44	17.28	108.09	836.13	1 172.72
Total	10 591.90	34 914.20	7 899.60	3 402.60	2 499.10	1 047.50	60 354.90
20111		01711.20	2010	5 102.00		1 0 17.50	00 00 1.70
Forest Land	10 368.56	3.83	4.27	2.86	36.35	2.00	10 417.86
Cropland	138.80	34 728.47	616.06	57.80	176.23	38.45	35 755.81

		Category after conversion						
Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total	
Grassland	55.32	13.14	7 134.63	8.13	21.43	1.10	7 233.75	
Wetlands	0.51	0.00	3.87	3 310.54	0.90	0.03	3 315.84	
Settlements	10.63	74.56	27.63	6.74	2 168.65	69.62	2 357.84	
Other Land	27.29	78.99	106.44	17.33	108.94	934.80	1 273.80	
Total	10 601.100	34 899.00	7 892.90	3 403.40	2 512.50	1 046.00	60 354.90	
E 41 1	10.264.12	2.72	2011 4.25	2.96	26.25	1.07	10 412 10	
Forest Land Cropland	10 364.12 141.41	3.73 34 720.47	536.60	2.86 42.95	36.25 180.33	1.97 38.46	10 413.18 35 660.21	
Grassland	62.72	13.14	7 225.15	8.13	24.93	1.10	7 335.17	
Wetlands	0.51	0.00	3.87	3 328.24	1.20	0.03	3 333.84	
Settlements	10.03	74.56	20.03	5.32	2 168.85	69.62	2 348.41	
Other Land	32.52	78.99	96.11	15.40	111.64	929.43	1 264.09	
Total	10 611.30	34 890.90	7 886.00	3 402.90	2 523.20	1 040.60	60 354.90	
			2012					
Forest Land	10 362.35	0.93	3.77	2.83	30.94	1.09	10 401.91	
Cropland	145.52	34 884.97	536.60	43.00	183.02	38.46	35 831.56	
Grassland	75.31	0.00	7 209.73	8.21	33.49	1.10	7 327.84	
Wetlands	0.51	0.00	3.87	3 328.98	1.20	0.03	3 334.59	
Settlements	7.11	0.00	20.03	5.01	2 174.15	69.62	2 275.92	
Other Land	30.60	0.00	96.11	15.07	112.40	928.91	1 183.09	
Total	10 621.40	34 885.90	7 870.10	3 403.10	2 535.20	1 039.20	60 354.90	
Forest Land	10 358.62	0.93	2013 3.73	2.82	31.01	1.08	10 398.19	
Cropland	140.37	34 884.97	420.37	41.27	126.85	38.46	35 652.28	
Grassland	88.93	2.94	7 356.66	9.59	40.65	1.10	7 499.87	
Wetlands	0.51	0.00	3.87	3 331.39	1.20	0.03	3 336.99	
Settlements	7.11	0.00	20.03	5.01	2 252.17	69.62	2 353.94	
Other Land	28.87	0.06	50.94	14.43	90.72	928.62	1 113.64	
Total	10 624.40	34 888.90	7 855.60	3 404.50	2 542.60	1 038.90	60 354.90	
			2014					
Forest Land	10 365.83	0.92	3.73	2.82	31.00	1.12	10 405.42	
Cropland	136.31	34 879.28	393.41	36.25	114.51	38.46	35 598.21	
Grassland	91.03	2.94	7 380.36	11.39	43.78	1.10	7 530.60	
Wetlands	0.51	0.00	3.87	3 338.79	1.20	0.03	3 344.39	
Settlements	7.11 29.51	0.00	20.03 46.89	5.01	2 269.19	69.62	2 370.95	
Other Land Total	10 630.30	34 883.20	7 848.30	14.75 3 409.00	90.73 2 550.40	923.38 1 033.70	1 105.33 60 354.90	
Total	10 030.30	34 865.20	2015	3 409.00	2 330.40	1 033.70	00 334.90	
Forest Land	10 373.36	0.91	3.72	2.80	30.98	1.09	10 412.86	
Cropland	134.25	34 879.29	388.02	34.69	114.51	12.84	35 563.60	
Grassland	93.73	5.54	7 392.28	11.39	46.18	1.20	7 550.32	
Wetlands	0.61	0.10	3.87	3 344.21	1.29	0.03	3 350.11	
Settlements	1.64	0.00	5.72	0.87	2 269.20	1.63	2 279.07	
Other Land	29.51	0.06	46.89	14.75	90.73	1 017.00	1 198.95	
Total	10 633.10	34 885.90	7 840.50	3 408.70	2 552.90	1 033.80	60 354.90	
			2016			ایری	10.555	
Forest Land	10 382.40	0.80	1.95	2.64	29.53	0.61	10 382.40	
Cropland	134.40	34 868.78	293.63	34.69	97.32	12.84	134.40	
Grassland	98.98	5.54	7 492.21	11.39	47.67	1.20	98.98	
Wetlands	0.43 1.64	0.10	1.78 5.72	3 344.37 0.87	0.86	0.03 1.63	0.43 1.64	
Settlements Other Land	45.95	0.00	38.47	14.75	2 292.35 93.84	995.48	45.95	
Total	10 663.80	34 875.27	7 833.76	3 408.70	2 561.57	1 011.79	60 354.90	
10111	10 005.00	310/3.2/	2017	5 100.70	2 301.37	1 011.//	00 337.70	
Forest Land	10 389.81	0.78	1.92	2.64	29.53	0.61	10 425.30	

Category prior to conversion	Forest Land	Cropland	Grassland	Wetlands	Settlements	Other Land	Total
Cropland	129.77	34 863.07	157.92	30.26	98.35	12.84	35 292.21
Grassland	104.27	5.54	7 623.53	11.39	55.29	1.20	7 801.21
Wetlands	0.43	0.10	1.78	3 349.07	0.86	0.03	3 352.27
Settlements	1.64	0.00	5.72	0.87	2 294.85	1.63	2 304.71
Other Land	49.02	0.06	29.98	14.47	98.74	986.92	1 179.20
Total	10 674.95	34 869.55	7 820.85	3 408.70	2 577.62	1 003.23	60 354.90
			2018				
Forest Land	10 394.19	0.78	0.53	0.23	9.50	0.62	10 405.85
Cropland	128.35	34 863.07	152.52	24.80	64.17	12.84	35 245.74
Grassland	111.82	64.12	7 397.67	11.39	233.01	1.20	7 819.21
Wetlands	0.49	0.57	1.78	3 366.32	2.29	0.03	3 371.48
Settlements	1.64	0.00	5.72	0.87	2 419.98	1.63	2 429.85
Other Land	49.08	23.43	18.78	3.13	98.72	889.63	1 082.77
Total	10 685.56	34 951.97	7 577.00	3 406.74	2 827.67	905.95	60 354.90
			2019				
Forest Land	10 397.04	0.78	0.50	0.22	9.48	0.90	10 408.93
Cropland	125.36	34 863.07	118.51	24.80	53.37	12.84	35 197.96
Grassland	113.79	83.04	7 403.35	11.39	256.02	1.20	7 868.78
Wetlands	0.89	4.39	1.78	3 357.69	6.93	0.03	3 371.71
Settlements	1.64	0.00	5.72	0.87	2 435.40	1.63	2 445.26
Other Land	48.08	26.00	4.28	3.13	97.24	883.53	1 062.26
Total	10 686.79	34 977.27	7 534.15	3 398.10	2 858.44	900.14	60 354.90
			2020				
Forest Land	10 402.05	0.76	0.37	0.21	9.49	0.82	10 413.70
Cropland	120.52	34 863.09	48.93	24.80	53.37	11.19	35 121.90
Grassland	115.77	90.68	7 447.50	11.39	274.28	1.20	7 940.81
Wetlands	0.80	4.39	0.50	3 357.70	6.93	0.00	3 370.31
Settlements	1.57	0.00	4.70	0.87	2 435.39	1.61	2 444.13
Other Land	48.63	28.15	4.28	3.13	102.39	877.46	1 064.05
Total	10 689.33	34 987.06	7 506.27	3 398.10	2 881.85	892.28	60 354.90
			2021		T		
Forest Land	10 407.10	0.71	0.30	0.20	9.47	0.79	10 418.56
Cropland	116.34	34 863.14	37.01	21.90	53.37	3.74	35 095.50
Grassland	118.22	98.17	7 434.09	11.39	292.21	1.20	7 955.29
Wetlands	0.80	4.39	0.50	3 361.21	6.93	0.00	3 373.82
Settlements	0.70	0.00	2.22	0.26	2 435.42	0.06	2 438.65
Other Land	49.39	30.44	4.28	3.13	107.87	877.96	1 073.08
Total	10 692.54	34 996.85	7 478.39	3 398.10	2 905.26	883.75	60 354.90
T . T . 1	10.412.06	0.71	2022	0.20	0.07	0.70	10.424.02
Forest Land	10 413.96	0.71	0.10	0.20	9.07	0.79	10 424.83
Cropland	111.01	34 863.14	25.83	21.90	42.81	3.74	35 068.44
Grassland	119.74	105.94	7 420.81	11.39	310.80	1.20	7 969.88
Wetlands	0.56	4.39	0.00	3 361.21	6.46	0.00	3 372.62
Settlements	0.70	0.00	2.22	0.26	2 449.41	0.06	2 452.65
Other Land	48.48	32.46	1.56	3.13	110.12	870.73	1 066.48
Total	10 694.46	35 006.64	7 450.51 2023	3 398.10	2 928.67	876.52	60 354.90
Forest Land	10 419.13	0.61	0.10	0.13	9.07	0.71	10 429.77
Cropland	106.50	34 863.24	0.00	20.86	42.81	3.74	35 037.15
Grassland	124.00	112.91	7 422.53	11.39	327.46	1.20	7 999.48
Wetlands	0.56	4.39	0.00	3 362.48	6.46	0.00	3 373.89
Settlements	0.31	0.00	0.00	0.18	2 449.41	0.06	2 449.95
Other Land	49.93	35.28	0.00	3.07	116.87	859.51	1 064.66
Total	10 700.43	35 016.43	7 422.63	3 398.10	2 952.08	865.23	60 354.90

6.2 Forest Land (CRF category 4.A)

6.2.1 Category description

According to the Forest Code of Ukraine [3], the forest is the type of a natural complex that consists mainly of tree and shrub vegetation with the respective soils, herbaceous vegetation, fauna, microorganisms, and other natural ingredients, which are interconnected in their development, influence each other and the environment.

The Forest Land considered for the calculations include plots with the minimal area of 0.1 hectares, minimum width of 20 meters, minimum crown coverage (or the equivalent of stand density) of 30%, and minimum tree height at maturity – 5 meters. The young natural forests and forest plantations that have not reached 30 % of crown coverage (the equivalent of stand density - 0.3) and/or the height of 5 meters are considered a part of forests temporarily not covered with forest vegetation as a result of human activities or environmental factors, but that will reach the threshold values in the future. Inclusion of the minimum value of the forest width (20 m) is consistent with the definition of forests recommended for reporting to the Food and Agriculture Organization of the United Nations (the FAO) and preparation of Ukraine's report [4].

This category is divided into the subcategories -4.A.1 Forest Land Remaining Forest Land and 4.A.2 Land Converted to Forest Land. The period of transition from the sub-category of converted land to sub-category 4.A.1 is the default -20 years.

Besides, the subcategory Forest Land Remaining Forest Land is divided into managed and unmanaged forests. The work to revise areas of managed and unmanaged forests is ongoing, as part of land-use transition matrix revision and revision of activity data regarding forestry on time series.

Managed forests include all forest land, on which anthropogenic activities of forest harvesting, forest planting, and forest maintenance are conducted.

Unmanaged Forest land includes lands defined by the Forest Code of Ukraine as "natural forests", "primary forests" and "quasi-primary forests" [3]. These definitions are presented as following:

- "natural forests" (natural forest ecosystems) forests (forest ecosystems), where locally and temporary anthropogenic influence has occurred, but it did not changed cenotic structure of phytocenosis and thus natural forest ecosystems are able to regenerate (recover) naturally in a short time period to primary forest ecosystems conditions;
- "primary forests" (primary forest ecosystems) ancient forest (natural forest ecosystems) formed naturally and during its development did not have direct anthropogenic influence;
- "quasi-primary forests" relatively primary forest ecosystems, where insignificant temporary anthropogenic influence occurred, which has not changed natural structure of stands and with its cease natural conditions of ecosystems are fully recovered during short period of time.

These amendments to Forest Code of Ukraine were introduced in May 2017. The Order of Ministry of Ecology and Natural Resources of Ukraine №161 from 18.05.2018 has defined the methodology for recognition of forests to be natural, primary or quasi-primary as defined by Forest Code of Ukraine. Each body responsible for owning and/or managing forests should define unmanaged forests using that methodology.

The data about the areas of natural, primary or quasi-primary forests have been received from the Ministry of Defence of Ukraine and the State Agency of Ukraine on Exclusion Zone Management with total area of 1784.2. The State Forest Agency of Ukraine provided information, that under its responsibility there are 29 619.3 ha of such forests. These areas were excluded from the calculation of CSC in Forest land category. Unless the forests are confirmed to be unmanaged, the rest of the Forest land is considered to be managed.

Annually there are 23.7-43.7 kt CO₂-eq. of GHG removed by the Forest Land category in total (Fig. 6.1). In 2023 Forest Land category is a sink of -36.3 Mt CO₂-eq., what is lower by 4 % as in 1990 (-37.6 Mt CO₂-eq.) and higher by 2 % as in 2021 (-35.4 Mt CO₂-eq.).

Difference in C-removals during the reporting period is due to the harvesting volumes, emissions from fires and other disturbances, afforestation areas, as well as conversions to the category from other land-uses.

Emissions of greenhouse gases other than CO₂ are associated with uncontrolled fires and soil drainage, as well as nitrogen mineralization due to land conversion (direct and indirect emissions of Nitrogen). No other activities that contribute into emission of gases other than CO₂ are conducted in Ukraine in the forestry sector (fertilizers, controlled fires).

6.2.2 Methodological issues

The total area of forests is taken from the data of the State Service of Ukraine for Geodesy, Cartography and Cadastre (form 16-zem). The mentioned form also contains data on areas actually covered with forest vegetation at particular year.

Calculations in the Forest Land category were carried out for all pools, except for DOM and mineral soil in sub-category 4.A.1 Forest Land remaining Forest Land. The assumption anticipates zero carbon stock change in forest soils and is based on findings of the research held in Ukraine [5]. Acknowledging need to apply Tier 2 method for both DOM and soil pools Ukraine however unable to apply it due to absence of national specific factors. A work to develop national specific factors is included into improvement plan (please see Annex 8.2).

Changes in the carbon amount in biomass were calculated under Tier 2 using national EFs. For DOM, organic and mineral soils, default factors were used for sub-category 4.A.2 Lands converted to Forest Land. Calculation details and factors are presented in the Annex 3.3.1.

The key sources of activity data (areas of forests by main forest species, grouped by age and region) for the estimations are reporting form on land use, statistic data from the State Statistic Service of Ukraine, state forest accounting data, as well as other data of the State Forest Resources Agency of Ukraine. Should be noticed that national statistical data was corrected for 2014-2023 with use of analytical study results [4].

State forest accounting in Ukraine does not yet cover entire forests of the country. The system of state forest accounting left from soviet times, when every forest enterprise should have had a development plan (previously for 10 years), written by a special institution based on field measurements of temporary plots. The State Forest Resources Agency of Ukraine maintain the same approach for its enterprises. All the rest of forest enterprises (under responsibility of other agencies and ministries) are encouraged to do the same, but not obliged.

Consequently, the data collected during the state forest accounting for enterprises were consolidated in the databases, maintained by the Ukrainian State Forest Inventory and Management Planning Association "Ukrderzhlisproekt". These databases are used to export data on areas, which then are extrapolated to entire area of forest in Ukraine. Currently the data from 1988, 1996 and 2002 state forest accountings were extracted from paper copies of accounting materials. There are electronic databases available for years starting from 2005.

The information from paper copies of the state forest accountings has other than 10-years subdivision of areas of forests, which is used for data extraction from databases starting from 2005. It is based on age of "maturity" of forests (I class young stands, II class young stands, middle-aged, pre-mature, mature and old stands), commonly used in Ukraine, and depends on forest species, natural zone and protection status of forest plot. So, for example, age of mature pine stand in exploitable forest in flat area of Ukraine will have different age, then mature pine stand in protected area in Carpathian Mountains. This creates a necessity to adjust the data for 1988, 1996 and 2002 years.

The approach used in the submissions before 2022 to adjust the data resulted in rapid shift of C-gains between 2002 and 2005, recognized by the ERT. In the later submission additional data were collected to adjust available data from 1988, 1996 and 2002. Nevertheless, even after the adjustment the data of 2002 was seen as an outlier (blue line on fig. 6.6).

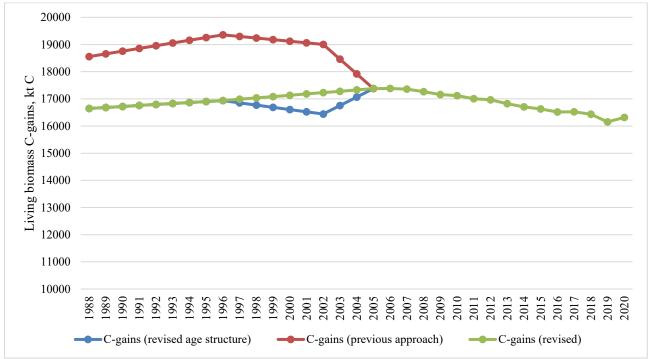


Fig. 6.6. Time series of C-gains before and after revision in 2022 submission

For the calculations it was decided not to take into account the data from 2002. Thus, C-gains for 1990-1995 and 1997-2004 were interpolated based on data for 1988, 1996 and 2005.

Extracted data mentioned above is used for calculation of C-gains, which then is extrapolated to entire area covered by forest vegetation at particular year, as reported in the form 16-zem by the State Service of Ukraine for Geodesy, Cartography and Cadastre.

The data on forests in different regions for 2021 and later could not be collected since the institution that maintains the forest database (Ukrainian State Forest Inventory and Management Planning Association "Ukrderzhlisproekt") is located in Irpin that was occupied in early days of the full-scale invasion of Ukraine by Russian Federation in 2022. Although the institution resumed its work the data were lost. Moreover, since a lot of forest areas remained under occupation or in the zone of active warfare the data accounting could not be done for a big portion of lands. Thus, the data on forest areas for the C-removals calculations were taken the same as for 2020.

The work on the National Forest Inventory (NFI) for the entire territory of Ukraine has been started in 2023. Although the results are promising, the final outcome of the NFI is expected to be received at the end of 5-year cycle⁶. The discussion on the first results of the NFI and current data is provided in the QA/QC section of Forest Land category below.

In 2024 the NFI added data for 2019 as well as 2023. This enabled to make a dynamic assessment of the area of forests. Although the absolute values are still facing challenges in separating the forest lands as it is defined by the Forest Code of Ukraine from the areas covered with woody vegetation (orchards, for example). Nevertheless, since the data on forest accounting is not complete especially since 2022 this relative change of areas estimated by the NFI was applied to the actual data on forest areas between 2019 and 2023. That resulted in a slight increase of forest areas by 0.9 % (or 0.22 % annually).

Estimation of C-losses from biomass is based on data of the State Statistic Service of Ukraine, which collects information from all of forest enterprises, thus does not need to be extrapolated. More details on methodology are provided in the Annex 3.3.1.

Estimation of CSC in DOM were based on use of Tier 1 methodology. For Forest land remaining Forest land CSC is equal to zero since inputs to DOM is assumed to be equal to outputs. For Land converted to Forest land equation 2.23 of 2006 IPCC, Volume 4, Chapter 2 and EFs from table 2.2 were used.

⁶ https://nfi.lisproekt.gov.ua/en/

The ERT asked to revise methodology and EFs used previously for this pool. Ukraine recognizes the need to develop more accurate methodology and EFs (as mentioned in Annex 8.2). For the time until new methodology and EFs will be developed Tier 1 methodology and default EFs will be used.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Forest Land category. Particularly according to Harmonized World Soil Database⁷ almost all of the soils are high activity clay soils according to IPCC classification (additional information is provided in the Annex 3.3.1). Thus, SOC_{ref} for moist cold temperate zone with HAC was applied.

Emissions from forest fires are estimated using Tier 1 method and default EFs. 2006 IPCC methodology was adopted for national circumstances for more accurate and complete use of available national statistics. For more details on the methodology, see the Annex 3.3.1.

The data of forest fires in 2023 were taken from the State Forest Resources Agency of Ukraine to maintain the methodological consistency. There are alternative data sources of forest fires discussed in QA/QC section.

During the GHG inventory for 1990-2023, estimation of nitrogen emissions from drainage of Forest Land was performed using Tier 1 method and default EFs [1].

In order to estimate N_2O emissions from the mineralization process when converting land to forest, Tier 1 methodology and default EFs were used.

Indirect N_2O emissions from the mineralization process when converting land to forest were estimated. For this purpose, Tier 1 methodology and the default EFs were used.

The summary information regarding methods and emission factors used is presented in Table 6.5.

Table 6.5. Summary information on gases reported, methods and emission factors used for

calculations in Forest Land category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.A.1 Forest Land remaining For-				
est Land				
- living biomass	CO_2	CS, T2	CS	
- DOM, SOM	CO_2	T1	D	
4.A.2 Land converted to Forest				
Land				
- living biomass, DOM, SOM	CO_2	CS, T1, T2	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and min-				
eral soils				
- drained organic soils	CO_2, N_2O	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N_2O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO_2 , CH_4 , N_2O	CS, T1	D	

6.2.3 Uncertainties and time-series consistency

The primary factors that affect the uncertainty in this category are:

- data gaps due to war-related reasons;
- distribution of forest land areas by categories;
- accuracy of biomass growth estimation;
- accuracy of conversion coefficients.

⁷ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

To estimate uncertainties of GHG emissions and removals approach 1 method (propagation of error) was used (section 3.2.3.1 volume 1 of 2006 IPCC). Uncertainties of data was estimated mostly by expert judgement. Uncertainties of emission factors were taken from 2006 IPCC Guidelines or by expert judgement.

Special consideration has been taken for the uncertainties related the territories that were temporarily occupied after 2022. According to the open data⁸ about 11 % of Ukrainian territories were temporarily occupied in the first month of the full-scale invasion, and another 8 % during March 2022. Thus, the uncertainty of activity data like the total area of forests or areas of disturbances was adjusted giving the larger uncertainty of temporarily occupied territories.

The uncertainty of areas of forest fires was considered differently. Particularly the lower value remained the same (-15 %) since the official data from the State Forest Resources Agency of Ukraine were collected from the site visits. In case of temporarily occupied territories, contaminated by mines or affected by warfare the data on fires were not collected. Thus, there is a high certainty that the area of forest fires was larger. It was confirmed by the GIS tools (discussed in the section below). Thus, as a high value of confidence interval the largest area was considered resulting in the value of uncertainty +275 %.

The total uncertainty of emissions/removals for the land-use category Forest Land is 38 %. Data on input data and uncertainty factors is presented in Table 6.6. Most of uncertainties were derived by expert judgment, as well as taken from 2006 IPCC guidelines for default values.

Table 6.6. Uncertainties in the Forest Land category

Table 6.6. Chestainties in the Polest Land category		
Uncertainty of area of forests used in the calculation of C-gains	20 %	Expert
		judgment
Uncertainty of EFs of C-gains in living biomass	17 %	Expert
		judgment
Combined uncertainty of C-gains in living biomass	30 %	Calculated
Uncertainty of harvesting data	10 %	Expert
		judgment
The ratio of above-ground and below-ground biomass	15 %	Expert
		judgment
Estimation of the amount of carbon in biomass	2 %	IPCC
Combined uncertainty of C-losses of living biomass due to harvesting	20 %	Calculated
Combined uncertainty of C-losses due to disturbances	44 %	Calculated
Uncertainty of land converted into forest land	50 %	Expert
		judgment
Estimated uncertainty of carbon in the pool of the forest litter of Lands con-	38 %	Expert
verted to Forest Land		judgment
Estimated uncertainty of carbon in the pool of the mineral soils of Lands con-	29 %	Expert
verted to Forest Land		judgment
Uncertainty of the carbon EF for organic soils	64.7 %	IPCC
Estimated uncertainty of carbon emissions for organic soils	65 %	Calculated
Total uncertainty of Carbon stored in pools of Lands converted to Forest Land	53 %	Calculated
Uncertainty of data on fires	- 15 %	Expert
	+ 275 %	judgment
Combined uncertainty of emissions from forest fires	- 17 %	Calculated
	+ 193 %	
Combined uncertainty of emissions in Forest Land category	38 %	Calculated

6.2.4 Category-specific QA/QC procedures

The detailed QA/QC procedures were applied to estimation of GHG emissions and removals.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

-

⁸ Source: warmapper.org

As part of QC procedures, calculations based on national factors were compared with calculations using Tier 1 and default EFs for Forest land remaining forest land. Net biomass CSC resulted in 19 % more C-removals compared to simplified method.

Emissions from fires were also compared with Tier 1 method and default calculations. The comparison resulted in 80 % less emissions than by simplified method. This is mainly caused by separation of fires when entire forests burn and fires of understorey grasses, as well as use of actual losses of wood compared to the default value.

NFI has been launched in Ukraine in 2023. The work is based on the practical lessons from 2008-2015 when pilot projects were implemented for two regions. The NFI is heavily based on the satellite images that provide remote and objective information on areas that are currently impossible to access.

The first results are presented on the web page of "Ukrderzhlisproject". Particularly, the total area of forested lands is 11 209 kha. It is higher than the currently used area of 9 452 kha by around 19 %. There are couple of reasons of this difference discussed in the methodology paper ¹⁰:

- 1) the NFI was done in a challenging circumstance with limited ability to perform field measurements to calibrate or clarify remote sensing data;
- 2) the NFI data yet do not separate forest lands from forested urban areas, residential areas etc., and currently used data is based on land measurements;
- 3) limitations of remote sensing;
- 4) lack of historic NFIs that can allow to reduce uncertainty of estimated.

The NFI provides also estimated of the main parameters of forests like age, diameter at breast height, height, wood stocks and Carbon density. It is foreseen that in the future NFI will enable to change the methodology of CSC in Forest Land category.

An effort has been put to use the data from the Global Forest Watch resource¹¹. The data from the GFW show the annual forest cover decrease of 79 500 ha of forests in 2020, 66 600 ha in 2021 and 48 000 ha in 2022. Since the deforestation in recent years in Ukraine is not extensive these areas are seen as indications of clearcuts.

While the decrease of forest cover by 48 000 ha in 2022 is 28 % lower than in 2021, the data of wood harvesting decreased by only 10 % in 2022 compared to 2021 (according to the data of the State Statistic Service of Ukraine). There are different possible reasons of this discrepancy (inaccuracies of distant monitoring methods, increase of selective cuttings).

More detailed maps and further NFI stages will enable to clarify the data of wood losses especially on the temporarily occupied territories.

Since the full-scale invasion of Ukraine by the Russian Federation in February 2022 there was a big increase of forest fires in Ukraine. Active warfare, lack of fire protection and difficulties to reach forest fires due to security issue are the main reasons for that.

There are alternative sources of information with regard to the areas of forest fires. Particularly, one study suggests that the total area of forest fires since February 2022 to February 2023 was 58.9 kha [33]. The authors calculated 12.4 Mt CO₂-eq. of emissions due to forest fires.

Another study identified 56.7 kha of forest fires [34]. The estimates of GHG emissions due to forest fires are equal to 0.78 Mt CO₂-eq.

The comparison is presented below.

Table 6.7. Comparison of forest fires data and corresponding emissions for 2022

Data source	Area of forest fires,	Emissions, Mt CO ₂ -eq.	Emissions per ha,		
	kha		t CO ₂ -eq. per ha		
GHG inventory	15.7	0.35	22.3		
Lennard et al.	58.9	12.4	210.5		
Zibtsev et al.	56.7	0.78	13.8		

⁹ https://nfi.lisproekt.gov.ua/en/rs-inventory/

¹⁰ https://nfi.lisproekt.gov.ua/wp-content/uploads/2024/02/sfi-report-ua-myroniuk-v.1.2.2.pdf

¹¹ Ukraine Interactive Forest Map & Tree Cover Change Data | GFW (globalforestwatch.org)

The areas of forest fires between alternative sources differ by only 4 % but the data of forest fires from the official sources are much lower than both alternative sources.

The resulting emissions significantly differ between different sources. The main reason is the methodological difference of estimation of burned biomass that is seen from the analysis of the emissions from 1 hectare.

In order to keep the consistency, the GHG inventory the same data source and methodology were used as in the 2024 GHG inventory submission. Nevertheless, the alternative data sources are seen as potential main data sources for the future submissions.

6.2.5 Category-specific recalculations

Based on the data of the dynamics of land from the NFI recalculations has been made on the total areas covered by forests. Particularly, the data from NFI was taken to gain the dynamics of areas and then applied to the areas of forested lands from previously used data from the 16-zem form.

According to the NFI 12 the areas of forests between 2019 and 2023 increased by approximately 0.9 %. Thus, yearly portion of this share is applied to previously stable areas of forested land. This resulted in increase of biomass gains increase.

The results of the revisions are presented in the table 6.8.

Table 6.8. The change in GHG emissions in the 4.A Forest land category as a result of recalculations

Year	NIR 2024	NIR 2025	Difference, %
2020	-27 124	-27 258	0.5
2021	-32 984	-33 253	0.8
2022	-35 035	-35 438	1.2

6.2.6 Category-specific planned improvements

Ukraine recognizes the need to develop country-specific factors for Tier 2 method for the category. The research is included into improvement plan, subject to availability of funding.

6.3 Cropland (CRF category 4.B)

6.3.1 Category description

This category includes two subcategories: 4.B.1 Cropland Remaining Cropland and 4.B.2 Land Converted to Cropland. Just as for the category 4.A Forest Land, the 20-year period of land conversion from the subcategory Land Converted to Cropland to the subcategory Cropland Remaining Cropland was applied [1].

The category 4.B Cropland does not include hayfields and pastures, as they are included into the category 4.C Grassland.

Category 4.B is the most significant source of carbon emissions in the LULUCF sector (Fig. 6.1). On the time series GHG total removals in 1990 (-20.3 Mt CO₂-eq.) switched to total emissions in 2022 (24.6 Mt CO₂-eq.). Emissions have decreased in comparison with 2022 by 4 %.

The key driver for GHG emissions and removals is N-balance in mineral soil during crop grow (as it is calculated using nationally developed methodology), what is influenced mainly by crop structure (area and volumes harvested) and fertilizers applied (figures 6.2 and 6.3), as well as conversions to Cropland category.

¹² https://nfi.lisproekt.gov.ua/en/

6.3.2 Methodological issues

The key sources of AD are statistical reporting forms on land areas (16-zem), on crop production in Ukraine (harvesting areas, mass and yield) and on fertilizers application. To determine the land converted to the Cropland category, data from the land-use change matrix (Table 6.4) and database were used (for Forest Land converted to Cropland). So far, there is no information on spatial distribution of areas of Cropland (neither for arable lands, orchards and fallow lands). This is expected to be changed after land-use matrices revision due to introduction of GIS data.

The data from 29-sg and 9-sg forms of national statistics was corrected for 2014-2023 years using the results of analytical study for its use in the national inventory [4].

Carbon in this category is absorbed by the biomass of perennial woody vegetation. Estimations of carbon emissions and removals on such lands were made under Tier 1 using the areas from form 16-zem and the default EFs [1]. There is no data available on areas of harvest of orchards or exact harvest volumes. Thus, to apply Tier 1 method the area of 1990 was divided by default harvest cycle (30 years) to derive areas of different aged orchards. For C-gains all the area was considered, while to calculate C-losses 30-years old perennial woody stands were taken. For more detailed information please see Annex 3.3.2.

To calculate carbon stock dynamics in pool of mineral soils, the methods of nitrogen flow balance were used based on application of the system of national factors. It is relevant for arable lands only. Ukraine does not perform calculations for fallow lands due to lack of reliable input data and methodology consistent with the national methodology of CSC in mineral soils for managed Cropland.

The nitrogen flow method for mineral soils is described in details in the Annex 3.3.2.

Resulting Carbon stock change in SOM pool is the result of combination of several factors, that have the most significant impact on the Nitrogen balance in the soils:

- 1) armed invasion by the Russian Federation;
- 2) harvesting areas and volumes of crops 2 years before the reporting year, as well as in the reporting year;
- 3) crop types;
- 4) volumes of organic and nitrogen fertilizers applied into soils.

Each of these factors have a positive or negative effect on Nitrogen increase in the soil (fig. 6.7).

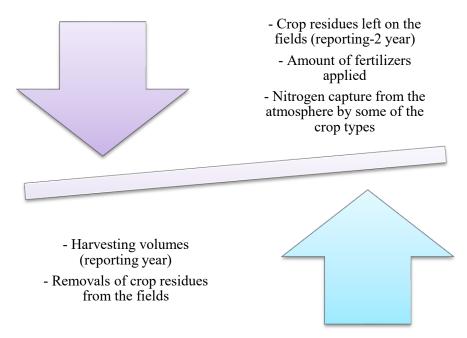


Fig. 6.7. Factors that contribute to increase (above the line) and decrease (below the line) of Nitrogen in SOM pool

Due to combination of factors that influence the Nitrogen balance in soils large inter-annual variations occur in 2007-2008, 2010-2011 and 2012-2013. Specifically taking into account rather stable volumes of fertilizers applied there was a significant increase of crops harvested in 2008. Particularly the yields were 27 % higher in 2008 compared to 2007. Similar reason for the inter-annual change between 2010 and 2011: in 2011 crop harvests were 30 % higher than in 2010.

The reasons for large inter-annual variations of CSC from Cropland in 2012 and 2013 is somewhat different. Although the total yields of crops were higher by 8 %, but the structure of crop types has changed more significantly. The yields of more soil-demanding crops (grains and oilseeds) have risen by 35 % and 29 % accordingly (table A3.3.16), but the yields of other crops have dropped (for example harvest of industrial crops has dropped by 41 %).

In 2022 the combination of the key factors resulted in significant decrease of GHG emissions from SOM pool compared with 2021. Although volume of harvesting in 2020 was lower than in 2021, it was even lower in 2022 (see table 6.9). Significant increase of mineral fertilizers application (see fig. 6.3) also contributed to lower levels of decrease in CSC from mineral soils. Data for the entire time series are provided in the Annex 3.3.2, tables A3.3.15, A3.3.16 and A.3.3.17.

T 11 (0 II 4	1 C	' 14 1	• т	rı	1 1 4
I anie h u Harvecting i	INITIMAE OF 30	Tricilifiiral	crone in I	IVraine i	nolleand tone
Table 6.9. Harvesting v	orunics or as	211Cultulai	CIODS III C	Kiaiiic. i	mousanu tons

14010 0.5. 1141 (1990	1995	2000	2005	2010	2015	2020	2021	2022	2023
	1990	1995	2000	2005	2010	2015	2020	2021	2022	2023
Grain (wheat, rye, barley etc.)	49323	33770	26519	37296	38698	60904	65641	86663	54530	60112
Pulses (beans, peas)	3205	1701	715	757	591	526	632	712	356	482
Industrial crops (sugar beet, flax, hemp etc.)	45175	30211	13375	15565	13760	10340	9165	10871	9951	13140
Oilseeds (sunflower, soybeans, rapeseeds)	2916	3129	3900	5694	10455	17342	18892	23308	18355	22042
Potato	16602	14689	19833	19464	18707	21348	21326	21847	21321	21776
Vegetables	6238	5879	5833	7300	8076	9728	10152	10442	7976	8758
Melons and gourds	682	494	373	311	751	602	518	526	293	295
Fodder crops	25277	13242	7264	9087	7479	6992	6646	6383	5978	5681
Grasses for hay and green mass	187544	125549	49520	28787	19515	17552	14147	14875	12197	12823
TOTAL	336973	228665	127334	124261	118048	145354	147124	175639	129714	144177

Calculation of carbon emissions from organic soil pool was performed based on data of organic soil areas and the EFs for the temperate zone recommended for use in the 2006 IPCC Guidelines.

In Ukraine, burning of crop residues on agricultural lands is officially forbidden [6], so all fires on cropland are considered as wildfires. Estimation of CH₄, N₂O, CO, and NO_x emissions during burning of plant residues was conducted under Tier 1 of 2006 IPCC Guidelines (equation 2.27) using default factors. To estimate NMVOC emissions, the method and EFs from 2013 EMEP/EEA emission inventory guidebook [8] were used (see Annex 3.3.2).

Information on damaged by fires agricultural land area was received from regional offices of the State Emergency Service of Ukraine and presented in Table 3.3.22, Annex 3.3.2.

In the subcategory of Land converted to Cropland, carbon stock changes were estimated for the pools of living biomass (Forest Land and Grassland converted to Cropland), DOM (Forest Land converted to Cropland) and SOM (for all land-use categories, except Wetlands converted to Cropland, for which no methodological guidance is provided by IPCC, 2006).

CSC from conversions of forests in living biomass is estimated using national factors. Carbon losses from living biomass from conversions of Grassland are estimated using Tier 1 method and default EFs.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Cropland category. Particularly according to Harmonized

World Soil Database¹³ almost all of the soils are high activity clay soils according to IPCC classification (additional information is provided in the Annex 3.3.1) [7]. Thus, SOC_{ref} for moist cold temperate zone with HAC was applied.

For all converted lands, direct and indirect N_2O emissions from mineralization were estimated using 2006 IPCC equations 11.8 and 11.10, respectively, applying the default EFs.

The summary information regarding methods and emission factors used is presented in Table 6.10.

Table 6.10. Summary information on gases reported, methods and emission factors used for

calculations in Cropland category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.B.1 Cropland remaining				
Cropland				
- living biomass, DOM	CO_2	T1	D	T1 for living biomass is used
- SOM	CO_2	CS, T3	CS	due to unavailability of data
				and EFs for application of
				higher tiers
4.B.2 Land converted to Cropland				
- living biomass, DOM, SOM	CO_2	CS, T1	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and min-				
eral soils				
- drained organic soils	CO_2	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N_2O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CH ₄ , N ₂ O	CS, T1	D	

6.3.3 Uncertainties and time-series consistency

The key factors that determine the degree of uncertainty of the GHG emission estimations in the land-use category Cropland are accuracy of:

- data gaps due to war-related reasons;
- amount of crop residues, nitrogen stocks in them, their degree of humification and the level of nitrogen consumption by agricultural crops;
- degree of humification of organic fertilizers, nitrogen amounts in them available to agricultural plants;
 - degree of nitrogen consumption by agricultural crops from nitrogen mineral fertilizers;
 - amounts of nitrogen input as a result of symbiotic and non-symbiotic fixation;
- degree of mineralization of agricultural soils, depending on the type of crop cultivated, the amount of nitrogen stocks in the soils, and their grain texture;
 - C:N ratio in the various types of agricultural soils.

Similarly to the Forest land uncertainty special consideration has been taken for the uncertainties related the territories that were temporarily occupied after 2022. Thus, the uncertainty of activity data like the total area of crop harvest was adjusted giving the larger uncertainty of temporarily occupied territories (see section Uncertainties and time-series consistency in Forest land category).

The uncertainty of areas of cropland fires was calculated with the same approach as for Forest land. Consequently, the uncertainty of fires in Cropland has the range -10% +300%.

The total uncertainty of emissions/sinks for the land-use category Cropland is 117 %.

¹³ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

Data on AD and EFs uncertainty are presented in Table 6.9. Uncertainties for default EFs were taken from 2006 IPCC Guidelines. Uncertainties for CS factors were derived from expert judgments. Calculations of combined uncertainties were performed using approach 1 (propagation of error) from chapter 3 volume 1 of 2006 IPCC.

Table 6.11. Uncertainties in the Cropland category

II	75.0/	IDGG
Uncertainty of EFs of biomass	75 %	IPCC
Combined uncertainty of CSC in living biomass pool in Cropland remaining	76 %	Calculated
Cropland		
Uncertainty of AD	12 %	Expert judgment
Distribution of harvested crop areas by climatic zones	13.5 %	Scientific research [10]
Nitrogen content in the primary crop products	3.0 %	Scientific research [10]
Nitrogen content in side-production	1.9 %	Scientific research [10]
Nitrogen content in crop residues (above- and below-ground)	18.1 %	Scientific research [10]
Nitrogen consumption by plants from crop residues	18.7 %	Scientific research [10]
Nitrogen inputs into plants from nitrogen mineral fertilizers	8.1 %	Scientific research [10]
Nitrogen inputs into soil from organic fertilizers	14.0 %	Scientific research [10]
Nitrogen inputs into soil from symbiotic fixation	19.4 %	Scientific research [10]
Nitrogen inputs into soil with precipitations	42.9 %	Scientific research [10]
Amount of humus mineralization of soils at crop growing	6.1 %	Scientific research [10]
Consideration of soil type of different mechanical composition areas	38.5 %	Scientific research [10]
Consideration of soil areas of various types of different mechanical composition	47.2 %	Scientific research [10]
by climatic zones		
Consideration of the C:N ratio for different types of soils	3.1 %	Scientific research [10]
Combined uncertainty of emissions from SOM on Cropland remaining	76 %	Calculated
Cropland		
Uncertainty of carbon emissions for organic soils	90 %	IPCC
Combined uncertainty of cropland fires	155 %	Calculated
Combined uncertainty of CSC on Lands converted to Cropland	92 %	Calculated
Combined uncertainty of Cropland	117 %	Calculated

Combined uncertainties of resulting GHG emissions and removals highly depend on the total of GHG emissions and removals. This is related to the application of equation 3.2 (chapter 3 volume 1 of 2006 IPCC), since the sign of the value (i.e., emissions or removals) is highly important for the value of denominator, thus on the resulting value of uncertainty.

6.3.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category Cropland, QA/QC procedures were applied. Correctness of the assumptions made for the estimations was confirmed by expert judgements.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

Additionally, the data from the national sources on crop harvests were compared with the data from FAO (table 6.12).

Table 6.12. Comparison of crop harvesting areas between the state statistics and FAO

	Crops	The state statistics (adjusted), ha	FAO, ha	Difference, %
1	Wheat	4934332	4658400	-6
2	Rye	79708	78400	-2
3	Barley	1677335	1494300	-11
4	Oats	172836	164800	-5
5	Maize	4129078	3975200	-4
6	Millet	92387	87900	-5
7	Buckwheat	148461	147900	0
8	Rice	2200	2200	0
9	Peas (dry)	163658	150000	-8
10	Beans	41858	13700	-67
11	Lentil	5300	5200	-2

	Crops	The state statistics (adjusted), ha	FAO, ha	Difference, %
12	Lupin	1400	1400	0
13	Sorghum	19049	12900	-32
15	Flax seeds	0	240	
16	Hemp seeds	0	1156	
17	Sugar beet	250324	250100	0
18	Sunflower seeds	5329030	5201600	-2
19	Soya beans	1854366	1834000	-1
20	Rape or colza seed	1445305	1431600	-1
21	Potato	1236058	1210200	-2
22	Cabbages	65542	61300	-6
23	Carrot	43346	40700	-6
24	Onions	49175	46700	-5
25	Cucumbers	50537	47200	-7
26	Tomatoes	64483	60900	-6
27	<u>Total</u>	21855767	20977996	<u>-4.0</u>

For those crops that the FAO publish data from official sources the difference occurs because the official statistics collect data only from the territories controlled by the Government of Ukraine. In the GHG inventory such data is enhanced by the experts to include entire territory of Ukraine.

For some crops for which FAO estimates the areas of harvests (like flax) the difference is caused by the methodological approaches for such estimates.

Tier 1 method calculation was performed as part of verification of the calculations of CSC in SOM. Particularly equation is 11.6 used to compare national and IPCC approaches of estimation of N in crop residues. The results are presented below in the table 6.13 by groups of crops (calculations were performed by more detailed separation).

There are some national circumstances of above-ground residues use, like for feeding or bedding. Thus, the factor of F_{remove} was adjusted to better reflect the use of by-products from residues of grains and beans and pulses.

The totals estimated by national methodology are lower by 12 and bigger by 51 percent than Tier 1 for above- and below-ground residues respectively, despite there are bigger differences in some particular crop types.

Improvement of factors for Cropland category is in high need, so it is included into improvement plan (annex A8.2).

Table 6.13. Comparison of estimation of N-content in crop residues left on fields

	Tier 1 cal	culation	National m	ethodology	Diffe	rence
Crops	N above-	N below-	N above-	N below-	% above-	% below-
	ground, kg	ground, kg	ground, kg	ground, kg	ground	ground
Grains	192518458	199447537	106760932	491652720	-80	59
Beans and pulses	537207	1241632	1769457	7965904	70	84
Industrial crops (incl. sugar beat)	28198750	38295716	1373956	11135143	-1952	-244
Oil crops	227382994	70279952	357564254	286020929	36	75
Vegetables (incl. potato)	45771920	25049299	4391921	6029776	-942	-315
Feeding crops	6977704	4371893	1090633	3806971	-540	-15
Grasses for feeding	60191326	90017901	36000317	56698240	-67	-59
Total Cropland	558622848	418343672	500236700	856801091	-12	51
Total Grassland	3831248	10625328	8884644	6867250	57	-55

It should be noticed that estimation of N in crop residues left on agricultural fields in Agriculture and LULUCF sectors are identical. The values calculated then used in Agriculture for calculation of direct N_2O emissions. In LULUCF the remaining part (after subtraction of direct N_2O emissions) is used in further calculations in Cropland and Grassland category (according to the methodology described in annex 3.3).

For N-input from organic fertilizers actual calculations from Agriculture sector was used. Particularly value of available Nitrogen from MMS was used after subtraction of N losses due to direct emissions, which are reported under Agriculture sector. So, with recalculations in Agriculture sector revised values are used then in LULUCF sector. More details with regard to N available from MMS are provided in chapter 5.3.

There are alternative sources for the fires in Cropland, based on satellite images. Particularly two studies focused on fires caused by the warfare or caused by the full-scale invasion of Ukraine [33, 34]. Those studies include estimations of Cropland fires. The comparison of the data and resulting emissions in 2022 is presented in the table below.

Table 6.14. Comparison of Cropland fires data and corresponding emissions in 2022

Data source	Area of Cropland fires,	Emissions, Mt CO ₂ -eq.	Emissions per ha,
	kha		t CO ₂ -eq. per ha
GHG inventory	13.9	0.13	9.0
Lennard et al.	371.7	4.19	11.3
Zibtsev et al.	419.1	3.14	7.5

Although the alternative sources provide much larger areas of burned croplands, the GHG inventory used the previous data source and methodology to keep the Consistency principle. Nevertheless, future GHG inventories will explore better ways to include remote sensing data in its estimations.

6.3.5 Category-specific recalculations

Due to recalculations in Agriculture sector connected to livestock and manure, the recalculations in the categories 4.B and 4.C were also synchronized. But because these resulted in a very small change of application of Nitrogen with organic fertilizers it resulted in very small change of CSC from mineral soils (except cases of small values of resulting emissions/removals).

The revisions resulted in changes for 1990-2022.

Table 6.15. The change in GHG emissions in the 4.B Cropland category for the time series from 1990 to 2022

Year	NIR 2024	NIR 2025	Difference, %
1990	-20 184	-20 303	0.59
1991	-23 075	-23 221	0.63
1992	-19 723	-19 857	0.68
1993	-10 396	-10 526	1.25
1994	-11 370	-11 491	1.07
1995	-6 950	-7 061	1.60
1996	-5 113	-5 211	1.90
1997	2 894	2 813	-2.81
1998	-230	-309	34.40
1999	1 300	1 221	-6.04
2000	5 464	5 383	-1.48
2001	13 152	13 071	-0.62
2002	13 388	13 305	-0.61
2003	2 172	2 094	-3.59
2004	14 273	14 203	-0.49
2005	15 063	14 990	-0.48
2006	10 038	9 971	-0.66
2007	4 820	4 756	-1.33
2008	20 492	20 425	-0.33
2009	17 766	17 696	-0.40
2010	9 820	9 748	-0.73
2011	21 862	21 789	-0.34
2012	16 877	16 802	-0.45
2013	27 575	27 500	-0.27

Year	NIR 2024	NIR 2025	Difference, %
2014	29 482	29 408	-0.25
2015	27 610	27 539	-0.26
2016	29 230	29 161	-0.24
2017	22 472	22 406	-0.29
2018	27 784	27 719	-0.23
2019	29 894	29 831	-0.21
2020	10 701	10 640	-0.57
2021	27 608	27 548	-0.22
2022	19 272	19 208	-0.33

6.3.6 Category-specific planned improvements

A work to revise and improve factors used in nitrogen-flow in mineral soils under Cropland was included into improvement plan. This work is also connected with need of verification of Tier 3 methodology, applied by Ukraine, what is a matter of availability of funds.

6.4 Grassland (CRF sector 4.C)

6.4.1 Category description

This category includes two subcategories: 4.C.1 Grassland Remaining Grassland and 4.C.2 Land Converted to Grassland. As well as in the previous categories, the 20-year period of land transition to subcategory 4.C.1 was applied. [1] The subcategory Grassland Remaining Grassland is divided into the managed and unmanaged. Ukraine has revised its approach towards definition of managed and unmanaged grasslands and concluded, that there are no unmanaged grasslands.

This category covers agricultural land systematically used for hay mowing, cattle grazing, the areas from which green mass for cattle feeding with silage material was harvested. Moreover, this category includes hayfields and pastures ploughed for the purposes of their radical improvement and permanently used under grass forage crops.

The category Grassland is a net sink of GHG emissions for the years 1990-2021. In 2022-2023 the category became a source with 0.1 Mt CO₂-eq. of emissions, what is higher than in 1990 by 105 % (0.9 Mt CO₂-eq. of removals) and by 44 % than in 2022 (0.055 Mt CO₂-eq.).

GHG emissions and removals in the category is influenced by areas under management for grazing and moving and areas of organic soils, as well as areas of conversions to Grassland category. To a less extent the trend is influenced by fires.

6.4.2 Methodological issues

The data sources for the Grassland category are the statistical forms on land areas (16-zem), on crop production in Ukraine (harvesting areas, mass and yield) and on fertilizers application. The data from these forms for 2014-2023 were corrected with the results of analytical study [4].

Previously assumed as managed grasslands, the areas of grazing or moving is taken from statistic form 29-sg, yearly prepared by the State Statistic Service of Ukraine. Currently this area, as well as grass harvesting, is used in order to calculate CSC in SOM.

Estimation of CSC in biomass and DOM pools were not performed assuming carbon balance in these pools, what is in line with Tier 1 of 2006 IPCC Guidelines. There is insufficiency of data collection, as well as lack of country-specific factors, to apply Tier 2.

To calculate carbon stock dynamics in the pool of mineral soils, the methods of nitrogen flow balance evaluation were used based on application of the national factors. The calculation methods are similar to those used for the pool of mineral soils in the land-use category Cropland (see chapter 6.3.2 and the Annex 3.3.2). The estimation of carbon stock changes in pools of the land-use category Grassland was based on use of data on the areas where grass was directly harvested, the amounts of crop harvested, the yield (based on statistical reporting form 29-sg), as well as data on

amounts of organic and nitrogen fertilizers for different crops applied (9-sg), corrected with use of results of analytical study for 2014-2023 years [4].

The values of the areas that are legally seen within the land-use categories Hayfields and Pastures from statistical reporting form 16-zem exceed the land area from which the crop of hay and green mass was harvested by 60-70 %. Based on the abovementioned, the assumption was made that lands converted to Grassland do not fall under the anthropogenic burden in the category.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Grassland category. Particularly according to Harmonized World Soil Database¹⁴ almost all of the soils are high activity clay soils according to IPCC classification (additional information is provided in the Annex 3.3.1). Thus, SOC_{ref} for moist cold temperate zone with HAC soils was applied.

Calculation of GHG emissions from organic soils Tier 1 method and default EF from 2006 IPCC Guidelines was applied.

The estimation of emissions of non-CO₂ gases includes an inventory from biomass burning processes on pastures, as well as direct and indirect nitrogen emissions from conversion from other land-use categories.

Information on fires on grasslands was provided by the Institute of Public Administration and Research on Civil Protection. The data was provided only starting from 2005, as the statistics were not collected before that year. To derive data for 1990-2004 average value of 2005-2013 years was used. The estimation was held under Tier 1 using the default EFs (Annex 3.3.2).

Calculation of direct and indirect emissions of N₂O due to mineralization was held under Tier 1 using the default EFs for Land converted to Grassland. On Grassland remaining Grassland, the emissions do not take place, as there is an increase in carbon stock in the mineral soil pool.

The summary information regarding methods and emission factors used is presented in Table 6.16.

Table 6.16. Summary information on gases reported, methods and emission factors used for calculations in Grassland category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.C.1 Grassland remaining Grass-				
land				
-biomass, DOM	CO_2	T1	D	T1 for living biomass is used
- SOM	CO_2	CS, T3	CS	due to unavailability of data
				and EFs for application of
				higher tiers
4.C.2 Land converted to Grassland				
- living biomass, DOM, SOM	CO_2	CS, T1	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and min-				
eral soils				
- drained organic soils	CO_2	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N_2O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO_2 , CH_4 , N_2O	T1	D	

6.4.3 Uncertainties and time-series consistency

The key factors that influence the degree of uncertainty of the GHG emission estimations in the land-use category 4.C Grassland are the following:

• data gaps due to war-related reasons;

¹⁴ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

- amount of crop residues, nitrogen stocks in them, their degree of humification and the level of consumption of the nitrogen by agricultural crops;
- degree of humification of organic fertilizers, nitrogen amounts in them available to agricultural plants;
 - the level of consumption of nitrogen fertilizers by agricultural crops;
- degree of mineralization of agricultural soils, depending on the type of crop cultivated, the amount of nitrogen stocks in the soils, and their grain texture;
 - C:N ratio in the various types of agricultural soils.

Similarly to the Forest land uncertainty special consideration has been taken for the uncertainties related the territories that were temporarily occupied after 2022. Thus, the uncertainty of activity data like the total area of harvested grasslands was adjusted giving the larger uncertainty of temporarily occupied territories (see section Uncertainties and time-series consistency in Forest land category).

The uncertainty of areas of grassland fires was calculated with the same approach as for Forest land. Consequently, the uncertainty of fires in Grassland has the range -10% +300%.

The total uncertainty of emissions/removals for the land-use category 4.C Grassland is 1356 %. The combined uncertainty tends to result in very high values when there are emissions and removals and those result in a small resulting value.

Data on input data and uncertainty factors are presented in Table 6.17. Uncertainties for default EFs were taken from 2006 IPCC Guidelines. Uncertainties for CS factors were derived from expert judgments. Uncertainties for CS factors were derived from expert judgments. Calculations of combined uncertainties were performed using approach 1 (propagation of error) from chapter 3 volume 1 of 2006 IPCC.

Table 6.17. Uncertainties in the Grassland category

Uncertainty of AD	13 %	Expert judgment
Distribution of harvested crop areas by climatic zones	13.5 %	Scientific research [10]
Nitrogen content in the primary crop products	3.0 %	Scientific research [10]
Nitrogen content in side-production	1.9 %	Scientific research [10]
Nitrogen content in crop residues (above- and below-ground)	18.1 %	Scientific research [10]
Nitrogen consumption by plants from crop residues	18.7 %	Scientific research [10]
Nitrogen inputs into plants from nitrogen mineral fertilizers	8.1 %	Scientific research [10]
Nitrogen inputs into soil from organic fertilizers	14.0 %	Scientific research [10]
Nitrogen inputs into soil from symbiotic fixation	19.4 %	Scientific research [10]
Nitrogen inputs into soil with precipitations	42.9 %	Scientific research [10]
Amount of humus mineralization of soils at crop growing	6.1 %	Scientific research [10]
Consideration of soil type of different mechanical composition areas	38.5 %	Scientific research [10]
Consideration of soil areas of various types of different mechanical composition	47.2 %	Scientific research [10]
by climatic zones		
Consideration of the C:N ratio for different types of soils	3.1 %	Scientific research [10]
Combined uncertainty of emissions from SOM on Grassland remaining Grass-	255 %	Calculated
land		
Uncertainty of carbon emissions for organic soils	90 %	IPCC
Combined uncertainty of grasslands fires	71 %	Calculated
Combined uncertainty of CSC in living biomass pool on Lands converted to	-71 %	Calculated
Grassland	+289 %	
Combined uncertainty of CSC in SOM pool on Lands converted to Grassland	67 %	Calculated
Combined uncertainty of Grassland	1356 %	Calculated

Combined uncertainties of resulting GHG emissions and removals highly depend on the total of GHG emissions and removals. This is related to the application of equation 3.2 (chapter 3 volume 1 of 2006 IPCC), since the sign of the value (i.e., emissions or removals) is highly important for the value of denominator, thus on the resulting value of uncertainty.

6.4.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category 4.C Grassland, QA/QC procedures were applied. Correctness of the assumptions made for the estimations was confirmed by specialized experts' judgements.

All the input statistical information is documented and confirmed with official letters from state statistical agencies of Ukraine, archived, and suitable for performing recalculations.

As described in chapter 6.3.4, as a part of verification, estimation of N volumes in residues left to decay on fields using Tier 1 was performed. The result of analysis shows that the national methodology results in less N from below-ground residues by 55 %, but more N from above-ground residues by 57 %.

Similarly to the fires in Forest land and Cropland there are alternative sources for the fires in Grassland, based on satellite images. Particularly two studies focused on fires caused by the warfare or caused by the full-scale invasion of Ukraine [33, 34].

Table 6.18. Comparison of Grassland fires data and corresponding emissions in 2022

Data source	Area of Grassland	Emissions, Mt CO ₂ -eq.	Emissions per ha,
	fires, kha		t CO ₂ -eq. per ha
GHG inventory	4.11	0.29	7.1
Lennard et al.	58.6	0.41	7.0
Zibtsev et al.	273.7	1.28	4.7

The areas of fires between studies differ much that could be related to the definitions and approaches of land identification. The resulting emissions differ as well.

The GHG inventory used the previous data source and methodology to keep the Consistency principle. Future GHG inventories will explore better ways to include remote sensing data in its estimations.

Improvement of factors for national methodology is in high need, so it is included into improvement plan (Annex 8.2).

6.4.5 Category-specific recalculations

The recalculations in Grassland category were performed in accordance with the changes of N-application with organic fertilizers. This was caused by recalculation in Agriculture sector in Enteric Fermentation and Manure Management categories.

Also, there were recalculations in 2024 which erroneously were not reported in NID 2024 but were included into current submission.

The results of recalculations are presented in table 6.19.

Table 6.19. The change in GHG emissions in the 4.C Grassland category for the time series from 1990 to 2022

Year	NIR 2024	NIR 2025	Difference, %
1990	-946	-1 673	77
1991	-1 084	-1 777	64
1992	-1 053	-1 750	66
1993	-1 825	-2 467	35
1994	-1 868	-2 439	31
1995	-1 815	-2 383	31
1996	-1 697	-2 250	33
1997	-2 113	-2 649	25
1998	-2 112	-2 619	24
1999	-2 511	-3 025	20
2000	-2 501	-2 954	18
2001	-2 510	-2 921	16
2002	-2 508	-2 894	15
2003	-2 503	-2 896	16
2004	-2 464	-2 830	15
2005	-2 453	-2 831	15

Year	NIR 2024	NIR 2025	Difference, %
2006	-2 415	-2 758	14
2007	-2 434	-2 762	13
2008	-2 397	-2 701	13
2009	-2 353	-2 632	12
2010	-2 196	-2 458	12
2011	-1 914	-2 160	13
2012	-1 898	-2 143	13
2013	-1 058	-1 305	23
2014	-977	-1 225	25
2015	-938	-1 136	21
2016	-741	-915	23
2017	-451	-624	38
2018	-244	-414	70
2019	21	-148	-818
2020	62	-68	-209
2021	93	-67	-172
2022	180	55	-69

6.4.6 Category-specific planned improvements

Because the approach of CSC determination in mineral soils on Grassland is identical as on Cropland, general work to revise and improve factors used in nitrogen-flow in mineral soils was included into improvement plan. This work is also connected with need of verification of Tier 3 methodology, applied by Ukraine, what is a matter of availability of funds.

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas converted to Grassland.

6.5 Wetlands (CRF sector 4.D)

6.5.1 Category description

According to requirements of the 2006 IPCC Guidelines [1], this land-use category includes territories of marshes and land under inland water objects. In Ukraine, the land-use category 4.D Wetlands includes land not occupied by forests that is partly, temporarily or permanently flooded with water.

This category includes subcategories 4.D.1 Wetlands Remaining Wetlands and 4.D.2 Land Converted to Wetlands with the transition period of 20 years.

The 2006 IPCC Guidelines also subdivide wetlands into the three types:

- Peat extraction;
- Flooded land:
- Other wetlands.

In the Peat Extraction category, operating peat extraction sites are reported. Other areas of wetlands are reported as Other Wetlands due to lack of statistics that would allow separating flooded lands, according to the IPCC terminology.

6.5.2 Methodological issues

The area of subcategory 4.D.1 Wetlands remaining Wetlands was taken from reporting form 16-zem. The category Peat extraction remaining Peat extraction includes the areas where peat extraction takes place (form 16-zem). The rest of the territory, for the exception of peatlands and that converted into wetlands, was classified as Other Wetlands. Flooded lands are not reported due to lack of national statistics on this land-use type that would be consistent with the 2006 IPCC Guidelines.

The estimation of emissions was held under Tier 1 using the default EFs for subcategory 4.D.1. In order to consider recommendation of ERT 2013 Wetlands Supplement was used for the calculations in this category [13].

Data on peat extraction volumes were obtained from the State Statistics Service of Ukraine (Table 6.16). Data on imports and exports of non-energy peat in Ukraine is not available. The conservative assumption was made, according to which imports equal to exports, so the amount of peat used is equal to the amount produced.

The production of non-energy peat in Ukraine in 2023 was not published. But according to the data of the State Statistic Service of Ukraine the index of mining in Ukraine in 2023 was 35 % as of the mining in 2022, which was updated since the last year. Thus, the value of production in 2022 was multiplied by that index. This value will be revised when more accurate data is available.

Estimation of the carbon stock change in the land-use category 4.D.2 Land Converted to Peat Extraction was not performed, because there are no statistics on the areas converted to this subcategory. According to data of the State Service of Geodesy, Cartography and Cadastre of Ukraine, the areas of peat extraction have been constantly decreasing throughout the entire time series from 32.1 kha in 1990 to 11.7 kha in 2000, and to 8.9 kha in 2023. At the same time, there is a gradual increase in the total area of the land-use category 4.D Wetlands, according to statistical reporting form 16-zem. It was therefore decided that conversions occur either to Flooded Land or Other Wetlands.

Currently there is no information on what soils conversions occur. Considering that the areas of organic soils in Forest land, Cropland and Grassland is rather stable, assumption was made that these conversions to Wetlands occur on mineral soils. Nevertheless, this might be confirmed as soon as GIS data on land representation be used.

2006 IPCC Guidelines provide a method under Tier 1 for estimation of biomass losses only during conversions to Flooded Lands. Ukraine applied it for the subcategory 4.D.2, and also conservative approach was used that all carbon stock in DOM pool is oxidized during conversions of forests.

Table 6.20. Production of non-agglomerated peat for use in agriculture for non-energy purposes, kt of conditional humidity

onal humidity Year	Production
1990	14680
1991	11678
1992	5738
1993	2160
1994	799
1995	481
1996	250
1997	66
1998	99
1999	115
2000	88
2001	108
2002	152
2003	164
2004	163
2005	119
2006	159
2007	217
2008	243
2009	242
2010	170
2011	221
2012	210
2013	131
2014	119
2015	79
2016	136

Year	Production
2017	88
2018	146
2019	140
2020	121
2021	163
2022	51
2023	18

Amount of N₂O emissions from peat extraction was estimated using default EFs.

On-site and off-site CO_2 emissions were estimated by equation 2.2 from Wetlands Supplement. CH_4 emissions from ditches were estimated using equation 2.6. N_2O emissions were estimated using equation 2.7. EFs for the calculations were taken from Wetlands Supplement.

On the conversions of lands to Wetlands it was assumed that entire C-stocks are lost from living biomass (Forest land and Grassland) and from DOM (Forest land).

GHG emissions from mineralization of nitrogen at conversion (direct and indirect) were estimated under Tier 1 using default coefficients (equation 11.8 of 2006 IPCC Guidelines).

In the current NIR, emissions from peat bogs burning have been estimated. Information on burning of biomass on non-forest organic soils was provided by the Institute of Public Administration and Research on Civil Protection. As well as in the case of fires on Grasslands, the data are only available starting from 2005, and for 1990-2004 it was derived as average value for available data for 2005-2013 years (Table 3.3.23 of Annex 3.3.2).

Tier 1 method of 2006 IPCC Guidelines was used for calculation of GHG emissions from fires. To obtain emission factors, the 2013 Supplement to the 2006 IPCC Guidelines was used (IPCC, 2013). The volumes of the organic matter available for combustion was taken as 100 tons of dry matter in the way as applied for underground forest fires according to national studies [10], and the values from Table 2.7 of 2013 IPCC Supplement were applied for GHG emissions estimations [11].

The summary information regarding methods and emission factors used is presented in Table 6.21.

Table 6.21. Summary information on gases reported, methods and emission factors used for calculations in Wetlands category

CRF category	Gas reported	Method	Emission	Note
	_		factor	
4.D.1 Wetlands remaining Wet-				
lands				
- Peat extraction remaining Peat				
extraction	CO ₂	T1	D	
4.D.2 Land converted to Wetlands				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(II) Emissions and removals from				
drainage and rewetting and other				
management of organic and min-				
eral soils				
- Peat extraction				
- drained organic soils	CO_2, CH_4, N_2O	T1	D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				
4(V) Biomass Burning	CO ₂ , CH ₄ , N ₂ O	T1	CS, D	

6.5.3 Uncertainties and time-series consistency

The key uncertainty factor in estimation of GHG emissions in the land-use category 4.D Wetlands is accuracy of determining the areas that are part of this land-use category and permanently remain within this category.

Since the full-scale invasion of Russian Federation into Ukraine the uncertainty of data has raised significantly.

Areas of land-use categories are defined according to data of the State Service of Geodesy, Cartography and Cadastre of Ukraine. For territories within the land-use category, the area accuracy is taken to be 10 %, but for 2023 this uncertainty is increased to 13 % due to the full-scale invasion of Ukraine. Data on production of non-energy peat was obtained from the State Statistics Service, the uncertainty of which is taken as 5 % for the years before 2022 and 15 % for 2023.

To estimate emissions from peat extraction, default factors were used as well as its uncertainties. Current inventory also includes emissions from fires on non-forest peat lands. Thus, uncertainty of CO₂ emissions is 59 %. The uncertainty of methane emissions from fires is 30 %. The uncertainty of nitrogen emissions from peat lands is 39 %.

The total uncertainty in the 4.D Wetlands category is 59 %.

6.5.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the category 4.D Wetlands QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.5.5 Category-specific recalculations

The data on peat extraction volume was clarified for 2022. Particularly the State Statistic Service has published the data on peat extraction. Thus, estimated in the previous submission data was replaced by the official statistic data.

Table 6.22. The change in GHG emissions in the 4.A Forest land category

Year	NIR 2024	NIR 2025	Difference, %
2022	164	172	4.9

6.5.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Wetlands.

6.6 Settlements (CRF sector 4.E)

6.6.1 Category description

All land occupied by industrial facilities, residential houses, roads, mines, open development sites, and any other facilities established for various types of human activities, including the areas for their maintenance are included in the land-use category 4.E Settlements.

6.6.2 Methodological issues

This category is divided into subcategories 4.E.1 Settlements Remaining Settlements and 4.E.2 Land Converted to Settlements.

Estimation of carbon stock changes in the land-use category 4.E.1 Settlements remaining Settlements was not performed due to that there are no national values of carbon stock changes in green vegetation on built-up land. Use of the factors suggested in 2006 IPCC Guidelines [1] may lead to significantly inflated results of removals estimation, as they were designed for tree species typical of North America, while in Ukraine the tree species structure in this land-use category is different.

Estimation of CO₂ emissions for the subcategory Forest Land Converted to Settlements is produced in pools of living biomass and dead organic matter in case there are deforestation activities on a basis of instant oxidation.

To estimate CSC in SOM Tier 1 method and default EFs were used (equation 2.25 of 2006 IPCC Guidelines) for Land converted to Settlements category. Particularly according to Harmonized World Soil Database¹⁵ almost all of the soils are high activity clay soils according to IPCC classification (additional information is provided in the Annex 3.3.1). Thus, SOC_{ref} for moist cold temperate zone with HAC soils was applied.

Nitrogen direct and indirect emissions from mineralization at conversion were estimated under Tier 1 using the default EFs (equation 11.8 of the 2006 IPCC Guidelines).

The summary information regarding methods and emission factors used is presented in Table 6.23.

Table 6.23. Summary information on gases reported, methods and emission factors used for

calculations in Settlements category

CRF category	Gas reported	Method	Emission factor	Note
4.E.2 Land converted to Settle-				
ments				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				

6.6.3 Uncertainties and time-series consistency

Uncertainty level of the category is defined mostly by conversions to Settlements. In 2023 conversion of Forest land to Settlements has not occurred. Because of Tier 1 method of CSC calculations for these land-use conversions, total uncertainty level of GHG emissions in the category 4.E Settlements is 43 %.

6.6.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.E Settlements category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.6.5 Category-specific recalculations

There were no recalculations in this category.

6.6.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Settlements.

6.7 Other Land (CRF sector 4.F)

6.7.1 Category description

¹⁵ http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html

The category 4.F Other Land includes open land without vegetation or with little vegetation [2] - open land, the surface of which is not or almost not covered with vegetation, namely: rocky sites (land under bare rocks, landslides, pebbles, gravel, sand, including beaches), ravines (linear erosional land form) with the depth of more than 1 m with no or poorly formed soil cover and emersions of rock or lower genetic soil layers on the slopes, other open land (saline etc.).

6.7.2 Methodological issues

For the land-use category 4.F Other Land remaining Other Land the assumption about absence of carbon stock changes was made.

According to the 2006 IPCC Guidelines [1], this land use category is seen as a balancing one to provide a stable final value of the areas in Ukraine along the time series - 60,354.9 thousand ha, and includes areas with very low carbon stocks.

Carbon stock changes from conversions of forests, cropland and grassland into other land were estimated. The estimation was made under Tier 1 method, equation 2.25 [1], using the default EFs (Table 2.3, 5.5 and 6.2 [1]). It should be noted that according to 2006 IPCC Guidelines [1], the carbon stock after conversion is equated to zero.

For converted land, direct and indirect N_2O emissions from mineralization of nitrogen at conversion were also estimated. The estimation was made under Tier 1 method using the default EFs (equation 11.8 of 2006 IPCC Guidelines). For the time series, these emissions were estimated and included into the relevant CRF tables.

The summary information regarding methods and emission factors used is presented in Table 6.24.

Table 6.24. Summary information on gases reported, methods and emission factors used for

calculations in Other Land category

CRF category	Gas reported	Method	Emission	Note
			factor	
4.F.2 Land converted to Other				
Land				
- living biomass, DOM, SOM	CO_2	T1	CS, D	
4(III) Direct N2O Emissions from				
N Mineralization/Immobilization	N_2O	T1	D	
4(IV) Indirect nitrous oxide (N2O)	N ₂ O	T1	D	
emissions from managed soils				

6.7.3 Uncertainties and time-series consistency

The uncertainty of the total CSC in Other land category consists of uncertainties of CSC estimations in Forest land, Cropland and Grassland.

All three subcategories include CSC from SOM pool. In addition, in Forest land CSC occur in living biomass and DOM pools, and in living biomass – in Grassland category.

The combined uncertainty of CSC in Other land category estimated by applying Tier 1 approach from 2006 IPCC is $60\,\%$ in 2023.

6.7.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.F Other Land category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

6.7.5 Category-specific recalculations

There were no recalculations in the category.

6.7.6 Category-specific planned improvements

Planned work of revision of land-use matrix is expected to deliver more accurate results regarding land areas of Other land.

6.8 Harvested Wood Products (HWP, CRF sector 4.G)

6.8.1 Category description

HWP category includes estimations of C-stocks by 3 types of HWP: sawnwood, wood-based panels and paper and paperboard. The dynamics of Carbon stock changes in Sawnwood and Wood-based Panels have similar trends, since the majority of wood harvested in Ukraine is used domestically (fig. 6.8 and 6.9). This tendency became even stronger due to prohibition to export industrial roundwood since 2015. Consequently, the production of sawnwood increased in recent reported years.

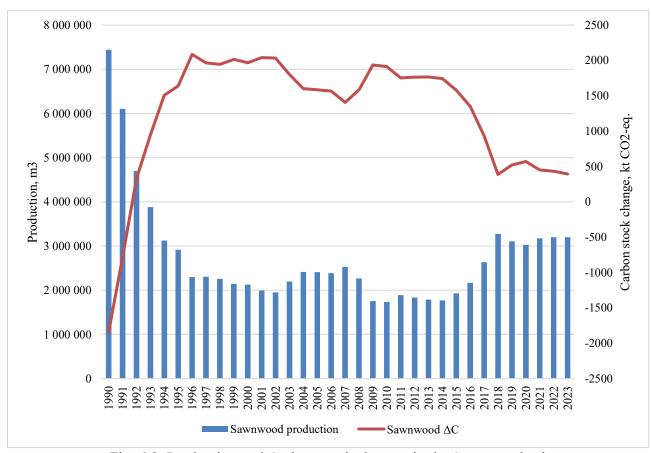


Fig. 6.8. Production and Carbon stock changes in the Sawnwood subcategory

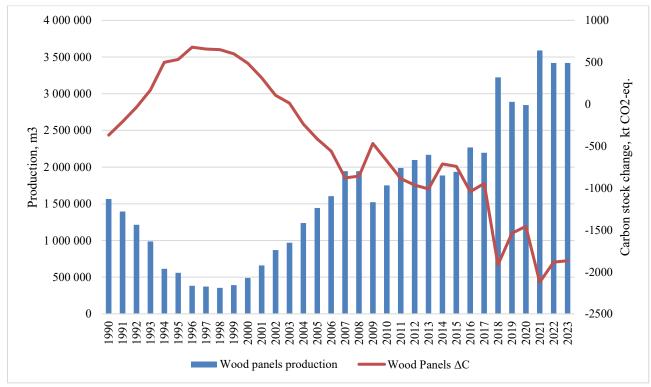


Fig. 6.9. Production and Carbon stock changes in the Wood-based Panels subcategory

Paper and paperboard subcategory has a different tendency, since the production of these commodities are based on imported pulp. Consequently, despite the production volumes of paper and paperboard since 2012 varies between 1.0-1.2 million t, Carbon stocks in the subcategory are going towards zero due to the lack of domestic pulp production since 2012.

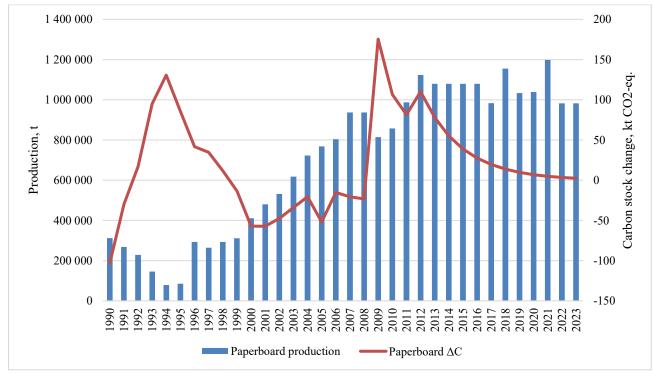


Fig. 6.10. Production and Carbon stock changes in the Paper and Paperboard subcategory

There are significant changes in timber and wood products flows to and from Ukraine particularly due to prohibition to export industrial roundwood, which had historically significant amounts. Consequently, the production of sawnwood increased in recent reported years.

6.8.2 Methodological issues

Estimation of carbon stock in the HWP category was made under Tier 1 method using the default EFs. The production approach to estimation of carbon stock changes in the category was applied.

The input information (table 6.25) includes FAO databases and national data provided by the State Statistics Service of Ukraine and the State Forest Resources Agency of Ukraine.

Table 6.25. Activity data for calculations in HWP category

1	Sawnwood Production, m3	Wood Panels Production, m3	Paper and Paperboard Production, t
1990	7 441 000	1 564 365	312 325
1991	6 106 000	1 395 154	267 888
1992	4 700 000	1 215 000	228 790
1993	3 882 000	988 000	145 290
1994	3 124 000	614 000	78 500
1995	2 917 000	560 000	85 200
1996	2 296 000	382 000	292 890
1990	2 306 000	372 000	264 000
1997		355 000	292 900
1998	2 258 000 2 141 000	392 000	310 900
2000	2 141 000		
		490 000	411 000 479 900
2001	1 995 000	659 000	
2002	1 950 000	868 300 970 000	531 600
2003	2 197 000		618 037
2004	2 414 000	1 239 000	722 999
2005	2 409 000	1 443 000	768 010
2006	2 385 000	1 604 000	804 000
2007	2 525 000	1 944 000	937 001
2008	2 266 000	1 944 000	937 001
2009	1 753 000	1 522 000	813 999
2010	1 736 000	1 751 000	857 001
2011	1 888 000	1 989 000	986 998
2012	1 832 600	2 097 300	1 123 060
2013	1 786 100	2 167 700	1 079 350
2014	1 767 300	1 886 000	1 079 350
2015	1 927 300	1 936 000	1 079 350
2016	2 166 800	2 267 700	1 079 350
2017	2 636 100	2 195 700	983 000
2018	3 271 600	3 222 700	1 155 000
2019	3 103 900	2 889 700	1 033 000
2020	3 025 100	2 844 700	1 039 000
2021	3 172 400	3 589 700	1 198 000
2022	3 201 000	3 419 700	982 429
2023	3 201 000	3 419 700	982 429

Production of sawnwood is provided by the State Statistic Service of Ukraine except for 2022-2023. The State Statistic Service of Ukraine has not published the data of industrial production in 2022-2023, thus the data of sawnwood production was taken from the FAOSTAT. When the state statistics will become available that value will be recalculated.

The data regarding production of wood-based panels and paper and paperboard was taken from FAO database. FAO has no information for 1990-1991 years for production of wood-based panels and paper and paperboard, thus splicing technique was applied using GDP of Ukraine, derived from the data of World Bank (see fig. 6.11 and 6.12).

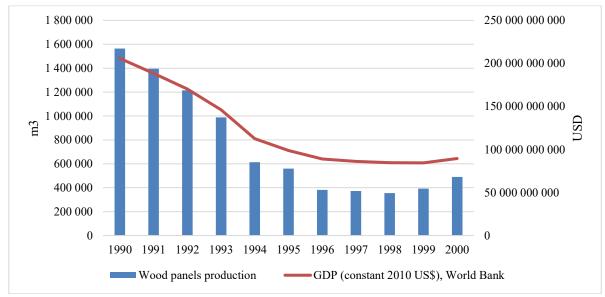


Fig. 6.11. Estimation of wood panels production based on GDP

Fig. 6.12. Estimation of paperboard production based on GDP

More specifically to estimate volumes of wood panels and paper and paperboard production for 1990 and 1991 constant GDP in 2010 prices was used, as well as "Trend" function of MS Excel. As an input time series for wood panels 1990-2000 values of GDP were used since it demonstrates a good correlation (see fig. 6.11). For paper and paperboard estimations time series of GDP for 1992-1994 was used since only for those years there is a correlation between GDP and known volumes of paper and paperboard production.

GHG inventory in 4.G category was performed with stratification on Sawnwood, Wood-Based Panels and Paper and Paperboard with corresponding AD and EFs [13].

The method and calculation factors (table 6.26) were taken from the KP-Supplement to 2006 IPCC Guidelines.

Table 6.26. Factors used for calculations in HWP category

	Sawnwood	Wood-Based Panels	Paper and Paperboard
Half-life, years	35	25	2
C Conversion factor, Mg C/ m ³ or Mg C/ Mg	0.229	0.269	0.386
Density, Mg(dry oven mass)/ Mg	-	-	0.9

To estimate the final HWP contribution into emissions/removals in the sector, the production approach was applied.

6.8.3 Uncertainties and time-series consistency

The data for HWP calculations was derived from the State Statistic Service of Ukraine, for which 10 % of uncertainty was applied. For FAO data 15 % was applied as for countries with systematic control.

Factors for calculations are considered to have high uncertainty, what is recognized by IPCC. KP Supplement do not provide particular uncertainty values, thus values from 2006 IPCC were used (table 12.6 of Chapter 11 Volume 4): factor of product volume to weight factor -25 %, oven dry weight to carbon factor -10 %, decay rate -50 %.

With use of propagation of errors method combined uncertainty of CSC of sawnwood is estimated to be 42 %, wood panels is 41 % and paper and paperboard is 48 %.

6.8.4 Category-specific QA/QC procedures

For estimation of GHG emissions in the 4.G Harvested Wood Products category, general QA/QC procedures were applied. All the input statistical information was documented, archived, and accessible for recalculations.

The data on paper and paperboard production for 2021-2022 were received from the Association of Ukrainian Enterprises of Pulp and Paper Industry "Ukrpapir". While the value for 2021 is closer to FAOSTAT (945.3 kt vs 1 198.0 kt) for 2022 is differs by almost half (500.0 kt vs 982.4 kt).

There were many factors that led to this difference including the reduction of industrial production and data gaps. In order to keep the methodological consistency, the data from the FAOSTAT were used in the GHG inventory although alternative source from the Association will be monitored further.

6.8.5 Category-specific recalculations

There were recalculations in the category due to data clarification. Particularly, the data on production of sawnwood for 2022 were revised in order to address the data clarification by the FAO-STAT as well as the data of wood-based panels production 2019-2022.

The results of this revision are provided in the table 6.27.

Table 6.27. The change in GHG emissions in the 4.G HWP category for the time series from 2012 to 2021

Year	NIR 2024	NIR 2025	Difference, %
2019	-1 007	-1 009	0.2
2020	-967	-881	-8.9
2021	-1 759	-1 667	-5.3
2022	-1 393	-1 448	3.9

6.8.6 Category-specific planned improvements

There are no improvements planned in this category.

7 WASTE (CRT SECTOR 5)

7.1 Sector Overview

In the "Waste" sector, GHG emissions in the following categories are accounted for:

- 5.A Solid Waste Disposal;
- 5.B Biological Treatment of Solid Waste;
- 5.C Incineration and Open Burning of Waste;
- 5.D Wastewater Treatment and Discharge.

Methane emissions in the sector come from decomposition of the organic matter in solid municipal and industrial waste landfills, from treatment of industrial and domestic water, waste incineration and composting. Nitrous oxide emissions are caused by treatment of industrial wastewater, human life wastewater, incineration and composting of waste. Carbon dioxide is accounted for at waste incineration.

Based on findings of the inventory, greenhouse gas emissions in the sector in 2023 amounted to 14 832.62 kt of CO₂-eq.; including methane – 13 819.64 kt of CO₂-eq. (493.56 kt); nitrous oxide – 1 008.79 kt of CO₂-eq. (3.81 kt); and carbon dioxide – 4.19 kt. The decrease in compared to the baseline 1990 (16 946.86 kt of CO₂-eq.) is 12.5 %. An increase in compared to the previous year is 0.46 %.

Solid waste disposal and wastewater treatment categories are the main sources of GHG emissions in Waste sector producing accordingly 58.9 % and 40.8 % in 2023. Incineration and Biological treatment of waste together contribute only 0.21 % of GHG emissions from Waste sector in 2023. For details on the sector emission trends and emission values see Tables 7.1, 7.2 and Fig. 7.1.

Table 7.1. GHG emissions in "Waste" sector according to the gases and categories in partic-

ular year								
Year	CO ₂	CH ₄	N ₂ O	5.A	5.B	5.C	5.D	Total GHG
1 Cai						kt CO2-eq		
1990	28.66	15037.35	1880.85	7661.08	26.91	34.27	9224.60	16946.86
1995	26.65	14877.25	1445.63	8499.44	18.48	30.34	7801.28	16349.53
2000	34.53	14619.33	1290.78	8596.35	8.34	38.68	7301.27	15944.64
2005	49.48	15089.40	1366.95	8892.36	4.81	55.48	7553.19	16505.84
2010	52.88	15100.18	1353.20	9283.67	2.50	58.81	7161.28	16506.26
2011	45.08	15027.35	1358.02	9312.32	4.84	52.45	7060.84	16430.45
2012	34.68	14892.62	1370.76	9248.43	4.75	38.27	7006.61	16298.06
2013	3.31	15251.90	1379.77	9331.15	7.22	4.45	7292.14	16634.97
2014	11.01	14921.43	1330.37	9332.12	12.65	16.71	6901.33	16262.81
2015	8.24	14860.79	1256.42	9472.60	38.97	10.53	6603.35	16125.45
2016	5.06	15067.21	1255.02	9474.47	33.26	8.80	6810.76	16327.29
2017	5.64	15158.56	1236.51	9329.48	25.90	9.08	7036.26	16400.71
2018	5.18	15063.78	1237.58	9159.99	28.79	9.11	7108.65	16306.54
2019	3.53	15580.38	1223.93	9019.25	8.44	7.72	7735.21	16807.84
2020	3.79	15159.75	1217.52	8815.84	7.32	8.73	7549.17	16381.06
2021	5.06	14918.20	1193.10	8803.11	16.24	11.83	7285.19	16116.36
2022	5.27	13730.74	1029.09	8900.71	23.82	10.29	5830.28	14765.09
2023	4.19	13819.64	1008.79	8748.64	20.54	11.03	6052.41	14832.62

Emission categories reported under Waste sector as well as used methods and EFs are summarized in Table 7.2

Table 7.2. Methods and emission factors used in estimations of emissions from "Waste" sector

Sector categories	Reported GHG	Methods	EF
A Solid Waste Disposal			
1. Managed waste disposal sites	CH ₄	Tier 3	CS, D
2. Unmanaged waste disposal sites	CH ₄	Tier 3	CS, D
3. Uncategorized waste disposal sites	NO	NA	NA
B. Biological treatment of solid waste	NO	NA	INA

Sector categories	Reported GHG	Methods	EF					
1. Composting	CH ₄ , N ₂ O	Tier 1	D					
2. Anaerobic digestion at biogas facilities	NO	NA	NA					
C. Incineration and open burning of waste								
1. Waste incineration	CO ₂ , N ₂ O, CH ₄	Tier 1, Tier 2	CS, D					
2. Open burning of waste	NE	NA	NA					
D Wastewater Treatment and Discharge	D Wastewater Treatment and Discharge							
1. Domestic wastewater	CH ₄ , N ₂ O	Tier 1, Tier 2	CS, D					
2. Industrial wastewater	CH ₄ , N ₂ O	Tier 2	CS, D					

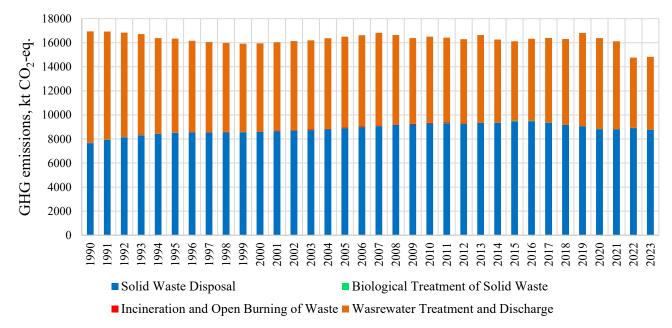


Fig. 7.1. GHG emissions in the "Waste" sector, 1990-2023

Since 1990, emissions from waste management gradually decreased and reached their minimum value in 1999, this period was characterized by a sharp drop in industrial production and, as a result, reduced emissions from treatment of industrial wastewater. In the period of 1999-2007, emissions increased significantly – by 5.9 % – due to an increased volumes of municipal solid waste (MSW) landfilling, as well as an increase in the volume of industrial wastewater. In 2008, there was a slight reduction in GHG emissions associated with the global economic crisis. In 2014, GHG emissions in the "Waste" sector started to decrease constantly mainly due to the reduction of water consumption for industrial and household needs and an increase of methane utilization at MSW landfills. An increase in the volume of insufficiently treated wastewater in 2013 led to an increase in emissions, as well as a change (increase) in the value of the BOD₅ generation indicator per person since 2019. The full-scale invasion of Ukraine by the Russian Federation led to a significant drop in industrial production, as well as a decrease in the population on the territory of Ukraine and, accordingly, to a decrease in greenhouse gas emissions, particular in category 5.D "Wastewater treatment" in 2022, 2023.

Methane emissions from solid waste landfills are the largest key source of GHG emissions in this sector and accounting for about 60 % of total emissions in the sector and are increasing year by year. The latter is mainly due to the annual increase in the volume of waste generation and the dominant practice of its disposal, as well as the lack of systems for separate collection and composting of organic waste. According to official statistics, more than 90 % of collected MSW is disposed, the rest is sorted and recycled. In recent years, the practice of collecting and recovering biogas at the large country's landfills has become widespread, which has led to a reduction of methane emissions from less than 1 % to 11% of the total emissions in this category.

Waste composting is still not common practice in Ukraine. The overall level of waste composting is low. There is only one example of a new successful commercial full-scale composting project in Lviv started operating in June 2020. The composting station processes food waste from citizens and businesses into fertilizers, as well as garden and park waste collected by municipal workers.

Emissions from waste incineration in Ukraine are less than 1 % of total emissions in the sector. Only 4-5 % of collected MSW and about a million tons of industrial waste are incinerated each year, mainly for the purpose of energy obtaining. Open burning of all types of waste in Ukraine is officially prohibited by law. At the beginning of the 1980s, four MSW incineration plants were built in the cities of Kharkiv, Dnipropetrovsk, Kyiv and Sevastopil. Three of them were closed as a result of noncompliance with the Ukrainian environmental standards. Currently, only one incineration plant 'Energia' in Kyiv City is operated.

Wastewater treatment is a key category of GHG emissions in this sector and account for about 40 % of total emissions in the sector. The main sources of emissions from domestic wastewater handling are biological treatment plants (13 %), latrines (38 %) and sludge treatment systems (sludge-drying beds) (37 %) in Ukraine. The largest contribution to greenhouse gas emissions from category 5.D.2 is made by wastewater treatment of the food, meat and dairy, pulp and paper industries.

7.2 Solid Waste Disposal (CRF category 5.A)

7.2.1 Category description

Inventory of GHG emissions from solid waste landfills in Ukraine includes methane emissions from MSW landfilling, as well as industrial organic waste in dumping sites and MSW landfills of the country, which could be divided into the three groups in accordance to the classification of 2006 IPCC Guidelines [1]: unmanaged shallow, unmanaged deep, and managed (controlled). Category 5.A is a key one and estimated under Tier 3 using the national emission factors and the default factors according to [1].

Methane emissions from solid waste landfills in 1990 amounted to 273.61 kt, and by 2023 they have increased to 312.45 kt - by 14.2 %. In comparison with the previous year emissions were decreased by 1.7 %. Methane emissions from solid waste disposal for 1990-2023 are shown at Figure 7.2.

In the period of 1990-1996, there was a significant increase in emissions – by 11 %, which was due to modernization of operated MSW dumping sites up to the level of managed ones according to [1]. In 1996-2009, emissions gradually increased. This period is characterized by an increase in volumes of solid waste landfilled and continued modernization of MSW dumping sites. For 2009-2023, methane emission fluctuations mainly were caused by landfill gas utilization.

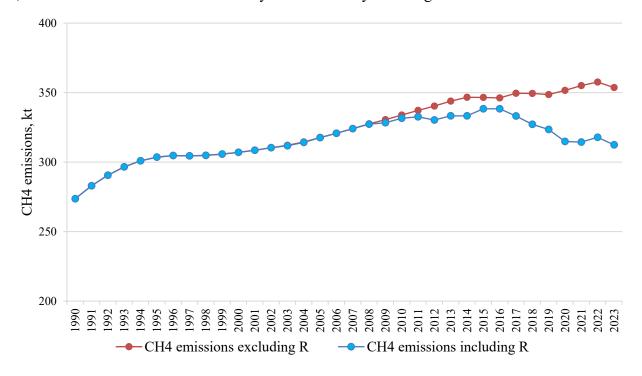


Fig. 7.2. Methane emissions from solid waste disposal, 1990-2023

7.2.2 Methodological issues

7.2.2.1 General principles

Estimation of CH₄ emissions from MSW landfills was performed in accordance with the National Multicomponent Model developed in 2012 and described in the scientific research work "Study on gasification at the largest MSW dumping sites and switching to the three-component national model for estimation of GHG emissions from MSW dumping sites in Ukraine" [2]. In paper [3], the model was improved by means of more detailed assessment of MSW composition and separation of two additional components (leather and rubber, as well as personal care products).

The National Gasification Model is based on the first-order decay method of the third level of detail (formulas 3.A1.1-3.A1.6 [1]), which is based on Ukraine-specific factors determined for each of the seven organic fraction of municipal solid waste [2, 3].

In accordance with the model, annual methane emissions at landfilling of MSW removed in the current year and in previous years are determined by the formula:

$$Q(t) = \sum_{i=1}^{m} \sum_{i=1}^{n} A \cdot k_i \cdot MWS_i \cdot MWS_{j,i} \cdot L_{0,j,i} \cdot e^{-k_j \cdot (t-x)}, \qquad (7.1)$$

where: Q(t) – the amount of methane produced in the period t, t;

 k_i – the constant of the rate of methane production for the *j-th* component, year⁻¹;

A – the normalizing factor correcting the sum, determined by the formula:

$$QA = (1 - e^{-k_j})/k_j (7.2)$$

 MWS_i – the total amount landfilled in year i, t/year;

 $MWS_{i,i}$ – content of component j in MSW in year i, % of the weight;

t – the index of the estimation year;

x – the period in years for which the data are entered;

 $Lo_{j,i}$ – the potential of methane production in year i, t of CH₄/t of MSW, defined by the formula:

$$DOC_i \cdot DOC_F \cdot F \cdot 16/12 \cdot MCF_i , \qquad (7.3)$$

where: DOC_j – the total amount of organic carbon that can decompose biologically, for fraction j, tC/tMSW;

 DOC_F – the proportion of carbon taking part in the decay reactions; F - content of methane in landfill gas, in shares, 16/12 – carbon to methane conversion factor;

 MCF_i – methane correction factor for year i.

Methane emissions into the atmosphere are determined net of methane recovered or burnt in the flare in view of oxidation in the top layer:

$$Q(t)^{em} = [Q(t) - R] \cdot (1 - OX), \qquad (7.4)$$

where: R – collected methane, t; OX – the methane oxidation factor.

The model offers individual calculation for each category of organic waste (DOC_j, k_j) , which are grouped according to the decomposition rate and their content of organic carbon. The national model does not account for the impact of activities on withdrawal of secondary material and energy resources from the "body" of dumping sites after MSW landfilling (so-called "landfill mining"). No opening of landfills for resource extraction was carried out in Ukraine [4].

7.2.2.2 Activity data

MSW. Transition to the multicomponent model requires the restoration of data on the amount of MSW in Ukraine since 1900. To form a coherent set of data on the amount of waste that came to

landfills and dumps in 1900-2004, statistical data on urban population in Ukraine (for 1900-1960 – [5], for 1961-2004 – data of the State Statistics of Ukraine) were used, as well as the specific waste accumulation standards for urban population according to reference books [6-11]. The proportion of waste forwarded directly to MSW dumps in the period of 1900-2004 was taken to be 85-90 % [10]. Accordingly, the rest of 10-15 % was accepted as illegally dumped waste that decomposed under conditions similar to shallow unmanaged landfills.

In the period of 2005-2006 national statistics in the field of MSW management were in the process of upgrading. Thus, the method of linear interpolation based on 2004 and 2006 data was applied to determine the mass of landfilled waste for 2005. Since 2006, data on the weight/amount of waste disposed has been taken directly from statistical reporting form No.1-MSW prepared by the Ministry for Communities and Territories Development of Ukraine (MCTD), and further verified with data of regional housing and communal services administrations in the regions of Ukraine. This observation/reporting was implemented to monitor the state of the municipal solid waste management. Due to the full-scale invasion of Ukraine by the Russian Federation in 2022, 2023 for a number of regions an official data on MSW disposal were missing or incomplete. For these, the specific disposal rates (for the previous year) and the region's population was used to obtain missing data. The amount of MSW disposed at landfills and dumps for the entire time series is given in the Annex A3.4.2. According to official data, 8 052 kt of MSW were disposed at SWDS; 698.6 kt of MSW were recycled and recovered, of them: 141.2 kt of MSW were incinerated, 463.8 kt were sent to secondary raw material collection points and waste recycling facilities and 93.0 kt were composted in 2023. The MSW management in 2023 according to the form No.1-MSW is presented in the Table 7.3.

Table 7.3. The MSW management practices in Ukraine, 2023

MSW management	Tons	%
wis w management		70
Collected	9 349117.9	100
Disposed	8 051978.7	86.1
Processed and recycled:		
Secondary raw material collection points	182127.6	1.9
Waste recycling facilities	281728.5	3.0
Composted	93544.0	1.0
Incinerated (R1)	141191.8	1.5

Source: MCTD

In addition, there is other statistical observation on waste management in Ukraine – reporting form No. 1-waste "Waste Management", that covers all possible sources of waste (economic activity and households) and all types of waste (including secondary waste) except for radioactive waste. This statistical data is mainly used for the analysis and accounting of greenhouse gases from industrial waste management. The structures of the reporting forms, general schema of statistics flow as per forms and the organization of waste management monitoring at all are presented in the Annex 3.4.1.

Illegal dumping. Estimation of the landfilled waste mass also includes the illegal MSW dumped. As stated above, for the period of 1900-2004, the share of illegal dumped waste was taken equally 10-15 % of the amount of waste generated by the urban population as well as for 2005 [10]. Since 2006 the share of waste dumped illegally in conditions similar to shallow unmanaged landfills has been assumed to be 25 % of the waste generated by the population not covered by waste collection (mainly rural areas) taking into account the following: the certain share of the rural population has taken waste to the collection points independently; the certain share of the rural population has composted the waste in their own households; besides, the amount of illegally damped waste detected and liquidated by landfilling at the official SWDS has been included into the form No. 1-waste; and some portion of the waste generated by the population has been dumped and decomposed under aerobic conditions. The amount of illegally (unofficial) dumped waste taken into account is presented in the Annex A3.4.2.

Industrial waste. Data on the amount of industrial organic waste disposed at SWDS has been taken from the form No. 1 – waste since 2010 and indicated in the Table 4.4 according to the classification of waste categories by materials (in accordance with the international statistical classification EWC-Stat 4 adapted to national conditions): clinical waste 05, paper and cardboard waste 07.2, wood

waste 07.5, textile waste 07.6, animal and mixed food waste 09.1, vegetal wastes 09.2, construction waste 12.1) (see also Table A3.4.4 of the Annex A3.4.1).

Depending on the hazard class, solid industrial waste has been disposed both at specialized sites and at MSW landfills. In accordance with DBN B.2.4-2-2005 (Annex J) [12], landfills are allowed to accept industrial waste of III and IV hazard classes in accordance with sanitary rules and regulations, as well as in accordance with fire protection requirements, standards and regulations, slag and ash from waste incineration plants. Dumps, career, mines, terrykons, ash and slag pits, intended for the storage of solid waste from various industries as well as cattle gravediggers are considered as industrial waste disposal sites. Waste is also placed at landfills belonging to individual industrial and economic organizations or their groups, where certain types of industrial waste are stored, as well as at landfills designed for disposal of hazardous industrial waste. In many cases, industrial waste is stored on the territory of enterprises at the specially designated sites for temporary storage until further transfer for recover or final disposal. The requirements for temporary storage (accumulation) of waste are regulated by DSTU 4462.3.01:2006 "Nature protection. Waste management. Procedure for operations" [13]. The specially designated sites of long-term storage of waste (more than 2 years) are equated to sites of their final disposal and are subject to the corresponding requirements for monitoring, control and drawing up passports of waste disposal places.

Due to the imperfect system of accounting and monitoring household and industrial waste, it is currently impossible to determine the amount of industrial waste dumped is separately and jointly at the MSW landfills.

The amount of disposed industrial organic waste for the period of 1990-2009 was obtained by extrapolation based on gross domestic product; the amount of disposed construction waste – based on the volumes of construction (million sq. m). The trend between 1950 and 1990 was extrapolated linearly. The amount of disposal industrial organic waste for the entire series is presented in Annex A3.4.2.

Table 4.4 Amount of industrial biodegradable waste disposed at SWDS, kt (operational code D1, D5)

Type of wastes by material*	2010	2012	2014	2016	2017	2018	2019	2020	2021	2022	2023
Clinical waste	0.001	0.432	0.232	0.248	0.089	0.014	0.000	0.000	0.000	0.000	0.000
Paper and card- board	6.016	11.210	7.668	2.101	1.917	5.610	3.215	4.273	4.801	3.147	4.253
Wood waste	20.252	4.409	21.357	16.337	17.766	18.530	11.144	21.089	13.824	7.985	7.884
Textile waste	0.304	0.882	1.349	0.427	0.672	1.630	1.571	1.060	0.598	0.803	0.863
Animal, plant and mixed food waste	231.310	145.167	60.580	19.867	10.375	155.681	19.585	17.325	17.708	7.554	18.269
Mineral waste from construction and demolition	0.0	0.0	699.99	882.31	1108.49	1168.92	1510.22	1880.93	1923.0	923.91	1040.06
Total	961.3	1 023.9	791.0	921.1	1 139.2	1 350.4	1 545.7	1 924.7	1959.9	943.4	1 071.3

*in accordance with the international statistical classification EWC-Stat 4 adapted to national conditions

Sewage sludge. The sewage sludge landfilled at the MSW disposal sites practically not occur. The dominant practice of sludge treatment in Ukraine is their drying on sludge-drying beds and subsequent disposal/storage at card storage (> 95%). Insignificant amount of sewage sludge is compostable and incinerated. The amount of composted sewage sludge provided by the State Statistics Service of Ukraine in wet weight and the amount of incinerated sludge provided in dry mass. The amount of organically degradable material discharged into the sludge-drying beds as sludge was estimated according to formulas 7.19-7.22 (domestic sludge) and 7.33 (industrial sludge). Management of domestic and industrial sewage sludge (sludge balance) is presented in the Table 7.28, Section 7.5.2.2.3.

The schematic representation of waste management including all categories (in all relevant sectors), the sources of each type of waste, ways of treatment and final destination, particularly of sludge from wastewater treatment is given on the Figure A3.4.3 of the Annex A3.4.1.

7.2.2.3 Selection of emission factors

Methane correction factor, MCF. MSW. Estimation of the *MCF* value characteristic of Ukraine was performed based on an expert opinion ¹⁶ issued for 1990-2009, which indicates distribution of MSW flows by different types of landfills and dumps – managed, unmanaged deep, and unmanaged shallow ones.

According to the expert opinion a substantial portion of MSW landfills in Ukraine are dumps formed spontaneously in the 60-70's in place of clay or sand pits, in ravines or on flat sites of surface in the immediate vicinity of the city. As a result, dumps located near cities with population of 50 thousand people or more are sites with the depth of 5-10 meters of waste and classified [1] as unmanaged deep landfills (MCF = 0.8). Dumps formed around settlements with population of less than 50 thousand do not reach the depth of 5 meters, and under classification [1] they can be attributed to unmanaged shallow landfills (MCF = 0.4). Besides, there are sites in Ukraine that can claim the status of managed ones (MCF = 1.0). These are engineering constructions, reconstruction of which began in the late '80s (after more stringent standards for operation of landfills were adopted) and was completed in 1990 in the following cities: Kyiv, Kharkiv, Dnipropetrovsk, Luhansk, Cherkasy, Chernivtsi, Ivano-Frankivsk, Lutsk, Yalta.

Thus, waste generated in cities with population of less than 50 thousand people were attributed to unmanaged shallow landfills, above – to unmanaged deep, in the above large cities – to managed deep ones started from the 1990. For the period from 2010, MSW distribution by type (excluding industrial waste and unofficially dumped) of dumps was taken to be the same as for 2009. This approach is valid due to the fact that since 2010 activities on commissioning of new landfills have been virtually been suspended, which, in turn, is caused by the stricter rules for construction of new landfills adopted in 2010.

For detailed data on distribution of flows of solid waste by landfill types in 1990-2023, see Table 7.5, on the amount of landfilled waste by different types of landfills in 1900-2023 – Annex A3.4.2.

Table 7.5. D	Distribution of MSW flows by their landfilling sites					
Dumps and landfills						
Year	Unmanaged shal-	**			3.6	1.0

Year	Unmanaged shal- low*	Unmanaged deep*	Managed*	MCF _{av}
1990	0.326	0.658	0.016	0.673
1991	0.325	0.643	0.032	0.676
1992	0.325	0.627	0.048	0.680
1993	0.324	0.612	0.064	0.683
1994	0.324	0.596	0.080	0.687
1995	0.323	0.581	0.096	0.690
1996	0.323	0.565	0.112	0.693
1997	0.322	0.550	0.129	0.697
1998	0.322	0.534	0.145	0.700
1999	0.321	0.518	0.161	0.704
2000	0.321	0.503	0.177	0.707
2001	0.320	0.487	0.193	0.711
2002	0.320	0.472	0.209	0.714
2003	0.319	0.456	0.225	0.717
2004	0.319	0.441	0.241	0.721
2005	0.318	0.425	0.257	0.724
2006	0.321	0.421	0.258	0.723
2007	0.317	0.423	0.259	0.725
2008	0.317	0.423	0.261	0.725
2009	0.316	0.422	0.262	0.726
2010	0.316	0.422	0.262	0.726
2011	0.316	0.422	0.262	0.726
2012	0.316	0.422	0.262	0.726
2013	0.316	0.422	0.262	0.726
2014	0.316	0.422	0.262	0.726

¹⁶ Yu. Matveev, senior researcher at the Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, deputy director of the Scientific and Technical Center "Biomass", 2011.

248

Year	Unmanaged shal- low*	Unmanaged deep*	Managed*	$\mathrm{MCF}_{\mathrm{av}}$
2015	0.316	0.422	0.262	0.726
2016	0.316	0.422	0.262	0.726
2017	0.316	0.422	0.262	0.726
2018	0.316	0.422	0.262	0.726
2019	0.316	0.422	0.262	0.726
2020	0.316	0.422	0.262	0.726
2021	0.316	0.422	0.262	0.726
2022	0.316	0.422	0.262	0.726
2023	0.316	0.422	0.262	0.726

^{*} MSW shares disposed in dumps and landfills of different types

Industrial waste. There are no know managed industrial waste disposal sites in Ukraine accordance with IPCC classification types of sites. According to scientific research [2], all industrial organic waste is disposed at the type of site classified as deep unmanaged for the whole time series.

MSW composition (MWS_j). The waste composition data were available for the years 1990, 2006 and 2011. For 1990, the shares of waste components were taken from [10]. For 2006 the shares of waste components were taken based on the data of research on the morphological composition of waste in six cities of the country – Yevpatoria, Simferopol, Yalta, Kharkiv, Kyiv and Donetsk conducted in 2000-2004. For 2011, the shares of waste components were estimated by analyzing and systematizing data research on the morphological composition of waste in 22 cities of Ukraine conducted in 2008-2013 and data on the morphological composition of waste provided by regional state administrations. The results of this analysis presented on paper [3]. The analysis was carried out on seven biodegradable components: paper and cardboard (I), textiles (II), food waste (III), wood (IV), garden and park waste (V), personal care products (VI), rubber and leather (VII). The MSW composition was calculated based on the amount of MSW landfilled in the regions, and missing source data – based on assumptions agreed with experts in the field of MSW management:

- unsorted organic components contain up to 15 % of gardens and up to 25 % of food waste;
- the component "bone, leather, and rubber" by 1/3 consists of bones (in the absence of direct measurement data);
- the share of personal care products is determined as the sum of imports and production minus exports of this commodity group in the reporting year;
- MSW composition in the regions is determined as the arithmetic mean of data in cities located in this region;
- in the regions where the studies have not been conducted, data on the morphological composition are determined as the average of the data in the neighboring regions [3].

In recent years, no systematic research on the morphological composition of waste has been conducted, only in certain cities under some recent projects funded by International Financial Institutions (IFIs), in particular [14, 15, 16]. According to IFC, in comparison of the MSW generation structure in Ukraine to that in the EU countries, experts conclude it is closer to Eastern European countries (Poland, Czech Republic, Slovakia, Baltic States, etc.). The organic fraction in Ukraine is greater than that in other European countries, while the shares of glass and plastic are relatively low [14]. A comparison of the disposed waste composition between European countries is presented in Table 7.6.

Table 7.6. Comparison of the disposed waste composition between European countries

Countries	Paper	Textile	Rubber	Wood	Food	Garden	Personal care	Other
Ukraine	13.72	3.89	1.86	1.75	31.84	3.64	1.4	41.9
Poland ¹	14.89	3.73	-	0.61	36.40	0.31	-	44.06
Latvia ¹	6.40	3.35		2.11	47.9	-	-	31.69
Romania ¹	11.6 -		1.95	36.62	14.84	-	-	
Eastern Europe ²	21.8	4.7	1.4	7.5	30.1	-	-	34.4

¹ National Inventory Reports 2021

² 2006 IPCC Guidelines (vol. 5, section 5.3.1, table 2.3)

The missing data of waste composition for the remaining years 1991-2005, 2007-2010 were estimated by linear interpolation. The MSW composition for 2014-2023 was adopted based on the data for 2013. For the more detailed composition of MSW in 1900-2023, see Fig. 7.3 as well as Annex A3.4.3.

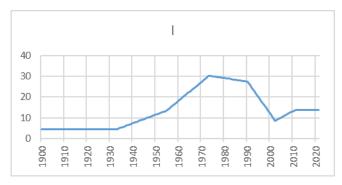
The content of biodegradable carbon (DOC_j). The model uses default DOC values for all the components according to 2006 IPCC Guidelines [1] (see Table 7.7).

In 2012, the field and laboratory experiments on DOC determination in food waste were carried out [17]. The results have shown that DOC for food waste probably may be much lower than the IPCC 2006 default value but taking into account the singularity and non-systematic character of the study an additional activity is needed to develop national coefficient.

The methane production rate constant k_j is taken by default for the temperate climate zone according to [1] and presented in Tables 7.7 (for MSW), 7.8 (for industrial waste).

		0	1		
#	Component		f methane production year ⁻¹	Biodegradable carbon (DOC)by default	
I	Paper and paperboard	0.04-0.06	0.048	0.40	
II	Textile	0.04-0.06	0.048	0.24	
III	Food waste	0.06-0.185	0.110	0.15	
IV	Wood waste	0.02-0.03	0.024	0.43	
V	Garden and park waste	0.05-0.10	0.070	0.20	
VI	Personal care products	0.04-0.06	0.048	0.24	
VII	Rubber and leather	0.04-0.06	0.048	0.39	

Table 7.7. *DOC* and *k* values for biodegradable MSW components


Table 7.8. *DOC* and *k* values for biodegradable industrial waste

Component	The constant rate of methane production (k), year -1	Biodegradable carbon (DOC)	Main type of waste
Clinical waste	0.110	0.15	food
Paper and cardboard	0.048	0.40	paper and cardboard
Wood waste	0.024	0.43	wood
Textile waste	0.048	0.24	textile
Animal, mixed food and plant origin	0.110	0.15	food
Construction and demolition	0.024	0.04	wood

The share of actually decomposed organic carbon (DOC_F). The DOC_F value is the default one [1] and equal to 0.5.

Methane content in landfill gas (F). The F value is the default one [1] and equal to 0.5. *The delay time (t₀)*. The value of t_0 is 6 months [2].

Methane oxidation factor (OX). In Ukraine, there is no evidence documenting the degree of methane oxidation in landfills, so the default value of 0 [2] was used.

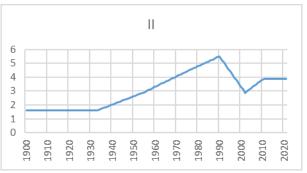


Fig. 7.3. Content of biodegradable MSW components for the period of 1900-2023, % to weight. For the meaning of I-VII, see Table 7.7

7.2.2.4 Methane utilization at MSW dumps

Utilization of methane from MSW dumps in Ukraine started in 2003. By this year, as part of a demonstration project of Ekolins program at the municipal MSW landfill of Luhansk the companies SCS Engineers (USA) and SEC "Biomass" (Ukraine) had performed work to install the landfill gas collection system consisting of three vertical holes. Landfill gas was collected and burned in the open flare during 2003, 2004, and 2006.

Since the beginning of the commitment period under Kyoto Protocol (2008), Ukraine commissioned industrial degassing systems at MSW landfills, which were built in the framework of joint implementation projects under flexible financial mechanisms of Kyoto Protocol.

In recent years, such methane collection and utilization systems are becoming more wide-spread in Ukraine. Thus, while in 2008 there were only two such operating systems, in 2011 only "Alternative Environmental Protection Energy Systems and Technologies" company, Ltd commissioned the biogas collection systems at the landfills of the cities of Kremenchuk, Vynnytsya, and Zaporizhya. Almost all recovered landfill gas was burned on flares.

In 2012, electricity was generated from landfill gas on the industrial scale for the first time in Ukraine. "LNK" company, Ltd put into operation a biogas collection system with subsequent electricity generation at the MSW landfill in Kyiv in 2012, in Boryspil – in 2013, in the Brovary – in 2014. In 2017 in Cherkasy region, the Caterpillar CG132-12 gas piston power generating facility with an electrical power of 600 kW was commissioned. At present, "LNK" company, Ltd put into operation seven degassing complexes: Obukhiv, Kyiv region – 2 modules (total power 2,126 kW); Boryspil, Kyiv region – 1 module (total power 1063 kW); Brovary, Kyiv region – 1 module (total power 1063 kW); Zhytomyr, Zhytomyr region – 1 module (total power 1063 kW); Mykolaev, Mykolaev

region – 1 module (total power 1063 kW); Cherkasy, Cherkasy region – 1 module (total power 600 kW). To monitor the chemical composition of biogas, the company uses Geotech portable gasanalyzers made in Britain, Biogas 2000, Biogas 5000, GA 5000. All devices are certified according to international standards ISO 9001: 2015, SIR A 01 ATEX 092, British standart, UKAS №4533. Electric power measurement is carried out by meters as ZMD405CR44, ZMD405CT44 "Landis + Gyr (Pty) company, Ltd", Switzerland, have certificate G3-PLC, ITU G.9903.

Since 2012, the main objective of biogas recovery from solid waste has not been the reduction of greenhouse gas emissions, but generation of electricity which is sold at a "green" tariff. At the state level, a number of legislative acts aimed at the development of the biogas industry have been adopted, with a "green" tariff set for the sale of electricity produced by the biogas plant. Accordingly, utilization of methane at landfills is carried out mainly for the purpose of electricity production. The production and sale of electric energy from biogas is subject to licensing in a compulsory manner. The license for electricity production, as well as the "green" tariff for each specific station, is approved by the Energy and Utilities National Regulatory Commission, Ukraine (EUNRCU). The official site of the Commission provides information on companies (subjects) and their facilities (objects) of alternative energy, which have a "green" tariff, including companies-producers of electricity from biogas.

Moreover, the amount of utilized (recovered) methane from the MSW landfills is fixed in the form No. 4-MTP (provided by the State Statistics Agency) as a component of the total amount of fuel consumption for conversion into heat and electric energy. And it is taken into account in the "Energy" sector in the category 1.A.1.c. It cannot be deducted due to absence of additional information. According to the Guidelines [1], if the recovered gas is used for energy, then the resulting greenhouse gas emissions should be reported under the "Energy" sector.

The number of installed biogas collection systems at the MSW landfills, the amount of collected biogas and, accordingly, the reduction of emissions for the period of 2010-2023 are presented in the Table 7.9 and shown in Figure 7.4. Since 2008, this figure had been rising annually – from 0.15 tons to 13.37 tons in 2014. However, since 2012, the amount of flared methane has been gradually decreasing, apart from the recovered methane, which has been increasing. A sharp reduction of flared methane was observed from 2016 due to the change of biogas utilization goal, namely electricity production and its sale at a green tariff. While, the number of companies, biogas collection systems and the amount of recovered methane has increased significantly. The Table 7.9 presents information only those companies that provided data. In 2023, 31 biogas extraction systems were operated at Ukrainian landfills. However, the requested information was received only for 24 systems.

Years	Biogas col-	Biogas c	collected	Emission reduction			
	lection sys- tems*	Flaring, mln. m ³	Recovery, mln. m ³	Flaring, kt	Recovery, kt	Total, kt	
2010	3/3	0.903	0.000	2.314	0.000	2.314	
2011	8/8	4.206	0.000	4.566	0.000	4.566	
2012	6/6	14.072	3.105	8.279	1.755	10.034	
2013	6/6	11.065	7.087	6.583	3.992	10.575	
2014	8/7	11.544	11.431	6.907	6.459	13.365	
2015	9/8	4.311	17.439	2.631	5.606	8.236	
2016	8/7	0.167	22.699	0.105	7.655	7.759	
2017	13/12	0.053	30.298	0.031	16.332	16.364	
2018	21/17	0.030	46.531	0.018	22.216	22.234	
2019	25/18	0.023	47.083	0.013	25.164	25.178	
2020	27/23	0.041	66.419	0.022	36.698	36.720	
2021	29/24	0.000	77.348	-	40.634	40.634	
2022	31/24	0.000	74.299	-	39.701	39.701	
2023	31/24	0.066	76.038	0.024	41.120	41.144	

Table 7.9. Methane utilization at MSW landfills in Ukraine

The volumes of utilized methane were calculated based on data of MSW landfill operators on the monthly volume of landfill gas utilization, its density, and the content of methane with the one-digit distribution of reclaimed landfill gas into volumes burned in the flare or recovered with electricity production under the formula:

^{*} total number of operated biogas collection systems / number of biogas collection systems on which data was received

$$R^{Fl,Rec} = V_R \cdot \rho_{LG} \cdot \gamma_m \cdot 10^{-6} \,, \tag{7.5}$$

where: $R^{Fl,Rec}$ is the mass of methane burned in the flare/recovered, thousand tons;

 V_R - volume of landfill gas burnt in the flare/recovered, m³;

 ρ_{LG} - landfill gas density, kg/m³;

 γ_m - methane content in landfill gas, % to weight.

The share of methane in landfill gas ranges from 30-58 % at different landfills for different years; landfill gas density is 1.26-1.3 kg/m³; the volumes of landfill gas flared/recovered in 2023 amounted to 76.038 million m³ according to the data provided by the companies. Thus, according to collected data 41.120 kt of landfill methane were recovered and 0.024 kt were flared in 2023 (see Fig. 7.4).

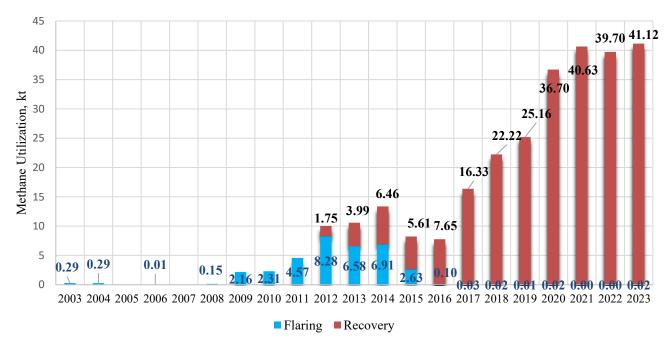


Fig. 7.4. Methane utilization at MSW landfills in Ukraine, 2003-2023

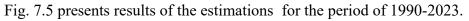
7.2.2.5 Carbon stored at MSW dumps

The carbon that is long stored in MSW dumps, which is part of paper, cardboard, wood and garden and park waste, in accordance with section 3.4 of [1] is accounted for as information in the "Waste" sector and estimated for different types of dumps according to the formula:

$$DOCm LS_T = W_T \cdot DOC \cdot (1 - DOC_F) \cdot MCF, \qquad (7.6)$$

where: $DOCm LS_T$ is carbon in the composition of paper, cardboard, wood, and garden and park waste disposed in the MSW dump in the reporting year, thousand tons.

 W_T – the weight of paper, cardboard, wood, and garden and park waste disposed in the MSW dump in the reporting year, thousand tons;


DOC – the total amount of organic carbon contained in paper, cardboard, wood and garden and park waste, tC/tMSW (the specified ingredients);

 DOC_F – the fraction of carbon taking part in decay reactions;

MCF – methane correction factor for different types of dumps.

When assessing the amount of carbon stored for a long time in MSW dumps, data on disposal of waste since 1900 were used. Data on the weight of landfilled components are presented in Annexes

A3.4.2, A3.4.3, on categories of different types of dumps – in Table 7.5, on *DOC* content in MSW components – in Table 7.7.

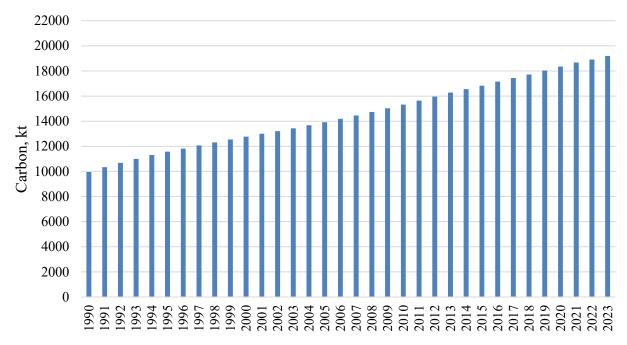


Fig. 7.5. Accumulated long-term storage carbon at MSW dumps, 1990-2023

7.2.3 Uncertainties and time-series consistency

The range of uncertainty estimates for activity data and emission factors was analyzed in paper [2] in accordance with [1]. See Table 7.10.

Table 7.10. The range of uncertainty estimates

Parameter -	Estimated uncertainty				
rarameter	"_"	"+"			
Activity data					
Mass of MSW dumped					
Managed landfills	10	10			
Unmanaged landfills	30	30			
Uncertainty of activity data					
Managed landfills	10	10			
Unmanaged landfills	30	30			
Emission factors					
Waste composition	30	30			
Biodegradable carbon (DOC)	20	20			
The share of actually decomposed organic carbon (DOC _F).	20	20			
Methane correction factor (MCF)					
Managed landfills	10	0			
Unmanaged shallow landfills	30	30			
Unmanaged deep landfills	20	20			
Methane content in landfill gas (F)	5	5			
Methane recovery (R)	3	3			
Oxidation factor, OX	Not included i	into the analysis			
The constant rate of methane generation (k)	20	20			
Uncertainty of CH ₄ emission factors	47.07	46.20			
for managed landfills	47.27	46.20			
Uncertainty of CH ₄ emission factors	<i>55</i> .00	55.00			
for unmanaged shallow landfills	55.08	55.08			

Danamatan	Estimated uncertainty			
Parameter	"_"	"+"		
Uncertainty of CH ₄ emission factors	50.24	50.34		
for unmanaged deep landfills	50.34			

7.2.4 Category-specific QA/QC procedures

For estimation of emissions in the category, general quality control and assurance procedures were applied. Since methane emissions from MSW landfills is a key category, expert estimates of emissions were used for QA/QC, and the following procedures:

- ✓ comparison of activity data from different sources;
- ✓ comparison of emission along the time series and analysis of activity data trends;
- ✓ comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

The national multi-component model for calculating methane emissions from MSW disposal sites in Ukraine was discussed with national experts in the field, as well as with representatives of the international research community from 24 countries at the Seventh International Conference "Energy from Biomass", September 2011. Moreover, the results of GHG emission estimations for the period of 1990-2010 in the category, as well as raw data, the methods of their processing, and emission factors were presented at the 9th International Conference "Cooperation for Waste Issues", March 2012.

7.2.5 Category-specific recalculations

In this category, recalculations were made due to the clarification of the amount of recovered methane in 2022. As a result of recalculation, emissions decreased by 0.3%. Results of recalculation are provided in Table 7.11.

Table 7.11. Recalculations in category 5.A "Solid Waste Disposal"

Year	Inventory	Report, 202 sion, kt	4 submis-	Inventory 1	Report, 2025 kt	submission,	Difference, %			
	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	
2022	-	300.02	•	-	299.13	-	1	0.3	-	

7.2.6 Category-specific planned improvements

See Table A8.2 Improvement Plan for the NIR.

7.3 Biological Treatment of Solid Waste (CRF category 5.B)

7.3.1 Category description

In this category, CH_4 and N_2O emissions from composting of waste in Ukraine are estimated. The category accounts for emissions from composting of all types of waste (including industrial, household, and the like) for the exception of waste, treatment of which should be taken into account in accordance with [1] in the "Agriculture" sector, namely: excrements of farm animals. GHG inventory was held under Tier 1 using the default emission factors and activity data provided by the Statistics of Agriculture and the Environment Department of the State Statistics Service of Ukraine.

GHG emissions in this category in the reporting 2023 amounted to 20.54 kt of CO_2 -eq., including: 0.43 kt of CH_4 and 0.03 kt of N_2O , the decrease with respect to 1990 (26.91 kt of CO_2 -eq.) is 23.7 % and decrease with respect to previous year is 13.7 % (see Fig. 7.6).

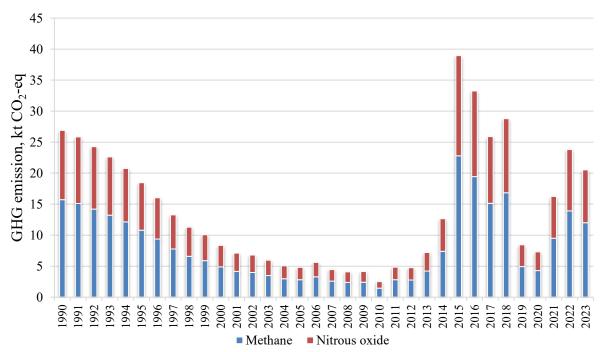


Fig. 7.6. GHG emissions from waste composting in Ukraine, 1990-2023

Since 1990, emissions have been steadily dropping, and by 2010 reduced 10.8 times. This trend is due to a decrease of production in the agricultural sector and, as a consequence, a reduction of the resource base for production of compost. Since 2010, GHG emissions in the category began to increase due to modernization of individual agricultural enterprises. A significant increase in greenhouse gas emissions in 2015 compared to the previous year was caused by an increase in the amount of composting of agricultural and food industry waste. Further fluctuations in the emissions trend were caused by changes in the amount of composted agricultural and food industry waste.

7.3.2 Methodological issues

7.3.2.1 General principles

According to [1], in the process of waste composting most of *DOC* in the waste material is converted to CO₂. CH₄ is formed in anaerobic compost sites, but in most cases, methane is oxidized in the same sites of compost. CH₄ emissions getting into the atmosphere that are subject to estimation range from less than one percent to a few percent of the total carbon content in the material [18-20]. Composting may also result in emissions of N₂O. The range of estimated emission ranges from 0.5 percent to 5 percent of the total nitrogen content of the material [21].

According to [1], CO₂ emissions from composting of biogenic waste components (garden and park, communal, agricultural ones, etc.) are not accounted for.

Emissions of CH₄ and N_2O can be estimated with equations (7.7) and (7.8):

$$Q_{CH_4} = M \cdot EF_{CH_4} \cdot 10^{-3} - R, \tag{7.7}$$

where: Q_{CH_A} is the total amount of CH₄ emissions in the reporting year, kt;

M - the mass of organic waste undergoing composting, kt;

EF - the emission factor for composting of waste, g of CH₄/kg of composted waste;

R - the total amount of recovered CH₄ for the reporting year, kt of CH₄;

$$Q_{N_2O} = M \cdot EF_{N_2O} \cdot 10^{-3}, \tag{7.8}$$

where: Q_{N_2O} is the total amount of N₂O emissions in the reporting year, kt; M - the mass of organic waste undergoing composting, kt;

 EF_{N_2O} - the emission factor for composting of waste, g of N₂O/ kg of composted waste.

7.3.2.2 Activity data

Since 2010, the accounting of waste composting in Ukraine has been carried out according to the reporting form "No.1 – waste" (State Statistics Service of Ukraine). The form "No.1 – waste" includes information about all waste, including household waste, which is composted in Ukraine. Data on the type of waste are provided directly from enterprises.

In addition, information on the amount of composted household waste is reported on the form "No.1 – MSW". However, a certain inconsistency in data on the amount of composted household waste by forms was found. The amount of MSW composting presented in the form "No.1 – MSW" is much significant than that presented in the "No.1 – waste". Thus, it was decided to summarize the data on MSW composting of both forms for the period 2015-2023.

Reporting form "No.1 – waste" provides information on waste management classifying ones by materials (categories of waste by material in accordance with EWC-Stat Rev.4 adapted to national conditions) (see Annex A3.4.1, Table A3.4.3) as well as according to the Waste Classifier (DKV 005-96). Further, the types of composted waste by materials as well as waste by Waste Classifier were grouped into following eight groups: bird droppings (I); feces, pus, and urea (II); crop residues (straw, etc.) (III); vegetal, animals and mixed food waste (IV); household and similar waste (V), wood waste (VI), sewage sludge (VII) other waste (VIII) (see Table 7.12). This classification meets GHG inventory principles in accordance with [1], as to avoid double counting emissions from composting of waste categories I-II should be accounted for in the "Agriculture" sector.

Table 7.12. Waste composting in Ukraine, 2010-2023, tons

Groups	Bird drop- pings	drop- pings Feces, pus, and pings urea urea (straw, mixed food simila		House- hold and similar waste	Wood waste	Sewage sludge	Other waste		
Designation	I	II	III	IV	V	VI	VII	VIII	Total:
DKV code	0124.2.6.0		1583.1.1.02, 0111.3.1.01, 0111.2.9.02, 1561.2.9.04, 0112.2.9.01, 0112.3.1.02	0111.2.6.02, 1590.2.9.01, 0111.1.1.01, 0113.1.1.01, 1910.2.9.03	5200.3.1.03, 1589.3.1.05	2000.2.2.17 7760.3.1.03 0113.2.9.01 2000.2.2.16	9010.2.7.01, 9030.2.9.05, 9030.2.9.08	1583.2.9.03, 7720.3.1.02, 1590.2.9.15, other	I-VIII / III-VIII
categories by mate- rial	09.3	09.3	09.2	09.1, 09.2	10.1	07.5	11.0	10.2, 11, 12.4, 12.5	
2010	42107. 8	89322.8	3375.7	7540.6	715.3 / 422.0¹	188.7	4192.3	2.9	147868.2 / 13061.8
2011	62604. 3	104411.3	3734.1	9612.5	9997.5 / 13.0 ¹	480.7	5169.6	12.7	196035.6 / 25285.5
2012	43307. 2	233425.7	2351.9	20814.0	3855.0 / 0.0	42.3	50.3	45.1	303891.5 / 24806.7
2013	60473. 5	258515.7	969.8	32015.5	3664.9 / 0.0	11.4	1927.8	99.5	357678.3/ 37719.2
2014*	256610.3	361819.1	369.4	59955.4	17.2 / 1386.0 ^{1,2}	2874.4	1541.7	272.9	684846.4/ 66047.6
2015*	15888. 1	447706.9	4937.4	154700.4	37438.9 / 2772.1 ¹	6593.9	1405.4	6031.5	672024.9/ 203492.4
2016*	35946. 7	505833.5	746.2	95851.6	44302.6 / 1623.0 ¹	11336.6	1186.4	19379.5	716206.1/ 173679.7
2017*	38454. 9	601447.8	801.3	94917.9	9556.4 / 973.8 ¹	7364.8	285.2	22128.8	775930.9/ 135226.9
2018*	21611. 5	509877.9	247.3	106887.1	45.9 / 1640.2 ¹	8540.6	3.6	33215.7	682069.8/ 150333.0

Groups	Bird drop- pings	p- pus, and dues animals a mixed for		Vegetal, animals and mixed food waste	House- hold and similar waste	Wood waste	Sewage sludge	Other waste		
Designation	I	II	III	IV	V	VI	VII	VIII	Total:	
DKV code	0124.2.6.0	0121.2.6.03	1583.1.1.02, 0111.3.1.01, 0111.2.9.02, 1561.2.9.04, 0112.2.9.01, 0112.3.1.02	0111.2.6.02, 1590.2.9.01, 0111.1.1.01, 0113.1.1.01, 1910.2.9.03	5200.3.1.03, 1589.3.1.05			1583.2.9.03, 7720.3.1.02, 1590.2.9.15, other	I-VIII / III-VIII	
categories by mate- rial	09.3	09.3	09.3 09.2 09.1, 09.2 10.1		10.1	07.5	11.0	10.2, 11, 12.4, 12.5		
2019*	13456. 1	576606.4	265.3	18299.2	34.0 / 1192.0 ¹	9293.7	32.5	15226.8	634406.0/ 44078.2	
2020*	62.64	528078.0	246.7	11720.1	13.4 / 6201.5 ¹	20220.9	65.8	18.6	566627.5/ 38240.2	
2021*	46.98	528062.0	203.9	16619.8	2288.4 / 8824.4 ¹	19994.0	37036.6	19.2	621919.8/ 93606.9	
2022*	0.00	338225.9	0.0	21646.4	1558.4 / 89023.2 ¹	12118.4	3.7	11.9	462587.8/ 124361.9	
2023*	1866.7	296036.1	0.0	5425.2	3299.8 / 93544.0 ¹	4979.1	2.3	15.5	405168.7/ 107265.9	

^{*}data of the State Statistic Service of Ukraine (form "No.1 – waste"), corrected using analytical study [30];

For 2012, the primary data analysis on waste composting has shown the existing information on enterprises level is not full and doesn't reflect the trend. Thus, interpolation on waste composting was performed for 2012 based on the data for 2011 and 2013.

The amount of compostable waste for the time series 1990-2009 (see Table 7.13) for all categories of waste was restored according to the following assumptions:

- The weight of composted category I waste is directly proportional to the amount of litter produced during the reporting year, which in turn is estimated based on the bird population.
- The weight of composted category II waste is directly proportional to the amount of feces, pus, and urea produced during the reporting year, which in turn is estimated based on the cattle and pig population.
- The share of composted waste of categories III, V and VII in the total weight of composted waste is constant.
- The weight composted waste of category IV is directly proportional to the amount of MSW generated and dumped during the reporting year.
- The weight composted waste of category VII is directly proportional to the volume of wastewater treated at WWTP in the reporting year.
- When restoring the time series for 1990-2009, the basic values were set as average values of the indicators in the period of 2010-2013.

¹ data on composted household waste provided by the Ministry for Communities and Territories Development of Ukraine (form "No.1 – MSW");

² data interpolated

Table 7.13. SW composting in Ukraine, 1990-2009

	14016 7.13.	Sw compostii	ng in Oktume,	1770 2007		Solid Waste Cat	egory			
Year						Tons				
	I	II	III	IV	V	VI	VII	VIII	I+II+III	IV+V+VI+VII+VIII
1990	67674.9	1645666.6	19598.1	131479.7	1645.1	1358.7	5729.0	301.0	1730397.3	140513.4
1991	64241.7	1579629.8	18803.8	126150.7	1605.4	1303.6	5600.0	288.8	1660236.1	134948.5
1992	57211.1	1483067.4	17619.5	118205.6	1565.0	1221.5	5471.2	270.6	1555612.4	126733.9
1993	46221.6	1385276.4	16375.9	109862.7	1522.3	1135.3	5342.3	251.5	1445749.6	118114.0
1994	36236.3	1272650.1	14974.2	100458.5	1468.9	1038.1	5213.5	230.0	1321918.1	108409.0
1995	28614.5	1129195.6	13247.0	88871.5	1407.3	918.4	5084.7	203.4	1169338.7	96485.4
1996	21244.0	975620.4	11407.1	76527.8	1343.8	790.8	4896.6	175.2	1006791.8	83734.2
1997	15664.8	797254.1	9305.8	62430.8	1411.9	645.1	4758.4	142.9	821017.6	69389.1
1998	14936.4	664080.8	7776.4	52170.4	1479.9	539.1	4619.9	119.4	685784.9	58928.7
1999	14423.3	584453.9	6861.4	46031.5	1545.9	475.7	4481.7	105.4	604848.4	52640.2
2000	12976.8	469484.5	5531.8	37111.3	1609.5	383.5	4343.5	85.0	487275.5	43532.8
2001	14678.1	386921.9	4608.4	30916.8	1670.1	319.5	4205.2	70.8	405610.6	37182.3
2002	18705.1	362683.6	4378.1	29371.8	1729.4	303.5	4067.0	67.2	385198.8	35538.9
2003	20146.5	305498.2	3741.8	25103.1	1794.1	259.4	3928.7	57.5	328901.1	31142.8
2004	21833.9	244701.5	3067.1	20576.7	1861.4	212.6	3790.5	47.1	269204.6	26488.2
2005	27518.6	223966.3	2894.8	19420.7	1833.1	200.7	3633.6	44.5	254004.2	25132.5
2006	32568.5	218867.2	2939.6	19720.9	5799.0	203.8	3556.9	45.1	253994.0	29325.7
2007	35573.0	201757.3	2727.7	18299.3	1360.8	189.1	3323.5	41.9	239704.0	23214.5
2008	39166.7	178668.9	2501.7	16783.2	1079.6	173.4	3268.9	38.4	220012.7	21343.5
2009	43817.1	172770.4	2493.2	16726.3	1586.6	172.8	3057.1	38.3	218757.3	21581.1

7.3.2.3 Selection of emission factors

Research on development of composting of organic waste components started back in the Soviet Union, in the late 1920's. Nevertheless, to this day no high-tech waste composting system has been established in Ukraine, and composting is held mainly in semi-haphazard compost pits.

Thus, there is no information on Ukraine-specific GHG emission factors for waste composting, so the values of emission factors were taken by default for the wet substance: 4g of CH_4/kg of waste and 0.3 g of N_2O/kg of waste; and they are presented in Table 7.14, which corresponds to Table 4.1 of 2006 IPCC Guidelines [1].

			1 0	
Emission	n factors	Emission	factors	Notes
Cl	H_4	N_2	0	
based on dry	based on wet	based on dry	based on wet	Assumptions for com-
substance	substance	substance substanc		posted waste:
g of CH ₄ /k	g of waste	g of N ₂ O/k	g of waste	25-50% of DOC in dry matter,
10	4	0.6	0.3	2% of N in dry substance,
(0.08-20)	(0.08-20) $(0.03-8)$		moisture - 60%.	

Table 7.14. CH₄ and N₂O emission factors for composting

7.3.3 Uncertainties and time-series consistency

Ranges of uncertainty indicators were calculated in accordance with 2006 IPCC Guidelines [1] and are presented in Table 7.15.

D	Desig-	Default	fault Range		Standard	Estimated uncertainty				
Parameter	nation	data	Bottom limit	Upper Limit	uncertainty	Bottom limit, -	Upper limit, -			
Activity data										
Mass of com- posted waste	M				±100 %	35	35			
	Emission factors									
Methane	EF _{CH4}	4	0.03	8	±100 %	100	100			
Nitrous oxide	EF _{N20}	0.3	0.06	0.6	±100 %	100	100			

Table 7.15. Uncertainty ranges

7.3.4 Category-specific QA/QC procedures

Analysis of various sources of input data on waste composting in Ukraine was held, and work to increase reliability of source data by their processing and classification in accordance with [1] was conducted.

Together with the relevant experts of the State Statistics Service of Ukraine verification of activity data on waste composting was provided.

7.3.5 Category-specific recalculations

In this category, recalculations were made due to the clarification of the amount of composted waste in several groups, as well as the revision and adjustment of the distribution of different waste types among waste groups, namely:

- the amount of composted sewage sludge was clarified for the years 2010-2022, excluded from the "Other waste" group, and identified as a separate subcategory;
- additional data on the amount of composted household waste was taken into account according to form "No.1 MSW" and time series were restored;

- the amount of composted waste by the "Vegetal, animals and mixed food waste" group was clarified for the years 2010–2021, and time series were restored.

Besides, to avoid double counting, the subcategory "Plant residues" (III) was removed from the "Waste" sector, as this amount of plant residues is taken into account for calculations in the "Agriculture" sector (3.D. Agricultural soils). As a result of the recalculation, emissions changed by -26.68 - 8.67 %. The results of the recalculation are given in Table 7.16.

Year	Inventory	y Report, 2024 submission, kt Inventory Report, 2025 submission, kt Difference,						Difference,	0%
	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O
1990	-	0.73	0.05	-	0.56	0.04	-	-22.54	-22.54
1991	-	0.70	0.05	-	0.54	0.04	-	-22.46	-22.46
1992	-	0.65	0.05	-	0.51	0.04	-	-22.29	-22.29
1993	-	0.61	0.05	-	0.47	0.04	-	-22.08	-22.08
1994	-	0.55	0.04	-	0.43	0.03	-	-21.79	-21.79
1995	-	0.49	0.04	-	0.39	0.03	-	-21.32	-21.32
1996	-	0.42	0.03	-	0.33	0.03	-	-20.71	-20.71
1997	-	0.34	0.03	-	0.28	0.02	-	-19.48	-19.48
1998	-	0.29	0.02	-	0.24	0.02	-	-18.19	-18.19
1999	-	0.25	0.02	-	0.21	0.02	-	-17.19	-17.19
2000	-	0.21	0.02	-	0.17	0.01	-	-15.09	-15.09
2001	-	0.17	0.01	-	0.15	0.01	-	-12.99	-12.99
2002	-	0.16	0.01	-	0.14	0.01	-	-12.48	-12.48
2003	-	0.14	0.01	-	0.12	0.01	-	-10.31	-10.31
2004	-	0.11	0.01	-	0.11	0.01	-	-7.02	-7.02
2005	-	0.11	0.01	-	0.10	0.01	-	-6.67	-6.67
2006	-	0.11	0.01	-	0.12	0.01	-	8.95	8.95
2007	-	0.10	0.01	-	0.09	0.01	-	-8.67	-8.67
2008	-	0.09	0.01	-	0.09	0.01	-	-8.62	-8.62
2009	-	0.09	0.01	-	0.09	0.01	-	-7.14	-7.14
2010	-	0.06	0.00	-	0.05	0.00	-	-18.44	-18.44
2011	-	0.12	0.01	-	0.10	0.01	-	-12.74	-12.74
2012	-	0.14	0.01	-	0.10	0.01	-	-26.68	-26.68
2013	-	0.15	0.01	-	0.15	0.01	-	-2.50	-2.50
2014	-	0.27	0.02	-	0.26	0.02	-	-3.60	-3.60
2015	-	0.83	0.06	-	0.81	0.06	-	-2.37	-2.37
2016	-	0.74	0.06	-	0.69	0.05	-	-5.97	-5.97
2017	-	0.54	0.04	-	0.54	0.04	-	-0.74	-0.74
2018	-	0.60	0.05	-	0.60	0.05	-	-0.16	-0.16
2019	-	0.18	0.01	-	0.18	0.01	-	-0.61	-0.61
2020	-	0.15	0.01	-	0.15	0.01	-	-0.67	-0.67
2021	-	0.37	0.03	-	0.34	0.03	-	-7.14	-7.14
2022	-	0.50	0.04	-	0.50	0.04		0.00	0.00

7.3.6 Category-specific planned improvements

In this category, no improvements are planned.

7.4 Incineration and Open Burning of Waste (CRF category 5.C)

7.4.1 Category description

CO₂, CH₄ and N₂O emission from incineration and open burning of waste is separated to biogenic and non-biogenic emission based on the fraction of fossil and biogenic carbon in the combusted waste material.

CO₂ emissions from combustion of biomass materials are biogenic emissions and are not included in national total emission estimates. CO₂ emissions from oxidation during incineration of

carbon in fossil origin waste are considered net emissions and are reported under Waste sector. N₂O and CH₄ emissions include both biogenic and non-biogenic sources of emission.

CH₄, N₂O, and CO₂ emissions from combustion of waste are estimated in line with [1]:

- CH₄ and N₂O from waste incineration without energy recovery under Tier 1;
- CO₂ (carbon of fossil origin) from waste incineration without energy recovery Tier 1; for the exception of emissions from MSW combustion, where the methodological approach of Tier 2 was used for the calculations.

 CO_2 , CH_4 , N_2O emissions from waste incineration without energy recovery for 1990-2023 is presented in Figure 7.7 and Table 7.16.

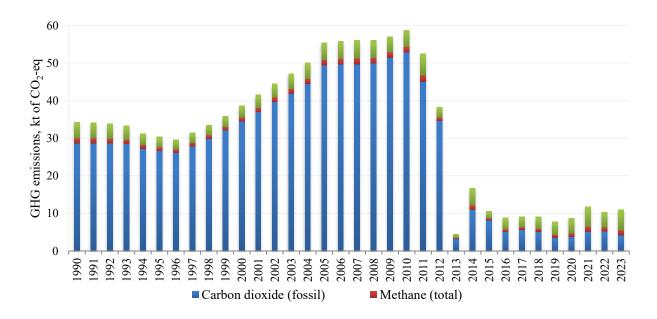


Fig. 7.7. GHG emissions from waste incineration without energy recovery in Ukraine, 1990-2023

Table 7.16. The amount of waste incinerated and GHG emissions from waste incineration in Ukraine, 1990-2023

	1990	2000	2005	2010	2012	2014	2016	2018	2019	2020	2021	2022	2023
Waste incinerated with energy re- covery, kt (Energy sector)	982.6	570.4	936.4	867.8	1101.1	910.8	1124.9	968.5	971.8	936.1	992.2	736.9	766.0
Waste incinerated without energy re- covery, kt (Waste sector), kt	201.0	156.3	220.9	217.9	133.0	162.5	98.9	105.8	119.5	130.3	117.9	74.8	117.0
CO ₂ (fossil), kt CO ₂	28.66	34.53	49.48	52.88	34.68	11.01	5.06	5.18	3.53	3.79	5.06	5.27	4.2
CO ₂ (bio), kt CO ₂	145.9	93.61	128.93	150.74	66.53	77.46	61.46	62.33	99.29	114.3	115.4	61.6	31.9
Total CH ₄ (total), kt CH ₄	0.048	0.037	0.052	0.052	0.084	0.041	0.027	0.028	0.030	0.035	0.048	0.036	0.049
Total N ₂ O (total), kt N ₂ O	0.016	0.012	0.017	0.017	0.010	0.017	0.011	0.018	0.013	0.015	0.020	0.015	0.021

GHG emissions from waste incineration without energy recovery in 2023 amounted to 11.03 kt of CO_2 -eq., including: $CH_4 - 0.049$ kt (1.38 kt of CO_2 -eq.), $N_2O - 0.021$ kt (5.46 kt of CO_2 -eq.), $CO_2 - 4.19$ kt. From 1990 to 2022 the emissions decreased by 67.8 %.

Fig. 7.7 shows that from 1990-1996, GHG emissions in this category decreased by 1.2 times, which is due to a decrease in industrial production and MSW generation. From 1997 and to 2005, GHG emissions were steadily increasing and reached 55.49 kt of CO₂-eq. The key factor in the GHG emission trends in 1997-2005 is a sharp increase in plastic content of MSW (from 9.4% to 12.0%), which is the main source of CO₂ in the category. Besides, this period is characterized by a significant

growth in industrial production and an increase in MSW. In 2005-2010, annual changes in GHG emissions were insignificant (there was a decline in industrial production, but an increase in MSW generation). Reduction of GHG emissions in 2011 was due to the closure of one of the two operating waste incineration plants (WIP) in Dnipropetrovsk at that time. The dramatic reduction of GHG emissions in 2013 was due to the fact that the only one operating WIP (Kyiv) was subject to reconstruction in that year. In 2014, the plant resumed operation.

In Ukraine, thermal treatment of waste outside specially designated equipped areas is prohibited by law, so there is no official statistics on open burning of municipal waste by population. Thus, no emissions were estimated for the category "Open burning of waste" (CRF 5.C.2). Moreover, to prevent underestimation of the CO₂ emissions the regional authorities were officially questioned about the existing situation with MSW treatment in private sector, as well as the lead experts were interviewed.

In order to reveal the facts of unauthorized open burning of waste by the population expert meetings with relevant specialists from all regional administrations were held. According to the results of the expert meetings, single cases of open burning were uncovered only in the Vinnytsia and Chernihiv regions. To estimate the maximum possible amount of GHG emissions from the burning of waste by the population of Vinnytsia and Chernihiv regions an expert assessment was conducted.

The conservative assessment includes the following assumptions:

- MSW generation per person for the territory where there is no centralized waste collection is equal to those MSW that are generated on the territory covered by centralized collection;
- the volume of generated MSW in areas not covered by a centralized collection was burnt and it was not included in the official statistics on the treatment of solid waste in the country;
- the composition of the generated MSW in rural areas uncovered by centralized collection corresponds to the composition of solid waste in Ukraine.

The open burned MSW volumes were determined by the formula 5.7 of chapter 5 Guidelines, 2006 on the basis of available population data from the State Statistics Service for 2014 and the Ministry for Communities and Territories Development of Ukraine Official. Detailed data is provided in Table. 7.17. The volumes of theoretically possible MSW combustion were 68.5 kt.

Tueste (11). Waste management in the William and Entermine Columbi, 2011										
Parameter	Vinnytsia	Chernihiv								
Population, person	1618262	1066826								
The amount of MSW collected, tons	216926	236501.2								
The share of population covered by a	83.7	90.0								

Table 7.17. Waste management in the Vinnytsia and Chernihiv oblasts, 2014

Detailed information on the composition of the MSW and the amount of possible combustion is given in Table 7.18.

Table 7.18. Waste composition and waste amount which can be burnt in Vinnytsia and Chernihiv regions, 2014

Waste composition	Share, %	Possible burning waste, kt
paper	13.7	9.4
textiles	3.9	2.7
food waste	31.8	21.8
wood	1.8	1.2
garden and park waste	3.6	2.5
personal care	1.4	0.9
rubber and leather	1.9	1.3
plastic	12.9	8.9
glass	12.2	8.4
ferrous metals	2.0	1.3
non-ferrous metals	0.4	0.3
hazardous waste	0.5	0.4
other organics	13.9	9.5

Volumes of maximum possible carbon combustion of fossil origin were defined as the amount of fossil carbon content in each component based on humidity, carbon content and fraction of fossil carbon in the MSW components in accordance with the IPCC Guidelines 2006 (Chapter 2, Table. 2.4). The volumes of maximum possible fossil carbon combustion from open burning of solid waste amounted to 7.33 kt.

The maximum possible CO_2 emissions can be determined by the amount of burnt fossil carbon. They amounted to 27.87 kt. According to the Guidelines, 2006, CH_4 specific emissions amounted to 6.500 g/ton of MSW, and $N_2O - 0.15$ g/kg of MSW in a dry condition. Thus, CH_4 emissions amounted to 0.445 kt, and N_2O emissions -0.00758 kt. Total maximum possible GHG emissions from open burning of solid waste equals 42.34 kt of CO_2 -eq.

Analysis of the collected information has shown that the theoretically possible maximum of CO₂ emissions from open burning is lower than 0.05 % of total GHG emissions in Ukraine, so the corresponding emissions are insignificant and reported as "NE" in the CRF tables.

Therefore, the category includes emissions from incineration of solid municipal, medical, and industrial waste at incinerators, as well as at stationary and mobile specialized sites. Emissions from thermal processes with energy recovery, in accordance with the Guidelines [1], are included in the "Energy" sector.

7.4.2 Methodological issues

7.4.2.1 General principles

Estimation of GHG emissions from waste incineration in the "Waste" sector is performed in accordance with the equations [1]:

$$Q_{CO_2} = MSW \cdot \sum_j (WF_j \cdot dm_j \cdot CF_j \cdot FCF_j \cdot OF_j) \cdot 44/12, \tag{7.9}$$

where: Q_{CO_2} is CO₂ emissions over the reporting year, kt/year;

MSW – the total amount of solid waste in the wet weight subject to incineration, tons/year;

 WF_j – the proportion of the waste type/component of component j in MSW (in the wet weight, subject to incineration);

 dm_i – dry matter content in component j in MSW subject to incineration;

 CF_i – carbon fraction of dry matter of component j;

 FCF_i – the share of fossil carbon in the total amount of component j;

44/12 – the conversion factor from C to CO₂;

j-MSW components subject to incineration, such as paper/cardboard, textiles, food waste, garden and park waste, plastic, etc.

$$Q_{CH_4} = MSW \cdot \sum_{i} (IW_i \cdot EF_i) \cdot 10^{-6}, \tag{7.10}$$

where: Q_{CH_4} is CH₄ emissions over the reporting year, kt/year;

 IW_j – amount of solid waste of type i (wet matter) subject to incineration or open burning, kt;

 EF_j – CH₄ emission component factor, kg of CH₄/kt of waste;

10⁻⁶ – conversion factor kg to kt;

i – waste category subject to incineration; MSW - municipal solid waste, CW – clinical waste, SS – sewage sludge, other (if relevant, specified).

Emissions of N₂O can be estimated using equation (7.11), similarly to equation (7.10):

$$Q_{N_2O} = MSW \cdot \sum_i (IW_i \cdot EF_i) \cdot 10^{-6}, \tag{7.11}$$

where: Q_{N_2O} is N₂O emissions over the reporting year, kt/year.

7.4.2.2 Activity data

Data collection on waste management by the State Statistics Service of Ukraine in accordance with form "No.1 – waste" has been carried out annually since 2010.

The form "No.1 – waste" aggregates all waste by materials (categories of waste by material in accordance with EWC-Stat Rev.4 adapted to national conditions) as well as by the Waste Classifier (DKV 005-96) and by the operations (see Annex A3.4.1). The data on waste incineration without energy generation by materials are presented in Table 7.19 and Annex A3.4.1 (Table A3.4.4)

The listed waste categories by material in the Table 7.19 was grouped into 3 categories and 7 subcategories (Table 7.20): municipal solid and similar waste (I), industrial waste (II) (disaggregated by subcategories: paper and cardboard (IIa), rubber (IIb), plastic (IIc), wood (IId), textiles (IIe), plant and animal residues (IIf), sewage sludge (IIg) and other (IIh)), as well as clinical waste (III).

Until 2021, the amount of incinerated sewage sludge was provided by the State Statistics Service of Ukraine in dry mass. Since 2022, the State Statistics Service has stopped reporting sewage sludge in dry mass and now provides data in wet mass by categories 03.2, 03.3, and 11. The rest categories of incinerated waste are indicated in tons of wet weight.

Table 7.19. Waste incineration without energy generation in Ukraine in 2010-2023, tons of wet weight

Categories by mate-					Y	'ear				
rial	2010	2012	2014*	2016*	2018*	2019*	2020*	2021*	2022*	2023*
01.1 Spent solvents	0.3	0.3	8.6	64.5	571.5	885.1	1103.9	1322.81	1.5	0.0
01.2 Acid, alkaline or saline wastes	5435.4	7159.5	4915.8	4167.2	4732.7	5350.3	3675.2	2000.11	0.0	0.0
01.3 Used oils	325.9	477.0	152.2	3164.9	762.6	1695.5	2320.9	1199.4	1792.5	896.5
02 Chemical waste	28906.2	20563.6	2196.7	385.9	1909.0	1198.8	1295.2	1391.5 ¹	1039.0	1094.8
03.2 Industrial effluent sludges	52.9	12.7	313.7	2607.4	160.0	18.8	0.0	0.35	49.4	0.0
03.3 Sludges and liquid wastes from waste treatment	0.0	0.0	0.0	94.6	777.6	130.9	127.5	48.87	240.8	10.3
05 Health care and biological wastes	405.6	265.6	500.0	1135.9	1105.1	863.4	1409.9	2975.7	2815.1	3059.8
06 Metallic wastes	4.2	0.0	18.5	0.0	131.6	97.5	134.5	171.6 ¹	77.7	31.2
07.1 Glass waste	1.7	0.0	1.3	1.5	42.1	38.2	33.3	28.41	68.9	23.5
07.2 Paper and cardboard waste	463.1	69.0	143.6	199.7	590.4	279.7	278.9	276.0	164.4	144.0
07.3 Rubber waste	20.1	114.4	53.2	74.7	173.3	16.5	64.0	111.4 ¹	135.4	0.24
07.4 Plastic waste	172.2	11.6	2708.2	520.2	369.8	327.5	292.5	205.6	481.0	36.8
07.5 Wood waste	49847.1	10888.3	27880.9	17701.3	18697.6	41213.5	49864.1	58515.1 ¹	23215.3	7838.5
07.6 Textile waste	192.7	108.9	81.1	176.7	1245.2	105.3	109.6	99.7	307.7	855.6
07.7 Waste containing PCB	103.0	10.2	0.0	0.0	95.4	90.8	0.0	0.0	0.0	1.2
08 Discarded equipment	86.7	78.2	9.3	17.8	14.2	30.0	96.9	1348.6	126.3	161.6
08.41 Batteries and accumulators waste	0.0	0.0	0.0	0.0	0.0	0.0	0.0	70.1	181.7	0.0
09.1, 09.2 Animal and mixed food waste, vegetal	5090.3	11593.7	29497.8	34970.4	46964.8	56720.1	58635.3	34334.7	39955.9	3236.0
10.1 Household and similar waste	126119.2	78565.5	3746.8	2010.2	978.2	998.3	710.1	421.81	661.9	1212.4

Categories by mate-					Y	ear				
rial	2010	2012	2014*	2016*	2018*	2019*	2020*	2021*	2022*	2023*
10.2 Mixed and undifferentiated materials	294.3	1802.0	2267.9	563.8	5387.7	2029.3	1745.1	1460.9 ¹	945.1	40.0
10.3 Sorting residues	31.4	378.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11 Common sludges	214.8	8.0	8.0	0.0	0.1	8.75	0.0	0.0	0.0	97923.0
12.4 Combustion wastes	0.0	0.0	0.0	0.4	214.1	0.3	83.6	104.5	199.8	325.3
12.5 Other mineral waste	279.6	892.7	241.4	145.5	710.4	109.7	13.6	399.5	1978.9	23.2
12.6 Soils	0.0	0.0	2.8	3.6	33.1	38.5	0.003	0.002	15.0	0.0
12.8 Mineral wastes from waste treatment and sta- bilized wastes	45.5	37.9	186.1	43.5	2184.5	351.4	868.6	3474.0	328.4	0.0
Sewage sludge, t of dry mass	9.00	1.61	9773.3	3023.6	2098.4	786.5	839.9	893.3	290.23	97933.3 ³
Total ²	217824.5	133017.1	74559.9	71732.2	86880.5	112399.7	122726.8	109911.8	74491.7	19034.5

^{*}data of the State Statistic Service of Ukraine, corrected using analytical study [30]

Table 7.20. MSW incineration without energy generation in Ukraine in line with the suggested waste classification, tons, 2010-2023

gested waste	Classille	Jui 1011, 10	7110, 201	0 2023							
Component	Desig-					Yea	ar				
Component	nation	2010	2012	2014*	2016*	2018*	2019*	2020*	2021*	2022*	2023*
Municipal solid and similar waste	I	126119.2	78565.5	3746.8	2010.2	978.2	998.3	710.1	421.8	661.9	1212.4
Industrial	II	91299.7	54186	70354.6	68586.1	84797.2	110538.0	120614.8	106514.2	71014.6	14762.3
paper and cardboard	а	463.1	69.0	143.4	199.7	590.4	279.7	278.9	276.0	164.4	144.0
rubber	b	20.1	114.4	53.1	74.7	173.3	16.5	64.0	111.4	135.4	0.2
plastic	С	172.2	11.6	2704.4	520.2	369.8	327.5	292.5	205.6	481.0	36.8
wood	d	49847.1	10888.3	27880.9	17701.3	18697.6	41213.5	49864.1	58515.1	23215.3	7838.5
textile	e	192.7	108.9	81.2	176.7	1245.2	105.3	109.6	99.7	307.7	855.6
plant and animal resi- dues	f	5090.3	11593.7	29497.8	34970.4	46964.8	56720.1	58635.3	34334.7	39955.9	3236.0
other	h	35514.2	31400.1	9993.8	10170.1	16756.1	11875.5	11370.5	12971.6	6754.9	2651.1
sewage sludge, dry mass	g	9.00	1.61	9773.3	3023.6	2098.4	786.5	839.9	893.3	102.01	9793.3 ²
Clinical waste	III	405.6	265.6	500.0	1135.9	1105.1	863.4	1409.9	2975.7	2815.1	3059.8

^{*}data of the State Statistic Service of Ukraine, corrected using analytical study [30]

The time series for waste incineration without energy generation in Ukraine for the categories for the period of 1990-2009 was restored by the extrapolation.

When assessing data for all categories of waste, the following assumptions were proposed:

¹ extrapolated data

² summing without the amount of incinerated sewage sludge

³ in wet mass, summing the data of categories 03.2, 03.3, 11

¹ converted into dry mass, assuming the dry matter content to be 35 percent (for industrial sludge)

² converted into dry mass, assuming the dry matter content of 10 percent (for domestic sludge)

- The change in the weight of incinerated Category I for the period of 1990-2009 depends on MSW generation and dumping.
- The change in the weight of incinerated Category II for the period of 1990-2009 depends on the industrial production index.
- The change in the weight of incinerated Category III for the period of 1990-2009 depends on the country's population.
 - The structure of the incinerated Category II for the period of 1990-2009 is a constant.

Estimation of the weight of waste incinerated without electricity production in Ukraine for the period of 1990-2009 is shown in Table 7.21.

About 90 % of the total waste incineration is accounted for by waste incineration with energy recovery. Mainly, food industry waste has been incinerated, namely sunflower husks (approximately 40 % of the total amount of incinerated waste), grain residues, etc. Also, a significant share of the incinerated waste is accounted for by waste from the logging and woodworking industry, namely sawdust, lumpy wood waste, etc. (30-40 %), as well as municipal mixed waste (about 20 %). The latter one has been incinerated at the incineration plant "Energia". Waste incineration without energy recovery amounted to approximately 10 %. Food industry waste (mainly, sunflower husks) accounts for the largest share - 30-40 %; logging waste accounts for 10-30%, woodworking - 10-20 %; waste of chemical industry - 4-12 %, medical waste - 1.3 %.

Table 7.21. Waste incineration without energy generation in Ukraine in 1990-2009

		waste me				aste categ						MSW dumping	Plastic content of MSW,	Industrial pro- duction index, %
Year						tons						kt	% of wet	to the previous
	I	II:	а	b	С	d	e	f	g	h	III	Κt	weight	year
1990	99886.0	100819.1	301.8	123.7	125.9	34081.9	147.5	20306.1	9.9	45732.3	224.5	9872.9	6.9	99.9
1991	97476.7	95979.8	287.4	117.7	119.8	32446.0	140.4	19331.4	9.5	43537.1	224.9	9634.7	7.2	95.2
1992	95018.6	89837.1	269.0	110.2	112.1	30369.4	131.4	18094.2	8.9	40750.8	225.4	9391.8	7.6	93.6
1993	92425.9	82650.1	247.5	101.4	103.2	27939.9	120.9	16646.6	8.1	37490.7	226.2	9135.5	8.0	92.0
1994	89187.5	60086.6	179.9	73.7	75.0	20312.3	87.9	12102.1	5.9	27255.7	225.7	8815.4	8.4	72.7
1995	85446.3	52876.2	158.3	64.9	66.0	17874.8	77.4	10649.8	5.2	23985.1	224.0	8445.6	8.7	88.0
1996	81591.9	50179.5	150.2	61.6	62.6	16963.2	73.4	10106.7	4.9	22761.8	222.1	8064.7	9.1	94.9
1997	85723.5	50029.0	149.8	61.4	62.5	16912.3	73.2	10076.4	4.9	22693.5	220.0	8473.0	9.4	99.7
1998	89852.5	49528.7	148.3	60.8	61.8	16743.2	72.5	9975.6	4.9	22466.6	218.1	8881.1	9.7	99.0
1999	93863.3	51509.9	154.2	63.2	64.3	17412.9	75.4	10374.6	5.1	23365.3	216.2	9277.6	10.1	104.0
2000	97722.0	58309.2	174.6	71.5	72.8	19711.4	85.3	11744.1	5.7	26449.5	214.0	9659.0	10.5	113.2
2001	101402.5	66589.1	199.4	81.7	83.1	22510.4	97.4	13411.8	6.6	30205.3	211.8	10022.8	10.8	114.2
2002	105000.8	71250.3	213.3	87.4	88.9	24086.2	104.2	14350.6	7.0	32319.7	209.8	10378.4	11.3	107.0
2003	108931.3	82507.9	247.0	101.2	103.0	27891.8	120.7	16618.0	8.1	37426.2	207.9	10766.9	11.3	115.8
2004	113015.0	92821.3	277.9	113.9	115.9	31378.2	135.8	18695.2	9.1	42104.5	206.2	11170.6	11.5	112.5
2005	124868.4	95698.8	286.5	117.4	119.5	32351.0	140.0	19274.8	9.4	43409.7	204.7	12342.2	11.7	103.1
2006	122362.0	101632.1	304.3	124.7	126.9	34356.7	148.7	20469.8	10.0	46101.1	203.2	12094.4	11.9	106.2
2007	119855.7	108848.0	325.9	133.5	135.9	36796.1	159.2	21923.2	10.7	49374.3	202.0	11846.7	12.0	107.1
2008	119722.5	103405.6	309.6	126.8	129.1	34956.2	151.3	20827.0	10.2	46905.6	200.8	11833.5	12.1	95.0
2009	124935.3	82104.0	245.8	100.7	102.5	27755.3	120.1	16536.6	8.1	37243.0	199.8	12348.8	12.3	79.4

7.4.2.3 Selection of emission factors

Only one waste incineration plant (Energia Incineration Plant) operates in Ukraine in Kiev. Type of furnace is a rotary stoker furnace and the plant was constructed by CKD Dukla, a Czech company with a licensing agreement with a company in Dusseldorf in Germany. The incineration plant "Energia" is produces heat for district supply purposes. Thus, this process is considered as a recovery operation and the emissions from incineration with energy recovery are reported in the Energy Sector.

The State Statistics Service of Ukraine provides information on the amount of industrial waste incinerated by incinerators. There is currently no information on the types and technologies incineration of waste incinerators. The State Statistics Service provides only data on the capacity of incinerators. Due to the low capacity of incinerators, the batch type incineration was used to select the emission factor. Thus, methane emissions factor of 237 kg/Gg waste incinerated on a wet weight basis for all types of waste (MSW, industrial and clinical) was accepted (according to table 5.3, section 5.4.2, vol. 5, chapter 5 [1]). The nitrogen oxide emissions factor of 60 g N₂O/t waste for the MSW; 100 g N₂O/t waste for the type of industrial and clinical waste and 990 g N₂O/t waste of dry mass for sewage sludge was accepted (according to table 5.6, section 5.4.3, vol. 5, chapter 5 [1]). Methane emissions factor for waste incineration in dry mass is not provided, thus, the amount of sewage sludge in dry mass was converted into wet weight with the assumption that the water content is 90 %.

The values of dry mass content in the component *j*, fraction of carbon in the dry mass, fraction of fossil carbon in the total carbon of component *j* for MSW were taken by default according to Table 2.4, Section 2.3.1 of 2006 IPCC Guidelines (vol. 5, chapter 2) (see Table 7.22). The composition of MSW in Ukraine and fraction of component *j* in the MSW is presented in Section 7.2.

Table 7.22. Default dry mass content, total carbon content and fossil carbon fraction of differ-

ent MSW components

ent Wis w components	Municipal solid and similar waste I											
MSW component	paper	textile	poof	роом	garden	personal care prod- ucts	rubber and leather	plastics	glass	metal	hazardous	other non- organ
Dry mass content	90	80	40	85	40	40	84	100	100	100	90	90
Fraction of carbon in the dry mass	46	50	38	50	49	70	67	75	0	0	3	3
Fraction of fossil carbon in the total carbon	1	20	0	0	0	10	20	100	0	0	100	100

DOC and fossil carbon content for industrial waste were taken by default according to Table 2.5, Section 2.3.3 of 2006 IPCC Guidelines (vol. 5) and for the clinical waste – from Table 2.6, Section 2.3.4 of 2006 IPCC Guidelines (vol. 5) (see Table 7.23). In the absence of any data on the origin and composition of incinerated sewage sludge, the default DOC and fossil carbon content of 40 % and 0 %, respectively were taken according to the Section 2.3.2, Chapter 2 of 2006 IPCC Guidelines (vol. 5).

Table 7.23. Default DOC and fossil carbon content in industrial and clinical waste

		Industrial waste II										
	a	b	c	d	e	f	g	h	waste III			
DOC	40	39	0	43	24	15	40	1	15			
Fossil car- bon	1	17	80	0	16	0	0	3	25			
Total car- bon	41	56	80	43	40	15	40	4	40			

7.4.3 Uncertainties and time-series consistency

Uncertainty ranges were estimated in accordance with [1] and presented in Table 7.24.

Table 7.24. Uncertainty estimation ranges

	Estimated	uncertainty
	٠٠_22	"+"
Activity	data	
Mass of incinerated	35	35
Emission	factors	
Waste composition	20	20
Dry matter content in waste	10	10
Share of fossil carbon	15	15
Oxidation factor	5	5
Carbon fraction in dry matter	15	15
Uncertainty of CH ₄ emission factors	100	100
Uncertainty of N ₂ O emission factors	100	100

7.4.4 Category-specific QA/QC procedures

Analysis of various sources of input data on waste incineration in Ukraine was held, and work to increase reliability of source data by their processing and classification in accordance with [1] was conducted.

7.4.5 Category-specific recalculations

In this sub-category, no recalculations were held.

7.4.6 Category-specific planned improvements

In this category, no improvements are planned.

7.5 Wastewater Treatment and Discharge (CRF category 5.D)

7.5.1 Category description

This category accounts for GHG emissions from the following emission sources:

- Treatment and discharge of domestic sewage for methane under Tier 2 applying national and default factors, for nitrous oxide emissions under Tier 1 with default factors.
 - Industrial sewage treatment and discharge under Tier 2.

In 2023 GHG emissions in this category amounted to 6 052.41 kt CO₂-eq (40.8 % of total GHG emissions in the "Waste" sector), having decreased compared to 1990 (9 224.60 kt CO₂-eq) by 34.4 % and an increased by 3.8 % compared to 2022.

GHG emissions from treatment of industrial sewage amounted to 1 209.03 kt CO_2 -eq (20 % of the category), of methane from domestic sewage – 3 897.56 kt of CO_2 -eq (64.4 % of the category), and of nitrous oxide from human life activity sewage – 945.83 kt CO_2 -eq (15.6 % of the category). Dynamics of GHG emissions at wastewater treatment is presented in Fig. 7.8.

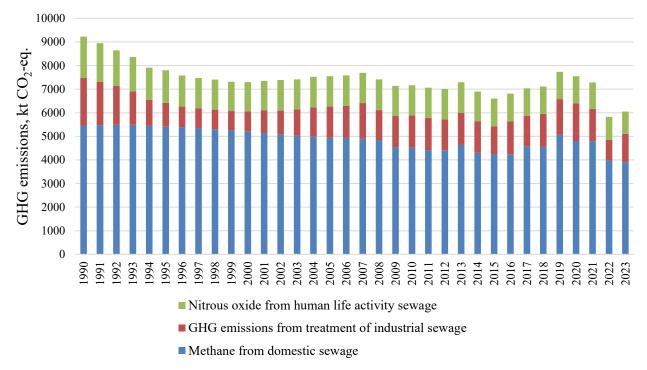


Fig. 7.8. Greenhouse gas emissions from waste water treatment in Ukraine, 1990-2023

7.5.2 Methane emissions from domestic wastewater treatment (CRF sub-category 5.D.1.1)

7.5.2.1 Category description

Methane emissions from treatment of domestic sewage amounted to 3 897.56 kt CO₂-eq (139.2 kt CH₄) in 2023. The reduction in emissions relative to 1990 (5 462.84 kt CO₂-eq) constituted 28.7 %, compared to 2022 – decreasing by 2.1 % (Fig. 7.9).

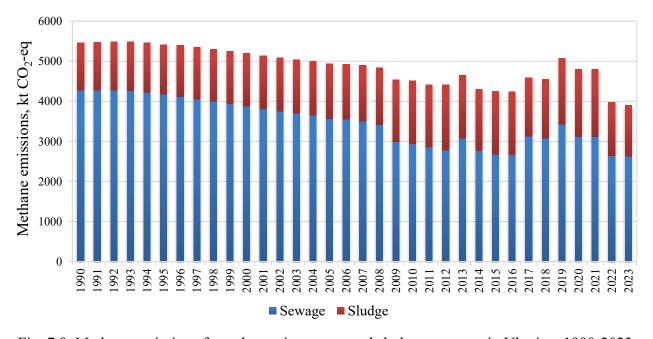


Fig. 7.9. Methane emissions from domestic sewage and sludge treatment in Ukraine, 1990-2023

Gradual reduction of GHG emissions from 1990 to 2023 is mainly due to decrease on population of Ukraine. The fluctuation of methane emissions from 2009 to 2021 is associated with a change in the amount of *insufficiently treated water* and a change of the value of the BOD₅ per capita indicator

from 2019. A significant reduction of the methane emissions in 2022 and 2023 compared to 2021 is associated with a significant departure of the country's population abroad due to the full-scale invasion of Ukraine by the Russian Federation.

Structure of domestic wastewater drainage system in Ukraine is presented in the Figure 7.10.

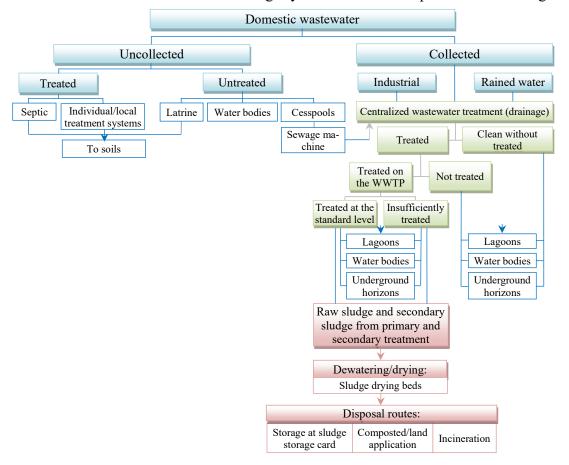


Fig. 7.10. Structure of wastewater drainage system in Ukraine

7.5.2.2 Methodological issues

7.5.2.2.1 General principles

Estimation of methane emissions from domestic wastewater treatment was executed in line with the procedure set out in the research work "Research in methane and nitrous oxide emissions from wastewater treatment and development of methods to determine national emission factors" [22].

Methane emissions from domestic wastewater treatment were determined under formula [22]:

$$E_{CH4} = 365 \times \sum_{k} P \times q_{BOD} \times F_{k} \times B_{0}, \tag{7.12}$$

where P – population, persons;

 q_{BOD} – generation of BOD_5 per capita daily, g/pers./day;

 F_k – biodegradable part of BOD that produce methane for different BOD flows (Tabl. 7.27);

 $B_0 = 0.6$ – maximum methane production capacity, kg of CH₄/kg of BOD [1].

7.5.2.2.2 Activity data

Generalization of data on the use of water in Ukraine is done by the State Water Agency of Ukraine and reflected in statistical reporting form No. 2-TP (water management). Structure of the statistical form No. 2-TP on discharges of return water include: the list of industries; volumes of wastewater treated by different types of treatment (mechanical, biological, physico-chemical) at the

central WWTP and then discharged into water bodies (surface and underground), irrigation fields or other systems; the volume of discharged wastewater by treatment categories: not treated water; insufficiently treated water; water treated at the standard level.

Classification of treated wastewater into "not treated", "insufficiently treated" and "treated at the standard level" is based on a comparison of the actual quantity of discharged pollutants and maximum permissible concentrations/norms:

- contaminated wastewater: **not treated** water and **insufficiently treated** water. Such water contains various pollutants and it is discharged into natural water bodies or other systems without treatment or the degree of their treatment does not correspond to maximum permissible concentration/norms;
- wastewater normatively clean without being treated. Discharging such waters into water bodies does not lead to deterioration of water quality standards.
- wastewater **treated at the standard level** at the treatment plants in biological, physico-chemical and mechanical ways. Discharging such waters after treatment into water bodies does not lead to deterioration of water quality standards.

Domestic wastewater in Ukraine is mainly treated by two ways: collected/centralized treatment systems (aerobic wastewater treatment plants) and not collected/decentralized (septic tanks, cesspools, latrines). Urban wastewater is largely treated in the first way, rural wastewater – mainly in the second one. The degree of application of domestic sewage treatment and discharge systems in Ukraine is presented in the Table 7.25.

Aeration stations operate according to the classical scheme of sewage treatment, developed in the Soviet Union and used almost in all countries of the former Soviet Union. It includes mechanical (screens, sandblasters and radial primary sedimentation tanks) and biological treatment (aeration tanks and secondary sedimentation tanks). Methods of biological treatment of wastewater from nitrogen and phosphorus compounds are not common practice in Ukraine.

Sewage sludge is recyclable to reduce its volume and disinfect it. Sludge treatment is done in special facilities – methane tanks and aerobic stabilizers. Anaerobic sludge digestion in methane tanks is practiced in Ukraine only at Bortnychi Sewage Treatment Plan (Kyiv)t. Then, sludge is pumped to the sludge-drying beds for further drying under natural or artificial conditions.

Due to the absence of any technologies for the efficient utilization of sludge (they were not foreseen by the projects in the 1950s), the sludge fields/sludge-drying beds are the only way to their processing, dewatering and utilization. More detailed information on sludge-drying beds is presented in section 7.5.2.2.3.

The population and the proportion of population having access to sewerage were determined based on data of the State Statistics Service of Ukraine. The degree of application of sewage treatment or discharge systems (see Table 7.25) was determined based on data of the State Water Agency of Ukraine reflected in statistical form No. 2-TP (water management).

In the 2024 submission, the BOD₅ per capita daily value of 50 g/pers./day has been revised for the entire time series as follows: from 1990 to 2018 it was taken equal to 54 g/pers./day, from 2019 it constitutes 60 g/person/day with regard to the current state construction regulations for sewerage [23]. The recommendations for changing the indicator stated above were provided by the State Institution "Marzieiev Institute for Public Health of the National Academy of Medical Sciences of Ukraine" and considered at the scientific and technical meeting of the Ministry for Communities, Territories and Infrastructure Development of Ukraine, approved by Order of September 23rd, 2018 No. 253, entered into force on January 2nd, 2019. In addition, the value of the population equivalent – daily sewage pollution expressed in BOD₅, g O₂/m³ is regulated by the Order of the MEPR of Ukraine "On determining of the population equivalent of a settlement and criteria for determining vulnerable and less vulnerable zones", of January 14th, 2019 No. 6 [24]

Table 7.25. The degree of application of domestic sewage treatment and discharge systems in Ukraine, 1990-2023

	Collected domestic wastewater, %										
			Centrali	ized systems	Í	De	ecentralized syst	ems			
Year	Total	Total	Treated at the standard level	Insufficiently treated	Not treated	Total	Septic tanks	Cesspools	Latrines, %		
1990	45.72	34.06	8.24	22.60	3.22	11.66	0.11	11.55	54.28		
1991	45.94	34.22	8.51	22.53	3.18	11.72	0.12	11.60	54.06		
1992	46.18	34.40	8.80	22.47	3.14	11.78	0.13	11.65	53.82		
1993	46.47	34.62	9.11	22.41	3.09	11.85	0.14	11.71	53.53		
1994	46.61	34.72	9.41	22.27	3.04	11.89	0.16	11.73	53.39		
1995	46.79	34.85	9.74	22.14	2.98	11.93	0.17	11.76	53.21		
1997	49.94	37.20	10.72	23.42	3.06	12.74	0.23	12.51	50.06		
1998	50.57	37.67	11.17	23.49	3.01	12.90	0.24	12.66	49.43		
1999	50.89	37.91	11.57	23.39	2.94	12.98	0.26	12.72	49.11		
2000	51.25	38.18	12.02	23.29	2.86	13.07	0.28	12.80	48.75		
2002	52.65	39.22	13.18	23.32	2.72	13.43	0.34	13.09	47.35		
2003	52.85	39.37	13.70	23.07	2.61	13.48	0.37	13.11	47.15		
2004	53.39	39.77	14.34	22.93	2.50	13.62	0.40	13.22	46.61		
2005	54.32	40.47	15.62	22.38	2.46	13.86	0.47	13.39	45.68		
2007	55.28	41.18	16.40	22.60	2.18	14.10	0.82	13.28	44.72		
2008	56.23	41.89	18.52	21.48	1.90	14.34	1.19	13.15	43.77		
2009	57.29	42.68	27.54	13.49	1.65	14.61	1.63	12.99	42.71		
2010	58.07	43.26	28.85	12.95	1.46	14.81	2.03	12.78	41.92		
2011	58.84	43.83	30.86	11.69	1.29	15.01	2.34	12.66	41.15		
2012	59.73	44.49	32.52	10.27	1.71	15.24	2.76	12.48	40.26		
2013	60.15	44.81	26.84	16.78	1.19	15.35	3.12	12.23	39.83		
2014	57.20	42.61	33.27	8.38	0.96	14.59	3.56	11.03	42.80		
2015	58.81	43.82	35.01	7.19	1.61	15.00	4.05	10.95	41.20		
2016	59.20	44.10	35.56	7.06	1.48	15.10	4.45	10.65	40.80		
2017	58.90	43.88	25.79	16.62	1.47	15.02	4.62	10.40	41.10		
2018	60.00	44.69	27.01	16.13	1.55	15.30	4.99	10.32	40.00		
2019	60.55	45.10	27.32	16.59	1.19	15.45	5.42	10.03	39.44		
2020	60.77	45.27	33.17	10.18	1.92	15.50	5.94	9.56	39.23		
2021	61.21	45.59	33.26	10.81	1.52	15.61	6.36	9.25	38.79		
2022	58.58	43.64	32.84	9.64	1.16	14.94	7.36	7.58	41.42		
2023	58.21	43.36	32.37	9.93	1.06	14.85	7.47	7.38	41.79		

Table 7.26. Amount of BOD_5 in domestic wastewater treated in any way in Ukraine, 1990-2023

			Centraliz	zed systems		De	centralized sys	stems	I adulusa let	Total,
	Total	Total	Treated at the standard level	Insufficiently treated	Not treated	Total	Septic tanks	Cesspools	Latrines, kt of BOD ₅ /day	kt of BOD5/day
1990	1.5198	1.1930	0.2887	0.7916	0.1127	0.3268	0.0031	0.3237	1.5209	3.041
1991	1.5302	1.2011	0.2987	0.7909	0.1115	0.3290	0.0033	0.3257	1.5181	3.048
1992	1.5428	1.2111	0.3098	0.7909	0.1104	0.3317	0.0036	0.3281	1.5155	3.058
1993	1.5533	1.2193	0.3210	0.7894	0.1089	0.3340	0.0041	0.3299	1.5082	3.062
1994	1.5503	1.2169	0.3299	0.7806	0.1064	0.3333	0.0044	0.3289	1.4969	3.047
1995	1.5438	1.2119	0.3386	0.7698	0.1035	0.3319	0.0048	0.3271	1.4802	3.024
1997	1.6183	1.2703	0.3660	0.8000	0.1044	0.3480	0.0060	0.3420	1.3678	2.986
1998	1.6245	1.2752	0.3780	0.7952	0.1019	0.3493	0.0065	0.3428	1.3384	2.963
1999	1.6192	1.2710	0.3881	0.7843	0.0986	0.3482	0.0069	0.3413	1.3173	2.936
2000	1.6144	1.2673	0.3991	0.7732	0.0951	0.3471	0.0073	0.3398	1.2945	2.909
2002	1.6258	1.2762	0.4289	0.7588	0.0885	0.3496	0.0087	0.3408	1.2324	2.858
2003	1.6189	1.2708	0.4421	0.7445	0.0842	0.3480	0.0095	0.3386	1.2174	2.836
2004	1.6227	1.2738	0.4594	0.7343	0.0800	0.3489	0.0103	0.3386	1.1945	2.817
2005	1.6390	1.2866	0.4966	0.7117	0.0782	0.3524	0.0119	0.3405	1.1619	2.801
2007	1.6471	1.2930	0.5148	0.7096	0.0685	0.3541	0.0206	0.3336	1.1231	2.770
2008	1.6665	1.3082	0.5783	0.6707	0.0592	0.3582	0.0297	0.3286	1.0934	2.760
2009	1.6900	1.3266	0.8561	0.4193	0.0512	0.3634	0.0404	0.3230	1.0621	2.752
2010	1.7064	1.3395	0.8932	0.4011	0.0452	0.3669	0.0503	0.3167	1.0385	2.745
2011	1.7227	1.3523	0.9520	0.3606	0.0397	0.3704	0.0579	0.3126	1.0158	2.738
2012	1.7444	1.3693	1.0008	0.3159	0.0525	0.3752	0.0678	0.3073	0.9911	2.736
2013	1.7528	1.3759	0.8240	0.5153	0.0365	0.3770	0.0766	0.3003	0.9785	2.731
2014	1.5757	1.2369	0.9657	0.2433	0.0279	0.3388	0.0826	0.2562	0.9938	2.570
2015	1.6141	1.2671	1.0126	0.2080	0.0466	0.3470	0.0936	0.2534	0.9532	2.567
2016	1.6182	1.2702	1.0242	0.2034	0.0426	0.3479	0.1025	0.2454	0.9402	2.558
2017	1.6029	1.2582	0.7395	0.4766	0.0421	0.3447	0.1061	0.2386	0.9429	2.546
2018	1.6245	1.2752	0.7707	0.4603	0.0442	0.3493	0.1138	0.2355	0.9130	2.538
2019	1.8113	1.4217	0.8612	0.5230	0.0374	0.3896	0.1367	0.2529	0.9946	2.806
2020	1.8055	1.4172	1.0384	0.3187	0.0602	0.3883	0.1488	0.2394	0.9827	2.788
2021	1.8025	1.4149	1.0323	0.3353	0.0472	0.3876	0.1580	0.2296	0.9631	2.766
2022	1.4129	1.1091	0.8346	0.2450	0.0295	0.3039	0.1497	0.1542	0.8422	2.255
2023	1.3788	1.0823	0.8080	0.2479	0.0264	0.2965	0.1492	0.1474	0.8344	2.213

7.5.2.2.3 Selection of emission factors

The maximum methane production capacity by default was taken to be 0.6~kg of CH_4/kg of BOD [1].

Methane conversion rates, MCF, for different type of domestic wastewater treatment are defined in accordance with [1, 22] and presented in Table 7.26. According to the research [22], it's assumed that all aeration stations are well-managed and non-overloaded, taking into account the general statistics on incomplete utilization of the capacity of the treatment facilities in Ukraine. Therefore, the MCF value is 0 for the share of domestic wastewater, which is treated at the standard level. The MCF value is 0.3 for the part of the domestic wastewater classified as insufficiently treated. Insufficient treating is mainly due to the excess of the maximum permissible discharge of pollutants from treatment plants by the content of ammonium nitrogen, nitrites, nitrates and phosphates. In fact, the biological treatment facilities were designed over 60 years ago and designed to remove mainly organic pollution from wastewater by their technological purpose. Removing nitrogen and phosphorus compounds was not required in the process calculations. However, according to the results of the treatment facilities (WWTP) questioning the cases of BOD and COD indicators permissible limits exceeding has been established.

For open reservoirs (seas, rivers, lakes) the MCF value of 0.1 by default was taken according to 2006 IPCC Guidelines (vol. 5, chapter 6, table 6.3). For septic system the MCF value of 0.5 by default was taken according to 2006 IPCC Guidelines (vol. 5, chapter 6, table 6.3). For cesspools MCF was not applied. It was accepted that wastewater collected in cesspools fully are entered into centralized sewage systems by sewage machine and treated at the centralized aeration stations. For these reasons, all parameters for wastewater collected in cesspools are taken the same as for wastewater pass through treatment at WWTP (as the average value for wastewater treated at the standard level and insufficiently treated).

For latrines, a weighted average MCF value of 0.28 was used, based on the level of ground water table in different climate zones and, accordingly, the ratio of the country's population living in dry (MCF 0.1) (70 %) and wet (MCF 0.7) (30 %) climatic zones. It was accepted that ground water table, as a climate-dependent parameter, are higher in the zone of excessive wet and lower in dry zones. Zoning of the territory of Ukraine was carried out by the Institute of Water Problems and Reclamation (IWP&LR) of the National Academy of Agrarian Sciences of Ukraine (NAAS) based on the value of the climatic water balance (WCB), which characterizes the difference between the amount of precipitation and potential total evaporation. As a result, six main typical zones have been identified: excessively wet - 4.5 % of the territory; wet (30.0 %); insufficient wet (16.0 %); arid (20.0 %); dry (22.0 %); very dry (7.5 %) [25].

When estimating BOD flows, the efficiency E_{BOD} of their removal while was considered in accordance with [22]. The conversion factor MCF and biodegradable part of BOD for each types/methods of domestic sewage treatment see in Table 7.27.

Biodegradable parts $(F_{k,ww})$ of sewage BOD of different BOD flows were calculated based on the formulas [22]:

$$F_{tr} = E_{BOD.tr} \times MCF_{tr} + (100 - E_{BOD.tr}) \times MCF_{w}, \tag{7.13}$$

$$F_{ins.tr} = E_{BOD.ins.tr} \times MCF_{ins.tr} + (100 - E_{BOD.ins.tr}) \times MCF_w, \tag{7.14}$$

$$F_{not.tr} = MCF_w, (7.15)$$

$$F_{sept} = MCF_{sept}, (7.16)$$

$$F_{cessp} = (F_{tr} + F_{ins.tr})/2, \tag{7.17}$$

$$F_{latr} = MCF_{latr}, (7.18)$$

where $E_{BOD.tr} = 0.9164$ – efficiency of BOD removal for treated wastewater [22]; $E_{BOD.ins.tr} = 0.84$ – efficiency of BOD removal for insufficiently treated wastewater [22]; $MCF_{tr}, MCF_{ins.tr}, MCF_{sept}, MCF_{latr}$ – conversion factor MCF for different BOD flows (see Table 7.26);

 $MCF_w = 0.1$ – conversion factor MCF for water reservoirs [1].

Organic component removed as sludge on the sludge-drying beds S_{total} were calculated on the formulas:

$$S_{total} = (S_{tr} + S_{ins.tr} + S_{cessp}), \tag{7.19}$$

$$S_{tr} = (E_{BOD,tr} - F_{aer,tr}) \times TOW_{tr\,ww} \times 365,\tag{7.20}$$

$$S_{tr} = (E_{BOD.tr} - F_{aer.tr}) \times TOW_{tr\,ww} \times 365,$$

$$S_{ins.tr} = (E_{BOD.ins.tr} - F_{aer.ins.tr} - MCF_{ins.tr}) \times TOW_{ins\,tr\,ww} \times 365,$$

$$(7.20)$$

$$S_{cessp} = \tag{7.22}$$

$$(((E_{BOD.tr} - F_{aer.tr}) + (E_{BOD.ins.tr} - F_{aer.ins.tr} - MCF_{ins.tr}))/2) \times TOW_{cessp} \times 365,$$

where $TOW_{tr\,ww}$, $TOW_{ins\,tr\,ww}$, TOW_{cessp} - organic component (BOD₅ flows) in wastewater classified as treated at the standard level, insufficiently treated and cesspools, relatively (see Table 7.26);

 $F_{aer.tr} = 0.3$ – biomass growth rate under aerobic treatment (expert estimation) [22]; $F_{aer.ins.tr} = 0.15$ – full sludge BOD removal under aerobic treatment (expert estimation) [22].

Biodegradable parts $(F_{sl,k})$ of sludge BOD of different BOD flows were calculated based on the formulas [32]:

$$F_{sl.tr} = (E_{BOD.tr} - F_{aer.tr}) \times MCF_{sl}, \tag{7.23}$$

$$F_{sl.ins.tr} = (E_{BOD.ins.tr} - F_{aer.ins.tr} - MCF_{ins.tr}) \times MCF_{sl}, \tag{7.24}$$

$$F_{sl.cessp} = \left(F_{sl.tr} + F_{sl,ins.tr}\right)/2,\tag{7.25}$$

where $MCF_{sl} = 0.299$ – especial conversion factor MCF for sludge-drying beds for Ukraine [26].

Table 7.27. The conversion factor MCF and biodegradable part of BOD for each of the methods of domestic sewage treatment

	Ce	entralized systems		Decentraliz	zed systems		
Treatment system	Treated at the standard level	Insufficiently treated	•		Cesspools	Latrines	Sludge-dry- ing beds
MCF	0	0.3	0.1	0.5	ī	0.28	0.299
Biodegradable part of sewage BOD ($F_{k,ww}$)	0.0083	0.268	0.1	0.5	0.1382	0.1	-
Biodegradable part of sludge BOD $F_{k,sl}$	0.1844	0.1166	0	0	0.1505	0	-

The dominant practice of sludge treatment in Ukraine is their dehydration/drying on sludge fields /sludge-drying beds. Ukraine uses almost one method of sludge disposal – storage (> 95%). This is due to the fact that the quality of domestic sewage sludge does not correspond to standards of the heavy metals content.

The sludge-drying beds are the constructed sites, either on a natural or artificial basis, on which the sludge is dried. The construction of sludge-drying beds is determined depending on the hydrogeological and climatic conditions, terrain. The size of the sludge-drying beds is governing by current building codes [23]. Depth of sludge discharge is assumed to be 0.7-1.0 m [23]. The sludge discharged on the sludge cards mainly dried by the evaporation of water. Part of the water is filtered through drainage or soil (natural foundation). The dried sludge is scooped up by a bulldozer or scraper, loaded into cars and taken for further disposal. In most cases, "further disposal" means disposal in neighboring cards located on the same sludge-drying beds – card storage. From 1980-90, the transportation of dried sludge from sludge-drying beds was prohibited due to the high content of heavy metals, which made it impossible to use in agriculture as organic and mineral fertilizers. Dried sludge is stored on the sludge fields by embanking dams (only in Kyiv) or by attracting new territories (land). Almost never, the dried sludge is removed at MSW landfills. The statistical form "1-waste" does not allow identifying the amount of sludge landfilled at SWDS, because both SWDS and sludge storage cards are considered as waste disposal sites in Ukraine. Thus, the emissions from sludge deposited at the SWDS are not estimated under category 5.A. The form "1-waste" indicate that a small amount of sludge was subjected to composting and incineration. The amount of composted sludge is presented in the Table 7.12 and the emissions are reported under category 5.B.1. The amount of incinerated sludge is indicated in the Tables 7.19, 7.20 and the emissions are reported under category 5.C.1. Information on the amount of sewage sludge application as organic fertilizers in agriculture are not available.

To estimate methane emissions from sewage sludge removed at the sludge-drying beds, the weighted average of the national BOD to methane conversion factor, MCF_{UA} , is used, determined in accordance with the ACM0014 methodology [26]. The methodology takes into account two main factors – the air temperature and the depth of the *sludge-drying beds*. According to the results of sewage treatment plants (WWTP) questioning in Ukraine, the depth of *sludge-drying beds* is 1-2 meters. The average monthly temperatures for each month of the year were different for each region of Ukraine according to the data of the Ukrainian Hydrometeorological Center. Thus, MCF_{UA} is 0.299 [22]. The amount of organically degradable material discharged on the sludge-drying beds as sludge was estimated according to formulas 7.19-7.22 (domestic sludge) and 7.32 (industrial sludge). The sludge amount sent to land after treatment/drying at sludge-drying beds cannot be estimated because the share of the organic material decomposes aerobically on the sludge-drying beds is unknown. There are no data collected or research to determine this share. The estimation of methane emissions from sludge-drying beds carried out with the assumption that methane emissions occur within one year. Management of domestic and industrial sewage sludge (sludge balance) is presented in the Table 7.28.

Table 7.28. Management of domestic and industrial sewage sludge, kt

Years	Domestic sludge generated and re- moved at the	Industrial sludge generated and re- moved at the	Sludge composted ¹ ,		ncinerated ² , lry mass	Domestic sludge removed at the sludge-drying beds minus part of the com-
1 cars	sludge-drying beds, kt BOD/year	sludge-drying beds, kt COD/year	R3A, kt of wet weight	D10	R1	posted and incinerated, kt BOD/year
	A	В	D	Е	F	G
1990	237.15	506.43	5.73	0.010	3.043	234.48
1991	239.68	462.09	5.60	0.009	2.897	237.13
1992	242.61	415.97	5.47	0.009	2.712	240.21
1993	245.24	356.90	5.34	0.008	2.495	243.02
1994	245.82	275.39	5.21	0.006	1.814	244.15
1995	245.90	228.64	5.08	0.005	1.596	244.41
1996	255.85	218.10	4.90	0.005	1.515	254.44
1997	259.09	211.58	4.76	0.005	1.510	257.69
1998	261.28	207.71	4.62	0.005	1.495	259.89
1999	261.72	207.46	4.48	0.005	1.555	260.29
2000	262.32	219.64	4.34	0.006	1.760	260.74
2001	265.42	239.99	4.21	0.007	2.010	263.64
2002	267.18	252.93	4.07	0.007	2.151	265.29
2003	267.72	277.26	3.93	0.008	2.491	265.56
2004	270.17	309.97	3.79	0.009	2.802	267.77
2005	275.67	299.47	3.63	0.009	2.889	273.20
2006	276.62	313.83	3.56	0.010	3.068	274.01
2007	278.19	374.65	3.32	0.011	3.286	275.42
2008	286.02	326.58	3.27	0.010	3.121	283.39
2009	311.75	336.72	3.06	0.008	2.478	309.64
2010	316.34	367.50	4.19	0.009	2.756	313.96
2011	323.06	405.23	5.17	0.004	24.062	303.60
2012	326.73	399.43	0.05	0.002	1.827	325.27
2013	314.03	406.94	1.93	0.001	1.982	312.37
2014	313.00	429.75	1.54	9.773	3.735	302.13
2015	318.03	362.33	1.41	1.991	6.225	311.40
2016	318.80	426.99	1.19	3.024	8.965	309.16
2017	291.22	399.41	0.29	2.633	1.936	287.56
2018	295.66	435.96	0.00	2.098	1.752	292.57

V	Domestic sludge generated and re- moved at the	Industrial sludge generated and re- moved at the	Sludge composted ¹ ,	•	ncinerated ² , lry mass	Domestic sludge removed at the sludge-drying beds minus part of the com-	
Years	sludge-drying beds, kt BOD/year	sludge-drying beds, kt COD/year	R3A, kt of wet weight	D10	R1	posted and incinerated, kt BOD/year	
	A	В	D	Е	F	G	
2019	329.82	449.53	0.03	0.786	1.174	328.25	
2020	339.43	503.90	0.07	0.840	3.396	336.04	
2021	338.90	466.42	37.04	0.893	5.618	332.21	
2022	265.78	333.57	0.00	0.102	0.257	265.50	
2023	258.57	468.55	0.00	9.793	0.269	250.52	

¹ to convert the mass of sludge (kg of wet weight) into kt BOD the dry mass content of 5 percent was accept and the sludge factor K_{rem} 0.8 was used;

7.5.2.3 Uncertainties and time-series consistency

The uncertainty estimation ranges for households and the maximum methane production capacity were default ones [1], for MCF – calculated on the basis of [1], for the rest of the parameters – based on expert estimations [22] (Table 7.29).

Table 7.29. Uncertainty estimation ranges

D	Uncertainty range, %						
Parameter	٠٠,,	"+"					
Emission factors							
Maximum methane producing capacity, kg CH ₄ /kg of BOD	30	30					
Fraction treated anaerobically (MCF)	21.80	21.80					
Uncertainty of emission factors	37.08	37.08					
Activity data							
Population, persons	7	7					
BOD per capita, g/day/person	30	30					
Degree of application of sewage treatment or discharge systems	10	10					
Efficiency of BOD removal by the wastewater treatment method	10	10					
Efficiency of BOD removal in the process of aerobic decomposition	30	15					
Correction factor for additional industrial BOD discharged into sewers	20	20					
Uncertainty of activity data	49.49	42.12					

7.5.2.4 Category-specific QA/QC procedures

General and detailed quality control and assurance procedures were applied:

- assessment of comparability of the MCF values used in the inventory with the values applied in other countries;
 - comparison of emission along the time series and analysis of trends;
- comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

7.5.2.5 Category-specific recalculations

In this subcategory, recalculations were made due to the clarification of data on the degree of sewerage utilization in rural for 2010-2022 which in turn affected on the shares of septic and cesspools utilization. As a result of recalculation, emissions changed by -0.01-4.42 %. Results of recalculation are provided in Table 7.30.

² to convert the mass of sludge (kg dry mass) into organic component (kt BOD) the sludge factor K_{rem} 0.8 was used [2019 IPCC].

Table 7.30. Recalculation in subcategory 5.D.1.1 "Domestic Wastewater Treatment and Dis-

charge"

charge	Inventory Report, 2024 submis-			Inventory 1	Report, 2025	submission,	Difference, %			
Year	sion, kt			kt			Difference, 78			
	CO_2	CH ₄	N_2O	CO_2	CH ₄	N ₂ O	CO_2	CH ₄	N ₂ O	
1990	-	195.13	1	-	195.10	-	-	-0.01	-	
1991	-	195.45	1	-	195.43	-	-	-0.01	-	
1992	-	195.94	1	-	195.92	-	-	-0.01	-	
1993	-	195.99	-	-	195.97	-	-	-0.01	-	
1994	-	194.91	1	-	194.89	-	-	-0.01	-	
1995	-	193.23	-	-	193.21	-	-	-0.01	-	
1996	-	192.71	-	-	192.69	-	-	-0.01	-	
1997	-	191.13	-	-	191.11	-	-	-0.01	-	
1998	-	189.49	-	-	189.47	-	-	-0.01	-	
1999	-	187.57	-	-	187.55	-	-	-0.01	-	
2000	-	185.56	-	-	185.54	-	-	-0.01	-	
2001	-	183.69	-	-	183.67	-	-	-0.01	-	
2002	-	181.84	-	-	181.82	-	-	-0.01	-	
2003	-	180.08	-	-	180.07	-	-	-0.01	-	
2004	-	178.52	-	-	178.51	-	-	-0.01	-	
2005	-	176.44	-	-	176.43	-	-	-0.01	-	
2006	-	176.08	-	-	176.06	-	-	-0.01	-	
2007	-	174.92	-	-	174.90	-	-	-0.01	-	
2008	-	172.99	-	-	172.97	-	-	-0.01	-	
2009	-	162.33	-	-	162.31	-	-	-0.01	-	
2010	-	161.41	-	-	161.41	-	-	0.00	-	
2011	-	157.67	-	-	157.65	-	-	-0.01	-	
2012	-	157.32	-	-	157.47	-	-	0.10	-	
2013	-	165.87	-	-	166.18	-	-	0.19	-	
2014	-	152.99	-	-	153.67	-	-	0.45	-	
2015	-	150.92	-	-	151.92	-	-	0.67	-	
2016	-	150.02	-	-	151.36	-	-	0.89	-	
2017	-	162.14	-	-	163.75	-	-	0.99	-	
2018	-	160.64	-	-	162.62	-	-	1.23	-	
2019	-	178.58	-	-	181.26	-	-	1.50	-	
2020	-	168.28	-	-	171.56	-	-	1.95	-	
2021	-	167.53	-	-	171.38	-	-	2.30	-	
2022	-	136.11	-	-	142.12	-	-	4.42	-	

7.5.2.6 Category-specific planned improvements

See Table A8.2 Inventory Improvement Plan.

7.5.3 Nitrous Oxide Emissions from Human Wastewater (CRF category 5.D.1.2)

7.5.3.1 Category description

Nitrous oxide emissions from sewage of domestic wastewater amounted to 933.62 kt CO₂-eq. in 2023 (3.57 kt), and their reduction with respect to 1990 (1 749.88 kt CO₂-eq.) is 45.9 %.

In 2023, consumption (gross) of protein per capita per day amounted 79.51 g/person/day (actual consumption), including: of vegetable origin – 37.49 g/person/day, of animal origin – 42.01 g/person/day. Information on emissions in the category for the period of 1990-2023 is shown in Fig. 7.11.

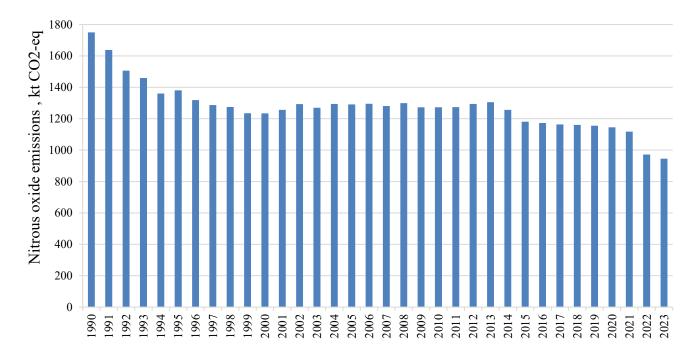


Fig. 7.11. Nitrous oxide emissions from human wastewater in Ukraine, 1990-2023

Fig. 7.11 shows that in the period of 1990-2000, there was the trend of emission reduction, which is due, firstly, to a reduction in the country's population, and secondly, a reduction in the consumption of animal products characterized by high content of protein. Since 2001, nitrous oxide emissions were stabilized and changed insignificantly. The reduction of emission in 2015 by 5.8 % compared to 2014 is due, primarily, to a sharp decline in purchasing power of population and, as a result, replacement of animal products with food of plant origin. A significant reduction of the country's population in 2022 and 2023 led to decrease nitrous oxide emissions by 13 % and 15 %, respectively, compared to 2021.

7.5.3.2 Methodological issues

7.5.3.2.1 General principles

Nitrous oxide emissions were divided on: indirect N_2O emissions and direct N_2O emissions. GHG emissions were calculated based on the formulas:

$$N_2 O_i = N_{effluent} \times E_{f.effluent} \times 44/28, \tag{7.26}$$

$$N_2 O_d = P \times T_{plant} \times F_{ind-comm} \times E_{f.plant} \times 10^{-8}, \tag{7.27}$$

where $N_{effluent} = P_{Protein} \times F_{npr} \times F_{non-con} \times F_{ind-com} - N_{Sludge}$ – total annual amount of nitrogen in the wastewater effluent, ktN;

 $P_{Protein}$ – aggregated value of total protein consumption in Ukraine estimated under food balance and decreasing rate of non-eaten part of food according to food waste statistics, kt;

 $F_{nnr} = 0.16$ – fraction of nitrogen in protein, kgN/kg;

 $F_{non-con} = 1.1$ – factor for non-consumed protein added to the wastewater (Ukraine is a country with low GDP per capita, chapter 6.3.1.3);

 $F_{ind-com} = 1.25$ – factor for industrial and commercial co-discharged protein into the sewer system;

 $N_{Sludge} = 0$ – nitrogen removed with sludge, ktN;

 $E_{f.effluent} = 0.01 - \text{emission factor for effluent}, \text{kg N}_2\text{O-N/kg-N};$

P – population of Ukraine, thousand persons;

 T_{plant} – degree of utilization of modern centralized WWT plants (based on CH₄ emission estimation for 5.D.1 and relates to the centralized well treated WW), %;

 $E_{f,nlant} = 3.2$ – emission factor, g N₂O/per/year.

Estimation of indirect and direct N_2O emissions in Ukraine in 1990-2023 is shown in Table 7.31.

Table 7.31. Indirect and direct N₂O emissions in Ukraine in 1990-2023

Year	Protein consumed (eaten), kt	Total annual amount of nitrogen in the wastewater effluent, ktN	Indirect N ₂ O emissions, kt	Population, thousand per.	Degree of utilization of centralized WWT plants, %	Direct N ₂ O emissions, kt
1990	1910.05	420.21	6.60	51891.45	8.24	0.017
1991	1787.76	393.31	6.18	52000.50	8.51	0.018
1992	1644.11	361.70	5.68	52150.35	8.80	0.018
1993	1593.23	350.51	5.51	52179.25	9.11	0.019
1994	1484.64	326.62	5.13	51921.40	9.41	0.020
1995	1507.06	331.55	5.21	51512.75	9.74	0.020
1996	1439.22	316.63	4.98	51057.75	10.25	0.021
1997	1405.08	309.12	4.86	50594.60	10.72	0.022
2001	1370.87	301.59	4.74	48662.40	12.62	0.025
2002	1410.95	310.41	4.88	48202.47	13.18	0.025
2003	1385.98	304.92	4.79	47812.95	13.70	0.026
2004	1412.78	310.81	4.88	47451.63	14.34	0.027
2005	1409.22	310.03	4.87	47105.15	15.62	0.029
2006	1413.84	311.04	4.89	46787.75	15.90	0.030
2011	1390.29	305.86	4.81	45706.05	30.86	0.056
2012	1412.31	310.71	4.88	45593.30	32.52	0.059
2013	1424.54	313.40	4.92	45489.60	26.84	0.049
2014*	1371.73	301.78	4.74	45354.34	33.27	0.060
2015*	1289.54	283.70	4.46	45156.20	35.01	0.063
2016*	1280.04	281.61	4.43	45013.45	35.56	0.064
2017*	1270.47	279.50	4.39	44835.87	25.79	0.046
2018*	1266.69	278.67	4.38	44624.83	27.01	0.048
2019*	1261.37	277.50	4.36	44389.57	27.32	0.049
2020*	1250.36	275.08	4.32	44227.84	33.17	0.059
2021*	1219.91	268.38	4.22	43884.89	33.26	0.058
2022*	1060.85	233.39	3.67	36225.17	32.84	0.048
2023*	1032.40	227.13	3.57	35575.82	32.37	0.046

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study [38]

7.5.3.2.2 Activity data

Product consumption data are taken from the Statistical Bulletin "Balance sheets and consumption of the main types of food products by the population of Ukraine" annually published by the State Statistics Service of Ukraine. Food consumption is estimated according to the concepts and methodological approaches of the UN Food and Agriculture Organization (FAO) and is calculated as the difference of the production volume, stock changes at the end of the year, import and export amount, and use for non-food purposes.

The consumption of certain food product groups in Ukraine in 1990-2021 is shown in Table 7.32. As for the period of 2022 and 2023 there is no available data on the amount of food consumption by the country's population. The method of linear extrapolation was applied to obtain the data on the food consumption per person a year in 2022 and 2023. In 2022, 2023 data on the population of Ukraine were provided by Ptoukha Institute for Demography and Social Studies of the National Academy of Sciences of Ukraine.

Table 7.32. Consum	ption of ma	in food-stuffs	of the popula	ation on Ukraine	e, 1990-2021

	1990	1995	2000	2005	2010	2014*	2015*	2016*	2017*	2018*	2019*	2020*	2021*
Food products	Kt												
Animal origin													
Meat and meat products, in- cluding sub- products and raw fat	3536.7	2002.0	1611.0	1843.9	2384.0	2400.4	2246.1	2264.1	2264.9	2303.5	2324.8	2320.7	2267.4
Milk and dairy products	19363.4	12548.5	9788.8	10625.1	9469.8	9825.1	9273.4	9223.4	8765.6	8621.9	8699.6	8717.9	8627.1
Eggs (1 pc.)	14137.9	8824.9	8142.1	11207.0	13279.6	13738. 6	12386. 7	11768. 2	11962. 0	11995.7	12213.8	12000.7	11654. 1
Fish and fish products	907.0	187.5	412.5	676.5	667.0	498.9	378.6	423.1	474.6	513.0	540.8	535.1	566.7
					Vege	table ori	gin						
Potato	6799.8	6376.4	6660.2	6385.6	5913.8	6061.3	6073.8	6154.1	6283.8	6081.5	5889.1	5783.9	5670.7
Vegetables and melon food crops	5318.8	4978.8	5002.0	5662.5	6581.3	7225.8	7103.0	7203.9	7002.9	7148.6	7147.0	7079.1	7104.8
Grain products	7314.3	6616.6	6141.0	5817.2	5105.9	4812.8	4559.7	4444.3	4420.5	4341.8	4235.0	4171.8	3971.0
Fruits, berries, and grape (without pro- cessing as wine)	2459.6	1720.9	1439.1	1749.6	2203.2	2320.1	2246.3	2185.4	2319.1	2522.7	2548.6	2437.3	2525.2
Sugar	2592.8	1627.1	1809.0	1794.6	1704.0	1606.1	1575.2	1461.0	1331.4	1300.4	1251.3	1200.9	1221.5
Oils	600.6	423.1	461.4	635.0	680.0	577.8	541.4	513.0	512.3	516.9	520.7	529.9	583.2

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study [30]

7.5.3.2.3 Selection of emission factors

Protein content in l food product, k_l , is taken on the basis of laboratory studies of the Ukrainian Research Institute of Nutrition, the averaged data on the findings of which were provided by the State Statistics Service of Ukraine. Thus, k_l for meat products is 13.7%, dairy -2.8%, eggs -0.54%, fish products -8.5%, potatoes -1.4%, vegetables -1.3%, flour products -10.9%, fruit and berries -0.83%.

The proportion of nitrogen in protein F_{NPR} is 0.16 kg N/kg protein [1], the nitrous oxide emission factor from discharge of wastewater $E_{f.effluent}$ – 0.01 N₂O-N/kg N [1].

The $F_{NON-CONI}$ factor takes into account the fact that after acquisition of food products by population not all of them are used as food, as part of them following pre-treatment or when spoiled goes to landfills as waste food.

Paper [17] explores the composition of food waste as an MSW component, the mass of dumped food waste and the ratio of the weight of individual components of food products removed to landfills to their gross consumption are estimated.

 $F_{NON-CONI}$ for certain types of products can be estimated using formula [17]:

$$F_{NON_CON_l} = MWS \cdot MWS_j \cdot B_l / P_{\text{Ba}\pi_l} \cdot 10^3, \tag{7.28}$$

where *MWS* is the mass of MSW dumped in Ukraine, t/year; MWS_i – food waste content in the MSW composition, fraction;

 B_l – the content of component 1 in the composition of food waste;

 $P_{\text{gan }i}$ – gross consumption of the *l* type of food product by population, kg/year.

According to [17], the proportion of dumped food components that were not actually eaten, and nitrogen in their composition was not to discharged into DWW is the following: for meat products - 7.6%, dairy -1.3%, bread -2.6%, potatoes -10.6%, fruit and vegetables -17.6%, fish products -8.4%.

7.5.3.3 Uncertainties and time-series consistency

Ranges of uncertainty estimates for all the parameters were taken by default [1] and are presented in Table 7.33.

Table 7.33. Uncertainty estimation ranges

D	Estimated uncertainty							
Parameter	"_"	"+"						
Emission factors								
Emission factor, kg of N ₂ O-N/kg N	50	50						
Emission factor, g N2O/person/year	37.5	150						
Uncertainty of emission factors	62.5	158.1						
Activity data								
Population, pers.	7	7						
Food consumption, kt	10	10						
Fraction of nitrogen in protein, kg N/kg protein	6.25	6.25						
Degree of utilization of WWT plants	20	20						
Factor to adjust for non-consumed protein	9.09	36.36						
Factor to allow for co-discharge of industrial nitrogen into sewers	20	20						
Loss of food products factor, fraction	5	5						
Uncertainty of activity data	33.1	48.3						

7.5.3.4 Category-specific QA/QC procedures

General quality control and assurance procedures were applied – comparison of emissions along the time series and trend analysis, as well as comparison of activity data, emission factors, and estimation results with inventory reports of other countries.

Comparison of state statistics data on protein consumption by the population of Ukraine with FAO data (estimated using a new FBS methodology) over the comparable time series of 2010-2021 demonstrated divergence within the range of 3.4 - 12.6 %. Detailed information is presented in Fig. 7.12.

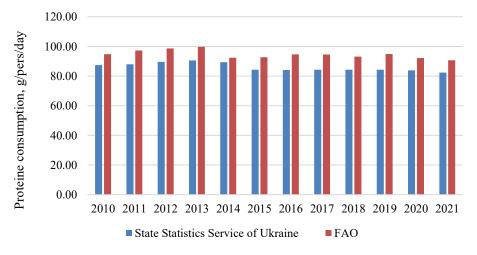


Fig. 7.12. Consumption of protein by the population of Ukraine, 2010-2021

7.5.3.5 Category-specific recalculations

In this subcategory, no recalculations were made.

7.5.3.6 Category-specific planned improvements

In this sub-category, no improvements are planned.

7.5.4 Industrial Wastewater Treatment and Discharge (CRF category 5.D.2)

7.5.4.1 Category description

The section accounts for emissions of methane and nitrous oxide resulting from treatment of industrial wastewater.

Based on estimations of the current inventory, in 2023 GHG emissions from treatment of industrial wastewater amounted to 1209.03 kt CO_2 -eq, the decrease with respect to 1990 (2 011.89 kt CO_2 -eq) is 39.91 % and increase in comparison with 2022 is 37.55 % (see Fig. 7.13). Of these, methane emissions – 1160.05 kt CO_2 -eq (41.43 kt), nitrous oxide – 48.98 kt CO_2 -eq (0.185 kt). For details on GHG emissions at industrial wastewater treatment, see Fig. 7.13.

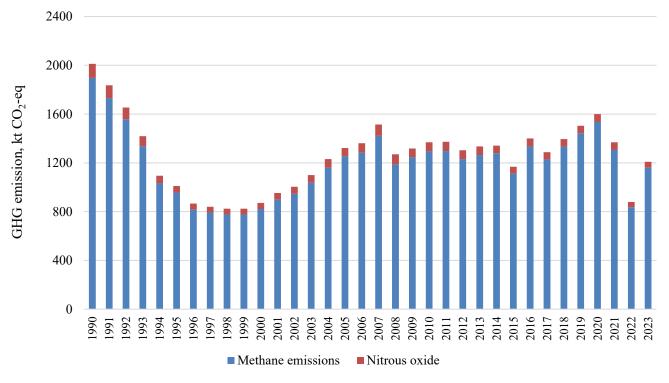


Fig. 7.13. GHG emissions from industrial sewage treatment in Ukraine, 1990-2023

Trends of GHG emissions from treatment of industrial wastewater, in general, are correlated with the growth of industrial production in the country. It should be noted that emissions increase in 2007 by 12.86 % in relation to 2006 was due to a sharp increase in the volume of wastewater generation in the sectors of heavy and chemical industries, as well as in the energy sector supporting their energy needs. The reduction of GHG emissions by 16.1 % in 2015 compared to 2014 is the result of the full-scale invasion of Ukraine by the Russian Federation, in particular, the occupation of the territories of the Autonomous Republic of Crimea, the city of Sevastopol and parts of the Donetsk and Luhansk regions, a significant increase in tariffs also had a certain impact on the trend for water use. In 2022, due to the full-scale invasion of the Russian Federation into Ukraine, the emissions decreased in this subcategory in all industrial sectors as a result of reduction in industry production, volume of

wastewater and COD generation. In particular, the manufacture of basic metals decreased by 66.5%, chemicals and chemical products – by 62 %, coke and refined petroleum products – by 66.6 %, non-metallic mineral products – by 66 %, engineering – by 44 %, pulp and paper – by 38 %, wood processing – by 29 %, textiles – by 26 %, beverage – by 24 %, food – by 20 % compared to the previous year. In 2023, industrial production increased slightly by 6.8 %. In particular, food production increased by 15 % and the share of biologically treated wastewater at WWTPs from this industry increased significantly which led to an increase in emissions.

In 2023, 15.5 % of methane emissions were caused directly by wastewater treatment, and 84.5 % – by treatment of their sludge. Methane emissions from sewage directly, as well as from their sludge are shown in Fig. 7.14.



Fig. 7.14. Methane emissions from industrial sewage and sludge treatment in Ukraine, 1990-2023

GHG emissions from wastewater treatment by industries are presented in Fig. 7.15. The largest contribution is made by food, meat and dairy, pulp and paper industries, in particular in 2023 -702.4, 176.4, and 72.2 kt CO₂-eq., respectively.

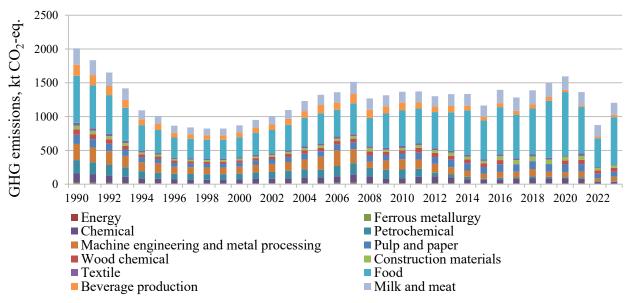


Fig. 7.15. GHG emissions from industrial sewage treatment by industries in Ukraine, 1990-2023

7.5.4.2 Methodological issues

7.5.4.2.1 General principles

For treatment, industrial wastewater is mainly directed to a centralized sewage system, however can also be discharged from enterprises directly to the water receiver. In the first case, wastewater is treated in the same way as domestic wastewater, collected by a centralized sewer system. In the second case, wastewater can enter into water receivers without treatment or be treated at local treatment plants of industrial enterprises.

Industrial wastewater that is biologically treated goes through all stages, similar to the treatment of domestic wastewater at central aeration stations. Therefore, the regularities of decomposition of organic matter and the organic extraction with the sludge are common, which allows with a certain assumption to take the appropriate coefficients as for domestic wastewater.

Mechanical methods of industrial wastewater treatment can be used as a preliminary treatment of large solids and floating substances (fats, oils, petroleum products, etc.). The regularities of contaminants removing are mainly similar to those in the treatment of domestic wastewater.

In some cases, before wastewater discharging into water bodies, biological pre-treatment or additional treatment of industrial wastewater is applied, including treatment in bio-pounds, filtration fields, etc. Removal of contaminants in such cases occurs in conditions close to natural, and are less intensive, compared to aeration at central treatment plants.

Estimation of methane and nitrous oxide emissions from treatment of industrial wastewater was made in accordance with the procedure set out in the research paper: "Study of methane and nitrous oxide emissions from waste water treatment and development of methods to determine national emission factors", 2012 [22].

Methane emissions from industrial sewage treatment were determined under formula [22]:

$$E_{CH4,j} = \sum_{k} M_{COD,j} \times F_{anaer,j,k} \times B_0, \tag{7.29}$$

where $M_{COD,j}$ – total amount of organic component in wastewater from industry sector j, kg COD/yr;

 $F_{anaer,j,k}$ – biodegradable part of COD that produce methane by treating wastewater/sludge of different treatment methods k (aeration plants, bio-pounds (additional treatment), physico-chemical treatment, mechanical treatment, open ponds) from industry sector j, %;

 $B_0 = 0.25$ – maximum methane production capacity, kg of CH₄/kg of COD [1].

The total amount of organic component (COD) in wastewater were determined by formula [22]:

$$M_{COD,i} = P_i \times C_{COD,i} \times q_i, \tag{7.30}$$

where P_i – total production of i type products for industry sector j, t/yr; data of the State Statistics Service of Ukraine;

 q_i – average annual wastewater volume discharged by an industrial enterprise from production of i type products, $m^3/t_{product}$; taken from tables of consolidated standards;

 $C_{COD,i}$ – concentration of COD in wastewater, resulting from production of *i* type products, kg COD/m³; taken from tables of consolidated standards.

Industries with the largest amounts of chemical oxygen demand (COD) and total nitrogen were identified based on data of the State Agency for Water Resources of Ukraine (State Water Agency) on discharge of pollutants into surface water bodies from statistical form No. 2-TP (water management): energy, ferrous metallurgy, chemical industry, petrochemical industry, mechanical engineering industry and metal processing, pulp and paper industry, construction materials industry, textile industry, food industry, beverage industry, meat-and-milk, and fishing industries.

7.5.4.2.2 Activity data

Generation of organic pollutants (COD and total nitrogen) getting into industrial wastewater was calculated based on the data of the State Statistics Service of Ukraine about production of industrial products by type and consolidated water consumption [27] taking into account the analytical study [30]. The average annual quantity of wastewater generated per unit of output was taken from tables of consolidated standards [27]. Data on consolidated standards are considered since the most Ukrainian industrial production has been formed in Soviet period. In 2022 and 2023, the production of industrial products by types was calculated based on the indices of industrial production, by type of activity and main industrial groupings.

The total amount of wastewater by industries, as well as COD and nitrogen generation in them along the time series of 1990-2023 are shown in Tables 7.36-7.40.

7.5.4.2.3 Selection of emission factors

Distribution of COD flows (see Table 7.37) of industrial wastewater depending on the method of their treatment k was determined based on data of the State Water Agency of Ukraine on discharges of pollutants into surface water bodies in statistical form No. 2-TP (water management).

Biodegradable part of COD in wastewater from industry sector j treated by different treatment methods k were calculated on the formula [22]:

$$F_{ww,anaer,j} = \sum_{k} (F_{COD,tr,j,k} + F_{COD,uns\,tr,j,k} \times \varphi_{uns.tr}) \times E_{COD,k} \times MCF_{k}, \tag{7.31}$$

Biodegradable part of COD (that produce methane) removed as sludge on the sludge-drying beds were calculated on the formula [22]:

$$F_{sl,anaer.j} = \sum_{k} (F_{COD,tr,j,k} + F_{COD,uns\,tr,j,k} \times \varphi_{uns.tr}) \times E_{COD,k} \times (1 - F_{aer,k}) \times MCF_{IIA},$$
(7.32)

where $F_{COD,tr,j,k}$ – biodegradable part of COD in wastewater classified as treated at the standard level being treated by each of the methods k, from industry sector j, %;

 $F_{COD,uns\ tr,j,k}$ – biodegradable parts of COD in wastewater classified as insufficiently treated being treated by each of the methods k, from industry sector j, %;

 $\varphi_{uns.tr}$ – degree of wastewater treatment classified as insufficiently treated for each of the methods k, %; accounts for 80 % (except for wastewater, which are additional treated, where such an indicator is 100 %);

 $E_{COD,k}$ – efficiency of COD removal for each of the treatment methods k, %, [22], (Table 7.35);

 $F_{aer,k}$ – the part of COD in wastewater, which is degradable in oxic/aerobic conditions by each of the treatment methods k, %; for the part of COD flow biologically treated at wastewater treatment plants it equals 30 %; for bio-ponds and others it is not taken into account, because the system does not sludge treated; for physical, chemical and mechanical treatment it is assumed to be zero;

 MCF_k – conversion factor MCF for different COD flows (Table 7.35);

 $MCF_{sl} - 0.299$ – especial conversion factor MCF for sludge-drying beds for Ukraine [22].

The COD and nitrogen removal efficiency (see Table 7.35) for each of the methods of industrial wastewater treatment were selected on the basis of the [22, 28], taking into account sanitary rules and standards of surface water protection from pollution [29].

The MCF values for different type of industrial wastewater treatment were taken by default according to 2006 IPCC Guidelines (vol. 5, chapter 6, tables 6.3, 6.8). The MCF for industrial wastewater normatively treated at central aeration stations is assumed to be zero, for insufficiently treated wastewater the value of 0.3 is taken. For the part of industrial wastewater treated in biological

ponds the conservative MCF value of 0.05 was accepted. For the part of wastewater physical and chemical treated, the MCF value is assumed to be zero. It is considered, that in the technological cycle of physical and chemical treatment there are no appropriate conditions for the biochemical decomposition of organic matter with the methane emission. The mechanical treatment may lead to create the conditions of methane emission at the treatment plants (due to the insufficiently efficient sludge removal from settling tanks, etc.), thus for such systems, the MCF value of 0.05 was accepted. For the share of industrial wastewater discharged into open reservoirs (seas, rivers, lakes) the MCF value was taken by default 0.1.

Table 7.35. The methane conversion factor MCF and COD and nitrogen removal efficiency for each of the methods of industrial sewage treatment

The methods of industrial ment (k		MCF	COD removal effi- ciency $(E_{COD,k})$, %	Nitrogen removal efficiency, %
Aeration plants	water treated at the standard level	0	83.9	19.6
Aeration plants	insufficiently treated water	0.3	83.9	19.0
Bio-pounds (additional or pre-treatment)	wastewater	0.05	3.0	2.7
Physico-chemical treat- ment	wastewater	0.0	80.0	57.0
Mechanical treatment	wastewater	0.05	34.0	0.0
Water bodies	wastewater	0.1	-	-
Sludge drying beds	Sludge	0.299	-	-

In determining nitrous oxide emissions from wastewater, only indirect emissions from nitrogen compounds discharged with wastewater into water bodies are accounted for. Direct nitrous oxide emissions from wastewater treatment with nitrodenitrification methods are not accounted for, since application of such methods in wastewater treatment is not a common practice in Ukraine.

Distribution of nitrogen flows from industrial wastewater depending on the treatment method (see Table 7.38) was held based on data of the State Water Agency of Ukraine on discharges of pollutants into surface water bodies (statistical form No. 2-TP (water management)).

The estimation of nitrous oxide amount emitted as a result of nitrogen discharge in composition of industrial wastewater into open water bodies was performed based on data on the degree of nitrogen removal from treatment systems according to [28]. The N₂O emission factor from discharge of wastewater is by default 0.005 kg of N₂O-N/kg of N in accordance with [1].

Table 7.36. Volume of industrial wastewater by industries

Industry							Vo	olume of s	sewage, m	illion m ³							
Industry	1990	1995	2000	2005	2010	2012	2013	2014*	2015*	2016*	2017*	2018*	2019*	2020*	2021*	2022*	2023*
Energy	404.1	193.2	174.6	253.4	254.6	278.1	281.5	257.9	225.7	266.6	215.9	235.5	228.3	221.2	222.6	164.0	164.3
Ferrous metal- lurgy	263.6	126.0	113.9	165.2	161.9	185.1	179.5	142.2	116.2	133.6	120.6	125.8	126.7	118.9	122.3	47.5	48.7
Chemical	119.3	57.6	55.1	75.1	64.5	84.8	65.9	49.3	37.2	44.3	44.6	48.7	50.1	52.0	49.4	15.6	18.1
Petrochemical	136.7	65.3	59.0	85.7	88.3	54.2	44.1	36.3	30.5	31.7	29.5	32.0	30.6	30.7	31.4	16.4	15.6
Machine engi- neering and metal pro- cessing	1191.9	569.7	514.9	747.3	718.4	722.0	652.0	588.0	529.2	569.2	537.5	587.9	539.9	520.5	586.1	288.9	314.6
Pulp and paper	259.1	123.9	111.9	162.5	173.6	183.2	191.0	187.3	160.0	185.4	179.5	195.0	183.7	188.1	196.8	123.3	131.9
Wood chemi- cal	36.2	17.3	15.6	22.7	23.6	26.3	23.6	23.9	22.2	26.7	26.7	30.4	27.5	26.2	27.7	20.6	22.4
Construction materials	935.9	447.4	404.3	586.8	618.8	771.6	948.5	733.0	598.4	840.8	880.1	1016.3	1107.9	1074.6	1102.3	488.4	486.3
Textile	23.9	11.4	10.3	15.0	13.7	14.0	13.3	13.2	13.1	15.1	16.2	16.8	15.6	15.7	16.4	11.4	11.4
Food	260.8	124.6	112.7	163.5	183.0	195.7	180.9	212.7	181.9	224.0	230.2	242.2	264.1	268.5	233.3	175.4	192.0
Beverage production	117.7	56.2	50.8	73.8	87.3	70.9	74.4	60.2	49.6	53.5	53.2	56.4	51.4	53.3	48.3	33.5	39.3
Milk and meat	79.3	37.9	34.3	49.7	51.9	54.7	58.9	60.6	57.8	67.3	64.7	71.8	72.1	74.7	73.0	63.6	67.2
Fish	5.6	2.7	2.4	3.5	3.6	3.3	3.5	2.1	1.5	1.8	1.7	1.9	1.9	2.0	1.9	1.2	1.5
Total	3834.0	1833.2	1659.8	2404.2	2443.2	2643,9	2717.2	2366.5	2023.5	2459.9	2400.3	2660.4	2699.8	2646.4	2711.5	1449.7	1513.3

^{*}Data corrected using analytical study [30]

Table 7.37. COD generation in industrial wastewater

In dustant								COD g	eneration	ı, kt							
Industry	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Energy	17.5	8.4	7.6	11.0	11.2	13.8	14.6	14.3	13.1	15.0	13.1	14.0	13.8	12.9	13.7	10.2	10.1
Ferrous metal- lurgy	11.9	5.7	5.1	7.4	7.3	8.3	8.1	6.4	5.2	6.0	5.4	5.7	5.7	5.4	5.5	2.1	2.2
Chemical	90.4	43.6	41.3	55.9	50.7	59.4	50.8	38.4	31.1	37.4	44.3	47.6	48.7	48.5	46.9	16.3	19.2
Petrochemical	162.8	77.8	70.3	102.1	100.8	41.9	32.6	24.9	13.4	14.6	15.0	22.9	15.1	14.6	15.7	7.5	5.8
Machine engi- neering and metal pro- cessing	324.4	155.1	140.1	203.4	193.5	183.5	164.9	155.2	137.1	150.1	142.9	159.2	145.4	139.6	158.1	78.3	84.9
Pulp and paper	112.2	53.7	48.5	70.4	75.5	79.7	84.3	83.4	72.3	83.5	80.3	87.6	83.5	85.3	88.9	55.9	59.7
Wood chemi- cal	77.3	36.9	33.4	48.4	50.4	56.1	49.8	50.4	46.4	54.1	52.7	58.2	52.0	48.8	55.8	41.4	46.6
Construction materials	101.1	48.3	43.7	63.4	68.4	76.2	87.9	74.4	62.6	82.8	84.2	94.8	102.1	101.8	105.3	46.6	46.6
Textile	27.6	13.2	11.9	17.3	15.5	14.4	13.8	13.1	12.1	14.1	14.9	15.2	14.0	14.0	15.1	10.4	10.3
Food	1078.2	515.4	465.8	676.0	753.4	791.9	729.6	824.6	705.8	857.1	865.7	908.7	974.3	974.5	877.1	664.3	746.5
Beverage production	118.1	56.4	51.0	74.0	90.5	71.0	74.8	60.7	50.5	55.3	54.9	57.5	52.0	52.3	49.6	32.7	38.2
Milk and meat	159.6	76.3	69.0	100.1	104.5	110.0	118.5	121.6	116.1	135.1	130.1	144.3	144.3	149.5	145.9	127.1	134.5
Fish	9.9	4.7	4.3	6.2	6.3	5.9	6.1	4.0	2.8	3.2	3.1	3.5	3.4	3.6	3.5	2.1	2.7
Total	2290.9	1095.4	991.9	1435.6	1528.0	1512.1	1435.8	1471.3	1268.5	1508.2	1506.5	1619.1	1654.1	1650.2	1580.6	1095.0	1207.4

Table 7.38. Nitrogen generation in industrial wastewater

I. deseture								Nitrogen	generati	on, kt							
Industry	1990	1995	2000	2005	2010	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Energy	1.4	0.7	0.6	0.9	0.9	1.1	1.1	1.1	1.0	1.2	1.0	1.1	1.1	1.0	1.0	0.8	0.8
Ferrous metal- lurgy	1.8	0.9	0.8	1.2	1.1	1.3	1.3	1.0	0.8	0.9	0.8	0.9	0.9	0.8	0.9	0.3	0.3
Chemical	14.8	7.1	6.4	8.1	8.3	8.5	8.0	6.2	5.4	5.6	5.0	5.0	6.0	6.8	6.3	2.0	2.3
Petrochemical	3.2	1.5	1.4	2.0	2.1	1.2	0.9	0.7	0.6	0.8	0.7	0.7	0.7	0.7	0.9	0.5	0.4
Machine engi- neering and metal pro- cessing	2.4	1.1	1.0	1.5	1.4	1.4	1.3	1.2	1.1	1.1	1.1	1.2	1.1	1.0	1.2	0.6	0.6
Pulp and pa- per*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wood chemi- cal	1.0	0.5	0.4	0.6	0.6	0.7	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.6	0.7	0.5	0.6
Construction materials *	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Textile	0.6	0.3	0.3	0.4	0.4	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.3	0.2
Food	14.4	6.9	6.2	9.0	9.9	10.4	9.6	10.1	9.0	10.2	9.7	10.0	9.9	9.5	9.2	7.2	8.6
Beverage production	13.0	6.2	5.6	8.2	9.4	7.5	8.4	6.0	4.9	5.2	5.3	5.3	4.2	4.9	3.9	3.0	3.5
Milk and meat	10.0	4.8	4.3	6.3	6.6	7.0	7.6	7.8	7.5	8.8	8.5	9.5	9.6	9.9	9.8	8.6	9.2
Fish	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0
Total	62.9	30.1	27.2	38.3	40.8	39.5	39.1	35.0	31.2	34.9	33.0	34.7	34.5	35.7	34.2	23.7	26.6

^{* -} nitrogen generation volume less than 0.1 thousand tons

Table 7.39. COD content in industrial wastewater depending on the method of its treatment, 2023

		Wa	iste water COD,	%		Sludge COD, %					
Industry	Aeration plants	Bio-pounds	Physico- chemical treatment	Mechanical treatment	Open ponds	Aeration plants	Bio-pounds	Physico- chemical treatment	Mechanical treatment		
Energy	2.18	0.00	0.51	2.24	95.07	33.66	0.00	13.20	55.14		
Ferrous metallurgy	48.19	0.09	0.00	15.32	36.40	69.86	0.00	0.00	30.14		
Chemical	79.51	0.15	1.55	3.17	15.62	92.36	0.00	2.59	5.05		
Petrochemical	85.81	0.16	0.00	0.01	14.01	99.98	0.00	0.00	0.02		
Machine engineering and metal processing	20.18	0.04	0.72	34.78	44.28	26.28	0.00	1.57	72.16		
Pulp and paper	79.20	0.15	0.47	4.34	15.84	92.34	0.00	0.78	6.88		
Wood chemical	58.57	0.12	0.00	17.04	24.27	68.63	0.00	0.00	31.37		
Construction materials	3.43	0.01	3.20	46.57	46.79	4.02	0.00	6.47	89.51		
Textile	75.68	0.14	0.00	7.17	17.01	88.60	0.00	0.00	11.40		
Food	76.41	0.16	0.31	1.65	15.35	96.84	0.00	0.53	2.64		
Beverage production	72.74	0.14	0.00	5.41	18.04	91.22	0.00	0.00	8.78		
Milk and meat	83.97	0.16	0.00	0.20	15.66	99.65	0.00	0.00	0.35		
Fish	86.01	0.16	0.00	0.00	13.82	100.00	0.00	0.00	0.00		

Table 7.40. Nitrogen content in industrial wastewater, %, 2023

		Treatment method								
Industry	Aeration plants	Bio-pounds	Physico-chemi- cal treatment	Mechanical treatment	Open ponds					
Energy	1.16	0.07	0.15	3.68	94.15					
Ferrous metallurgy	38.49	2.45	0.00	37.57	21.48					
Chemical	81.19	5.17	0.89	9.94	2.81					
Petrochemical	91.23	5.81	0.00	0.04	2.92					
Machine engineering and metal processing	11.03	0.70	0.22	58.34	29.71					
Pulp and paper	0.00	0.00	0.00	0.00	0.00					
Wood chemical	48.63	3.10	0.00	43.45	4.82					
Construction materials	1.82	0.12	0.95	75.95	21.15					
Textile	71.27	4.54	0.00	20.74	3.46					
Food	61.00	3.89	0.13	3.74	31.25					
Beverage production	44.94	2.86	0.00	9.76	42.43					
Milk and meat	78.73	5.01	0.00	0.59	15.66					
Fish	94.01	5.99	0.00	0.00	0.00					

7.5.4.3 Uncertainties and time-series consistency

Ranges of uncertainty estimates for the maximum methane production capacity B_{θ} and the N₂O emission factor (EF) are taken by default [1], for the other parameters – in accordance with [22], and they are presented in Table 7.41.

Table 7.41. Uncertainty estimation ranges

Danamatan	Uncertaint	ty range, %
Parameter	"_"	"+"
Emission factors		
B ₀ , kg of CH ₄ /kg of COD	30	30
MCF for CH ₄	24.68	24.68
EF, kg of N ₂ O-N/kg of N	50	50
Uncertainty of CH ₄ emission factors	38.8	38.8
Uncertainty of N ₂ O emission factors	50.0	50.0
Activity data		
COD generated, kg/m ³	10	10
Nitrogen generated, kg/m ³	10	10
Individual commodity groups production (P)	6	6
Wastewater/unit production (q _i)	15	15
Efficiency of COD removal by wastewater treatment method	10	10
Efficiency of BOD removal in the process of aerobic decomposition	30	15
Uncertainty of activity data (CH ₄)	36.9	26.2
Uncertainty of activity data (N ₂ O)	37.2	26.7

7.5.4.4 Category-specific QA/QC procedures

For estimation of emissions in the sub-category, the general and detailed quality control procedures were applied:

- assessment of comparability of the MCF values used in the inventory with the values applied in other countries;
- comparison of emission along the time series and analysis of trends.

7.5.4.5 Category-specific recalculations

In this subcategory, no recalculations were made.

7.5.4.6 Category-specific planned improvements

See Table A8.2 Inventory Improvement Plan.

8 OTHER (CRT SECTOR 6)

Ukraine does not report emissions in this sector.

9 INDIRECT CO₂ AND NITROUS OXIDE EMISSIONS

For the purpose of paragraph 29 of decision 24/CP.19, Ukraine has elected to report indirect nitrous oxide emissions.

The calculation of indirect nitrous oxide emissions from Energy and IPPU sectors was performed in accordance with 2006 IPCC Guidelines [1] (Chapter 7.3, Volume 1) for all categories of these sectors where NO_x emissions are allocated, using default emission factors.

The basic data on the results of indirect nitrous oxide emissions calculated for the whole time series see in table below.

Year	EMISSI	RECT ONS (kt)	INDIRECT EMISSIONS (kt)
		2 O	N ₂ O
	ENERGY	IPPU	Total
1990	11.598	0.176	11.774
1991	10.021	0.155	10.176
1992	8.813	0.136	8.949
1993	7.450	0.109	7.559
1994	6.333	0.089	6.422
1995	5.884	0.075	5.959
1996	5.416	0.087	5.503
1997	4.932	0.093	5.025
1998	4.629	0.085	4.714
1999	4.325	0.089	4.414
2000	3.990	0.100	4.09
2001	4.020	0.101	4.121
2002	4.023	0.110	4.133
2003	4.110	0.113	4.223
2004	4.182	0.110	4.292
2005	4.149	0.124	4.273
2006	4.459	0.125	4.584
2007	4.225	0.147	4.372
2008	4.216	0.134	4.35
2009	3.514	0.088	3.602
2010	3.572	0.108	3.68
2011	3.713	0.139	3.852
2012	3.549	0.141	3.69
2013	3.560	0.107	3.667
2014	3.114	0.092	3.206
2015	2.600	0.071	2.671
2016	2.680	0.078	2.758
2017	2.664	0.062	2.726
2018	2.749	0.061	2.81
2019	2.694	0.083	2.777
2020	2.549	0.093	2.642
2021	2.491	0.098	2.589
2022	3.382	0.034	3.416
2023	2.346	0.046	2.392

Indirect CO₂ emissions was not estimated.

10 RECALCULATIONS AND IMPROVEMENTS

Recalculations in current NIR were performed in the IPPU, Agriculture, LULUCF and Waste sectors. The results of review of GHG emissions and removals are presented in table 10.1.

Table 10.1. Recalculation of total GHG emissions in comparison with 2024 submission

	NIR 2024 (including	NIR 2025 (including	Changes,	NIR 2024 (excluding	NIR 2025 (excluding	Changes,
	LULUCF), kt CO2-eq.	LULUCF), kt CO ₂ -eq.	%	LULUCF), kt CO ₂ -eq.	LULUCF), kt CO2-eq.	%
1990	915 477	916 473	0.11	962 528	964 370	0.19
1991	820 910	821 978	0.13	875 729	877 635	0.22
1992	766 657	767 609	0.12	819 947	821 729	0.22
1993	681 605	682 480	0.13	728 907	730 553	0.23
1994	573 042	573 821	0.14	622 242	623 712	0.24
1995	532 874	533 433	0.10	578 198	579 435	0.21
1996	492 477	492 855	0.08	531 405	532 432	0.19
1997	480 765	480 898	0.03	513 840	514 590	0.15
1998	458 318	458 368	0.01	495 605	496 241	0.13
1999	425 444	425 446	0.00	464 710	465 305	0.13
2000	408 306	408 342	0.01	441 129	441 698	0.13
2001	434 785	434 825	0.01	459 229	459 761	0.12
2002	421 176	421 231	0.01	443 290	443 813	0.12
2003	420 836	420 854	0.00	452 604	453 092	0.11
2004	436 539	436 510	-0.01	454 851	455 256	0.09
2005	435 798	435 673	-0.03	453 541	453 867	0.07
2006	448 867	449 089	0.05	470 659	471 290	0.13
2007	451 230	451 460	0.05	474 136	474 758	0.13
2008	450 137	450 332	0.04	460 158	460 723	0.12
2009	384 547	384 728	0.05	399 806	400 337	0.13
2010	395 988	396 248	0.07	416 608	417 202	0.14
2011	430 481	430 761	0.06	437 109	437 707	0.14
2012	415 161	415 435	0.07	425 554	426 148	0.14
2013	417 669	418 043	0.09	415 825	416 521	0.17
2014	371 296	371 822	0.14	368 251	369 099	0.23
2015	328 364	328 910	0.17	323 971	324 787	0.25
2016	348 753	349 302	0.16	342 484	343 276	0.23
2017	325 844	326 277	0.13	328 145	328 816	0.20
2018	351 666	352 095	0.12	344 328	344 992	0.19
2019	344 894	345 376	0.14	339 605	340 321	0.21
2020	309 282	309 740	0.15	324 525	325 221	0.21
2021	327 861	328 109	0.08	332 894	333 537	0.19
2022	223 169	223 531	0.16	238 263	239 184	0.39

There were no recalculation in the Energy and IPPU sectors.

During the NIR preparation recalculations in Agriculture sector have occurred in 3.A Enteric fermentation, 3.B Manure management, 3.D Agricultural soils categories and 3.G Liming (see Chapters 5.2.5, 5.3.5, 5.5.5 and 5.8.5). There are several reasons for recalculations in these categories:

- clarification of livestock and herd structure:
- clarification of MMS types and their values for cattle, swine and poultry\$
- ΔC_{Mineral, LU} clarification in the LULUCF sector;
- clarification of data on amount of liming materials.

Emissions recalculation led to its changes for entire time series (the smallest -1.01 % in 2005, the largest -2.33% in 1991).

There was a number of recalculations in LULUCF sector. There was a revision of forested areas of Forest land remaining Forest land to take into account the National Forest Inventory. Cropland and Grassland recalculations were caused by the recalculations in Agriculture sector connected to livestock and manure. Additionally, there were recalculations in 2024 in Grassland category which erroneously were not reported in NID 2024 but were included into current submission. The data on peat extraction volume was clarified for 2022. There were recalculations in the HWP category due to data clarification on FAOSTAT on production of sawnwood for 2022 as well as the data of wood-based panels production 2019-2022.

In the Waste sector recalculations were made in two key categories: 5.B. "Biological Treatment of Solid Waste" and 5.D.1.1 "Domestic Wastewater Treatment and Discharge". In 5.B category, recalculations were made due to the clarification of the amount of composted household and sewage sludge waste for the 2010-2023. In 5.D.1.1 subcategory, recalculations were made due to the clarification of data on the degree of sewerage utilization in rural residents for 2010-2022 which in turn affected on the shares of septic and cesspools utilization. As a result of recalculation, GHG emissions in Waste sector changed by -0.01 - 0.97 %.

11 INFORMATION ON CHANGES IN THE NATIONAL GHG INVENTORY SYSTEM

There were no changes in the National GHG Inventory System arrangements since the last submission of Ukraine.

12 AUTHORS

The National Inventory Report was developed with the participation of:

Name	Place of work, position	The area of responsibility
Dmytro Todchuk	BI «NCI», Director	General Sections
Igor Onopchuk	BI «NCI», Deputy Director	Sector LULUCF
Oleksandr Tymoshchuk	BI «NCI», Deputy head of the Greenhouse Gas Inventory Department, Head of Depart- ment of Greenhouse Gas Inventory in the Agriculture and Forestry fields and Waste management, Candidate of Agricultural Sci- ences	Sector Agriculture
Hanna Hlebchuk	BI «NCI», Head of the GHG Inventory Quality Control Sector, Candidate of Tech- nical Sciences	The Procedures of Quality Control, paragraph 1.2.2-1.2.3, subchapters 1.3, 1.6 - 1.7, Annex 5, Annex 7
Oleksandr Stakhovskyi	BI «NCI», Head of Department of Greenhouse Gas Accounting in Energy and Industry	Sectors Energy
Svitlana Zubchyk	BI «NCI», Chief Specialist of Department of Greenhouse Gas Accounting in Energy and Industry	Sectors Energy
Andriy Skliarenko	BI «NCI», Chief Specialist of Department of Greenhouse Gas Accounting in Energy and Industry	Sector Industrial Processes and Product Use
Olexander Apostolov	BI «NCI», Chief Specialist of Department of Greenhouse Gas Inventory in the Agriculture and Forestry fields and Waste management	Sector Industrial Processes and Product Use
Lesya Yelistratova	BI «NCI», Chief Specialist of Department of Greenhouse Gas Inventory in the Agriculture and Forestry fields and Waste management	Sector Industrial Processes and Product Use
Iuliia Zakharchuk	BI «NCI», Chief Specialist of Department of Greenhouse Gas Inventory in the Agriculture and Forestry fields and Waste management	Sectors Waste
Mykhailo Chyzhenko	Ministry of Environmental Protection and Natural Resources of Ukraine	Chapter 11, subchapter 1.3, Annex 6 and Annex 8.2 NIR
Vira Balabukh	Ukrainian Hydrometeorological Institute, Department Head, Ph.D. (Geography)	Paragraph 1.1.1
Iryna Trofimova	Ukrainian Hydrometeorological Institute, Senior Researcher, Ph.D. (Physics and Mathematics)	Paragraph 1.1.1
L.V. Malytska	Ukrainian Hydrometeorological Institute, Junior Researcher	Paragraph 1.1.1
S.V. Krakovska	Ukrainian Hydrometeorological Institute, Senior Researcher, Ph.D. (Physics and Mathematics)	Paragraph 1.1.1
L.V. Palamarchuk	Ukrainian Hydrometeorological Institute, Senior Researcher, Ph.D. (Geography)	Paragraph 1.1.1
N.V. Gnatiuk	Ukrainian Hydrometeorological Institute, Junior Researcher	Paragraph 1.1.1
T.M. Shpytal	Ukrainian Hydrometeorological Institute, Junior Researcher	Paragraph 1.1.1

For development of individual chapters of the NIR following organizations were participat-

- 1. Ukrainian state forest inventory production association «Ukrderzhlisproekt»;
- 2. Public Organization «Bureau of complex analysis and forecasts «BIAF»;
- 3. Institute of Animal Science of NAASU;

ing:

4. Ukrainian Hydrometeorological Institute.

13 REFERENCES

Chapter 1

- 1. Балабух В.А. Межгодовая изменчивость интенсивности конвекции в Украине // Глобальные и региональные изменения климата; под ред. Осадчего В.И. / В.А. Балабух. Киев: Ника-Центр, 2011.— С. 161-173.
- 2. Балабух В.О. Зміна інтенсивності, повторюваності та локалізації небезпечних явищ погоди в Україні та їх регіональні особливості/ В.О. Балабух, О.М. Лавриненко, С.М. Ягодинець, Л.В.Малицька, Ю.О. Базалєєва // Системи контролю навколишнього середовища: Збірник наукових праць МГІ НАН України.—Севастополь, 2013.—Вип.19.—С.189-198.
- 3. Балабух В.О. Особливості термічного режиму 2013 року в Україні/ В.О. Балабух О.М.Лавриненко, Л.В. Малицька // Український гідрометеорологічний журнал: Науковий журнал. Одеса: Вид-во ПП «ТЕС», 2014. № 14. С.30-46.
- 4. Балабух В.О. Вплив зміни клімату на кількість та площу лісових пожеж у північночорноморському регіоні України/ В.О.Балабух,С.В. С. В. Зібцев// Український гідрометеорологічний журнал: Науковий журнал. Одеса: Вид-во ПП «ТЕС», 2016. № 18. С.60-71.
- 5. Барабаш М.Б. Дослідження змін та коливань опадів на рубежі XX і XXI ст.. в умовах потепління глобального клімату // М.Б. Барабаш, Т.В. Корж ,О.Г Татарчук //Наук. праці УкрHДГМІ. 2004. Вип. 253. C.92-103.
- 6. Вразливі екосистеми Поліського природного заповідника та його околиць в умовах глобального потепління: проблеми та шляхи вирішення /[Балабух В.О., Жила С.М., Орлов О.О., Яремченко О.А.]–Київ: Вид-во ТОВ «НВП Інтерсервіс», 2013.– 92 с
- 7. Леса и изменение климата в Восточной Европе и Центральной Азии / Под ред. проф. Чаба Матиаша. Рим, 2010. 209 с.
- 8. Оцінка впливу кліматичних змін на галузі економіки України / С. М. Степаненко, А. М. Польовий, Є. П. Школьний [та ін.] ; за ред. С. М. Степаненко, А. М. Польовий. Одеса: Екологія , 2011. 696 с
- 9. Проекції змін приземної температури повітря за даними ансамблю регіональних кліматичних моделей у регіонах України в XXI столітті / С. В. Краковська, Н. В. Гнатюк, Т. М. Шпиталь, Л. В. Паламарчук // Наук. пр. УкрНДГМІ. 2016. Вип. 268. С. 33-44.
- 10. Розроблення сценаріїв зміни кліматичних умов в Україні на середньо- та довгострокову перспективу з використанням даних глобальних та регіональних моделей : Звіт про науково-дослідну роботу. УкрНДГМІ МНС України та НАН України. Київ, 2013. 171.
- 11. Розроблення деталізованих карт майбутніх кліматичних умов для території України за різними сценаріями зміни клімату з використанням геоінформаційних систем : Звіт про науководослідну роботу. УкрНДГМІ МНС України та НАН України. Київ, 2013. 77.
- 12. Семёнова И.Г. Характеристика засушливых условий на Украине в конце XX начале XXI столетия / И.Г. Семёнова // Вестник Балтийского федерального университета им. И. Канта. 2014. Вып. 1 С. 20-29.
- 13. Стихійні метеорологічні явища на території України за останнє двадцятиріччя (1986—2005рр.): Монографія /Під редакцією В.М.Ліпінського, В.І.Осадчого, В.М.Бабіченко.— К.:Ніка—Центр,2006.—312 с.
- 14. Тимофеев В.Е.. Сильные снегопады на территории Украины в условиях современного климата. //В.Е.Тимофеев, О.Г.Татарчук //Проблемы гидрометеорологического обеспечения хозяйственной деятельности в условиях изменяющегося климата: Сборник научных статей. Минск: Издательский центр БГУ, 2015.— с.192-193.
- 15. Третье, четвертое и пятое национальные сообщения Украины по вопросам изменения климата подготовленные на выполнение статей 4 и 12 Рамочной конвенции ООН об изменении климата и статьи 7 Киотского протокола. Киев, 2009 236 с.
- 16. Ходаков В. Е., Жарикова М. В. Лесные пожары: методы исследования. Херсон: Гринь Д.С., 2011. 470 с.
- 17. Хохлов В. М. Зміна погодних умов на території України в умовах зміни клімату / В. М. Хохлов, Г. О. Боровська, О. В. Уманська, М. С. Тенетко // Український гідрометеорологічний журнал. 2016. № 17. С. 31-37.
- 18. Хохлов В. М. Просторово-часовий розподіл засух на території України в умовах зміни клімату / В. М. Хохлов // Український гідрометеорологічний журнал. 2011. № 8. С. 38-43

- 19. Шестое национальное сообщение Украины по вопросам изменения климата подготовленное на выполнение статей 4 и 12 Рамочной конвенции ООН об изменении климата и статьи 7 Киотского протокола. Киев, 2012. 342 с.
- 20. Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5 [Електронний ресурс]: Approved Summary for Policymakers— Режим доступу: http://www.climate2013.org/spm.
- 21. Krakovska S. ThebestensemblesofRCMsforclimatechangeprojectionsinUkraine / S. Krakovska, N. Gnatiuk, L. Palamarchuk, I. Shedemenko // EGU GeneralAssembly 2013 : зб. тез. між. наук. конф. Відень, 2013. Том 15. № EGU2013-889-1.
- 22. Lyalko, V.I., Apostolov, A.A., Elistratova, L.A., Romanciuc, I.F., Zakharchuk, I.V. (2023). Desertification Intensity Assessment Within the Ukraine Ecosystems Under the Conditions of Climate Change on the Basis of Remote Sensing Data. In: Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A. (eds) Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-19059-9 2.

Chapter 3, Annex 2

- 1. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
- 2. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 3. Отчетный топливно-энергетический баланс за 1990 г.: Форма 1-ТЭБ. Т.2. М: Госкомстат СССР, 1991. Архивный № 104 Госкомстата УССР.
- 4. Разработка методики расчёта и проведения оценки выбросов метана угольных шахт: Отчёт о научно-исследовательской работе. МакНИИ. 2012.
- 5. Разработка методики расчёта и прогнозирования объёмов выбросов парниковых газов на металлургических предприятиях Украины: Отчёт о научно-исследовательской работе (заключительный) / [Сталинский Д.В., Ботштейн В.А., Мантула В.Д. и др.]. ГП «УкрНТЦ «Энергосталь». Киев, 2013. 242 с.
- 6. Разработка методики расчёта и определения выбросов парниковых газов в отдельных категориях химической промышленности с построением определённого временного ряда: Отчёт о научно-исследовательской работе (заключительный) / [Гоженко А.И., Мальгота А.А., Тимофеева С.В. и др.]; под рук. А.И. Гоженка. Государственное предприятие «Украинский НИИ медицины транспорта» МОЗ Украины. Одесса, 2013. 210 с.
 - 7. Керівництво з проектування вентиляції вугільних шахт. -Київ, 1994. -311 с.
- 8. Triplett J., Filippov A., Paisarenko A. Inventory of methane emissions from coal mines in Ukraine: 1990-2001. Partnership for Energy and Environmental Reform, 2002.
- 9. ГОСТ 22667-82. Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
 - 10. ГОСТ 2939-63. Газы. Условия для определения объема.
- 11. Calculations of greenhouse gas emissions from coal combustion in thermal power plants of Ukraine for 1990 2015: Technical Assistance Report on research work (final) / [M. Chernyavskyi, I. Volchyn, D. Bondzik, T. Monastiryova, O. Moiseenko and etc.]; by head of M. Chernyavskyi. Coal Energy Technology Institute of NASU. Kiev, 2017. 56 pp.
- 12. Chernyavskiy M. Modern problems of fuel supply and fuel consumption at TPPs in Ukraine // Energy technologies and Resource Saving. 2015. №3. P. 5-19.
- 13. Предложения об оценке утечек природного газа в газовой промышленности Украины за подписью Костюковского Б. А., научного директора Бюро комплексного анализа и прогнозов, кандидата технических наук, старшего научного сотрудника. Письмо Бюро комплексного анализа и прогнозов от $20.03.2014 \, \mathbb{N} \, 1/1/2$.
- 14. Отчет о научно-исследовательской работе "Подготовка предложений и рекомендаций по учёту выбросов и поглощений парниковых газов на территориях с особенным статусом (4 административные единицы) по секторам МГЕИК" (конфиденциально).

- 15. Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of motor fuels in the transport sector: Clima East project report. Tim Murrells, Sabino Del Vento, Ross Hunter, Alexey Klimenko, Bogdan Kochirko / Ricardo Energy & Environment (United Kingdom), State Enterprise State Road Transport Research Institute (Ukraine), MASMA (Ukraine), 54 pp.
- 16. Статистичний щорічник України за 2014 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України , 2015. 586 с. Режим доступу: http://www.ukrstat.gov.ua.
- 17. . Статистичний щорічник України за 2007 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2008. 572 с. Режим доступу: http://www.ukrstat.gov.ua.
- 18. . Статистичний щорічник України за 2008 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2009. 567 с. Режим доступу: http://www.ukrstat.gov.ua.
- 19. . Статистичний щорічник України за 2009 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2010. 567 с. Режим доступу: http://www.ukrstat.gov.ua.
- 20. . Статистичний щорічник України за 2010 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2011. 560 с. Режим доступу: http://www.ukrstat.gov.ua.
- 21. . Статистичний щорічник України за 2011 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2012. 559 с. Режим доступу: http://www.ukrstat.gov.ua.
- 22. . Статистичний щорічник України за 2012 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2013. 552 с. Режим доступу: http://www.ukrstat.gov.ua.
- 23. . Статистичний щорічник України за 2013 рік [Електроні джерела] / під ред. О.Г. Осауленко. Київ: Державна служба статистики України, 2014. 533 с. Режим доступу: http://www.ukrstat.gov.ua.
- 24. Статистичний щорічник України за 2015 рік [Електроні джерела] / під ред. І.М. Жук.— Київ: Державна служба статистики України, 2016. 575 с. Режим доступу: http://www.ukrstat.gov.ua.
- 25. Статистичний щорічник України за 2016 рік [Електроні джерела] / під ред. І.М. Жук.— Київ: Державна служба статистики України, 2017. 579 с. Режим доступу: http://www.ukrstat.gov.ua.
- 26. . Статистичний щорічник України за 2017 рік [Електроні джерела] / під ред. І.Є. Вернер.— Київ: Державна служба статистики України, 2017. 541 с. Режим доступу: http://www.ukrstat.gov.ua.
- 27. Статистичний щорічник України за 2018 рік [Електроні джерела] / під ред. І.Є. Вернер.— Київ: Державна служба статистики України, 2018. 482 с. Режим доступу: http://www.ukrstat.gov.ua
- 28. Статистичний щорічник України за 2019 рік [Електроні джерела] / під ред. І.Є. Вернер.— Київ: Державна служба статистики України, 2019. 465 с. Режим доступу: http://www.ukrstat.gov.ua
- 29. Статистичний щорічник України за 2020 рік [Електроні джерела] / під ред. І.Є. Вернер.— Київ: Державна служба статистики України, 2020. 454 с. Режим доступу: http://www.ukrstat.gov.ua

Chapter 4, Annex 3.2

1. 1. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

- 2. Звіт про виробництво та реалізацію промислової продукції (Форма № 1П НПП). Державна служба статистики України. Київ. 2022р.
- 3. Inventory of U.S. Greenhouse Emissions and Sinks: 1990-2003. Washington, DC. 2005.
- 4. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. 2000 p.
 - 5. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.
 - 6. EMEP/EEA emission inventory guidebook 2019. Guidebook 2019.
- 7. Розробка методики розрахунку та визначення викидів парникових газів в окремих категоріях хімічної промислвості із побудовою визначеного часового ряду: Звіт з науководослідної роботи(заключний) / [Гоженко А.І., Мальгота А.А., Тимофеєва С.В. и др.]; під кер. А.І. Гоженка. Державне підприємство «Українский НДІ медицини транспорту» МОЗ України. Одеса, 2013. 210 с.
- 8. Звіт з науково-дослідної роботи «Розробка методики розрахунку та визначення викидів вуглекислого газу при використанні вапняку і доломіту». УкрДНTЦ «Энергосталь». м. Харків. 2012 р.
- 9. Звіт з науково-дослідної роботи «Розроблення методичних рекомендацій щодо визначення коефіцієнтів викидів шляхом уточнення даних про склад відновлювачів, які використовуються при виробництві феросплавів, а також змісту вуглецю в руді, шлакоутворюючих матеріалах і відходах». ДП «Державна екологічна академія післядипломної освіти та управління». м. Київ. 2013 р.
- 10. Розробка методики розрахунку та прогнозування обсягів викидів парникових газів на металургійних підприємствах України: Звіт з науково-дослідної роботи (заключний) / [Сталінский Д.В., Ботштейн В.А., Мантула В.Д. и др.]. УкрДНТЦ «Энергосталь. Київ, 2013. 242 с.
- 11. Report of the individual review of the annual submission of Ukraine submitted in 2013. FCCC/ARR/2013/UKR. 28 November 2013.
- 12. Звіт з науково-дослідної роботи «Розробка методики та визначення викидів гідрофторвуглеців, перфторвуглеців та гексафториду сірки».- Державного підприємства «Черкаський державний науково-дослідний інститут техніко-економічної інформації в хімічній промисловості» (ДП «Черкаський НДІТЕХІМ»). Черкаси. 2012 р.
- 13. Звіт з науково-дослідної роботи «розробка методики розрахунку та визначення викидів вуглекислого газу при виробництві чавуну, сталі та феросплавів». УкрДНТЦ «Энергосталь». м. Харків. 2012 р.
- 14. Звіт з науково-дослідної роботи «Розробка методики розрахунку та визначення викидів парникових газів при використанні фарб і лаків» / Якубовський В. В. [та ін.]. УДК 504.3.054; 504.3.06, № держреєстрації 0113U00464. Київ, 2013. 141 с.
- 15. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. Ленинград; Гидрометеоиздат, 1986.
- 16. Статистичний щорічник України за 2008 рік. //Під ред. О.Г. Осауленка Київ: Державний комітет статистики України, 2009. 571 с.
- 17. Национальный доклад о кадастре антропогенных выбросов из источников и абсорбции поглотителями парниковых газов в Белоруссии для 2003 г. 2005г. Минск.
- 18. Звіт з науково-дослідної роботи: «Розроблення методичних рекомендацій щодо визначення показників використання закису азоту в медичних цілях».- Державне підприємство «Українский НДІ медицини транспорту» МОЗ України.
- 19. Звіт з науково-дослідної роботи " Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом (4 адміністративні одиниці) по секторам ІРСС" (конфіденційно).
- 20. Звіт про використання та запаси палива (Форма № 4 МТП). Державна служба статистики України. Київ. 2016 р.
 - 21. Questionnaries IEA. International Energy Agency (IEA) 2016.
- 22. Обсяги експорту та імпорту товарів. Державна служба статистики України. Київ. 2022 р.

- 23. Cherkassy NIITECHIM expert assessment for life time of the domestic refrigeration equipment. Державне підприємство «Черкаський державний науково-дослідний інститут техніко-економічної інформації в хімічній промисловості». Черкаси. 2017 р.
- 24. Індекси промислової продукції за видами діяльності та основними промисловими групами (ОПГ). Державна служба статистики України. Київ. 2022 р.

Chapter 5

- 1. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan (https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html).
- 2. Звіт за результатами виконання Етапу 2 "Підготовка вхідної інформації для проведення інвентаризації ПГ, проведення розрахунків із подальшим аналізом отриманих результатів та їх вплив на рівень невизначеності, а також підготовка пропозицій та рекомендацій щодо урахування викидів і поглинань ПГ на територіях із особливим статусом за секторами ІРСС" в рамках підготовки науково-дослідної роботи: "Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом" (confidential) / [В.В. Слівінська, В.В. Ляшенко, І.М. Онопчук та ін.]. Київ, 2016. 154 с.
- 3. Підпала Т.В. Скотарство і технологія виробництва молока і яловичини: навч. посібник / Т.В. Підпала. Миколаїв: видавничий відділ МДАУ, 2007. 369 с.
- 4. Костенко В.І. Технологія виробництва молока і яловичини. Практикум: навч. посібник / В.І. Костенко. К.: Центр учбової літератури, 2013. 400 с.
- 5. Угнівенко А.М. Спеціалізоване м'ясне скотарство: навч. видання / А.М. Угнівенко, В.І. Костенко, Ю.І. Чернявський. К.: Вища освіта, 2006. 303 с.
- 6. Вівчарство України: монографія / [В.М. Іовенко, П.І. Польська, О.Г. Антонець та ін.]; за ред. акад. УААН В.П. Бурката. Нац. наук. селекц.-генет. центр з вівчарства. К.: Аграрна наука, 2006.-614 с.
- 7. Штомпель М.В. Технологія виробництва продукції вівчарства: навч. видання / М.В. Штомпель, Б.О. Вовченко. К.: Вища освіта, 2005. 343 с.
- 8. Основи тваринництва і ветеринарної медицини: монография / [А.І. Вертійчук, М.І. Маценко, І.Л. Плуженко та ін.]; за ред. А.І. Вертійчука. К.: Урожай, 2004. 654 с.
- 9. Відомчі норми технологічного проектування. Вівчарські та козівничі підприємства. ВНТП–АПК–03.05. Міністерство аграрної політики України. К., 2005 87 с.
- 10. Statistical yearbook: Animal Production of Ukraine (http://www.ukrstat.gov.ua/druk/publicat/Arhivu/07/Archtvarzb.htm).
- 11. Відомчі норми технологічного проектування. Скотарські підприємства (комплекси, ферми, малі ферми). ВНТП–АПК–01.05. Міністерство аграрної політики України. К., 2005 111 с.
- 12. Розробка методики розрахунку та визначення викидів метану та закису азоту від прибирання, зберігання та використання гною тварин та птиці: Заключний звіт про виконання ІІ (другого) етапу науково-дослідної роботи. ІТІ "Біотехніка" НААН Одеса, 2013. 227 с.
- 13. Statistical bulletin: The status of livestock in Ukraine (http://www.ukrstat.gov.ua/druk/publicat/Arhiv_u/07/Arch_st_bl.htm).
- 14. Відомчі норми технологічного проектування. Свинарські підприємства (комплекси, ферми, малі ферми). ВНТП–АПК–02.05. Міністерство аграрної політики України. К., 2005 98 с.
- 15. Відомчі норми технологічного проектування. Підприємства птахівництва. ВНТП– АПК–04.05. Міністерство аграрної політики України. К., 2005 90 с.
- 16. Відомчі норми технологічного проектування. Системи видалення, обробки, підготовки та використання гною. ВНТП-АПК-09.06. Міністерство аграрної політики України. К., 2006-100 с.
- 17. Довідник по удобренню сільськогосподарських культур / [П.О. Дмитренко, М.Л. Колобова, Б.С. Носко та ін.]; за ред. П.О. Дмитренка. 4-е вид., перероб. і доп. К.: Урожай, 1987. 208 с.

- 18. Типовые рационы для крупного рогатого скота, свиней и овец по зонам страны М.: Колос, 1971. 487 с.
- 19. Агрохімія / [І.М. Карасюк, О.М. Геркіял, Г.М. Господаренко та ін.]; за ред. проф. І.М. Карасюка. К.: Вища школа, 1995.-471 с.
- 20. Господаренко Г.М. Агрохімія: підручник / Г.М. Господаренко. К.: Аграрна освіта, 2013.-406 с.
- 21. Мороз В.А. Овцеводство и козоводство / В.А. Мороз. Ставрополь: Ставропольское кн. изд-во, $2002.-453~\mathrm{c}.$
- 22. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 23. Розробка методики розрахунку та визначення викидів закису азоту від сільськогосподарських грунтів: Заключний звіт про виконання ІІ (другого) етапу науководослідної роботи. ІТІ «Біотехніка» НААН Одеса, 2013. 169 с.
- 24. Statistical bulletin: The application of synthetic and organic fertilizers for harvest of agricultural crops (http://www.ukrstat.gov.ua/druk/publicat/Arhiv u/07/Arch mod bl.htm).
- 25. Левин Ф.И. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции / Ф.И. Левин // Агрохимия. − 1977. − №8. − С. 36-42.
- 26. Statistical bulletin: The area, gross harvesting and yields of crops, fruits, berries and grapes (http://www.ukrstat.gov.ua/druk/publicat/Arhiv u/07/Arch zy bl.htm).
- 27. Луговодство и пастбищное хозяйство / [И.В. Ларин, А.Ф. Иванов, П.П. Бегучев и др.] 2-е изд., перераб. и доп. Л.: Агропромиздат. Ленингр. отд-ние, 1990. 600 с.
- 28. Атлас почв Украинской ССР / [Н.М. Бреус, В.Л. Дусановский, В.А. Джамаль и др.]; под ред. Н.К. Крупского, Н.И. Полупана. К.: Урожай, 1979. 156 с.
- 29. Довідник з агрохімічного та агроєкологічного стану ґрунтів України / За редакцією Б.С. Носка, Б.С. Прістера, М.В. Лободи. К.: Урожай, 1994. 332 с.
- 30. Левин Ф.И. Вопросы окультуривания, деградации и повышения плодородия пахотных почв / Ф.И. Левин. М.: МГУ, 1983. 93 с.
- 31. Рослинництво: Підручник / О.І. Зінченко, В.Н. Салатенко, М.А. Білоножко; за ред. О.І. Зінченка. К.: Аграрна освіта, 2001. 591 с.
- 32. Лихочвор В.В. Рослинництво. Технології вирощування сільськогосподарських культур / В.В. Лихочвор. Львів: НВФ "Українські технології", 2002. 800 с.
- 33. Екологічні основи використання добрив / [Е.Г. Дегодюк, В.Т. Мамонтов, В.І. Гамалей та ін.]; за ред. Е.Г. Дегодюка. К.: Урожай, 1988. 232 с.
- 34. Методичні рекомендації щодо проведення розрахунків витрат кормів худобі та птиці у господарствах усіх категорій. Затверджено Наказом Державного комітету статистики України від 24.01.2008 №18.
- 35. Методика проведення розрахунків основних статистичних показників виробництва продукції тваринництва. Затверджено Наказом Державної служби статистики України від 22.11.2016 №220 (http://www.ukrstat.gov.ua/metod_polog/metod_doc/2016/220/m_prosp_vpt.zip).
- 36. IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland (https://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html).
- 37. Statistical reported data: Groupings of enterprises by number of agricultural animals as of January 01 (http://surl.li/brsqf).
- 38. Statistical reported data: Number of agricultural animals as of January 01 (https://ukr-stat.gov.ua/).
 - 39. Statistical reported data: Production of animal products (https://ukrstat.gov.ua/)

Chapter 6, 11, Annex 3.3

- 1. 2006 IPCC Guidelines for National Greenhouse Gas Inventories/ Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
- 2. Інструкція з заповнення державної статистичної звітності з кількісного обліку земель (форми NN 6-зем, 6а-зем, 6б-зем, 2-зем): затверджено наказом Держкомстату від 05.11.1998 № 377.
- 3. Лісовий кодекс України: Постанова ВР № 3853-XII від 21.01.94, ВВР, 1994, № 17, ст.100.
- 4. Звіт про науково-дослідну роботу "Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом" (confidential).
- 5. Ходорчук В.Я. Визначення змін запасів вуглецю для категорії землекористування «Ліси» у резервуарах біомаси (живої і відмерлої), підстилки та ґрунтів у розрізі природно-кліматичних зон: Звіт про науково-дослідну роботу / ІТІ «Біотехніка», Київ, 2012.
- 6. Кодекс України про адміністративні правопорушення. Введено в дію Постановою Верховної Ради Української РСР № 8074-10 від 07.12.84, ВВР 1984, додаток до № 51, ст.1123.
- 7. Harmonized World Soil Database v 1.2, IIASA. URL: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html
- 8. EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories. EEA Technical report No 12/2013.
- 9. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands / Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland, 2014.
- 10. «Розроблення методик поглинання парникових газів»: Звіт про науково-дослідну роботу/ Букша І.Ф. та ін.; ТОВ «Ліс-Інформ», Харків. 2007 р.
- 11. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol/ Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland, 2014.
- 12. Букша І.Ф., Пастернак В.П. Інвентаризація та моніторинг парникових газів у лісовому господарстві. Харків: XHAY. 2005. 125 с.
- 13. Інвентаризація парникових газів у секторі землекористування та лісового господарства / Букша І.Ф., Бутрим О.В., Пастернак В.П. Харків: ХНАУ, 2008. 232 с.
- 14. Запаси та динаміка відмерлої деревини у лісах північного сходу України / В.П. Пастернак, В.Ю. Яроцький. Науковий вісник Національного університету біоресурсів і природокористування України. 2010. Вип. 152 Ч.2. С.93-100.
- 15. Букша І.Ф. Запаси органічного вуглецю у ґрунтах та підстилці на ділянках моніторингу лісів / І.Ф. Букша, С.П. Распопіна, В.П. Пастернак. Лісівництво та агролісомеліорація. 2012. Вип. 120. С.106-112.
- 16. Тараріко О.Г., Лобас М.Г. Нормативи ґрунтозахисних контурно-меліоративних систем землеробства. К.: Урожай, 1998. 158 с.
- 17. Тараріко Ю.О. Розробка грунтозахисних ресурсо- та енергозберігаючих систем ведення сільськогосподарського виробництва з використанням комп'ютерного програмного комплексу. Київ, Нора-Друк, 2002. 122 с.
- 18. Якість грунтів та сучасні стратегії удобрення / За ред.. Д. Мельничука, Дж. Гофман, М. Городнього. К.: Аристей, 2004. 488 с.
- 19. Красєха Є.Н., Оніщук В.П. Деградація чорноземів південного заходу України. Матер. Наук. Конф. «Стан земельних ресурсів в Україні: проблеми, шляхи вирішення». Київ, 2001. С. 60 -63.
- 20. Пономарева В.В., Плотникова Т.А. Методические указания по определению содержания и состава гумуса в почвах (минеральных и торфяных). Л.: Наука, 1975. 106 с.
- 21. А.М Лыков. К методике расчетного определения гумусового баланса почвы в интенсивном земледелии. Известия ТСХА, вып. 6, 1979 г. С. 14-19.
- 22. Рекомендации для исследования баланса и трансформации органического вещества при сельскохозяйственном использовании и интенсивном окультуривании почв / под ред. Шишов Л.Л., М., 1984.

- 23. Ф.И. Левин. Вопросы окультуривания, деградации и повышения плодородия пахотных почв., Москва: МГУ, 1983, 95 с.
- 24. Чесняк Г.Я. Закономірності змін вмісту гумусу і шляхи забезпечення його бездефіцитного балансу в чорноземах типових при інтенсифікації землеробства. Агрохімія і грунтознавство: Респ. міжвід. зб.. УНДІЗ. Київ, 1982. Вип. 43. С. 18-24.
- 25. И.Г.Захарченко, Г.К.Медведь. Баланс азота, фосфора и калия в зерно-свекловичном севообороте. Агрохимия, 1968, №5. С. 73-81.
- 26. Б.Н. Макаров. Потери азота из почвы в газообразной форме. В сб.: «Баланс азота в дерново-подзолистых почвах». М., 1966.
- 27. Oksana Butrym. Application of IPCC Good Practice Guidance to LULUCF Sector of Ukraine lessons learned. Technical meeting on specific forestry issues related to reporting and accounting under the Kyoto Protocol, Ispra, November 27-29, 2006.
- 28. Oksana Butrym. Application of IPCC Good Practice Guidance to LULUCF Sector of Ukraine lessons learned. Current State and Future Development of GHG Inventory System and GHG Registry in Russia, Moscow, 2006.
- 29. Бутрим О.В. Методика оцінки викидів і поглинання парникових газів при землекористуванні. Вісник аграрної науки. 2008. № 11. С. 51-54.
- 30. Ф.И. Левин. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции. Агрохимия, №8, 1977г. С. 36-42.
- 31. Екологічні основи використання добрив/ Е.Г. Дегодюк, В.Т. Мамонтов, В.І. Гамалей та ін.; За ред. Е.Г. Дегодюка. К.: Урожай, 1988. 232 с.
- 32. Прістер Б.С., Носко Б.С. Довідник з агрохімічного та агроекологічного стану грунтів. Київ, Урожай, 1994. 336 с.
- 33. Climate Damage Caused by Russia's War in Ukraine 24 February 2022 23 February 2023. Lennard de Klerk, Mykola Shlapak, Anatolii Shmurak, Oleksii Mykhalenko, Olga Gassanzade, Andriaan Korthuis, Yevheniia Zasiadko. 2023. https://climatefocus.com/wp-content/up-loads/2022/11/clim-damage-by-russia-war-12months.pdf
- 34. Zibtsev, S., Pasternak, V., Vasylyshyn, V., Myroniuk, V., Sydorenko S., & Soshenskyi, O. (2024). Assessment of carbon emissions due to landscape fires in Ukraine during war in 2022. Ukrainian Journal of Forest and Wood Science, 15(1), 126-139.doi: 10.31548/forest/1.2024.126.

Chapter 7, Annex 3.4

- 1. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: 5 Volumes / [TFI IPCC]; edited by H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe Hayama: IGES, 2006. Vol. 5: Waste / [R. Pipatti and S.M. Manso Vieira]; edited by D. Kruger, K. Parikh. 2006. ISBN 4887880324.
- 2. Дослідження газоутворення на найбільш великих полігонах ТПВ та перехід на трьохкомпонентну національну модель розрахунку викидів ПГ від звалищ ТПВ в Україні [Текст]: звіт про НДР (заключ.) / Інститут технічної теплофізики НАН України; кер. Матвєєв Ю.Б.; викон.: Клименко В.М. [та інш.]: К., 2012 82 с. Бібліогр.: 72-76. № ГР 0112U001577.
- 3. Шмарин С. Содержание биоразлагаемых компонентов в составе твердых бытовых отходов в Украине / Шмарин Сергей, Алексеевец Иван, Филозоф Роман, Ремез Наталья, Денафас Гинтарас // Экология и промышленность. 2014. №1. С. 73 77.
- 4. J. Burlakovs, M. Kriipsalu, D. Arina, F. Kaczala, S. Shmarin, G. Denafas, W. Hogland. Former Dump Sites and the Landfill Mining Perspectives in Baltic Countries and Sweden: the Status. 13th SGEM GeoConference on Science and Technologies In Geology, Exploration and Mining, www.sgem.org, SGEM2013 Conference Proceedings, ISBN 978-954-91818-7-6 / ISSN 1314-2704, June 16-22, 2013, Vol. 1, 485 492 pp.
- 5. World Population Prospects: The 2004 Revision and World Urbanization / [DESA of UN Secretariat]. New York: UN, 2005. 324 p.
- 6. Бабаянц Р.А. Методика и результаты исследования городских отбросов / Бабаянц Р.А. –[2-е изд.]. М-Л.: Изд. Мин. Ком. Хоз, РСФСР, 1950. 116 с.

- 7. Санитарная очистка городов: сбор. удаление, обезвреживание и использование твердых отходов / [З.А. Арзамасова, З.И. Александровская, Н.Ф. Гуляев и др.]; под. ред. к.т.н. Н.Ф. Гуляева. М.: Изд. Литературы по строительству, 1966. 220 с.
- 8. Санитарная очистка городов от твердых бытовых отходов / [З.И. Александровская, А.М. Кузьменкова, Н.Ф. Гуляев, Я.Н. Крхамбаров]; под. ред. З.И. Александровской. М.: Стройиздат, 1977. 320 с.
- 9. Санитарная очистка и уборка населенных мест: справочник / под. ред. А.Н. Мирного. М.: Стройиздат, 1985. 245 с.
- 10. Санитарная очистка и уборка населенных мест: справочник / под. ред. А.Н. Мирного. [2-е изд. перераб и доп.]. М.: Стройиздат, 1990. 413 с.
- 11. Рекомендованные нормы накопления твердых бытовых отходов для населенных пунктов Украины: КТМ 204 Украины 012-95. [действующие от 01-01-1996]. Х.: Укркоммун- НДИпрогресс, 1995. 5 с. (Руководящий технический материал).
- 12. Municipal Solid Waste Landfills. Basic design provisions (2005). DBN B.2.4-2-2005. Available at: https://www.minregion.gov.ua/wp-content/uploads/2017/03/DBN-V.2.4-2-2005.pdf. (In Ukrainian)
- 13. DSTU 4462.3.01:2006 "Nature protection. Waste management. Procedure for operations" (In Ukrainian)
- 14. Supporting Investments In Sustainable Municipal Waste Management And Recycling In Ukraine. Draft MSW Strategy. European Bank for Reconstruction and Development. March, 2017. Available at: http://publications.chamber.ua/2017/F_B/National%20Solid%20Domestic%20 Wastes%20Strategy%20Ukraine%20March%202017.pdf
- 15. Municipal Solid Waste in Ukraine: Development potential. Scenarios for developing the municipal solid waste management sector. Prepared by the International Finance Corporation (IFC, World Bank Group). Available at: <a href="https://www.ifc.org/wps/wcm/connect/24f11a48-d7a0-4970-9bd1-37ff9244f60e/21.+Municipal+Solid+Waste+in+Ukraine+DEVELOPMENT+POTEN-TIAL+Scenarios+for+developing+the+municipal+solid+waste+management+sector+.pdf?MOD=AJPERES&CVID=INpD-tO
- 16. Information Collection and Verification Survey for Municipal Solid Waste Management in Ukraine. Final Report. Japan International Agency (JICA), 2018. Available at: https://openjicare-port.jica.go.jp/pdf/12319893.pdf
- 17. Шмарин С. Исследование содержания биоразлагаемого углерода в пищевых отходах Украины в городе Борисполе / Шмарин Сергей // Научно-практический журнал «Экологические науки». -2015. -№ 3-4 (10-11). C. 296-306.
- 18. Beck-Friis, B.G. (2001). *Emissions of ammonia, nitrous oxide and methane during composting of organic household waste*. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis).
- 19. Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). *Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser.* IFEU Institut Öko-Institut e.V. 77 p.
- 20. Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication).
- 21. Petersen, S.O., Lind, A.M. and Sommer, S.G. (1998). 'Nitrogen and organic matter losses during storage of cattle and pig manure', J. Agric. Sci., 130: 69-79.
- 22. Дослідження викидів метану та закису азоту від поводження із стічними водами та розробка методики визначення національних коефіцієнтів викидів [Текст]: звіт про НДР (заключ.) / Інститут технічної теплофізики НАН України; кер. Матвєєв Ю.Б.; викон.: Гелетуха Г.Г. [та інш.]: К., 2012 91 с. Бібліогр.: с. 84-85. № ГР 0112U001578.
- 23. Sewage. External networks and constructions. Basic principles designings. Change № 1. (2018). DBN B.2.5-75 2013. Ukrainian State Research and Project Institute. Kyiv: "UkrN-DIVodokanalproekt". (In Ukrainian).
- 24. The Order of Ministry of Environmental Protection and Natural Resources of Ukraine "On determining of the population equivalent of a settlement and criteria for determining vulnerable

- and less vulnerable zones" of January 14th, 2019 No. 6. Available at: https://za-kon.rada.gov.ua/laws/show/z0125-19#Text. (In Ukrainian)
- 25. Information and analytical information on the state of water resources of the state and the peculiarities of agricultural production in the context of climate change. Available at: http://naas.gov.ua/upload/iblock/78a/Information%20reference%2 04.05.2020-converted.pdf (In Ukrainian)
- 26. Approved consolidated baseline and monitoring methodology ACM0014 "Mitigation of greenhouse gas emissions from treatment of industrial wastewater" (Version 04.1.0, valid from 13 Aug 10)
- 27. Укрупненные нормы водопотребления и водоотведения для различных отраслей промышленности / Совет Эконом. Взаимопомощи, ВНИИ ВОДГЕО Госстроя СССР. М.: Стройиздат, 1978.-590 с.
- 28. Водоотведение и очистка сточных вод / Ю.В. Воронов, С.В. Яковлев // Учебник для вузов: М.: Изд. Ассоциации строительных вузов, 2006 704 с.
- 29. On the approval of Hygienic water quality standards of water bodies to meet the drinking, household and other needs of the population. The Ministry of Health of Ukraine. The Order of the Ministry of Health of Ukraine of May 02.2022 №721. Available at: https://za-kon.rada.gov.ua/laws/show/z0524-22#Text. (In Ukrainian)
- 30. Звіт про науково-дослідну роботу "Підготовка пропозицій і рекомендацій щодо урахування викидів і поглинання парникових газів на територіях з особливим статусом" (confidential).

ANNEX 1 KEY CATEGORIES

Identification of key categories makes possible to identify the categories that require more detailed study, which allows to comprehensively use available resources. Their determination was performed using the methods described in the 2006 IPCC Guidelines. Detailed categories specialization, that reported in Table A1.1, used for key categories estimation according to 2006 IPCC Guidelines methodology.

Results of the analysis of key categories in base year and last reported year are shown in Tables A1.2 – A1.7. The analysis was based on Tier 1 approach and included emission analysis for base year (Tables A1.2 – A1.3), and analysis of emission trends for report year (Tables A1.4 – A1.7). It should be noted that the emission level and trend analysis was performed in two steps. At the first step of the analysis, key categories were defined not taking into account the LULUCF sector in the general list of categories. The second step took into account categories of the LULUCF sector. After that, the categories that were included into key categories at the first step but were "pushed out" in the second step were included into the final list of key categories.

Table A1.1. Category specialization for key categories estimation

	IPCC source category	Gas
1.A.1	Fuel combustion - Energy industries - Liquid fuels	CO ₂
1.A.1	Fuel combustion - Energy industries - Liquid fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Liquid fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Solid fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Solid fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Solid fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Gaseous fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	CO_2
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	CH ₄
1.A.1	Fuel combustion - Energy industries - Other fossil fuels	N ₂ O
1.A.1	Fuel combustion - Energy industries - Peat	CO_2
1.A.1	Fuel combustion - Energy industries - Peat	CH ₄
1.A.1	Fuel combustion - Energy industries - Peat	N ₂ O
1.A.1	Fuel combustion - Energy industries - Biomass	CH ₄
1.A.1	Fuel combustion - Energy industries - Biomass	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	CO_2
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Liquid fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	CO_2
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Solid fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	CO_2
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Gaseous fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	CO_2
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Other fossil fuels	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	CO ₂
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Peat	N ₂ O
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Biomass	CH ₄
1.A.2	Fuel combustion - Manufacturing Industries and Construction - Biomass	N ₂ O
1.A.3.a	Civil Aviation	CO ₂
1.A.3.a	Civil Aviation	CH ₄
1.A.3.a	Civil Aviation	N ₂ O
1.A.3.b	Road Transportation	CO_2
1.A.3.b	Road Transportation	CH ₄
1.A.3.b	Road Transportation	N ₂ O

	IPCC source category	Gas
1.A.3.c	Railway Transport	CO ₂
1.A.3.c	Railway Transport	CH4
1.A.3.c	Railway Transport	N ₂ O
1.A.3.d	Water transport - Liquid fuels	CO_2
1.A.3.d	Water transport - Liquid fuels	CH4
1.A.3.d	Water transport - Liquid fuels	N ₂ O
1.A.3.e	Other types of transport	CO ₂
1.A.3.e	Other types of transport	CH ₄
1.A.3.e	Other types of transport	N ₂ O
1.A.4	Other sectors - Liquid fuels	CO_2
1.A.4	Other sectors - Liquid fuels	CH ₄
1.A.4	Other sectors - Liquid fuels	N ₂ O
1.A.4	Other sectors - Solid fuels	CO ₂
1.A.4	Other sectors - Solid fuels	CH ₄
1.A.4	Other sectors - Solid fuels	N ₂ O
1.A.4	Other sectors - Gaseous fuels	CO ₂
1.A.4	Other sectors - Gaseous fuels	CH ₄
1.A.4	Other sectors - Gaseous fuels	N ₂ O
1.A.4	Other sectors - Other Fossil Fuels	CO ₂
1.A.4	Other sectors - Other Fossil Fuels	CH ₄
1.A.4	Other sectors - Other Fossil Fuels	N ₂ O
1.A.4	Other Sectors - Peat	CO ₂
1.A.4	Other Sectors - Peat	CH ₄
1.A.4	Other Sectors - Peat	N ₂ O
1.A.4	Other Sectors - Biomass	CH ₄
1.A.4 1.A.5	Other Sectors - Biomass	N ₂ O CO ₂
1.A.5	Unspecified categories - Liquid fuels Unspecified categories - Liquid fuels	CH ₄
1.A.5	Unspecified categories - Liquid fuels Unspecified categories - Liquid fuels	N ₂ O
1.A.3	Fugitive emissions from Solid fuels	CO ₂
1.B.1	Fugitive emissions from Solid fuels	CH ₄
1.B.2.a	Fugitive emissions from Oil and natural gas - Oil	CO ₂
1.B.2.a	Fugitive emissions from Oil and natural gas - Oil	CH ₄
1.B.2.b	Fugitive emissions from Oil and natural gas - Natural gas	CO ₂
1.B.2.b	Fugitive emissions from Oil and natural gas - Natural gas	CH ₄
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	CO ₂
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	CH ₄
1.B.2.c	Fugitive emissions from Oil and natural gas - Ventilation and flaring	N ₂ O
2.A.1	Cement Production	CO ₂
2.A.2	Lime Production	CO ₂
2.A.3	Glass Production	CO ₂
2.A.4	Other processes using carbonates	CO ₂
2.B.1	Ammonia Production	CO ₂
2.B.2	Nitric Acid Production	N ₂ O
2.B.3	Adipic Acid Production	N ₂ O
2.B.4	Production of Caprolactam, Glyoxal, and Glyoxylic Acid	N ₂ O
2.B.5	Carbide Production	CO ₂
2.B.5	Carbide Production	CH4
2.B.6	Titanium Dioxide Production	CO_2
2.B.7	Soda Ash Production	CO ₂
2.B.8	Petrochemical and Carbon Black Production	CO ₂
2.B.8	Petrochemical and Carbon Black Production	CH4
2.C.1	Iron and Steel production	CO ₂
2.C.1	Iron and Steel production	CH ₄
2.C.2	Ferroalloys Production	CO_2
2.C.2	Ferroalloys Production	CH ₄
2.C.5	Lead production	CO_2
2.C.6	Zinc production	CO ₂
2.D.1	Lubricant use	CO_2

	IPCC source category	Gas
2.D.2	Paraffin Wax use	CO ₂
2.F.1	Refrigeration and Air Conditioning Systems	HFC
2.F.2	Foam Blowing Agents	HFC
2.F.3	Fire Extinguishers/Gas Fire Extinguishing Systems	HFC
2.F.4	Aerosols	HFC
2.F.5	Solvents	HFC
2.G	Other Production and Use	SF ₆
2.G	Other Production and Use	N ₂ O
3.A	Enteric fermentation	CH ₄
3.B	Manure management	CH ₄
3.B	Manure management	N ₂ O
3.C	Rice Cultivation	CH ₄
3.D.1	Direct N ₂ O emissions from managed soils	N ₂ O
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O
3.G	Liming	CO ₂
3.H	Urea Application	CO ₂
4.A.1	Forest Land remaining Forest Land	CO_2
4.A.2	Land converted to Forest Land	CO ₂
4.B.1	Cropland remaining Cropland	CO ₂
4.B.2	Land Converted to Cropland	CO ₂
4.C.1	Grassland remaining Grassland	CO ₂
4.C.2	Land Converted to Grassland	CO ₂
4.D.1.1	Peat Extraction remaining Peat Extraction	CO_2
4.D.2	Land Converted to Wetlands	CO ₂
4.E.2	Land Converted to Settlements	CO ₂
4.F.2	Land Converted to Other Land	CO ₂
4.G	Harvested Wood Products (HWP)	CO ₂
4(II)	Emissions and removals from drainage and rewetting and other management of organic and mineral soils	N ₂ O
4(III)	Direct N ₂ O emissions from nitrogen mineralization/immobilization	N ₂ O
4(V)	Biomass Burning	CH ₄
4(V)	Biomass Burning	CO ₂
4(V)	Biomass Burning	N ₂ O
5.A	Solid Waste disposal	CH ₄
5.B	Biological Treatment of Solid Waste	CH ₄
5.B	Biological Treatment of Solid Waste	N ₂ O
5.C	Incineration and open burning of waste	CO ₂
5.C	Incineration and open burning of waste	CH4
5.C	Incineration and open burning of waste	N ₂ O
5.D	Wastewater Treatment and Discharge	CH4
5.D	Wastewater Treatment and Discharge	N ₂ O

Table A1.2 Key categories analysis by level, excluding LULUCF, in 1990

IPCC source category		Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	121,545.98	0.126	0.13
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO_2	96,756.68	0.100	0.23
2.C.1 Iron and Steel Production	CO ₂	79,689.74	0.083	0.31
1.B.1 Fugitive emissions from Solid Fuels	CH4	69,354.20	0.072	0.38
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	65,039.64	0.067	0.45
1.A.3.b Road Transportation	CO_2	59,916.59	0.062	0.51
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	53,148.53	0.055	0.57
1.A.4 Other Sectors - Solid Fuels	CO_2	48,177.92	0.050	0.62
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	48,058.63	0.050	0.67
3.A Enteric Fermentation	CH4	45,231.20	0.047	0.71
1.A.3.e Other Transportation	CO_2	39,807.94	0.041	0.75
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	33,008.26	0.034	0.79
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	29,955.80	0.031	0.82
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	26,594.95	0.028	0.85
1.A.4 Other Sectors - Gaseous Fuels	CO_2	26,458.72	0.027	0.87
1.A.4 Other Sectors - Liquid Fuels	CO_2	23,334.88	0.024	0.90
2.B.1 Ammonia Production	CO ₂	9,798.96	0.010	0.91
2.A.1 Cement Production	CO ₂	9,400.94	0.010	0.92
5.A Solid Waste Disposal	CH ₄	7,661.08	0.008	0.93
5.D Wastewater Treatment and Discharge	CH4	7,359.20	0.008	0.93
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	7,215.42	0.007	0.94
2.A.2 Lime Production	CO ₂	5,121.81	0.005	0.95
2.B.2 Nitric Acid Production	N ₂ O	4,699.37	0.005	0.95
Other				1,00

Table A1.3 Key categories analysis by level, including LULUCF, in 1990

IPCC source category		Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	121,545.98	0.117	0.12
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	96,756.68	0.093	0.21
2.C.1 Iron and Steel Production	CO ₂	79,689.74	0.077	0.29
1.B.1 Fugitive emissions from Solid Fuels	CH4	69,354.20	0.067	0.35
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	65,039.64	0.063	0.42
1.A.3.b Road Transportation	CO_2	59,916.59	0.058	0.47
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	53,148.53	0.051	0.52
1.A.4 Other Sectors - Solid Fuels	CO ₂	48,177.92	0.046	0.57
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	48,058.63	0.046	0.62
3.A Enteric Fermentation	CH ₄	45,231.20	0.043	0.66
1.A.3.e Other Transportation	CO ₂	39,807.94	0.038	0.70
4.A.1 Forest Land Remaining Forest Land	CO ₂	-37,756.38	0.036	0.73
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	33,008.26	0.032	0.77
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	29,955.80	0.029	0.80
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	26,594.95	0.026	0.82
1.A.4 Other Sectors - Gaseous Fuels	CO_2	26,458.72	0.025	0.85
1.A.4 Other Sectors - Liquid Fuels	CO_2	23,334.88	0.022	0.87
4.B.1 Cropland Remaining Cropland	CO_2	-20,307.93	0.020	0.89
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO_2	12,207.91	0.012	0.90
2.B.1 Ammonia Production	CO ₂	9,798.96	0.009	0.91
2.A.1 Cement Production	CO ₂	9,400.94	0.009	0.92
5.A Solid Waste Disposal	CH4	7,661.08	0.007	0.93
5.D Wastewater Treatment and Discharge	CH ₄	7,359.20	0.007	0.93
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	7,215.42	0.007	0.94
2.A.2 Lime Production	CO ₂	5,121.81	0.005	0.94
2.B.2 Nitric Acid Production	N ₂ O	4,699.37	0.005	0.95
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	4,349.13	0.004	0.95
Other				1,00

Table A1.4. Key categories analysis by level, excluding LULUCF, in 2023

IPCC source category	Gas	Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	36,152.82	0.155	0.16
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH ₄	25,738.64	0.111	0.27
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	20,876.11	0.090	0.36
1.A.3.b Road Transportation	CO_2	19,782.36	0.085	0.44
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	18,774.79	0.081	0.52
1.A.4 Other Sectors - Gaseous Fuels	CO_2	15,562.03	0.067	0.59
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12,284.62	0.053	0.64
2.C.1 Iron and Steel Production	CO ₂	9,524.73	0.041	0.68
5.A Solid Waste Disposal	CH4	8,748.64	0.038	0.72
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	7,611.27	0.033	0.75
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	7,504.03	0.032	0.78
3.A Enteric Fermentation	CH ₄	6,681.90	0.029	0.81
1.A.3.e Other Transportation	CO ₂	5,635.96	0.024	0.84
5.D Wastewater Treatment and Discharge	CH4	5,057.61	0.022	0.86
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	4,754.70	0.020	0.88
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	3,330.17	0.014	0.89
2.A.1 Cement Production	CO ₂	3,329.95	0.014	0.91
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH ₄	2,193.85	0.009	0.92
2.F.1 Refrigeration and Air conditioning	HFC	2,142.12	0.009	0.93
2.B.2 Nitric Acid Production	N ₂ O	1,744.40	0.007	0.93
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO ₂	1,522.98	0.007	0.94
2.B.1 Ammonia Production	CO ₂	1,505.65	0.006	0.95
3.B Manure Management	CH ₄	1,436.48	0.006	0.95
Other				1,00

Table A1.5 Key categories analysis by level, including LULUCF, in 2023

IPCC source category	Gas	Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO_2	36,152.82	0.121	0.12
4.A.1 Forest Land Remaining Forest Land	CO_2	-34,903.09	0.117	0.24
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH4	25,738.64	0.086	0.32
4.B.1 Cropland Remaining Cropland	CO_2	24,874.63	0.083	0.41
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	20,876.11	0.070	0.48
1.A.3.b Road Transportation	CO_2	19,782.36	0.066	0.54
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	18,774.79	0.063	0.61
1.A.4 Other Sectors - Gaseous Fuels	CO_2	15,562.03	0.052	0.66
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12,284.62	0.041	0.70
2.C.1 Iron and Steel Production	CO ₂	9,524.73	0.032	0.73
5.A Solid Waste Disposal	CH ₄	8,748.64	0.029	0.76
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	7,611.27	0.026	0.79
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	7,504.03	0.025	0.81
3.A Enteric Fermentation	CH ₄	6,681.90	0.022	0.84
1.A.3.e Other Transportation	CO ₂	5,635.96	0.019	0.85
5.D Wastewater Treatment and Discharge	CH4	5,057.61	0.017	0.87
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	4,754.70	0.016	0.89
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	3,330.17	0.011	0.90
2.A.1 Cement Production	CO_2	3,329.95	0.011	0.91
1.B.2.a Fugitive Emissions from Oil and Natural Gas - Oil	CH4	2,193.85	0.007	0.92
2.F.1 Refrigeration and Air conditioning	HFC	2,142.12	0.007	0.92
2.B.2 Nitric Acid Production	N ₂ O	1,744.40	0.006	0.93
4.E.2 Land Converted to Settlements	CO_2	1,617.52	0.005	0.94
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO ₂	1,522.98	0.005	0.94
2.B.1 Ammonia Production	CO_2	1,505.65	0.005	0.95
4.G Harvested Wood Products	CO ₂	-1,471.06	0.005	0.95
Other				1,00

Table A1.6. Key categories analysis by trend, excluding LULUCF, in 2023

IPCC source category	Gas	Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	36152.82	0.084	0.08
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	18774.79	0.081	0.17
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	545.43	0.081	0.25
1.A.4 Other Sectors - Solid Fuels	CO ₂	853.80	0.071	0.32
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CH4	25738.64	0.066	0.38
2.C.1 Iron and Steel Production	CO_2	9524.73	0.064	0.45
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	15562.03	0.060	0.51
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	20876.11	0.056	0.56
5.A Solid Waste Disposal	CH ₄	8748.64	0.045	0.61
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	358.14	0.045	0.65
1.A.4 Other Sectors - Liquid Fuels	CO ₂	70.54	0.037	0.69
1.A.3.b Road Transportation	CO ₂	19782.36	0.035	0.73
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12284.62	0.029	0.76
3.A Enteric Fermentation	CH ₄	6681.90	0.028	0.78
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	7504.03	0.027	0.81
1.A.3.e Other Transportation	CO_2	5635.96	0.026	0.84
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	3330.17	0.022	0.86
5.D Wastewater Treatment and Discharge	CH ₄	5057.61	0.022	0.88
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	4754.70	0.020	0.90
2.F.1 Refrigeration and Air conditioning	HFC	2142.12	0.014	0.91
1.B.2.a Fugitive Emissions from Fuels - Oil and Natural Gas - Oil	CH ₄	2193.85	0.008	0.92
2.A.1 Cement Production	CO_2	3329.95	0.007	0.93
1.B.2.b Fugitive Emissions from Oil and Natural Gas - Natural Gas	CO ₂	1522.98	0.006	0.93
2.B.1 Ammonia Production	CO ₂	1505.65	0.006	0.94
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CO ₂	869.85	0.006	0.95
1.A.3.d Domestic Navigation - Liquid Fuels	CO ₂	13.72	0.005	0.95
Other				1,00

Table A1.7. Key categories analysis by trend, including LULUCF, in 2023

IPCC source category	Gas	Emissions, kt CO ₂ -eq.	Share in total emissions	Cumulative total of Col- umn D
A	В	C	D	E
4.B.1 Cropland Remaining Cropland	CO ₂	24874.63	0.210	0.21
4.A.1 Forest Land Remaining Forest Land	CO ₂	-34903.09	0.100	0.31
1.A.1 Fuel combustion - Energy Industries - Gaseous Fuels	CO ₂	20876.11	0.070	0.38
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	545.43	0.061	0.44
2.C.1 Iron and Steel Production	CO ₂	9524.73	0.061	0.50
1.A.4 Other Sectors - Solid Fuels	CO_2	853.80	0.054	0.56
1.B.1 Fugitive emissions from Solid Fuels	CH ₄	12284.62	0.038	0.59
3.D.1 Direct N ₂ O Emissions From Managed Soils	N ₂ O	18774.79	0.035	0.63
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	358.14	0.034	0.66
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Gaseous Fuels	CO ₂	7504.03	0.030	0.69
3.A Enteric Fermentation	CH4	6681.90	0.030	0.72
1.A.4 Other Sectors - Liquid Fuels	CO ₂	70.54	0.027	0.75
1.A.3.e Other Transportation	CO_2	5635.96	0.027	0.78
1.A.4 Other Sectors - Gaseous Fuels	CO ₂	15562.03	0.024	0.80
5.A Solid Waste Disposal	CH ₄	8748.64	0.022	0.83
1.B.2.b Fugitive Emissions from Fuels - Oil and Natural Gas - Natural Gas	CH ₄	25738.64	0.015	0.84
1.A.1 Fuel combustion - Energy Industries - Solid Fuels	CO ₂	36152.82	0.014	0.85
4.D.1.1 Peat Extraction Remaining Peat Extraction	CO ₂	115.87	0.014	0.87
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	7611.27	0.012	0.88
1.A.1 Fuel combustion - Energy Industries - Other Fossil Fuels	CO ₂	3330.17	0.012	0.89
4.C.1 Grassland Remaining Grassland	CO_2	78.33	0.009	0.90
5.D Wastewater Treatment and Discharge	CH ₄	5057.61	0.009	0.91
4.G Harvested Wood Products	CO_2	-1471.06	0.009	0.92
3.D.2 Indirect N ₂ O Emissions From Managed Soils	N ₂ O	4754.70	0.008	0.93
2.F.1 Refrigeration and Air conditioning	HFC	2142.12	0.008	0.94
2.B.1 Ammonia Production	CO ₂	1505.65	0.006	0.94
4.E.2 Land Converted to Settlements	CO ₂	1617.52	0.006	0.95
4.A.2 Land Converted to Forest Land	CO ₂	-1431.19	0.005	0.95
Other				1,00

ANNEX 2 METHODOLOGY FOR EMISSION ASSESSMENT IN THE ENERGY SECTOR

A2.1 The method to determine GHG emissions from stationary fuel combustion

When conducting the national inventory of GHG emissions from combustion of fossil fuels in the period of 1990-2023, the methodology of 2006 IPCC Tier 1 and Tier 2 was applied (in a few exceptional cases - of Tier 3, see below), in accordance with which the amount of a certain type of GHG emissions for a particular CRT category at burning of a specific type of fuel is estimated under expression A1:

$$B_{gfi} = FC_{fi} \bullet KB_{gfi} \tag{A1}$$

where:

The amount of emissions of a particular type of GHG (index g, $g=1 \div G$) at burning of a particular type of fuel, which corresponds to the index f, $f=1 \div F$ in the emission source category under the CRT corresponding to index i, $i=1 \div I$, (kg);

 FC_{fi} — The amount of fuel burned f in the i emission source category in accordance with the CRT (TJ);

 KB_{gfi} — The default ratio of GHG emissions or the national coefficient at combustion (kg of GHG/TJ). This factor for CO₂ takes into account carbon content in fuel and its degree of oxidation.

The total amount of emissions B_g under the i emission source category for individual types of GHGs is determined as follows:

$$\boldsymbol{B}_{gi} = \sum_{f=1}^{F} \boldsymbol{B}_{gfi} \tag{A2}$$

The total amount of emissions B_i under the i emission source category for all types of GHGs is determined as follows:

$$B_i = \sum_{g=1}^G B_{gi} \tag{A3}$$

The methodology for calculating emissions in category 1.A.3.a. "Domestic Aviation" is characterized by a number of significant peculiarities and is presented in A2.7.

The key sources of information are the fuel and energy balance (FEB) of the Ukrainian SSR for 1990 [3], statistical reporting forms No. 4-MTP "Report on fuel use and stocks" for years 1991-2020 and No. 11-MTP "Report on results of fuel, heat, and electricity consumption" for years 1991-2015. Since the martial law was introduced in Ukraine in 2022, the statistical reporting form No. 4-MTP was not developed, so determination of GHG emissions from stationary fuel combustion was performed by surrogate method on the basis of the statistical reporting form No. 4-MTP for 2020 and information available from public sources and data from manufacturing enterprises.

A2.2 Sources of activity data

A2.2.1 Statistical reporting form No. 4-MTP "Report on fuel use and stocks"

Form No. 4-MTP is the main form used for inventory of emissions from fossil fuel combustion.

In this form in accordance with the type of economic activity (TEA) of the consumers all fuel and lubricants consumed as well as their losses are attributed to this TEA. At the same time, consumers submit information on use of fuel in accordance with the actual field of its use based on the National Classification of Economic Activities (NCEA), which is reflected in this form. This necessitates application of special methods for proper ensuring of consistency between volumes of

fuel used from form No. 4-MTP and emission categories in accordance with the CRT, because emission factors for some types of GHG may significantly differ for the various categories of emission sources.

Also the structure of form No. 4-MTP requires additional calculations to correctly distribute emission sources. This form is used for reporting by all enterprises regardless of their form of ownership. When submitting information to state statistics authorities, each enterprise specifies the key economic activity in accordance with NCEA.

In the period of 1991-2020, this reporting form changed frequently.

In 1991, the form for each sector of the economy contained information on the total consumption by fuel type with separate indication of volume used for household needs.

In the period of 1992-1996, the following information was tracked by each sector of the economy:

- 1. Total.
- 2. For conversion production of electricity and heat.
- 3. As a raw material.
- 4. Directly as fuel, separately indicating fuel for household needs and that sold to the public.

In the period 1997-2015, the structure of form No. 4-MTP stabilized. In 2016 it changed significantly, particularly fuel codes (see Table A2.1) and section structure. At present, it consists of four sections, each of them containing information about the specific domain of use of fuel and energy resources. Each section of form No. 4-MTP consists of a table, which horizontally indicates the name of fuel, and in columns - the domain where it was used.

When estimating emissions by using the sector approach, data of the second, third and forth sections are applied.

Section 2 of the form No. 4-MTP contains information on fuel consumption by the energy sector in the following domains:

- field 1 is the sum of fields 2-13, as described below;
- field 2 fuel consumption for production of hard coal, lignite and peat briquettes;
- field 3 fuel consumption for production of wood briquettes and charcoal;
- field 4 fuel consumption for production of coke and coke gas;
- field 5 fuel consumption for production of various types of gas;
- field 6 fuel consumption for production of blast furnace coke;
- field 7 fuel consumption for production of oil products;
- field 8 fuel consumption for production of heat and electricity at common use power plants;
- field 9 fuel consumption for production of heat and electricity at power plants of enterprises;
- field 10 fuel consumption for production of heat and electricity at common use combined heat and power plants (CHPs);
- field 11 fuel consumption for production of heat and electricity at CHPs of enterprises;
- field 12 fuel consumption for production of heat at heat power stations and boiler plants;
- field 13 fuel consumption for production of heat and electricity by other enterprises and plants;
- field 14 fuel consumption for own use of energy sector.

Section 3 of form No. 4-MTP contains information on final fuel consumption in the following domains:

- field 1 fuel consumption for non-energy purposes;
- field 2 final fuel consumption;
- field 3 fuel consumption by in-house factory transport;
- field 4 fuel consumption by international marine and avia transport;
- field 5 fuel sold to the public.

Section 4 of form No. 4-MTP contains information on fuel losses at its transportation, distribution, storage etc.

A2.2.2 Statistical reporting form No. 11-MTP "Report on results of fuel, heat, and electricity consumption"

Form No.11-MTP section 1 "Fuel" and the Annex (form No.11-MTP (fuel)) "Actual fuel consumption for production of certain types of products and work" with respect to oil refining are used for inventory purposes.

From section 1 data on volumes of oil refining are used, and from the annex 11-MTP (fuel) - the volume of fuel used for these purposes.

In 2016 and further the structure of form No. 11-MTP was changed significantly and ceased to contain data on fuel consumption.

A2.2.3 Fuel and energy balances of Ukraine

The FEB of Ukraine for 1990 was used to calculate GHG emissions from fuel combustion. It contains all the necessary detailed information on fuel consumption, except for data on fuel consumption for oil refining, which are accounted for in other industries and are not explicitly indicated.

FEBs developed by the SSSU and the IEA in the next years cannot be properly applied for the purpose of GHG inventory, because they do not contain details necessary for calculations according to IPCC guidelines.

A2.3 Fuel structure

The range of fuels in the national statistics differs from the range defined by [1], and, as noted, it has undergone a lot of changes. Fuel structure is shown in the table A2.1.

Table A2.1. Types of fuels used

1 401	Engl	Groups	Fuel code		
#	Fuel	of fuels*	2015	2016 - 2023	
1	Hard coal	S	100	110	
2	Briquettes, pellets from hard coal	S	110	140	
3	Brown coal	S	115	120	
4	Briquettes, pellets from brown coal	S	120	150	
5	Non-agglomerated fuel peat	P	130	130	
6	Briquettes, pellets from peat	P	140	160	
7	Crude oil, including oil from bituminous materials	L	150	410	
8	Gas condensate	L	160	415	
9	Natural gas	G	170	310	
10	Charcoal	В	185	720	
11	Firewood	В	190	740	
12	Fuel briquettes and pellets from wood and other natural materials	В	195	730	
13	Biodiesel from oils, sugar and starch crops, and animal fats	В	198	782	
14	Other types of source fuels	В	200	750,760,770,790	
15	Coke and semi-coke from hard coal, gaseous coke	S	220	170	
16	Hard, brown coal, and peat tars	S	225	200	
17	Pitch and pitch coke	S	226	190	
18	Aviation gasoline	L	230	450	
19	Motor gasoline	L	240	430	
20	Mixed motor fuel containing bio-ethanol 5-30%	В	245	435	
21	Fuel for jet engines of the gasoline type	L	250	460	
22	Oil distillates, other light fractions	L	260	510	
23	Fuel for jet engines of the kerosene type	L	270	470	
24	Kerosene	L	280	480	
25	Gas oils	L	300	440	

#	Fuel	Groups	Fuel code	
#		of fuels*	2015	2016 - 2023
26	Medium oil distillates, other medium fractions	L	310	520
27	Heavy fuel black oils	L	320	490
28	Petroleum oils, heavy oil distillates	L	330	530
29	Propane and butane, liquefied	L	430	540
30	Ethylene, propylene	L	440	580
31	Petroleum coke (including shale)	L	460	570
32	Other types of oil products	L	500	650
33	Other fuel processing products	Oth	630	800
34	Coke oven gas produced as a byproduct	S	600	220

^{*} S - solid fuel, L - liquid fuels, G - gaseous fuel, B - biomass, P - peat, Oth - others

A2.4 Methods to determine the fuel combustion volume by CRT categories

A2.4.1 Stationary fuel combustion

When calculating the volume of GHG emissions at stationary combustion, motor fuels in CRT category 1.A.1 "Energy Industries" were not transferred to other sources of emissions; in categories 1.A.2 "Manufacturing Industries and Construction" and 1.A.4 "Other Sectors" motor fuels (gasoline, gas oil, etc., for the exception of liquefied propane and butane) were not accounted for the period of 1991-2023 and were transferred to the category of mobile sources - CRT 1.A.3 "Transport", because no information is available for the period on their use in stationary combustion. This information is available only for 1990.

Lubricants are accounted for in the IPPU sector as non-energy use. Small amounts of lubricants are accounted for in CRT subcategory 1.A.3.b.iv "Motorcycles".

Activity data of fuel consumption by CRT category at stationary fuel combustion is presented in Table A2.2.

Table A2.2. Activity data of fuel consumption at stationary fuel combustion in accordance with CRT categories

CRT category	Determining the volume of fuel burned
	.1. Fuel and Energy Industry
1.A.1.a Public Electricity and Heat Produc-	
tion	
1.A.1.ai Electricity Generation	Form No.4-MTP total, Section 2, Column 8, Form 3-tex of
	TPP
1.A.1.aii Combined Heat and Power genera-	Form No.4-MTP total, Section 2, Columns 9,10, 11;
tion (CHP)	
1.A.1.aiii Heat Plants	Form No.4-MTP total, Section 2, Column 12
1.A.1.b Petroleum Refining	Based on IEA
1.A.1.c Manufacture of Solid Fuels and	Summary of:
Other Energy Industries	1. Form No.4-MTP total, Section 2, Columns 13,14;
	2. Section 3, Column 2 minus Columns 3,4 of the form No.4-MTP for
	TEA with the codes:
	- 05 "Production of lignite and hard coal";
	- 06 "Oil and Natural Gas"
1.A.2. Manu	facturing Industries and Construction
1.A.2.a Iron and Steel	Form No.4-MTP kved, TEA Division 24 "Metallurgical Industry", Sec-
	tion 3, Column 2 minus Columns 3,4;
	Minus: fuel consumed under form No.4-MTP kved, TEA Division 24.4
	"Production of precious and other non-ferrous metals"
1.A.2.b Non-Ferrous Metals	Form No.4-MTP kved, TEA Division 24.4 "Production of precious and
	other non-ferrous metals", Section 3, Column 2 minus Columns 3,4
1.A.2.c Chemicals	Form No.4-MTP kved, TEA Division 20 "Production of chemical sub-
	stances and chemical products", Section 3, Column 2 minus Columns
	3,4
1.A.2.d Pulp, Paper and Print	Summary of:

CRT category	Determining the volume of fuel burned
	1. Form No.4-MTP kved, TEA Division 17 "Manufacture of paper and
	paper products", Section 3, Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division 18 "Printing and reproduction
	of information", Section 3, Column 2 minus Columns 3,4
1.A.2.e Food Processing, Beverages and To-	Summary of:
bacco	1. Form No.4-MTP kved, TEA Division 10 "Manufacture of food
	products", Section 3, Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division 11 "Manufacture of bever-
	ages", Section 3, Column 2 minus Columns 3,4;
	3. Form No.4-MTP kved, TEA Division 12 "Manufacture of tobacco
	products", Section 3, Column 2 minus Columns 3,4
1.A.2.f Non-metallic minerals	Form No.4-MTP kved, TEA Division 23 "Production of other non-fer-
	rous mineral products", Section 3, Column 2 minus Columns 3,4
1.A.2.g Other Industrial Products and Con-	Summary of:
struction	1. Form No.4-MTP kved, TEA Division BCDE "Industry", Section 3,
	Column 2 minus Columns 3,4;
	2. Form No.4-MTP kved, TEA Division F "Construction", Section 3,
	Column 2 minus Columns 3,4.
	Minus:
	1. Volume of fuel burned in categories 1A2a – 1A2f;
	2. The difference between Field 2 and Fields 3,4 of section 3 of form
	No.4-MTP for TEA with the codes:
	- 05 "Production of lignite and hard coal";
	- 06 "Oil and Natural Gas"
	1.A.4. Other Sectors
1.A.4.a Commercial/Institutional	Summary of:
	Form No.4-MTP kved, TEA Divisions G,H,I,J,K,L,M,N,O,P,Q,R,S,
	Section 3, Column 2 minus Columns 3,4
1.A.4.b Residential	Form No.4-MTP total, Section 3, Column 5
1.A.4.c Agriculture/Forestry/Fishing	Summary of:
	Form No.4-MTP kved, TEA Division A "Agriculture, forests, fishing",
	Section 3, Column 2 minus Columns 3,4

Given the specific features of form No.4-MTP in 1991, to determine volumes of stationary fuel combustion in accordance with the CRT, expert estimates were used, which were based on data from TEAs for 1990 and those listed in this form.

For the period of 1992 to 1996, the following approach was applied to determine the volume of fuel burned by CRT category - fuel consumption for household needs is attributed to the service sector, and what was sold to the public - to the household sector. Along with this, given the fact that in this period there were active transformation processes in Ukraine's economy, expert opinions were used to smoothen the emission series by CRT categories to some extent to ensure the overall balance of fuel volumes used for power generation [18].

A2.4.2 Mobile fuel combustion

Activity data of fuel consumption by CRT category at mobile fuel combustion for 2023 is presented in Table A2.3.

Table A2.3. Activity data of fuel consumption at mobile fuel combustion for 2023 in accordance with CRT emissions categories

CRT subcategory	Determining the volume of fuel burned	Fuel code
1.A.3.a Domestic Aviation	The fuel volume on aircraft (AC) departures from air-	450
	ports situated in the territory of Ukraine	470
		310
		430
1.A.3.b Road Transportation	The fuel volume according to surrogate method (see	440
_	3.2.9.2.2)	480
		530
		540

CRT subcategory	Determining the volume of fuel burned	Fuel code
1.A.3.c Railways	Form No.4-MTP kved, TEA Divisions 49.1, 49.2 "Railway transport", Section 3, Column 2	440
1.A.3.d Domestic Navigation	Form No.4-MTP kved, TEA Division 50, "Waterway transport", Section 3, Column 2	440
1.A.3.e.i Pipeline Transport	The fuel volume provided by enterprises (see 3.2.9.2.5)	310
1.A.3.e.ii Off-Road vehicles and other machinery	The fuel volume according to surrogate method (see 3.2.9.2.5)	310 430 440 530 540

As to biodiesel consumed in categories 1.A.3.b and 1.A.3.e.ii there is no opportunity to collect consumption data for the period 1990-2012. The SSSU began to indicate the amount of biodiesel consumed in statistical forms only in 2013. Taking into account the negligible amount fixed by SSSU in 2013 (222 t), 2014 (0), 2015 (47 t) it is reasonable to suggest that in 1990-2012 the amount of biodiesel consumed was negligible.

A2.5 Emission factors

The method for determination of carbon content in natural gas is presented in A2.6.1, for coal combusted at the TPPs – in A2.6.2, for motor fuels (gasoline, diesel oil and LPG) – in A2.6.3.

For other types of fuels, carbon content factors by default were used in accordance with [1], see details in Table A2.4.

Carbon content factors for CH₄ and N₂O were default ones for the entire time series of 1990-2023 according to [1] within the exception of category 1.A.3.b "Domestic Aviation" for NOx, CO, NMVOC and SO₂ for which determining the CORINAIR 2013 was used.

NCV values for some types of fuel were adopted based on state statistics of Ukraine (forms No. 4-MTP, No. 11-MTP, FEB of the Ukrainian SSR); for some types of fuel the default values were used [1]. Exceptions are hard coal used at TPPs, natural gas, gasoline, diesel oil and LPG for which scientific and analytical activity was performed (see A2.6.1, A2.6.2 and A2.6.3). For details on NCV, see Table A2.4.

Carbon oxidation factors for all the categories within the exception of coal combusted at the TPPs (category 1.A.1.ai, see A.2.6.2) are equal to 1.

The development of CSEFs for petroleum coke and refinery gases are not considered because of small quantity of petroleum coke and including of refinery gases into other oil products by national statistics.

The values of CH₄ and N₂O emission factors are shown in Tables A2.5-A2.8.

Table A2.4. Carbon content factors (t/TJ) and NCV (GJ/t) in different fuels for 2023

Fuel	Code	Carbon content factor	NCV	Fuel	Code	Carbon content factor	NCV
Hard coal	110	25.80*	21.98*	Aviation gasoline	450	19.10	44.30
Briquettes, pellets from hard coal	140	26.60	17.29	Motor gasoline	430	19.65	43.04
Brown coal	120	27.60	8.62	Mixed motor fuel containing bio-ethanol 5% -30%	435	19.65	43.04
Briquettes, pellets from brown coal	150	26.60	16.53	Oil distillates, other light fractions	510	19.65	42.50
Non-agglomerated fuel peat	130	28.90	9.44	Fuel for jet engines of the kerosene type	470	19.50	44.10
Briquettes, pellets from peat	160	28.90	14.65	Kerosene	480	19.60	43.08
Crude oil, including oil from bituminous materials	410	20.00	41.55	Gas oil	440	20.12	43.05
Gas condensate	415	17.50	41.91	Medium oil distil- lates, other medium fractions	520	20.12	42.50
Natural gas	310	15.21	47.96	Heavy fuel black oils	490	21.10	40.15
Charcoal	720	30.50	27.26	Petroleum oils, heavy oil distillates	530	20,00	39.81
Firewood	740	30.50	11.07	Propane and butane, liquefied	540	17.20	46.01
Fuel briquettes and pellets from wood and other natural materials	730	27.30	11.60	Ethylene, propylene, petroleum gases, other	580	15.70	43.67
Biodiesel from oils, sugar and starch crops	782	19.30	27.00	Petroleum coke (including shale)	570	26.60	31.65
Other types of source fuels	750,760, 770,790	27.30	11.60	Other types of oil products	650	20.00	40.50
Coke and semi- coke from hard coal, gaseous coke	170	29.20	28.52	Other fuel precessing		20.00	40.20
Hard, brown coal, and peat resins	200	22.00	28.00	Coke oven gas produced as a byproduct		12.11	35.23
Pitch and pitch coke	190	29.20	28.20				

^{* -} calculated separately for TPPs in A2.6.2

Table A2.5. Methane emission factors that were applied for estimation of emissions from stationary fuel combustion

Table A2.5. Methane emission fac	lors mai were applied				on domains, kg/TJ	
Name of the fuel in form No. 4-MTP	Code of the fuel in	Energy In-	Industry and	Tuel Consumpti		Residential Sec-
Name of the fuel in form No. 4-WHF	form No. 4-MTP	dustries	Construction	Agriculture	Commercial/Institutional	tor
Hard coal	110	1	10	300	10	300
Briquettes, pellets from hard coal	140	1	10	300	10	300
Brown coal	120	1	10	300	10	300
Briquettes, pellets from brown coal	150	1	1	300	10	300
Non-agglomerated fuel peat	130	1	2	300	1	300
Briquettes, pellets from peat	160	1	2	300	1	300
Crude oil, including oil from bituminous materi-	410					
als		3	3	10	10	10
Gas condensate	415	3	3	10	10	10
Natural gas	310	1	1	5	5	5
Charcoal	720	200	200	200	200	200
Firewood	740	30	30	300	300	300
Fuel briquettes and pellets from wood and other	730					
natural materials		30	30	300	300	300
Biodiesel from oils, sugar and starch crops	782	3				
Other types of source fuels	750,760,770,790	30	30	300	300	300
Coke and semi-coke from hard coal, gaseous	170					
coke		1	1	5	5	5
Hard, brown coal, and peat tars	200	1	10	300	10	300
Pitch and pitch coke	190	1	10	300	10	300
Aviation gasoline	450					
Motor gasoline	430	3				
Motor fuel composite with bioethanol 5% -	435					
30%		3				
Oil distillates, other light fractions	510	3				
Fuel for jet engines of the kerosene type	470					
Kerosene	480	3				
Gas oils	440	3				
Medium oil distillates, other medium fractions	520	3				
Heavy fuel black oils	490	3	3	10	10	10
Petroleum oils, heavy oil distillates	530	3				
Propane and butane, liquefied	540	1	1	5	5	5
Ethylene, propylene, petroleum gases, other	580	3	3	10	10	10
Petroleum coke	570	3	3	10	10	10
Other types of oil products	650	3	3	10	10	10
Other fuel processing products	800	3	3	10	10	10
Coke oven gas produced as a byproduct	220	1	1	5	5	5

Table A2.6. Nitrous oxide emission factors that were applied for estimation of emissions from stationary fuel combustion

Table A2.0. Initious oxide chinssion		Methane emission factors by fuel consumption domains, kg/TJ									
Name of the fuel in form No. 4-MTP	Code of the fuel in	Energy In-	Industry and	y fuel consumpti	on domains, kg/15	Residential Sec-					
Name of the fuel in form No. 4-M11	form No. 4-MTP	dustries	Construction	Agriculture	Commercial/Institutional	tor					
Hard coal	110	1.5	1.5	1.5	1.5	1.5					
Briquettes, pellets from hard coal	140	1.5	1.5	1.5	1.5	1.5					
Brown coal	120	1.5	1.5	1.5	1.5	1.5					
Briquettes, pellets from brown coal	150	1.5	1.5	1.5	1.5	1.5					
Non-agglomerated fuel peat	130	1.5	1.5	1.4	1.4	1.4					
Briquettes, pellets from peat	160	1.5	1.5	1.4	1.4	1.4					
Crude oil, including oil from bituminous materi-	410										
als		0.6	0.6	0.6	0.6	0.6					
Gas condensate	415	0.6	0.6	0.6	0.6	0.6					
Natural gas	310	0.1	0.1	0.1	0.1	0.1					
Charcoal	720	4	4	1	1	1					
Firewood	740	4	4	4	4	4					
Fuel briquettes and pellets from wood and other	730										
natural materials		4	4	4	4	4					
Biodiesel from oils, sugar and starch crops	782	0.6									
Other types of source fuels	750,760,770,790	4	4	4	4	4					
Coke and semi-coke from hard coal, gaseous	170										
coke		0.1	0.1	0.1	0.1	0.1					
Hard, brown coal, and peat tars	200	1.5	1.5	1.5	1.5	1.5					
Pitch and pitch coke	190	1.5	1.5	1.5	1.5	1.5					
Aviation gasoline	450										
Motor gasoline	430	0.6									
Motor fuel composite with bioethanol 5% -	435										
30%		0.6									
Oil distillates, other light fractions	510	0.6									
Fuel for jet engines of the kerosene type	470										
Kerosene	480	0.6									
Gas oils	440	0.6									
Medium oil distillates, other medium fractions	520	0.6									
Heavy fuel black oils	490	0.6	0.6	0.6	0.6	0.6					
Petroleum oils, heavy oil distillates	530	0.6									
Propane and butane, liquefied	540	0.1	0.1	0.1	0.1	0.1					
Ethylene, propylene, petroleum gases, other	580	0.6	0.6	0.6	0.6	0.6					
Petroleum coke	570	0.6	0.6	0.6	0.6	0.6					
Other types of oil products	650	0.6	0.6	0.6	0.6	0.6					
Other fuel processing products	800	0.6	0.6	0.6	0.6	0.6					
Coke oven gas produced as a byproduct	220	0.1	0.1	0.1	0.1	0.1					

Table A2.7. Methane emission factors that were applied for estimation of emissions from mobile fuel combustion

Name of fuel		L.A.3.a - Civil Aviation	1.A.3.b - Road Transport	1.A.3.c - Railway transport	1.A.3.d - Water transport	1.A.3.e.i - Pipeline transport	1.A.3.e.ii - Off-road transport
	M	lethane emis	sion factor	rs by fuel c	onsumptio	n domains,	kg/TJ
Natural gas	310					1	
Biodiesel from oils	782		18.4				115
Aviation gasoline	450	see A2.7					
Motor gasoline	430		18.4				115
Motor fuel composite with bioethanol	435		18.4				115
Aviation gasoline	450	see A2.7					
Oil distillates, other light fractions	510		18.4				115
Jet kerosene-type fuel	470	see A2.7					
Kerosene	480		18.4				115
Gasoil (diesel fuel)	440		3.9	4.15	7		4.15
Oil medium distillates	520		3.9				4.15
Petroleum oils, heavy oil distillates	530		18.4				4.15
Propane and butane, liquefied	540		92				

Table A2.8. Nitrous oxide emission factors that were applied for estimation of emissions from mobile fuel combustion

				ı		ı	1
Name of fuel	Fuel code	1.A.3.a - Civil Aviation	1.A.3.b - Road Transport	1.A.3.c - Railway transport	1.A.3.d - Water transport	1.A.3.e.i - Pipeline transport	1.A.3.e.ii - Off-road transport
	Nit	trous oxi	de emiss	ion factors by	fuel consum	ption domain	s, kg/TJ
Natural gas	310					0.1	
Biodiesel from oils	782		5.6				1.2
Aviation gasoline	450	see A2.7					
Motor gasoline	430		5.6				1.2
Motor fuel composite with bioethanol	435		5.6				1.2
Aviation gasoline	450	see A2.7					
Oil distillates, other light fractions	510		5.6				1.2
Jet kerosene-type fuel	470	see A2.7					
Kerosene	480		5.6				1.2
Gasoil (diesel fuel)	440		3.9	28.6	2		28.6
Oil medium distillates	520		3.9				28.6
Petroleum oils, heavy oil distillates	530		5.6				28.6
Propane and butane, liquefied	540		3				

A2.6 Determination of physical and chemical parameters of natural gas and power-generating coals

A2.6.1 Natural gas

The input data for determination of parameters of natural gas in the Ukraine gas transportation system are passport certificates of physical and chemical parameters of gas, which contain daily information (from all gas measuring stations and for each pipeline) on the elemental composition of natural gas, calorific value, density, consumption, and other physical and chemical indicators. These passport certificates were provided by the companies NJSC "Naftogaz of Ukraine", PJSC "Ukrgasvydobuvannya", JSC "UA transmission system operator".

The component composition of natural gas is determined based on chromatographic analysis in line with [9], based on which the net calorific value of natural gas is estimated according to [10].

The carbon content in natural gas was determined on the basis of the estimated value of the average percentage of carbon content and calorific value according to the formula:

$$k_c^{Av} = \frac{\sum_i \rho_i^{av} \cdot r_i^{av} \cdot \frac{M_C}{M_i}}{NCV^{av}}; \tag{A4}$$

Where: k_c^{Av} – is the average carbon content in natural gas consumed in the country, t/TJ;

 ρ_i^{av} - the average density of the *i* component of natural gas, the molecule of which contains the carbon atom, in relative units;

 r_i^{av} – the average volume ratio of the *i* component of natural gas, the molecule of which contains the carbon atom, in relative units;

 M_C – the molar weight of carbon, g/mole;

 M_i – the molar weight of the i component of natural gas, the molecule of which contains the carbon atom, g/mole;

i – the index of the component of natural gas, the molecule of which contains the carbon atom; NCV^{av} – the average net calorific value of natural gas, TJ/million m³;

Average values of density, volume fractions, and the net calorific value of natural gas were calculated as the weighted average of the respective indicators of import and domestic natural gas production in the country.

Detailed data on NCV, carbon content and density are presented in Table A2.9.

Table A2.9. Average physical and chemical parameters of consumed natural gas in Ukraine, 1990-2023

Parameter*	NCV	Carbon content	Density	CH4	CO ₂
Year	GJ/t	tC/TJ	kg/m3	% vol.	% vol.
1990	48.720	15.180	0.697	96.245	0.163
1991	48.720	15.180	0.697	96.245	0.163
1992	48.720	15.180	0.697	96.245	0.163
1993	48.720	15.180	0.697	96.245	0.163
1994	48.720	15.180	0.697	96.245	0.163
1995	48.720	15.180	0.697	96.245	0.163
1996	48.720	15.180	0.697	96.245	0.163
1997	48.720	15.180	0.697	96.245	0.163
1998	48.720	15.180	0.697	96.245	0.163
1999	48.720	15.180	0.697	96.245	0.163
2000	48.720	15.180	0.697	96.245	0.163
2001	48.720	15.180	0.697	96.245	0.163
2002	48.720	15.180	0.697	96.245	0.163
2003	48.720	15.180	0.697	96.245	0.163
2004	48.720	15.180	0.697	96.245	0.163
2005	48.720	15.190	0.697	96.245	0.163

Parameter*	NCV	Carbon content	Density	CH4	CO ₂
Year	GJ/t	tC/TJ	kg/m3	% vol.	% vol.
2006	48.720	15.220	0.697	96.245	0.163
2007	48.720	15.160	0.697	96.245	0.163
2008	48.720	15.170	0.697	96.245	0.163
2009	48.720	15.200	0.697	96.245	0.163
2010	48.720	15.170	0.697	96.245	0.163
2011	48.720	15.129	0.697	96.245	0.163
2012	48.721	15.140	0.700	95.903	0.194
2013	48.697	15.168	0.701	95.759	0.247
2014	48.612	15.121	0.698	96.035	0.219
2015	48.771	15.214	0.714	94.298	0.411
2016	48.752	15.260	0.708	94.898	0.265
2017	47.152	15.314	0.737	91.877	1.093
2018	48.500	15.225	0.712	94.411	0.355
2019	47.899	15.273	0.719	93.700	0.480
2020	47.960	15.210	0.719	93.738	0.739
2021	47.960	15.210	0.719	93.738	0.739
2022	47.960	15.210	0.719	93.738	0.739
2023	47.960	15.210	0.719	93.738	0.739

^{*} Determined for standard conditions (20°C, 101.3 kPa)

There is no information on passport certificates of physical and chemical parameters of gas for 2021, 2022 and 2023, so the parameters of consumed gas for 2023 were taken as the closest by expert opinion.

The national value of carbon content in natural gas is different from the default value [1] by 0.5-1.2%. The average deviation from the value is approximately minus 0.5 %, which is in the range of deviation from the default values [1].

Since fluctuation of carbon content in natural gas over the period of 2004-2012 was extremely low and ranged from minus 0.3% to plus 0.3%, and taking into account that the natural gas supply into Ukraine sources remained unchanged over the past decades, the carbon content of natural gas in the period of 1990-2003 was adopted as the average of its value for the period of 2004-2010, and amounted to 15.18 t/TJ.

Information about the natural gas NCV, density, and component composition is not available for 1990-2010 period, so the corresponding values were taken based on data in 2011.

A2.6.2 Hard coal

In 2017, research work "Calculations of Greenhouse Gas Emissions from Coal Combustion in Thermal Power Plants of Ukraine for 1990 – 2015" was carried out by Coal Energy Technology Institute of NASU in the framework of realization of Agreement between Ministry of Energy and Coal Industry of Ukraine and Ministry of Foreign Affairs of Denmark on development and cooperation for the Ukraine-Denmark Energy Center [11] and implemented in current submission. Similar calculations for 2016 – 2023 were carried out on the basis of this research work.

Due to the results of the research work, methodology to estimate NCV, carbon content and oxidation factor for coals combusted at all 15 acting TPPs in Ukraine was upgraded.

When developing the methodology two specific thermal groups of coals were taken into account: bituminous and low-reactive coal. Thermal coal division on 2 groups with the definition of average value Cdaf (the part of carbon in coal on "dry ash-free" basis) for each of them is based on the following considerations. Among the 15 large TPPs of Ukraine 7 are designed to burn bituminous coal (Zuyivska, Vuglegirska, Zaporizka, Kurakhisvska, Ladyzhynska, Dobrotvirska, Burshtynska), 7 – for burning of low-reactive coal (Tripilska, Zmiyivska, Prydniprovska, Starobeshivska, Slovyanska, Luganska, Kryvorizka – anthracite of grade A and semi-anthracite of grade P; during recent years these TPPs have been redesigning to burn bituminous coal and this is reflected in calculations [12].

Carbon content on dry ash free basis Cdaf is divided to the same groups – bituminous (Cdaf = 76-85%) and low-reactive coal (Cdaf = 89.5-93.3%). Afterwards, it was formed the list of documents that gave the most reliable input data for calculating CO_2 emissions from coal combustion at thermal power plants. This list is presented in Table A2.10.

According to the National standards DSTU ISO 17246:2010 "Coal. Proximate analysis", DSTU ISO 17247:2010 "Coal. Ultimate analysis", GOST 27313-95 (ISO 1170-77) "Mineral solid fuel. Designation of quality characteristics and the formula calculation results analysis for different bases of fuel", Cdaf values are calculated on the basis of the analytical values of carbon, ash and water content obtained on samples enriched to ash content less than 10%. Cdaf values are given in Ukrainian "Certificates of genetic, technological and qualitative characteristics" and include both non-volatile carbon and carbon, which is part of the volatile substances.

Table A2.10. Data sources for the estimates on physical and chemical properties for coals combusted at TPPs

No	Type of source	Name	Input data
1	The annual report	Form 3-tech-TPP "Technical &	Annual consumption of fuel B, tCE
	for each TPP	economic performance of the	The share of coal in the fuel bcoal, %
		equipment"	NCV Qir, kcal/kg
			Moisture content Wtr, %
			Ash content Ar, %
			Heat loss with unburned carbon q4, %
			(Average per year)
2	Certificate		Organic carbon on dry ash-free coal base Cdaf, %
		logical and qualitative character-	
		istics of coal products	
3	Statistical digest	Digests of quality, volume of	Weight fraction of producers and coal grades in groups of manu-
			factured coal:
		cessing products (annual)	grades A, P – group of low-reactive coal (Vdaf < 18%)
			grades D, DG, G – group of bituminous coal (Vdaf = 35-45%)

According to the developed methodology [11] the mass of coal combusted is estimated as following:

$$B_{coal} = \left(B \cdot \frac{b_{coal}}{100}\right) \cdot \left(\frac{7000}{Q_i^r}\right), \text{ tons}$$
 (A5)

Where:

B – annual consumption of fuel, tCE (by reports of 3-tech-TPP);

 b_{coal} – the part of coal in total fuel, % (by reports of 3-tech-TPP);

 Q^{r}_{i} – net calorific value of coal, kcal/kg (by reports of 3-tech-TPP).

NCV values for coals in MJ/kg can be estimated according to the formula:

$$NCV_{coal} = Q_i^r \cdot 4.187/1000, MJ/kg$$
 (A6)

Where: *NCV_{coal}* – NCV of coals combusted, MJ/kg.

Carbon content in the coals was estimated according to the formula:

$$K_c = 10 \cdot C^r / NCV_{coal}, t/TJ \tag{A7}$$

Where: Kc – carbon content in coal, t/TJ;

C' – the part of carbon in coal on "as received" basis estimated as followed:

$$C^r = C^{daf} \cdot (1 - \frac{W_t^r}{100} - \frac{A^r}{100}), \%$$
 (A8)

Where: C^{daf} – the part of carbon in coal on "dry-ash-free" basis, %;

 W_t , A^r – moisture content and ash content on "as received" basis by reports of 3-tech-TPP;

Carbon oxidation factor was estimated as followed:

$$K_o = 1 - B_c/(B_{coal} \cdot \frac{c^r}{100})$$
, share (A9)

Where: K_o – carbon oxidation factor for coals combusted, share;

 B_c – the mass of unburned carbon, t, and estimated as:

$$B_c = (B \cdot q_4/100) \cdot (\frac{7000}{7800}), t$$
 (A10)

Where: 7800 kcal/kg (32.66 MJ/kg) - NCV of unburned carbon in flue ash and in slag, in accordance to industry standard GKD 34.09.103-96 "Calculation of reporting technical and economic indicators of thermal power plant equipment efficiency Guidance"; 7000 kcal/kg (29.31 MJ/kg) - NCV of CE; q4 – heat loss with unburned carbon, % (by reports of 3-tech-TPP).

To determine the weighted average carbon content Cdaf for grades and groups of grades of Ukrainian thermal coal for the years 2003-2023 were used:

- the annual "Digests of quality, volume of coal mining and of coal processing products", published by the Institute «UkrNDIvuglezbagachennya»;
- the "Certificates of genetic, technological and qualitative characteristics" of coal products that they developed for a 4-year period for each manufacturer and type of coal by the institute "UkrNDIvuglezbagachennya";
- the Institute "UkrNDIvuglezbagachennya" intermediate report on the work "The generalization of carbon content dependence of coal quality per grades in different periods, which differ by varying share of contribution of domestic deposits of Donbas and Lviv-Volyn basin".

The data on TPP units are presented in the tables A.2.11 - A.2.14.

Table A2.11. Coal consumption at TPPs in Ukraine, kt

TPP	Grade	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
	A,P/										-	-	
Zmiyivska	G,DG	4204	3111	1870	2140	2701	552	1066	1395	1421	1080	356	467
Tripilska	A,P/G, DG	1911	1960	1407	1285	2076	1311	1112	1416	1089	997	860	914
Vuglegirska	G, DG	1491	1963	1450	1725	2051	2002	2012	1963	1564	1559	255	0
Starobe- shivska	A, P	3438	4033	2658	2232	2489	2107	3274	3322	3322	3332	3332	3332
Slovyanska	A, P	689	1159	1038	1303	1361	1075	1629	1629	1480	911	379	0
Luganska	A, P	2461	1238	2060	1937	2841	1267	1063	634	545	937	937	312
Zuyivska	G, DG	1024	2668	2497	2441	2796	1560	1680	1191	1191	1191	1191	1191
Kurakhisvska	G, DG	4633	4855	2814	2662	3386	3368	3669	3406	3083	3119	2658	1487
Zaporizka	G, DG	3967	2891	2263	2074	2278	2656	2864	2483	2354	2159	720	0
Prydniprovska	A,P/ G, DG	2061	3104	1486	1756	1761	794	908	922	742	612	756	1062
Kryvorizka	A,P/G, DG	6539	4015	1510	1848	2789	1241	1126	711	982	1003	693	1415
Ladyzhynska	G, DG	2854	3088	1818	1676	1848	2746	2002	1930	1478	1462	1256	1476
Burshtynska	G, DG	4523	4024	1892	3201	3040	4845	5057	4499	3266	4112	3882	3551
Dobrotvirska	G, DG	376	1037	1248	944	754	1158	1240	1098	972	945	1041	640
Myronivska	G, DG	317	174	135	41	349	80	266	165	1.4.4	1.4.4	1.44	144
Myronivska	A, P	195	3	-	39	2701	125	266	165	144	144	144	144
Totally in Ukrai	ine	40684	39322	26146	27304	32524	26888	28966	26807	23643	23563	18461	15991

Table A2.12. NCV of coal supplied to TPPs in Ukraine, MJ/kg (as received)

TPP	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
Zmiyivska	20.75	19.28	19.23	22.00	21.91	23.54	21.85	22.79	22.20	21.99	21.54	21.76
Tripilska	19.28	19.05	18.37	22.27	21.89	23.36	22.29	22.26	21.16	21.38	21.71	21.71
Vuglegirska	18.07	17.77	19.40	20.70	21.45	22.39	22.20	21.76	21.52	22.04	22.11	-
Starobeshivska	20.22	20.86	18.31	19.82	21.95	23.15	23.30	23.30	23.30	23.30	23.30	23.30
Slovyanska	21.73	20.75	17.67	20.73	22.70	23.60	23.01	22.36	21.44	20.14	20.14	-
Luganska	18.16	19.24	18.41	24.23	23.90	23.17	23.52	22.81	23.05	22.82	22.82	22.82
Zuyivska	16.22	16.08	16.43	20.06	19.75	20.73	19.85	19.85	19.85	19.85	19.85	19.85
Kurakhisvska	14.89	15.47	15.39	18.55	17.88	17.94	18.67	18.50	18.71	17.80	17.73	17.23
Zaporizka	17.03	15.77	16.45	19.85	21.85	21.11	21.01	21.46	20.97	20.91	20.91	-

TPP	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
Prydniprovska	21.13	19.56	18.37	20.96	23.72	22.32	21.83	21.80	21.30	21.00	21.07	21.04
Kryvorizka	21.51	18.59	18.41	21.53	24.74	23.35	23.82	23.65	22.65	22.47	21.73	21.39
Ladyzhynska	14.74	13.98	12.90	19.78	20.76	20.40	20.93	21.06	20.84	20.51	20.47	20.24
Burshtynska	16.70	16.90	16.63	19.14	20.53	20.76	21.52	21.27	20.93	21.49	20.66	19.88
Dobrotvirska	18.74	17.69	15.47	21.42	21.31	20.81	21.99	21.56	21.09	21.91	20.78	19.30
Myronivska	13.69	13.47	16.48	17.48	17.95	19.00	10 (1	18.83	18.82	18.82	18.82	18.82
Myronivska	21.14	18.23	0.00	23.02	20.51	22.64	18.61	18.83	18.82	18.82	18.82	18.82
Totally in Ukraine	18.45	17.68	17.13	20.58	21.58	21.29	21.51	21.46	21.20	21.15	20.89	20.77

Table A2.13. Carbon content factor Kc of coal supplied to TPPs in Ukraine, t/TJ

TPP	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
Zmiyivska	28.81	29.33	28.72	28.24	28.86	27.46	25.38	26.26	26.10	25.75	25.63	25.22
Tripilska	28.64	29.03	28.85	28.64	28.89	27.83	26.02	25.67	25.73	25.14	26.18	25.51
Vuglegirska	26.14	26.22	25.43	25.16	25.38	25.10	25.20	25.16	25.51	25.09	24.93	-
Starobeshivska	27.90	28.12	28.13	28.61	28.76	27.59	27.66	27.66	27.66	27.66	27.66	27.66
Slovyanska	28.23	28.90	28.82	28.41	28.51	27.68	27.52	27.03	26.33	26.40	26.40	-
Luganska	29.37	28.06	28.91	27.19	28.13	28.48	28.13	28.24	28.27	28.22	28.22	28.22
Zuyivska	27.02	27.06	26.63	25.56	25.89	25.38	25.73	25.73	25.73	25.73	25.73	25.73
Kurakhisvska	26.39	26.77	25.99	25.90	26.27	26.06	25.43	25.46	25.47	25.95	26.00	26.23
Zaporizka	26.75	26.59	25.83	25.33	25.17	25.32	25.27	25.18	25.30	25.35	25.35	-
Prydniprovska	28.82	29.52	28.92	28.67	28.21	28.38	25.34	25.28	25.33	25.51	25.38	25.44
Kryvorizka	27.79	28.25	28.33	27.64	27.21	27.59	27.07	26.66	25.43	26.05	25.74	25.32
Ladyzhynska	27.74	26.52	26.14	25.83	25.68	26.16	25.53	25.41	25.39	25.31	25.90	25.39
Burshtynska	27.41	26.65	25.99	25.65	25.54	25.75	25.34	25.26	25.45	25.37	25.43	25.45
Dobrotvirska	25.99	26.45	25.91	24.42	24.84	25.51	25.16	25.35	25.39	25.46	25.39	25.67
Myronivska	27.64	27.96	26.46	25.75	25.92	25.73	25.47	25.60	25.50	25.50	25.50	25.50
Myronivska	28.80	30.45	-	27.65	27.90	28.04	25.47	25.60	25.50	25.50	25.50	25.50
Totally in Ukraine	27.77	27.74	27.31	26.78	27.05	26.42	25.99	25.93	25.97	25.99	26.21	26.09

Table A2.14. Carbon oxidation factor Ko of coal at TPPs in Ukraine

TPP	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
Zmiyivska	0.914	0.886	0.906	0.913	0.944	0.945	0.993	0.985	0.981	0.982	0.985	0.968
Tripilska	0.896	0.880	0.837	0.875	0.921	0.934	0.967	0.978	0.961	0.971	0.995	0.935
Vuglegirska	0.994	0.993	0.996	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.971	1
Starobeshivska	0.898	0.899	0.906	0.850	0.922	0.956	0.958	0.958	0.984	0.984	0.984	0.995
Slovyanska	0.964	0.898	0.889	0.915	0.952	0.968	0.960	0.950	0.940	0.944	0.944	ı
Luganska	0.851	0.784	0.774	0.944	0.948	0.936	0.945	0.917	0.920	0.929	0.929	0.929
Zuyivska	0.992	0.993	0.991	0.995	0.995	0.997	0.997	0.997	0.997	0.997	0.997	0.997
Kurakhisvska	0.955	0.968	0.959	0.976	0.977	0.976	0.978	0.970	0.965	0.965	0.965	0.965
Zaporizka	0.994	0.992	0.992	0.994	0.996	0.995	0.996	0.997	0.996	0.991	0.991	1
Prydniprovska	0.900	0.908	0.873	0.902	0.930	0.901	0.983	0.991	0.989	0.994	0.994	0.995
Kryvorizka	0.966	0.947	0.955	0.958	0.949	0.918	0.926	0.935	0.969	0.950	0.988	0.990
Ladyzhynska	0.988	0.987	0.983	0.995	0.996	0.995	0.996	0.995	0.994	0.993	0.994	0.992
Burshtynska	0.988	0.988	0.980	0.979	0.983	0.986	0.987	0.987	0.990	0.988	0.986	0.984
Dobrotvirska	0.980	0.974	0.964	0.980	0.982	0.983	0.984	0.984	0.985	0.978	0.972	0.977
Myronivska	0.935	0.887	0.973	0.990	0.990	0.990	0.994	0.995	0.995	0.995	0.995	0.995
Myronivska	0.562	0.606	-	0.937	0.973	0.961	U.77 4	0.333	0.333	0.333	0.333	0.333

TPP	1990	1995	2000	2005	2010	2015	2018	2019	2020	2021	2022	2023
Totally in Ukraine	0.943	0.937	0.926	0.948	0.961	0.971	0.979	0.978	0.980	0.980	0.982	0.984

In 1990-1991 the share of coal in coal-firing power units did not exceed 52% in terms of coal equivalent (CE), but in the years 1993-2001 it ranged from 65 to 80%. In 2002, due to the above-mentioned coal quality improvement, it became possible to reduce oil and gas addition when coal firing, so the share of coal in coal-firing power units started to grow, and since 2009 it has stabilized at 97-98%.

In 1990-1994 the consumption of low-reactive coal at thermal power plants significantly exceeds the consumption of bituminous coal, then within 20 years their consumption in CE units was almost the same, but since 2014 the share of anthracite significantly reduced.

A2.6.3 Motor fuels

In 2017, research work "Capacity building of the national GHG inventory system in terms of the development of methodological recommendations for determining national GHG emission factors from the use of motor fuels in the transport sector" was carried out by Ricardo Energy & Environment (United Kingdom), State Enterprise State Road Transport Research Institute (Ukraine) and MASMA (Ukraine) under the Clima East Policy Project [15] and implemented in current submission.

According to the results of the research work, carbon content and NCV for gasoline, diesel oil and LPG (see Table A2.4) consumed in Ukraine were determined for 2014, as well as retrospective values obtained for the whole period up to 1990.

According to the recommendations of research work authors the data in 2015 - 2023 were taken based on 2014.

Applied method is based on the theoretical approach and has been focused on an assessment of the chemical structure of each component in the fuel, namely the mix of different hydrocarbons and their properties, and the proportions of each component in the final fuel formulation. The method takes into account the carbon, hydrogen, oxygen and sulphur content of each individual hydrocarbon, its mass density and its thermodynamic properties.

The general principle of the approach was to consider the number of component fuels from different parts of the refinery process that makes up the blend of fuel and the chemical composition of each of the component parts. The considerations were based on fuel production industry data, fuel standards and expert knowledge of the refinery processing of fuel formulations that have made up the types of gasoline, diesel oil and LPG available on the market in Ukraine since 1990.

At the first stage of the study representative types of market fuels available since 2014 were identified for gasoline, diesel oil and LPG and a market share for each representative fuel type was obtained. At the second stage, blend of components for different fuel types, the chemical composition of components and respectively for the fuel types in whole were evaluated so the carbon content for different fuel types was identified. At the third stage, NCVs for different fuel types were estimated according to Mendeleev formula [15]:

NCV (MJ/kg) = 0.339*C+1.256*H-0.109*(O-S)-0.025*(W-9H) (A11)

Where: C, H, O, S and W are the mass fractions of carbon, hydrogen, oxygen, sulphur and water in the fuel.

For gasoline the components of 15 different representative types of market fuels available since 1990 were considered as well as the market share of each type in Ukraine in each year from 1990-2014. These are referred to as "Average Fuel Brand Representative (AFBR)".

For diesel oil the components of 12 different representative types of market fuels available since 1990 were considered as well as the market share of each type in Ukraine in each year from 1990-2014. Again, these are referred to as AFBR.

A similar model for LPG as for gasoline and diesel oil was developed, but based on one single AFBR fuel type with a defined mix of these simple components that was considered valid over the whole period from 1990-2014. The AFBR is characterized by a 47% propane component, 47%

butane component, 4.9% 'other hydrocarbons' and the remaining mass being non-hydrocarbon residue (including water).

A2.7 Methods to estimate GHG emissions from aircraft equipped with jet engines

To assess GHG emissions from civil aviation aircraft equipped with jet engines, the method was used that corresponds to Tier 3 in accordance with [1]. As activity data, data on aircraft (AC) departures from airports situated in the territory of Ukraine were used. Data on departures (hereinafter - the departure database (DDB)) were provided by the State Enterprise for Air Traffic Service of Ukraine (SE "Ukraeroruh"), and they include the following information for each departure:

- date and time of departure;
- airport of departure and destination;
- airline;
- ICAO code of the AC.

GHG emissions from AC was performed in two stages: preliminary data processing and calculation of GHG emissions.

A2.7.1 Data preprocessing

Data preprocessing includes removing entries from the DDB on departures meeting the following criteria:

- the AC is a helicopter;
- the AC is a military one;
- the AC's engine is a piston one;
- the airport of departure and destination is the same;
- the AC's code is not defined.

A2.7.2 Distribution of GHG emissions between domestic and international aviation

The approach applied to distribution of GHG emissions between domestic and international aviation is consistent with the approach described in [1]. Emissions from domestic aviation include emissions from AC operations where the departure and destination airports are located in the territory of Ukraine. Emissions from international aviation include emissions from AC operations where the departure airport is located in the territory of Ukraine, while the destination airport is outside of Ukraine, or vice versa.

A2.7.3 Estimation of GHG emissions

The GHG estimation was performed in accordance with the detailed methodology EMEP/CORINAIR, 2013 [23], which corresponds to Tier 3 of [1].

Fuel consumption for the "take-off and landing" cycle was taken according to the EMEP/CORINAIR methodology [2], as well as fuel consumption during cruise flight was calculated on the basis of this methodology.

To convert jet fuel consumption from mass units, as shown in [2], into energy ones, the net calorific value for jet kerosene was used, which is 44.1 MJ/kg in accordance with [1].

When calculating emissions of CO_2 , the carbon emission factor for jet kerosene was assumed to be 19.5 t of C/TJ according to [1].

Emissions of CO, NOx, NMVOC, N₂O, SO₂, and CH₄ were adopted based on [2] with the data on the type of aircraft and the flight length.

The algorithm for matching the AC type that actually performed the flight and the representative AC is presented in table A2.15.

Table A2.15. The correspondence between the representative AC type and the AC type that

actually performed the flight

Name of the repre-	ICAO	Name of the rep-	ICAO	Name of the rep-	ICAO
sentative AC	code	resentative AC	code	resentative AC	code
A310	A30B	Beech*0,5	P46T	Cassna	LJ60
A310	A306	Beech*0,5	TBM7	Cassna	PRM1
A310	A310	Beech*0,5	TBM8	CRJ145	CRJ2
A320	A318	Beech*0,5	PC12	CRJ145	CRJ9
A320	A319	Beech	BE20	DHC8	A140
A320	A320	Beech	BE9L	DHC8	AN24
A320	A321	Beech	P180	DHC8	AN26
A330	A332	Beech	PAY3	DHC8	AN30
A330	A333	Beech	PAY4	DHC8	AT72
A340	A343	Beech	STAR	DHC8	AT75
A340	C17	Beech	C425	DHC8	AT76
ATR72	AN12	Cassna	C25A	DHC8	C27J
ATR72	C130	Cassna	C25B	DHC8	C295
ATR72	C30J	Cassna	C25C	DHC8	DH8D
B737-100	B733	Cassna	C25M	DHC8	SF34
B737-400	B734	Cassna	C425	F100	A148
B737-400	B737	Cassna	C510	F100	C680
B737-400	B738	Cassna	C525	F100	C750
B737-400	B739	Cassna	C550	F100	CL30
B747-100-300	B742	Cassna	C55B	F100	CL35
B747-100-300	IL76	Cassna	C560	F100	CL60
B747-400*1,5	A225	Cassna	C56X	F100	E135
B747-400	A124	Cassna	C650	F100	E170
B747-400	B744	Cassna	E550	F100	E190
B757	B752	Cassna	E55P	F100	E195
B757	B753	Cassna	EA50	F100	F100
B767-300	B762	Cassna	F2TH	F100	G280
B767-300	B763	Cassna	F900	F100	GALX
B777	B772	Cassna	FA7X	F100	GL5T
B777	B773	Cassna	FA8X	F100	GLEX
B777	B788	Cassna	G150	F100	GLF5
BAC111	BA11	Cassna	H25B	F28	AN72
BAC111	GLF6	Cassna	LJ31	F28	GLF4
BAC111	YK40	Cassna	LJ35	MD81	MD82
BAe146	B461	Cassna	LJ45		
BAe146	B462	Cassna	LJ55		

^{1 -} The conversion factor of double-engine aircrafts into single-engine ones is 0.5

At the time of the estimation, data on AC flights for 1990-2006 had not been preserved. So the replacement method was used to restore the entire time series, where the passenger flow data was used as the substitute parameter for estimation of fuel consumed. Thus fuel distribution was performed on the basis of data on the number of passengers transported by domestic and international aircrafts. The baseline year for the replacement method was the earliest year for which the DDB is preserved - 2007 based on which specific GHG emission indicators were applied for 1990-2006.

It should be noted that fuel consumption in 1990 was adopted on the basis of the FEB [3]. When estimating fuel consumption for 1991-2006 the fact was taken into account that the structure of the fleet of 1990-2006 gradually changed. As a result the specific consumption of fuels by ACs decreased.

In 2022 (with the exception of January and February) and in 2023 flights of domestic aviation were forbidden due to the full-scale invasion of Ukraine.

A2.8 The methodology to estimate leakage at transportation and distribution of natural gas

To calculate leaks during transportation and distribution of natural gas the national method was developed based on proposals of the National Academy of Sciences of Ukraine and the Bureau of Complex Analysis and Forecasts «BIAF».

In accordance with the method, carbon dioxide emissions from transportation of natural gas through main pipelines were determined by the formula:

$$Q_{T_{CO_2}} = C_{CO_2} \cdot \rho_{CO_2} \cdot K_T \cdot P_T \cdot 10^3, \tag{A12}$$

 $Q_{T_{CO2}} = C_{CO_2} \cdot \rho_{CO_2} \cdot K_T \cdot P_T \cdot 10^3,$ where: $Q_{T_{CO2}}$ - carbon dioxide emissions during transportation of natural gas, kt;

 C_{CO_2} - carbon content in natural gas, %;

 ρ_{CO_2} - density of carbon dioxide under normal conditions (2.143 kg/m³);

 K_T - natural gas leak rate in transit, billion m³/Mt;

 P_T - volume of natural gas transportation, Mt.

Methane emissions from transportation through main pipelines were determined in a similar manner:

$$Q_{T_{\text{CH4}}} = C_{\text{CH}_4} \cdot \rho_{\text{CH}_4} \cdot K_T \cdot P_T \cdot 10^3, \tag{A13}$$

 $Q_{T_{\text{CH}4}} = C_{\text{CH}_4} \cdot \rho_{\text{CH}_4} \cdot K_T \cdot P_T \cdot 10^3,$ where: C_{CH_4} - methane content in natural gas, %;

 $\rho_{\text{CH}_{A}}$ - density of methane under normal conditions (0.714 kg/m³);

The input activity data, to which the emission factors C_{CH_4} , ρ_{CH_4} , C_{CO_2} , ρ_{CO_2} , K_D were applied (the values are shown in Table A2.22) were natural gas transportation volumes through main pipelines. These data are available from SSSU and NJSC "Naftogas".

The leakage volume was calculated on the basis of statistical reporting form 4-MTP, field 2 of section 4 (which corresponds to loss of gas in transit) and field 1, section 3 (which corresponds to production and technology natural gas consumption for non-energy purposes in its transportation) of state statistical reporting form 4-MTP for economic activity 49.5 "Gas transportation through pipelines".

In the national statistics for the period of 1991-1996 there was no data on natural gas losses and its production and technical use as a result of its transportation. In the period up to 2002 only the data on losses were indicated as well as in the energy balance of Ukraine for 1990. Therefore, for the period of 1990-2002 by using complete data for the estimations for 2003-2015 and the available data for 1990-2002 based on expert assessments [25] estimations of leaks in this type of activity throughout the estimation series were conducted by means of extrapolation.

For the calculation of greenhouse gas emissions in transportation of natural gas through main pipelines in accordance with [1] a 2-step approach was used.

Carbon dioxide emissions from gas distribution networks were determined based on the formula:

$$Q_{D_{CO_2}} = C_{CO_2} \cdot \rho_{CO_2} \cdot K_D \cdot P_D \cdot 10^3, \tag{A14}$$

where: $Q_{D_{CO2}}$ - carbon dioxide emissions from gas distribution networks, kt;

 C_{CO_2} - carbon content in natural gas, %;

 ρ_{CO_2} - density of carbon dioxide under normal conditions (2.143 kg/m³);

 K_D - natural gas leak in gas distribution networks factor, billion m³/mln m³;

 P_D - natural gas consumption, billion m^{3.}

Methane emissions from gas distribution systems are determined in a similar way:

$$Q_{D_{CH4}} = C_{CH_4} \cdot \rho_{CH_4} \cdot K_D \cdot P_D \cdot 10^3 \tag{A15}$$

where: C_{CH_4} - methane content in natural gas, %;

 ρ_{CH_4} - density of methane under normal conditions (0.714 kg/m³);

As input activity data, to which the emission factors C_{CH_4} , ρ_{CH_4} , C_{CO_2} , ρ_{CO_2} , K_D were applied (the values are presented in Table A2.22), volumes of natural gas consumption were used, estimated as the sum of field 2, section 4 (which corresponds to natural gas losses in its consumption) and field 1, section 3 (which corresponds to the production and technological consumption of natural gas for non-energy goals at its consumption) of state statistical reporting form 4-MTP for economic activity 35.22 "Gas distribution and supply".

In the national statistics for the period of 1991-1996, there was no data on natural gas losses and its production and technical use from gas distribution systems and in the period up to 2002 only the data on losses were indicated, as well as in the energy balance of Ukraine for 1990. Therefore, for the period of 1990-2002, by using complete data for the estimations for 2003-2015 and the available data for 1990-2002, based on expert assessments, estimations of leaks in this type of activity throughout the estimation series were conducted by means of extrapolation.

To calculate greenhouse gas emissions from gas distribution systems, a 2-step approach was used.

The above method allows for GHG emissions in category 1.B.2.c.1.ii Venting. Gas, which are included in emissions at transportation and distribution of natural gas.

As the statistical reporting form 4-MTP for 2021, 2022 and 2023 is not available due to the full-scale invasion of Ukraine the leaks factors in transportation and distribution were taken from 2020.

Table A2.18. Parameters of natural gas transportation and distribution in Ukraine, 1990-2023

	Transportation, P _T	Con- sump-	The leak factor in transporta-	The leak factor in distribution,	Greenhouse gas emissions in trans-	Greenhouse gas emis- sions from gas distri-
Year	Mt	tion, P_D	tion, K_T	K_D	portation, Q_T	bution systems, Q_D
	1,16	bln m ³	bln m ³ /Mt	bln m ³ /Mt	kt CO ₂ -eq.	kt CO ₂ -eq.
1990*	182.0	115.42	0.00146	0.00764	4553.54	15155.55
1991*	178.0	111.57	0.00171	0.00851	5239.02	16313.46
1992*	184.0	109.59	0.00187	0.00928	5908.15	17471.37
1993*	177.0	95.53	0.00217	0.01135	6598.22	18629.28
1994*	172.0	83.60	0.00246	0.01377	7280.11	19787.19
1995*	174.0	81.89	0.00265	0.01488	7908.38	20945.10
1996*	174.0	80.49	0.00288	0.01598	8619.39	22103.01
1997*	165.0	76.46	0.00312	0.01770	8847.78	23260.93
1998*	169.0	68.92	0.00336	0.02062	9752.84	24418.84
1999	161.0	69.49	0.00360	0.02239	9949.05	26734.66
2000	150.0	66.70	0.00329	0.01993	8471.30	22837.00
2001	148.2	64.10	0.00297	0.02127	7560.59	23422.56
2002	151.0	65.88	0.00184	0.01777	4769.74	20120.57
2003	158.0	72.80	0.00162	0.01707	4388.99	21358.65
2004	164.0	72.48	0.00154	0.01537	4333.40	19142.69
2005	164.0	73.10	0.00152	0.01427	4274.98	17919.71
2006	156.0	71.00	0.00139	0.01424	3719.68	17378.43
2007	142.5	66.82	0.00244	0.01501	5962.56	17234.71
2008	143.2	63.57	0.00219	0.01337	5394.28	14600.52
2009	114.0	50.21	0.00262	0.01407	5132.40	12141.34
2010	121.0	55.99	0.00218	0.01202	4539.36	11559.86
2011	127.0	56.56	0.00189	0.01252	4114.09	12163.01
2012	108.0	53.42	0.00071	0.01151	1321.41	10527.05
2013	106.0	49.73	0.00101	0.00893	1836.19	7589.29
2014	82.0	41.91	0.00150	0.01042	2116.03	7490.11
2015	79.8	35.45	0.00057	0.01386	769.84	8271.99
2016	90.3	36.33	0.00140	0.01623	2107.95	9884.70
2017	102.9	37.09	0.00039	0.01984	663.91	12424.10
2018	96.2	35.32	0.00040	0.02386	650.12	14209.34
2019	98.5	28.01	0.00040	0.03737	661.21	17520.86
2020	63.0	33.85	0.00041	0.03654	433.37	20713.10
2021	56.2	33.85	0.00041	0.03654	386.74	20713.10
2022	34.9	23.35	0.00041	0.03654	239.88	14292.04
2023	30.4	19.80	0.00041	0.03654	234.17	12600.93

^{*-}expert estimation

A2.9 Activity data

The data on energy use of fuels in CRT category Energy Industries 1.A for 2023 is presented in tables A2.19, A2.20.

Table A2.19. Fuel use by IPCC categories in physical units (stationary combustion) in 2023, t

Name of fuel	1.A.1. a. Main activity Electricity and Heat Production	1.A.1.b. Oil refinery	1.A.1.c. Solid Fuel Production and Other Industries	1.A.2.a. Iron and Steel	1.A.2.b. Non-Ferrous Metals	1.A.2.c. Chemicals	1.A.2.d. Pulp. Paper. and Print	1.A.2.e. Food Processing. Beverages. and Tobacco	1.A.2.f. Non-Metal Minerals	1.A.2.g. Other Industries	1.A.4.a. Commercial/Institutional Sector	1.A.4.b. Residential Sector	1.a.4.c. Agriculture/Forestry/Fishery/Fishing
Hard coal	17393267		173486	1763916	130741	2258	63	36047	1186002	7177	35704	363901	6123
Briquettes, pel- lets from hard coal	1958		42		7				1084	581	95		
Brown coal	1312		449							12	117		
Briquettes, pel- lets from brown coal	178										261		
Non-agglomer- ated fuel peat	26322		46						59	17489	28		
Briquettes, pel- lets from peat	55098		472	2		3	34	937	2388	741	12188	41357	1768
Crude oil, in- cluding oil from bitumi- nous materials			1966		66	7				15			
Gas conden- sate	95		1557		137				29	49			
Natural gas 0,7119	7171357		522240	1080652	118363	107268	13623	128419	433306	895280	158842	5517322	82656
Charcoal	115			13	65					70	9	116	

Firewood 0,7	914385	20326	541	121	1845	483	9578	12238	103075	76493	1218927	44274
Fuel briquettes and pellets from wood and other natural materials	354908	2142	5	67	2264	32	4883	10471	11928	11277	696	7612
Biodiesel from oils, sugar and starch crops												
Other types of source fuels	1953551	61794	44128		34		8711	24853	24423	3851	20281	23802
Coke and semi-coke from hard coal, gaseous coke				725	1342		991	24297	19757		149	
Hard, brown coal, and peat tars			10550	157			1840		2194			
Pitch and pitch coke												
Aviation gasoline Motor gasoline		3009										
Motor fuel composite with bioethanol 5% -30%		3007										
Fuel for jet engines of the gasoline type												
Oil distillates, other light fractions	129											
Fuel for jet engines of the kerosene type												
Kerosene		194										
Gas oils	5238	27703										
Medium oil distillates, other medium fractions	9419											
Heavy fuel black oils	91918	2744	1090	333	516		407	6048	4828	4827		
Petroleum oils, heavy oil dis- tillates				155			14	94	631	735	146	459

Ukraine's Greenhouse Gas Inventory 1990-2023

Propane and butane, liquefied	4068	727	11997	5655	1169	922	3009	71729	9659	6388	343	10594
Ethylene, propylene, petroleum gases, other		15711		12	5			30	340			
Petroleum coke (includ- ing shale)									6			
Other types of oil products	13892		333	210	36		3	579	2403	374		58
Other fuel processing products	1127293	824	830	830	69		145	69247	23236	791	1555	64
Coke oven gas produced as a byproduct 0,47	404981	470339	532432	210	2343		4883	7762	35401	5691		

Table A2.20. Fuel use by IPCC categories in physical units (mobile combustion) in 2023, t

Table A2.20. I del disc by II ee categories		,,,		
Name of fuel	1.A.3.b. Road transport	1.A.3.c. Railways	1.A.3.d. Water Transport	1.A.3.e. Other types of transport
Hard coal				
Briquettes, pellets from hard coal				
Brown coal				
Briquettes, pellets from brown coal				
Non-agglomerated fuel peat				
Briquettes, pellets from peat				
Crude oil, including oil from bituminous materials				
Gas condensate				
Natural gas				191433
Charcoal				
Firewood				
Fuel briquettes and pellets from wood and other natural				
materials				
Biodiesel from oils, sugar and starch crops	186			23
Liquid fuels				1615140
Coke and semi-coke from hard coal, gaseous coke				
Hard, brown coal, and peat tars				
Pitch and pitch coke				
Aviation gasoline				
Motor gasoline	1357765			
Motor fuel composite with bioethanol 5% -30%				
Fuel for jet engines of the gasoline type				
Oil distillates, other light fractions				
Fuel for jet engines of the kerosene type				
Kerosene				
Gas oils	3975744	158634	4321	
Medium oil distillates, other medium fractions				
Heavy fuel black oils				
Petroleum oils, heavy oil distillates	1146			
Propane and butane, liquefied	913831			
Ethylene, propylene, petroleum gases, other				

Name of fuel	1.A.3.b. Road transport	1.A.3.c. Railways	1.A.3.d. Water Transport	1.A.3.e. Other types of transport
Petroleum coke (including shale)				
Other types of oil products				
Other fuel processing products				_
Coke oven gas produced as a byproduct				

A2.10 Other matters related to activity data in Energy sector in 2014-2023

As a result of the illegal occupation of the Autonomous Republic of Crimea and the city of Sevastopol by the Russian Federation and its further armed invasion in certain areas of Donetsk and Luhansk regions, since 2014 some of the territory of Ukraine temporarily remains out of control of the Government of Ukraine. This fact complicates, and sometimes makes impossible, the process of data collecting so fuel consumption at the above-mentioned territories wasn't included in official statistics for 2014 - 2023.

In order to ensure completeness of the GHG emission reporting and to be compliance with the main principles of reporting stated in the Reporting Guidelines according to the decision 24/CP.19, namely the full geographical coverage of the sources and sinks of an Annex I Party, input data for 2014 were adjusted by conducting an analytical study "Development of Proposals and Recommendations on Incorporation of GHG Emission and Absorption in the Special Status Territories (4 Administrative Units) by IPCC Sectors" [14], status of which is "confidential".

Revaluation of data for 2015-2023 was also performed using the results of the study [14] as well as indicative trends and socio-economic parameters in 2015 - 2023.

Main principles of the data revaluation are presented below.

2014 year. To estimate the activity data that were not included in national and regional energy statistics various scientific approaches were used in work [26].

Certain areas of Donetsk and Luhansk regions. In this case, at the stage 1 regional form 4-MTP was analyzed for 2013 and 2014 and the activity data by different IPCC 2006 categories in energy sector was evaluated. At the stage 2 the indicative difference by different IPCC 2006 categories was evaluated and examined being upper limit of potential underestimation (PUL) of activity data in official data sources. At the stage 3 scientifically based decreasing coefficients (DC) for all potential upper limits by IPCC 2006 categories were evaluated. At the stage 4 revaluation of activity data, including fuel consumption, was performed based on PULs and DCs. Received revaluated data (RD) was added to the activity data at the national level estimated using official statistics by different IPCC 2006 categories. Also, uncertainties for all RDs were evaluated based on expert approaches. Obviously, the uncertainties for all RDs are much higher than for official statistical data that led to certain increase of overall uncertainties.

The Autonomous Republic of Crimea and the city of Sevastopol. At the stage 1 regional form 4-MTP was analyzed for 2013 and the activity data equal to PULs by different IPCC 2006 categories in energy sector was evaluated. At the stage 2 scientifically based DCs for all potential upper limits by IPCC 2006 categories was evaluated based on indicative trends and socio-economic parameters in 2014 according to alternative national and international data sources. Stage 4 is similar to previous apprloach.

2015-2023 years. Certain areas of Donetsk and Luhansk regions. Taking into account the limitation of reliable information and the fact that civilians' livelihood was closely related with the territory controlled by the Government of Ukraine the common trends of official energy statistics were equal to DCs, wherein the PULs where equal to RDs in 2014.

The Autonomous Republic of Crimea and the city of Sevastopol. The PULs were equal to RDs in 2014. To identify DCs indicative trends and socio-economic parameters in 2015-2023 were used for different IPCC 2006 categories according to alternative national and international data sources.

ANNEX 3

A3.1 Industrial Processes and Product Use (CRT Sector 2)

A3.1.1 Results of GHG inventory in the Industrial Processes and Product Use sector

Table A3.1.1.1. Greenhouse gas emissions in the category Industrial Processes and product use, kt $CO_{2\text{-eq}}$.

Gas	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Total
1990	111084.50	1351.81	5043.48	0.00	211.99	0.01	117691.79
1991	95113.32	1116.13	4460.89	0.00	169.18	0.02	100859.53
1992	91918.22	1065.67	3842.37	0.00	127.97	0.03	96954.26
1993	74671.65	817.20	3256.96	0.00	129.06	0.06	78874.93
1994	63449.66	650.29	2646.96	0.00	144.93	0.07	66891.91
1995	55124.95	540.40	2108.21	0.00	160.07	0.07	57933.70
1996	53150.50	522.01	2470.55	0.00	128.77	0.07	56271.90
1997	58370.98	604.23	2716.63	6.12	132.14	0.13	61830.23
1998	56930.60	615.06	2186.85	12.14	108.45	0.20	59853.30
1999	59534.89	671.36	2342.29	12.95	91.52	0.32	62653.33
2000	63647.91	748.16	2672.48	14.39	104.04	0.43	67187.42
2001	67377.01	1583.15	2604.07	28.16	100.75	0.48	71693.62
2002	68762.58	2408.82	3183.02	61.78	88.69	1.10	74505.99
2003	71437.86	3149.84	3392.99	101.36	69.36	2.05	78153.45
2004	74316.22	4025.47	2902.90	179.29	83.91	3.17	81510.96
2005	73708.19	3412.93	3348.12	271.93	127.95	4.60	80873.72
2006	77985.80	3326.16	3380.68	378.45	99.93	4.41	85175.42
2007	83910.39	3295.40	4398.85	525.80	139.08	5.36	92274.87
2008	82246.93	1830.19	3986.28	611.68	156.63	9.62	88841.34
2009	65058.28	732.07	2833.68	635.63	48.50	9.65	69317.82
2010	69930.11	1198.33	3795.75	715.32	23.97	10.01	75673.50
2011	74138.90	2841.78	4610.43	826.00	0.00	8.67	82425.78
2012	71213.99	2391.57	4333.46	852.21	0.00	11.33	78802.55
2013	68197.67	1002.80	3486.62	914.18	0.00	12.93	73614.20
2014	58182.41	709.15	2987.56	896.34	0.00	17.24	62792.69
2015	53339.09	624.19	2276.01	826.33	0.00	20.25	57085.87
2016	54521.52	668.56	2725.82	943.69	0.00	25.12	58884.71
2017	47767.89	1630.03	2104.05	1076.53	0.00	29.43	52607.94
2018	50520.50	3394.40	2001.60	1483.17	0.00	34.47	57434.15
2019	50298.05	3779.39	2981.84	1849.15	0.00	39.99	58948.41
2020	48399.39	3870.42	3204.55	2000.40	0.00	44.63	57519.40
2021	50206.87	4365.10	3436.17	2245.08	0.00	50.34	60303.55
2022	17157.12	722.45	1294.82	2329.77	0.00	54.23	21558.38
2023	16555.38	175.33	1867.07	2423.14	0.00	57.21	21078.12

Table A3.1.1.2. Greenhouse gas emissions from Cement Production (CRF category 2.A.1)

Year	1990	1991	1992	1993	1994	1995	1996	1997
Cement production, kt	22729.10	21744.50	20121.10	15011.60	11434.70	7626.80	5020.60	5101.00
Clinker production, kt	17455.70	16559.20	16084.60	11879.00	9267.30	6339.20	4027.40	4510.50
CaO content in clinker, %	65.46	65.46	65.56	65.72	65.84	65.64	65.86	65.66
MgO content in clinker, %	1.88	1.81	1.80	1.63	1.94	1.85	2.28	2.23
CaO content in clinker from non-carbonate source, %	28.10	28.10	23.46	23.17	25.27	22.85	9.52	9.35
MgO content in clinker from non-carbonate source, %	3.33	3.16	2.91	2.90	2.98	2.80	1.21	1.23
Emission factor, tons of CO ₂ /ton of clinker	0.528	0.528	0.529	0.528	0.528	0.527	0.526	0.525
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Implied emission factor, tons of CO ₂ /ton of clinker	0.5386	0.5386	0.5396	0.5386	0.5386	0.5375	0.5365	0.5355
CO ₂ emissions, kt	9400.94	8918.12	8678.92	6397.55	4990.99	3407.57	2160.78	2415.37
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
SO ₂ emissions, kt	6.8187	6.5234	6.0363	4.5035	3.4304	2.2880	1.5062	1.5303
Year	1998	1999	2000	2001	2002	2003	2004	2005
Cement production, kt	5591.20	5828.10	5311.40	5786.30	7156.50	8922.70	10647.84	12164.54
Cl: 1- 1- 1- 1-							044-40	0101 00
Clinker production, kt	5215.40	4742.79	4239.06	4647.77	5291.62	6784.10	8117.40	9181.00
CaO content in clinker, %	5215.40 65.55	4742.79 65.51	4239.06 65.84	4647.77 65.44	5291.62 65.82	6784.10 65.58	8117.40 65.61	65.69
CaO content in clinker, %	65.55	65.51	65.84	65.44	65.82	65.58	65.61	65.69
CaO content in clinker, % MgO content in clinker, %	65.55 2.30	65.51 2.39	65.84 2.24	65.44 2.12	65.82 1.80	65.58 1.62	65.61 2.01	65.69 1.95
CaO content in clinker, % MgO content in clinker, % CaO content in clinker from non-carbonate source, %	65.55 2.30 10.89	65.51 2.39 9.29	65.84 2.24 10.80	65.44 2.12 7.21	65.82 1.80 6.32	65.58 1.62 6.23	65.61 2.01 5.13	65.69 1.95 5.31
CaO content in clinker, % MgO content in clinker, % CaO content in clinker from non-carbonate source, % MgO content in clinker from non-carbonate source, %	65.55 2.30 10.89 1.31	65.51 2.39 9.29 1.09	65.84 2.24 10.80 1.40	65.44 2.12 7.21 0.81	65.82 1.80 6.32 0.85	65.58 1.62 6.23 0.75	65.61 2.01 5.13 0.78	65.69 1.95 5.31 0.73
CaO content in clinker, % MgO content in clinker, % CaO content in clinker from non-carbonate source, % MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker	65.55 2.30 10.89 1.31 0.524	65.51 2.39 9.29 1.09 0.524	65.84 2.24 10.80 1.40 0.523	65.44 2.12 7.21 0.81 0.522	65.82 1.80 6.32 0.85 0.522	65.58 1.62 6.23 0.75 0.522	65.61 2.01 5.13 0.78 0.515	65.69 1.95 5.31 0.73 0.511
CaO content in clinker, % MgO content in clinker, % CaO content in clinker from non-carbonate source, % MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker Correction factor for CKD, p.u.	65.55 2.30 10.89 1.31 0.524 1.02	65.51 2.39 9.29 1.09 0.524 1.02	65.84 2.24 10.80 1.40 0.523 1.02	65.44 2.12 7.21 0.81 0.522 1.02	65.82 1.80 6.32 0.85 0.522 1.02	65.58 1.62 6.23 0.75 0.522 1.02	65.61 2.01 5.13 0.78 0.515 1.02	65.69 1.95 5.31 0.73 0.511 1.02
CaO content in clinker, % MgO content in clinker, % CaO content in clinker from non-carbonate source, % MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker Correction factor for CKD, p.u. Implied emission factor, tons of CO ₂ /ton of clinker	65.55 2.30 10.89 1.31 0.524 1.02 0.5345	65.51 2.39 9.29 1.09 0.524 1.02 0.5345	65.84 2.24 10.80 1.40 0.523 1.02 0.5335	65.44 2.12 7.21 0.81 0.522 1.02 0.5324	65.82 1.80 6.32 0.85 0.522 1.02 0.5324	65.58 1.62 6.23 0.75 0.522 1.02 0.5324	65.61 2.01 5.13 0.78 0.515 1.02 0.5253	65.69 1.95 5.31 0.73 0.511 1.02 0.5212

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014
Cement production, kt	13739.18	15018.83	14918.20	9503.37	9472.12	10579.64	9842.70	9856.50	8854.35
Clinker production, kt	10522.00	11757.40	11981.30	5038.30	5583.90	7484.60	6279.198	6404.20	6064.639
CaO content in clinker, %	65.84	65.90	65.95	66.09	65.88	65.81	65.66	65.54	65.74
MgO content in clinker, %	1.80	1.76	1.80	1.54	1.49	1.28	1.32	1.14	1.59
CaO content in clinker from non-carbonate source, %	6.32	5.03	4.82	4.01	2.23	2.41	2.18	0.70	0.0048
MgO content in clinker from non-carbonate source, %	0.91	0.68	0.68	0.55	0.30	0.07	0.11	0.08	0.0016
Emission factor, tons of CO ₂ /ton of clinker	0.511	0.514	0.515	0.504	0.506	0.511	0.512	0.520	0.533
Correction factor for CKD, p.u.	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
Implied emission factor, tons of CO ₂ /ton of clinker	0.5212	0.5243	0.5253	0.5141	0.5161	0.5212	0.5226	0.5304	0.5440
CO ₂ emissions, kt	5484.27	6164.16	6293.77	2590.08	2881.96	3901.12	3281.46	3396.78	3299.19
SO ₂ emission factor, kg/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
SO ₂ emissions, kt	4.121754	4.505649	4.47546	2.851011	2.841636	3.173892	2.95281	2.95695	2.65
Year	2015	2016	2017	2018	2019	2020	2021	2022	2023
Cement production, kt	8848.75	9111.70	9492.6	9456.7	9578.8	10134.55	11403.44	6697.86	8331.59
Clinker production, kt	6062.925	6695.06	6551.55	6845.71	7466.2	7648.45	8175.13	5438.3	6213.15
CaO content in clinker, %	65.51	65.75	65.93	65.95	66.09	66.04	65.94	65.97	66.197
MgO content in clinker, %	1.43	1.37	1.35	1.34	1.44	1.35	1.34	1.46	1.221
C-O									
CaO content in clinker from non-carbonate source, %	0.0	0.0	0.0	0.0	1.83	1.54	1.53	0.84	0.960
MgO content in clinker from non-carbonate source, %	0.0	0.0	0.0	0.0	1.83	1.54 0.0	1.53 0.0	0.84	0.960 0.000
MgO content in clinker from non-carbonate source, %	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000
MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker	0.0 0.530	0.0 0.531	0.0 0.532	0.0 0.532	0.0 0.52	0.0 0.521	0.0 0.52	0.0 0.527	0.000 0.525
MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker Correction factor for CKD, p.u.	0.0 0.530 1.02	0.0 0.531 1.02	0.0 0.532 1.02	0.0 0.532 1.02	0.0 0.52 1.02	0.0 0.521 1.02	0.0 0.52 1.02	0.0 0.527 1.02	0.000 0.525 1.02
MgO content in clinker from non-carbonate source, % Emission factor, tons of CO ₂ /ton of clinker Correction factor for CKD, p.u. Implied emission factor, tons of CO ₂ /ton of clinker	0.0 0.530 1.02 0.5406	0.0 0.531 1.02 0.5417	0.0 0.532 1.02 0.543	0.0 0.532 1.02 0.543	0.0 0.52 1.02 0.53	0.0 0.521 1.02 0.531	0.0 0.52 1.02 0.531	0.0 0.527 1.02 0.538	0.000 0.525 1.02 0.536

Table A3.1.1.3. Greenhouse gas emissions from Lime Production (CRF category 2.A.2)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Amount of lime produced, kt	8676.60	7648.30	7484.10	5923.80	4662.70	3901.90	3339.40	3534.60	3352.30	3386.70	3631.40	4366.60	4456.10	4895.90	5301.67	5341.74	5450.25
Amount of quick lime, kt	3902.60	3440.09	3366.23	2664.43	2097.21	1755.01	1502.01	1589.81	1507.81	1523.29	1633.35	1964.03	2004.29	2202.10	2384.61	2719.18	2671.66
Amount of slaked lime, kt	4774.00	4208.21	4117.87	3259.37	2565.49	2146.89	1837.39	1944.79	1844.49	1863.41	1998.05	2402.57	2451.81	2693.80	2917.06	2622.56	2778.59
Amount of calcium quick lime, kt	3317.21	2924.08	2861.30	2264.77	1782.63	1491.76	1276.71	1351.34	1281.64	1294.80	1388.35	1669.43	1703.65	1871.79	2026.92	2311.30	2270.91
Amount of dolomite quick lime, kt	585.39	516.01	504.93	399.66	314.58	263.25	225.30	238.47	226.17	228.49	245.00	294.60	300.64	330.32	357.69	407.88	400.75
Amount of slaked lime in dry mass, kt	3437.28	3029.91	2964.87	2346.75	1847.15	1545.76	1322.92	1400.25	1328.03	1341.66	1438.60	1729.85	1765.30	1939.54	2100.28	1888.24	2000.58
Amount of lime in dry mass, kt	7339.88	6470.00	6331.10	5011.18	3944.36	3300.77	2824.93	2990.06	2835.84	2864.95	3071.95	3693.88	3769.59	4141.64	4484.89	4607.42	4672.24
Amount of CaO in quick calcium lime, kt	3167.94	2792.49	2732.54	2162.85	1702.41	1424.63	1219.26	1290.53	1223.96	1236.53	1325.87	1594.30	1626.98	1787.55	1935.71	2207.29	2168.72
Amount of MgO in quick calcium lime, kt	46.44	40.94	40.06	31.71	24.96	20.88	17.87	18.92	17.94	18.13	19.44	23.37	23.85	26.20	28.38	32.36	31.79
Amount of CaO in quick dolomite lime, kt	327.82	288.97	282.76	223.81	176.17	147.42	126.17	133.54	126.66	127.96	137.20	164.98	168.36	184.98	200.31	228.41	224.42
Amount of MgO in quick dolomite lime, kt	231.23	203.83	199.45	157.87	124.26	103.98	88.99	94.20	89.34	90.25	96.78	116.37	118.75	130.47	141.29	161.11	158.30
Amount of CaO and MgO in quick lime, kt	2577.96	2272.43	2223.65	1760.06	1385.36	1159.32	992.19	1050.19	996.02	1006.24	1078.95	1297.39	1323.98	1454.65	1575.21	1416.18	1500.44
Stoichiometric values for CaO	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785
Stoichiometric values for MgO	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913
LKD	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
CO ₂ emissions from calcium quick lime, kt	2579.81	2274.07	2225.25	1761.32	1386.36	1160.15	992.90	1050.94	996.74	1006.97	1079.73	1298.32	1324.94	1455.70	1576.35	1797.51	1766.10
CO ₂ emissions from dolomite quick lime, kt	477.82	421.19	412.15	326.22	256.77	214.88	183.90	194.65	184.61	186.51	199.98	240.47	245.40	269.62	291.96	332.93	327.11
CO ₂ emissions from slaked lime, kt	2064.17	1819.54	1780.48	1409.28	1109.26	928.27	794.45	840.88	797.52	805.70	863.91	1038.82	1060.11	1164.74	1261.27	1133.94	1201.40
Emission factor from quick lime, t/t	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Emission factor from slaked lime, t/t	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Total CO ₂ emissions, kt	5121.81	4514.80	4417.87	3496.82	2752.40	2303.29	1971.25	2086.48	1978.87	1999.17	2143.62	2577.61	2630.44	2890.05	3129.58	3264.38	3294.61
Total emission factor, t/t	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.698	0.709	0.705

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Amount of lime produced, kt	5687.77	5127.97	4100.74	4241.08	4578.70	4482.50	3968.30	3183.80	3022.35	3324.90	2901.73	3113.19	2922.19	3045.68	3088.61	1313.45
Amount of quick lime, kt	2811.51	2407.59	2403.38	2494.77	4101.10	4047.80	3739.50	2884.89	2758.35	2946.66	2529.15	2765.36	2700.58	2859.59	2898.50	1194.08
Amount of slaked lime, kt	2876.25	2720.38	1697.36	1746.31	477.60	434.70	228.80	298.91	264.00	378.24	372.58	347.82	221.60	186.09	190.11	119.37
Amount of calcium quick lime, kt	2389.78	2046.45	2042.87	2120.55	3485.94	3440.63	3178.58	2452.15	2344.59	2504.66	2149.77	2350.56	2295.50	2430.65	2463.72	1014.97
Amount of dolomite quick lime, kt	421.73	361.14	360.51	374.22	615.17	607.17	560.93	432.73	413.75	442.00	379.37	414.80	405.09	428.94	434.77	179.11
Amount of slaked lime in dry mass, kt	2070.90	1958.67	1222.10	1257.34	343.87	312.98	164.74	215.22	190.08	272.33	268.26	250.43	159.55	133.99	136.88	85.95
Amount of lime in dry mass, kt	4882.41	4366.26	3625.48	3752.11	4444.97	4360.78	3904.24	3100.10	2948.43	3218.99	2797.41	3015.80	2860.14	2993.57	3035.38	1280.03
Amount of CaO in quick calcium lime, kt	2282.24	1954.36	1950.94	2025.13	3329.07	3285.80	3035.54	2341.81	2239.09	2391.95	2053.03	2244.79	2192.20	2321.27	2352.86	969.30
Amount of MgO in quick calcium lime, kt	33.46	28.65	28.60	29.69	48.80	48.17	44.50	34.33	32.82	35.07	30.10	32.91	32.14	34.03	34.49	14.21
Amount of CaO in quick dolomite lime, kt	236.17	202.24	201.88	209.56	344.49	340.02	314.12	242.33	231.70	247.52	212.45	232.29	226.85	240.21	243.47	100.30
Amount of MgO in quick dolomite lime, kt	166.58	142.65	142.40	147.82	242.99	239.83	221.57	170.93	163.43	174.59	149.85	163.85	160.01	169.43	171.74	70.75
Amount of CaO and MgO in quick lime, kt	1553.18	1469.01	916.57	943.01	257.90	234.74	123.55	161.41	142.56	204.25	201.19	187.82	119.67	100.49	102.66	64.46
Stoichiometric values for CaO	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785
Stoichiometric values for MgO	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913
LKD	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
CO ₂ emissions from calcium quick lime, kt	1858.55	1591.54	1588.75	1649.17	2711.03	2675.80	2472.00	1907.05	1823.41	1947.89	1671.89	1828.05	1785.22	1890.33	1916.05	789.35
CO ₂ emissions from dolomite quick lime, kt	344.23	294.78	294.26	305.45	502.12	495.60	457.85	353.21	337.72	360.78	309.66	338.58	330.65	350.12	354.88	146.20
CO ₂ emissions from slaked lime, kt	1243.63	1176.23	733.90	755.07	206.50	187.95	98.93	129.24	114.15	163.54	161.10	150.39	95.82	80.46	82.20	51.61
Emission factor from quick lime, t/t	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Emission factor from slaked lime, t/t	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Total CO ₂ emissions, kt	3446.41	3446.41	2616.92	2709.68	3419.66	3359.35	3028.77	2389.51	2275.28	2472.21	2142.65	2317.02	2211.69	2320.91	2353.13	987.16
Total emission factor, t/t	0.706	0.706	0.722	0.722	0.769	0.770	0.776	0.771	0.772	0.768	0.766	0.768	0.773	0.775	0.775	0.771

Year	2023
Amount of lime produced, kt	1777.10
Amount of quick lime, kt	1621.60
Amount of slaked lime, kt	155.50
Amount of calcium quick lime, kt	1378.36
Amount of dolomite quick lime, kt	243.24
Amount of slaked lime in dry mass, kt	111.96
Amount of lime in dry mass, kt	1733.56
Amount of CaO in quick calcium lime, kt	1316.33
Amount of MgO in quick calcium lime, kt	19.30
Amount of CaO in quick dolomite lime, kt	136.21
Amount of MgO in quick dolomite lime, kt	96.08
Amount of CaO and MgO in quick lime, kt	83.97
Stoichiometric values for CaO	0.785
Stoichiometric values for MgO	0.913
LKD	1.02
CO ₂ emissions from calcium quick lime, kt	1071.96
CO ₂ emissions from dolomite quick lime, kt	198.54
CO ₂ emissions from slaked lime, kt	67.24
Emission factor from quick lime, t/t	0.78
Emission factor from slaked lime, t/t	0.60
Total CO ₂ emissions, kt	1337.74
Total emission factor, t/t	0.772

Table A3.1.1.4. Greenhouse gas emissions from Glass Production (CRF category 2.A.3)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total glass production, kt	995.01	990.35	913.39	810.72	686.71	653.35	491.10	414.86	397.93	406.34	407.32	1053.87	1085.80	990.52	999.05	993.02	1090.96
Limestone use, kt	23.29	23.09	19.84	15.50	10.25	8.84	10.89	7.67	6.95	7.31	7.35	76.72	78.07	74.04	74.40	74.15	81.55
Dolomite use, kt	198.17	197.29	182.60	163.00	139.33	132.97	98.08	83.53	80.30	81.90	82.09	168.08	174.17	155.98	157.61	156.46	171.80
Limestone and dolomite use, kt	221.47	220.38	202.43	178.50	149.58	141.81	108.97	91.19	87.25	89.21	89.44	244.80	252.24	230.03	232.02	230.61	253.35
Use of soda in glass production, kt	197.43	197.68	187.09	173.38	146.86	139.73	106.70	90.16	86.79	89.39	88.99	244.49	236.39	215.86	215.38	213.11	237.56
CO ₂ emissions from use of limestone, kt	10.19	10.11	8.73	6.78	4.50	3.89	4.76	3.34	3.04	3.16	3.20	33.75	34.33	32.58	32.74	32.63	35.88
CO ₂ emissions from use of dolomite, kt	94.08	94.03	86.50	75.72	65.17	61.86	45.79	39.05	37.62	38.54	38.61	79.06	82.82	74.21	75.27	74.88	82.34
CO ₂ emissions from use of soda, kt	82.75	82.86	78.42	72.67	61.56	58.57	44.72	37.79	36.38	37.47	37.30	102.48	99.08	90.48	90.28	89.33	99.57
CO ₂ emission factor for limestone use, t/t	0.43763	0.438	0.440	0.438	0.439	0.440	0.437	0.436	0.437	0.432	0.436	0.440	0.440	0.440	0.440	0.440	0.440
CO ₂ emission factor for dolomite use, t/t	0.475	0.477	0.474	0.465	0.468	0.465	0.467	0.468	0.469	0.471	0.470	0.470	0.476	0.476	0.478	0.479	0.479
CO ₂ emission factor for soda use, t/t	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
CO ₂ emissions from glass production, kt	187.02	187.00	173.66	155.17	131.22	124.31	95.27	80.19	77.04	79.16	79.12	215.29	216.23	197.27	198.28	196.83	217.80
CO ₂ emission factor for glass production, t/t	0.188	0.189	0.190	0.191	0.191	0.190	0.194	0.193	0.194	0.195	0.194	0.204	0.199	0.199	0.198	0.198	0.200
NMVOC emission factor for glass production, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
NMVOC emissions from glass production, kt	4.48	4.46	4.11	3.65	3.09	2.94	2.21	1.87	1.79	1.83	1.83	4.74	4.89	4.46	4.50	4.47	4.91
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1 (11)	2007	2000	2009	2010	2011	2012	2013	2017	2013	2010	2017	2010	2017	2020	2021	2022	2023
Total glass production, kt	1218.02	1328.01	988.05	1190.22	1434.95	1377.75	1364.44		1181.29	1231.49	1331.84		1410.47	1350.74	1496.40	664.22	662.89
															-		
Total glass production, kt	1218.02	1328.01	988.05	1190.22	1434.95	1377.75	1364.44	1316.39	1181.29	1231.49	1331.84	1315.86	1410.47	1350.74	1496.40	664.22	662.89
Total glass production, kt Limestone use, kt	1218.02 91.44	1328.01 100.75	988.05 76.17	1190.22 91.60	1434.95 112.62	1377.75 107.42	1364.44 106.35	1316.39 103.35	1181.29 92.54	1231.49 96.57	1331.84 104.72	1315.86 103.45	1410.47 110.85	1350.74 106.11	1496.40 118.05	664.22 52.4	662.89
Total glass production, kt Limestone use, kt Dolomite use, kt	1218.02 91.44 191.40	1328.01 100.75 207.61	988.05 76.17 153.22	91.60 184.73	1434.95 112.62 220.47	1377.75 107.42 212.41	1364.44 106.35 210.39	1316.39 103.35 202.89	1181.29 92.54 182.27	1231.49 96.57 189.91	1331.84 104.72 205.10	1315.86 103.45 202.66	1410.47 110.85 217.26	1350.74 106.11 208.11	1496.40 118.05 230.04	664.22 52.4 102.11	662.89 52.30 101.91
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt	1218.02 91.44 191.40 282.85	1328.01 100.75 207.61 308.36	988.05 76.17 153.22 229.39	91.60 184.73 276.33	1434.95 112.62 220.47 333.08	1377.75 107.42 212.41 319.83	1364.44 106.35 210.39 316.74	1316.39 103.35 202.89 306.24	1181.29 92.54 182.27 274.81	1231.49 96.57 189.91 286.49	1331.84 104.72 205.10 309.82	1315.86 103.45 202.66 306.11	1410.47 110.85 217.26 328.12	1350.74 106.11 208.11 314.22	1496.40 118.05 230.04 348.09	664.22 52.4 102.11 154.51	662.89 52.30 101.91 154.20
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt	1218.02 91.44 191.40 282.85 265.60	1328.01 100.75 207.61 308.36 289.94	988.05 76.17 153.22 229.39 214.64	1190.22 91.60 184.73 276.33 256.30	1434.95 112.62 220.47 333.08 308.38	1377.75 107.42 212.41 319.83 299.57	1364.44 106.35 210.39 316.74 299.79	1316.39 103.35 202.89 306.24 284.87	1181.29 92.54 182.27 274.81 262.78	1231.49 96.57 189.91 286.49 271.07	1331.84 104.72 205.10 309.82 285.19	1315.86 103.45 202.66 306.11 284.66	1410.47 110.85 217.26 328.12 300.96	1350.74 106.11 208.11 314.22 280.54	1496.40 118.05 230.04 348.09 308.6	664.22 52.4 102.11 154.51 133.45	662.89 52.30 101.91 154.20 139.27
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt	1218.02 91.44 191.40 282.85 265.60 40.25	1328.01 100.75 207.61 308.36 289.94 44.34	988.05 76.17 153.22 229.39 214.64 33.52	1190.22 91.60 184.73 276.33 256.30 40.32	1434.95 112.62 220.47 333.08 308.38 49.23	1377.75 107.42 212.41 319.83 299.57 46.28	1364.44 106.35 210.39 316.74 299.79 45.50	1316.39 103.35 202.89 306.24 284.87 44.46	1181.29 92.54 182.27 274.81 262.78 40.39	1231.49 96.57 189.91 286.49 271.07 42.14	1331.84 104.72 205.10 309.82 285.19 45.70	1315.86 103.45 202.66 306.11 284.66 45.49	1410.47 110.85 217.26 328.12 300.96 48.84	1350.74 106.11 208.11 314.22 280.54 46.59	1496.40 118.05 230.04 348.09 308.6 51.68	664.22 52.4 102.11 154.51 133.45 22.94	662.89 52.30 101.91 154.20 139.27 23.02
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of dolomite, kt	1218.02 91.44 191.40 282.85 265.60 40.25 91.93	1328.01 100.75 207.61 308.36 289.94 44.34 99.46	988.05 76.17 153.22 229.39 214.64 33.52 73.31	1190.22 91.60 184.73 276.33 256.30 40.32 88.25	1434.95 112.62 220.47 333.08 308.38 49.23 104.05	1377.75 107.42 212.41 319.83 299.57 46.28 99.68	1364.44 106.35 210.39 316.74 299.79 45.50 99.27	1316.39 103.35 202.89 306.24 284.87 44.46 95.17	1181.29 92.54 182.27 274.81 262.78 40.39 87.33	1231.49 96.57 189.91 286.49 271.07 42.14 91.70	1331.84 104.72 205.10 309.82 285.19 45.70 98.85	1315.86 103.45 202.66 306.11 284.66 45.49 95.26	1410.47 110.85 217.26 328.12 300.96 48.84 103.79	1350.74 106.11 208.11 314.22 280.54 46.59 98.88	1496.40 118.05 230.04 348.09 308.6 51.68 109.15	664.22 52.4 102.11 154.51 133.45 22.94 48.72	662.89 52.30 101.91 154.20 139.27 23.02 46.94
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of dolomite, kt CO ₂ emissions from use of soda, kt	91.44 191.40 282.85 265.60 40.25 91.93 111.33	1328.01 100.75 207.61 308.36 289.94 44.34 99.46 121.53	988.05 76.17 153.22 229.39 214.64 33.52 73.31 89.96	91.60 184.73 276.33 256.30 40.32 88.25 107.43	1434.95 112.62 220.47 333.08 308.38 49.23 104.05 129.26	1377.75 107.42 212.41 319.83 299.57 46.28 99.68 125.56	1364.44 106.35 210.39 316.74 299.79 45.50 99.27 125.66	1316.39 103.35 202.89 306.24 284.87 44.46 95.17 119.40	92.54 182.27 274.81 262.78 40.39 87.33 109.6	1231.49 96.57 189.91 286.49 271.07 42.14 91.70 113.05	1331.84 104.72 205.10 309.82 285.19 45.70 98.85 118.94	1315.86 103.45 202.66 306.11 284.66 45.49 95.26 118.72	1410.47 110.85 217.26 328.12 300.96 48.84 103.79 125.52	1350.74 106.11 208.11 314.22 280.54 46.59 98.88 117.00	1496.40 118.05 230.04 348.09 308.6 51.68 109.15 128.71	52.4 102.11 154.51 133.45 22.94 48.72 55.66	662.89 52.30 101.91 154.20 139.27 23.02 46.94 58.08
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of soda, kt CO ₂ emission factor for limestone use, t/t	91.44 191.40 282.85 265.60 40.25 91.93 111.33 0.440	1328.01 100.75 207.61 308.36 289.94 44.34 99.46 121.53 0.440	988.05 76.17 153.22 229.39 214.64 33.52 73.31 89.96 0.440	91.60 184.73 276.33 256.30 40.32 88.25 107.43 0.440	1434.95 112.62 220.47 333.08 308.38 49.23 104.05 129.26 0.437	1377.75 107.42 212.41 319.83 299.57 46.28 99.68 125.56 0.431	1364.44 106.35 210.39 316.74 299.79 45.50 99.27 125.66 0.428	1316.39 103.35 202.89 306.24 284.87 44.46 95.17 119.40 0.430	92.54 182.27 274.81 262.78 40.39 87.33 109.6 0.436	1231.49 96.57 189.91 286.49 271.07 42.14 91.70 113.05 0.436	1331.84 104.72 205.10 309.82 285.19 45.70 98.85 118.94 0.436	1315.86 103.45 202.66 306.11 284.66 45.49 95.26 118.72 0.440	1410.47 110.85 217.26 328.12 300.96 48.84 103.79 125.52 0.441	1350.74 106.11 208.11 314.22 280.54 46.59 98.88 117.00 0.439	1496.40 118.05 230.04 348.09 308.6 51.68 109.15 128.71 0.438	52.4 102.11 154.51 133.45 22.94 48.72 55.66 0.438	662.89 52.30 101.91 154.20 139.27 23.02 46.94 58.08 0.440
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of soda, kt CO ₂ emission factor for limestone use, t/t CO ₂ emission factor for dolomite use, t/t	91.44 191.40 282.85 265.60 40.25 91.93 111.33 0.440 0.480	1328.01 100.75 207.61 308.36 289.94 44.34 99.46 121.53 0.440 0.479	988.05 76.17 153.22 229.39 214.64 33.52 73.31 89.96 0.440 0.478	91.60 184.73 276.33 256.30 40.32 88.25 107.43 0.440 0.478	1434.95 112.62 220.47 333.08 308.38 49.23 104.05 129.26 0.437 0.472	1377.75 107.42 212.41 319.83 299.57 46.28 99.68 125.56 0.431 0.469	1364.44 106.35 210.39 316.74 299.79 45.50 99.27 125.66 0.428 0.472	1316.39 103.35 202.89 306.24 284.87 44.46 95.17 119.40 0.430 0.466	92.54 182.27 274.81 262.78 40.39 87.33 109.6 0.436 0.479	1231.49 96.57 189.91 286.49 271.07 42.14 91.70 113.05 0.436 0.483	1331.84 104.72 205.10 309.82 285.19 45.70 98.85 118.94 0.436 0.482	1315.86 103.45 202.66 306.11 284.66 45.49 95.26 118.72 0.440 0.470	1410.47 110.85 217.26 328.12 300.96 48.84 103.79 125.52 0.441 0.478	1350.74 106.11 208.11 314.22 280.54 46.59 98.88 117.00 0.439 0.475	1496.40 118.05 230.04 348.09 308.6 51.68 109.15 128.71 0.438 0.475	664.22 52.4 102.11 154.51 133.45 22.94 48.72 55.66 0.438 0.477	662.89 52.30 101.91 154.20 139.27 23.02 46.94 58.08 0.440 0.461
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of soda, kt CO ₂ emission factor for limestone use, t/t CO ₂ emission factor for soda use, t/t	91.44 191.40 282.85 265.60 40.25 91.93 111.33 0.440 0.480	1328.01 100.75 207.61 308.36 289.94 44.34 99.46 121.53 0.440 0.479 0.42	988.05 76.17 153.22 229.39 214.64 33.52 73.31 89.96 0.440 0.478 0.42	91.60 184.73 276.33 256.30 40.32 88.25 107.43 0.440 0.478	1434.95 112.62 220.47 333.08 308.38 49.23 104.05 129.26 0.437 0.472 0.42	1377.75 107.42 212.41 319.83 299.57 46.28 99.68 125.56 0.431 0.469 0.42	1364.44 106.35 210.39 316.74 299.79 45.50 99.27 125.66 0.428 0.472 0.42	1316.39 103.35 202.89 306.24 284.87 44.46 95.17 119.40 0.430 0.466 0.42	92.54 182.27 274.81 262.78 40.39 87.33 109.6 0.436 0.479 0.42	1231.49 96.57 189.91 286.49 271.07 42.14 91.70 113.05 0.436 0.483 0.42	1331.84 104.72 205.10 309.82 285.19 45.70 98.85 118.94 0.436 0.482 0.42	1315.86 103.45 202.66 306.11 284.66 45.49 95.26 118.72 0.440 0.470 0.42	1410.47 110.85 217.26 328.12 300.96 48.84 103.79 125.52 0.441 0.478 0.42	1350.74 106.11 208.11 314.22 280.54 46.59 98.88 117.00 0.439 0.475 0.42	1496.40 118.05 230.04 348.09 308.6 51.68 109.15 128.71 0.438 0.475 0.42	52.4 102.11 154.51 133.45 22.94 48.72 55.66 0.438 0.477 0.42	662.89 52.30 101.91 154.20 139.27 23.02 46.94 58.08 0.440 0.461 0.42
Total glass production, kt Limestone use, kt Dolomite use, kt Limestone and dolomite use, kt Use of soda in glass production, kt CO ₂ emissions from use of limestone, kt CO ₂ emissions from use of dolomite, kt CO ₂ emissions from use of soda, kt CO ₂ emission factor for limestone use, t/t CO ₂ emission factor for dolomite use, t/t CO ₂ emission factor for soda use, t/t CO ₂ emissions from glass production, kt	91.44 191.40 282.85 265.60 40.25 91.93 111.33 0.440 0.480 0.42 243.50	1328.01 100.75 207.61 308.36 289.94 44.34 99.46 121.53 0.440 0.479 0.42 265.33	988.05 76.17 153.22 229.39 214.64 33.52 73.31 89.96 0.440 0.478 0.42 196.79	91.60 184.73 276.33 256.30 40.32 88.25 107.43 0.440 0.478 0.42 236.00	1434.95 112.62 220.47 333.08 308.38 49.23 104.05 129.26 0.437 0.472 0.42 282.54	1377.75 107.42 212.41 319.83 299.57 46.28 99.68 125.56 0.431 0.469 0.42 271.52	1364.44 106.35 210.39 316.74 299.79 45.50 99.27 125.66 0.428 0.472 0.42 270.42	1316.39 103.35 202.89 306.24 284.87 44.46 95.17 119.40 0.430 0.466 0.42 259.04	92.54 182.27 274.81 262.78 40.39 87.33 109.6 0.436 0.479 0.42 237.33	1231.49 96.57 189.91 286.49 271.07 42.14 91.70 113.05 0.436 0.483 0.42 246.9	1331.84 104.72 205.10 309.82 285.19 45.70 98.85 118.94 0.436 0.482 0.42 263.49	1315.86 103.45 202.66 306.11 284.66 45.49 95.26 118.72 0.440 0.470 0.42 259.48	1410.47 110.85 217.26 328.12 300.96 48.84 103.79 125.52 0.441 0.478 0.42 278.14	1350.74 106.11 208.11 314.22 280.54 46.59 98.88 117.00 0.439 0.475 0.42	1496.40 118.05 230.04 348.09 308.6 51.68 109.15 128.71 0.438 0.475 0.42 289.54	52.4 102.11 154.51 133.45 22.94 48.72 55.66 0.438 0.477 0.42	662.89 52.30 101.91 154.20 139.27 23.02 46.94 58.08 0.440 0.461 0.42 128.04

Table A3.1.1.5. Greenhouse gas emissions from Ammonia Production (CRF category 2.B.1)

Year	1990	1991	1992	1993	1994	1995	1996	1997
Amount of ammonia produced, kt	4863.90	4603.60	4719.30	3916.50	3539.50	3776.30	4017.20	4132.20
Natural gas consumption of, mln m3	6122.5476	5841.0937	6193.6565	5003.9750	4697.8722	4687.2946	5179.1550	5062.3066
Carbon content in natural gas, t/TJ	15.18	15.18	15.18	15.18	15.18	15.18	15.18	15.18
Net calorific value of fuel combustion, TJ/mln m ³	0.03335	0.03338	0.03339	0.03340	0.03340	0.03340	0.03340	0.03340
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Urea production, kt	2137.69	2228.52	2368.45	2347.16	2284.82	2419.75	2480.24	2437.9
Stoichiometric ratio of CO ₂ to urea	0.733	0.733	0.733	0.733	0.733	0.733	0.733	0.733
CO ₂ emission factor, t/t	2.015	2.002	2.071	1.936	1.994	1.838	1.945	1.845
CO emission factor, t/t	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006
NMVOC emission factor, t/t	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009
NO _x emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
SO ₂ emission factor, t/t	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
CO ₂ emissions, kt	9798.963	9218.379	9775.251	7581.556	7059.088	6941.392	7811.609	7625.275
CO emissions, kt	0.0292	0.0276	0.0283	0.0235	0.0212	0.0227	0.0241	0.0248
NMVOC emissions, kt	0.4378	0.4143	0.4247	0.3525	0.3186	0.3399	0.3615	0.3719
NO _x emissions, t/t	4.8639	4.6036	4.7193	3.9165	3.5395	3.7763	4.0172	4.1322
SO ₂ emissions, kt	0.1459	0.1381	0.1416	0.1175	0.1062	0.1133	0.1205	0.1240
502 chiissions, Kt	0.1433	0.1361	0.1710	0.11/5	0.1002	0.1133	0.1203	0.1270
Year	1998	1999	2000	2001	2002	2003	2004	2005
				2001 4500.00	2002 4488.60	2003 4674.40	2004 4717.10	
Year	1998	1999	2000	2001	2002	2003	2004	2005
Year Amount of ammonia produced, kt	1998 3984.00 4809.0764 15.18	1999 4541.20	2000 4351.30	2001 4500.00	2002 4488.60	2003 4674.40	2004 4717.10	2005 5217.50
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3	1998 3984.00 4809.0764 15.18 0.03340	1999 4541.20 5387.3959 15.18 0.03340	2000 4351.30 5138.8962 15.18 0.03340	2001 4500.00 5297.4191 15.18 0.03340	2002 4488.60 5254.5684 15.18 0.03340	2003 4674.40 5491.3449 15.18 0.03340	2004 4717.10 5483.1217 15.18 0.03340	2005 5217.50 5862.7091 15.19 0.03340
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ	1998 3984.00 4809.0764 15.18	1999 4541.20 5387.3959 15.18	2000 4351.30 5138.8962 15.18	2001 4500.00 5297.4191 15.18	2002 4488.60 5254.5684 15.18 0.03340 3.6667	2003 4674.40 5491.3449 15.18	2004 4717.10 5483.1217 15.18	2005 5217.50 5862.7091 15.19
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71	2005 5217.50 5862.7091 15.19 0.03340
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006 0.00009	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006 0.00009	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006 0.00009	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006 0.00009	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006 0.00009	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006 0.00009	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006 0.00009	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006 0.00009
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006 0.00009	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006 0.00009	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006 0.00009 0.001	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006 0.00009	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006 0.00009 0.001	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006 0.00009 0.001	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006 0.00009 0.001	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006 0.00009 0.001
Year Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t SO ₂ emission factor, t/t	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006 0.00009 0.001 0.00003	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006 0.00009 0.001 0.00003	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006 0.00009 0.001 0.00003	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006 0.00009 0.001 0.00003	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006 0.00009 0.001 0.00003	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006 0.00009 0.001 0.00003	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006 0.00009 0.001	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006 0.00009 0.001 0.00003
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t SO ₂ emission factor, t/t CO ₂ emission factor, t/t CO ₂ emission, kt	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006 0.00009 0.001 0.00003 7451.609	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006 0.00009 0.001 0.00003 8206.999	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006 0.00009 0.001 0.00003 7494.389	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006 0.00009 0.001 0.00003 7789.934	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006 0.00009 0.001 0.00003 7626.695	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006 0.00009 0.001 0.00003 7897.628	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006 0.00009 0.001 0.00003 7896.272	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006 0.00009 0.001 0.00003 8536.717
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO ₂ and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO ₂ emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NO _x emission factor, t/t SO ₂ emission factor, t/t CO ₂ emissions, kt CO emissions, kt	1998 3984.00 4809.0764 15.18 0.03340 3.6667 2032.53 0.733 1.870 0.000006 0.00009 0.001 0.00003 7451.609 0.0239	1999 4541.20 5387.3959 15.18 0.03340 3.6667 2468.96 0.733 1.807 0.000006 0.00009 0.001 0.00003 8206.999 0.0272	2000 4351.30 5138.8962 15.18 0.03340 3.6667 2810.9 0.733 1.722 0.000006 0.00009 0.001 0.00003 7494.389 0.0261	2001 4500.00 5297.4191 15.18 0.03340 3.6667 2809.8 0.733 1.731 0.000006 0.00009 0.001 0.00003 7789.934 0.0270	2002 4488.60 5254.5684 15.18 0.03340 3.6667 2923.7 0.733 1.699 0.000006 0.00009 0.001 0.00003 7626.695 0.0269	2003 4674.40 5491.3449 15.18 0.03340 3.6667 3154.71 0.733 1.690 0.000006 0.00009 0.001 0.00003 7897.628 0.0280	2004 4717.10 5483.1217 15.18 0.03340 3.6667 3135.71 0.733 1.674 0.000006 0.00009 0.001 0.00003 7896.272 0.0283	2005 5217.50 5862.7091 15.19 0.03340 3.6667 3234.62 0.733 1.636 0.000006 0.00009 0.001 0.00003 8536.717 0.0313

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014
Amount of ammonia produced, kt	5152.20	5142.90	4892.00	3037.61	4166.12	5261.96	5049.41	4237.12	2983.93
Natural gas consumption of, mln m3	5747.9875	5627.3098	5412.8268	3530.1028	4724.4701	5876.5076	5661.0519	4677.6674	3225.9762
Carbon content in natural gas, t/TJ	15.22	15.16	15.17	15.2	15.17	15.12924	15.14023	15.16761	15.1214
Net calorific value of fuel combustion, TJ/mln m ³	0.03340	0.03340	0.03364	0.03340	0.03340	0.03396	0.03409	0.03413	0.03394
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Urea production, kt	3131.45	3169.54	2984.52	2767.469	2658.357	3389.308	3278.665	2619.888	2084.6
Stoichiometric ratio of CO ₂ to urea	0.733	0.733	0.733	0.733	0.733	0.733	0.733	0.733	0.733
CO ₂ emission factor, t/t	1.634	1.580	1.623	1.496	1.639	1.632	1.646	1.642	1.522
CO emission factor, t/t	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006
NMVOC emission factor, t/t	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009	0.00009
NO _x emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
SO ₂ emission factor, t/t	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003
CO ₂ emissions, kt	8420.020	8125.778	7939.730	4543.600	6829.827	8585.973	8308.890	6957.837	4542.046
CO emissions, kt	0.0309	0.0309	0.0294	0.0182	0.0250	0.0316	0.0303	0.0254	0.0179
NMVOC emissions, kt	0.4637	0.4629	0.4403	0.2734	0.3750	0.4736	0.4544	0.3813	0.2686
NO _x emissions, t/t	5.1522	5.1429	4.8920	3.0376	4.1661	5.2620	5.0494	4.2371	2.9839
SO ₂ emissions, kt	0.1546	0.1543	0.1468	0.0911	0.1250	0.1579	0.1515	0.1271	0.0895
Year	2015	2016	2017	2018	2019	2020	2021	2022	2023
1 Cai	2013	2010	2017	2010	2019	2020	2021	2022	
Amount of ammonia produced, kt	2640.647	2044.20	1191.02	976.475	1828.687	2806.462	2569.648	602.5	972.40
							2569.648 2821.1		
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ	2640.647	2044.20 2152.89 15.260	1191.02 1297.895 15.202	976.475 1008.994 15.225	1828.687 1980.543 15.273	2806.462 3102.085 15.210	2569.648 2821.1 15.210	602.5 629.418 15.210	972.40
Amount of ammonia produced, kt Natural gas consumption of, mln m3	2640.647 2779.1304 15.2137 0.03457	2044.20 2152.89 15.260 0.03453	1191.02 1297.895 15.202 0.03441	976.475 1008.994 15.225 0.03453	1828.687 1980.543 15.273 0.034	2806.462 3102.085 15.210 0.034	2569.648 2821.1 15.210 0.034	602.5 629.418 15.210 0.034	972.40 1032.243 15.210 0.034
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ	2640.647 2779.1304 15.2137 0.03457 3.6667	2044.20 2152.89 15.260 0.03453 3.6667	1191.02 1297.895 15.202 0.03441 3.6667	976.475 1008.994 15.225 0.03453 3.6667	1828.687 1980.543 15.273	2806.462 3102.085 15.210 0.034 3.6667	2569.648 2821.1 15.210 0.034 3.6667	602.5 629.418 15.210 0.034 3.6667	972.40 1032.243 15.210 0.034 3.6667
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73	2044.20 2152.89 15.260 0.03453 3.6667 2152.8	1191.02 1297.895 15.202 0.03441 3.6667 1248.016	976.475 1008.994 15.225 0.03453 3.6667 971.6	1828.687 1980.543 15.273 0.034 3.6667 1904.562	2806.462 3102.085 15.210 0.034 3.6667 2733.3	2569.648 2821.1 15.210 0.034 3.6667 2310.5	602.5 629.418 15.210 0.034 3.6667 382.2	972.40 1032.243 15.210 0.034
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733	602.5 629.418 15.210 0.034 3.6667 382.2 0.733	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416	2044.20 2152.89 15.260 0.03453 3.6667 2152.8	1191.02 1297.895 15.202 0.03441 3.6667 1248.016	976.475 1008.994 15.225 0.03453 3.6667 971.6	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325	2806.462 3102.085 15.210 0.034 3.6667 2733.3	2569.648 2821.1 15.210 0.034 3.6667 2310.5	602.5 629.418 15.210 0.034 3.6667 382.2	972.40 1032.243 15.210 0.034 3.6667 655.1
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733	602.5 629.418 15.210 0.034 3.6667 382.2 0.733	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009 0.001 0.00003	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006 0.00009 0.001	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006 0.00009 0.001	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006 0.00009 0.001	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006 0.00009 0.001	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006 0.00009 0.001	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009 0.001 0.00003	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009 0.001	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009 0.001 0.00003
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t SO2 emission factor, t/t CO2 emission, kt	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009 0.001 0.00003 3740.106	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006 0.00009 0.001	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006 0.00009 0.001 0.00003 1575.079	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006 0.00009 0.001 0.00003 1232.901	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006 0.00009	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006 0.00009 0.001 0.00003 3964.192	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009 0.001 0.00003 3733.562	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009 0.001 0.00003 930.68	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009 0.001
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t SO2 emission factor, t/t	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009 0.001 0.00003	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006 0.00009 0.001	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006 0.00009 0.001	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006 0.00009 0.001	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006 0.00009 0.001	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006 0.00009 0.001	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009 0.001 0.00003	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009 0.001	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009 0.001 0.00003
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t SO2 emission factor, t/t CO2 emission, kt	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009 0.001 0.00003 3740.106	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006 0.00009 0.001	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006 0.00009 0.001 0.00003 1575.079	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006 0.00009 0.001 0.00003 1232.901	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006 0.00009 0.001 0.00003 2423.909	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006 0.00009 0.001 0.00003 3964.192	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009 0.001 0.00003 3733.562	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009 0.001 0.00003 930.68	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009 0.001 0.00003 1505.647
Amount of ammonia produced, kt Natural gas consumption of, mln m3 Carbon content in natural gas, t/TJ Net calorific value of fuel combustion, TJ/mln m3 Stoichiometric ratio between CO2 and C mol. weight Urea production, kt Stoichiometric ratio of CO2 to urea CO2 emission factor, t/t CO emission factor, t/t NMVOC emission factor, t/t NOx emission factor, t/t SO2 emission factor, t/t CO2 emissions, kt CO emissions, kt	2640.647 2779.1304 15.2137 0.03457 3.6667 2211.73 0.7330 1.416 0.000006 0.00009 0.001 0.00003 3740.106 0.0158	2044.20 2152.89 15.260 0.03453 3.6667 2152.8 0.7330 1.263 0.000006 0.00009 0.001 0.00003 2581.245 0.0123	1191.02 1297.895 15.202 0.03441 3.6667 1248.016 0.7330 1.322 0.000006 0.00009 0.001 0.00003 1575.079 0.0071	976.475 1008.994 15.225 0.03453 3.6667 971.6 0.7330 1.263 0.000006 0.00009 0.001 0.00003 1232.901 0.0059	1828.687 1980.543 15.273 0.034 3.6667 1904.562 0.733 1.325 0.000006 0.00009 0.001 0.00003 2423.909 0.011	2806.462 3102.085 15.210 0.034 3.6667 2733.3 0.733 1.413 0.000006 0.00009 0.001 0.00003 3964.192 0.017	2569.648 2821.1 15.210 0.034 3.6667 2310.5 0.733 1.453 0.000006 0.00009 0.001 0.00003 3733.562 0.015	602.5 629.418 15.210 0.034 3.6667 382.2 0.733 1.545 0.000006 0.00009 0.001 0.00003 930.68 0.0036	972.40 1032.243 15.210 0.034 3.6667 655.1 0.733 1.548 0.000006 0.00009 0.001 0.00003 1505.647 0.0058

Table A3.1.1.6. Greenhouse gas emissions from Nitric Acid Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Nitric acid production, kt	2700.0	2386.8	2073.6	1760.4	1447.2	1134.0	1344.0	1471.0	1198.0	1295.0	1452.0
N ₂ O emission factor, t/t	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
(Medium pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
N ₂ O emission factor, t/t	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
(Low pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
NO _x emission factor, t/t (Medium pressure units)	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
NOx emission factor, t/t (Low pressure units)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
N ₂ O emissions, kt	17.73	15.65	13.71	11.88	9.60	7.59	8.82	9.81	7.72	8.49	9.23
NO _x emissions, kt	22.87	20.27	17.37	14.19	12.04	9.30	11.41	12.12	10.48	11.01	12.99
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Nitric acid production, kt	1407.0	1715.0	1726.0	1482.6	1757.4	1761.2	2294.5	2121.2	1451.8	1796.0	2309.5
N ₂ O emission factor, t/t	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
(Medium pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
N ₂ O emission factor, t/t	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
(Low pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
NO _x emission factor, t/t (Medium pressure units)	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
NOx emission factor, t/t (Low pressure units)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
N ₂ O emissions, kt	8.95	11.18	11.50	9.51	11.44	11.39	15.12	14.06	9.90	12.56	15.47
NO _x emissions, kt	12.58	14.71	14.26	13.06	15.12	15.33	19.33	17.69	11.482	13.496	18.894
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Nitric acid production, kt	2337.0	1791.1	1569.4	1157.02	1399.8	1069.1	1011.2	1544.6	1679.38	1802.18	642.55
N ₂ O emission factor, t/t	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
(Medium pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
N ₂ O emission factor, t/t	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
(Low pressure units)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)	(D)
NO _x emission factor, t/t (Medium pressure units)	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
NOx emission factor, t/t (Low pressure units)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
N ₂ O emissions, kt	15.39	12.49	10.79	8.10	9.80	7.46	7.08	10.81	11.76	12.62	4.50
NO _x emissions, kt	19.699	13.551	12.218	8.678	10.499	7.988	7.584	11.585	12.595	13.516	4.819

Year	2023
Nitric acid production, kt	940,38
N ₂ O emission factor, t/t	0.007
(Medium pressure units)	(D)
N ₂ O emission factor, t/t	0.005
(Low pressure units)	(D)
NO _x emission factor, t/t	0.0075
(Medium pressure units)	0.0073
NOx emission factor, t/t	0.012
(Low pressure units)	0.012
N ₂ O emissions, kt	6.58
NO _x emissions, kt	7.053

Table A3.1.1.7. Greenhouse gas emissions from Adipic Acid Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Amount of adipic acid produced, kt	59.1	57.7	32.9	16.7	16.7	16	24.9	28.4	28.4	21.7	50.9	48.9	43.1	61.4	65.8	48.7	52.1
N ₂ O emission factor, t/t	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Thermal destruction factor	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985
Thermal use factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
NO _x emission factor, t/t	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
NMVOC emission factor, t/t	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433
CO emission factor, t/t	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
N ₂ O emissions, kt	0.78987	0.77116	0.43971	0.22320	0.22320	0.21384	0.33279	0.37957	0.37957	0.29002	0.68028	0.65355	0.57603		0.87942	0.65088	0.6963
NO _x emissions, kt	0.4728	0.4616	0.2632	0.1336	0.1336	0.128	0.1992	0.2272	0.2272	0.1736	0.4072	0.3912	0.3448	0.4912	0.5264	0.3896	0.4168
NMVOC emissions, kt	2.55903	2.49841	1.42457	0.72311	0.72311	0.6928	1.07817	1.22972	1.22972	0.93961	2.20397	2.11737	1.86623	2.65862	2.84914	2.10871	2.2559
CO emissions, kt	0.02364	0.02308	0.01316	0.00668	0.00668	0.0064	0.00996	0.01136	0.01136	0.00868	0.02036	0.01956	0.01724	0.02456	0.02632	0.01948	0.0208
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Amount of adipic acid produced, kt	58.3	29.3	4.2	52.9	61.49	13.002											
N ₂ O emission factor, t/t	0.3	0.3	0.3	0.3	0.3	0.3											
Thermal destruction factor	0.985	0.985	0.985	0.985	0.985	0.985											
Thermal use factor	0.97	0.97	0.97	0.97	0.97	0.97											
NO _x emission factor, t/t	0.008	0.008	0.008	0.008	0.008	0.008				Not pi	oduced						
NMVOC emission factor, t/t	0.0433	0.0433	0.0433	0.0433	0.0433	0.0433											
CO emission factor, t/t	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004											
N ₂ O emissions, kt	0.7792	0.3916	0.0561	0.707	0.8218	0.1738											
NO _x emissions, kt	0.4664	0.2344	0.0336	0.4232	0.4919	0.1040											
NMVOC emissions, kt	2.5244	1.2687	0.1819	2.2906	2.6625	0.5630											
CO emissions, kt	0.0233	0.0117	0.0017	0.0212	0.0246	0.0052											

Table A3.1.1.8. Greenhouse gas emissions from Petrochemical Production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
CO ₂ emission factor for carbon black, t/t	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CO ₂ emission factor for ethylene, t/t	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
Geographical correction factor for ethylene	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
CO ₂ emission factor for methanol, t/t	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
CO ₂ emission factor for vinyl chloride monomer, t/t	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294
CH ₄ emission factor for carbon black, t/t	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006
CH ₄ emission factor for ethylene, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
CH ₄ emission factor for methanol, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
CH ₄ emission factor for vinyl chloride monomer, t/t	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
SO ₂ emission factor for carbon black, t/t	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
SO ₂ emission factor for sulphuric acid, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
NO _x emission factor for carbon black, t/t	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
NMVOC emission factor for carbon black, t/t	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
NMVOC emission factor for ethylene, t/t	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
NMVOC emission factor for vinyl chloride monomer, t/t	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
CO emission factor for carbon black, t/t	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
NMVOC emission factor for polystyrene, t/t	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
NMVOC emission factor for propylene, t/t	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
NMVOC emission factor for polyethylene, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
NMVOC emission factor for phthalic anhydride from naphthalene fraction, t/t	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
NMVOC emission factor for phthalic anhydride from o-xylene, t/t	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
NMVOC emission factor for polypropylene, t/t	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
NOx emissions for carbon black, kt	3.9	3.1635	2.35905	1.67715	0.9975	0.7725	0.7575	0.999	1.026	0.813
CO emissions for carbon black, kt	0.78	0.6327	0.47181	0.33543	0.1995	0.1545	0.1515	0.1998	0.2052	0.1626
Total CO ₂ emissions, kt	1962.330	1776.533	1378.781	920.161	1503.824	560.459	343.052	479.015	477.214	305.353
Total CH ₄ emissions, kt	2.824	2.695	2.304	1.595	2.603	0.928	0.434	0.560	0.548	0.357
Total NMVOC emissions, kt	0.684	0.637	0.484	0.342	0.637	0.342	0.265	0.372	0.436	0.295
Total SO ₂ emissions, kt	20.753	17.198	12.460	7.989	6.401	5.912	5.842	5.779	5.567	5.371

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
CO ₂ emission factor for carbon black, t/t	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CO ₂ emission factor for ethylene, t/t	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
Geographical correction factor for ethylene	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
CO ₂ emission factor for methanol, t/t	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
CO ₂ emission factor for vinyl chloride monomer, t/t	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006
CH ₄ emission factor for carbon black, t/t	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287
CH ₄ emission factor for ethylene, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
CH ₄ emission factor for methanol, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
CH ₄ emission factor for vinyl chloride monomer, t/t	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
SO ₂ emission factor for carbon black, t/t	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
SO ₂ emission factor for sulphuric acid, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
NO _x emission factor for carbon black, t/t	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
NMVOC emission factor for carbon black, t/t	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
NMVOC emission factor for ethylene, t/t	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
NMVOC emission factor for vinyl chloride mono-	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
mer, t/t											
CO emission factor for carbon black, t/t	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
NMVOC emission factor for polystyrene, t/t	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
NMVOC emission factor for propylene, t/t	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
NMVOC emission factor for polyethylene, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
NMVOC emission factor for phthalic anhydride from	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
naphthalene fraction, t/t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMVOC emission factor for phthalic anhydride from	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
o-xylene, t/t											
NMVOC emission factor for polypropylene, t/t	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
NOx emissions for carbon black, kt	0.645	1.071	0.8955	1.29	1.5015	1.7385	1.6035	1.8135	1.617	0.8805	1.1355
CO emissions for carbon black, kt	0.12900	0.21420	0.17910	0.25800	0.30030	0.34770	0.32070	0.36270	0.32340	0.17610	0.22710
Total CO ₂ emissions, kt	317.422	442.359	679.86	786.38	899.97	866.65	917.15	919.37	579.81	216.98	334.74
Total CH ₄ emissions, kt	0.461	29.485	57.684	82.408	112.050	90.440	85.382	81.600	33.905	0.220	14.968
Total NMVOC emissions, kt	0.294	0.739	1.131	1.291	1.579	1.388	1.402	1.442	0.813	0.446	0.599
Total SO ₂ emissions, kt	4.054	4.691	4.118	5.291	6.477	7.368	6.831	7.631	6.809	3.961	5.553

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
CO ₂ emission factor for carbon black, t/t	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CO ₂ emission factor for ethylene, t/t	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
Geographical correction factor for ethylene	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
CO ₂ emission factor for methanol, t/t	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
CO ₂ emission factor for vinyl chloride monomer, t/t	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006	0.00006
CH ₄ emission factor for carbon black, t/t	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287
CH ₄ emission factor for ethylene, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
CH ₄ emission factor for methanol, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
CH ₄ emission factor for vinyl chloride monomer, t/t	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
SO ₂ emission factor for carbon black, t/t	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
SO ₂ emission factor for sulphuric acid, t/t	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
NO _x emission factor for carbon black, t/t	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
NMVOC emission factor for carbon black, t/t	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
NMVOC emission factor for ethylene, t/t	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
NMVOC emission factor for vinyl chloride mono-	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
mer, t/t	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02	0.02	0.02	0.02	0.02
CO emission factor for carbon black, t/t	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
NMVOC emission factor for polystyrene, t/t	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
NMVOC emission factor for propylene, t/t	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
NMVOC emission factor for polyethylene, t/t	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023
NMVOC emission factor for phthalic anhydride from naphthalene fraction, t/t	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
NMVOC emission factor for phthalic anhydride from o-xylene, t/t	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
NMVOC emission factor for polypropylene, t/t	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
NOx emissions for carbon black, kt	0.8803	1.2898	1.1775	1.0561	0.8280	1.081	1.161	1.341	1.319	1.265	1.437	0.621	0.392
CO emissions for carbon black, kt	0.1761	0.2580	0.2355	0.2112	0.1656	0.2163	0.2321	0.2683	0.2638	0.2529	0.2874	0.1242	0.0783
Total CO ₂ emissions, kt	657.90	606.76	236.35	199.73	144.62	188.88	411.147	666.299	709.284	675.728	784.18	193.891	68.382
Total CH ₄ emissions, kt	72.241	56.545	6.310	0.057	0.00331	0.004	37.622	100.196	114.505	117.636	134.221	19.381	0.002
Total NMVOC emissions, kt	1.263	0.787	0.116	0.050	0.0389	0.051	0.495	1.041	1.15	1.11	1.31	0.218	0.021
Total SO ₂ emissions, kt	5.901	5.999	5.242	3.274	2.734	3.157	3.386	4.006	3.980	3.905	4.453	2.238	2.073

Table A3.1.1.9. Greenhouse gas emissions from Steel Production (CRF category 2.C.1.1)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Steel production, kt	52635.4	44994.5	41759.2	32609.7	24081.2	22307.9	22332.9	25628.5	24446.5	27392.2	31781.0	33522.1	34546.4	37524.1	38718.5	38615.5	40891.8
Specific pig iron consumption for steel production, t/t	0.671	0.681	0.693	0.706	0.726	0.724	0.730	0.741	0.739	0.744	0.742	0.746	0.729	0.744	0.759	0.769	0.775
Specific scrap consumption for steel production, t/t	0.367	0.370	0.372	0.372	0.355	0.357	0.351	0.342	0.343	0.339	0.340	0.336	0.338	0.337	0.328	0.330	0.329
Carbon content in steel, %	0.218	0.219	0.219	0.219	0.216	0.217	0.216	0.215	0.215	0.214	0.214	0.214	0.214	0.214	0.213	0.213	0.213
CO ₂ emission factor, t/t	0.103	0.106	0.109	0.109	0.114	0.115	0.114	0.112	0.111	0.112	0.112	0.113	0.112	0.115	0.117	0.122	0.123
CO ₂ emissions, kt	5417.9	4777.2	4536.2	3569.7	2753.3	2559.5	2556.8	2864.8	2706.0	3080.5	3553.6	3795.1	3879.3	4314.0	4547.5	4711.3	5028.0
NO _x emissions, kt	0.69	0.61	0.58	0.46	0.29	0.26	0.26	0.27	0.27	0.28	0.31	0.32	0.35	0.39	0.37	0.38	0.41
CO emissions, kt	0.08	0.07	0.06	0.05	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.07	0.08
NMVOC emissions, kt	0.72	0.63	0.59	0.45	0.30	0.29	0.28	0.30	0.29	0.32	0.37	0.38	0.39	0.43	0.41	0.41	0.43
SO ₂ emissions, kt	0.2200	0.1999	0.1920	0.1494	0.0856	0.0761	0.0729	0.0703	0.0697	0.0680	0.0774	0.0739	0.0857	0.0957	0.0795	0.0830	0.0900
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Steel production, kt	42828.5	37082.3	29848.0	32681.8	34762.0	32497.9	32673.0	27144.1	22997.6	24196.0	21049.3	20994.5	20848	20616	21366	6298.74	6226.80
Specific pig iron consumption for steel production, t/t	0.772	0.789	0.805	0.794	0.776	0.803	0.819	0.823	0.842	0.847	0.810	0.816	0.806	0.839	0.836	0.787	0.777
Specific scrap consumption for steel production, t/t	0.323	0.328	0.297	0.297	0.329	0.301	0.288	0.282	0.263	0.253	0.286	0.286	0.263	0.263	0.268	0.315	0.321
Carbon content in steel, %	0.213	0.213	0.210	0.212	0.212	0.210	0.211	0.211	0.210	0.210	0.213	0.213	0.210	0.210	0.210	0.217	0.221
CO ₂ emission factor, t/t	0.122	0.125	0.128	0.126	0.123	0.127	0.125	0.128	0.133	0.136	0.130	0.129	0.128	0.134	0.133	0.124	0.124
CO ₂ emissions, kt	5244.0	4646.4	3816.4	4119.4	4286.5	4142.9	4068.1	3482.9	3066.4	3279.9	2739.6	2702.09	2675.62	2759.75	2844.38	781.88	769.71
NO _x emissions, kt	0.43	0.41	0.38	0.44	0.52	0.44	0.49	0.42	0.32	0.34	0.35	0.35	0.28	0.3	0.32	0.13	0.13
CO emissions, kt	0.08	0.07	0.07	0.08	0.09	0.09	0.09	0.07	0.06	0.07	0.05	0.05	0.05	0.06	0.06	0.02	0.01
NMVOC emissions, kt	0.46	0.38	0.22	0.27	0.27	0.21	0.22	0.19	0.16	0.15	0.17	0.17	0.15	0.13	0.13	0.06	0.08
SO ₂ emissions, kt	0.0980	0.0942	0.0803	0.1048	0.1280	0.0922	0.1162	0.0999	0.0732	0.0732	0.0957	0.0950	0.0608	0.0658	0.0744	0.0423	0.0458

Table A3.1.1.10. Greenhouse gas emissions from Iron Production (CRF category 2.C.1.2)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998
Iron production, kt	44927.4	36632.1	35350.0	27108.0	20180.3	17998.4	17831.5	20616.0	20936.7
Sinter production, kt	60926.5	51109.2	49473.2	40110.8	30376.8	26277.9	25817.8	29573.9	31539.0
Carbon content in iron, %	4.37	4.43	4.45	4.40	4.40	4.50	4.45	4.29	4.26
Carbon content in iron, kt	1963.33	1622.80	1573.08	1192.75	887.93	809.93	793.50	884.43	891.90
Use of coke for iron production, kt	23586.9	19653.1	19152.6	15766	12927.5	11400.9	11140.2	12562.2	12201.6
Carbon content in coke, %	85.29	85.23	85.17	85.11	85.05	84.99	84.94	84.88	84.82
Use of coal for iron production, kt	0.00	0.00	0.00	0.00	0.00	47.50	34.60	19.50	49.70
Carbon content in coal, %	0.00	0.00	0.00	0.00	0.00	71.95	71.95	71.95	71.95
Use of natural gas for iron production, mln m ³	5.55	5.32	5.10	4.89	4.69	4.49	4.30	4.12	3.95
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.856	1.858	1.859	1.859	1.859	1.859	1.859	1.859	1.859
CO ₂ emission factor at iron production, t/t	1.48	1.51	1.53	1.65	1.84	1.82	1.79	1.74	1.66
CO ₂ emissions, kt	66 571.30	55 476.08	54 052.49	44 837.20	37 068.79	32 694.22	31 883.92	35 912.21	34 815.50
Emissions of CH ₄ (iron), kt	40.43466	32.96889	31.815	24.3972	18.16227	16.19856	16.04835	18.5544	18.84303
Emissions of CH ₄ (sinter), kt	4.64819	3.78996	3.65731	2.80459	2.08785	1.85715	1.82231	2.16334	2.27654
NO _x emissions, kt	3.414482	2.784039	2.6866	2.06020	1.533702	1.3678784	1.355194	1.566816	1.5911892
CO emissions, kt	58.40562	47.62173	45.955	35.2404	26.23439	23.39792	23.18095	26.8008	27.21771
NMVOC emissions, kt	4.49274	3.66321	3.535	2.7108	2.01803	1.79984	1.78315	2.0616	2.09367
SO ₂ emissions, kt	89.8548	73.2642	70.7	54.216	40.3606	35.9968	35.663	41.232	41.8734
Year	1999	2000	2001	2002	2003	2004	2005	2006	2007
Iron production, kt	23009.8	25698.7	26378.5	27633.3	29529.0	30977.6	30746.1	32929.3	35649.7
Sinter production, kt	35781.7	38801.3	41287.9	42991.6	44935.6	48134.0	48582.8	49002.8	51216.8
Carbon content in iron, %	4.30	4.29							+
Carbon content in iron, kt		4.29	4.32	4.38	4.39	4.40	4.50	4.50	4.50
	989.42	1102.47	4.32 1139.55	4.38 1210.34	4.39 1296.32	4.40 1363.01	4.50	4.50 1481.82	4.50 1604.24
Use of coke for iron production, kt	989.42 12825.9								
Use of coke for iron production, kt Carbon content in coke, %		1102.47	1139.55	1210.34	1296.32	1363.01	4.50 1383.57	1481.82	1604.24
	12825.9	1102.47 14108.1	1139.55 14737.5	1210.34 15196.6	1296.32 15405.9	1363.01 15669.4	4.50 1383.57 14955.8	1481.82 16235.4	1604.24 17713.4
Carbon content in coke, %	12825.9 84.76	1102.47 14108.1 84.76	1139.55 14737.5 84.8	1210.34 15196.6 84.94	1296.32 15405.9 84.85	1363.01 15669.4 84.59	4.50 1383.57 14955.8 84.94	1481.82 16235.4 85.02	1604.24 17713.4 84.85
Carbon content in coke, % Use of coal for iron production, kt	12825.9 84.76 52.00	1102.47 14108.1 84.76 46.30	1139.55 14737.5 84.8 47.7	1210.34 15196.6 84.94 31.10	1296.32 15405.9 84.85 66.10	1363.01 15669.4 84.59 115.40	4.50 1383.57 14955.8 84.94 161.90	1481.82 16235.4 85.02 140.40	1604.24 17713.4 84.85 170.70
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, %	12825.9 84.76 52.00 71.95	1102.47 14108.1 84.76 46.30 71.78	1139.55 14737.5 84.8 47.7 72.3	1210.34 15196.6 84.94 31.10 74.93	1296.32 15405.9 84.85 66.10 75.72	1363.01 15669.4 84.59 115.40 77.73	4.50 1383.57 14955.8 84.94 161.90 78.34	1481.82 16235.4 85.02 140.40 78.95	1604.24 17713.4 84.85 170.70 79.57
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3	12825.9 84.76 52.00 71.95 3.79	1102.47 14108.1 84.76 46.30 71.78 3.63	1139.55 14737.5 84.8 47.7 72.3 3.48	1210.34 15196.6 84.94 31.10 74.93 3.33	1296.32 15405.9 84.85 66.10 75.72 3.41	1363.01 15669.4 84.59 115.40 77.73 3.47	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47	1481.82 16235.4 85.02 140.40 78.95 2.89	1604.24 17713.4 84.85 170.70 79.57 2.64
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	12825.9 84.76 52.00 71.95 3.79 1.859	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t	12825.9 84.76 52.00 71.95 3.79 1.859 1.58	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859 1.55	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859 1.58	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859 1.56	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859 1.47	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861 1.37	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864 1.38	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857 1.39 49 730.07
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt	12825.9 84.76 52.00 71.95 3.79 1.859 1.58 36 378.01	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859 1.55 39 932.81	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859 1.58 41 804.30	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859 1.56 42 980.81	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859 1.47 43 365.86	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859 1.42 43 938.37	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861 1.37 41 977.75	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864 1.38 45 590.73	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857 1.39
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt	12825.9 84.76 52.00 71.95 3.79 1.859 1.58 36 378.01 20.70882 2.57550	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859 1.55 39 932.81 23.12883	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859 1.58 41 804.30 23.740	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859 1.56 42 980.81 24.8699	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859 1.47 43 365.86 26.5761	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859 1.42 43 938.37 27.8798	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861 1.37 41 977.75 27.6715	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864 1.38 45 590.73 29.6364	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857 1.39 49 730.07 32.08473
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt Emissions of CH ₄ (sinter), kt	12825.9 84.76 52.00 71.95 3.79 1.859 1.58 36 378.01 20.70882 2.57550	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859 1.55 39 932.81 23.12883 2.84505	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859 1.58 41 804.30 23.740 2.99613	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859 1.56 42 980.81 24.8699 3.10714	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859 1.47 43 365.86 26.5761 3.14549	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859 1.42 43 938.37 27.8798 3.36938	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861 1.37 41 977.75 27.6715 3.40080	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864 1.38 45 590.73 29.6364 3.43020	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857 1.39 49 730.07 32.08473 3.58518
Carbon content in coke, % Use of coal for iron production, kt Carbon content in coal, % Use of natural gas for iron production, mln m3 CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³ CO ₂ emission factor at iron production, t/t CO ₂ emissions, kt Emissions of CH ₄ (iron), kt Emissions of CH ₄ (sinter), kt NO _x emissions, kt	12825.9 84.76 52.00 71.95 3.79 1.859 1.58 36 378.01 20.70882 2.57550 1.7487448	1102.47 14108.1 84.76 46.30 71.78 3.63 1.859 1.55 39 932.81 23.12883 2.84505 1.9531012	1139.55 14737.5 84.8 47.7 72.3 3.48 1.859 1.58 41 804.30 23.740 2.99613 2.0047	1210.34 15196.6 84.94 31.10 74.93 3.33 1.859 1.56 42 980.81 24.8699 3.10714 2.10013	1296.32 15405.9 84.85 66.10 75.72 3.41 1.859 1.47 43 365.86 26.5761 3.14549 2.2442	1363.01 15669.4 84.59 115.40 77.73 3.47 1.859 1.42 43 938.37 27.8798 3.36938 2.35429	4.50 1383.57 14955.8 84.94 161.90 78.34 3.47 1.861 1.37 41 977.75 27.6715 3.40080 2.33670	1481.82 16235.4 85.02 140.40 78.95 2.89 1.864 1.38 45 590.73 29.6364 3.43020 2.50262	1604.24 17713.4 84.85 170.70 79.57 2.64 1.857 1.39 49 730.07 32.08473 3.58518 2.70937

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016
Iron production, kt	30991.3	25683.1	27365.8	28877.0	28486.6	29088.7	24800.9	21862.8	23559.5
Sinter production, kt	44553.1	35863.3	39492.6	40219.6	42598.0	43624	38294.601	33575.718	34383
Carbon content in iron, %	4.50	4.50	4.50	4.50	4.50	4.31	4.42	4.49	4.54
Carbon content in iron, kt	1394.61	1155.74	1231.46	1299.46	1281.89	1254.45	1096.7	981.26	1068.78
Use of coke for iron production, kt	17884.10	15624.0	15990.821	16126.92	15661.86	15456.933	13417.59	12536.7	12872.72
Carbon content in coke, %	84.94	84.85	84.85	85.2	85.3	84.8	84.2	84.2	84.9
Use of coal for iron production, kt	101.97	126.66	151.20	154.20	139.28	117.75	110.01	91.30	108.79
Carbon content in coal, %	80.18	80.79	80.44	79.8	80.5	77.9	76.3	79.6	79.6
Use of natural gas for iron production, mln m3	1.899	1.67	1.57	1.896	1.757	1.701	3.4487	1.54	1.35
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.871	1.862	1.858	1.884	1.892	1.898	1.882	1.929	1.932
CO ₂ emission factor at iron production, t/t	1.64	1.74	1.67	1.60	1.57	1.51	1.52	1.62	1.55
CO ₂ emissions, kt	50 889.22	44 749.38	45 683.63	46 076.53	44 721.57	43 820.08	37 732.41	35 357.66	36 466.72
Emissions of CH ₄ (iron), kt	27.89217	23.11479	24.62922	25.9893	25.63794	26.17983	22.32081	19.676	21.203
Emissions of CH ₄ (sinter), kt	3.11872	2.51043	2.76448	2.81537	2.98186	3.05368	2.68062	2.35030	2.407
NO _x emissions, kt	2.35533	1.951915	2.0798008	2.194652	2.1649816	2.2107412	1.8848684	1.6615	1.790
CO emissions, kt	40.28869	33.38803	35.57554	37.5401	37.03258	37.81531	32.24117	28.42164	30.627
NMVOC emissions, kt	3.09913	2.56831	2.73658	2.8877	2.84866	2.90887	2.48009	2.18628	2.356
SO ₂ emissions, kt	61.9826	51.3662	54.7316	57.754	56.9732	58.1774	49.6018	43.7256	47.119
Year	2017	2018	2019	2020	2021	2022	2023		
Iron production, kt	20116.5	20531.2	20055.9	20238.0	21165.0	6265.7	6003.00		
Sinter production, kt	31000	31680	30911	31907	32917	8102	9353		
Carbon content in iron, %	4.55	4.47	4.52	4.52	4.51	4.46	4.5		
Carbon content in iron, kt	914.73	917.62	906.28	914.83	954.61	279.45	270.14		
Use of coke for iron production, kt	11342.36	11897.95	11014.83	10296.62	10667.31	3221.53	2881.00		
Carbon content in coke, %	84.3	84.9	87.9	87.0	86.3	85.4	82.0		
Use of coal for iron production, kt	111.18	142.04	166.63	94.42	97.82	29.54	28.30		
Carbon content in coal, %	78.99	77.6	77.52	77.62	79.96	80.61	80.98		
Use of natural gas for iron production, mln m3	1.13	1.35	1.02	1.45	1.5	0.454	0.435		
CO ₂ emission factor when natural gas is used, t CO ₂ /10 ³ m ³	1.918	1.928	1.929	1.924	1.924	1.924	1.924		
CO ₂ emission factor at iron production, t/t	1.59	1.66	1.63	1.47	1.44	1.46	1.29		
CO ₂ emissions, kt	32 018.22	34 069.27	32 637.35	29 780.22	30561.05	9149.01	7756.58		
Emissions of CH ₄ (iron), kt	18.105	18.478	18.05	18.21	19.05	5.64	5.40		
Emissions of CH ₄ (sinter), kt	2.17	2.22	2.16	2.23	2.3	0.567	0.655		
NO _x emissions, kt	1.529	1.56	1.52	1.54	1.61	0.476	0.456		
CO emissions, kt		26.60	26.07	26.31	27.51	8.15	7.80		
CO chiissions, kt	26.151	26.69	26.07	20.31	27.31	0.13	7.80		
NMVOC emissions, kt	26.151	2.053	2.001	2.024	2.12	0.627	0.600		

Table A3.1.1.11. Greenhouse gas emissions from Ferroalloys Production (CRF category 2.C.2)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Ferroalloys Production, kt	2135.5	1930.1	1026.5	1026.5	1026.5	1026.5	1026.5	1026.5	851.6	934.5	1279.7	1296.3	1288.3	1490.0	1912.3	1632.4	1709.6
CO ₂ emission factor, t/t	1.646	1.64	1.73	1.71	1.77	1.78	1.73	1.76	1.79	1.73	1.78	1.79	1.69	1.63	1.59	1.60	1.61
CH ₄ emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
CO ₂ emissions, kt	3515.98	3166.71	1775.44	1752.28	1812.80	1825.96	1774.47	1810.94	1521.35	1613.09	2281.50	2325.00	2173.34	2435.12	3043.30	2608.87	2755.29
CH ₄ emissions, kt	0.605	0.533	0.422	0.345	0.243	0.264	0.216	0.246	0.196	0.215	0.287	0.302	0.308	0.244	0.242	0.157	0.122
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Ferroalloys Production, kt	1867.9	1662.8	1200.7	1671.3	1419.6	1300	1142.22	1362.47	1092.13	1218.32	1278.99	1244.79	1183.93	853.67	957.997	599.23	219.844
CO ₂ emission factor, t/t	1.69	1.71	1.61	1.68	1.60	1.64	1.67	1.76	1.73	1.62	1.51	1.56	1.55	1.52	1.54	1.48	1.60
CH ₄ emission factor, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
CO ₂ emissions, kt	3164.35	2849.91	1938.97	2801.74	2264.65	2132.67	1909.01	2396.61	1894.23	1972.62	1925.81	1947.03	1839.1	1301.78	1479.25	885.48	351.45
CH ₄ emissions, kt	0.167	0.154	0.159	0.155	0.111	0.089	0.152	0.132	0.093	0.105	0.096	0.076	0.064	0.060	0.092	0.023	0.01

Table A3.1.1.12. Greenhouse gas emissions from Aluminium Production (CRF category 2.C.3)

1 4010 11							11111111 04111				<u> </u>	,					
Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
CO ₂ emissions, kt	170.28	163.44	158.04	159.84	153.72	153.18	150.48	163.26	168.48	177.30	178.02	186.30	190.44	193.50	195.84	201.60	200.16
CF ₄ emissions, kt	0.0274	0.0219	0.0165	0.0167	0.0187	0.0207	0.0166	0.0171	0.0140	0.0118	0.0134	0.0130	0.0115	0.0090	0.0108	0.0165	0.0129
C ₂ F ₆ emissions, kt	0.0027	0.0022	0.0017	0.0017	0.0019	0.0021	0.0017	0.0017	0.0014	0.0012	0.0013	0.0013	0.0011	0.0009	0.0011	0.0017	0.0013
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
CO ₂ emissions, kt	201.89	200.79	89.38	44.84													
CF ₄ emissions, kt	0.0180	0.0202	0.0063	0.0031							Not proc	ducted					
C ₂ F ₆ emissions, kt	0.0018	0.0020	0.0006	0.0003													

Table A3.1.1.13. Greenhouse gas emissions from Lubricant Use

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total consumption, TJ	20783.4	20783.4	15597.6	12904.2	9969.6	9125.4	19336.2	22793.4	16080.0	12341.4	11617.8	12622.8	12140.4	10452.0	6311.4	9447.0	7718.4
Carbon content, t C/TJ	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Oxydation factor at use, t/t	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
Stoichiometric ratio between CO ₂ and C mol. weight	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667
Emissions of CO ₂ , kt	304.826	304.826	228.767	189.263	146.222	133.840	283.600	334.306	235.842	181.009	170.396	185.136	178.06	153.3	92.568	138.56	113.204
CO ₂ emission factor, t/t	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total consumption, TJ	13386.6	12904.2	10050.0	11939.4	10452.0	10090.2	9527.4	8770.39	8132.52	7965.7	9216.85	10426.3	8966.62	9058.37	10577.8	4766.72	6592.58
Carbon content, t C/TJ	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Oxydation factor at use, t/t	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
Stoichiometric ratio between CO ₂ and C mol. weight	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667	3.667
Emissions of CO ₂ , kt	196.339	189.263	147.401	175.113	153.297	147.991	139.736	128.634	119.28	116.83	135.18	152.92	131.51	132.86	155.14	69.91	96.692
CO ₂ emission factor, t/t	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590

Table A3.1.1.14. Greenhouse gas emissions from Paraffin Wax Use

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total consumption, TJ	8375.5	8354.4	4648.1	1708.5	1068.5	970.02	365.22	119.08	72.88	84.08	733.80	633.24	736.04	743.67	707.67	634.32	628.44
Carbon content, t C/TJ	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Oxydation factor at use, t/t	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667	3.6667
Emissions of CO ₂ , kt	122.84	122.53	68.173	25.058	15.671	14.227	5.357	1.746	1.069	1.233	10.763	9.288	10.795	10.907	10.379	9.303	9.217
CO ₂ emission factor, t/t	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896	0.5896
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total consumption, TJ	597.17	610.29	266.23	722.76	674.39	737.23	781.63	829.32	716.49	703.22	629.68	697.03	697.47	736.06	738.66	391.98	515.96
Carbon content, t C/TJ	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Oxydation factor at use, t/t	0.0																
	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Stoichiometric ratio between CO ₂ and C mol. weight	3.6667	3.6667	3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667	0.2 3.6667
Stoichiometric ratio between																-	

Table A3.1.1.15. Greenhouse gas emissions from product uses as substitutes for ozone-depleting substances

Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Domestic refrigeration, kt CO _{2-eq}				2.119	11.799	17.731	23.441	25.450	29.524	33.132	39.351	21.770	14.305	14.409
Commercial refrigeration, kt CO _{2-eq}					0.282	10.070	20.821	32.505	45.008	55.370	61.956	65.301	65.584	67.473
Industrial refrigeration, kt CO _{2-eq}					1.365	3.825	4.798	10.009	19.306	39.683	61.750	71.322	76.293	94.047
Transport refrigeration, kt CO _{2-eq}				0.184	0.436	0.637	1.176	2.284	3.494	5.103	5.197	8.683	0.184	9.911
Stationary air conditioning, kt CO _{2-eq}						1.134	2.088	5.408	10.689	21.954	37.224	50.737	55.625	68.362
Mobile air conditioning, kt CO _{2-eq}		0.465	0.777	1.596	5.770	11.926	21.183	39.441	52.358	74.107	118.378	178.757	186.359	193.024
Foam blowing agents, kt CO _{2-eq}						3.803	12.088	43.104	81.729	104.586	136.038	136.977	134.070	139.167
Fire protection, kt CO _{2-eq}						0.2238	0.7316	1.13849	2.0007	6.5431	8.5936	11.6264	14.4935	16.8307
Aerosols use, kt CO _{2-eq}	6.121	11.673	12.171	10.489	8.507	12.432	15.032	19.951	27.820	37.972	57.309	66.506	80.581	112.097
Total HFCs emissions, kt CO _{2-eq}	6.12	12.14	12.95	14.39	28.16	61.78	101.36	179.29	271.93	378.45	525.80	611.68	635.63	
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	
Domestic refrigeration, kt CO _{2-eq}	12.906	13.730	14.433	13.337	5.330	5.539	8.391	28.273	100.179	83.510	104.865	113.590	82.232	
Commercial refrigeration, kt CO _{2-eq}	70.191	73.784	75.158	73.161	72.861	125.979	141.552	200.192	256.171	260.022	256.258	248.438	224.172	
Industrial refrigeration, kt CO _{2-eq}	71.568	55.861	43.957	32.366	27.172	24.615	23.277	24.504	22.579	20.638	19.644	16.984	15.352	
Transport refrigeration, kt CO _{2-eq}	14.027	18.795	21.663	22.929	20.859	19.984	26.627	33.493	34.947	33.477	27.432	34.255	23.226	
Stationary air conditioning, kt CO _{2-eq}	178.395	227.273	263.903	287.773	320.348	366.650	434.588	640.675	777.417	828.742	909.947	1038.69	1097.02	
Mobile air conditioning, kt CO _{2-eq}	201.807	216.284	230.812	217.113	197.171	182.758	185.171	261.803	353.483	439.447	568.908	614.941	700.120	
Foam blowing agents, kt CO _{2-eq}	91.949	67.440	83.347	90.675	83.235	100.472	113.497	131.402	143.921	166.064	191.328	132.323	144.469	
Fire protection, kt CO _{2-eq}	18.2268	20.1636	24.6470	28.025	29.9931	33.217	35.6120	40.44	46.46	51.47	57.54	59.15	61.37	
Aerosols use, kt CO _{2-eq}	166.926	158.876	156.259	130.958	69.362	84.479	107.815	122.391	113.997	117.036	109.151	71.398	75.179	
Solvents use, kt CO2-eq	0.00026													
Total HFCs emissions, kt CO _{2-eq}	826.00	852.21	914.18	896.34	826.33	943.69	1076.53	1 483.17	1 849.15	2 000.40	2 245.08	2 329.8	2423.1	

Table A3.1.1.16. GHG emissions from use of sulphur hexafluoride

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Amount of sulfur hexafluoride in the produced equipment, t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.103	0.339	1.427	2.323	1.606
Amount of sulfur hexafluoride in the installed equipment, t	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.17	0.60	1.72	1.01	0.50	0.69
Amount of sulfur hexafluoride in the exploited equipment, t	0.07	0.17	0.27	0.52	0.57	0.59	0.62	1.12	1.70	2.69	3.02	3.39	5.95	7.17	8.67	13.91	18.66
Leaks in production of the equipment, %	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Leaks in installation of the equipment, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Leaks in exploitation of the equipment, %	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
Emissions from production of the equipment, kt CO ₂ -eq	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,118	0,403	1,817	2,733	1,887
Emissions from installation of the equipment, kt CO ₂ -eq	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.079	0.079	0.284	0.806	0.471	0.236	0.324
Emissions from production and installation of the equipment, kt CO ₂ -eq	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.079	0.079	0.403	1.209	2.153	2.969	2.212
Emissions from exploitation of the equipment, kt CO ₂ -eq	0.0078	0.0196	0.0314	0.0609	0.0668	0.0698	0.0717	0.1309	0.1989	0.3164	0.355	0.398	0.699	0.842	1.018	1.635	2.192
Total emissions, tons of CO ₂ -eq	0.0078	0.0196	0.0314	0.0609	0.0668	0.0698	0.0717	0.1309	0.1989	0.3164	0.433	0.477	1.102	2.052	3.173	4.604	4.405
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Amount of sulfur hexafluoride in the produced equipment, t	1.375	2 101	2.500	2.620	3.49	4.820	2.052	6.647	2.397	2.438	1.429	3.808	(50	1 0 7 7	1.071	0.21	0.44
the first mentalization in the products equipment, t	1.5/3	3.191	2.590	2.020	3.49	4.020	2.032	0.0	2.571	2.730	1.12/	3.000	6.53	1.077	1.071	0.21	0.11
Amount of sulfur hexafluoride in the installed equipment, t	2.09	3.191	2.390	1.65	0.238	0.177	0.124	0.168	0.165	0.167	0.105	0.236	0.422	0.527	0.525	0.21	0.0
				1.65	0.238				0.165	0.167		0.236	0.422	0.527		0.0	0.0
Amount of sulfur hexafluoride in the installed equipment, t	2.09	3.03	2.36	1.65	0.238	0.177	0.124	0.168	0.165	0.167	0.105	0.236	0.422	0.527	0.525	0.0	0.0
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t	2.09	3.03	2.36	1.65 52.37	0.238 69.386	0.177	0.124	0.168	0.165	0.167	0.105	0.236	0.422	0.527	0.525	0.0	0.0
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t Leaks in production of the equipment, %	2.09	3.03	2.36	1.65 52.37 5	0.238 69.386 5	0.177	0.124 107.48 5	0.168 139.4 5	0.165	0.167	0.105	0.236	0.422	0.527	0.525	0.0	0.0
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t Leaks in production of the equipment, % Leaks in installation of the equipment, % Leaks in exploitation of the equipment, % Emissions from production of the equipment, kt CO ₂ -eq	2.09 23.51 5 2	3.03 37.90 5 2	2.36 46.76 5 2	1.65 52.37 5 2	0.238 69.386 5 2	0.177 90.872 5 2	0.124 107.48 5 2	0.168 139.4 5 2	0.165 169.24 5 2	0.167 210.68 5 2	0.105 248.65 5 2	0.236 288.63 5 2	0.422 332.09 5 2	0.527 376.65 5 2	0.525 425.23 5 2	0.0 461.29 5 2	0.0 486.47 5 2
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t Leaks in production of the equipment, % Leaks in installation of the equipment, % Leaks in exploitation of the equipment, %	2.09 23.51 5 2 0.500	3.03 37.90 5 2 0.500	2.36 46.76 5 2 0.500	1.65 52.37 5 2 0.500	0.238 69.386 5 2 0.500	0.177 90.872 5 2 0.500	0.124 107.48 5 2 0.500	0.168 139.4 5 2 0.500	0.165 169.24 5 2 0.500	0.167 210.68 5 2 0.500	0.105 248.65 5 2 0.500	0.236 288.63 5 2 0.500	0.422 332.09 5 2 0.500	0.527 376.65 5 2 0.500	0.525 425.23 5 2 0.500 0.126	0.0 461.29 5 2 0.500	0.0 486.47 5 2 0.500
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t Leaks in production of the equipment, % Leaks in installation of the equipment, % Leaks in exploitation of the equipment, % Emissions from production of the equipment, kt CO ₂ -eq	2.09 23.51 5 2 0.500 1.612	3.03 37.90 5 2 0.500 3.746	2.36 46.76 5 2 0.500 3.048	1.65 52.37 5 2 0.500 3.077	0.238 69.386 5 2 0.500 0.409	0.177 90.872 5 2 0.500 0.566	0.124 107.48 5 2 0.500 0.241	0.168 139.4 5 2 0.500 0.781	0.165 169.24 5 2 0.500 0.281	0.167 210.68 5 2 0.500 0.287	0.105 248.65 5 2 0.500 0.168	0.236 288.63 5 2 0.500 0.447	0.422 332.09 5 2 0.500 0.767	0.527 376.65 5 2 0.500 0.127	0.525 425.23 5 2 0.500 0.126	0.0 461.29 5 2 0.500 0.025	0.0 486.47 5 2 0.500 0.052
Amount of sulfur hexafluoride in the installed equipment, t Amount of sulfur hexafluoride in the exploited equipment, t Leaks in production of the equipment, % Leaks in installation of the equipment, % Leaks in exploitation of the equipment, % Emissions from production of the equipment, kt CO ₂ -eq Emissions from installation of the equipment, kt CO ₂ -eq Emissions from production and installation of the equipment,	2.09 23.51 5 2 0.500 1.612 0.982	3.03 37.90 5 2 0.500 3.746 1.425	2.36 46.76 5 2 0.500 3.048 1.110	1.65 52.37 5 2 0.500 3.077 0.776	0.238 69.386 5 2 0.500 0.409 0.111	0.177 90.872 5 2 0.500 0.566 0.083 0.622	0.124 107.48 5 2 0.500 0.241 0.058	0.168 139.4 5 2 0.500 0.781 0.079	0.165 169.24 5 2 0.500 0.281 0.078 0.359	0.167 210.68 5 2 0.500 0.287 0.078 0.365	0.105 248.65 5 2 0.500 0.168 0.049 0.217	0.236 288.63 5 2 0.500 0.447 0.110	0.422 332.09 5 2 0.500 0.767 0.199 0.966	0.527 376.65 5 2 0.500 0.127 0.248 0.374	0.525 425.23 5 2 0.500 0.126 0.247 0.373	0.0 461.29 5 2 0.500 0.025 0.0 0.025	0.0 486.47 5 2 0.500 0.052 0.0 0.052

Table A3.1.1.17. Greenhouse gas emissions from Food and Beverages Industry

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Amount of meat and fish produced, kt	5419	4850	4079	3485	3089	2694	2558	2422	2286	2149	2013
Amount of margarine produced, kt	289	267	249	173	106	109	89,2	84,7	96,8	120	162
Amount of mixed fodder produced, kt	1647	1454	1132	9730	7957	6439	4139	2226	2020	1757	1126
Amount of bakery products produced, kt	6701	6685	6441	5444	4816	4114	3452	3060	2672	2510	2464
Amount of confectionery products produced, kt	436	398	336	275	185	130	103	117	146	188	237
Amount of sugar produced, kt	6791	4786	3647	3993	3368	3894	3296	2034	1984	1858	1780
Amount of cognac and brandy produced, 10 ³ hl	110	105	82	75	57	58	90	96	79	108	157
Amount of vodka produced, 10 ³ hl	3087	3360	3675	4029	3630	3748	2478	2707	2161	2316	2008
Amount of wine produced, 10 ³ hl	2723	2656	2089	1438	1156	1381	1199	990	771	856	948
Amount of beer produced, 10 ³ hl	13778	13093	10997	9086	9087	7102	6025	6125	6842	8407	10765
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	104.663	83.920	70.636	77.209	65.481	65.920	54.395	38.027	35.684	33.665	32.475
Total NMVOC emissions from beverage production, kt	24.238	26.238	28.402	30.913	27.835	28.672	19.207	20.932	16.785	18.111	16.062
Total food and beverages, kt	128.901	110.158	99.038	108.122	93.316	94.592	73.602	58.959	52.469	51.775	48.537

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Amount of meat and fish produced, kt	1850	1941	1973	1826	1863	1952	581	689	806	825	864
Amount of margarine produced, kt	198	203	250	282	302	311	317	316	353	363	359
Amount of mixed fodder produced, kt	1262	1827	3341	3287	4161	4817	4949	5125	5867	6090	6199
Amount of bakery products produced, kt	2450	2358	2335	2307	2264	2160	2034	1978	1828	1808	1763
Amount of confectionery products produced, kt	269	310	359	367	411	446	473	499	453	482	489
Amount of sugar produced, kt	1947	1621	2486	2147	2139	2592	1867	1571	1275	1805	2586
Amount of cognac and brandy produced, 10 ³ hl	141	147	163	200	240	277	358	389	313	358	471
Amount of vodka produced, 10 ³ hl	2205	2378	2671	4029	3506	3549	3721	3805	4033	4075	3335
Amount of wine produced, 10 ³ hl	1425	2081	1531	1541	1643	1710	1947	2105	2310	2966	1687
Amount of beer produced, 10 ³ hl	13059	15000	17012	19373	23805	26750	31579	32039	30005	30656	30297
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	34.561	31.570	42.159	38.873	39.729	44.599	36.589	33.602	31.068	36.636	44.335
Total NMVOC emissions from beverage production, kt	17.602	19.041	21.321	31.719	28.100	28.660	30.422	31.189	32.578	33.126	27.856
Total food and beverages, kt	52.163	50.611	63.480	70.592	67.829	73.259	67.011	64.790	63.646	69.761	72.191

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Amount of meat and fish produced, kt	892	1049	1048	1303.470	1181.639	1655.502	1867.217	1930.804	1593.334	1922.995	1703.535	1809.679
Amount of margarine produced, kt	328	283	271	192.897	187.874	230.070	223.037	247.551	233.307	241.713	190.470	198.089
Amount of mixed fodder produced, kt	6401	6816	6919	7063.166	7019.592	6882.645	6952.156	7279.585	7009.840	6245.725	5371.324	5473.379
Amount of bakery products produced, kt	1686	1561	1357	1381.975	1301.210	1203.619	1093.689	1001.371	891.441	857.205	688.336	712.428
Amount of confectionery products produced, kt	392	388	331	312.525	267.904	430.176	447.599	458.053	529.839	590.850	474.453	491.059
Amount of sugar produced, kt	2143	1263	2583	1766.840	2435.877	3058.039	2682.440	1796.047	1231.875	1706.876	1333.070	1631.678
Amount of cognac and brandy produced, 10 ³ hl	461	455	261	369.231	348.097	302.098	282.207	319.951	253.792	248.029	210.824	254.676
Amount of vodka produced, 10 ³ hl	3384	2805	2147	1865.233	1664.562	1371.583	1281.282	1096.063	1165.556	1276.401	1084.941	1310.608
Amount of wine produced, 10 ³ hl	1276	1167	719	1018.776	929.072	959.828	1034.153	943.553	775.679	995.107	470.685	518.225
Amount of beer produced, 10 ³ hl	29674	27397	24224	20284.358	18825.659	18693.428	18933.942	18912.598	18827.741	17681.657	13225.879	15368.47
Emission factor for meat and fish, t/t	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Emission factor for margarine, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for mixed fodder, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for bakery products, t/t	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045	0.0045
Emission factor for confectionery products, t/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Emission factor for sugar, t/t	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Emission factor for cognac and brandy, kg/hl	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
Emission factor for vodka, kg/hl	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Emission factor for wine, kg/hl	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Emission factor for beer, kg/hl	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035	0.000035
Total NMVOC emissions from food production, kt	39.362	30.007	42.215	33.58	39.735	46.107	41.936	33.259	26.681	30.757	24.690	28.011
Total NMVOC emissions from beverage production, kt	28.134	23.682	17.921	16.07	14.436	12.075	11.343	10.078	10.351	11.140	9.376	11.300
Total food and beverages, kt	67.496	53.689	60.137	49.66	54.171	58.182	53.279	43.337	37.032	41.896	34.065	39.311

A3.1.2 Determination of the amount of limestone and dolomite use

Limestone and dolomite are widely used in manufacture of various products. Statistical data of limestone and dolomite use in Ukraine are not available. SSSU [2] provides data only of production of fluxing limestone.

CO₂ emissions from limestone and dolomite use are accounted in the categories in which they are used.

To estimate CO₂ emissions from use of limestone and dolomite, in the previous NIR data on application of fluxing limestone were used taking into account export and import of limestone and with formation of the estimated balance of limestone use for production of all types of products. However, researches have shown that fluxing limestone is also used for lime and other products production. Therefore, the definition of activity data in this category based on statistical data on fluxing limestone manufacturing resulted in overestimation of CO₂ emissions. In 2012, the State Enterprise SE "UkrRTC "Energostal" performed the scientific-research work "Development of methods for calculation and determination of carbon dioxide emissions from limestone and dolomite use" [8], aimed at determining activity data and national CO₂ emission factors. To determine amounts of limestone used, this scientific-research work used statistics of sinter, pellets, pig iron, steel, and ferroalloys production, as well as industry limestone and dolomite consumption rates in production of these types of products. Table A3.1.2.1 shows results of estimation of the amount of limestone and dolomite used in the metallurgy in 2022 obtained using this scientific-research work, as well as results of estimation of CO₂ emissions from limestone and dolomite use.

Table A.3.1.2.1. Amount of limestone and dolomite use in metallurgy

Use of limestone	Measure- ment units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Blast-furnace sinter production	kt	60926.5	51109.2	49473.2	40110.8	30376.8	26277.9	25817.8	29573.9	31539.0	35781.7	38801.3	41287.9
Specific standards for limestone use	kg/t	130.0	132.5	135.0	140.3	180.0	159.7	139.4	119.1	129.8	130.3	129.3	141.6
Specific standards for dolomite limestone use	kg/t	41.0	44.5	48.0	68.1	65.88	63.65	61.43	59.2	62.1	54.1	57.3	54.7
Limestone use	kt	7920.4	6772.0	6678.9	5627.5	5467.8	4196.6	3599.0	3522.3	4093.8	4662.4	5017.0	5846.4
Dolomite limestone use	kt	2498.0	2274.4	2374.7	2731.5	2001.2	1672.6	1586.0	1750.8	1958.6	1935.8	2223.3	2258.4
Iron ore pellets production	kt	27916.8	22144.1	19680.7	15248.3	12392.7	14584.8	12824.3	14959.5	12842.9	9619.2	12343.4	11951.9
Specific standards for limestone use	kg/t	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03	49.03
Limestone use	kt	1368.8	1085.7	964.9	747.6	607.6	715.1	628.8	733.5	629.7	471.6	605.2	586.0
Iron production	kt	44927.4	36632.1	35350.0	27108.0	20180.3	17998.4	17831.5	20616.0	20936.7	23009.8	25698.7	26378.5
Specific standards for limestone use	kg/t	73	26	48	35	70	73.57	77	81	59	58	69	66
Specific standards for dolomite limestone use	kg/t	8	8	8	8	8	25	41	58	58	51	10	8
Limestone use	kt	3281.03	937.8	1703.9	948.8	1412.6	1324.1	1375.5	1663.7	1239.5	1336.9	1778.4	1746.3
Dolomite limestone use	kt	368.4	300.4	289.9	222.3	165.5	445.8	737.2	1193.7	1206.0	1171.2	249.3	216.3
Steel production	kt	52635.4	44994.5	41759.2	32609.7	24081.2	22307.9	22332.9	25628.5	24446.5	27392.2	31781	33522.1
Specific standards for limestone use	kg/t	24.6	24.6	24.6	24.6	21.3	20.94	20.58	20.23	24.28	24.71	24.95	25.19
Specific standards for dolomite limestone use	kg/t	9.8	9.8	9.8	9.8	8.6	8.57	8.54	8.51	4.9	5.3	5.68	6.05

Use of limestone	Measurement units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Specific standards for dolomite use	kg/t	9.1	9.1	9.1	9.1	10.7	10.2	9.7	9.21	9.9	9.3	9.89	10.47
Limestone use	kt	1294.83	1106.86	1027.28	802.20	512.93	467.13	459.61	518.46	593.56	676.86	792.94	844.42
Dolomite limestone use	kt	515.83	440.95	409.24	319.58	207.10	191.18	190.72	218.10	118.81	143.81	180.52	202.81
Limestone and dolomite limestone use	kt	1810.66	1547.81	1436.52	1121.77	720.03	658.31	650.33	736.56	712.37	820.67	973.45	1047.23
Dolomite use	kt	478.98	409.45	380.01	296.75	257.67	227.54	216.63	236.04	240.80	253.65	314.31	350.98
Ferroalloys Production	kt	2135.5	1930.1	1026.5	1026.5	1026.5	1026.5	1026.5	1026.5	851.6	934.5	1279.7	1296.3
Specific standards for limestone use	kg/t	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84	18.84
Limestone use	kt	40.2	36.4	19.3	19.3	19.3	19.3	19.3	19.3	16.0	17.6	24.1	24.4
Total limestone use	kt	13905.3	9938.7	10394.3	8145.5	8020.3	6722.3	6082.2	6457.2	6572.5	7165.3	8217.6	9047.5
Total dolomite limestone use	kt	3382.2	3015.7	3073.8	3273.4	2373.8	2309.6	2513.9	3162.5	3283.3	3250.8	2653.1	2677.6
Total use of limestone, including dolomite limestone	kt	17287.5	12954.4	13468.1	11418.9	10394.1	9031.9	8596.1	9619.8	9855.8	10416.1	10870.7	11725.0
Total use of dolomite	kt	479.0	409.4	380.0	296.7	257.7	227.5	216.6	236.0	240.8	253.7	314.3	351.0
Total limestone and dolomite use	kt	17766.5	13363.8	13848.1	11715.6	10651.8	9259.4	8812.7	9855.8	10096.6	10669.8	11185.0	12076.0
CO ₂ emission factor at limestone use (incl. dolomite limestone)	g/t	0.4336	0.4337	0.4336	0.4338	0.4336	0.4337	0.4338	0.4338	0.4339	0.4338	0.4337	0.4336
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolomite limestone)	kt	7495.5	5617.7	5840.4	4953.1	4507.4	3917.1	3728.8	4173.5	4276.0	4518.6	4714.4	5084.5
CO ₂ emissions from dolomite use	kt	222.5	190.2	176.5	137.8	119.7	105.7	100.6	109.6	111.9	117.8	146.0	163.0
Total CO ₂ emission from limestone and dolomite use	kt	7718.01 3	5807.9	6016.9	5090.9	4627.1	4022.8	3829.4	4283.1	4387.8	4636.5	4860.4	5247.5
Total CO ₂ emission factor	kg/t	0.4344	0.4346	0.4345	0.4345	0.4344	0.4345	0.4345	0.4346	0.4346	0.4345	0.4345	0.4345

Use of limestone	Measure- ment units	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Blast-furnace sinter production	kt	42991.6	43883.3	48134.0	48582.8	49002.8	51216.8	44553.1	35863.3	39492.6	40219.6
Specific standards for limestone use	kg/t	139.6	132.95	126.3	155.3	125.2	156.0	148.4	152.7	131.7	132.8
Specific standards for dolomite limestone use	kg/t	41.8	53.2	64.6	42.2	54.6	30.8	24.0	23.6	23.2	31.5
Specific standards for dolomite use	kg/t	-	-	-	-	-	-	-	-	-	-
Limestone use	kt	6001.6	5834.3	6079.3	7544.9	6135.2	7989.8	6611.7	5476.3	5201.2	5341.2
Dolomite limestone use	kt	1797.0	2334.6	3109.5	2050.2	2675.6	1577.5	1069.3	846.4	916.2	1266.9
Dolomite use	kt	-	-	-	-	-	-	-	-	-	-
Iron ore pellets production	kt	13464.9	14968.4	16348.1	17062.9	18313	18835.2	20414.1	20435.0	22141.0	22354.8
Specific standards for limestone use	kg/t	49.0	49.03	49.03	49.03	49.03	49.03	59.26	49.03	38.8	34.7
Specific standards for dolomite limestone use	kg/t	-	-	-	-	-	-	-	-	-	-
Limestone use	kt	660.2	733.9	801.5	836.6	897.9	923.5	1209.7	1001.9	859.1	775.7
Dolomite limestone use	kt	-	-	-	-	-	-	-	-	-	-
Iron production	kt	27633.3	29529.0	30977.6	30746.1	32929.3	35649.7	30991.3	25683.1	27365.8	28877
Specific standards for limestone use	kg/t	59.9	55	49	50	33	48	31	30	31	37.9
Specific standards for dolomite limestone use	kg/t	4.0	4	4	12	18	10	7	3	0.1	0.1
Limestone use	kt	1655.2	1609.3	1521.0	1537.3	1073.5	1707.6	954.5	765.4	859.3	1094.4
Dolomite limestone use	kt	110.5	124.0	136.3	356.7	589.4	349.4	226.2	66.8	2.7	2.9
Steel production	kt	34546.4	37524.1	38718.5	38615.5	40891.8	42828.5	37082.3	29848.6	32682	34762
Specific standards for limestone use	kg/t	21.1	19.06	16.99	15.68	14.33	12.3	13.31	9.98	12.88	14.87
Specific standards for dolomite limestone use	kg/t	5.9	5.34	4.74	4.03	5.29	4.19	3.6	2.02	1.35	1.41
Specific standards for dolomite use	kg/t	11.02	10.88	10.73	10.77	8.26	8.79	7.48	6.33	4.04	4.12

Use of limestone	Measurement units	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Limestone use	kt	719.4	703.9	657.8	605.5	586.0	526.8	497.9	297.9	420.9	516.911
Dolomite limestone use	kt	202.3	197.2	183.5	155.6	216.3	179.5	134.7	60.3	44.1	49.014
Limestone and dolomite limestone use	kt	921.7	901.1	841.4	761.1	802.3	706.2	632.6	358.2	465.1	565.9
Dolomite use	kt	375.3	401.8	415.4	415.9	337.8	376.5	279.8	188.9	132.0	143.2
Ferroalloys Production	kt	1288.3	1490.0	1912.3	1632.4	1709.6	1867.9	1662.8	1200.7	1671.3	1419.6
Specific standards for limestone use	kg/t	18.8	18.84	18.84	18.84	18.84	19.79	20.74	11.51	23.3	52.44
Limestone use	kt	24.3	28.1	36.0	30.8	32.2	37.0	34.5	13.8	38.9	74.4
Total limestone use	kt	9070.9	8920.8	9095.7	10555.1	8724.7	11184.7	9304.0	7555.3	7379.4	7802.7
Total dolomite limestone use	kt	2112.8	2659.0	3429.3	2562.5	3481.3	2106.3	1429.0	973.4	963.1	1318.8
Total use of limestone, including dolomite limestone	kt	11183.7	11579.8	12525.0	13117.5	12206.0	13291.0	10733.0	8528.8	8342.5	9121.5
Total use of dolomite	kt	380.7	408.3	415.4	415.9	337.8	376.5	277.4	188.9	132.0	143.2
Total limestone and dolomite use	kt	11564.43	11988.1	12940.5	13533.4	12543.8	13667.4	11010.4	8717.7	8474.5	9264.7
CO ₂ emission factor at limestone use (incl. dolomite limestone)	kg/t	0.4336	0.4336	0.4337	0.4336	0.4338	0.4335	0.4335	0.4334	0.4334	0.4335
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolomite limestone)	kt	4848.9	5021.5	5432.5	5687.5	5294.5	5761.7	4652.3	3696.52	3615.81	3954.0
CO ₂ emissions from dolomite use	kt	176.8	189.6	193.0	193.2	156.9	174.9	128.8	87.7661	61.3319	66.5
Total CO ₂ emission from limestone and dolomite use	kt	5025.7	5211.2	5625.5	5880.7	5451.4	5936.6	4781.1	3784.28	3677.14	4020.5
Total CO ₂ emission factor	kg/t	0.4346	0.4347	0.4347	0.4345	0.4346	0.4344	0.4342	0.4341	0.4339	0.4340

Use of limestone	Measurement units	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Blast-furnace sinter production	kt	42598.0	43624	38294.60	33575.72	34383	31000	31680	30911	31907	32917	8102	9353
Specific standards for limestone use	kg/t	119.42	122.296	118.111	101.079	112.532	123.209	111.79	128.22	122.322	123.501	121.786	121.46
Specific standards for dolomite limestone use	kg/t	33.195	33.994	26.517	48.065	59.791	22.407	73.223	66.423	48.99	50.162	52.28	59.11
Specific standards for dolomite use	kg/t	1.684	1.724	3.796	2.076	6.847	4.31	0.0	0.0	0.0	0.000	0.000	0.0
Limestone use	kt	5087.053	5335.1	4523.029	3393.809	3869.183	3819.490	3541.543	3963.451	3902.92	4065.289	986.708	1136.02
Dolomite limestone use	kt	1414.041	1483	1015.478	1613.809	2055.791	694.631	1728.3	1571.88	1250.82	1651.197	423.566	552.884
Dolomite use	kt	71.735	75.2	145.4	69.707	235.417	133.622	0.0	0.0	0.0	0.0	0.0	0.0
Iron ore pellets production	kt	21959.6	23702	21915	21657	22386	20100	21360	20807.75	18886.42	20133.92	9816	9128
Specific standards for limestone use	kg/t	27.954	30.172	27.897	27.5688	28.497	25.587	27.27	27.272	27.272	27.272	26.937	27.236
Specific standards for dolomite limestone use	kg/t	2.65	2.86	2.64	2.613483	2.701	2.426	2.59	2.585	2.585	2.585	2.554	2.582
Limestone use	kt	613.858	715.1	611.4	597.1	637.9	514.3	582.5	567.46	515.06	549.08	264.4	248.6
Dolomite limestone use	kt	58.193	67.8	57.96	56.60	60.47	48.75	55.22	53.79	48.83	52.05	25.07	23.57
Iron production	kt	28486.6	29088.7	24800.9	21862.8	23559.5	20116.5	20531.2	20055.9	20238	21165	6265,7	6003.0
Specific standards for limestone use	kg/t	32.18	32.19	26.497	22.605	10.302	16.811	28.658	23.832	28.894	44.518	44.518	42.933
Specific standards for dolomite limestone use	kg/t	1.565	0.242	3.281	3.756	0.873	9.37	13.925	9.936	0.645	10.655	10.655	10.267
Limestone use	kt	916.699	936.2	657.151	494.206	242.705	338.18	588.374	477.981	584.765	942.218	278.935	257.727
Dolomite limestone use	kt	44.582	7.0	81.379	82.121	20.571	188.49	285.895	199.273	13.051	225.506	66.759	61.634
Steel production	kt	32497.85	32673.02	27144.07	22997.61	24196	21049.27	20994.48	20848	20616	21366	6298.74	6226,8
Specific standards for limestone use	kg/t	12.79	12.99	13.84	13.160	10.67	11.538	12.00	11.594	10.46	10.36	3.369	
Specific standards for dolomite limestone use	kg/t	0.769	0.78	1.3	0.019	0.64	1.495	1.43	1.074	1.17	0.922	0.037	
Specific standards for dolomite use	kg/t	2.014	2.05	1.65	0.089	0.63	0.689	0.25	1.367	1.18	0.936	0.042	

Use of limestone	Measurement units	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Limestone use	kt	415.583	424.302	375.608	302.658	258.194	242.872	251.996	241.705	215.658	221.38	21.218	20.946
Dolomite limestone use	kt	24.991	25.515	35.200	0.448	15.568	31.459	30.096	22.40	24.10	19.70	0.236	0.262
Limestone and dolomite limestone use	kt	440.6	449.82	410.808	303.1063	273.762	274.331	282.092	264.105	239.758	241.08	21.45	21.2084
Dolomite use	kt	65.5	66.82	44.701	2.039	15.139	14.50	5.200	28.50	24.40	20.00	0.265	0.262
Ferroalloys Production	kt	1279.084	1142.21	1362.473	1092.13	1218.323	1278.99	1244.79	1183.93	853.67	957.997	599.227	219.844
Specific standards for limestone use	kg/t	64.636	60.48	55.18	55.410	14.275	22.41	21.59	18.60	30.56	13.85	26.3	0.97342
Limestone use	kt	82.675	69.1	75.18	60.515	17.391	28.67	26.87	22.02	26.09	13.266	15.76	0.2140
Total limestone use	kt	7115.9	7479.8	6242.3	4848.2	5025.4	4943.5	4991.3	5272.6	5244.5	5791.2	1567.0	1642.36
Total dolomite limestone use	kt	1541.8	1583.3	1190.0	1753.0	2152.4	963.3	2099.5	1847.4	1336.8	1948.5	515.6	638.08
Total use of limestone, including dolomite limestone	kt	8657.7	9063.1	7432.35	6601.22	7177.81	5906.8	7090.83	7119.97	6581.29	7740.55	2082.67	2301.87
Total use of dolomite	kt	137.2	142.1	190.1	71.7	250.6	148.1	5.2	28.5	24.4	20.0	0.26	0.3
Total limestone and dolomite use	kt	8794.9	9205.2	7622.5	6672.97	7428.36	6054.96	7096.03	7148.47	6605.69	7759.69	2082.93	2302.13
CO ₂ emission factor at limestone use (incl. dolomite limestone)	kg/t	0.4335	0.4335	0.4335	0.4337	0.4338	0.4335	0.4338	0.4337	0.4336	0.4337	0.4337	0.4337
CO ₂ emission factor for dolomite use	kg/t	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645	0.4645
CO ₂ emissions from limestone use (incl. dolomite limestone)	kt	3753.5	3929.2	3222.0	2863.1	3113.6	2560.7	3075.86	3087.98	2853.61	3356.6	903.2	998.4
CO ₂ emissions from dolomite use	kt	63.7	66.0	88.3	33.3	116.4	68.8	2.4	13.2	11.3	9.3	0.1	0.1
Total CO ₂ emission from limestone and dolomite use	kt	3817.2	3995.2	3310.3	2896.4	3230.0	2629.5	3078.3	3101.2	2864.9	3365.9	903.3	998.5
Total CO ₂ emission factor	kg/t	0.4340	0.4340	0.4343	0.4341	0.4348	0.4343	0.4338	0.4338	0.4337	0.4338	0.4337	0.4337

A3.1.3 Method of CO₂ emission factor determination for coke use

The CO₂ emission factor for coke use (kc) is determined under the equation:

$$kc = (dc/100) \cdot 44/12$$
,

where dc is the carbon content in coke used in the blast furnace process for iron production, %.

The carbon content in coke is determined based on data obtained from enterprises-producers of pig iron. Results of estimations using described methods are the values of carbon content in coke of 85.4 % (for dry coke), and of CO₂ emission factor at coke use calculated on basis of national data in 2023 amounted to 3.01 tons of CO₂/t.

A3.1.4 Carbon balance in the blast furnace process

Tables A3.1.4.1- A3.1.4.2 show the income and expense side of the carbon balance in the blast furnace process in 2023.

Table A3.1.4.1. The income side of the carbon balance in the blast furnace process in 2023

Fuel and materials for pig iron production	Data source		Specific carbon content t of C/t (t of C/ M m3)	the inniit of the
Limestone	Table P3.1.3.1	257.727	0.118	30.449
Dolomite limestone	Table P3.1.3.1	61.634	0.119	7.315
Blast-furnace coke use	Table P3.1.1.15	2881.000	0.820	2362.42
Coal	Table P3.1.1.15	28.30268259	0.810	22.918
Natural gas	Table P3.1.1.15	0.434673733	0.525	0.228
The total amount of carbon	The total of all components			2423.330

Table A3.1.4.2 The expense side of the carbon balance in the blast furnace process in 2023

Components of car- bon emissions	Data source	Amount of fuel and materials, kt (M m3)	Specific carbon content t of C/t (t of C/M m3)	Carbon content at the output of the blast furnace process, kt	Category where the carbon emis- sions are ac- counted for
Limestone use	Table P3.1.3.1	257.727	0.118	30.449	-
Dolomite limestone use	Table P3.1.3.1	61.634	0.119	7.315	-
Coke use	With using extrapolation method, based on data of the growth of pig iron production in 2021	2881.000	0.820	2362.42	2.C.1.1
Carbon residue in pig iron	Table P3.1.3.1	6003	0.045	270.135	2.C.1.1
Emissions from use of the technological component of coke	"Technological coke compo- nent" minus "Carbon residue in pig iron"			2092.285	2.C.1.1
Coal use	Table P3.1.3.1	28.30268259	0.810	22.918	2.C.1.1
Natural gas use	Table P3.1.3.1	0.434673733	0.525	0.228	2.C.1.1
The total amount of carbon	The total of all components			2423.330	
Carbon emissions from iron production	The total of all components accounted for in category 2.C.1.1			2153.195	2.C.1.1
CO ₂ emissions from iron production	Table P3.1.3.1			7 895.05	2.C.1.1

A3.2 Agriculture (CRT sector 3)

A3.2.1 Livestock

A3.2.1.1 Harmonization with the forms of the State Statistics Service of Ukraine

The SSSU provides quite detailed information about number and fodder consumption of livestock and poultry. Statistical observations conducted according to approved methodological recommendations [4, 21]. The collection of statistical observations at the regional and state levels carried out according to the scheme, as shown in the Figure A3.2.1.1.1.

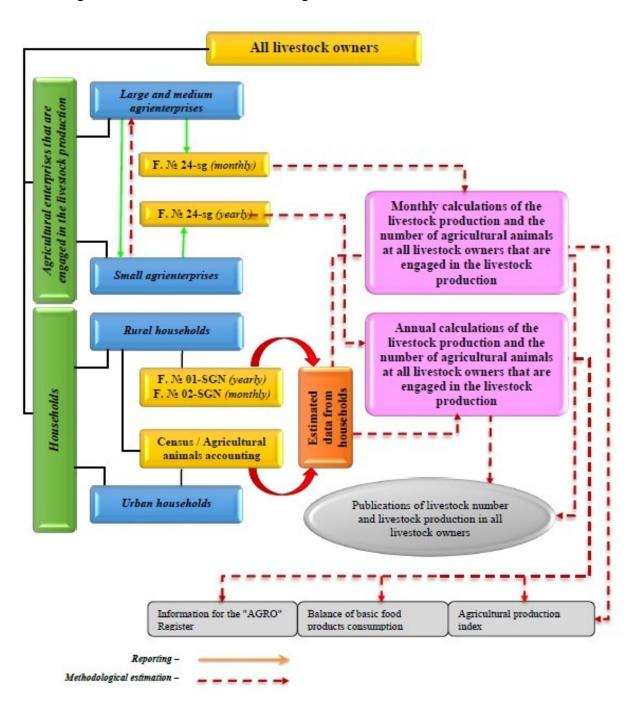


Figure A3.2.1.1.1. General scheme of statistical observations on the livestock production, the number of agricultural animals, their fodders provision and the interconnection with other statistical forms

However, groups of animals in the statistics do not fully coincide with the groups to be used for the inventory of GHG emissions, as the statistical information is designed for a wide range of users, i.e. not adapted for GHG inventory. For example, not all sex-age groups of animals singled out from the total population in SSSU data. Given the above, it is necessary to coordinate the groups of animals according SSSU and the groups that should be used for the inventory. The groups of animals for the purpose of the GHG inventory selected in accordance with the recommendations of the Good Practice Guidance based on the difference in the amount of feed consumed, the amount of manure excreted, and other data.

Table A3.2.1.1.1 presents the comparison of species and sex-age groups of cattle, swine, poultry, and sheep at farms according to the SSSU and the groups used in the NIR.

Table A3.2.1.1.1. The correspondence of animal species/groups at agrienterprises according

to the SSSU and the species/groups used for the inventory

SSSU	species/groups of animals	The code of the spe- cies/group of animals in form No.24	Species/groups of animals for the GHG inventory	CRT categories	
		Cattle			
h- տ -	Dairy herd cows	40 (2) – 83-87			
Cows (with- out cows on fattening) - 40 (2)	Dairy herd cows separated for group suckling rearing of calves	83	Dairy cows	Mature dairy cattle	
C	Beef cows	87	Beef cows		
Heif	fers 2 years and older, bred	81	Heifers 2 years and older		
Heifer	rs 2 years and older, not bred	82	Tieffers 2 years and older	Other mature cattle	
Beef a	and dairy cows on fattening*	-	Cows on fattening		
	Bulls	84	Bulls		
Bee	ef cattle (excluding cows)	86-87	Cattle on fattening (excluding		
Cattle o	on fattening (excluding cows)*	-	cows)		
Heit	fers from 1 to 2 years, bred	80	Heifers from 1 to 2 years	~	
	Calves under 1 year	77		Growing cattle	
	Draught oxen	85	Other cattle		
Cattle not	t included into the groups above (remainder)	-			
		Swine			
	Main sows	89	Main sows		
	Sows tested	90	Sows tested		
Repai	ir swine older than 4 months	91	Repair swine older than 4 months	a .	
	Piglets up to 2 months	92	Piglets up to 2 months	Swine	
	Fattening swine*	<u>-</u>	Fattening swine		
Not a	llocated as a separate group	-	Boars		
Not a	llocated as a separate group	-	Piglets 2 to 4 months		
		Poultry			
1	Adult hens and roosters	110(1)	Hens and roosters		
Y	Young hens and roosters	110 (2)	Tiens and Toosters		
	Adult geese	112 (1)	Geese		
	Young geese	112 (2)	Geese		
	Adult ducks	113 (1)	Ducks	Poultry	
	Young ducks	113 (2)	Ducks	Toutry	
	Adult turkeys	114 (1)	Turkeys	1	
	Young turkeys 114 (2)		Turkeys		
Other adult poultry		115 (1)	Other poultry		
	Other young poultry	115 (2)	Omer pountry		
		Sheep			

SSSU species/groups of animals	The code of the spe- cies/group of animals in form No.24	Species/groups of animals for the GHG inventory	CRT categories
Ewes and gimmers 1 year and older	94	Ewes and gimmers 1 year and older	
Not allocated as a separate group	-	Rams	
Not allocated as a separate group	-	Wethers	Sheep
Fattening livestock *	-	Fattening livestock	
Sheep not included into the groups above (remainder)	-	Lambs up to 4 months and 4- 12 months repair young sheep	

^{*} Statistics on the livestock of fattening cattle, swine, and sheep are not maintained since 2005.

Similar to agrienterprises, statistical data on the sex-age of animals in households do not fully coincide with the groups to be used for inventory of GHG emissions.

Therefore, harmonization of groups of animals according to SSSU data and groups used for inventory purposes was held (Table A3.2.1.1.2).

Table A3.2.1.1.2. Matching groups of animals according to the SSSU and the groups used for inventory purposes

SSSU species/groups of animals	Code of the species/group of animals in Table No.7, field	Species/groups of ani- mals for the GHG inven- tory	CRT categories
Cows (without cows on fattening)	3	Dairy cows	Mature dairy cattle
Heifers 2 years and older (bred and not bred)	5	Heifers 2 years and older	Other mature cattle
Bulls	2	Bulls	
Heifers from 1 to 2 years, bred	4	Heifers from 1 to 2 years	Growing cattle
Cattle not included into the groups above (remainder)	-	Other cattle	Growing cause
Main sows	9	Main sows	
Repair swine 4 months and older	11	Repair swine 4 months and older	
Piglets up to 2 months	12	Piglets up to 2 months	
Not allocated as a separate group	-	Piglets 2 to 4 months	Swine
Not allocated as a separate group	-	Boars	
Not allocated as a separate group	-	Fattening swine	
Hens and roosters	-	Hens and roosters	
Geese	-	Geese	
Ducks	-	Ducks	Poultry*
Turkeys	-	Turkeys	
Other poultry	-	Other poultry	
Ewes and gimmers 1 year and older	14	Ewes and gimmers 1 year and older	
Not allocated as a separate group	-	Rams	Cl
Not allocated as a separate group	-	Wethers	Sheep
Not allocated as a separate group	-	Lambs up to 4 months and 4-12 months young sheep	

^{*} The SSSU determines the livestock of poultry by species by calculation according to state statistical observation form No.01-SHN "Basic interview questionnaire" (section II) on the basis of percentage ratio of the poultry species specified in Table A3.2.1.2 in the poultry flock structure.

A3.2.1.2 Sources of data on livestock

In line with the requirements of [1], developers of the GHG inventory report are supposed to use data of the SSSU or FAO as the information base to estimate the average annual livestock.

Determination of average livestock, according to information received from SSSU carried out by using the approach [35], which reflects the national characteristics and consists in calculating the arithmetic value of livestock at the beginning and end of the relevant year.

The agreement of national approach for calculating the annual average number of animals with the 2006 IPCC Guidelines [1] are planned by realization of research work on relevant topic.

A3.2.1.2.1 Data sources on cattle livestock

Sources of information about the cattle population as of January 1 by category of farms and cattle sex-age groups for the reporting period were cattle accounting data ("Livestock accounting results", Table No.7; "Statistical reported data: Number of agricultural animals as of January 01" [38]), bulletin or statistical reported data by the state statistical observation form No.24 (statistical bulletin "The status of livestock in Ukraine" [13] and "Statistical reported data: Production of animal products" [39]) and analytical study, which includes different approaches, particularly extrapolation, expert judgment and other math and statistical methods [2].

The average annual population of each sex-age group of cattle at agricultural enterprises and in households was determined in accordance to national methodology [35]. Results of estimation of the average annual cattle livestock at agrienterprises and in households in the areas of Polissia, Wooded Steppe, and Steppe reported in Annex 3 (Tables A3.2.1.3.1 and A3.2.1.3.2).

A3.2.1.2.2 Data sources on sheep livestock

According to recommendations [1] and by using national sources [9], the livestock was divided by sex-age groups: ewes and gimmers 1 year and older, rams, fattening livestock, wethers, lambs up to 4 months and 4-12 months repair young sheep.

Data on the livestock of sheep of all breeds in all categories of farms were obtained from SSSU data ("Livestock accounting results", Table No.7; "Statistical reported data: Number of agricultural animals as of January 01" [38]) and analytical study [2]. These sources specify the total livestock of sheep, while the livestock of ewes and gimmers 1 year old and older indicated as a separate group. The average annual population sheep for all categories of farms was determined in accordance to national methodology [35]. The livestock of rams and wethers calculated on the base of information on the sheep herd structure obtained from the SSSU (for 1990) and the Agency for Identification and Registration of Animals. Fattening livestock includes young animals (mostly 7 to 9 months old), adult culled ewes and rams. The calculations according to [6-7] assumed that the proportion of young sheep in fattening livestock is 83.5 %, while of adult – 16.5 %. The rest of sheep population ascribed to lambs under 4 months and repair young animals up to 1 year.

Sheep livestock distribution in the territory of Ukraine is not homogeneous. Mostly, sheep are bred in such key sheep-breeding regions as the Autonomous Republic of Crimea, Transcarpathian, Zaporizhska, Odeska, Dnipropetrovska, Donetska, Khersonska, Mykolaivska, and several other regions, most of which are located in the steppe zone. In determining the above-mentioned regions, data on placement of breeds and breed sheep types in the regions of Ukraine according to [7], as well as statistical data on the population of sheep in all kinds of farms by region takes into account [10].

A3.2.1.2.3 Data sources on swine livestock

Data on the livestock of key sex-age groups of swine at farms and in households were obtained from SSSU data ("Livestock accounting results", Table No.7; "Statistical reported data: Number of agricultural animals as of January 01" [38]) and analytical study [2].

In accordance to statistical bulletin swine livestock at agricultural enterprises was divided into five sex-age groups up to 2005, and later on 2005 – into 4 groups. The animals that do not belong to these groups on average during the reporting period amount to one third of the total swine population. In particular, in the statistics there is no separate indications of the livestock of boars and piglets

from 2 to 4 months. Boars usually account for about 1% of the total population, and their number for the reporting period was estimated on the basis of this assumption. The repair swine were attributed to piglets from 2 to 4 months. Data on the population of swine for fattening from 2014, due to lack of statistical data, were estimated based on the percentage of this group in the herd structure in 2004 (29.5 %). Statistics on the livestock of piglets up to 2 months introduced in 2001. The number of piglets for 1990-2000 was estimated based on the structure of the swine herd in 2001-2004.

The livestock of swine in households in accordance with statistics is divided into the three age and sex groups: main sows, repair swine 4 months of age and older, and piglets up to 2 months [35]. The following groups are not indicated separately: boars, piglets from 2 to 4 months, and swine for fattening. The number of boars and piglets from 2 to 4 months in households was assumed to be 1 and 22 % of the total population, respectively. The number of fattening swine calculated as the difference between the total population and all the age and sex groups used for the inventory. Statistics on the livestock of piglets up to 2 months introduced in 2000. The number of piglets for the rest of the years was estimated based on the structure of the swine herd in 2000-2004.

The average annual population of sex-age groups of swine from "Livestock accounting results" (Table No.7) and analytical study [2] at agricultural enterprises and in households was determined in accordance to national methodology [35].

A3.2.1.2.4 Data sources on poultry livestock

The values of the poultry livestock are presented in statistical bulletin "The status of livestock in Ukraine", statistical yearbook "Animal production of Ukraine", statistical reported data "Number of agricultural animals as of January 01" and "Production of animal products" [10, 13, 38-39] by species hens and roosters, geese, ducks, and turkeys) and age group (adults and young ones). The analytical study [2] used for poultry livestock calculation also. The breakdown of poultry by sexage groups for GHG inventory not applied due to lack of all the necessary data.

Total poultry population (without the breakdown into species) is determined on the base of the sample data of the household survey in rural communities. First, the population of poultry per household estimated, and then these data are spread to the number of households that keep poultry in accordance with the census of animals as of January 1. The poultry population by species (hens and roosters, geese, ducks, and turkeys) estimation based on the poultry structure at households [10].

The average annual population of sex-age groups of poultry at agricultural enterprises and in households was determined in accordance to national methodology [35].

A3.2.1.2.5 Data sources on livestock of other animals

Other animals (horses, goats, asses and mules, rabbits, fur-bearing animals, camels, and buffaloes) determined according to SSSU data ("Livestock accounting results", Table No.7; statistical reported data "Number of agricultural animals as of January 01" [38]; statistical reported data "Production of animal products" [39]; statistical bulletin "The status of livestock in Ukraine" [13], statistical yearbook "Animal Production of Ukraine" [10], FAO data, analytical study [2] or based on assumptions. The average annual population of the groups of animals indicated (except for camels, asses and mules was determined in accordance to national methodology [35].

Breeding of buffaloes, camels, asses and mules as agricultural animals is not widely practiced in Ukraine, their livestock are not included into indicators of state statistical observations on livestock statistics or the state registry, which is being composed by State Enterprise "Agency of Animal Identification and Registration". Despite the negligible livestock, buffaloes, camels, asses and mules are included into the estimation of the GHG inventory to ensure data completeness. Within Ukraine, buffaloes are bred mainly in the Transcarpathian region. Official data on the number of these animals are limited to 1990 and 2010-2015. The number of buffaloes in the period of 1991-2009 was calculated using linear interpolation method. According to data of the Department of Agricultural Development of Transcarpathian Regional State Administration, the average annual number of buffaloes in 2015 decreased compared to 1990 by 6.8 % and went down to 58 animals.

Data on the average annual population of camels, asses and mules are not included into the set of indicators of state statistical observations forms of livestock statistics. The source of information is the FAO information database (http://faostat.fao.org).

Moreover, the SSSU also provides no information on the population of fur-bearing animals for the periods of 1990-1993 and 1995-1997. It has assumed that the number of fur-bearing animals for 1990 is the same as the population in 1989. The numbers of these animals for 1991-1993, as well as for 1995-1997 obtained using the linear interpolation method.

A3.2.1.3 The average annual livestock of animals

Table A3.2.1.3.1. The average annual livestock at agricultural enterprises and households, thsd. head

Animal species	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Cattle in agrienterprises	21,373.90	20,636.85	19,502.10	18,276.20	16,753.70	14,735.10	12,636.00	10,282.65	8,438.50	7,293.95
Cattle in households	3,535.20	3,538.65	3,590.10	3,755.85	3,862.10	3,855.70	3,799.25	3,753.20	3,801.55	3,880.10
Sheep	8,220.80	7,577.65	6,927.80	6,357.20	5,455.10	4,000.80	2,701.25	1,866.40	1,369.00	1,128.95
Swine in agrienterprises	14,530.10	13,317.20	11,746.45	10,339.35	8,915.40	7,617.15	6,344.70	4,779.90	4,153.35	4,198.30
Swine in households	5,156.70	5,315.60	5,260.35	5,397.10	5,706.35	5,927.80	5,845.30	5,577.25	5,627.70	5,879.85
Fur-bearing animals	560.92	560.76	560.60	560.44	560.28	528.10	463.90	399.70	335.50	268.15
Rabbits	6,097.50	6,252.05	6,495.30	6,842.65	6,828.55	6,566.85	6,106.20	5,634.25	5,548.35	5,636.85
Camels	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Asses and mules	19.00	19.00	19.00	19.00	15.00	14.50	14.00	13.00	12.50	12.00
Buffaloes	0.85	0.83	0.79	0.75	0.71	0.67	0.63	0.59	0.55	0.51
Horses	745.95	727.75	712.10	711.40	726.15	746.25	754.70	745.20	729.10	709.70
Goats	490.10	546.25	605.05	692.40	763.45	835.75	871.60	838.05	824.90	826.40
Poultry in agrienterprises	137,593.50	130,465.75	116,352.15	94,631.40	74,695.20	59,470.60	44,207.00	32,328.25	30,709.90	29,483.60
Poultry in households	113,018.35	114,146.65	112,499.30	107,900.00	102,976.80	97,835.35	95,391.85	94,066.40	95,697.10	98,304.85

Animal species	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cattle in agrienterprises	5,871.45	4,850.30	4,428.55	3,679.40	2,927.80	2,591.20	2,393.20	2,110.70	1,823.45	1,673.60
Cattle in households	4,153.65	4,572.10	4,836.20	4,730.85	4,379.70	4,117.30	3,951.55	3,722.45	3,461.50	3,279.25
Sheep	1,011.30	965.10	958.60	921.75	884.30	873.70	898.44	979.22	1,064.73	1,146.35
Swine in agrienterprises	3,263.60	2,660.45	3,148.65	2,831.75	2,185.60	2,350.45	2,929.91	3,063.47	2,800.21	3,019.40
Swine in households	5,599.00	5,350.45	5,637.95	5,430.85	4,708.20	4,409.00	4,624.00	4,474.00	3,972.75	4,031.90
Fur-bearing animals	190.20	156.70	176.40	204.80	242.05	275.50	299.95	340.74	346.34	317.50
Rabbits	5,578.70	5,734.80	6,047.20	5,774.45	5,293.15	5,327.70	5,317.45	5,167.50	5,261.35	5,503.55
Camels	0.60	0.60	0.60	0.60	0.60	0.75	0.80	0.80	0.80	0.80
Asses and mules	11.50	11.50	11.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Buffaloes	0.47	0.43	0.40	0.36	0.32	0.28	0.24	0.20	0.16	0.12
Horses	699.65	697.30	688.85	660.70	614.00	572.85	544.57	515.92	481.65	454.60
Goats	868.55	954.90	1,016.10	999.85	929.85	825.80	724.91	668.66	638.01	633.35
Poultry in agrienterprises	26,608.50	30,258.05	38,434.00	41,983.80	46,410.05	58,591.30	69,422.17	76,012.07	83,889.41	94,163.95
Poultry in households	98,303.95	100,008.45	103,694.20	102,925.80	101,168.45	98,797.05	94,840.10	91,739.00	89,374.10	90,337.20

Animal species	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Cattle in agrienterprises	1,576.75	1,518.50	1,508.55	1,472.00	1,387.72	1,321.15	1,277.35	1,227.97	1,192.14	1,133.44
Cattle in households	3,083.80	2,941.60	3,027.30	3,117.95	2,907.87	2,677.39	2,632.33	2,576.51	2,438.09	2,277.04
Sheep	1,148.75	1,096.85	1,083.30	1,070.05	1,030.47	972.72	938.53	930.75	921.50	887.14
Swine in agrienterprises	3,466.55	3,472.20	3,438.05	3,717.90	3,873.48	3,860.36	3,781.91	3,580.76	3,496.94	3,495.13
Swine in households	4,301.95	4,194.60	4,036.90	4,031.55	3,878.73	3,595.39	3,340.94	3,058.45	2,824.41	2,634.72
Fur-bearing animals	304.60	366.20	420.35	379.35	334.75	297.65	273.27	336.37	418.04	428.96
Rabbits	5,487.65	5,498.70	5,650.10	5,696.45	5,603.49	5,429.63	5,355.37	5,237.89	5,113.71	4,988.26
Camels	0.80	0.80	0.80	0.80	0.80	0.81	0.83	0.84	0.85	0.86
Asses and mules	12.00	12.00	12.00	12.00	12.00	11.94	11.86	11.85	11.87	11.87
Buffaloes	0.15	0.18	0.22	0.22	0.23	0.21	0.25	0.27	0.31	0.28
Horses	428.80	404.95	386.15	365.40	337.69	315.81	303.30	282.87	259.18	238.94
Goats	633.35	638.70	655.50	666.65	648.47	628.72	636.85	635.75	620.99	603.53
Poultry in agrienterprises	105,457.75	108,143.30	111,806.95	124,980.55	131,406.75	125,752.56	119,544.96	119,474.48	123,830.16	131,544.91
Poultry in households	92,185.35	94,156.90	95,608.65	97,199.65	97,654.92	97,762.89	98,472.85	98,769.33	99,264.34	99,446.79

Animal species	2020	2021	2022	2023
Cattle in agrienterprises	1,067.63	1,044.58	1,024.56	995.89
Cattle in households	2,113.34	1,912.39	1,691.15	1,518.10
Sheep	847.99	822.14	780.06	729.65
Swine in agrienterprises	3,611.44	3,749.84	3,569.09	3,525.88
Swine in households	2,441.96	2,244.26	2,034.55	1,893.84
Fur-bearing animals	380.11	360.26	321.86	273.71
Rabbits	4,892.73	4,816.58	4,591.51	4,392.83
Camels	0.86	0.86	0.86	0.87
Asses and mules	11.83	11.85	11.84	11.84
Buffaloes	0.23	0.28	0.29	0.29
Horses	217.90	196.10	175.22	157.78
Goats	578.73	549.48	508.30	480.96
Poultry in agrienterprises	127,034.57	119,887.42	117,533.90	115,485.63
Poultry in households	98,492.26	96,518.06	91,639.61	87,786.71

head

Table A3.2.1.3.2. The average annual number of cattle species in farms of different forms of ownership by the natural zones of Ukraine, thsd.

Ecological region	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Mature Dairy Cattle in agri- enterprises of Polissia	1,264.20	1,220.00	1,146.60	1,078.80	1,027.20	972.95	907.30	801.45	690.45	591.90
Mature Dairy Cattle in agri- enterprises of Forest steppe	2,428.90	2,361.70	2,252.50	2,157.15	2,058.35	1,911.55	1,742.95	1,518.05	1,304.25	1,149.60
Mature Dairy Cattle in agri- enterprises of Steppe	2,579.95	2,507.85	2,408.95	2,303.45	2,149.25	1,922.75	1,674.90	1,379.95	1,129.65	949.10
Mature Dairy Cattle in households of Polissia	953.95	963.15	993.30	1,036.00	1,085.80	1,131.45	1,151.55	1,159.70	1,172.80	1,181.05
Mature Dairy Cattle in households of Forest steppe	828.35	839.90	876.80	934.70	994.80	1,040.55	1,048.55	1,032.25	1,025.35	1,023.20
Mature Dairy Cattle in households of Steppe	397.55	427.80	481.75	557.35	632.60	695.55	726.35	726.95	730.30	741.05
Other Mature Cattle in agri- enterprises of Polissia	2,431.16	2,364.37	2,227.09	2,020.11	1,742.15	1,480.02	1,284.34	1,044.03	835.45	690.31
Other Mature Cattle in agri- enterprises of Forest steppe	3,134.51	3,041.09	2,903.79	2,753.27	2,565.94	2,267.53	1,964.78	1,618.64	1,327.07	1,180.28
Other Mature Cattle in agri- enterprises of Steppe	4,180.64	3,971.03	3,676.15	3,383.46	3,012.09	2,486.83	1,893.23	1,340.77	1,033.81	901.48
Other Mature Cattle in households of Polissia	313.77	287.17	241.76	202.66	176.75	167.43	165.00	163.39	164.92	172.85
Other Mature Cattle in households of Forest steppe	265.00	232.61	200.32	187.14	177.60	160.21	133.12	118.66	126.81	135.98
Other Mature Cattle in households of Steppe	140.24	151.06	149.95	161.94	169.55	152.32	128.13	120.64	128.83	132.05
Growing Cattle in agrienter- prises of Polissia	1,234.29	1,192.13	1,126.82	1,056.04	968.20	851.83	731.01	595.47	489.00	422.99
Growing Cattle in agrienter- prises of Forest steppe	2,725.99	2,632.31	2,487.76	2,331.43	2,137.31	1,880.02	1,612.62	1,312.76	1,077.58	931.67
Growing Cattle in agrienter- prises of Steppe	1,394.26	1,346.37	1,272.45	1,192.49	1,093.21	961.62	824.87	671.53	551.24	476.62
Growing Cattle in house- holds of Polissia	203.63	203.83	206.79	216.34	200.00	162.62	142.90	144.61	156.03	173.60
Growing Cattle in house- holds of Forest steppe	246.90	247.14	250.73	262.31	242.50	197.64	175.23	167.24	167.24	174.72
Growing Cattle in households of Steppe	185.81	185.99	188.70	197.41	182.50	147.93	128.42	119.76	129.27	145.60

Ecological region	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Mature Dairy Cattle in agri- enterprises of Polissia	482.85	407.45	358.85	296.65	254.25	235.80	216.60	195.30	178.05	165.30
Mature Dairy Cattle in agri- enterprises of Forest steppe	981.75	853.55	752.65	621.70	517.45	457.55	408.90	360.85	329.25	315.00
Mature Dairy Cattle in agri- enterprises of Steppe	699.00	502.10	427.00	332.55	253.25	214.70	189.60	165.15	144.15	134.15
Mature Dairy Cattle in households of Polissia	1,194.30	1,221.25	1,240.55	1,209.75	1,138.30	1,063.20	992.35	923.50	854.75	804.25
Mature Dairy Cattle in households of Forest steppe	1,044.60	1,090.75	1,118.95	1,100.75	1,060.20	1,018.65	962.30	904.00	839.20	777.25
Mature Dairy Cattle in households of Steppe	792.15	863.10	918.85	938.15	881.30	790.65	721.15	672.50	630.70	600.45
Other Mature Cattle in agri- enterprises of Polissia	543.54	460.61	413.86	345.45	284.72	252.97	239.21	217.19	185.40	163.35
Other Mature Cattle in agri- enterprises of Forest steppe	1,011.44	924.05	892.86	773.35	629.73	534.80	485.08	435.04	375.64	339.85
Other Mature Cattle in agri- enterprises of Steppe	677.91	505.18	481.82	399.24	290.30	250.62	229.88	189.10	152.85	134.30
Other Mature Cattle in households of Polissia	179.64	177.40	177.93	164.83	138.76	132.97	151.75	163.15	158.05	151.00
Other Mature Cattle in households of Forest steppe	132.86	138.36	155.18	144.38	116.29	124.86	152.05	151.60	145.10	141.40
Other Mature Cattle in households of Steppe	132.53	153.44	202.22	229.97	207.13	191.07	196.93	182.10	154.75	142.80
Growing Cattle in agrienter- prises of Polissia	340.86	276.79	254.64	210.50	166.28	163.03	159.19	136.97	114.35	104.35
Growing Cattle in agrienter- prises of Forest steppe	750.26	609.00	560.24	463.05	356.62	329.80	310.12	267.42	228.57	214.80
Growing Cattle in agrienter- prises of Steppe	383.84	311.57	286.63	236.91	175.20	151.93	154.62	143.70	115.20	102.50
Growing Cattle in house- holds of Polissia	204.56	254.00	296.07	281.02	236.14	215.48	216.60	209.35	198.40	190.05
Growing Cattle in house- holds of Forest steppe	234.54	320.09	352.77	319.77	277.71	276.04	291.90	284.70	271.85	266.10
Growing Cattle in house-holds of Steppe	238.47	353.71	373.68	342.23	323.87	304.38	266.52	231.55	208.70	205.95

Ecological region	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Mature Dairy Cattle in agri- enterprises of Polissia	157.30	152.90	150.90	149.10	139.75	127.25	119.85	115.40	114.65	111.75
Mature Dairy Cattle in agri- enterprises of Forest steppe	310.20	309.80	311.30	310.95	308.50	303.60	296.10	285.60	280.15	272.85
Mature Dairy Cattle in agri- enterprises of Steppe	129.35	123.70	117.25	110.25	103.31	96.72	91.88	88.71	87.22	83.33
Mature Dairy Cattle in households of Polissia	770.05	745.25	734.55	724.10	688.55	644.10	618.80	592.40	557.65	519.70
Mature Dairy Cattle in households of Forest steppe	738.45	710.00	693.15	680.50	649.40	618.60	606.50	588.15	558.40	528.30
Mature Dairy Cattle in households of Steppe	578.50	565.05	561.10	556.65	538.10	513.06	499.69	490.03	468.63	436.19
Other Mature Cattle in agri- enterprises of Polissia	147.25	136.00	134.95	131.95	120.20	111.10	103.76	97.16	89.60	79.85
Other Mature Cattle in agri- enterprises of Forest steppe	317.15	306.70	308.75	300.90	281.05	270.50	261.20	247.60	235.20	216.55
Other Mature Cattle in agri- enterprises of Steppe	121.95	117.30	110.10	98.90	88.86	83.56	79.46	75.77	72.79	66.09
Other Mature Cattle in households of Polissia	134.65	117.80	112.35	110.75	100.50	88.60	93.48	98.78	97.15	96.50
Other Mature Cattle in households of Forest steppe	128.90	116.75	117.35	121.55	108.10	97.15	106.55	111.20	101.60	92.30
Other Mature Cattle in households of Steppe	136.65	129.75	133.40	138.90	133.86	123.51	120.89	118.17	109.21	98.29
Growing Cattle in agrienter- prises of Polissia	95.60	90.85	93.05	89.35	78.00	71.45	71.19	68.69	67.20	66.20
Growing Cattle in agrienter- prises of Forest steppe	205.40	199.75	203.55	202.40	195.80	192.30	191.70	187.95	185.75	179.85
Growing Cattle in agrienter- prises of Steppe	92.55	81.50	78.70	78.20	72.25	64.66	62.22	61.09	59.59	56.97
Growing Cattle in house- holds of Polissia	168.80	153.90	185.00	216.45	187.00	153.00	147.73	145.98	140.45	133.15
Growing Cattle in house- holds of Forest steppe	233.50	214.45	265.40	302.70	254.00	219.35	221.20	211.75	198.60	188.65
Growing Cattle in house- holds of Steppe	194.30	188.65	225.00	266.35	248.36	220.01	217.49	220.04	206.40	183.95

Ecological region	202 0	2021	2022	2023
Mature Dairy Cattle in agri- enterprises of Polissia	104.40	101.05	100.50	98.00
Mature Dairy Cattle in agri- enterprises of Forest steppe	263.60	262.95	260.19	253.34
Mature Dairy Cattle in agri- enterprises of Steppe	77.67	74.67	68.77	62.57
Mature Dairy Cattle in households of Polissia	482.15	442.55	397.45	354.95
Mature Dairy Cattle in households of Forest steppe	495.20	454.80	411.70	378.04
Mature Dairy Cattle in households of Steppe	405.29	370.04	331.35	306.52
Other Mature Cattle in agri- enterprises of Polissia	73.70	71.46	70.06	68.45
Other Mature Cattle in agri- enterprises of Forest steppe	195.70	186.40	184.29	178.89
Other Mature Cattle in agri- enterprises of Steppe	59.63	57.18	52.53	46.84
Other Mature Cattle in households of Polissia	96.70	96.00	80.70	64.45
Other Mature Cattle in households of Forest steppe	84.95	70.75	57.41	51.57
Other Mature Cattle in households of Steppe	89.43	81.48	72.48	67.24
Growing Cattle in agrienterprises of Polissia	62.20	58.14	59.34	61.05
Growing Cattle in agrienterprises of Forest steppe	176.95	181.31	181.38	183.15
Growing Cattle in agrienterprises of Steppe	53.78	51.43	47.50	43.62
Growing Cattle in house-holds of Polissia	120.65	99.10	78.30	59.20
Growing Cattle in households of Forest steppe	171.05	147.25	124.56	108.27
Growing Cattle in house-holds of Steppe	167.92	150.42	137.19	127.87

A3.2.1.4 Classification of agricultural enterprises by the livestock number

The main institution that collected all kinds of livestock data is SSSU. Grouping of agricultural enterprises by the animals (cattle and swine) number is a one of data kinds.

These data used for agrienterprises classification by their capacity and reported in the next SSSU sources:

- for 1990-2017 in the table "Groupings of agricultural enterprises by number of cattle as of January 01" of the statistical bulletin "The status of livestock in Ukraine" [13];
 - since 2018 in the SSSU statistical reported data "Groupings of enterprises by number of agricultural animals as of January 01" [37].

Table A3.2.1.4.1. Classification of cattle and swine enterprises by the livestock number, heads

Cattle en	terprises	Swine ent	erprises
SSSU sources in 1990-2017	SSSU sources after 2018	SSSU sources in 1990-2017	SSSU sources after 2018
no more than 5	no more than 50	no more than 9	no more than 100
6-10	50-99	10-19	100-199
11-15	100-499	20-39	200-499
16-20	500-999	40-59	500-999
21-29	1000-1499	60-79	1000-4999
30-39	more than 1500	80-99	5000-9999
40-49		100-199	more than 10000
50-99		200-299	
100-199		300-399	
200-299		400-499	
300-399		500-999	
400-499		1000-1999	
500-999		2000-2999	
1000-1999		3000-4999	
2000-2999		5000-5999	
3000-3999		more than 5999	
4000-4999			
more than 4999			

A3.2.2 Enteric Fermentation

Table A3.2.2.1. Annual gross energy intake of cattle sex-age groups, MJ \times head $^{-1}$ \times day $^{-1}$

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Agrient	terprises						
Cows of the dairy herd	202.67	197.89	188.41	186.61	185.87	183.40	179.60	172.40	178.14	179.90
Beef cows	212.73	204.84	197.74	195.40	178.88	167.58	163.75	160.55	161.12	160.68
Heifers from 2 years and older	149.66	150.86	152.04	152.07	152.89	153.14	153.39	153.10	153.06	153.01
Heifers from 1 to 2 years	123.14	123.53	124.33	124.21	124.50	124.74	124.97	124.87	124.83	124.78
Breeding bulls	162.55	163.42	164.91	164.50	164.95	165.48	165.99	165.85	165.85	165.77
Calves up to 1 year	89.19	89.45	90.04	89.96	90.16	90.35	90.53	90.44	90.40	90.37
Other cattle	115.90	117.34	118.56	118.69	119.69	120.02	120.62	119.84	119.33	119.31
			Hous	eholds						
Cows of the dairy herd	211.92	211.66	210.91	211.59	211.33	212.46	212.36	213.73	214.99	215.54
Heifers from 2 years and older	149.13	148.80	148.95	148.68	148.55	148.73	148.91	149.33	149.22	149.10
Heifers from 1 to 2 years	129.20	128.80	129.03	128.74	128.59	128.69	128.80	129.30	128.92	128.54
Breeding bulls	162.68	162.54	162.62	162.56	162.48	162.55	162.62	162.52	162.32	162.11
Calves up to 1 year	101.70	101.65	101.66	101.57	101.54	101.66	101.78	101.86	102.10	102.34
Other cattle	98.59	98.40	98.52	98.41	98.44	98.60	98.68	98.93	98.85	98.75

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Agrient	terprises						
Cows of the dairy herd	177.27	188.58	191.64	188.38	199.23	210.88	212.23	212.72	216.56	227.51
Beef cows	159.00	159.66	159.42	158.03	157.87	157.47	157.10	155.84	153.46	154.68
Heifers from 2 years and older	152.96	152.92	152.87	152.82	152.75	152.68	152.12	152.30	151.31	152.20
Heifers from 1 to 2 years	124.74	124.69	124.65	124.60	124.55	124.50	124.04	124.16	123.39	123.96
Breeding bulls	165.69	165.61	165.52	165.43	165.34	165.08	164.86	165.14	164.21	164.99
Calves up to 1 year	90.33	90.29	90.25	90.21	90.17	90.13	89.80	89.89	89.34	89.72
Other cattle	119.27	119.19	119.18	119.16	119.13	119.17	118.73	118.88	118.09	119.05
			Hous	eholds						
Cows of the dairy herd	217.52	219.68	222.12	222.18	226.25	230.96	237.77	237.36	240.20	242.83
Heifers from 2 years and older	148.98	148.86	148.74	148.62	148.50	148.37	148.33	148.45	148.55	148.18
Heifers from 1 to 2 years	128.16	127.77	127.39	127.00	126.61	126.23	126.19	126.24	126.29	125.99
Breeding bulls	161.91	161.70	161.50	161.29	161.08	160.88	160.95	160.93	160.95	160.89

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Calves up to 1 year	102.66	102.93	103.13	103.35	103.60	103.84	103.79	103.86	103.92	103.64
Other cattle	98.52	98.45	98.51	98.48	98.40	98.33	98.30	98.35	98.38	98.13

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Agrienterprises											
Cows of the dairy herd	229.00	231.32	244.78	249.02	255.68	260.76	267.25	273.97	276.21	279.09	
Beef cows	155.12	154.05	155.81	157.46	199.14	208.75	231.86	250.87	264.59	255.98	
Heifers from 2 years and older	152.05	151.80	151.72	151.83	153.08	153.28	153.47	153.88	157.64	156.98	
Heifers from 1 to 2 years	123.81	123.62	123.54	123.57	124.30	124.37	124.12	124.43	127.07	126.74	
Breeding bulls	164.89	164.61	165.19	165.55	166.33	166.40	166.83	166.29	168.38	168.10	
Calves up to 1 year	89.61	89.48	89.40	89.42	89.93	89.97	89.81	90.01	91.83	91.59	
Other cattle	118.75	118.64	118.73	118.77	120.10	120.23	120.54	121.13	124.47	123.74	
			House	eholds							
Cows of the dairy herd	243.14	243.93	245.24	247.30	251.02	250.23	249.97	251.31	253.96	255.82	
Heifers from 2 years and older	148.11	147.93	147.87	147.96	147.85	147.86	147.89	147.92	147.69	147.70	
Heifers from 1 to 2 years	125.97	125.84	125.84	125.94	125.86	125.87	125.89	125.91	125.72	125.71	
Breeding bulls	160.89	160.86	160.86	160.88	160.89	160.89	160.90	160.90	160.88	160.90	
Calves up to 1 year	103.61	103.48	103.46	103.55	103.47	103.49	103.51	103.53	103.34	103.33	
Other cattle	98.10	98.00	97.97	98.05	97.99	98.01	98.01	98.00	97.82	97.78	

Sex-age group	2020	2021	2022	2023
Agrient	erprises			
Cows of the dairy herd	288.03	290.84	287.23	300.59
Beef cows	267.01	270.73	229.40	246.96
Heifers from 2 years and older	158.17	158.01	158.10	156.48
Heifers from 1 to 2 years	127.43	127.43	127.57	126.34
Breeding bulls	168.80	169.01	168.31	167.54
Calves up to 1 year	92.05	92.06	92.15	91.26
Other cattle	125.23	124.77	125.61	123.81
House	eholds			
Cows of the dairy herd	256.94	257.11	254.55	255.68
Heifers from 2 years and older	147.69	147.64	147.60	147.56
Heifers from 1 to 2 years	125.66	125.62	125.65	125.66

Sex-age group	2020	2021	2022	2023
Breeding bulls	160.89	160.91	160.91	160.89
Calves up to 1 year	103.31	103.29	103.30	103.31
Other cattle	97.76	97.69	97.65	97.67

Table A3.2.2.2. Live weight weighted average values of main sex-age cattle groups for the reported period, kg

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Mature dairy cattle	576.67	576.65	576.65	576.65	576.59	576.49	576.43	576.40	576.36	576.33
Other mature cattle	307.32	308.58	310.24	311.98	315.09	317.86	319.21	321.79	325.11	326.52
Growing cattle	232.13	232.32	232.56	232.86	232.92	232.82	233.10	233.88	234.83	235.88

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Mature dairy cattle	576.30	576.27	576.26	576.22	576.16	576.10	576.06	576.06	576.10	576.11
Other mature cattle	329.75	333.23	333.72	334.56	337.28	341.24	343.29	344.43	346.86	350.03
Growing cattle	238.49	241.36	242.38	243.02	243.93	244.14	244.23	244.51	245.00	245.34

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Mature dairy cattle	576.14	576.16	576.15	576.16	576.21	576.28	576.32	576.34	576.32	576.28
Other mature cattle	351.41	351.68	353.70	355.98	356.94	356.15	360.30	366.40	367.33	366.95
Growing cattle	245.16	245.07	245.95	246.59	246.21	245.63	245.52	245.47	245.14	244.87

Sex-age group	2020	2021	2022	2023
Mature dairy cattle	576.28	576.25	576.20	576.17
Other mature cattle	367.85	367.28	366.40	368.10
Growing cattle	244.31	243.52	242.84	241.95

Table A3.2.2.3. The species composition of dairy and combined cattle breeds in Ukraine, as well as the average live weight of cattle sex-age

groups

groups	The species			Average liv	ve weight, kg		
Breed	composition,	Dairy cows	Bulls	Heifers from 1 to 2 years	Heifers 2 years and older	Other cattle at agricultural enterprises	Other cattle in households
Ayrshire	0.02	460	840	350	410	203	226
Angler	0.41	450	830	355	420	203	228
White Head Ukrainian	0.01	470	850	325	400	193	221
Carpathian Brown	0.01	480	850	345	400	195	222
Ukrainian Dairy Brown	0.30	580	920	385	470	233	246
Holstein	10.94	565	900	420	470	238	264
Lebedynska	0.69	550	900	375	450	225	248
Pinzgauer	0.05	470	840	360	400	193	218
Simmental	5.97	620	960	400	465	243	279
Ukrainian Dairy Red	9.54	550	860	365	445	220	245
Ukrainian Dairy Red Motley	20.45	600	930	400	470	240	268
Ukrainian Dairy Black Motley	46.79	580	900	370	465	223	248
Red Polish	0.40	460	785	330	400	180	208
Red Steppe	4.36	490	830	360	420	208	221
Schwyz	0.04	580	950	380	450	230	248

Table A3.2.2.4. The cattle species composition and the average live weight of beef cattle in Ukraine

Breed	The species composition, %	Average l	ive weight, kg
Breeu	The species composition, 76	Beef cows	Breeding bulls
Aberdeen-Angus	35.93	515	800
Volyn Meat	21.25	520	900
Hereford	0.62	550	900
South Meat	11.36	530	880
Limousin	0.62	550	900
Piedmont	0.43	560	900
Woodland Meat	6.10	550	900
Grey Ukrainian	2.68	530	850
Fair Aquitaine	0.19	550	900
Simmental Meat	8.87	600	950
Ukrainian Meat	10.72	570	950
Charolais	1.24	600	950

Table A3.2.2.5. Country specific daily weight gain values for the cattle sex-age groups, kg × day ⁻¹

Sex-age group	Agrienterprises	Households
Cows of the dairy herd	0.000	0
Beef cows	0.000	
Heifers from 2 years and older	0.525	0.525
Heifers from 1 to 2 years	0.475	0.475
Breeding bulls	0.000	0.000
Calves up to 1 year	0.725	0.725
Other cattle	0.689	0.490

Table A3.2.2.6. Dairy cows milk production and fat content

Type of livestock ownership	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Milk production, kg \times head ⁻¹ \times day ⁻¹										
Cows in agrienterprises	8.07	7.33	5.98	5.77	5.58	5.24	4.69	3.82	4.53	4.73
Cows in households	7.22	7.25	7.22	7.32	7.30	7.46	7.40	7.62	7.76	7.86
			Fat conten	t of milk, %						
Cows in agrienterprises	3.48	3.45	3.37	3.38	3.37	3.35	3.38	3.36	3.41	3.43
Cows in households	3.48	3.45	3.37	3.38	3.37	3.35	3.38	3.36	3.41	3.43

Type of livestock ownership	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Milk production, $kg \times head^{-1} \times day^{-1}$										
Cows in agrienterprises	4.37	5.70	6.05	5.62	6.81	8.13	8.25	8.27	8.79	9.97
Cows in households	8.11	8.41	8.76	8.82	9.34	9.98	10.82	10.77	11.12	11.46
			Fat conten	et of milk, %						
Cows in agrienterprises	3.47	3.49	3.49	3.49	3.52	3.52	3.52	3.52	3.52	3.52
Cows in households	3.47	3.49	3.49	3.49	3.52	3.52	3.52	3.52	3.52	3.52

Type of livestock ownership	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Milk production, kg \times head ⁻¹ \times day ⁻¹											
Cows in agrienterprises	10.17	10.49	11.98	12.40	13.40	14.13	14.94	15.89	16.11	16.41	
Cows in households	11.50	11.61	11.77	12.02	12.49	12.39	12.35	12.52	12.86	13.09	
			Fat conten	nt of milk, %							
Cows in agrienterprises	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	
Cows in households	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	

Type of livestock ownership	2020	2021	2022	2023
Milk production, k	g × head-l ×	day ⁻¹		
Cows in agrienterprises	17.45	17.78	17.18	19.01
Cows in households	13.23	13.25	12.93	13.08
Fat content	t of milk, %			
Cows in agrienterprises	3.52	3.52	3.52	3.52
Cows in households	3.52	3.52	3.52	3.52

Table A3.2.2.7. Cattle average digestibility of the feed (DE), %

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Agricultural	enterprises					
Cows of the dairy herd	68.66	68.31	67.84	67.88	67.70	67.65	67.55	67.59	67.68	67.71
Beef cows	66.09	65.60	64.96	65.15	64.86	64.79	64.72	64.84	64.82	64.82
Heifers from 2 years and older	65.17	64.86	64.56	64.55	64.35	64.29	64.23	64.30	64.31	64.32
Heifers from 1 to 2 years	66.89	66.76	66.50	66.54	66.44	66.36	66.29	66.32	66.33	66.35
Breeding bulls	70.63	70.35	69.88	70.00	69.86	69.70	69.54	69.58	69.58	69.61
Calves up to 1 year	66.96	66.84	66.58	66.61	66.52	66.44	66.36	66.40	66.42	66.43
Other cattle	67.06	66.55	66.14	66.09	65.76	65.65	65.45	65.71	65.88	65.88
				House	holds					
Cows of the dairy herd	67.79	67.84	67.80	67.85	67.87	67.85	67.83	67.87	67.95	68.03
Heifers from 2 years and older	67.80	67.89	67.85	67.93	67.96	67.91	67.86	67.74	67.77	67.81
Heifers from 1 to 2 years	66.37	66.50	66.42	66.51	66.56	66.53	66.49	66.33	66.46	66.58
Breeding bulls	69.22	69.27	69.24	69.26	69.28	69.26	69.24	69.27	69.34	69.40
Calves up to 1 year	67.19	67.21	67.20	67.24	67.26	67.21	67.16	67.12	67.03	66.93
Other cattle	67.88	67.96	67.91	67.96	67.95	67.87	67.84	67.73	67.77	67.81

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Agricultural	enterprises					
Cows of the dairy herd	67.73	67.75	67.77	67.80	67.82	67.86	67.90	67.89	68.02	67.85
Beef cows	64.82	64.83	64.83	64.84	64.91	65.14	65.16	65.20	65.48	65.01
Heifers from 2 years and older	64.33	64.35	64.36	64.37	64.39	64.40	64.54	64.50	64.75	64.52
Heifers from 1 to 2 years	66.36	66.38	66.39	66.41	66.42	66.44	66.59	66.55	66.81	66.62
Breeding bulls	69.63	69.66	69.68	69.71	69.74	69.82	69.89	69.80	70.09	69.85
Calves up to 1 year	66.45	66.47	66.48	66.50	66.52	66.54	66.68	66.65	66.89	66.72
Other cattle	65.90	65.92	65.93	65.93	65.94	65.93	66.08	66.03	66.30	65.97

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				House	holds					
Cows of the dairy herd	68.12	68.21	68.30	68.40	68.49	68.57	68.54	68.55	68.54	68.57
Heifers from 2 years and older	67.84	67.87	67.91	67.94	67.98	68.02	68.03	67.99	67.96	68.07
Heifers from 1 to 2 years	66.70	66.83	66.95	67.08	67.21	67.34	67.35	67.34	67.32	67.42
Breeding bulls	69.46	69.53	69.60	69.66	69.73	69.79	69.77	69.77	69.77	69.79
Calves up to 1 year	66.81	66.70	66.62	66.53	66.44	66.35	66.36	66.34	66.32	66.42
Other cattle	67.91	67.94	67.91	67.93	67.96	67.99	68.01	67.98	67.97	68.08

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				Agricultural	enterprises					
Cows of the dairy herd	67.84	67.88	67.79	67.64	67.46	67.49	67.38	67.46	67.37	67.39
Beef cows	64.78	65.02	64.53	64.12	63.79	63.60	63.11	63.05	61.67	61.85
Heifers from 2 years and older	64.56	64.62	64.64	64.62	64.30	64.26	64.21	64.11	63.22	63.37
Heifers from 1 to 2 years	66.67	66.73	66.76	66.75	66.51	66.48	66.57	66.46	65.61	65.72
Breeding bulls	69.88	69.97	69.79	69.68	69.44	69.41	69.28	69.45	68.82	68.90
Calves up to 1 year	66.77	66.83	66.87	66.86	66.63	66.61	66.68	66.59	65.80	65.90
Other cattle	66.07	66.11	66.08	66.06	65.62	65.58	65.47	65.28	64.24	64.46
				House	holds					
Cows of the dairy herd	68.57	68.58	68.58	68.57	68.57	68.57	68.56	68.57	68.58	68.58
Heifers from 2 years and older	68.09	68.14	68.16	68.14	68.17	68.16	68.16	68.15	68.21	68.21
Heifers from 1 to 2 years	67.43	67.47	67.47	67.44	67.47	67.46	67.45	67.45	67.51	67.51
Breeding bulls	69.79	69.80	69.80	69.79	69.79	69.79	69.78	69.78	69.79	69.79
Calves up to 1 year	66.44	66.48	66.49	66.46	66.49	66.48	66.47	66.47	66.54	66.54
Other cattle	68.10	68.14	68.15	68.12	68.14	68.14	68.14	68.14	68.22	68.24

Sex-age group	2020	2021	2022	2023
	Agricultural	enterprises		
Cows of the dairy herd	67.32	67.31	67.36	67.64
Beef cows	61.60	61.45	61.58	61.63
Heifers from 2 years and older	63.10	63.14	63.11	63.49
Heifers from 1 to 2 years	65.50	65.50	65.46	65.84
Breeding bulls	68.69	68.63	68.84	69.07
Calves up to 1 year	65.71	65.70	65.67	66.04
Other cattle	64.01	64.15	63.90	64.44
	House	cholds		
Cows of the dairy herd	68.58	68.57	68.57	68.59
Heifers from 2 years and older	68.21	68.23	68.24	68.25
Heifers from 1 to 2 years	67.53	67.55	67.54	67.53
Breeding bulls	69.79	69.78	69.78	69.79
Calves up to 1 year	66.55	66.56	66.56	66.55
Other cattle	68.25	68.28	68.30	68.29

Table A3.2.2.8. Average weighted gross energy intake of sheep sex-age groups at all kinds of livestock owners, MJ × head ⁻¹ × day ⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ewes and young ewes 1 year and older	20.76	20.65	20.62	20.66	20.67	20.68	20.72	20.97	21.09	21.23
Breeding rams	32.23	32.20	32.17	32.17	32.14	32.01	31.98	32.04	32.01	32.04
Other sheep	14.05	13.95	13.87	13.82	13.74	13.67	13.64	13.66	13.58	13.50

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and young ewes 1 year and older	21.51	21.76	21.83	21.53	22.81	22.09	22.31	22.48	22.23	21.60
Breeding rams	31.74	31.80	31.83	31.08	31.15	31.20	31.24	31.28	31.25	31.28
Other sheep	13.37	13.31	13.32	13.32	13.38	13.45	13.51	13.53	13.52	13.55

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Ewes and young ewes 1 year and older	22.25	23.51	23.41	23.38	23.15	23.05	22.80	22.95	23.12	22.88
Breeding rams	31.27	31.43	31.41	31.38	31.36	31.35	31.33	31.32	31.29	31.29
Other sheep	13.48	13.44	13.38	13.34	13.22	13.15	13.20	13.18	13.15	13.14

Sex-age group	2020	2021	2022	2023
Ewes and young ewes 1 year and older	23.00	23.19	22.98	23.18
Breeding rams	31.31	31.37	31.33	31.35
Other sheep	13.16	13.22	13.18	13.19

Table A3.2.2.9. Source data for sheep gross energy estimation

		onergy estin								
Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Average live weight, kg										
Ewes and young ewes 1 year and older	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70	56.70
Breeding rams	109.30	109.30	109.30	109.30	109.30	109.00	109.00	109.00	109.00	109.00
Other sheep	41.37	41.09	40.89	40.67	40.48	40.44	40.45	40.30	40.09	39.64
Milk production, kg head-1 yr-1										
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	75.00	73.00	73.00	74.00	75.00	77.00	79.00	84.00	88.00	91.00
		Num	ber of lambs	born from on	e ewe					
Number of lambs born per one ewe	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
Annual wool production per sheep, kg yr ⁻¹										
Weighted average for agricultural enterprises and households	3.40	3.30	3.20	3.20	3.10	2.90	2.80	3.00	2.90	3.00

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Average live weight, kg										
Ewes and young ewes 1 year and older	57.10	57.10	57.10	55.90	56.00	56.10	56.10	56.20	56.20	56.20
Breeding rams	107.70	107.70	107.70	104.40	104.60	104.70	104.70	104.90	104.90	104.90
Other sheep	39.13	38.64	38.58	38.58	38.68	38.84	38.98	39.06	39.13	39.12
Milk production, kg/head per year										
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	96.00	101.00	102.00	102.00	135.00	114.00	119.00	123.00	117.00	99.00
		Num	ber of lambs	born from on	e ewe					
Number of lambs born per one ewe	1.18	1.18	1.18	1.17	1.18	1.18	1.18	1.18	1.19	1.19
Annual wool production per sheep, kg/year										
Weighted average for agricultural enterprises and households	3.00	3.20	3.30	3.30	3.40	3.50	3.60	3.60	3.50	3.60

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Average live weight, kg										
Ewes and young ewes 1 year and older	56.40	57.00	57.01	57.01	57.01	57.01	57.01	57.01	57.01	57.01
Breeding rams	105.10	105.80	105.85	105.85	105.85	105.85	105.85	105.85	105.85	105.85
Other sheep	39.06	38.92	38.80	38.76	38.34	38.15	38.39	38.38	38.38	38.33
Milk production, kg/head per year										
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	117.00	147.00	145.00	145.00	139.11	136.79	130.45	134.91	140.37	133.84
		Numi	ber of lambs	born from one	e ewe					
Number of lambs born per one ewe	1.19	1.20	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21
Annual wool production per sheep, kg/year										
Weighted average for agricultural enterprises and households	3.40	3.40	3.30	3.20	3.15	3.09	3.04	3.01	2.91	2.90

Category	2020	2021	2022	2023					
Average live weight, kg									
Ewes and young ewes 1 year and older	57.01	57.01	57.01	57.01					
Breeding rams	105.85	105.85	105.85	105.85					
Other sheep	38.31	38.33	38.32	38.28					
Milk production,	Milk production, kg/head per year								
The weighted average used for estimations (including of allowance of 60 kg in the lactation period)	136.51	139.99	135.45	140.16					
Number of lambs	born from on	e ewe							
Number of lambs born per one ewe	1.21	1.21	1.21	1.21					
Annual wool production per sheep, kg/year									
Weighted average for agricultural enterprises and households	2.98	3.18	3.04	3.12					

Table A3.2.2.10. The typical live weight of sheep and the average number of lambs born from one ewe during the year by breeds and breed

types

ypes Breeds and breed types of sheep	Live weight of ewes, kg	Live weight of rams, kg	Number of lambs from one ewe
•	Wool-meat breeds of fine-wo	ol sheep	
Askanian fine-wooled	58	125	1.25
Taurean type	60	120	1.27
	Meat-wool breeds of fine-wo	ol sheep	
Precoce	58	110	1.45
Kharkiv type	63	135	1.15
Transcarpathian type	66	128	1.15
Polvars	63	108	1.12
	Wool-meat breeds of semi-fine	vool sheep	
Tsigai	55	90	1.30
Crimean type	57	104	1.03
Pre-Azov type	54	102	0.85
	Meat-wool breeds for semi-fine	wool sheep	
Latvian dark face breed	63	113	1.40
Askanian meat and wool	58	114	1.24
Askanian cross-bred	65	128	1.42
Askanian type of Blackface sheep	69	138	1.52
Kharkiv type	54	88	1.28
Odessa type	60	102	1.12
Bukovyna type	57	119	1.19
Dnipropetrovsk type	54	103	1.18
Romney Marsh	68	125	1.25
Texel	100	68	0.93
North Caucasian	83	58	1.25
	Fur-bearing breeds of coarse v		
Karakul	45	80	1.08
Askanian breed type of multiple lambing karakul sheep	60	92	1.86
Sokolska	43	65	1.23
	Meat and wool dairy breeds of coa		
Ukrainian Carpatian mountain	39	63	1.10
	Fur sheep		
Romanovska	52	71	2.50
	Meat breeds		
Charolais	108	68	1.70
Olibs	110	68	2.20
	Dairy breeds		
Ostfriesische	93	75	2.05

Table A3.2.2.11. The species composition of sheep in Ukraine, rel. u

Breeds	1990	1995	2000	2005	2010	2015	2020	2023
Tsigai and breed types	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Askanian meat and wool with cross-bred wool and breed types	0.01	0.04	0.16	0.17	0.17	0.17	0.17	0.17
Askanian fine-wool and the breed type	0.39	0.37	0.18	0.16	0.16	0.16	0.16	0.16
Prekos and breed types	0.11	0.11	0.17	0.13	0.13	0.13	0.13	0.13
Karakul	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03
Askanian breed type of multiple lambing karakul sheep	0.004	0.007	0.017	0.017	0.017	0.017	0.017	0.017
Sokolska	0.009	0.009	0.01	0.003	0.003	0.003	0.003	0.003
Ukrainian Carpatian mountain	0.03	0.03	0.03	0.08	0.08	0.08	0.08	0.08
Polvars	0.00004	0.0001	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003
Romanovska	0.00008	0.0004	0.001	0.003	0.010	0.010	0.010	0.010
Latvian dark face	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
Romney Marsh	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
Charolais	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
Olibs	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
Ostfriesische	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
Texel	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008
North Caucasian	0.0001	0.0002	0.0006	0.0008	0.0008	0.0008	0.0008	0.0008

Table A3.2.2.12. Live weight of repair growing sheep up to 1 year by breed, kg*

Category	4-6 months	6-8 months	8-10 months	10-12 months					
Fine-wool									
Live weight	27.5	33	38	41					
	Semi-	-finewool							
Live weight	31.5	38.5	43	47.5					
Average value of live weight	38								

^{*} Gimmers' weight indicated, because repair rams used only at breeding farms, and their share is insignificant.

A3.2.3 Manure Management

Table A3.2.3.1. Excretion norms, ash content, and maximum methane-producing capacity of the manure

Sex-age group	Manure excretion in the dry matter (MDMex), kg/head per day	Ash content in manure (ASH), rel. u	Maximum methane-producing capacity of the manure (B ₀), m ³ of CH ₄ kg ⁻¹ of VS
	Cattle in agrienterp	prises	
Cows of the dairy herd	6.38	0.16	0.24
Beef cows	6.52	0.16	0.17
Heifers from 2 years and older	4.26	0.16	0.24
Heifers from 1 to 2 years	3.59	0.16	0.17
Breeding bulls	5.60	0.16	0.17
Calves up to 1 year	3.59	0.16	0.17
Other cattle	3.59	0.16	0.17
	Cattle in househo	olds	
Cows of the dairy herd	6.38	0.16	0.24
Heifers from 2 years and older	4.26	0.16	0.24
Heifers from 1 to 2 years	3.59	0.16	0.17
Breeding bulls	5.60	0.16	0.17
Calves up to 1 year	3.59	0.16	0.17
Other cattle	3.59	0.16	0.17
	Sheep in all categories	of farms	
Ewes and young ewes 1 year and older	1.20	0.074	0.19
Breeding rams	1.50	0.074	0.19
Other sheep	0.75	0.074	0.19
	Swine in agrienterp	prises	
Main sows	1.0015	0.15	0.45
Sows tested	0.8992	0.15	0.45
Repair swine 4 months and older	0.6509	0.15	0.45
Piglets up to 2 months	0.0718	0.15	0.45

Sex-age group	Manure excretion in the dry matter (MDMex), kg/head per day	Ash content in manure (ASH), rel. u	Maximum methane-producing capacity of the manure (Bo), m³ of CH4 kg¹ of VS
Piglets 2 to 4 months	0.2409	0.15	0.45
Fattening swine	0.6985	0.15	0.45
Boars	1.1672	0.15	0.45
	Swine in househo	lds	
Main sows	1.3020	0.15	0.45
Repair swine 4 months and older	0.8461	0.15	0.45
Piglets up to 2 months	0.0933	0.15	0.45
Piglets 2 to 4 months	0.3132	0.15	0.45
Fattening swine	0.9081	0.15	0.45
Boars	1.5174	0.15	0.45
	Poultry in all categories	s of farms	
Hens and roosters	0.043	0.173	0.39
Geese	0.113	0.173	0.36
Ducks	0.080	0.173	0.36
Turkeys	0.158	0.173	0.36
Other poultry		0.173	0.36

Table A3.2.3.2. Manure distribution by the manure management systems (MMS), rel. u

MMS types	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Cattle in agrier	nterprises					
Liquid system with natural crust cover	0.210	0.210	0.170	0.160	0.130	0.100	0.090	0.043	0.044	0.044
Solid storage	0.435	0.435	0.455	0.455	0.485	0.505	0.495	0.495	0.495	0.495
Pasture/Range/Paddock	0.350	0.350	0.370	0.380	0.380	0.390	0.410	0.457	0.456	0.456
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				Cattle in hou	seholds					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			She	ep in all catego	ories of farms					
Solid storage	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Pasture/paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
			,	Swine in agrier	iterprises					
Uncovered anaerobic lagoon	NO	NO	NO	NO	NO	0.060	0.065	0.075	0.075	0.075
Aerobic treatment	0.050	0.048	0.047	0.053	0.050	NO	NO	NO	NO	NO
Liquid system with natural crust cover	0.341	0.315	0.268	0.221	0.178	0.145	0.121	0.111	0.111	0.111
Liquid system without natural crust cover	0.029	0.027	0.024	0.021	0.017	0.015	0.014	0.014	0.014	0.014
Solid storage	0.576	0.606	0.657	0.701	0.751	0.776	0.796	0.796	0.796	0.796
Composting	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
				Swine in hou	seholds					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Fur-bearing o	animals					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Rabbit	S					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Buffalo	es					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

MMS types	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Goats	·					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Camel	's					
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
				Horse.	S					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Asses and	mules					
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
			I	Poultry in agrie	enterprises					
Poultry manure without litter	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992
Composting	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
				Poultry in hou	useholds					
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
Cattle in agrienterprises											
Liquid system with natural crust cover	0.044	0.043	0.041	0.041	0.041	0.006	0.012	0.015	0.019	0.022	
Solid storage	0.495	0.495	0.495	0.495	0.495	0.530	0.522	0.519	0.517	0.516	
Pasture/Range/Paddock	0.456	0.457	0.459	0.459	0.459	0.459	0.461	0.461	0.459	0.458	
Composting	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
	Cattle in households										

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			She	ep in all catego	ries of farms					
Solid storage	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Pasture/Range/Paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
				Swine in agriei	iterprises					
Uncovered anaerobic lagoon	0.080	0.080	0.080	0.080	0.080	0.082	0.156	0.164	0.173	0.181
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Liquid system with natural crust cover	0.097	0.106	0.143	0.162	0.153	0.149	0.283	0.304	0.316	0.337
Liquid system without natural crust cover	0.013	0.014	0.017	0.018	0.018	0.039	0.078	0.084	0.097	0.109
Solid storage	0.806	0.796	0.756	0.736	0.746	0.726	0.478	0.444	0.410	0.369
Composting	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
				Swine in hou	seholds					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Fur-bearing	animals					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Rabbit	S					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Buffalo	es					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Goats						
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Camel	s					
Pasture/paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
				Horse	S						
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
	Asses and mules										
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
			Ι	Poultry in agrie	nterprises						
Poultry manure without litter	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	0.992	
Composting	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	
				Poultry in hou	ıseholds						
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				Cattle in agriei	nterprises					
Liquid system with natural crust cover	0.026	0.031	0.035	0.038	0.043	0.049	0.053	0.056	0.060	0.063
Solid storage	0.514	0.510	0.503	0.499	0.492	0.484	0.478	0.471	0.469	0.464
Pasture/Range/Paddock	0.457	0.456	0.457	0.456	0.455	0.455	0.455	0.456	0.455	0.455
Composting	0.002	0.003	0.006	0.007	0.009	0.012	0.014	0.017	0.015	0.018
				Cattle in hou	seholds					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			She	ep in all catego	ries of farms					
Solid storage	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Pasture/Range/Paddock	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
	_			Swine in agrier	nterprises	_		_		_

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Uncovered anaerobic lagoon	0.189	0.189	0.189	0.189	0.187	0.182	0.177	0.173	0.168	0.163
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Liquid system with natural crust cover	0.351	0.362	0.373	0.387	0.400	0.410	0.419	0.431	0.443	0.454
Liquid system without natural crust cover	0.117	0.127	0.142	0.157	0.167	0.171	0.174	0.177	0.181	0.185
Solid storage	0.340	0.319	0.290	0.261	0.237	0.225	0.216	0.203	0.193	0.181
Composting	0.002	0.003	0.006	0.007	0.009	0.012	0.014	0.017	0.015	0.018
				Swine in hou	seholds					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Fur-bearing	animals					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Rabbit	s					
Solid storage	1	1	1	1	1	1	1	1	1	1
				Buffalo	es					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Goats						
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Camel	s					
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
				Horses	5					
Solid storage	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Asses and i	nules	,	,	,		
Pasture/Range/Paddock	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Other systems	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Poultry in agrienterprises										
Poultry manure without litter	0.993	0.990	0.994	0.992	0.968	0.998	0.995	0.995	0.997	0.998
Composting	0.007	0.010	0.006	0.008	0.032	0.002	0.005	0.005	0.003	0.002
				Poultry in hou	ıseholds					
Poultry manure without litter	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

MMS types	2020	2021	2022	2023
	Cattle in agrie	nterprises		
Liquid system with natural crust cover	0.065	0.072	0.079	0.081
Solid storage	0.463	0.457	0.455	0.454
Pasture/Range/Paddock	0.455	0.455	0.455	0.456
Composting	0.016	0.016	0.011	0.010
	Cattle in hou	ıseholds		
Solid storage	0.5	0.5	0.5	0.5
Pasture/Range/Paddock	0.5	0.5	0.5	0.5
She	ep in all catego	ories of farms		
Solid storage	0.26	0.26	0.26	0.26
Pasture/Range/Paddock	0.74	0.74	0.74	0.74
	Swine in agrie	nterprises		
Uncovered anaerobic lagoon	0.156	0.156	0.148	0.148
Aerobic treatment	NO	NO	NO	NO
Liquid system with natural crust cover	0.462	0.463	0.472	0.473
Liquid system without natural crust cover	0.190	0.195	0.198	0.200
Solid storage	0.175	0.170	0.171	0.170
Composting	0.016	0.016	0.011	0.010
	Swine in hou	seholds		

MMS types	2020	2021	2022	2023				
Solid storage	1	1	1	1				
	Fur-bearing	animals						
Solid storage	1	1	1	1				
	Rabbi	ts						
Solid storage 1 1 1 1								
	Buffalo	es						
Solid storage	0.5	0.5	0.5	0.5				
Pasture/Range/Paddock	0.5	0.5	0.5	0.5				
	Goats	5						
Solid storage	0.5	0.5	0.5	0.5				
Pasture/Range/Paddock	0.5	0.5	0.5	0.5				
	Came	ls						
Pasture/Range/Paddock	0.92	0.92	0.92	0.92				
Other systems	0.08	0.08	0.08	0.08				
	Horse	r'S						
Solid storage	0.5	0.5	0.5	0.5				
Pasture/Range/Paddock	0.5	0.5	0.5	0.5				
	Asses and	mules						
Pasture/Range/Paddock	0.92	0.92	0.92	0.92				
Other systems	0.08	0.08	0.08	0.08				
	Poultry in agrie	enterprises						
Poultry manure without litter	0.999992	0.999993	1.000000	0.999732				
Composting	0.000008	0.000007	NO	0.000268				
	Poultry in ho	useholds						
Poultry manure without litter	0.5	0.5	0.5	0.5				
Pasture/Range/Paddock	0.5	0.5	0.5	0.5				

Table A3.2.3.3. Daily volatile solids (VS), kg dry matter animal⁻¹ day⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Ca	attle in agricult	ural enterprises	3				
Cows of the dairy herd	3.26	3.22	3.10	3.07	3.07	3.04	2.98	2.86	2.95	2.97
Beef cows	3.67	3.58	3.51	3.46	3.19	2.99	2.93	2.86	2.87	2.87
Heifers from 2 years and older	2.65	2.69	2.73	2.73	2.76	2.77	2.78	2.77	2.77	2.76
Heifers from 1 to 2 years	2.08	2.09	2.12	2.12	2.13	2.14	2.15	2.14	2.14	2.14
Breeding bulls	2.47	2.50	2.56	2.55	2.56	2.58	2.60	2.60	2.60	2.60
Calves up to 1 year	1.50	1.51	1.53	1.53	1.54	1.54	1.55	1.55	1.55	1.55
Other cattle	1.95	2.00	2.04	2.05	2.08	2.10	2.12	2.09	2.07	2.07
				Cattle in h	ouseholds					
Cows of the dairy herd	3.49	3.48	3.48	3.48	3.48	3.50	3.50	3.52	3.53	3.53
Heifers from 2 years and older	2.46	2.45	2.45	2.44	2.44	2.44	2.45	2.47	2.46	2.46
Heifers from 1 to 2 years	2.21	2.20	2.21	2.20	2.19	2.20	2.20	2.22	2.20	2.19
Breeding bulls	2.58	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.56	2.55
Calves up to 1 year	1.70	1.70	1.70	1.70	1.70	1.70	1.71	1.71	1.72	1.73
Other cattle	1.62	1.61	1.62	1.61	1.62	1.62	1.62	1.63	1.63	1.63
			S	heep in all cate	gories of farms					
Ewes and young ewes 1 year and older	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39	0.39
Breeding rams	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Other sheep	0.26	0.26	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
			Sv	vine in agricult	ural enterprises	ī.				
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
				Swine in ho	ouseholds					
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
			Po	oultry in all cate	egories of farms	5				
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009			
	Cattle in agricultural enterprises												
Cows of the dairy herd	2.93	3.11	3.16	3.10	3.28	3.47	3.49	3.50	3.55	3.74			
Beef cows	2.84	2.85	2.84	2.82	2.81	2.79	2.78	2.75	2.69	2.75			
Heifers from 2 years and older	2.76	2.76	2.76	2.76	2.75	2.75	2.73	2.74	2.70	2.74			
Heifers from 1 to 2 years	2.14	2.14	2.13	2.13	2.13	2.13	2.11	2.12	2.09	2.11			
Breeding bulls	2.59	2.59	2.59	2.58	2.58	2.57	2.56	2.57	2.53	2.57			
Calves up to 1 year	1.54	1.54	1.54	1.54	1.54	1.54	1.53	1.53	1.51	1.52			
Other cattle	2.07	2.07	2.07	2.07	2.06	2.07	2.05	2.06	2.03	2.06			
	Cattle in households												
Cows of the dairy herd	3.55	3.58	3.61	3.60	3.66	3.73	3.84	3.83	3.88	3.92			

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Heifers from 2 years and older	2.45	2.45	2.44	2.44	2.44	2.43	2.43	2.43	2.44	2.42
Heifers from 1 to 2 years	2.18	2.16	2.15	2.13	2.12	2.11	2.11	2.11	2.11	2.10
Breeding bulls	2.55	2.54	2.53	2.52	2.51	2.51	2.51	2.51	2.51	2.51
Calves up to 1 year	1.74	1.75	1.76	1.76	1.77	1.78	1.78	1.78	1.78	1.77
Other cattle	1.62	1.62	1.62	1.62	1.61	1.61	1.61	1.61	1.61	1.60
			S	heep in all cate	gories of farms					
Ewes and young ewes 1 year and older	0.39	0.40	0.40	0.39	0.42	0.40	0.41	0.41	0.41	0.40
Breeding rams	0.58	0.58	0.58	0.57	0.57	0.57	0.57	0.57	0.57	0.57
Other sheep	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25
			Sv	vine in agricult	ural enterprises	5				
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
				Swine in he	ouseholds					
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
			Po	oultry in all cat	egories of farm.	2				
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
			Са	attle in agricult	ural enterprises	3				
Cows of the dairy herd	3.77	3.80	4.03	4.12	4.25	4.33	4.46	4.56	4.61	4.65
Beef cows	2.77	2.73	2.80	2.86	3.65	3.84	4.32	4.68	5.10	4.91
Heifers from 2 years and older	2.73	2.72	2.72	2.72	2.77	2.77	2.78	2.79	2.93	2.90
Heifers from 1 to 2 years	2.10	2.10	2.09	2.10	2.12	2.12	2.12	2.13	2.22	2.21
Breeding bulls	2.56	2.55	2.57	2.59	2.62	2.62	2.64	2.62	2.70	2.69
Calves up to 1 year	1.52	1.51	1.51	1.51	1.53	1.53	1.53	1.53	1.60	1.59
Other cattle	2.05	2.05	2.05	2.05	2.10	2.10	2.11	2.14	2.25	2.23
				Cattle in h	ouseholds					
Cows of the dairy herd	3.92	3.93	3.95	3.99	4.05	4.04	4.03	4.05	4.10	4.13
Heifers from 2 years and older	2.42	2.41	2.41	2.42	2.41	2.41	2.41	2.41	2.41	2.41
Heifers from 1 to 2 years	2.10	2.09	2.09	2.10	2.09	2.09	2.09	2.10	2.09	2.09
Breeding bulls	2.51	2.50	2.50	2.51	2.51	2.51	2.51	2.51	2.51	2.51
Calves up to 1 year	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.76	1.76
Other cattle	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.59	1.59
			Si	heep in all cate	gories of farms					
Ewes and young ewes 1 year and older	0.41	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42
Breeding rams	0.57	0.58	0.58	0.57	0.57	0.57	0.57	0.57	0.57	0.57
Other sheep	0.25	0.25	0.25	0.24	0.24	0.24	0.24	0.24	0.24	0.24
			Sv	vine in agricult	ural enterprises	7				
Main sows	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Sows tested	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
				Swine in he	ouseholds					
Main sows	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Fattening swine	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
			Po	oultry in all cat	egories of farm.	5				
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Sex-age group	2020	2021	2022	2023								
(Cattle in agricultural enterprises											
Cows of the dairy herd	4.81	4.86	4.79	4.98								
Beef cows	5.15	5.24	4.43	4.76								
Heifers from 2 years and older	2.95	2.94	2.94	2.89								
Heifers from 1 to 2 years	2.23	2.23	2.24	2.19								
Breeding bulls	2.71	2.72	2.69	2.66								

Sex-age group	2020	2021	2022	2023
Calves up to 1 year	1.60	1.61	1.61	1.58
Other cattle	2.28	2.26	2.29	2.23
	Cattle in h	ouseholds		
Cows of the dairy herd	4.14	4.15	4.11	4.12
Heifers from 2 years and older	2.41	2.40	2.40	2.40
Heifers from 1 to 2 years	2.09	2.08	2.09	2.09
Breeding bulls	2.51	2.51	2.51	2.51
Calves up to 1 year	1.76	1.76	1.76	1.76
Other cattle	1.59	1.59	1.59	1.59
	Sheep in all cate	egories of farms	,	
Ewes and young ewes 1 year and older	0.42	0.42	0.42	0.42
Breeding rams	0.57	0.57	0.57	0.57
Other sheep	0.24	0.24	0.24	0.24
S	Swine in agricul	tural enterprise	S	
Main sows	0.85	0.85	0.85	0.85
Sows tested	0.76	0.76	0.76	0.76
Repair swine 4 months and older	0.55	0.55	0.55	0.55
Piglets up to 2 months	0.06	0.06	0.06	0.06
Piglets 2 to 4 months	0.20	0.20	0.20	0.20
Fattening swine	0.59	0.59	0.59	0.59
Boars	0.99	0.99	0.99	0.99
	Swine in h	ouseholds		
Main sows	1.11	1.11	1.11	1.11
Repair swine 4 months and older	0.72	0.72	0.72	0.72
Piglets up to 2 months	0.08	0.08	0.08	0.08
Piglets 2 to 4 months	0.27	0.27	0.27	0.27

Sex-age group	2020	2021	2022	2023
Fattening swine	0.77	0.77	0.77	0.77
Boars	1.29	1.29	1.29	1.29
I	Poultry in all ca	tegories of farm	S	
Hens and roosters	0.04	0.04	0.04	0.04
Geese	0.09	0.09	0.09	0.09
Ducks	0.07	0.07	0.07	0.07
Turkeys	0.13	0.13	0.13	0.13
Other poultry	0.10	0.10	0.10	0.10

Table A3.2.3.4. Annual average N excretion per head of cattle and fur-bearing animals, kg N animal⁻¹ yr⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
			С	attle in agricult	ural enterprise	s					
Cows of the dairy herd	57.23	55.38	52.56	52.83	54.80	51.27	48.00	41.70	43.62	45.71	
Beef cows	43.74	42.09	41.03	41.91	42.62	39.66	37.19	33.04	34.57	36.03	
Heifers from 2 years and older	37.01	36.21	35.17	36.24	37.69	35.98	34.27	30.76	31.86	32.95	
Heifers from 1 to 2 years	30.10	29.37	28.65	29.46	30.53	29.17	27.80	25.00	25.87	26.75	
Breeding bulls	40.35	39.74	39.65	40.10	41.00	39.69	38.37	35.07	36.28	37.40	
Calves up to 1 year	16.18	15.75	15.41	15.94	16.68	15.84	14.99	13.10	13.68	14.25	
Other cattle	21.86	21.58	20.94	21.60	22.51	22.01	20.95	18.57	18.70	19.30	
				Cattle in h	ouseholds						
Cows of the dairy herd	38.07	37.28	38.26	37.83	38.12	38.60	39.10	39.09	40.00	40.82	
Heifers from 2 years and older	27.09	26.51	26.59	26.02	26.43	27.17	27.90	28.92	29.52	30.11	
Heifers from 1 to 2 years	23.14	22.65	22.77	22.19	22.56	23.08	23.60	24.49	25.03	25.55	
Breeding bulls	32.35	31.94	32.15	32.09	32.20	32.49	32.77	32.74	33.47	34.20	
Calves up to 1 year	13.09	12.79	12.88	12.46	12.78	13.16	13.52	14.04	14.65	15.26	
Other cattle	13.71	13.54	13.66	13.48	13.89	14.36	14.76	15.32	15.64	15.98	
Fur-bearing animals in all categories of farms											
Fur-bearing animals	4.79	4.79	4.79	4.79	4.79	4.79	4.78	4.78	4.77	4.76	

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Cattle in agricultural enterprises												
Cows of the dairy herd	47.48	50.47	52.83	54.56	57.98	61.65	64.57	63.11	67.93	78.03		
Beef cows	37.45	38.91	40.35	41.73	43.18	44.40	45.25	44.08	46.39	51.62		
Heifers from 2 years and older	34.05	35.15	36.24	37.34	38.35	39.44	40.91	40.27	41.11	44.97		
Heifers from 1 to 2 years	27.62	28.49	29.36	30.23	31.11	32.01	32.97	32.62	33.38	36.60		
Breeding bulls	38.53	39.65	40.77	41.89	43.00	43.94	44.45	43.99	45.25	49.50		

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Calves up to 1 year	14.83	15.40	15.97	16.55	17.11	17.67	18.26	18.15	18.47	20.62		
Other cattle	19.89	20.63	21.33	21.85	22.57	23.33	24.04	23.62	24.33	27.21		
Cattle in households												
Cows of the dairy herd	41.67	42.54	43.43	44.24	45.23	46.28	45.33	45.61	45.39	46.52		
Heifers from 2 years and older	30.70	31.30	31.89	32.48	33.07	33.67	33.74	33.49	33.27	33.99		
Heifers from 1 to 2 years	26.08	26.60	27.11	27.62	28.13	28.62	28.72	28.65	28.60	29.10		
Breeding bulls	34.93	35.65	36.37	37.09	37.81	38.51	37.95	38.11	38.00	38.43		
Calves up to 1 year	16.10	16.75	17.23	17.76	18.31	18.84	18.89	18.82	18.76	19.07		
Other cattle	16.12	16.42	16.85	17.22	17.60	17.99	17.95	17.78	17.70	18.06		
Fur-bearing animals in all categories of farms												
Fur-bearing animals	4.74	4.72	4.72	4.73	4.74	4.73	4.71	4.68	4.66	4.66		

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019				
	Cattle in agricultural enterprises													
Cows of the dairy herd	78.83	79.65	89.99	93.29	99.55	105.64	106.19	109.49	145.99	144.39				
Beef cows	51.71	50.94	55.86	57.78	66.99	72.06	76.17	82.05	115.78	110.64				
Heifers from 2 years and older	43.57	42.80	45.08	44.83	47.02	48.53	48.02	48.56	65.32	64.66				
Heifers from 1 to 2 years	35.40	34.76	36.55	36.44	38.44	39.51	38.77	39.43	53.21	52.75				
Breeding bulls	49.16	48.90	52.59	53.55	55.66	57.58	57.18	57.76	73.43	72.14				
Calves up to 1 year	19.78	19.27	20.47	20.43	21.84	22.61	22.08	22.50	31.88	31.55				
Other cattle	26.10	25.70	27.15	27.24	29.12	29.99	29.28	30.03	41.95	41.32				
				Cattle in h	ouseholds									
Cows of the dairy herd	46.55	47.11	47.08	46.67	46.65	46.38	46.18	46.36	47.15	47.01				
Heifers from 2 years and older	34.15	34.50	34.64	34.50	34.70	34.69	34.62	34.57	34.98	34.96				
Heifers from 1 to 2 years	29.11	29.30	29.30	29.11	29.25	29.20	29.18	29.14	29.48	29.51				
Breeding bulls	38.42	38.62	38.58	38.36	38.29	38.20	38.10	38.13	38.38	38.28				

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019		
Calves up to 1 year	19.10	19.24	19.27	19.17	19.24	19.23	19.21	19.18	19.38	19.40		
Other cattle	18.14	18.34	18.38	18.29	18.41	18.43	18.41	18.38	18.58	18.56		
	Fur-bearing animals in all categories of farms											
Fur-bearing animals	4.66	4.65	4.64	4.65	4.64	4.64	4.65	4.63	4.62	4.61		

Sex-age group	2020	2021	2022	2023
Са	ttle in agricultı	ıral enterprises		
Cows of the dairy herd	149.10	149.86	148.92	159.68
Beef cows	113.28	115.38	104.03	112.90
Heifers from 2 years and older	65.51	64.44	63.75	64.20
Heifers from 1 to 2 years	53.36	52.55	52.23	52.43
Breeding bulls	71.65	72.57	72.42	73.94
Calves up to 1 year	32.07	31.54	31.31	31.33
Other cattle	42.24	41.40	41.67	41.25
	Cattle in ho	useholds		
Cows of the dairy herd	47.10	46.73	46.78	47.72
Heifers from 2 years and older	34.98	35.07	35.19	35.28
Heifers from 1 to 2 years	29.62	29.68	29.59	29.55
Breeding bulls	38.31	38.16	38.21	38.52
Calves up to 1 year	19.42	19.45	19.44	19.43
Other cattle	18.58	18.63	18.68	18.75
Fur-beari	ing animals in a	all categories o	f farms	
Fur-bearing animals	4.60	4.59	4.59	4.59

Table A3.2.3.5. Proportions of nitrogen in manure dry matter and the amount of nitrogen excreted as part of manure of swine, poultry and

sheep

Sex-age groups	Proportion of nitrogen in manure dry matter (fn), rel.	Amount of nitrogen excreted (Nex), kg head-1 yr-1
	Swine in agrienterprises	
Main sows	0.06	21.93
Sows tested	0.06	19.69
Repair swine 4 months and older	0.06	14.25
Piglets up to 2 months	0.06	1.57
Piglets 2 to 4 months	0.06	5.28
Fattening swine	0.06	15.30
Boars	0.06	25.56
	Swine in households	
Main sows	0.06	28.51
Repair swine 4 months and older	0.06	18.53
Piglets up to 2 months	0.06	2.04
Piglets 2 to 4 months	0.06	6.86
Fattening swine	0.06	19.89
Boars	0.06	33.23
	Poultry in all categories of farms	
Hens and roosters	0.0180	0.28
Geese	0.0070	0.29
Ducks	0.0095	0.28
Turkeys	0.0060	0.35
Other poultry	_	0.60
	Sheep in all categories of farms	
Ewes and young ewes 1 year and older	0.023	10.07
Breeding rams	0.023	12.59
Other sheep	0.023	6.27

Table A3.2.3.6. Cattle fodder consumption at all types of livestock owners, kt

Kind of feeds	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999		
			Ca	attle in agricult	ural enterprises	5						
				Cows of the	dairy herd							
Other feeds	28,179.25	22,895.52	16,762.26	15,838.77	12,940.19	11,632.89	9,957.96	8,741.91	8,530.60	6,418.99		
Coarse feeds	9,731.93	9,920.13	10,105.85	9,292.85	8,988.97	7,976.29	7,067.65	5,651.01	5,241.97	3,948.47		
Succulent feeds	70,522.63	71,596.78	62,367.19	58,746.06	53,325.97	46,316.52	40,238.05	33,885.69	30,892.52	23,128.26		
Concentrated feeds	6,394.53	5,767.49	4,354.48	4,213.15	4,046.78	3,039.01	2,239.31	1,336.95	1,386.12	1,171.76		
Beef cows												
Other feeds	51.05	52.32	47.88	51.13	77.43	133.07	165.21	178.55	176.64	176.03		
Coarse feeds	14.94	18.44	22.49	22.18	37.73	67.26	86.30	88.56	88.83	88.57		
Succulent feeds	84.67	102.60	107.30	108.86	180.63	305.31	373.07	392.45	386.33	380.11		
Concentrated feeds	8.15	8.67	8.01	8.79	15.25	21.97	22.33	16.47	18.75	21.05		
Heifers from 2 years and older												
Other feeds	3,896.36	3,173.70	2,992.78	2,695.51	2,247.33	2,091.28	1,819.26	1,597.28	1,292.88	1,083.41		
Coarse feeds	1,604.58	1,688.44	1,842.44	1,737.96	1,747.43	1,627.09	1,416.26	1,143.72	934.55	790.81		
Succulent feeds	8,829.08	9,237.88	8,861.94	8,466.51	8,105.27	7,458.12	6,419.23	5,516.85	4,483.62	3,773.03		
Concentrated feeds	840.82	769.64	651.53	666.77	673.62	543.06	404.07	257.83	233.92	218.01		
				Heifers from	1 to 2 years							
Other feeds	1,269.74	1,062.11	976.07	822.59	682.30	664.48	586.09	496.87	405.08	353.60		
Coarse feeds	453.01	489.93	520.89	458.03	453.49	442.70	391.35	306.07	251.74	221.75		
Succulent feeds	2,561.89	2,743.23	2,566.62	2,295.40	2,173.62	2,090.05	1,821.36	1,508.33	1,232.21	1,077.86		
Concentrated feeds	253.88	237.47	197.49	189.40	189.58	159.33	119.65	73.37	66.78	64.59		
				Breedin	g bulls							
Other feeds	41.30	38.10	34.02	33.41	28.84	28.13	28.50	29.40	26.09	24.63		
Coarse feeds	9.23	10.43	12.25	11.17	10.87	11.01	11.54	11.11	9.98	9.39		
Succulent feeds	69.45	77.52	78.31	72.84	69.12	65.80	65.14	65.80	57.97	53.89		
Concentrated feeds	7.46	7.33	6.52	6.51	6.40	5.26	4.39	3.11	3.16	3.35		
				Calves up	to 1 year							

Kind of feeds	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Other feeds	9,541.05	7,722.14	7,124.27	6,302.97	5,041.50	4,591.28	4,072.04	3,595.25	2,898.73	2,460.86
Coarse feeds	3,231.95	3,355.03	3,600.61	3,321.62	3,166.06	2,891.09	2,570.57	2,078.30	1,689.46	1,446.40
Succulent feeds	18,889.57	19,527.67	18,418.79	17,206.41	15,721.56	14,102.62	12,329.70	10,615.74	8,572.22	7,288.84
Concentrated feeds	1,932.93	1,747.29	1,461.28	1,467.81	1,411.61	1,109.32	837.91	535.21	481.92	453.46
				Other	cattle					
Other feeds	16,342.02	12,797.65	11,453.64	9,853.16	7,308.21	3,790.59	3,940.19	3,074.36	3,866.83	2,619.02
Coarse feeds	6,833.71	6,833.88	7,176.14	6,440.35	5,764.01	2,995.66	3,349.44	2,273.27	2,691.12	1,841.30
Succulent feeds	30,864.16	30,988.35	28,677.80	26,009.63	22,366.80	10,777.90	11,899.01	8,959.05	11,445.42	7,828.90
Concentrated feeds	3,382.23	2,980.24	2,399.70	2,325.08	2,078.70	937.66	883.47	496.88	633.71	471.27
				Cattle in he	ouseholds					
				Cows of the	dairy herd					
Other feeds	14,319.75	15,886.27	16,412.73	18,265.96	19,477.35	20,045.92	20,516.22	20,359.25	21,704.70	23,121.44
Coarse feeds	3,868.27	4,143.41	4,376.68	4,730.20	5,020.47	5,232.90	5,430.93	5,289.53	5,517.52	5,759.86
Succulent feeds	16,632.44	18,594.67	20,269.19	21,665.71	22,759.59	23,798.16	24,694.77	23,855.35	21,885.00	19,905.60
Concentrated feeds	509.52	544.48	640.70	671.16	727.89	785.75	841.75	825.53	844.05	857.98
			H	Heifers from 2 y	ears and older					
Other feeds	392.86	474.23	535.44	612.66	614.75	560.27	521.81	480.15	548.35	621.59
Coarse feeds	63.66	70.46	82.24	86.91	85.02	82.68	81.95	84.52	96.07	108.45
Succulent feeds	382.36	422.36	504.44	545.96	531.32	479.19	441.51	448.62	440.80	427.09
Concentrated feeds	20.94	22.77	26.88	28.08	29.15	27.74	26.96	28.71	31.26	33.89
				Heifers from	1 to 2 years					
Other feeds	922.03	1,104.55	1,282.65	1,514.11	1,553.33	1,369.52	1,160.39	989.57	1,069.98	1,189.87
Coarse feeds	130.79	144.31	173.77	190.27	191.12	179.14	160.98	153.69	165.50	183.37
Succulent feeds	832.39	917.42	1,124.50	1,267.73	1,265.19	1,103.20	924.14	864.89	803.45	762.64
Concentrated feeds	48.09	52.17	63.36	68.84	73.57	67.47	59.42	58.43	60.15	63.88
				Breedin	g bulls					
Other feeds	15.43	16.93	21.13	27.97	32.58	33.42	29.93	29.74	36.74	42.22
Coarse feeds	3.41	3.60	4.58	5.98	6.87	7.20	6.59	6.40	7.73	8.70

Kind of feeds	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999			
Succulent feeds	15.36	17.04	22.64	29.24	32.95	34.42	31.40	30.69	32.42	31.72			
Concentrated feeds	0.62	0.67	0.94	1.20	1.38	1.50	1.42	1.41	1.64	1.78			
Calves up to 1 year													
Other feeds	2,457.82	2,583.25	2,549.12	2,762.21	2,572.84	2,079.51	1,817.12	1,664.99	1,847.77	2,124.69			
Coarse feeds	328.06	320.52	327.87	329.41	300.87	255.86	234.40	235.46	262.29	302.98			
Succulent feeds	2,216.62	2,163.81	2,238.95	2,330.17	2,113.33	1,685.17	1,454.03	1,434.77	1,359.77	1,329.38			
Concentrated feeds	126.09	120.66	124.45	124.11	121.27	101.06	90.88	93.26	98.95	109.46			
				Other	cattle								
Other feeds	9,097.21	8,228.18	3,213.98	3,228.23	2,866.33	2,395.44	2,398.28	2,206.35	2,176.76	2,142.86			
Coarse feeds	1,355.01	1,138.63	465.07	446.78	411.02	373.70	389.67	396.50	388.04	375.65			
Succulent feeds	8,596.69	7,125.09	2,934.97	2,828.30	2,430.90	2,025.42	2,030.52	2,063.67	1,725.70	1,465.40			
Concentrated feeds	457.61	385.56	156.23	151.48	147.60	130.48	135.26	143.52	132.79	123.78			

Kind of feeds	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Cattle in agricultural enterprises												
Cows of the dairy herd												
Other feeds	4,752.67	4,491.89	4,140.76	2,945.13	2,622.00	2,619.59	2,245.12	2,021.14	1,760.78	1,554.35		
Coarse feeds	2,944.40	2,802.45	2,584.89	1,850.32	1,660.11	1,643.79	1,430.26	1,264.93	1,063.63	1,182.51		
Succulent feeds	17,144.22	16,207.43	14,834.36	10,542.35	9,386.57	9,293.95	8,569.46	7,343.75	6,947.50	6,539.90		
Concentrated feeds	967.90	1,009.67	1,018.76	793.28	768.67	825.58	826.62	678.72	729.08	855.19		
				Beef c	cows							
Other feeds	175.40	174.75	174.08	173.39	179.61	193.30	183.86	176.40	156.88	126.58		
Coarse feeds	88.29	88.01	87.72	87.42	88.60	88.04	81.87	78.47	62.69	61.14		
Succulent feeds	373.79	367.38	360.87	354.27	349.19	338.47	339.13	306.43	256.14	217.18		
Concentrated feeds	23.38	25.73	28.11	30.51	33.50	36.34	37.97	32.58	32.35	34.90		
	Heifers from 2 years and older											

Kind of feeds	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009			
Other feeds	867.71	729.60	653.81	543.52	443.42	382.33	323.88	283.06	247.08	205.87			
Coarse feeds	639.77	543.55	492.33	413.83	338.57	291.09	237.60	209.85	165.10	164.62			
Succulent feeds	3,035.05	2,563.55	2,308.07	1,928.12	1,563.71	1,325.58	1,138.83	993.51	880.59	744.10			
Concentrated feeds	192.94	178.31	174.81	158.36	138.35	126.75	120.81	100.82	96.04	99.66			
	Heifers from 1 to 2 years												
Other feeds	297.81	278.98	272.63	230.25	187.75	166.95	151.70	137.44	124.25	110.68			
Coarse feeds	188.51	178.29	175.96	150.12	123.40	110.06	97.44	90.76	74.83	80.40			
Succulent feeds	909.78	854.19	836.68	708.33	577.30	509.49	479.58	442.66	413.72	375.27			
Concentrated feeds	59.90	61.46	65.49	60.08	52.92	50.42	52.09	46.45	46.96	52.46			
				Breedin	g bulls								
Other feeds	22.25	19.13	17.61	14.72	11.87	11.40	10.42	9.19	7.34	5.97			
Coarse feeds	8.46	7.26	6.66	5.55	4.46	4.13	3.92	3.47	2.44	2.45			
Succulent feeds	47.92	40.52	36.64	30.08	23.81	22.05	22.71	19.07	14.50	12.70			
Concentrated feeds	3.36	3.18	3.20	2.91	2.53	2.57	2.75	2.21	1.92	2.11			
				Calves up	to 1 year								
Other feeds	1,944.94	1,549.17	1,398.23	1,133.40	860.79	796.06	740.46	633.59	524.35	435.59			
Coarse feeds	1,153.11	926.69	844.11	690.72	524.46	480.17	435.01	388.28	290.93	288.59			
Succulent feeds	5,770.18	4,603.82	4,162.57	3,380.31	2,545.69	2,304.96	2,211.51	1,949.99	1,652.54	1,394.88			
Concentrated feeds	394.73	344.44	339.03	298.53	242.39	236.01	250.03	216.27	196.54	201.76			
				Other	cattle								
Other feeds	1,864.11	1,957.55	1,966.05	1,358.06	1,303.93	1,313.75	1,186.91	993.20	841.33	788.57			
Coarse feeds	1,318.76	1,384.90	1,401.08	975.64	948.04	978.11	854.95	726.34	571.03	654.43			
Succulent feeds	5,649.02	5,930.48	5,911.64	4,124.89	4,003.19	4,096.99	3,806.07	3,229.78	2,895.95	2,784.72			
Concentrated feeds	364.40	414.98	450.48	332.05	346.94	385.35	392.98	314.54	312.47	374.33			
				Cattle in h	ouseholds								
				Cows of the	dairy herd								
Other feeds	25,236.06	27,865.45	30,798.25	31,714.37	32,063.24	33,274.40	33,223.74	29,975.74	28,587.23	26,859.96			
Coarse feeds	6,161.86	6,678.71	7,259.06	7,359.73	7,352.81	7,562.02	7,560.78	6,822.67	6,503.27	6,104.54			

Kind of feeds	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
Succulent feeds	18,393.72	17,025.66	15,564.67	13,004.16	10,403.71	8,208.92	8,643.86	7,709.53	7,446.85	6,709.49		
Concentrated feeds	896.58	950.76	1,011.65	1,005.22	983.35	989.71	915.42	841.41	785.91	785.21		
			Н	Heifers from 2 y	ears and older							
Other feeds	643.50	656.06	713.94	704.97	647.40	629.34	625.80	609.76	568.41	545.38		
Coarse feeds	111.84	113.63	123.26	121.36	111.15	107.67	106.40	105.72	100.07	90.65		
Succulent feeds	374.50	319.39	285.81	226.53	161.14	114.57	113.94	111.66	104.73	100.11		
Concentrated feeds	33.64	32.96	34.55	32.93	29.24	27.54	27.69	26.25	23.99	25.35		
Heifers from 1 to 2 years												
Other feeds	1,278.62	1,397.57	1,570.77	1,509.26	1,308.23	1,460.07	1,755.26	1,750.46	1,593.51	1,529.60		
Coarse feeds	196.39	214.02	239.89	229.92	198.84	221.70	264.17	265.86	243.81	221.88		
Succulent feeds	693.17	632.87	583.95	449.48	301.03	245.18	294.74	293.77	267.40	256.62		
Concentrated feeds	65.74	68.99	74.61	69.12	57.88	62.52	75.89	73.47	65.47	69.27		
Breeding bulls												
Other feeds	52.33	70.93	92.68	102.85	105.10	130.28	153.37	146.86	134.23	129.61		
Coarse feeds	10.59	14.12	18.17	19.89	20.06	24.61	29.01	27.73	25.29	24.43		
Succulent feeds	33.25	37.73	40.72	36.60	29.45	27.41	33.97	32.42	30.30	28.14		
Concentrated feeds	2.09	2.70	3.36	3.57	3.50	4.18	4.55	4.44	3.96	4.07		
				Calves up	to 1 year							
Other feeds	3,001.83	4,284.08	4,981.06	4,816.60	4,457.42	4,421.75	4,320.34	4,053.91	3,797.26	3,701.62		
Coarse feeds	444.69	641.53	735.39	706.05	653.14	644.95	625.35	594.77	562.65	519.69		
Succulent feeds	1,600.20	1,909.54	1,817.57	1,403.87	999.60	724.16	713.03	672.23	631.13	615.00		
Concentrated feeds	156.00	217.50	239.78	222.28	199.15	190.06	187.08	170.50	156.43	167.94		
				Other	cattle							
Other feeds	2,990.75	3,233.44	2,893.70	3,375.66	4,040.39	3,320.53	3,327.59	3,263.78	3,707.33	3,618.17		
Coarse feeds	493.05	537.44	504.38	595.94	709.39	580.42	577.42	572.67	653.98	600.39		
Succulent feeds	1,695.48	1,453.37	1,019.48	924.78	841.24	507.37	515.54	508.02	583.98	578.01		
Concentrated feeds	156.03	158.18	138.17	155.34	178.14	140.71	141.96	135.44	150.40	161.04		

Kind of feeds	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
			С	attle in agricult	ural enterprises	5					
				Cows of the	dairy herd						
Other feeds	1,457.53	1,456.22	1,267.74	1,081.98	965.05	890.35	763.61	737.43	448.68	463.47	
Coarse feeds	1,128.76	1,101.91	1,163.49	1,198.55	1,294.33	1,272.47	1,267.34	1,212.42	1,235.55	1,197.45	
Succulent feeds	6,387.47	6,374.89	6,418.78	6,365.65	6,003.92	5,755.85	5,891.38	5,902.20	3,012.79	3,116.10	
Concentrated feeds	841.75	847.35	1,004.09	1,026.72	1,074.93	1,144.51	1,112.91	1,143.18	1,416.15	1,357.54	
				Beef o	cows						
Other feeds 105.62 104.99 88.35 74.12 60.78 46.15 31.18 24.49 15.69 17.25											
Coarse feeds	54.84	49.64	50.82	50.66	47.40	39.20	34.47	29.52	32.91	33.31	
Succulent feeds	209.74	197.86	189.13	182.25	149.24	118.95	114.23	106.23	58.91	63.48	
Concentrated feeds	32.33	30.15	34.49	34.22	30.90	27.42	24.21	23.38	32.52	32.46	
			Н	Heifers from 2 y	ears and older						
Other feeds	188.51	181.25	170.60	164.42	135.31	116.32	85.14	75.09	50.73	49.83	
Coarse feeds	148.31	135.88	132.20	131.45	136.86	126.16	111.66	104.50	114.70	99.96	
Succulent feeds	712.26	678.80	645.50	645.18	580.81	517.84	495.26	440.46	230.85	209.29	
Concentrated feeds	87.50	79.80	86.69	85.09	83.73	80.48	71.83	65.50	86.78	77.24	
				Heifers from	1 to 2 years						
Other feeds	108.89	110.00	112.00	114.02	98.92	94.40	113.03	148.09	106.99	111.33	
Coarse feeds	78.73	77.68	83.27	86.23	94.20	93.47	131.93	184.57	215.26	195.47	
Succulent feeds	391.05	405.72	425.01	441.35	413.47	397.10	611.28	803.35	445.96	418.55	
Concentrated feeds	50.08	49.73	58.79	60.20	62.55	64.08	91.23	124.70	176.24	162.92	
				Breedin	g bulls						
Other feeds	5.38	5.12	3.97	3.03	2.51	2.06	1.41	1.09	0.61	0.61	
Coarse feeds	2.24	2.02	1.95	1.64	1.53	1.36	1.18	0.95	0.87	0.81	
Succulent feeds	12.25	11.28	10.08	8.25	6.86	5.90	5.56	4.78	2.17	2.13	
Concentrated feeds	1.97	1.84	1.98	1.65	1.50	1.42	1.23	1.10	1.28	1.16	
				Calves up	to 1 year						

Kind of feeds	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Other feeds	400.70	389.60	375.22	357.92	286.87	258.44	209.35	196.36	141.67	154.20
Coarse feeds	264.74	245.02	242.70	240.84	247.81	236.82	229.73	232.29	270.10	255.97
Succulent feeds	1,369.48	1,331.73	1,291.80	1,285.58	1,143.62	1,059.90	1,119.78	1,073.35	595.53	583.74
Concentrated feeds	180.08	166.00	182.93	179.73	175.65	173.87	169.90	167.36	234.93	227.06
				Other o	cattle					
Other feeds	762.07	655.55	637.69	638.75	500.63	455.92	328.60	245.65	148.90	159.42
Coarse feeds	589.92	510.91	525.55	526.87	535.69	505.22	441.08	366.29	332.66	317.78
Succulent feeds	2,650.05	2,446.36	2,460.67	2,438.32	2,133.56	1,941.17	1,898.30	1,462.28	611.54	613.19
Concentrated feeds	325.37	291.37	328.19	325.88	316.51	308.84	273.72	220.24	241.93	237.33
				Cattle in ho	ouseholds					
				Cows of the	dairy herd					
Other feeds	25,884.35	25,069.55	24,628.22	24,709.96	23,727.20	22,987.92	22,469.68	21,747.94	20,796.12	19,485.84
Coarse feeds	5,879.95	5,691.47	5,587.96	5,604.26	5,377.77	5,208.09	5,090.19	4,922.85	4,704.99	4,410.63
Succulent feeds	6,456.72	6,116.02	6,027.58	6,168.97	5,961.30	5,826.52	5,738.38	5,521.97	5,141.76	4,862.82
Concentrated feeds	757.44	755.92	738.49	719.93	684.27	654.26	632.50	617.02	613.07	567.52
			I.	Heifers from 2 y	ears and older					
Other feeds	528.91	515.51	487.06	479.37	476.67	456.82	443.20	426.72	409.21	380.73
Coarse feeds	86.92	82.24	76.93	76.78	75.01	72.00	70.21	67.90	62.71	58.41
Succulent feeds	96.51	93.67	87.91	86.10	85.45	81.79	79.58	76.68	73.57	68.65
Concentrated feeds	24.84	25.23	24.01	23.01	23.44	22.38	21.63	20.71	20.98	19.56
				Heifers from	1 to 2 years					
Other feeds	1,421.20	1,313.21	1,392.99	1,467.83	1,308.80	1,163.64	1,134.91	1,098.33	1,037.91	961.75
Coarse feeds	205.36	185.50	196.70	211.44	185.60	165.62	162.09	157.44	143.29	132.51
Succulent feeds	238.29	220.23	233.90	246.58	219.72	195.29	190.61	184.46	174.39	161.69
Concentrated feeds	65.27	62.97	67.31	69.03	63.17	56.04	54.36	52.29	52.19	48.39
				Breeding	g bulls					
Other feeds	116.19	102.73	103.89	100.43	84.01	73.08	70.01	66.96	59.14	51.15
Coarse feeds	21.91	19.39	19.60	18.94	15.83	13.75	13.19	12.64	11.19	9.69

Kind of feeds	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Succulent feeds	25.01	21.42	21.67	21.31	17.87	15.63	15.00	14.21	12.20	10.65
Concentrated feeds	3.66	3.34	3.36	3.16	2.62	2.25	2.13	2.06	1.89	1.61
				Calves up	to 1 year					
Other feeds	3,331.08	3,106.26	3,768.22	4,380.37	3,837.10	3,293.52	3,260.35	3,209.61	3,030.83	2,813.97
Coarse feeds	464.79	422.49	510.32	603.96	520.97	448.92	446.06	440.83	400.58	371.10
Succulent feeds	551.83	513.39	623.69	723.95	631.43	541.25	536.15	526.62	497.35	463.03
Concentrated feeds	153.03	148.87	181.72	205.64	185.00	158.41	156.08	152.91	152.55	141.71
				Other	cattle					
Other feeds	3,218.38	3,318.40	3,761.75	4,113.57	3,728.71	3,163.91	3,455.40	3,612.89	3,404.02	3,180.01
Coarse feeds	529.83	532.03	599.80	669.05	598.42	510.05	554.90	578.07	519.25	479.51
Succulent feeds	517.19	534.03	603.99	659.97	594.52	505.24	560.80	593.32	560.64	524.78
Concentrated feeds	144.57	155.24	177.34	188.66	175.52	148.28	160.56	166.48	165.91	155.50

Kind of feeds	2020	2021	2022	2023						
C	attle in agriculi	tural enterprise	?S							
Cows of the dairy herd										
Other feeds	Other feeds 399.87 409.65 340.46 334.44									
Coarse feeds 1,203.50 1,246.69 1,105.67 1,088.24										
Succulent feeds 3,131.17 3,263.62 3,027.63 3,150.7										
Concentrated feeds	1,372.03	1,416.89	1,310.34	1,491.84						
	Beef	cows								
Other feeds	14.48	12.54	11.70	10.46						
Coarse feeds	32.41	31.95	30.75	28.54						
Succulent feeds	61.30	60.80	63.57	59.17						
Concentrated feeds	30.36	30.44	31.95	32.66						
1	Heifers from 2 y	vears and older								

Kind of feeds	2020	2021	2022	2023					
Other feeds	36.26	37.99	32.90	32.02					
Coarse feeds	92.27	86.07	81.31	72.91					
Succulent feeds	182.90	172.66	170.26	170.87					
Concentrated feeds	68.39	61.73	57.55	59.23					
	Heifers from	1 to 2 years							
Other feeds	84.22	97.54	90.31	88.97					
Coarse feeds	191.85	192.03	194.80	175.95					
Succulent feeds	388.06	391.72	403.93	411.74					
Concentrated feeds	152.36	147.59	145.68	150.81					
	Breedin	g bulls							
Other feeds	0.38	0.31	0.37	0.35					
Coarse feeds	0.54	0.59	0.75	0.67					
Succulent feeds	1.42	1.56	2.15	1.91					
Concentrated feeds	0.73	0.83	1.14	1.12					
	Calves up	to 1 year							
Other feeds	120.72	137.60	125.43	125.98					
Coarse feeds	258.80	259.11	260.09	236.57					
Succulent feeds	559.33	567.64	581.61	596.09					
Concentrated feeds	219.74	212.45	207.23	216.55					
	Other	cattle							
Other feeds	116.53	143.21	97.88	124.98					
Coarse feeds	305.83	311.69	248.53	271.81					
Succulent feeds	553.45	562.79	442.47	554.20					
Concentrated feeds	217.01	213.70	163.47	204.38					
Cattle in households									
	Cows of the	dairy herd							
Other feeds	18,156.64	18,241.83	14,496.92	14,421.88					
Coarse feeds	4,110.64	4,131.02	3,284.12	3,264.25					

Kind of feeds	2020	2021	2022	2023
Succulent feeds	4,525.50	4,614.47	3,645.68	3,500.33
Concentrated feeds	530.09	521.38	418.32	437.26
i	Heifers from 2 y	vears and older		
Other feeds	368.34	329.61	268.66	239.82
Coarse feeds	56.40	50.08	40.49	35.93
Succulent feeds	66.61	59.48	48.02	42.58
Concentrated feeds	19.00	17.13	13.99	12.51
	Heifers from	1 to 2 years		
Other feeds	913.85	817.02	684.60	602.47
Coarse feeds	124.47	110.50	93.24	82.31
Succulent feeds	153.32	136.95	114.86	101.11
Concentrated feeds	46.27	41.75	35.08	30.96
	Breedin	g bulls		
Other feeds	46.73	41.32	34.85	30.06
Coarse feeds	8.85	7.82	6.61	5.73
Succulent feeds	9.73	8.73	7.29	6.06
Concentrated feeds	1.48	1.28	1.09	0.99
	Calves up	to 1 year		
Other feeds	2,556.94	2,204.35	1,884.88	1,632.31
Coarse feeds	335.50	287.91	246.85	214.41
Succulent feeds	420.61	361.91	308.32	265.97
Concentrated feeds	129.70	112.91	96.74	84.09
	Other	cattle		
Other feeds	2,931.68	1,459.78	1,849.60	1,714.69
Coarse feeds	440.27	214.42	268.13	250.41
Succulent feeds	485.38	242.91	309.55	285.79
Concentrated feeds	144.20	72.51	91.92	85.27

Table A3.2.3.7. Crude protein content in all kinds of cattle fodders, %

Sex-age groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Ca	attle in agricult	ural enterprise.	5				
Cows of the dairy herd	11.29	11.04	10.68	10.76	11.08	10.52	9.99	8.95	9.26	9.61
Beef cows	8.63	8.36	8.14	8.33	8.53	8.07	7.61	6.83	7.12	7.41
Heifers from 2 years and older	8.60	8.37	8.09	8.31	8.56	8.20	7.83	7.12	7.35	7.58
Heifers from 1 to 2 years	8.74	8.52	8.29	8.50	8.75	8.39	8.03	7.33	7.55	7.78
Breeding bulls	7.84	7.68	7.60	7.70	7.85	7.58	7.30	6.68	6.91	7.13
Calves up to 1 year	8.63	8.45	8.28	8.47	8.71	8.40	8.08	7.43	7.64	7.84
Other cattle	7.93	7.75	7.50	7.67	7.85	7.69	7.38	6.80	6.86	7.02
				Cattle in he	ouseholds					
Cows of the dairy herd	7.70	7.59	7.74	7.68	7.73	7.80	7.87	7.87	8.01	8.14
Heifers from 2 years and older	6.53	6.43	6.44	6.33	6.42	6.57	6.72	6.91	7.04	7.18
Heifers from 1 to 2 years	6.63	6.53	6.55	6.42	6.52	6.64	6.76	6.95	7.10	7.25
Breeding bulls	6.28	6.21	6.25	6.24	6.26	6.31	6.37	6.36	6.51	6.66
Calves up to 1 year	6.53	6.43	6.46	6.34	6.44	6.55	6.65	6.81	6.98	7.15
Other cattle	6.04	6.00	6.03	5.98	6.11	6.25	6.37	6.53	6.64	6.76

Sex-age groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cattle in agricultural enterprises										
Cows of the dairy herd	9.96	10.30	10.65	11.00	11.35	11.69	12.10	11.87	12.51	13.64
Beef cows	7.70	7.99	8.27	8.56	8.86	9.15	9.33	9.12	9.67	10.64
Heifers from 2 years and older	7.81	8.04	8.27	8.49	8.71	8.94	9.28	9.13	9.37	10.11
Heifers from 1 to 2 years	8.00	8.22	8.45	8.67	8.90	9.13	9.41	9.31	9.56	10.34
Breeding bulls	7.35	7.56	7.78	8.00	8.22	8.41	8.52	8.42	8.71	9.48
Calves up to 1 year	8.05	8.25	8.45	8.66	8.86	9.06	9.30	9.26	9.42	10.14
Other cattle	7.18	7.38	7.57	7.71	7.90	8.10	8.32	8.20	8.44	9.14

Sex-age groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cattle in households										
Cows of the dairy herd	8.27	8.40	8.53	8.66	8.78	8.91	8.74	8.78	8.74	8.87
Heifers from 2 years and older	7.31	7.44	7.57	7.70	7.83	7.97	7.99	7.92	7.87	8.05
Heifers from 1 to 2 years	7.41	7.56	7.71	7.86	8.01	8.16	8.18	8.16	8.15	8.29
Breeding bulls	6.81	6.97	7.12	7.27	7.42	7.56	7.45	7.48	7.46	7.55
Calves up to 1 year	7.39	7.57	7.70	7.85	8.00	8.14	8.16	8.13	8.11	8.23
Other cattle	6.82	6.92	7.05	7.17	7.30	7.43	7.42	7.36	7.33	7.47

Sex-age groups	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
			Са	attle in agricult	tural enterprises	5				
Cows of the dairy herd	13.71	13.77	14.73	15.00	15.55	16.13	15.97	16.15	20.24	19.92
Beef cows	10.62	10.52	11.40	11.68	12.07	12.56	12.46	12.76	16.25	15.98
Heifers from 2 years and older	9.83	9.69	10.17	10.11	10.48	10.78	10.66	10.74	13.84	13.77
Heifers from 1 to 2 years	10.04	9.90	10.36	10.33	10.78	11.04	10.88	11.02	14.21	14.14
Breeding bulls	9.42	9.38	10.06	10.22	10.57	10.93	10.83	10.97	13.78	13.56
Calves up to 1 year	9.86	9.69	10.12	10.11	10.55	10.81	10.65	10.77	13.78	13.70
Other cattle	8.87	8.77	9.15	9.17	9.56	9.78	9.57	9.72	12.48	12.40
				Cattle in h	ouseholds					
Cows of the dairy herd	8.88	8.95	8.93	8.87	8.85	8.82	8.79	8.81	8.89	8.87
Heifers from 2 years and older	8.08	8.17	8.20	8.17	8.22	8.21	8.20	8.19	8.29	8.28
Heifers from 1 to 2 years	8.30	8.35	8.35	8.30	8.34	8.32	8.32	8.31	8.41	8.41
Breeding bulls	7.54	7.59	7.58	7.53	7.52	7.50	7.48	7.49	7.54	7.52
Calves up to 1 year	8.24	8.29	8.30	8.26	8.29	8.28	8.28	8.27	8.34	8.35
Other cattle	7.50	7.57	7.58	7.55	7.59	7.60	7.59	7.58	7.66	7.66

Sex-age groups	2020	2021	2022	2023
(Cattle in agricul	tural enterprise	S	
Cows of the dairy herd	20.04	20.00	20.06	20.67
Beef cows	15.86	15.95	16.13	16.58
Heifers from 2 years and older	13.83	13.63	13.49	13.72
Heifers from 1 to 2 years	14.21	14.01	13.92	14.10
Breeding bulls	13.41	13.56	13.59	13.94
Calves up to 1 year	13.82	13.63	13.54	13.68
Other cattle	12.48	12.31	12.30	12.37
	Cattle in h	ouseholds		
Cows of the dairy herd	8.87	8.82	8.84	8.96
Heifers from 2 years and older	8.29	8.31	8.34	8.36
Heifers from 1 to 2 years	8.44	8.46	8.44	8.43
Breeding bulls	7.52	7.49	7.50	7.56
Calves up to 1 year	8.36	8.37	8.36	8.36
Other cattle	7.66	7.69	7.71	7.73

Table A3.2.3.8. Mass balance of manure that handled in each MMS, kt of dry matter

MMS types	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Cattle in agr	ienterprises					
Liquid system with natural crust cover	7299.56	7055.94	5408.13	4786.86	3588.09	2449.01	1908.48	749.94	633.42	543.00
Solid storage	15135.48	14630.20	14488.07	13625.01	13397.48	12377.09	10504.78	8639.47	7135.45	6162.30
Pasture, range, and paddock	12165.94	11759.89	11770.65	11368.79	10488.26	9551.15	8694.20	7970.23	6568.80	5676.99
Composting	158.84	153.67	145.70	137.21	126.86	112.87	97.91	80.70	66.78	57.69
				Cattle in h	ouseholds					
Solid storage	3435.96	3465.52	3562.82	3762.71	3926.77	4000.26	3992.38	3958.19	3995.91	4057.01
Pasture, range, and paddock	3435.96	3465.52	3562.82	3762.71	3926.77	4000.26	3992.38	3958.19	3995.91	4057.01
				Swine in agr	ienterprises					
Uncovered anaerobic lagoon	NO	NO	NO	NO	NO	80.93	73.03	63.48	55.16	55.76
Aerobic treatment	128.66	113.20	97.77	97.04	78.94	NO	NO	NO	NO	NO
Liquid system with natural crust cover	876.40	742.16	558.04	405.29	280.79	195.05	135.95	93.96	81.64	82.53
Liquid system without natural crust cover	75.65	64.38	49.36	37.81	27.08	20.77	15.73	11.85	10.30	10.41
Solid storage	1480.97	1428.10	1365.74	1282.70	1184.99	1046.15	893.87	673.41	585.14	591.47
Composting	11.43	10.48	9.24	8.13	7.01	5.99	4.99	3.76	3.27	3.30
				Swine in he	ouseholds					
Solid storage	1155.26	1190.85	1178.48	1209.11	1278.39	1328.01	1309.52	1249.47	1260.77	1317.26
				Poultry in agr	rienterprises					
Poultry manure without litter	2362.21	2236.55	1981.53	1593.32	1247.54	985.03	731.66	540.26	515.06	495.59
Composting	18.27	17.30	15.33	12.33	9.65	7.62	5.66	4.18	3.98	3.83
				Poultry in h	ouseholds					
Poultry manure without litter	1129.01	1140.27	1123.24	1077.32	1028.16	977.32	952.93	939.20	955.48	981.51
Pasture, range, and paddock	1129.01	1140.27	1123.24	1077.32	1028.16	977.32	952.93	939.20	955.48	981.51
				She	ер					
Solid storage	743.54	685.35	630.33	581.42	502.78	376.01	259.87	182.31	135.65	111.99
Pasture, range, and paddock	2116.22	1950.60	1794.01	1654.80	1430.99	1070.19	739.62	518.89	386.08	318.73

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Cattle in agr	ienterprises					
Liquid system with natural crust cover	436.05	356.01	309.23	250.75	205.14	28.03	49.61	54.68	58.75	62.09
Solid storage	4960.66	4087.76	3696.66	3058.44	2449.82	2320.05	2098.51	1840.34	1598.93	1471.55
Pasture, range, and paddock	4571.16	3770.16	3422.13	2836.55	2267.95	2009.29	1850.15	1633.01	1419.14	1307.42
Composting	46.54	38.41	34.69	28.86	23.27	20.55	18.69	16.25	14.17	13.06
				Cattle in h	ouseholds					
Solid storage	4280.11	4628.08	4855.05	4770.47	4452.87	4175.60	3967.81	3727.62	3466.14	3273.53
Pasture, range, and paddock	4280.11	4628.08	4855.05	4770.47	4452.87	4175.60	3967.81	3727.62	3466.14	3273.53
				Swine in agr	ienterprises					
Uncovered anaerobic lagoon	46.24	37.69	44.61	40.12	30.96	33.99	82.17	92.83	89.75	99.51
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Liquid system with natural crust cover	55.89	49.94	79.85	81.14	59.02	61.90	148.58	171.72	163.60	185.41
Liquid system without natural crust cover	7.69	6.60	9.37	9.13	6.77	16.41	40.93	47.66	49.97	59.79
Solid storage	465.57	374.81	421.29	368.86	288.56	302.08	251.18	250.98	212.03	202.96
Composting	2.57	2.09	2.48	2.23	1.72	1.85	2.33	2.51	2.30	2.44
				Swine in h	ouseholds					
Solid storage	1254.34	1198.66	1263.07	1216.67	1054.78	987.75	1044.59	1025.79	916.23	934.50
				Poultry in agr	rienterprises					
Poultry manure without litter	444.40	502.29	639.87	689.81	749.64	948.09	1124.82	1224.93	1352.01	1520.30
Composting	3.44	3.89	4.95	5.34	5.80	7.33	8.70	9.48	10.46	11.76
				Poultry in h	iouseholds					
Poultry manure without litter	982.02	997.01	1030.44	1021.71	1003.27	973.94	929.88	898.82	876.12	879.93
Pasture, range, and paddock	982.02	997.01	1030.44	1021.71	1003.27	973.94	929.88	898.82	876.12	879.93
				She	ер					
Solid storage	100.04	95.31	94.22	90.98	88.58	88.82	92.24	101.12	110.53	119.07

MMS types	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Pasture, range, and paddock	284.73	271.27	268.17	258.94	252.10	252.79	262.54	287.79	314.59	338.89

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				Cattle in agr	ienterprises					
Liquid system with natural crust cover	71.08	81.65	89.66	95.90	104.11	112.35	116.74	119.76	124.99	125.14
Solid storage	1392.08	1333.77	1305.21	1267.68	1185.13	1110.32	1058.04	1002.22	972.23	918.40
Pasture, range, and paddock	1237.06	1194.78	1186.09	1158.50	1095.67	1043.29	1008.00	969.52	943.43	900.31
Composting	6.19	7.11	15.93	16.91	22.66	27.53	30.75	36.74	31.39	35.03
				Cattle in h	ouseholds					
Solid storage	3096.32	2968.43	3008.17	3053.28	2871.51	2668.66	2612.94	2548.28	2413.23	2255.75
Pasture, range, and paddock	3096.32	2968.43	3008.17	3053.28	2871.51	2668.66	2612.94	2548.28	2413.23	2255.75
				Swine in agr	ienterprises					
Uncovered anaerobic lagoon	121.39	122.73	120.84	130.04	134.42	130.16	124.88	115.25	107.17	101.73
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Liquid system with natural crust cover	225.23	234.85	238.83	266.78	288.17	292.97	295.74	287.64	282.36	283.55
Liquid system without natural crust cover	74.70	82.72	90.74	107.97	120.23	122.40	122.69	118.31	115.45	115.53
Solid storage	217.99	207.04	185.55	179.76	170.78	160.91	152.58	135.38	122.95	113.32
Composting	1.47	1.76	3.93	4.59	6.78	8.58	9.80	11.53	9.66	11.07
				Swine in he	ouseholds					
Solid storage	1006.15	979.75	939.09	939.02	904.94	836.40	773.94	707.87	653.02	606.37
				Poultry in agr	rienterprises					
Poultry manure without litter	1701.44	1735.84	1796.78	2008.05	2057.40	2027.86	1922.11	1920.82	2012.63	2142.14
Composting	11.30	16.81	11.64	16.28	69.09	4.28	9.68	10.35	5.83	3.63
				Poultry in h	ouseholds					
Poultry manure without litter	894.33	913.53	917.53	927.89	939.99	936.46	928.84	931.32	937.17	936.93

MMS types	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Pasture, range, and paddock	894.33	913.53	917.53	927.89	939.99	936.46	928.84	931.32	937.17	936.93	
Sheep											
Solid storage	118.95	112.59	110.31	108.84	104.72	98.76	95.14	94.24	93.32	89.57	
Pasture, range, and paddock	338.56	320.44	313.96	309.77	298.06	281.08	270.78	268.22	265.61	254.92	

MMS types	2020	2021	2022	2023
	Cattle in agr	rienterprises		
Liquid system with natural crust cover	121.94	132.43	142.55	140.47
Solid storage	865.71	835.28	815.15	789.88
Pasture, range, and paddock	849.65	832.32	816.49	792.62
Composting	30.66	29.63	19.32	16.81
	Cattle in h	ouseholds		
Solid storage	2096.39	1905.21	1694.44	1529.00
Pasture, range, and paddock	2096.39	1905.21	1694.44	1529.00
	Swine in agr	rienterprises		
Uncovered anaerobic lagoon	101.43	106.28	95.59	93.79
Aerobic treatment	NO	NO	NO	NO
Liquid system with natural crust cover	300.31	315.68	304.89	299.62
Liquid system without natural crust cover	123.45	132.86	128.02	126.76
Solid storage	114.03	115.96	110.76	107.75
Composting	10.67	11.04	6.96	6.13
	Swine in h	ouseholds		
Solid storage	555.68	509.13	463.23	431.94
	Poultry in ag	rienterprises		
Poultry manure without litter	2061.34	1940.59	1904.77	1882.77

MMS types	2020	2021	2022	2023							
Composting	0.02	0.01	NO	0.50							
Poultry in households											
Poultry manure without litter	923.40	895.88	849.73	814.14							
Pasture, range, and paddock	923.40	895.88	849.73	814.14							
	She	гер									
Solid storage	85.63	83.26	79.15	74.21							
Pasture, range, and paddock	243.70	236.98	225.29	211.22							

A3.2.4 Rice Cultivation

Table A3.2.4.1. Annual harvested area (ha) and the norm of organic fertilizers application for rice (t/ha)

Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual harvested area	27,700.00	22,900.00	24,300.00	23,400.00	22,400.00	22,000.00	23,000.00	22,500.00	20,700.00	21,900.00
Standard organic fertilizer application	1.88	1.47	1.05	0.62	0.53	0.45	0.37	0.13	0.23	0.25

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual harvested area	25,200.00	18,800.00	18,900.00	22,400.00	21,300.00	21,400.00	21,600.00	21,100.00	19,800.00	24,500.00
Standard organic fertilizer application	0.07	0.38	0.17	0.03	0.07	NO	0.20	0.08	0.03	0.08

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Annual harvested area	29,300.00	29,600.00	25,800.00	24,200.00	10,200.00	11,700.00	12,019.80	12,700.00	12,628.39	10,500.00
Standard organic fertilizer application	0.03	0.10	0.10	NO						

Data category	2020	2021	2022	2023
Annual harvested area	11,200.00	10,100.00	1,400.00	5,700.00
Standard organic fertilizer application	NO	NO	NO	NO

A3.2.5 Agricultural Soils

Table A3.2.5.1. Amount of N that was applied to managed soils, kt of N

Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual amount of N in synthetic fertilizers	1,841.86	1,566.74	1,291.61	1,016.49	802.55	588.62	374.68	415.89	408.82	329.10
Annual amount of N in organic fertilizers	538.21	529.68	491.49	471.69	456.54	409.75	357.31	291.48	272.51	266.27
Annual amount of N in crop residues	2,944.22	2,810.22	2,721.28	2,803.32	2,290.32	2,214.33	1,848.30	1,934.75	1,705.61	1,430.83
Annual amount of N in mineral soils that is mineralized	NO									
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	376.50	359.04	350.30	346.77	337.71	305.23	274.00	238.07	219.06	209.20

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual amount of N in synthetic fertilizers	224.17	319.10	313.86	272.88	365.93	377.24	467.23	578.47	736.12	635.13
Annual amount of N in organic fertilizers	247.50	239.75	247.89	234.56	211.75	205.43	203.92	196.03	186.12	189.61
Annual amount of N in crop residues	1,416.32	1,427.25	1,372.55	1,162.95	1,375.16	1,330.70	1,336.29	1,171.72	1,542.77	1,448.75
Annual amount of N in mineral soils that is mineralized	52.19	260.22	261.02	NO	301.33	333.26	203.91	70.96	488.52	435.02
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	197.57	194.61	196.74	186.25	171.64	162.75	153.47	142.73	134.03	133.54

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Annual amount of N in synthetic fertilizers	774.83	899.04	928.64	1,041.13	1,052.80	1,015.92	1,227.02	1,396.76	1,585.58	1,631.89
Annual amount of N in organic fertilizers	191.76	189.35	191.43	194.38	191.70	184.00	178.26	173.06	176.55	170.41
Annual amount of N in crop residues	1,442.25	1,784.98	1,690.03	1,993.10	2,013.05	1,918.80	2,093.00	1,968.95	2,205.44	2,237.92
Annual amount of N in mineral soils that is mineralized	219.96	541.97	369.34	654.46	707.23	655.58	700.48	519.96	636.64	717.26
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	128.12	124.82	128.05	128.03	124.46	119.64	116.83	115.08	123.59	117.17

Data category	2020	2021	2022	2023
Annual amount of N in synthetic fertilizers	1,946.39	1,999.17	1,406.08	1,261.53
Annual amount of N in organic fertilizers	164.34	158.13	149.04	143.68
Annual amount of N in crop residues	1,986.79	2,392.32	1,798.11	1,912.24
Annual amount of N in mineral soils that is mineralized	267.51	714.06	403.29	635.59
Annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock	111.90	106.02	99.14	95.74

Table A3.2.5.2. Amount of applied inorganic nitrogen fertilizers by zones and regions, kt of N

Nitrogen fertilizers applied	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Polissia	423.11	360.25	297.39	234.53	184.30	134.07	83.84	82.61	90.75	66.47
Wooded Steppe	745.86	654.01	562.16	470.31	371.84	273.37	174.90	181.71	172.56	160.52
Steppe	672.89	552.48	432.06	311.65	246.41	181.18	115.94	151.57	145.51	102.11
of them for rice	4.43	3.66	3.89	3.74	3.58	3.52	3.68	3.60	3.31	3.50

Nitrogen fertilizers applied	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Polissia	45.40	58.35	41.00	44.47	64.32	62.73	73.04	74.60	107.32	92.22
Wooded Steppe	107.51	149.92	137.20	119.11	162.72	158.21	218.39	276.87	373.00	308.36
Steppe	71.26	110.83	135.67	109.29	138.89	156.30	175.80	227.00	255.80	234.55
of them for rice	4.03	3.01	3.02	3.58	3.41	3.42	3.46	3.38	3.17	3.95

Nitrogen fertilizers applied	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Polissia	102.63	125.87	142.04	180.60	183.15	179.64	215.25	242.57	296.04	285.24
Wooded Steppe	390.04	453.64	480.42	526.04	519.13	516.68	602.15	663.89	719.97	727.57
Steppe	282.16	319.53	306.18	334.49	350.52	319.60	409.62	490.30	569.56	619.08
of them for rice	3.99	4.65	3.58	3.73	1.70	2.04	2.04	2.20	2.72	1.88

Nitrogen fertilizers applied	2020	2021	2022	2023
Polissia	351.93	394.58	284.33	367.30
Wooded Steppe	845.26	839.02	759.57	631.63
Steppe	749.20	765.57	362.17	262.59
of them for rice	1.98	1.80	0.26	1.02

Table A3.2.5.3. Regression coefficients depending on the crop yields, as well as the proportion of nitrogen in side-products, stubble and roots

		Side-pr			bble		ots	Nitrogen content	
Agricultural crop	Productivity, kg/ha	Regression co- efficient a	Regression coefficient b	Regression coefficient c	Regression coefficient d	Regression coefficient x	Regression coefficient y	in side-products and stubble, rel. u	Nitrogen content in roots, rel. u
Winter wheat	10-25 26-40	-	-	0.4 0.1	2.6 8.9	0.9 0.7	5.8 10.2	0.0045	0.0075
Spring wheat	10-20 21-30	-	-	0.4 0.2	1.8 5.4	0.8 0.8	6.5 6.0	0.0065	0.0080
Winter rye	10-25 26-40	-	-	0.3 0.2	3.2 6.3	0.6 0.6	8.9 13.9	0.0045	0.0075
Spring rye	10-25 26-40	-	-	0.3 0.2	3.2 6.3	0.6 0.6	8.9 13.9	0.0056	0.0075
Barley and cereals mix	10-20 21-35	-	-	0.4 0.09	1.8 7.6	0.8 0.4	6.5 13.4	0.0050	0.0120
Oats	10-20 21-35	-	-	0.3 0.15	3.2 6.1	1.0 0.4	2.0 16.0	0.0060	0.0075
Millet	5-20 21-30	-	-	0.2 0.3	5.0 3.3	0.8 0.56	7.0 11.2	0.0050	0.0075
Buckwheat	5-15 16-30	-	-	0.25 0.2	4.3 5.2	1.1 0.54	5.3 14.1	0.0080	0.0085
Corn for grain	10-35	1.2	17.5	0.23	3.5	0.8	5.8	0.0075	0.0100
Rice	10-20 21-35	-	-	0.4 0.09	1.8 7.6	0.8 0.4	6.5 13.4	0.0067	0.0120
Sorghum	5-20 21-30	-	-	0.2 0.3	5.0 3.3	0.8 0.56	7.0 11.2	0.0080	0.006
Peas	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.0170
Vetch	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.017
Perennial herbs for hay, seed, and green fodder, hay meadows and cultivated pastures	10-40 30-60	-	-	0.2 0.1	6.0 10.0	0.8 1.0	11.0 15.0	0.0190	0.021
Soybean	5-20 21-30	1.3 1.2	4.5 3	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0120	0.008
Broad beans for grain	5-20 21-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.0125	0.017
Sugar beet (factory), sugar beet for seeds and animal feed	100-200 201-400	-	-	0.02 0.003	0.8 2.3	0.07 0.06	3.5 5.4	0.0140	0.012
Potato	50-200 201-400	0.12 0.1	2 3.9	0.04 0.03	1.0 4.1	0.08 0.06	4.0 8.6	0.0180	0.012
Vegetables, seed bear- ers of annual vegetable crops, seed bearers of biennial vegetable crops	50-200 250-400	0.12 0.12	0.5 0	0.02 0.006	1.5 3.6	0.06 0.04	5.0 6.0	0.0035	0.010

	D.,, d., ,4::4	Side-pr	oducts	Stu	bble	Ro	ots	Nitrogen content	Nitus and and and
Agricultural crop	Productivity, kg/ha	Regression co- efficient a	Regression coefficient b	Regression coefficient c	Regression coefficient d	Regression coefficient x	Regression coefficient y	in side-products and stubble, rel. u	Nitrogen content in roots, rel. u
Fodder root crops, fod- der root crops for seeds	50-200 200-400	-	-	0.01 0.003	1.0 2.4	0.05 0.05	5.5 5.2	0.0130	0.010
Sunflower	8-30	1.8	5.3	0.4	3.1	1	6.6	0.0075	0.010
Fiber flax, crown flax	3-10	-	=	-	-	1.3	9.4	0.0050	0.008
Winter and spring rapeseed	10-40	-	-	0.13	6	0.7	7.5	0.0070	0.012
Annual grasses for hay, green fodder, and seeds	10-40	-	-	0.13	6	0.7	7.5	0.0110	0.012
Corn for silage	100-200 201-350	-	-	0.03 0.02	3.6 5	0.12 0.08	8.7 16.2	0.008 0.008	0.012 0.012
Beans and lupine	5-20 22-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.01 0.01	0.01 0.01
Chick-pea, lathyrus, mung bean	5-20 22-30	-	-	0.14 0.2	3.5 1.7	0.66 0.37	7.5 12.9	0.012 0.012	0.017 0.017
Нетр	3-10	-	-			2.2	9.1	0.0025	0.005
Tobacco and wild to- bacco	50-200	-	-	0.04	1.0	0.08	4.0	0.0164	0.012
Mustard and false flax	10-40	-	-	0.13	6	0.7	7.5	0.01	0.012
Food and feed melons, melon seed bearers	50-200	0.12	0.5	0.02	1.5	0.06	5.0	0.0025	0.01
Silage crops without corn	100-200	-	-	0.04	4	0.09	7	0.01	0.011
Coriander	50-200	-	-	0.02	1.5	0.06	5.0	0.02	0.01
Castor-oil plant	8-30	-	=	0.4	3.1	1	6.6	0.007	0.01

Table A3.2.5.4. Annual area of managed/drained organic soils, ha

Data category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Area of managed/drained organic soils	476,700.0	481,400.0	485,000.0	486,300.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0

Data category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Area of managed/drained organic soils	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0	488,000.0

Data category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Area of managed/drained organic soils	488,000.0	488,000.0	488,000.0	478,350.0	478,350.0	478,350.0	478,350.0	478,400.0	474,500.0	472,850.0

Data category	2020	2021	2022	2023
Area of managed/drained organic soils	471,602.0	471,602.0	471,602.0	471,602.0

A3.2.6 Liming

Table A3.2.6.1. Annual amount of liming materials applied, kt

Activity data	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
The amount of lime fertilizers in full weight	6 930.70	3 613.00	3 613.00	3 613.00	3 613.00	3 613.00	800.00	204.30	208.00	188.85
The amount of lime fertilizers in weight of active matter	5 891.10	3 071.05	3 071.05	3 071.05	3 071.05	3 071.05	680.00	173.66	176.80	160.52

Activity data	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
The amount of lime fertilizers in full weight	169.70	191.10	143.80	132.00	222.80	243.10	283.40	300.40	334.10	406.10
The amount of lime fertilizers in weight of active matter	144.25	162.44	122.23	112.20	189.38	206.64	240.89	255.34	283.99	345.19

Activity data	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
The amount of lime fertilizers in full weight	340.80	340.00	432.40	487.30	417.80	454.10	374.59	450.80	437.80	378.00
The amount of lime fertilizers in weight of active matter	289.68	289.00	367.54	414.21	355.13	385.99	318.40	383.18	372.13	321.30

Activity data	2020	2021	2022	2023
The amount of lime fertilizers in full weight	351.20	471.20	294.13	176.33
The amount of lime fertilizers in weight of active matter	298.52	400.52	250.01	149.88

A3.2.7 Urea Application

Table A3.2.7.1. Amount of urea used as fertilizer, kt

Urea applied	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Cropland and Grassland	775.81	681.19	561.57	441.95	348.94	255.92	162.90	180.82	177.75	143.09
Forest land	_	_	_	_	_	_	_	_	_	_
Wetlands	_	_	_	_	_	_	_	_	_	_
Settlements	_	_	_	_	_	_	_	_	_	_
Other lands	_	_	_	_	_	_	_	_	_	_

Urea applied	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Cropland and Grassland	97.47	138.74	159.43	260.59	48.86	164.02	223.46	301.81	484.34	238.68
Forest land	_	_	_	_	_	_	_	_	_	_
Wetlands	_	_	_	_	_	_	_	_	_	_
Settlements	_	_	_	_	_	_	_	_	_	_
Other lands	_	_	_	_	_	_	_	_	_	_

Urea applied	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Cropland and Grassland	456.45	533.89	504.70	543.20	510.00	470.44	545.69	593.61	596.38	619.10
Forest land	_	_	_	_	_	_	_	_	_	_
Wetlands	_	_	_	_	_	_	_	_	_	_
Settlements	_	_	_	_	_	_	_	_	_	_
Other lands	_	1		_	_	_		-	-	_

Urea applied	2020	2021	2022	2023
Cropland and Grassland	698.14	698.42	486.23	609.39
Forest land	_	_	_	_
Wetlands	_	_	_	_
Settlements	_	_	_	_
Other lands	_	_	_	_

A3.2.8 Emission factors

Table A3.2.8.1. Methane emission factors from enteric fermentation of cattle, kg of CH₄ head-1

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Agrienterpris	ses					
Cows of the dairy herd	86.4	84.4	80.3	79.6	79.2	78.2	76.6	73.5	75.9	76.7
Beef cows	90.7	87.3	84.3	83.3	76.3	71.4	69.8	68.4	68.7	68.5
Heifers from 2 years and older	63.8	64.3	64.8	64.8	65.2	65.3	65.4	65.3	65.3	65.2
Heifers from 1 to 2 years	52.5	52.7	53.0	53.0	53.1	53.2	53.3	53.2	53.2	53.2
Breeding bulls	69.3	69.7	70.3	70.1	70.3	70.5	70.8	70.7	70.7	70.7
Calves up to 1 year	38.0	38.1	38.4	38.4	38.4	38.5	38.6	38.6	38.5	38.5
Other cattle	49.4	50.0	50.5	50.6	51.0	51.2	51.4	51.1	50.9	50.9
				Households	5					
Cows of the dairy herd	90.3	90.2	89.9	90.2	90.1	90.6	90.5	91.1	91.7	91.9
Heifers from 2 years and older	63.6	63.4	63.5	63.4	63.3	63.4	63.5	63.7	63.6	63.6
Heifers from 1 to 2 years	55.1	54.9	55.0	54.9	54.8	54.9	54.9	55.1	55.0	54.8
Breeding bulls	69.4	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.2	69.1
Calves up to 1 year	43.4	43.3	43.3	43.3	43.3	43.3	43.4	43.4	43.5	43.6
Other cattle	42.0	42.0	42.0	42.0	42.0	42.0	42.1	42.2	42.1	42.1

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Agrienterprises										
Cows of the dairy herd	75.6	80.4	81.7	80.3	84.9	89.9	90.5	90.7	92.3	97.0
Beef cows	67.8	68.1	68.0	67.4	67.3	67.1	67.0	66.4	65.4	65.9
Heifers from 2 years and older	65.2	65.2	65.2	65.1	65.1	65.1	64.9	64.9	64.5	64.9
Heifers from 1 to 2 years	53.2	53.2	53.1	53.1	53.1	53.1	52.9	52.9	52.6	52.8
Breeding bulls	70.6	70.6	70.6	70.5	70.5	70.4	70.3	70.4	70.0	70.3
Calves up to 1 year	38.5	38.5	38.5	38.5	38.4	38.4	38.3	38.3	38.1	38.3
Other cattle	50.8	50.8	50.8	50.8	50.8	50.8	50.6	50.7	50.3	50.8

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Households						
Cows of the dairy herd	92.7	93.7	94.7	94.7	96.5	98.5	101.4	101.2	102.4	103.5
Heifers from 2 years and older	63.5	63.5	63.4	63.4	63.3	63.3	63.2	63.3	63.3	63.2
Heifers from 1 to 2 years	54.6	54.5	54.3	54.1	54.0	53.8	53.8	53.8	53.8	53.7
Breeding bulls	69.0	68.9	68.9	68.8	68.7	68.6	68.6	68.6	68.6	68.6
Calves up to 1 year	43.8	43.9	44.0	44.1	44.2	44.3	44.3	44.3	44.3	44.2
Other cattle	42.0	42.0	42.0	42.0	42.0	41.9	41.9	41.9	41.9	41.8

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				Agrienterprise	es					
Cows of the dairy herd	97.6	98.6	104.4	106.2	109.0	111.2	113.9	116.8	117.8	119.0
Beef cows	66.1	65.7	66.4	67.1	84.9	89.0	98.8	107.0	112.8	109.1
Heifers from 2 years and older	64.8	64.7	64.7	64.7	65.3	65.3	65.4	65.6	67.2	66.9
Heifers from 1 to 2 years	52.8	52.7	52.7	52.7	53.0	53.0	52.9	53.0	54.2	54.0
Breeding bulls	70.3	70.2	70.4	70.6	70.9	70.9	71.1	70.9	71.8	71.7
Calves up to 1 year	38.2	38.1	38.1	38.1	38.3	38.4	38.3	38.4	39.2	39.0
Other cattle	50.6	50.6	50.6	50.6	51.2	51.3	51.4	51.6	53.1	52.8
				Households						
Cows of the dairy herd	103.7	104.0	104.6	105.4	107.0	106.7	106.6	107.1	108.3	109.1
Heifers from 2 years and older	63.1	63.1	63.0	63.1	63.0	63.0	63.0	63.1	63.0	63.0
Heifers from 1 to 2 years	53.7	53.7	53.6	53.7	53.7	53.7	53.7	53.7	53.6	53.6
Breeding bulls	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6	68.6
Calves up to 1 year	44.2	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1
Other cattle	41.8	41.8	41.8	41.8	41.8	41.8	41.8	41.8	41.7	41.7

Sex-age group	2020	2021	2022	2023
	Agrienterprise	?S		
Cows of the dairy herd	122.8	124.0	122.5	128.1
Beef cows	113.8	115.4	97.8	105.3
Heifers from 2 years and older	67.4	67.4	67.4	66.7
Heifers from 1 to 2 years	54.3	54.3	54.4	53.9
Breeding bulls	72.0	72.1	71.8	71.4
Calves up to 1 year	39.2	39.2	39.3	38.9
Other cattle	53.4	53.2	53.6	52.8
	Households			
Cows of the dairy herd	109.5	109.6	108.5	109.0
Heifers from 2 years and older	63.0	62.9	62.9	62.9
Heifers from 1 to 2 years	53.6	53.6	53.6	53.6
Breeding bulls	68.6	68.6	68.6	68.6
Calves up to 1 year	44.0	44.0	44.0	44.0
Other cattle	41.7	41.6	41.6	41.6

Table A3.2.8.2. Methane emission factors from enteric fermentation of sheep, kg of CH₄ head⁻¹

Sex-age group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Ewes and young ewes 1 year and older	8.85	8.81	8.79	8.81	8.81	8.82	8.83	8.94	8.99	9.05
Breeding rams	13.74	13.73	13.71	13.71	13.70	13.65	13.63	13.66	13.65	13.66
Other sheep	5.05	4.93	4.83	4.74	4.65	4.59	4.54	4.48	4.36	4.24
Average weighted emission factor	6.81	6.73	6.71	6.71	6.74	6.89	7.10	7.28	7.42	7.42

Sex-age group	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and young ewes 1 year and older	9.17	9.28	9.31	9.18	9.73	9.42	9.51	9.58	9.48	9.21
Breeding rams	13.53	13.56	13.57	13.25	13.28	13.30	13.32	13.34	13.32	13.34
Other sheep	4.11	4.04	4.03	4.02	4.04	4.07	4.10	4.10	4.10	4.10
Average weighted emission factor	7.42	7.44	7.39	7.36	7.90	7.89	8.09	8.22	8.22	8.03

Sex-age group	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Ewes and young ewes 1 year and older	9.49	10.02	9.98	9.97	9.87	9.83	9.72	9.78	9.86	9.75
Breeding rams	13.33	13.40	13.39	13.38	13.37	13.36	13.36	13.35	13.34	13.34
Other sheep	4.08	4.06	4.03	4.01	3.97	3.96	3.97	3.97	3.96	3.95
Average weighted emission factor	8.18	8.44	8.29	8.26	8.17	8.12	8.03	8.06	8.11	7.99

Sex-age group	2020	2021	2022	2023
Ewes and young ewes 1 year and older	9.81	9.89	9.80	9.88
Breeding rams	13.35	13.37	13.36	13.37
Other sheep	3.96	3.98	3.97	3.97
Average weighted emission factor	8.03	8.13	8.10	8.19

Table A3.2.8.3. Methane emission factors from enteric fermentation and manure management, kg of CH₄ head⁻¹

Animal species	Enteric fermentation	Manure management
Swine	1.5	-
Fur-bearing animals	0.25	0.68
Rabbits	0.7	0.08
Buffaloes	55.0	5.00
Goats	5.0	0.13
Camels	46.0	1.58
Horses	18.0	1.56
Asses and mules	10.0	0.76

Table A3.2.8.4. Methane emission factors from manure management of cattle, swine, sheep and poultry, kg of CH₄ head⁻¹

Animal species/groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	•	Agi	rienterprises	5						
Cows of the dairy herd	6.36	6.27	5.43	5.21	4.78	4.28	4.03	3.15	3.27	3.29
Beef cows	5.07	4.95	4.36	4.16	3.52	2.99	2.80	2.24	2.26	2.25
Heifers from 2 years and older	5.16	5.24	4.78	4.64	4.30	3.91	3.75	3.05	3.07	3.06
Heifers from 1 to 2 years	2.87	2.89	2.63	2.55	2.35	2.14	2.05	1.67	1.68	1.68
Breeding bulls	3.41	3.46	3.18	3.06	2.83	2.58	2.49	2.03	2.04	2.04
Calves up to 1 year	2.08	2.09	1.90	1.84	1.70	1.54	1.49	1.21	1.21	1.21
Other cattle	2.69	2.76	2.53	2.46	2.30	2.09	2.03	1.63	1.63	1.62
Main sows	4.74	4.52	4.12	3.72	3.35	6.77	6.87	7.39	7.39	7.39
Sows tested	4.26	4.06	3.70	3.34	3.01	6.07	6.17	6.64	6.64	6.64
Repair swine 4 months and older	3.08	2.94	2.68	2.42	2.18	4.40	4.46	4.80	4.80	4.80
Piglets up to 2 months	0.34	0.32	0.30	0.27	0.24	0.48	0.49	0.53	0.53	0.53
Piglets 2 to 4 months	1.14	1.09	0.99	0.89	0.81	1.63	1.65	1.78	1.78	1.78
Fattening swine	3.31	3.15	2.88	2.59	2.33	4.72	4.79	5.16	5.16	5.16
Boars	5.52	5.27	4.81	4.33	3.90	7.88	8.00	8.62	8.62	8.62
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
		H	Iouseholds							
Cows of the dairy herd	3.08	3.07	3.06	3.07	3.06	3.08	3.08	3.10	3.11	3.11
Heifers from 2 years and older	2.16	2.15	2.16	2.15	2.15	2.15	2.16	2.17	2.17	2.16
Heifers from 1 to 2 years	1.38	1.37	1.38	1.37	1.37	1.37	1.37	1.38	1.37	1.37
Breeding bulls	1.61	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.59
Calves up to 1 year	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.07	1.07	1.08
Other cattle	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.01

Animal species/groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
		All cat	egories of fa	ırms						
Ewes and young ewes 1 year and older	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.23	0.23
Breeding rams	0.35	0.35	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
Other sheep	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.14

Animal species/groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
		Ag	rienterprises	1						
Cows of the dairy herd	3.24	3.44	3.46	3.39	3.59	3.23	3.34	3.40	3.51	3.76
Beef cows	2.22	2.23	2.21	2.18	2.18	1.84	1.88	1.90	1.89	1.95
Heifers from 2 years and older	3.06	3.05	3.02	3.01	3.02	2.56	2.62	2.66	2.68	2.74
Heifers from 1 to 2 years	1.67	1.67	1.66	1.65	1.65	1.40	1.43	1.46	1.46	1.50
Breeding bulls	2.03	2.03	2.01	2.00	2.00	1.69	1.74	1.77	1.78	1.82
Calves up to 1 year	1.21	1.21	1.20	1.19	1.19	1.01	1.03	1.05	1.06	1.08
Other cattle	1.62	1.62	1.60	1.60	1.60	1.36	1.39	1.41	1.42	1.46
Main sows	7.58	7.66	7.97	8.13	8.05	8.43	14.46	15.17	15.99	16.77
Sows tested	6.80	6.87	7.16	7.30	7.23	7.57	12.99	13.62	14.35	15.05
Repair swine 4 months and older	4.92	4.97	5.18	5.28	5.23	5.48	9.40	9.86	10.39	10.90

Animal species/groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Piglets up to 2 months	0.54	0.55	0.57	0.58	0.58	0.60	1.04	1.09	1.15	1.20
Piglets 2 to 4 months	1.82	1.84	1.92	1.96	1.94	2.03	3.48	3.65	3.85	4.03
Fattening swine	5.28	5.34	5.56	5.67	5.62	5.88	10.09	10.58	11.15	11.69
Boars	8.83	8.92	9.29	9.48	9.38	9.83	16.86	17.67	18.63	19.54
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
		E	Iouseholds							
Cows of the dairy herd	3.13	3.15	3.18	3.17	3.22	3.28	3.38	3.37	3.41	3.45
Heifers from 2 years and older	2.16	2.16	2.15	2.15	2.14	2.14	2.14	2.14	2.15	2.13
Heifers from 1 to 2 years	1.36	1.35	1.34	1.33	1.32	1.31	1.31	1.31	1.32	1.31
Breeding bulls	1.59	1.58	1.58	1.57	1.57	1.56	1.56	1.56	1.56	1.56
Calves up to 1 year	1.08	1.09	1.09	1.10	1.10	1.11	1.11	1.11	1.11	1.11
Other cattle	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.01	1.00
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
		All cat	egories of fa	rms						

Animal species/groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Ewes and young ewes 1 year and older	0.23	0.23	0.23	0.23	0.24	0.24	0.24	0.24	0.24	0.23
Breeding rams	0.34	0.34	0.34	0.33	0.33	0.33	0.33	0.34	0.34	0.34
Other sheep	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.15	0.15	0.15

Animal species/groups	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
		Agr	rienterprises	•						
Cows of the dairy herd	3.87	3.99	4.29	4.44	4.68	4.88	5.09	5.27	5.42	5.53
Beef cows	2.01	2.03	2.11	2.18	2.84	3.06	3.49	3.83	4.25	4.13
Heifers from 2 years and older	2.80	2.86	2.89	2.93	3.05	3.12	3.18	3.23	3.44	3.45
Heifers from 1 to 2 years	1.53	1.56	1.58	1.60	1.66	1.69	1.71	1.74	1.85	1.86
Breeding bulls	1.86	1.90	1.94	1.97	2.04	2.09	2.13	2.14	2.25	2.26
Calves up to 1 year	1.10	1.13	1.14	1.15	1.19	1.22	1.23	1.25	1.33	1.34
Other cattle	1.49	1.52	1.54	1.57	1.64	1.68	1.71	1.75	1.88	1.87
Main sows	17.50	17.71	17.98	18.28	18.39	18.25	18.05	17.91	17.79	17.60
Sows tested	15.71	15.90	16.14	16.41	16.51	16.38	16.20	16.08	15.98	15.80
Repair swine 4 months and older	11.37	11.51	11.68	11.88	11.95	11.86	11.73	11.64	11.56	11.44
Piglets up to 2 months	1.25	1.27	1.29	1.31	1.32	1.31	1.29	1.28	1.28	1.26
Piglets 2 to 4 months	4.21	4.26	4.32	4.40	4.42	4.39	4.34	4.31	4.28	4.23
Fattening swine	12.21	12.35	12.54	12.75	12.83	12.73	12.59	12.49	12.41	12.28
Boars	20.40	20.64	20.95	21.31	21.43	21.27	21.03	20.87	20.74	20.51
Hens and roosters	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Turkeys	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
		- E	Iouseholds							
Cows of the dairy herd	3.45	3.46	3.48	3.51	3.56	3.55	3.55	3.57	3.61	3.63
Heifers from 2 years and older	2.13	2.13	2.12	2.13	2.12	2.12	2.12	2.13	2.12	2.12

Animal species/groups	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Heifers from 1 to 2 years	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.30	1.30	
Breeding bulls	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	
Calves up to 1 year	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	
Other cattle	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	
Main sows	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	
Repair swine 4 months and older	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58	
Piglets up to 2 months	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	
Piglets 2 to 4 months	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	
Fattening swine	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	
Boars	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	
Hens and roosters	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
Geese	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
Ducks	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
Turkeys	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	
Other poultry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	
All categories of farms											
Ewes and young ewes 1 year and older	0.24	0.25	0.25	0.25	0.25	0.25	0.24	0.25	0.25	0.25	
Breeding rams	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	
Other sheep	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	

Animal species/groups	2020	2021	2022	2023					
Agrienterprises									
Cows of the dairy herd	5.77	5.99	6.09	6.35					
Beef cows	4.38	4.58	3.99	4.31					
Heifers from 2 years and older	3.53	3.62	3.74	3.69					
Heifers from 1 to 2 years	1.90	1.95	2.01	1.99					
Breeding bulls	2.30	2.38	2.42	2.41					
Calves up to 1 year	1.36	1.40	1.45	1.43					

Animal species/groups	2020	2021	2022	2023
Other cattle	1.94	1.98	2.06	2.02
Main sows	17.34	17.41	17.05	17.08
Sows tested	15.57	15.63	15.31	15.33
Repair swine 4 months and older	11.27	11.31	11.08	11.10
Piglets up to 2 months	1.24	1.25	1.22	1.22
Piglets 2 to 4 months	4.17	4.19	4.10	4.11
Fattening swine	12.09	12.14	11.89	11.91
Boars	20.21	20.28	19.87	19.91
Hens and roosters	0.05	0.05	0.05	0.05
Geese	0.12	0.12	0.12	0.12
Ducks	0.09	0.09	0.09	0.09
Turkeys	0.17	0.17	0.17	0.17
Other poultry	0.13	0.13	0.13	0.13
Households				
Cows of the dairy herd	3.65	3.65	3.61	3.63
Heifers from 2 years and older	2.12	2.12	2.12	2.11
Heifers from 1 to 2 years	1.30	1.30	1.30	1.30
Breeding bulls	1.56	1.56	1.56	1.56
Calves up to 1 year	1.10	1.10	1.10	1.10
Other cattle	0.99	0.99	0.99	0.99
Main sows	2.44	2.44	2.44	2.44
Repair swine 4 months and older	1.58	1.58	1.58	1.58
Piglets up to 2 months	0.17	0.17	0.17	0.17
Piglets 2 to 4 months	0.59	0.59	0.59	0.59
Fattening swine	1.70	1.70	1.70	1.70
Boars	2.84	2.84	2.84	2.84
Hens and roosters	0.04	0.04	0.04	0.04
Geese	0.10	0.10	0.10	0.10

Animal species/groups	2020	2021	2022	2023					
Ducks	0.07	0.07	0.07	0.07					
Turkeys	0.14	0.14	0.14	0.14					
Other poultry	0.11	0.11	0.11	0.11					
All categories of farms									
Ewes and young ewes 1 year and older	0.25	0.25	0.25	0.25					
Breeding rams	0.34	0.34	0.34	0.34					
Other sheep	0.14	0.14	0.14	0.14					

Table A3.2.8.5. Nitrous oxide emission factors from manure management systems, kg of N_2O -N kg⁻¹ of N

Manure management system	Emission factor			
Uncovered anaerobic lagoon	0			
Solid storage	0.005			
Composting	0.006			
Liquid slurry	0.005			
Aerobic treatment	0.01			
Poultry manure without litter	0.001			
Other systems	0.002			

		thane emission factor from rice cultivation, kg of CH ₄ ha ⁻¹								
Category 3.C Rice Cultivation	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Adjusted daily emission factor	2.60	2.58	2.55	2.51	2.51	2.50	2.50	2.48	2.49	2.49
Category 3.C Rice Cultivation	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Adjusted daily emission factor	2.48	2.50	2.48	2.47	2.48	2.47	2.48	2.48	2.47	2.48
Category 3.C Rice Cultivation	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Adjusted daily emission factor	2.47	2.48	2.48	2.47	2.47	2.47	2.47	2.47	2.47	2.47
Cotonomia 2 C Dias Cultimation	2020	2021	2022	2022						

Category 3.C Rice Cultivation	2020	2021	2022	2023
Adjusted daily emission factor	2.47	2.47	2.47	2.47

Table A3.2.8.7. Coefficients for calculation direct and indirect nitrous oxide emissions from agricultural soils

Coefficient name	Units	Values
EF for N additions from mineral fertilizers, organic amendments and crop residues, and N mineralized from mineral soil as a result of loss of soil carbon	[kg N ₂ O–N (kg N) ⁻¹]	0.01
EF for N additions from mineral fertilizers, organic amendments and crop residues, and N mineralized from mineral soil as a result of loss of soil carbon on rice fields	[kg N ₂ O–N (kg N) ⁻¹]	0.003
EF for temperate organic crop and grassland soils	[kg N ₂ O–N ha ⁻¹]	8.0
EF for cattle, poultry and swine	[kg N ₂ O–N (kg N) ⁻¹]	0.02
EF for sheep and other animals	[kg N ₂ O-N (kg N) ⁻¹]	0.01
Frac _{GASF} (fraction of synthetic fertilizer N that volatilizes as NH ₃ and NO _X)	(kg NH ₃ -N + NOx-N)×(kg of N applied) ⁻¹	0.145
Frac _{GASM} (fraction of applied organic N fertilizer materials (F _{ON}) and of urine and dung N deposited by grazing animals (F _{PRP}) that volatilizes as NH ₃ and NO _X)	(kg NH ₃ -N + NOx-N)×(kg of N applied or deposited) ⁻¹	0.2
Frac _{LEACH-(H)} (fraction of all N added to/mineralized in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff)	kg N (kg N additions or deposition by graz- ing animals) ⁻¹	0.3

A3.2.9 Emissions

Table A3.2.9.1. Methane emissions in 3.A Enteric Fermentation, kt CH₄

Animal species/groups	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
3A Enteric Fermentation, total, incl.:	1,615.39	1,563.63	1,483.44	1,423.90	1,349.44	1,232.25	1,099.32	945.17	848.37	786.88
Mature dairy cattle	739.00	715.09	678.06	668.80	659.19	635.31	595.75	537.61	505.30	476.55
Mature non-dairy cattle	538.78	523.87	496.60	462.08	420.77	361.93	301.62	238.10	195.26	173.38
Growing cattle	231.53	225.15	215.96	205.27	188.77	164.60	141.96	118.50	101.58	92.35
Sheep	56.00	50.96	46.52	42.68	36.75	27.56	19.17	13.59	10.16	8.38
Swine	29.53	27.95	25.51	23.60	21.93	20.32	18.29	15.54	14.67	15.12
Fur-bearing animals	0.14	0.14	0.14	0.14	0.14	0.13	0.12	0.10	0.08	0.07
Rabbits	4.27	4.38	4.55	4.79	4.78	4.60	4.27	3.94	3.88	3.95
Camels	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Mules and asses	0.19	0.19	0.19	0.19	0.15	0.15	0.14	0.13	0.13	0.12
Buffaloes	0.047	0.046	0.044	0.041	0.039	0.037	0.035	0.033	0.030	0.028
Horses	13.43	13.10	12.82	12.81	13.07	13.43	13.58	13.41	13.12	12.77
Goats	2.45	2.73	3.03	3.46	3.82	4.18	4.36	4.19	4.12	4.13

Animal species/groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3A Enteric Fermentation, total, incl.:	717.29	693.41	689.81	634.39	573.11	538.38	515.47	477.47	441.44	422.08
Mature dairy cattle	444.17	438.43	435.39	407.47	383.12	363.16	343.65	317.13	296.97	284.18
Mature non-dairy cattle	144.59	127.25	124.72	109.88	89.08	79.65	77.53	71.25	62.16	57.22
Growing cattle	86.68	87.00	87.52	76.72	63.96	60.13	58.30	53.23	47.61	45.46
Sheep	7.50	7.18	7.09	6.78	6.98	6.90	7.27	8.05	8.75	9.20
Swine	13.29	12.02	13.18	12.39	10.34	10.14	11.33	11.31	10.16	10.58
Fur-bearing animals	0.05	0.04	0.04	0.05	0.06	0.07	0.07	0.09	0.09	0.08
Rabbits	3.91	4.01	4.23	4.04	3.71	3.73	3.72	3.62	3.68	3.85
Camels	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04
Mules and asses	0.12	0.12	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12

Animal species/groups	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Buffaloes	0.026	0.024	0.022	0.020	0.017	0.015	0.013	0.011	0.009	0.007
Horses	12.59	12.55	12.40	11.89	11.05	10.31	9.80	9.29	8.67	8.18
Goats	4.34	4.77	5.08	5.00	4.65	4.13	3.62	3.34	3.19	3.17

Animal species/groups	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
3A Enteric Fermentation, total, incl.:	403.53	390.31	394.95	397.88	382.38	360.10	351.71	343.50	331.46	314.02
Mature dairy cattle	273.38	266.73	267.02	265.96	260.16	247.52	241.35	235.98	228.23	217.34
Mature non-dairy cattle	52.67	49.40	49.12	48.47	44.96	41.85	41.15	40.14	38.35	35.17
Growing cattle	41.46	38.83	44.15	48.83	43.72	38.77	38.36	37.72	36.29	34.13
Sheep	9.40	9.26	8.98	8.84	8.42	7.90	7.54	7.50	7.47	7.09
Swine	11.65	11.50	11.21	11.62	11.63	11.18	10.68	9.96	9.48	9.19
Fur-bearing animals	0.08	0.09	0.11	0.09	0.08	0.07	0.07	0.08	0.10	0.11
Rabbits	3.84	3.85	3.96	3.99	3.92	3.80	3.75	3.67	3.58	3.49
Camels	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Mules and asses	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Buffaloes	0.008	0.010	0.012	0.012	0.013	0.012	0.014	0.015	0.017	0.016
Horses	7.72	7.29	6.95	6.58	6.08	5.68	5.46	5.09	4.67	4.30
Goats	3.17	3.19	3.28	3.33	3.24	3.14	3.18	3.18	3.10	3.02

Animal species/groups	2020	2021	2022	2023
3A Enteric Fermentation, total, incl.:	296.77	278.17	254.18	238.65
Mature dairy cattle	206.00	193.14	175.85	165.89
Mature non-dairy cattle	32.62	30.54	28.12	25.86
Growing cattle	31.75	28.90	26.32	24.23
Sheep	6.81	6.69	6.32	5.97
Swine	9.08	8.99	8.41	8.13
Fur-bearing animals	0.10	0.09	0.08	0.07

Ukraine's Greenhouse Gas Inventory 1990-2023

Animal species/groups	2020	2021	2022	2023
Rabbits	3.42	3.37	3.21	3.07
Camels	0.04	0.04	0.04	0.04
Mules and asses	0.12	0.12	0.12	0.12
Buffaloes	0.012	0.016	0.016	0.016
Horses	3.92	3.53	3.15	2.84
Goats	2.89	2.75	2.54	2.40

Table A3.2.9.2. GHG emissions in 3.B Manure Management, kt

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				Methane emis	sions					
3.B.1 Manure Management, total, incl.	145.69	138.84	120.15	108.46	94.87	94.44	82.10	65.08	59.30	57.30
Mature dairy cattle	46.58	45.02	38.72	36.59	33.31	29.35	26.37	20.65	19.25	17.95
Mature non-dairy cattle	30.82	30.37	26.25	23.77	20.13	15.82	12.71	8.25	6.76	5.95
Growing cattle	11.82	11.50	10.00	9.16	7.80	6.25	5.19	3.59	3.06	2.76
Sheep	1.52	1.39	1.27	1.17	1.01	0.75	0.52	0.37	0.27	0.23
Swine	39.28	35.26	29.50	24.82	21.01	31.77	27.82	23.52	21.34	21.79
Poultry	13.55	13.20	12.28	10.79	9.43	8.32	7.38	6.69	6.70	6.76
Buffaloes	0.0043	0.0042	0.0040	0.0038	0.0036	0.0034	0.0032	0.0030	0.0028	0.0026
Goats	0.06	0.07	0.08	0.09	0.10	0.11	0.11	0.11	0.11	0.11
Camels	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009
Horses	1.16	1.14	1.11	1.11	1.13	1.16	1.18	1.16	1.14	1.11
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fur-bearing animals	0.38	0.38	0.38	0.38	0.38	0.36	0.32	0.27	0.23	0.18
Rabbits	0.49	0.50	0.52	0.55	0.55	0.53	0.49	0.45	0.44	0.45
			Ni	itrous oxide en	iissions					
3.B.2 Manure Management, total, incl.	11.69	11.14	10.19	9.70	9.31	8.22	7.10	5.67	5.30	5.20
Direct emissions (total)*	6.49	6.20	5.70	5.47	5.29	4.67	4.05	3.26	3.05	2.99
Aerobic treatment	0.12	0.11	0.09	0.09	0.07	NO	NO	NO	NO	NO
Composting	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.01
Liquid system with natural crust cover	1.54	1.42	1.05	0.90	0.69	0.45	0.33	0.14	0.12	0.11
Liquid system without natural crust cover	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pit storage below animal confinements	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poultry manure without litter	0.09	0.08	0.08	0.07	0.06	0.05	0.04	0.04	0.04	0.04
Solid storage	4.70	4.55	4.45	4.38	4.44	4.14	3.66	3.07	2.88	2.83

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Uncovered anaerobic lagoon	NO	NO	NO	NO	NO	NA	NA	NA	NA	NA
Indirect emissions (total)*	5.20	4.95	4.49	4.23	4.02	3.55	3.04	2.41	2.25	2.21
Volatilization	5.20	4.95	4.49	4.23	4.02	3.55	3.04	2.41	2.25	2.21
				NMVOC emis	sions					
3.B.2 Manure Management, total, incl.	198.79	193.66	184.77	174.59	163.43	149.67	135.08	119.29	109.19	103.41
Mature dairy cattle	67.96	66.89	65.59	64.85	63.84	61.56	58.12	53.02	48.47	45.11
Mature non-dairy cattle	44.48	42.88	40.35	37.65	34.31	29.65	24.71	19.72	16.30	14.47
Growing cattle	21.58	20.92	19.93	18.93	17.38	15.13	13.02	10.85	9.26	8.38
Swine	12.21	11.56	10.55	9.76	9.07	8.40	7.56	6.42	6.07	6.25
Sheep	1.39	1.28	1.17	1.07	0.92	0.68	0.46	0.32	0.23	0.19
Buffaloes	0.0036	0.0035	0.0034	0.0032	0.0030	0.0029	0.0027	0.0025	0.0024	0.0022
Goats	0.27	0.30	0.33	0.38	0.41	0.45	0.47	0.45	0.45	0.45
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Horses	3.19	3.11	3.04	3.04	3.10	3.19	3.23	3.19	3.12	3.03
Mules and asses	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02
Fur-bearing animals	1.09	1.09	1.09	1.09	1.09	1.03	0.90	0.78	0.65	0.52
Rabbits	0.36	0.37	0.38	0.40	0.40	0.39	0.36	0.33	0.33	0.33
Poultry	46.23	45.25	42.30	37.39	32.88	29.17	26.24	24.19	24.30	24.66

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
				Methane emis	sions					
3.B.1 Manure Management, total, incl.	50.89	47.61	50.38	47.14	41.71	40.78	51.88	53.45	51.28	53.94
Mature dairy cattle	16.43	16.00	15.68	14.47	13.52	12.27	11.68	10.80	10.15	9.76
Mature non-dairy cattle	4.93	4.29	4.13	3.60	2.92	2.29	2.24	2.07	1.82	1.70
Growing cattle	2.53	2.46	2.44	2.12	1.76	1.54	1.51	1.38	1.24	1.19
Sheep	0.20	0.20	0.19	0.18	0.19	0.18	0.19	0.21	0.23	0.24
Swine	18.41	16.01	18.64	17.39	13.93	14.66	26.13	28.73	27.34	30.02

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Poultry	6.60	6.87	7.49	7.60	7.70	8.20	8.54	8.70	9.00	9.57
Buffaloes	0.0024	0.0022	0.0020	0.0018	0.0016	0.0014	0.0012	0.0010	0.0008	0.0006
Goats	0.11	0.12	0.13	0.13	0.12	0.11	0.09	0.09	0.08	0.08
Camels	0.0009	0.0009	0.0009	0.0009	0.0009	0.0012	0.0013	0.0013	0.0013	0.0013
Horses	1.09	1.09	1.07	1.03	0.96	0.89	0.85	0.80	0.75	0.71
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fur-bearing animals	0.13	0.11	0.12	0.14	0.16	0.19	0.20	0.23	0.24	0.22
Rabbits	0.45	0.46	0.48	0.46	0.42	0.43	0.43	0.41	0.42	0.44
			Ni	itrous oxide en	iissions					
3.B.2 Manure Management, total, incl.	4.79	4.60	4.79	4.53	4.05	3.93	3.95	3.82	3.59	3.67
Direct emissions (total)*	2.77	2.66	2.76	2.60	2.33	2.24	2.21	2.12	1.98	2.01
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Composting	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Liquid system with natural crust cover	0.09	0.08	0.08	0.08	0.06	0.03	0.08	0.09	0.09	0.10
Liquid system without natural crust cover	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pit storage below animal confinements	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poultry manure without litter	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.06	0.06
Solid storage	2.64	2.55	2.63	2.48	2.22	2.15	2.07	1.97	1.83	1.84
Uncovered anaerobic lagoon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indirect emissions (total)*	2.02	1.94	2.03	1.92	1.72	1.69	1.74	1.70	1.60	1.66
Volatilization	2.02	1.94	2.03	1.92	1.72	1.69	1.74	1.70	1.60	1.66
				NMVOC emis	sions					
3.B.2 Manure Management, total, incl.	95.41	92.07	93.34	88.40	81.44	78.64	77.02	74.03	70.94	70.65
Mature dairy cattle	41.56	39.49	38.52	35.96	32.78	30.16	27.84	25.69	23.75	22.32
Mature non-dairy cattle	12.09	10.65	10.39	9.17	7.48	6.66	6.42	5.87	5.16	4.74
Growing cattle	7.75	7.65	7.65	6.68	5.53	5.19	5.04	4.59	4.10	3.90

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Swine	5.50	4.97	5.45	5.12	4.28	4.19	4.72	4.72	4.23	4.44
Sheep	0.17	0.16	0.16	0.16	0.15	0.15	0.15	0.17	0.18	0.19
Buffaloes	0.0020	0.0018	0.0017	0.0015	0.0013	0.0012	0.0010	0.0008	0.0007	0.0005
Goats	0.47	0.52	0.55	0.54	0.50	0.45	0.39	0.36	0.35	0.34
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Horses	2.99	2.98	2.94	2.82	2.62	2.45	2.33	2.21	2.06	1.94
Mules and asses	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Fur-bearing animals	0.37	0.30	0.34	0.40	0.47	0.53	0.58	0.66	0.67	0.62
Rabbits	0.33	0.34	0.36	0.34	0.31	0.31	0.31	0.30	0.31	0.32
Poultry	24.16	24.98	26.96	27.19	27.29	28.52	29.22	29.44	30.12	31.81

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
				Methane emis	sions					
3.B.1 Manure Management, total, incl.	59.86	60.39	60.64	64.45	65.91	64.16	62.37	59.73	57.84	56.53
Mature dairy cattle	9.45	9.27	9.33	9.34	9.22	8.84	8.67	8.51	8.30	7.95
Mature non-dairy cattle	1.58	1.51	1.51	1.50	1.43	1.35	1.33	1.29	1.27	1.17
Growing cattle	1.10	1.03	1.17	1.30	1.17	1.06	1.05	1.04	1.02	0.96
Sheep	0.25	0.25	0.24	0.24	0.22	0.21	0.20	0.20	0.20	0.19
Swine	35.84	36.47	36.28	39.28	40.88	39.98	38.81	36.36	34.38	33.21
Poultry	10.24	10.45	10.67	11.41	11.69	11.50	11.13	11.15	11.48	11.89
Buffaloes	0.0008	0.0009	0.0011	0.0011	0.0012	0.0011	0.0012	0.0014	0.0016	0.0014
Goats	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08
Camels	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0014
Horses	0.67	0.63	0.60	0.57	0.53	0.49	0.47	0.44	0.40	0.37
Mules and asses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Fur-bearing animals	0.21	0.25	0.29	0.26	0.23	0.20	0.19	0.23	0.28	0.29
Rabbits	0.44	0.44	0.45	0.46	0.45	0.43	0.43	0.42	0.41	0.40

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
			N	itrous oxide en	issions					
3.B.2 Manure Management, total, incl.	3.75	3.70	3.73	3.81	3.78	3.62	3.49	3.38	3.46	3.34
Direct emissions (total)*	2.03	1.99	2.01	2.03	2.00	1.91	1.84	1.78	1.83	1.75
Aerobic treatment	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Composting	0.00	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02
Liquid system with natural crust cover	0.12	0.13	0.13	0.15	0.16	0.17	0.17	0.17	0.18	0.18
Liquid system without natural crust cover	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pit storage below animal confinements	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poultry manure without litter	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Solid storage	1.84	1.79	1.80	1.79	1.73	1.64	1.58	1.52	1.55	1.46
Uncovered anaerobic lagoon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indirect emissions (total)*	1.72	1.71	1.72	1.78	1.78	1.71	1.65	1.60	1.64	1.59
Volatilization	1.72	1.71	1.72	1.78	1.78	1.71	1.65	1.60	1.64	1.59
				NMVOC emis	sions					
3.B.2 Manure Management, total, incl.	71.41	71.02	71.47	73.69	73.20	70.11	68.00	67.09	66.93	66.54
Mature dairy cattle	21.43	20.81	20.50	20.22	19.40	18.42	17.87	17.29	16.54	15.61
Mature non-dairy cattle	4.38	4.11	4.07	4.01	3.72	3.47	3.38	3.28	3.09	2.84
Growing cattle	3.57	3.35	3.78	4.16	3.73	3.32	3.28	3.23	3.09	2.91
Swine	4.88	4.79	4.67	4.84	4.85	4.67	4.45	4.14	3.94	3.82
Sheep	0.19	0.19	0.18	0.18	0.17	0.16	0.16	0.16	0.16	0.15
Buffaloes	0.0007	0.0008	0.0009	0.0009	0.0010	0.0009	0.0010	0.0011	0.0013	0.0012
Goats	0.34	0.35	0.36	0.36	0.35	0.34	0.35	0.34	0.34	0.33
Camels	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Horses	1.83	1.73	1.65	1.56	1.44	1.35	1.30	1.21	1.11	1.02
Mules and asses	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Fur-bearing animals	0.59	0.71	0.82	0.74	0.65	0.58	0.53	0.65	0.81	0.83

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Rabbits	0.32	0.32	0.33	0.34	0.33	0.32	0.32	0.31	0.30	0.29
Poultry	33.86	34.64	35.09	37.27	38.53	37.47	36.35	36.46	37.54	38.71

Category	2020	2021	2022	2023
	Methane emis	sions		
3.B.1 Manure Management, total, incl.	56.07	56.40	52.76	51.29
Mature dairy cattle	7.59	7.23	6.69	6.36
Mature non-dairy cattle	1.09	1.04	0.99	0.92
Growing cattle	0.90	0.84	0.79	0.74
Sheep	0.18	0.18	0.17	0.16
Swine	33.68	35.07	32.51	31.84
Poultry	11.55	11.02	10.67	10.42
Buffaloes	0.0011	0.0014	0.0014	0.0015
Goats	0.08	0.07	0.07	0.06
Camels	0.0014	0.0014	0.0014	0.0014
Horses	0.34	0.31	0.27	0.25
Mules and asses	0.01	0.01	0.01	0.01
Fur-bearing animals	0.26	0.24	0.22	0.19
Rabbits	0.39	0.39	0.37	0.35
N	itrous oxide en	nissions		
3.B.2 Manure Management, total, incl.	3.22	3.10	2.92	2.82
Direct emissions (total)*	1.68	1.61	1.51	1.45
Aerobic treatment	NO	NO	NO	NO
Composting	0.02	0.02	0.01	0.01
Liquid system with natural crust cover	0.19	0.20	0.20	0.20
Liquid system without natural crust cover	NA	NA	NA	NA

Category	2020	2021	2022	2023
Pit storage below animal con- finements	0.00	0.00	0.00	0.00
Poultry manure without litter	0.08	0.08	0.07	0.07
Solid storage	1.39	1.31	1.23	1.17
Uncovered anaerobic lagoon	NA	NA	NA	NA
Indirect emissions (total)*	1.54	1.49	1.41	1.37
Volatilization	1.54	1.49	1.41	1.37
	NMVOC emis	sions		
3.B.2 Manure Management, total, incl.	63.72	60.34	57.04	54.64
Mature dairy cattle	14.62	13.64	12.54	11.61
Mature non-dairy cattle	2.62	2.45	2.24	2.07
Growing cattle	2.71	2.48	2.26	2.10
Swine	3.77	3.73	3.48	3.38
Sheep	0.14	0.14	0.13	0.12
Buffaloes	0.0010	0.0012	0.0012	0.0012
Goats	0.31	0.30	0.28	0.26
Camels	0.0002	0.0002	0.0002	0.0002
Horses	0.93	0.84	0.75	0.67
Mules and asses	0.02	0.02	0.02	0.02
Fur-bearing animals	0.74	0.70	0.62	0.53
Rabbits	0.29	0.28	0.27	0.26
Poultry	37.56	35.77	34.45	33.61

^{* –} emissions from manure in Pasture/Range/Paddock are reported in 3.D Agricultural Soils

Table A3.2.9.3. Methane emissions in 3.C Rice Cultivation, kt CH₄

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Annual methane emissions from rice cultivation	8.66	7.08	7.42	7.06	6.74	6.61	6.89	6.69	6.18	6.54

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Annual methane emissions from rice cultivation	7.48	5.63	5.63	6.65	6.33	6.34	6.44	6.27	5.87	7.28

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Annual methane emissions from rice cultivation	8.69	8.80	7.67	7.17	3.02	3.47	3.56	3.76	3.74	3.11

Category	2020	2021	2022	2023
Annual methane emissions from rice cultivation	3.32	2.99	0.41	1.69

Category

Table A3.2.9.4. Nitrous	oxide e	emissions	in 3.D	A gricultural	Soils, kt N ₂ O
1 doic 113.2.7.7. 11110ds	OAIGC (m 5.D	1 igiicultulul	50115, Kt 1 1/2 C

3.D.1.1 Inorganic N Fertilizers	28.89	24.58	20.25	15.93	12.57	9.21	5.85	6.50	6.39	5.13
3.D.1.2 Organic N Fertilizers	8.46	8.32	7.72	7.41	7.17	6.44	5.61	4.58	4.28	4.18
3.D.1.3 Urine and Dung Deposited by Grazing Animals	10.76	10.27	10.05	9.97	9.75	8.85	7.98	6.93	6.39	6.11
3.D.1.4 Crop Residues	46.26	44.15	42.75	44.04	35.98	34.79	29.03	30.39	26.79	22.48
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	NA									
3.D.1.6 Cultivation of Organic Soils	5.99	6.05	6.10	6.11	6.13	6.13	6.13	6.13	6.13	6.13
3.D.2.1 Atmospheric Deposition	7.07	6.36	5.59	4.89	4.32	3.59	2.84	2.61	2.48	2.24
3.D.2.2 Nitrogen Leaching and Run-off	20.16	18.62	17.16	16.40	13.74	12.44	10.09	10.18	9.21	7.90
Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3.D.1.1 Inorganic N Fertilizers	3.48	4.98	4.90	4.25	5.71	5.89	7.30	9.05	11.53	9.94
3.D.1.2 Organic N Fertilizers	3.89	3.77	3.90	3.69	3.33	3.23	3.20	3.08	2.92	2.98
3.D.1.3 Urine and Dung Deposited by Grazing Animals	5.76	5.66	5.72	5.40	4.97	4.72	4.45	4.12	3.85	3.84
3.D.1.4 Crop Residues	22.25	22.42	21.56	18.27	21.60	20.90	20.99	18.40	24.23	22.75
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	0.82	4.09	4.10	NA	4.73	5.23	3.20	1.11	7.67	6.83
3.D.1.6 Cultivation of Organic Soils	6.13	6.13	6.13	6.13	6.13	6.13	6.13	6.13	6.13	6.13
3.D.2.1 Atmospheric Deposition	1.91	2.09	2.11	1.94	2.04	2.02	2.19	2.38	2.68	2.46
3.D.2.2 Nitrogen Leaching and Run-off	7.56	8.63	8.46	6.56	8.58	8.52	8.36	7.64	10.92	10.05
			T			T		T	ı	
Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
3.D.1.1 Inorganic N Fertilizers	12.13	14.08	14.55	16.32	16.53	15.94	19.26	21.92	24.89	25.62
3.D.1.2 Organic N Fertilizers	3.01	2.98	3.01	3.05	3.01	2.89	2.80	2.72	2.77	2.68
3.D.1.3 Urine and Dung Deposited by Grazing Animals	3.68	3.59	3.69	3.70	3.60	3.47	3.39	3.34	3.62	3.43

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
3.D.1.4 Crop Residues	22.65	28.03	26.54	31.31	31.63	30.15	32.88	30.93	34.65	35.16
3.D.1.5 Mineralization/Immobiliza- tion Associated with Loss/Gain of Soil Organic Matter	3.45	8.51	5.80	10.28	11.11	10.30	11.00	8.17	10.00	11.27
3.D.1.6 Cultivation of Organic Soils	6.13	6.13	6.13	6.01	6.01	6.01	6.01	6.01	5.97	5.94
3.D.2.1 Atmospheric Deposition	2.77	3.04	3.12	3.39	3.39	3.27	3.72	4.09	4.56	4.62
3.D.2.2 Nitrogen Leaching and Run-off	9.75	12.52	11.69	14.18	14.46	13.77	15.26	14.76	16.72	17.24

Category	2020	2021	2022	2023
3.D.1.1 Inorganic N Fertilizers	30.56	31.40	22.09	19.81
3.D.1.2 Organic N Fertilizers	2.58	2.48	2.34	2.26
3.D.1.3 Urine and Dung Deposited by Grazing Animals	3.28	3.10	2.91	2.81
3.D.1.4 Crop Residues	31.22	37.59	28.26	30.05
3.D.1.5 Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter	4.20	11.22	6.34	9.99
3.D.1.6 Cultivation of Organic Soils	5.93	5.93	5.93	5.93
3.D.2.1 Atmospheric Deposition	5.30	5.39	3.98	3.63
3.D.2.2 Nitrogen Leaching and Run-off	15.83	18.99	13.63	14.32

Table A3.2.9.5. Carbon dioxide emissions in Agricultural sector, kt CO₂

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
3.G Liming	2,592.08	1,351.26	1,351.26	1,351.26	1,351.26	1,351.26	299.20	76.41	77.79	70.63
3.H Urea Application	568.93	499.54	411.82	324.10	255.89	187.67	119.46	132.60	130.35	104.93

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
3.G Liming	63.47	71.47	53.78	49.37	83.33	90.92	105.99	112.35	124.95	151.88
3.H Urea Application	71.47	101.74	116.91	191.10	35.83	120.28	163.87	221.33	355.18	175.03

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
3.G Liming	127.46	127.16	161.72	182.25	156.26	169.83	140.09	168.60	163.74	141.37
3.H Urea Application	334.73	391.52	370.11	398.35	374.00	344.99	400.17	435.38	437.34	454.01

Category	2020	2021	2022	2023
3.G Liming	131.35	176.23	110.00	65.95
3.H Urea Application	511.97	512.18	356.57	446.89

A3.2.10 Recalculations

Table A3.2.10.1. Recalculation of Methane emissions in 3.A Enteric Fermentation, kt CH₄

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	Previous NIR									
Mature dairy cattle	738.58	714.66	677.68	668.42	658.75	634.79	595.21	537.14	504.81	476.06
Other mature cattle	137.49	136.00	132.37	127.01	122.19	110.78	95.36	78.91	67.08	59.34
Growing cattle	585.40	565.59	535.31	499.20	451.58	387.46	325.77	262.33	219.00	197.06
Sheep	60.91	56.00	51.42	47.45	41.00	30.59	21.11	14.90	11.09	9.19
Other animals	50.0806	48.5599	46.3013	45.0608	43.9533	42.8590	40.8123	37.3658	36.0667	36.2125
			Си	rrent NIR						
Mature dairy cattle	739.00	715.09	678.06	668.80	659.19	635.31	595.75	537.61	505.30	476.55
Other mature cattle	538.78	523.87	496.60	462.08	420.77	361.93	301.62	238.10	195.26	173.38
Growing cattle	231.53	225.15	215.96	205.27	188.77	164.60	141.96	118.50	101.58	92.35
Sheep	56.00	50.96	46.52	42.68	36.75	27.56	19.17	13.59	10.16	8.38
Other animals	50.0806	48.5598	46.3012	45.0607	43.9573	42.8671	40.8203	37.3737	36.0706	36.2125

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Previous NIR										
Mature dairy cattle	443.72	437.96	434.92	407.02	382.67	362.70	340.57	314.65	294.32	283.51
Other mature cattle	50.09	43.99	41.49	36.31	30.75	27.81	25.67	23.05	20.32	19.04
Growing cattle	173.99	164.22	164.53	144.83	118.10	108.42	106.89	98.55	87.16	81.77
Sheep	8.26	7.92	7.84	7.48	7.59	7.44	7.79	8.59	9.30	9.79
Other animals	34.3517	33.5623	35.0962	33.5462	29.9726	28.5474	28.7245	27.8061	25.9542	26.0215
			Си	rrent NIR						
Mature dairy cattle	444.17	438.43	435.39	407.47	383.12	363.16	343.65	317.13	296.97	284.18
Other mature cattle	144.59	127.25	124.72	109.88	89.08	79.65	77.53	71.25	62.16	57.22
Growing cattle	86.68	87.00	87.52	76.72	63.96	60.13	58.30	53.23	47.61	45.46
Sheep	7.50	7.18	7.09	6.78	6.98	6.90	7.27	8.05	8.75	9.20

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Other animals	34.3517	33.5623	35.0962	33.5462	29.9726	28.5474	28.7245	27.8061	25.9542	26.0218

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Previous NIR										
Mature dairy cattle	272.92	266.49	266.77	265.70	257.98	247.28	241.11	235.73	227.93	217.03
Other mature cattle	17.76	16.79	16.50	16.20	15.36	14.20	13.28	12.44	12.05	11.11
Growing cattle	74.86	70.03	75.35	79.76	72.23	65.43	65.91	65.83	63.27	58.96
Sheep	10.01	9.88	9.63	9.48	9.05	8.51	8.12	8.08	8.05	7.66
Other animals	26.6164	26.0834	25.6608	25.7770	25.1152	24.0468	23.3060	22.1431	21.1010	20.2778
			C	urrent NIR						
Mature dairy cattle	273.38	266.73	267.02	265.96	260.16	247.52	241.35	235.98	228.23	217.34
Other mature cattle	52.67	49.40	49.12	48.47	44.96	41.85	41.15	40.14	38.35	35.17
Growing cattle	41.46	38.83	44.15	48.83	43.72	38.77	38.36	37.72	36.29	34.13
Sheep	9.40	9.26	8.98	8.84	8.42	7.90	7.54	7.50	7.47	7.09
Other animals	26.6207	26.0900	25.6694	25.7857	25.1247	24.0553	23.3150	22.1516	21.1113	20.2860

Category	2020	2021	2022	2023
Pr	evious NIR			
Mature dairy cattle	205.69	195.19	173.57	
Other mature cattle	10.36	9.67	8.78	
Growing cattle	54.91	50.96	46.04	
Sheep	7.35	7.20	6.74	
Other animals	19.5808	18.9003	17.3815	
Ca	urrent NIR			
Mature dairy cattle	206.00	193.14	175.85	165.89
Other mature cattle	32.62	30.54	28.12	25.86
Growing cattle	31.75	28.90	26.32	24.23
Sheep	6.81	6.69	6.32	5.97
Other animals	19.5863	18.9035	17.5694	16.6921

Table A3.2.10.2.	Recalculations of	GHG emissions	in 3 R Manur	e Management	category kt
1 4010 113.2.10.2.	recalculations of	OTTO CHIBSTONS	III J.D Manui	c management	category, Kt

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
			Pre	evious NIR						
CH ₄ emissions	140.0389	133.6199	116.0866	105.2216	92.4327	92.7441	80.8637	65.2435	57.6622	55.6884
N ₂ O emissions	10.9859	10.4812	9.5964	9.1505	8.7885	7.7678	6.7439	5.4314	5.0304	4.9571
NMVOC emissions	198.7666	193.6887	184.8832	174.7705	163.6834	150.0167	135.4501	119.5334	109.4644	103.7867
			Си	rrent NIR						
CH ₄ emissions	145.6886	138.8443	120.1456	108.4604	94.8661	94.4426	82.1009	65.0821	59.3038	57.2971
N ₂ O emissions	11.6863	11.1442	10.1934	9.6973	9.3070	8.2151	7.0958	5.6662	5.2952	5.2026
NMVOC emissions	198.7879	193.6627	184.7739	174.5925	163.4270	149.6744	135.0816	119.2870	109.1934	103.4118
Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Pre	evious NIR						
CH ₄ emissions	48.0216	45.0577	48.0073	45.1431	40.0805	41.2831	43.4397	44.3371	43.7322	45.3040
N ₂ O emissions	4.4527	4.2839	4.5310	4.2940	3.8523	3.7537	3.8285	3.6851	3.4677	3.5559
NMVOC emissions	95.7629	92.4468	93.7001	88.6816	81.6661	78.9190	77.3161	74.3365	71.2291	70.8345
			Си	rrent NIR						
CH ₄ emissions	50.8892	47.6133	50.3831	47.1430	41.7083	40.7752	51.8821	53.4520	51.2765	53.9395
N ₂ O emissions	4.7922	4.6012	4.7909	4.5269	4.0503	3.9281	3.9529	3.8174	3.5864	3.6680
NMVOC emissions	95.4081	92.0658	93.3398	88.3996	81.4350	78.6381	77.0224	74.0264	70.9432	70.6479
Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	1		ı	evious NIR		T	T	T	T	T
CH ₄ emissions	48.5619	48.7957	49.5275	49.8114	47.7543	45.0504	43.1223	43.8119	41.8615	40.1657
N ₂ O emissions	3.6368	3.5807	3.6097	3.6951	3.6725	3.5218	3.4354	3.3430	3.4279	3.3285
NMVOC emissions	71.5862	71.1859	71.6349	73.8407	73.1049	69.8539	67.7487	66.7918	66.6437	66.2397
			Си	rrent NIR						
CH ₄ emissions	59.8552	60.3919	60.6378	64.4451	65.9089	64.1615	62.3746	59.7312	57.8413	56.5251

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
N ₂ O emissions	3.7517	3.7016	3.7328	3.8110	3.7795	3.6158	3.4924	3.3793	3.4632	3.3402
NMVOC emissions	71.4148	71.0248	71.4735	73.6858	73.1975	70.1110	67.9976	67.0904	66.9312	66.5377

Category	2020	2021	2022	2023							
Pr	Previous NIR										
CH ₄ emissions	39.4603	39.4122	36.4844								
N ₂ O emissions	3.2153	3.0953	2.8480								
NMVOC emissions	63.4201	60.1479	56.0380								
Cı	urrent NIR										
CH ₄ emissions	56.0683	56.3999	52.7626	51.2895							
N ₂ O emissions	3.2207	3.0978	2.9181	2.8205							
NMVOC emissions	63.7175	60.3424	57.0423	54.6361							

Table A3.2.10.3.	Recalculations	of Nitrous	oxide er	nissions	s in categor	v 3.D	Agricultural	Soils.	kt N	20
1 4010 113.2.10.3.	1 CCCaic alations	or runous	OMIGE CI	111001011	o mi categor	y J.D	1 12 11 Cultululul	DOILD	, 12 1 1	/.

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
Previous NIR											
Direct N ₂ O emissions	99.51671	92.29725	85.81228	82.41355	70.59186	64.45416	53.75428	53.75122	49.38115	43.42895	
Indirect N ₂ O emissions	26.92013	24.57353	22.34916	20.88037	17.67190	15.65123	12.59293	12.49054	11.41872	9.87592	
			Си	rrent NIR							
Direct N ₂ O emissions	100.35832	93.37068	86.87223	83.47284	71.61532	65.41770	54.60718	54.53919	49.99034	44.04012	
Indirect N ₂ O emissions	27.22799	24.98097	22.75344	21.28805	18.06865	16.02667	12.92979	12.79543	11.69057	10.14793	

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
Previous NIR											
Direct N ₂ O emissions	41.80271	46.50129	45.73923	37.15565	45.98080	45.60451	44.76838	41.39070	55.83152	51.94027	
Indirect N ₂ O emissions	9.20497	10.45399	10.29637	8.23983	10.37826	10.29706	10.31501	9.78726	13.36449	12.26784	
			Си	rrent NIR							
Direct N ₂ O emissions	42.32402	47.04747	46.30812	37.73909	46.48091	46.10975	45.28376	41.90461	56.35085	52.47223	
Indirect N ₂ O emissions	9.46807	10.72261	10.57017	8.50888	10.61573	10.53564	10.54920	10.01958	13.60018	12.51144	

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Previous NIR										
Direct N ₂ O emissions	50.51855	62.76156	59.16547	70.10246	71.32523	68.20943	74.82091	72.60110	81.43353	83.66157
Indirect N ₂ O emissions	12.27154	15.30050	14.55648	17.30882	17.59405	16.78856	18.74442	18.61900	21.05802	21.65212
			Си	rrent NIR						
Direct N ₂ O emissions	51.05897	63.31631	59.73185	70.67164	71.89313	68.75956	75.34749	73.09942	81.89391	84.10344
Indirect N ₂ O emissions	12.51854	15.55291	14.81443	17.56768	17.85086	17.03699	18.98196	18.84562	21.27235	21.85758

Category	2020	2021	2022	2023
Pre	evious NIR			
Direct N ₂ O emissions	77.33296	91.29694	67.39166	
Indirect N ₂ O emissions	20.92998	24.17285	17.40405	

Ukraine's Greenhouse Gas Inventory 1990-2023

Category	2020	2021	2022	2023
Cı	ırrent NIR			
Direct N ₂ O emissions	77.76936	91.72126	67.86163	70.84828
Indirect N ₂ O emissions	21.13230	24.37115	17.61633	17.94225

Table A3.2.10.4. Recalculations of Carbone dioxide emissions in category 3.G Liming, kt CO₂

Category	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Previous NIR										
CO ₂ emissions	2,592.08	1,351.26	1,351.26	1,351.26	1,351.26	1,351.26	299.20	76.41	77.79	70.63
			Си	rrent NIR						
CO ₂ emissions	2,592.08	1,351.26	1,351.26	1,351.26	1,351.26	1,351.26	299.20	76.41	77.79	70.63

Category	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Previous NIR										
CO ₂ emissions	63.47	71.47	53.78	49.37	83.33	90.92	105.99	112.35	124.95	151.88
			Си	rrent NIR						
CO ₂ emissions	63.47	71.47	53.78	49.37	83.33	90.92	105.99	112.35	124.95	151.88

Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Previous NIR										
CO ₂ emissions	127.46	127.16	161.72	182.25	156.26	169.83	140.09	168.60	163.74	141.37
			Си	rrent NIR						
CO ₂ emissions	127.46	127.16	161.72	182.25	156.26	169.83	140.09	168.60	163.74	141.37

Category	2020	2021	2022	2023
Pro	evious NIR			
CO ₂ emissions	131.35	176.23	109.96	
Cı	ırrent NIR			
CO ₂ emissions	131.35	176.23	110.00	65.95

A3.3 Land Use, Land Use Change and Forestry (CRT Sector 4)

A3.3.1 Methodological issues of the land-use category Forest land

Calculation of total annual GHG emissions/removals in the forestry sector was held for the two categories of Forest and: a) for Forest land remaining forest land; b) for Land converted to forest land.

Activity data for the Forest land category were obtained from national statistical reporting form 16-zem (previously 6-zem). For afforestation (Land converted to forest land), the land-use change matrix was used (Table 6.2) and the actual data of afforestation (database). The land-use change matrix is used to determine "conversion vectors" of land areas at change of land-use categories, since there is no data in national statistics on the land-use categories from which conversion takes place.

In the table A3.3.1 the areas of Forest land remaining Forest land are presented with subdivision on actually covered with forest vegetation and unstocked (temporary or permanently). Only areas actually covered with forest vegetation (stocked) were used to calculate C-gains due to forest growth.

Table A3.3.1. Areas covered by forest vegetation and unstocked areas

		Area of Forest land remai		
Year	T-4-1 £414-		Areas of manage	ed Forest land
i ear	Total area of the cate-	Unmanaged forests	Stocked	Unstocked and
	gory		Stocked	other
1990	10 211.95	31.40	9 201.73	978.82
1991	10 230.85	31.40	9 228.25	971.20
1992	10 282.73	31.40	9 224.95	1 026.38
1993	10 299.97	31.40	9 262.85	1 005.72
1994	10 314.62	31.40	9 289.50	993.72
1995	10 312.69	31.40	9 314.05	967.24
1996	10 317.84	31.40	9 318.35	968.09
1997	10 318.63	31.40	9 327.85	959.38
1998	10 331.65	31.40	9 329.55	970.70
1999	10 333.10	31.40	9 359.33	942.37
2000	10 338.40	31.40	9 388.47	918.53
2001	10 345.95	31.40	9 396.42	918.13
2002	10 351.79	31.40	9 421.89	898.50
2003	10 365.21	31.40	9 433.34	900.47
2004	10 376.16	31.40	9 441.43	903.33
2005	10 396.29	31.40	9 466.35	898.54
2006	10 411.90	31.40	9 498.50	882.00
2007	10 403.65	31.40	9 510.80	861.45
2008	10 389.16	31.40	9 505.45	852.31
2009	10 373.12	31.40	9 512.29	829.43
2010	10 368.55	31.40	9 517.46	819.69
2011	10 364.11	31.40	9 526.71	806.00
2012	10 362.35	31.40	9 531.66	799.29
2013	10 358.38	31.40	9 521.43	805.55
2014	10 365.60	31.40	9 506.93	827.27
2015	10 370.69	31.40	9 489.07	850.22
2016	10 409.01	31.40	9 458.78	918.83
2017	10 425.85	31.40	9 447.06	947.39
2018	10 394.19	31.40	9 466.06	896.73
2019	10 397.04	31.40	9 451.56	914.08
2020	10 402.05	31.40	9 472.75	897.50
2021	10 407.10	31.40	9 494.00	881.70
2022	10 413.96	31.40	9 515.29	867.27
2023	10 419.13	31.40	9 536.63	851.10

Actual data on afforestation and deforestation were used from the database. The information is presented based on the cumulative approach and 20-years transition period - Table A3.3.2.

Table A3.3.2. Land areas converted to and from the land-use category Forest land on cumulative basis, kha

ative basis, l	XIIa		To forests			
Year	Cropland	Grassland	Wetlands	Settlements	Other land	Total
1990	9.55	0.00	0.00	0.00	0.00	9.55
1991	15.92	0.00	0.00	0.61	0.83	17.35
1992	15.92	0.51	0.00	3.52	3.92	23.87
1993	21.08	0.51	0.00	3.52	5.92	31.03
1994	26.77	0.51	0.00	3.52	6.78	37.58
1995	28.83	0.51	0.00	8.99	6.78	45.11
1996	36.97	0.51	0.18	8.99	7.50	54.16
1997	43.94	0.51	0.18	8.99	7.94	61.57
1998	45.37	0.51	0.18	8.99	10.89	65.95
1999	48.35	0.51	0.18	8.99	12.16	70.20
2000	53.19	0.51	0.27	9.07	12.16	75.20
2001	57.37	0.51	0.27	9.94	12.16	80.25
2002	62.70	0.51	0.51	9.94	13.46	87.11
2003	67.21	0.51	0.51	10.32	13.73	92.29
2004	74.29	0.58	0.51	10.63	13.73	99.74
2005	78.84	3.70	0.51	10.63	13.73	107.41
2006	94.52	8.61	0.51	10.63	13.73	128.00
2007	110.78	13.18	0.51	10.63	17.55	152.65
2008	119.18	28.05	0.51	10.63	22.57	180.94
2009	133.20	48.64	0.51	10.63	25.79	218.78
2010	138.80	55.32	0.51	10.63	27.29	232.54
2010	141.41	62.72	0.51	10.03	32.52	247.18
2011	145.52	75.31	0.51	7.11	30.60	259.05
2012	140.37	88.93	0.51	7.11	28.87	265.78
2013	136.52	91.03	0.51	7.11	29.51	264.68
2014	134.25	93.73	0.61	1.64	29.51	259.74
2015	134.40	98.98	0.61	1.64	45.95	281.40
2010	129.77		0.43	1.64	49.02	285.14
2017	128.35	104.27 111.82	0.43	1.64	49.02	291.37
2018	125.36	113.79	0.49	1.64	48.08	289.75
2019			0.89	1.57		289.73
2020	120.52 116.34	115.77 118.22	0.80	0.70	48.63	287.29
2021		118.22			49.39	283.43
	111.01		0.56 0.56	0.70	48.48	280.30
2023	106.50	124.00		0.31	49.93	281.30
Year	Cropland	Grassland	forests to other c Wetlands	Settlements	Other land	Total
1990	0.04	0.01	0.00	0.08	0.01	0.14
1991	0.14	0.01	0.00	0.08	0.04	0.48
1992	2.94	0.50	0.04	5.98	0.93	10.39
1993	2.94	0.54	0.04	6.00	0.93	10.46
1993	2.94	0.54	0.04	6.01	0.93	10.40
1994	2.93	0.55	0.04	6.03	0.93	10.47
1995	3.07	2.32	0.06	7.48	1.49	14.58
1996	3.09	2.32	0.22	7.48	1.49	14.58
1997	3.09	3.75	2.63	27.51	1.52	38.50
1998						
2000	3.09	3.77	2.65	27.53 27.53	1.52 1.62	38.56
2000		3.90	2.65	27.56		38.81
2001	3.16	3.98	2.66		1.65 1.65	39.02
	3.16	4.17	2.67	27.96		39.61
2003	3.26	4.17	2.73	27.96	1.73	39.85
2004	3.85	4.17	2.73	28.21	1.83	40.80
2005	3.86	4.19	2.75	28.29	1.83	40.93
2006	3.86	4.27	2.75	28.37	1.86	41.10
2007	3.86	4.28	2.86	28.46	2.01	41.47
2008	3.86	4.28	2.86	36.41	2.01	49.41

2000	2.07	4.20	2.06	26.42	2.01	40.45
2009	3.87	4.28	2.86	36.43	2.01	49.45
2010	3.83	4.27	2.86	36.35	2.00	49.31
2011	3.73	4.25	2.86	36.25	1.97	49.06
2012	0.93	3.77	2.83	30.94	1.09	39.55
2013	0.93	3.73	2.82	31.01	1.08	39.57
2014	0.92	3.73	2.82	31.00	1.12	39.59
2015	0.91	3.72	2.80	30.98	1.09	39.50
2016	0.80	1.95	2.64	29.53	0.58	35.50
2017	0.78	1.92	2.64	29.53	0.61	35.49
2018	0.78	0.53	0.23	9.50	0.62	11.65
2019	0.78	0.50	0.22	9.48	0.90	11.89
2020	0.76	0.37	0.21	9.49	0.82	11.65
2021	0.71	0.30	0.20	9.47	0.79	11.46
2022	0.71	0.10	0.20	9.07	0.79	10.87
2023	0.61	0.10	0.13	9.07	0.71	10.63

The areas of conversions to and from forests are taken from the database as afforested and deforested lands respectively. This improves reliability of the results, since the primary data was collected at the level of individual plots of the territory on which the respective activity was implemented by quarter by every forestry enterprise in Ukraine (the so-called plot-wise information database). Moreover, the conservative principle is thus ensured, because form 16-zem takes into account only the legal fact of a change in attribution to a certain land-use category, which is not in line with the actually performed afforestation or deforestation activities.

Thus, information about the area of land converted to forest land from the land-use change matrix was used to determine proportional ratios among donor categories for the land-use category Forest Land. This was done because national statistical reporting, as well as land plot logs at forestry enterprises for the period since 1990 do not reflect information on the land-use categories from and/or into which plots of forest land were converted. Based on those ratios, the values from the database were distributed. Thus, special attention was paid to maintaining the balance of territories with use of the forest land not covered in the estimation. The areas of sub-categories indicated in the land-use category are shown in the reporting tables [12].

Donor categories are defined annually based on comparison of total areas of every category in year X-1 and X of form 16-zem. Consequently, donor categories might change from year to year.

For all the other land-use categories (including the categories Cropland and Grassland) for land converted to categories, information on the areas from statistical reporting form 16-zem, as well as the land-use change matrix was used (Table 6.4).

Estimations of carbon emissions/removals were made in the context of sub-categories 4.A.1 Forest land remaining forest and 4.A.2 Land converted to forest land. In sub-category 4.A.1, emissions/removals were estimated only for managed forests in living biomass based on age structure of stands. Since databases with detailed information about forest features are available mostly for the forests under management of the State Forest Resources Agency of Ukraine, the calculations were performed based on that data and then extrapolated to entire area of forest covered lands excluding unmanaged forests.

The ERT recommended to revise estimations for DOM category by developing more accurate and mutually consistent EFs for litter and deadwood. Development of EFs is an important step recognized by including it into improvement plan but in the current submission conservative decision is taken to apply Tier 1. Thus, it is assumed zero CSC in continuously forested areas until new methodology and EFs will be developed.

For forest soils, the decision on the zero-carbon balance was made, based on the studies [5]. The annual increase in carbon stocks in living biomass of Forest land remaining forest land was estimated under equation 2.9 of the 2006 IPCC Guidelines in the context of the key forest tree species, climatic zones and with consideration of age structure.

The classification (Table A3.3.3) was used for distribution of areas into natural zones.

Table A3.3.3. Distribution of the forest area of Ukrainian regions' territory by climatic zones, relative units

Dogiona	Polissia	Equat Stamps	North	South	Carpathian	Crimean
Regions	(Woodland)	Forest Steppe	Steppe	Steppe	Mts.	Mts.
AR Crimea				0.1		0.9
Vinnytska		1.0				
Volynska	0.8	0.2				
Dnipropetrovska			0.9	0.1		
Donetska			1.0			
Zhytomyrska	0.8	0.2				
Transcarpathian					1.0	
Zaporizhska			0.5	0.5		
Ivano-Frankivska		0.2			0.8	
Kyivska	0.7	0.3				
Kirovohradska		0.5	0.5			
Luganska			1.0			
Lvivska		0.3			0.7	
Mykolaivska			0.6	0.4		
Odesska		0.2	0.3	0.5		
Poltavska		1.0				
Rivnenska	0.8	0.2				
Sumska	0.2	0.8				
Ternopilska		1.0				
Kharkivska		0.5	0.5			
Khersonska				1.0		
Khmelnytska		1.0				
Cherkaska		1.0				
Chernivetska		0.3			0.7	
Chernihivska	0.8	0.2	-			

Table A3.3.4 presents national factors of above-ground biomass growth rates for the main tree species by natural zones, as well as the ratio of below-ground and above-ground biomass growth. It is based on national study [10].

Table A3.3.4. Biomass growth by natural zones and species for Forest land remaining forest land (national data), t d.m./ha/yr

Table A3.3.4.	Diomass	growin	by Hatura	il Zolics a	ina speci	CS 101 1 C	nest faire	Age	ing forcs	i iaiiu (iia	illonar de	<i>ata)</i> , t d.1	11./11a/y1		
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Polissia (Woodland)															
Pine	3.6	3.6	4.9	4.9	4.2	4.2	3.2	3.2	2.9	2.9	1.9	1.9	1.9	1.9	1.9
Spruce	5.5	5.5	6.9	6.9	6.0	6.0	4.7	4.7	3.2	3.2	2.0	2.0	2.0	2.0	2.0
Other conifers	4.5	4.5	5.8	5.8	5.0	5.0	3.9	3.9	3.0	3.0	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.8	4.8	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.7	2.7	2.7	2.7	2.7
Other hardwoods	2.5	2.5	5.5	5.5	5.2	5.2	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Forest Steppe															
Pine	2.9	2.9	4.4	4.4	4.6	4.6	3.7	3.7	3.0	3.0	1.7	1.7	1.7	1.7	1.7
Spruce	5.8	5.8	7.3	7.3	6.4	6.4	5.0	5.0	3.6	3.6	2.2	2.2	2.2	2.2	2.2
Other conifers	4.3	4.3	5.8	5.8	5.5	5.5	4.3	4.3	3.3	3.3	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.8	4.8	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.7	2.7	2.7	2.7	2.7
Other hardwoods	2.5	2.5	5.6	5.6	5.3	5.3	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
North Steppe															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Spruce	5.6	5.6	7.0	7.0	6.1	6.1	4.8	4.8	3.3	3.3	2.0	2.0	2.0	2.0	2.0
Other conifers	3.9	3.9	5.0	5.0	4.3	4.3	3.5	3.5	2.7	2.7	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	1.6	1.6	5.5	5.5	5.1	5.1	4.4	4.4	3.0	3.0	2.4	2.4	2.4	2.4	2.4
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7

								Age							
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
South Steppe															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Spruce	5.6	5.6	7.0	7.0	6.1	6.1	4.8	4.8	3.3	3.3	2.0	2.0	2.0	2.0	2.0
Other conifers	3.9	3.9	5.0	5.0	4.3	4.3	3.5	3.5	2.7	2.7	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	1.6	1.6	5.5	5.5	5.1	5.1	4.4	4.4	3.0	3.0	2.4	2.4	2.4	2.4	2.4
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Carpathian Mts.															
Pine	2.9	2.9	4.4	4.4	4.6	4.6	3.7	3.7	3.0	3.0	1.7	1.7	1.7	1.7	1.7
Spruce	5.8	5.8	7.3	7.3	6.4	6.4	5.0	5.0	3.6	3.6	2.2	2.2	2.2	2.2	2.2
Other conifers	4.3	4.3	5.8	5.8	5.5	5.5	4.3	4.3	3.3	3.3	1.9	1.9	1.9	1.9	1.9
Oak	2.9	2.9	4.8	4.8	4.7	4.7	3.7	3.7	2.9	2.9	2.1	2.1	2.1	2.1	2.1
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8
Other hardwoods	2.5	2.5	5.5	5.5	5.2	5.2	4.3	4.3	3.3	3.3	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Crimean Mts.															
Pine	2.1	2.1	2.9	2.9	2.6	2.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Spruce	5.5	5.5	6.9	6.9	6.0	6.0	4.7	4.7	3.2	3.2	2.0	2.0	2.0	2.0	2.0
Other conifers	3.8	3.8	4.9	4.9	4.3	4.3	3.4	3.4	2.6	2.6	2.0	2.0	2.0	2.0	2.0
Oak	1.4	1.4	3.9	3.9	3.7	3.7	3.3	3.3	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Beech	1.7	1.7	7.1	7.1	6.4	6.4	5.5	5.5	4.1	4.1	2.8	2.8	2.8	2.8	2.8

		Age													
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	121-130	131-140	141-999
Other hardwoods	1.5	1.5	5.4	5.4	5.0	5.0	4.3	4.3	3.0	3.0	2.3	2.3	2.3	2.3	2.3
Birch	2.9	2.9	3.8	3.8	3.1	3.1	2.4	2.4	1.6	1.6	0.9	0.9	0.9	0.9	0.9
Aspen	4.7	4.7	5.4	5.4	3.9	3.9	2.7	2.7	1.7	1.7	0.7	0.7	0.7	0.7	0.7
Alder	4.3	4.3	5.7	5.7	3.8	3.8	2.8	2.8	1.8	1.8	1.0	1.0	1.0	1.0	1.0
Other softwoods	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Other tree species	3.8	3.8	4.6	4.6	3.5	3.5	2.5	2.5	1.6	1.6	0.8	0.8	0.8	0.8	0.8
Shrubs	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

Carbon stock losses were calculated as the sum of losses from harvesting and other losses (equation 2.11 of the 2006 IPCC Guidelines).

GHG emissions from biomass losses reported in CRF Table 4.A include:

- GHG emissions from losses of above-ground biomass from all types of harvesting;
- GHG emissions from below-ground biomass losses from all types of harvesting;
- GHG emissions from losses of above-ground and below-ground biomass from disturbances (not including forest fires);
- GHG emissions from below-ground biomass losses from forest fires (emissions from above-ground biomass burning are reported under biomass burning in CRF Table 4(V)).

Data on the amount of annual carbon losses at harvesting were calculated according to equation 2.12 from 2006 IPCC Guidelines.

To estimate the amount of biomass at harvesting, information about logging in forests of Ukraine was used. This information for the period of 1990-2023 was obtained based on data of the State Statistics Service of Ukraine and the State Forest Resources Agency of Ukraine (Table A3.3.5).

Table A3.3.5. Harvesting volumes of timber (total stock), thousand m³

Year	Harvesting volumes, thousand m ³
1990	14127.8
1991	12061.0
1992	12514.2
1993	12497.2
1994	11782.5
1995	11651.3
1996	13782.0
1997	13546.7
1998	11521.1
1999	11244.2
2000	12735.9
2001	13365.4
2002	14692.1
2003	15953.3
2004	17300.7
2005	17124.3
2006	17759.8
2007	19013.9
2008	17687.5
2009	15876.5
2010	18064.6
2011	19746.2
2012	19763.6
2013	20340.6
2014*	20751.5
2015*	22107.9
2016*	22834.6
2017*	22151.2
2018*	22749.2
2019*	21046.5
2020*	17990.0
2021*	17859.3
2022*	16033.0
2023*	15792.7
	vice of Ukraine, corrected using ana-

^{*}Data of the State Statistic Service of Ukraine, corrected using analytical study [6]

The statistics presented in the total amount of harvested wood. In the 2006 IPCC Guidelines, equation 2.12 implies introduction of biomass conversion and expansion factor for conversion of removals in merchantable volume to total biomass removals (including bark) - BCEF_R. For a number of species (namely - conifers and hardwoods, as indicated in Table 4.5), default factors were used. For softwood species, due to lack of default values, the method of use of biomass expansion factors

and wood density was applied (introduced in GHG LULUCF and also available as additional method in 2006 IPCC Guidelines, below equation 2.12). Table A3.3.6 presents factors for specific species. According to the IPCC, BCEF_R for softwood species was estimated as the ratio of the biomass expansion factor BEF₂ and wood density D. The result of such an assessment is also listed in Table A3.3.6.

Moreover, Table A3.3.6 shows average ratios of below-ground to above-ground biomass. Selection of the BCEF_R factor was justified by the average stand stock in Ukraine in the relevant year. Table A3.3.5 presents values for 2015. It should be noted that apart from hardwood species, for other species this indicator has the same value throughout the time series. Because hardwood species in 1995 had the average stock less than 200 m 3 /ha, the corresponding BCEF_R factor was used (1.17, according to the IPCC, Table 4.5).

	Conversion factor for the entire above- ground biomass by harvesting above- ground biomass BCEF _R	Ratio of below- ground to above- ground biomass R	Biomass expansion factor BEF ₂	Density, D
Pine (Pinus)	0.77	0.16	NA	NA
Spruce (Picea)	0.77	0.14	NA	NA
Fir (Abies)	0.77	0.14	NA	NA
Other conifers	0.77	0.14	NA	NA
Oak (Quercus)	0.89	0.16	NA	NA
Beech (Fagus)	0.89	0.15	NA	NA
Ash (Fraxinus)	0.89	0.15	NA	NA
Hornbeam (Carpinus)	0.89	0.15	NA	NA
Other hardwood	0.89	0.15	NA	NA
Birch (Betula)	0.437	0.12	1.15	0.38
Aspen (Populus)	0.4025	0.12	1.15	0.35
Alder (Alnus)	0.4025	0.12	1.15	0.35
Other softwood	0.4025	0.12	1.15	0.35

Table A3.3.6. Factors used at estimation of GHG emissions from biomass loss

GHG emissions from disturbances were estimated using equation 2.14 of the 2006 IPCC Guidelines, however it was modified for a more accurate account of national circumstances. In particular, the rate of the average amount of above-ground biomass (B_w) was replaced with the average growing stock, which with the factors from Table A3.3.6 was converted into dry matter.

Considering the proportion of biomass losses as a result of disturbances for 1990-2013 and 2018-2022, it was determined by introducing a correction factor. It was delivered by overlapping data on timber losses due to disturbances, collected by the State Statistic Service of Ukraine, and calculated data losses by multiplying areas of disturbances by average wood stock. Since data on actual wood loss was collected only for 2014-2017 years, correction factor based on comparison for these years was applied for the rest of years, when actual wood loss was unknown from official sources.

Factors for AR Crimea, Sevastopol city, Donetsk and Lugansk regions were accepted as 1.0 because activity data were adjusted to cover entire territory of Ukraine, not covered by official statistics.

For some particular years the correction factors are higher, than 1.0. This is seen as actual losses of wood per ha is higher than average wood stock per ha in that region. Taking into account, that it is common that middle-age and old stands are more frequently affected by disturbances, the factor higher than 1.0 is possible.

Correction factor of actual wood loss allows to allocate a portion of wood lost during the disturbance event. The rest of the wood may be harvested or left on the site depending on the character of disturbance and its severity. Since all harvested wood is reported by the State Statistic Service of Ukraine, harvested wood after disturbance is taken into account in living biomass C-losses.

If the wood is left on the site as living biomass, C-gains might be underestimated since the area is reported as reforested and thus C-gains are calculated based on 1-10 years old stand despite older trees have higher C-gains rates.

Standing or lying deadwood left on the area after disturbances is not taken into account until Tier 2 method is applied to DOM pool in Forest Land.

Table A3.3.7. Determination of the correction factor relative to actual losses of wood at

disturbance events based on data for 2014-2017 years

ilsturbance event	s based on data		1 / years			
	Estimated loss o		Actual losses of	wood according		
Region	erage values of			orting 3-LG*, m ³	Correcti	on factor
region	m			_		
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
***	2 (20000		2014			
Ukraine	3630989	560867	2774685	687080		
AR Crimea	0	0	4233	4246	1.00	1.00
Vinnytska	102170	13681	33773	5227	0.33	0.38
Volynska	285141	48476	151887	36164	0.53	0.75
Dnipropetrovska	2658	5813	1558	4468	0.59	0.77
Donetska	4889	8825	42369	76485	8.67	8.67
Zhytomyrska	355567	6778	246098	6267	0.69	0.92
Transcarpathian	598721	143109	518837	195002	0.87	1.36
Zaporizhska	39	770	41	784	1.06	1.02
Ivano-Frankivska	349391	5356	281079	6342	0.80	1.18
Kyivska	221	45	283	82	1.28	1.84
Kirovohradska	11796	88273	10699	91885	0.91	1.04
Luganska	47632	17609	145095	53641	3.05	3.05
Lvivska	237573	30342	120644	19896	0.51	0.66
Mykolaivska	2047	14177	1435	12913	0.70	0.91
Odesska	703	52025	1002	51526	1.43	0.99
Poltavska	0	0	0	0		
Rivnenska	565306	21187	361086	17218	0.64	0.81
Sumska	151998	11790	122626	13940	0.81	1.18
Ternopilska	11487	18201	7280	15014	0.63	0.82
Kharkivska	4763	902	2891	710	0.61	0.79
Khersonska	19751	7886	217	119	0.01	0.02
Khmelnytska	76119	17676	70595	23830	0.93	1.35
Cherkaska	151257	26774	112848	26492	0.75	0.99
Chernivetska	308745	16592	257308	18411	0.83	1.11
Chernihivska	318515	4582	257488	5524	0.81	1.21
Kyiv city	24501	0	22982	0	0.94	1,21
Sevastopol	0	0	332	893	1.00	1.00
Sevastopor .	Ü	Ů	2015	0,75	1.00	1.00
Ukraine	4371450	798548	3040252	832883		
AR Crimea	0	0	4634	5132	1.00	1.00
Vinnytska	22414	3212	18044	2793	0.81	0.87
Villytiska	355033	57198	211620	50386	0.60	0.88
Dnipropetrovska	1506	2771	998	2860	0.66	1.03
Donetska	422	674	46385	92444	109.97	137.15
Zhytomyrska	458244	8604	287793	7329	0.63	0.85
Transcarpathian	680116	219726	619793	232946	0.91	1.06
Zaporizhska	55	640	55	1045	1.01	1.63
Ivano-Frankivska	367586	6403	294690	6649	0.80	1.04
Kyivska	76800	16050	25749	7498	0.34	0.47
Kirovohradska	16051	119302	16046	137804	1.00	1.16
	267497	90344	158848	64833	0.59	0.72
Luganska Lvivska	346527	51482	279631	46115	0.81	0.72
Mykolaivska	2403	25115	1855	16699	0.81	0.90
Odesska	1478	43188	910	46787	0.77	1.08
					0.02	1.08
Poltavska	0	0 25222	0	0	0.47	0.62
Rivnenska	964929	35222	457292	21805	0.47	0.62
Sumska	63097	5397	78593	8934	1.25	1.66
Ternopilska Vhartivalsa	13324	20093	6393	13187	0.48	0.66
Kharkivska	0	0	0	0	0.00	0.00
Khersonska	99589	43586	0	0	0.00	0.00
Khmelnytska	42786	8882	84222	28429	1.97	3.20
Cherkaska	149836	25551	97965	22999	0.65	0.90
Chernivetska	194291	11122	161888	11584	0.83	1.04
Chernihivska	217142	3985	165345	3547	0.76	0.89
Kyiv city Sevastopol	30324	0	21140 363	0 1079	0.70 1.00	1.00
		0				1 ()()

Region	Estimated loss of erage values of	growing stock,		wood according orting 3-LG*, m ³	Correction	on factor
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
Ukraine	4182795	619240	3351330	685789		
AR Crimea	0	0	5086	4188	1.00	1.00
Vinnytska	8400	1207	5916	915	0.70	0.76
Volynska	470873	76029	265327	63173	0.56	0.83
Dnipropetrovska	8342	15986	3334	9558	0.40	0.60
Donetska	1706	2821	50901	75447	29.84	26.75
Zhytomyrska	556037	10469	367150	9350	0.66	0.89
Transcarpathian	655524	211051	606784	228057	0.93	1.08
Zaporizhska	0	0	0	0		
Ivano-Frankivska	271563	4823	221442	4997	0.82	1.04
Kyivska	14217	2963	5523	1608	0.39	0.54
Kirovohradska	650	4817	375	3225	0.58	0.67
Luganska	32143	11351	174314	52913	5.42	4.66
Lvivska	284707 1796	43438 9946	237641 1099	39190 9887	0.83 0.61	0.90 0.99
Mykolaivska						
Odesska Poltavska	1307	86271 0	1240	63762	0.95	0.74
Rivnenska	978442	35462	752344	35875	0.77	1.01
Sumska	91093	7594	72138	8201	0.79	1.01
Ternopilska	7708	12499	5437	11214	0.79	0.90
Kharkivska	0	0	0	0	0.71	0.70
Khersonska	53330	18622	2327	1283	0.04	0.07
Khmelnytska	92933	22876	76948	25974	0.83	1.14
Cherkaska	141568	26625	93859	22035	0.66	0.83
Chernivetska	147394	9173	108557	7768	0.74	0.85
Chernihivska	363064	5214	293188	6290	0.81	1.21
Kyiv city	0	0	0	0	****	
Sevastopol	0	0	399	881	1.00	1.00
•			2017			
Ukraine	2430133	440791	1857200	515063		
AR Crimea	0	0	3165	14691	1.00	1.00
Vinnytska	4994	718	4785	741	0.96	1.03
Volynska	611952	98809	437260	104109	0.71	1.05
Dnipropetrovska	463	888	453	1299	0.98	1.46
Donetska	14997	24801	31679	64946	2.11	2.62
Zhytomyrska	191485	3605	118732	3024	0.62	0.84
Transcarpathian	300094	96618	248345	93339	0.83	0.97
Zaporizhska	0	0	0	0		
Ivano-Frankivska	52085	925	46276	1044	0.89	1.13
Kyivska	261631	54537	175882	51219	0.67	0.94
Kirovohradska	1903	14108	2379	20435	1.25	1.45
Luganska	45210	15966	108487	45548	2.40	2.85
Lvivska	172400	26304	106354	17539	0.62	0.67
Mykolaivska	198	1097	197	1769	0.99	1.61
Odesska	599	39523	956	49153	1.60	1.24
Poltavska	0 555615	0	0	0 21510	0.01	1.07
Rivnenska Sumska	1681	20137 140	451104 1734	197	0.81 1.03	1.07
	90	140	156	323	1.03	2.22
Ternopilska Kharkivska	90	0	0	0	1./3	2.22
Kharkivska	47577	16614	0	0	0.00	0.00
Khmelnytska	69472	17101	47078	15891	0.68	0.00
Cherkaska	40347	7588	27072	6355	0.67	0.93
Chernivetska	9883	615	7512	537	0.76	0.87
Chernihivska	38576	554	29618	635	0.77	1.15
Kyiv city	8882	0	7729	0	0.87	1.15
Sevastopol	0	0	248	758	1.00	1.00
			Average			
Ukraine	-	-	-	-	-	-
AR Crimea	-	1	-	-	1.00	1.00
Vinnytska	-	-	-	-	0.70	0.76
Volynska	-	-	-	-	0.60	0.88
Dnipropetrovska	-	-	-	-	0.66	0.97
Donetska	-	-	-	-	1.00	1.00
Zhytomyrska	-	-	-	-	0.65	0.88

Region	Estimated loss of erage values of			wood according orting 3-LG*, m ³	Correction factor			
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous		
Transcarpathian	-	ı	-	-	0.88	1.12		
Zaporizhska	-	ı	-	-	1.03	1.33		
Ivano-Frankivska	-	ı	-	-	0.83	1.10		
Kyivska	-	-	-	-	0.67	0.95		
Kirovohradska	-	-	-	-	0.93	1.08		
Luganska	-	-	-	-	1.00	1.00		
Lvivska	-	-	-	-	0.69	0.78		
Mykolaivska	-	-	-	-	0.77	1.05		
Odesska	-	-	-	-	1.15	1.01		
Poltavska	-	-	-	-	1.00	1.00		
Rivnenska	-	-	-	-	0.67	0.88		
Sumska	-	ı	-	-	0.97	1.33		
Ternopilska	-	i	-	-	0.89	1.15		
Kharkivska	-	i	-	-	0.61	0.79		
Khersonska	-	ı	-	-	0.01	0.02		
Khmelnytska	-	-	-	-	1.10	1.65		
Cherkaska	-	Ī	-	-	0.68	0.89		
Chernivetska	-	i	-	-	0.79	0.97		
Chernihivska	-	Ī	-	-	0.79	1.11		
Kyiv city	-	-	-	-	0.84	1.00		
Sevastopol	-	-	-	-	1.00	1.00		

^{*}statistical form data were adjusted for Crimea and the city of Sevastopol, Donestk and Lugansk regions

Constant values of correction factors average the fluctuations of severity and intensity of disturbances events. Consequently, the volumes of wood lost during the natural disturbances depend on areas of the natural disturbances. Until the actual data on wood losses are collected the constant values from overlapping of estimated and reported data are the only possible option to take into account the severity of disturbances events.

Table A3.3.8. Average stock of forest stands in forests of the State Forest Resources Agency of Ukraine, m³/ha

1401	<u>C 113.3.0.</u>	1995	Stock of	lorest stan	2001	DDED OT TH	e State Fo	2007	arees rig		2008	1 /114		2009	
Region	Conifer-	Hard-	Soft-	Conifer-	Hard-	Soft-	Conifer-	Hard-	Soft-	Conifer-	Hard-	Soft-	Conifer-	Hard-	Soft-
11081011	ous	wood	wood	ous	wood	wood	ous	wood	wood	ous	wood	wood	ous	wood	wood
Ukraine, in	239	196	156	262	214	167	277	222	173	279	230	171	278	226	169
average				-											
AR Crimea	126	147	219	143	150	225	165	156	240	168	158	243	173	159	246
Vinnytska	220	203	211	229	216	188	256	227	200	257	229	205	262	231	205
Volynska	205	162	142	230	176	150	244	187	149	248	190	151	252	193	153
Dniprope- trovska	131	115	198	161	133	219	190	149	232	195	152	236	202	155	239
Donetska	186	135	211	184	147	209	206	152	188	211	151	190	214	154	192
Zhytomyrska	222	181	161	245	213	172	268	224	180	261	227	162	262	228	163
Transcarpa- thian	415	312	194	399	330	188	418	345	177	421	346	181	427	350	186
Zaporizhska	73	73	182	90	75	211	122	89	248	97	71	169	101	70	171
Ivano-Frank- ivska	259	196	144	306	237	161	325	255	180	322	236	189	303	245	162
Kyivska	254	198	154	279	211	170	294	218	174	292	220	175	295	221	177
Kirovohradska	183	188	185	183	190	167	196	187	182	188	181	161	192	183	163
Luganska	182	119	160	208	132	177	216	126	172	220	133	162	223	132	161
Lvivska	268	215	144	289	190	157	282	253	170	287	256	173	291	259	176
Mykolaivska	96	78	148	120	91	153	133	99	127	136	100	129	141	103	131
Odesska	61	142	155	68	143	175	93	142	186	98	145	186	102	147	190
Poltavska	248	176	177	256	192	191	272	206	197	271	200	191	279	207	187
Rivnenska	183	160	140	208	174	146	220	180	154	223	182	157	212	188	141
Sumska	301	219	163	331	236	185	336	258	192	348	261	194	347	265	200
Ternopilska	361	203	202	237	183	192	259	201	192	264	203	195	268	205	199
Kharkivska	247	186	185	270	203	193	289	218	213	291	220	216	295	223	221
Khersonska	86	104	193	109	111	211	127	75	131	130	76	133	135	77	135
Khmelnytska	242	189	177	266	199	182	292	210	196	296	212	196	299	214	198
Cherkaska	254	208	169	272	215	183	288	226	200	291	228	204	293	231	206
Chernivetska	345	230	202	341	269	189	350	282	204	350	284	209	353	287	212
Chernihivska	269	182	166	305	212	152	327	228	192	330	232	194	333	235	197
Kyiv city	254	198	154	279	211	170	294	218	174	292	220	175	295	221	177
Sevastopol	60	90	140	89	111	208	111	120	270	115	122	274	119	123	278

		2010			2011			2012			2013			2014	
Region	Conifer-	Hard-	Soft-												
	ous	wood	wood												
Ukraine, in	274	223	162	277	228	171	277	230	171	279	229	172	280	231	174
average															
AR Crimea	190	166	255	182	162	252	173	158	212	173	158	212	182	161	217
Vinnytska	238	220	181	251	235	197	256	238	200	259	240	205	259	242	207
Volynska	240	193	148	260	198	159	241	198	147	246	201	150	250	204	153
Dniprope- trovska	216	161	230	215	161	245	220	164	249	226	149	200	234	152	205
Donetska	229	158	200	217	158	195	220	161	198	221	162	200	223	164	203
Zhytomyrska	257	224	155	268	232	167	271	233	168	271	235	171	272	236	171
Transcarpa- thian	381	318	117	398	342	154	403	346	159	406	349	163	408	352	167
Zaporizhska	106	72	176	112	75	179	118	76	183	125	77	187	130	79	191
Ivano-Frank- ivska	316	251	159	313	252	170	318	255	173	321	258	177	325	260	181
Kyivska	293	216	159	301	224	182	302	226	185	304	228	188	285	225	171
Kirovohradska	199	185	167	204	186	171	210	188	176	215	189	180	212	189	181
Luganska	223	134	164	217	135	161	220	138	164	222	140	166	225	143	168
Lvivska	277	247	146	282	262	171	285	265	174	288	268	177	290	270	180
Mykolaivska	146	105	136	150	108	138	152	109	143	119	73	113	125	75	118
Odesska	106	151	193	111	151	193	114	153	195	99	135	162	105	137	165
Poltavska	280	210	194	285	214	194	273	215	193	275	217	197	278	220	201
Rivnenska	210	184	138	219	194	147	222	196	150	224	198	153	226	200	156
Sumska	332	238	183	354	272	208	358	275	211	363	278	215	366	281	219
Ternopilska	234	202	161	274	210	204	278	211	206	258	208	194	265	210	196
Kharkivska	288	224	207	290	226	213	293	229	217	295	232	221	297	233	224
Khersonska	139	75	136	143	76	138	144	77	140	142	76	139	153	79	143
Khmelnytska	275	204	179	287	217	179	292	219	181	296	221	184	298	223	187
Cherkaska	292	231	209	298	235	213	301	237	216	277	229	190	282	231	194
Chernivetska	306	265	170	314	276	176	314	279	183	315	280	185	313	281	188
Chernihivska	325	228	192	313	232	185	318	235	188	322	238	192	326	241	197
Kyiv city	293	216	159	301	224	182	302	226	185	304	228	188	285	225	171
Sevastopol	123	124	280	120	122	279	124	124	263	124	124	263	133	127	270

	2015	j	20	16	20	17	20	18	20	19	20	20
Region	Coniferous	Decidu- ous	Coniferous	Deciduous								
Ukraine, in average	281	219	284	224	280	220	279	223	277	222	276	222
AR Crimea	168	154	174	160	173	153	172	158	171	158	173	158
Vinnytska	261	242	262	243	262	243	263	246	263	247	268	249
Volynska	252	170	252	171	255	172	258	175	260	177	263	180
Dniprope- trovska	253	162	256	171	267	168	276	176	278	176	282	178
Donetska	225	163	227	171	229	167	225	172	224	172	209	159
Zhytomyrska	275	203	278	205	278	206	252	186	252	186	255	189
Transcarpathian	410	352	418	358	396	336	397	339	396	338	358	329
Zaporizhska	137	84	145	92	146	87	149	90	156	92	133	73
Ivano-Frank- ivska	327	253	335	264	334	259	338	268	337	266	345	274
Kyivska	287	206	296	212	292	212	295	216	297	218	297	222
Kirovohradska	219	189	222	192	226	187	229	191	213	185	221	188
Luganska	232	146	230	152	225	151	227	155	225	156	202	150
Lvivska	287	258	287	265	286	265	290	268	291	268	293	271
Mykolaivska	131	74	132	81	131	71	139	83	142	85	146	88
Odesska	112	137	113	144	112	136	112	142	132	149	138	151
Poltavska	280	214	283	221	253	210	259	215	257	217	260	221
Rivnenska	228	172	229	174	224	166	230	175	208	155	209	155
Sumska	368	269	374	275	331	260	336	264	339	266	341	269
Ternopilska	268	212	274	216	276	215	278	219	281	221	286	224
Kharkivska	295	234	297	241	299	240	300	243	302	245	305	248
Khersonska	139	85	142	90	139	78	136	76	151	80	161	85
Khmelnytska	299	217	305	222	302	214	304	223	307	225	282	218
Cherkaska	286	229	291	233	293	233	296	237	300	239	303	242
Chernivetska	308	264	303	263	300	246	302	260	292	260	284	241
Chernihivska	326	215	331	222	330	224	332	227	333	229	334	230
Kyiv city	287	206	296	212	296	212	295	216	297	218	297	222
Sevastopol	101	118	124	125	124	106	124	124	119	124	124	124

The average stock of stem wood in forested forest land of the State Forest Resources Agency of Ukraine is presented in Table A3.3.8. It should be noted that before 2007 the average stock was determined with the same frequency as the state forest accounting was held. To obtain the data for the other years, the methods of interpolation and extrapolation were used.

The data on average stock of forest stands in different regions are usually obtained from the forest database of Ukrainian State Forest Inventory and Management Planning Association "Ukrderzhlisproekt". Because it is located in Irpin that was temporarily occupied in early days of the full-scale invasion of Ukraine in 2022, the values from 2020 were used for the calculations for 2021-2023.

Emissions from above-ground biomass due to fires are not included into 4.A CSC in Forest Land CRF reporting table and were reported separately in the CRF reporting Table 4(V).

Forest fires in Ukraine traditionally are divided into 3 groups according to burnt biomass:

- Surface fires only the litter burns, wood is not damaged or slightly damaged;
- Crown fires litter and wood burn;
- Underground fires the organic matter (peat) burns.

Data on fires are provided by the State Statistical Service of Ukraine in statistical form 3-lg. Information on fires for years 1990-2023 is presented in Table A3.3.9. It should be noticed that for the years 2014-2023 the data was corrected using analytical study.

Since 2018, the State Statistical Service of Ukraine stopped to collect data on forest fires. Thus, the data on areas of forest fires were obtained from the State Forestry Agency of Ukraine. Because the areas of forest fires, collected by the State Forestry Agency of Ukraine does not cover entire forests of Ukraine, the data for 2018-2023 were adjusted using correction factor.

The correction factor was derived by overlapping the data for 2016 and 2017 from the State Forestry Agency of Ukraine to the State Statistical Service of Ukraine and. In some regions this overlapping resulted in outliers: some were below zero (areas from the State Forestry Agency of Ukraine was higher than from all of the forests), some were way above 1 (5 and more). Thus, for the adjustment average values for entire Ukraine was used, particularly:

- Surface fires 1.11;
- Crown fires -1.11.

The data on burnt and damaged wood were calculated based on area of crown fires and average stock per hectare, contained in table A3.3.8.

Table A3.3.9. Area covered by forest fires and completely burned harvested forest products

	Area covered by forest fires, ha				Burnt and dam-
Year	Surface	Crown	Underground	Burnt and dam- aged standing timber, m ³	aged harvested wood products, m ³
1990	1375	1012	1	79236	673
1991	1042	665	10	38051	241
1992	3318	672	111	77758	241
1993	2415	712	51	174354	155
1994	6071	3432	537	391159	840
1995	2095	1416	26	145400	2247
1996	7163	5466	42	308543	4169
1997	1355	110	2	11806	44
1998	3208	1208	2	123034	326
1999	2896	2632	14	163858	2863
2000	1386	222	2	20249	398
2001	1992	1770	3	139604	955
2002	4245	657	64	59206	417
2003	2406	359	49	19720	351
2004	536	37	1	1944	28
2005	2006	294	9	32101	90
2006	3729	557	1	53119	7039
2007	6238	7549	·	1304271	3952
2008	4218	1311		395257	7572
2009	5300	1010	5	223764	2832

	Area	covered by forest fir	es, ha	Burnt and dam-	Burnt and dam-
Year	Surface	Crown	Underground	aged standing timber, m ³	aged harvested wood products, m ³
2010	2697	966	5	343840	677
2011	979	70		11804	2405
2012	1611	1866	2	289291	999
2013	409	8	1	2496	1340
2014	12897	912	4	144975	1265
2015	14471	354	27	170967	10387
2016	1789	166	0	32840	257
2017	4830	1128	0	150056	82
2018	1238	301	0	24774	-
2019	1143	60	0	8918	-
2020	60941	21949	0	2849896	-
2021	337	4	0	478	
2022	14732	976	0	77152	-
2023	904	22	0	1686	-

To estimate carbon emissions from fires, equation 2.14 of 2006 IPCC Guidelines was adapted to the above-mentioned classification (table A3.3.9). Accordingly, the emissions were estimated using the following method:

$$L_{fires} = \left(L_{surface} + L_{crown} + L_{underground} + L_{harvested}\right) \times G_{ef} \times 10^{-6}$$
 (A3.3.1)

где L_{fires} – total emissions from fires, kt C;

 $L_{surface}$ – biomass losses from surface fires, t d.m.;

 L_{crown} – biomass losses from crown fires, t d.m.;

*L*_{underground} – biomass losses from underground fires, t d.m.;

 $L_{harvested}$ – losses of harvested wood products, t d.m;

Gef – EFs of gasses, kg/ t d.m.

Each component of equation A3.3.1 was respectively defined as:

$$L_{surface} = A_{surface} \times B_{litter} \times CF_{organic\ matter}$$
 (A3.3.2)

$$L_{crown} = A_{crown} \times B_{litter} \times CF_{organic\ matter} + + W_{wood} \times BCEF_R \times (1+R) \times C_f \times CF$$
 (A3.3.3)

$$L_{underground} = A_{underground} \times B_{organic \, matter} \times CF_{organic \, matter} \qquad (A3.3.4)$$

$$L_{harvested} = W_{harvested} \times D \times CF \tag{A3.3.5}$$

where A is the area affected by fires: respectively, surface, crown, and underground ones, ha;

B_{litter} - litter stock burned in fire, t of d.s./ha;

CF_{organic matter} - the fraction of carbon in litter and organic matter, t C/t d.m.;

W_{wood} - the amount of burnt and damaged wood, m³;

BCEF_R - coefficient accounting for the entire above-ground biomass by removed above-ground biomass, dimensionless;

R - the ratio of below-ground to above-ground biomass, dimensionless;

C_f - the fraction of biomass lost in fires, dimensionless;

CF - carbon content in dry matter of wood (the value by default is 0.47), t C/t d.m.;

Borganic matter - the organic matter burned in fire, t d.m./ha;

Wharvested - the amount of burnt harvested wood, m³;

D - the average density of wood, t d.m./m³.

According to national studies [12], the following values were applied: $B_{litter} = 10 \text{ t/ha}$, $B_{organic\ matter} = 100 \text{ t/ha}$; $CF_{organic\ matter} = 0.37$, $f_d = 0.7$, besides, the average value of D density values were determined based on density of individual species (listed in Table A3.3.6) and the ratio of coniferous/deciduous trees for particular years, as data on fires do not include a breakdown by species. The

same $BSEF_R$ and R ratios were used as for biomass losses (see Table A3.3.6). G_{ef} coefficients were taken by default from Table 2.5 of 2006 IPCC.

During crown fires in forests, it is assumed that all biomass is lost – above- and below-ground. But with the aim to be consistent in reporting (GHG emissions from biomass losses – Table 4.A, emissions from actual burning – Table 4(V)), losses from below-ground biomass, above-ground part of which was burnt, were included in GHG emissions in Forest land table (CRF Table 4.A).

With the aim to assess below-ground losses from fires part of equation A3.3.3 on burnt wood estimation was used, but the ratios of below-ground to above-ground biomass were applied from Table A.3.3.4.

CO₂ emissions from liming on forest land were not calculated, since this type of activity is not performed in the forestry in Ukraine.

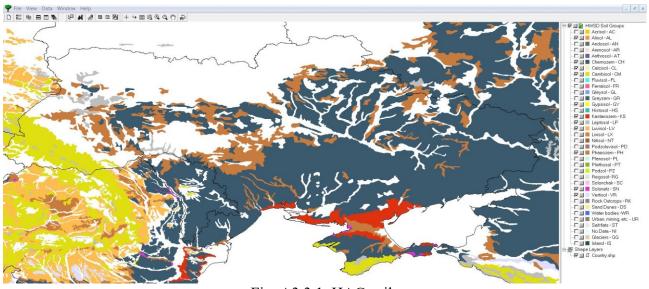
 N_2O emissions from fertilizer application were not estimated due to lack of fertilizer application in forestry in Ukraine.

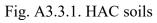
N₂O emissions from drainage of organic soils were calculated using the default coefficient [1] and are presented in CRF Table 5(II).

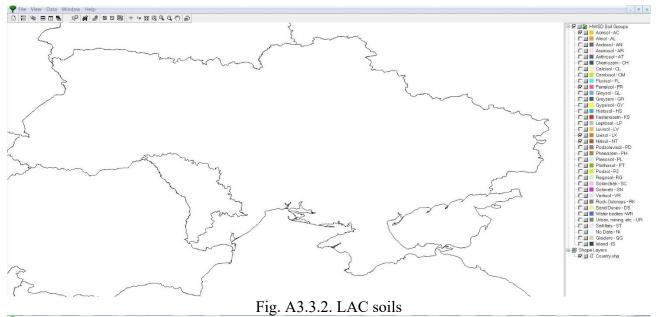
On the lands converted to forests, carbon emission/removal estimations in living biomass estimates were conducted similarly to estimations for sub-category 4.A.1, but with application of biomass growth rates for Land converted to forest land (Table A3.3.10).

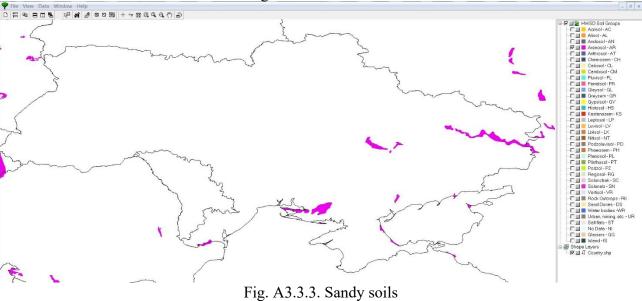
Table A3.3.10. Biomass growth by natural zones and species for Land converted to forest

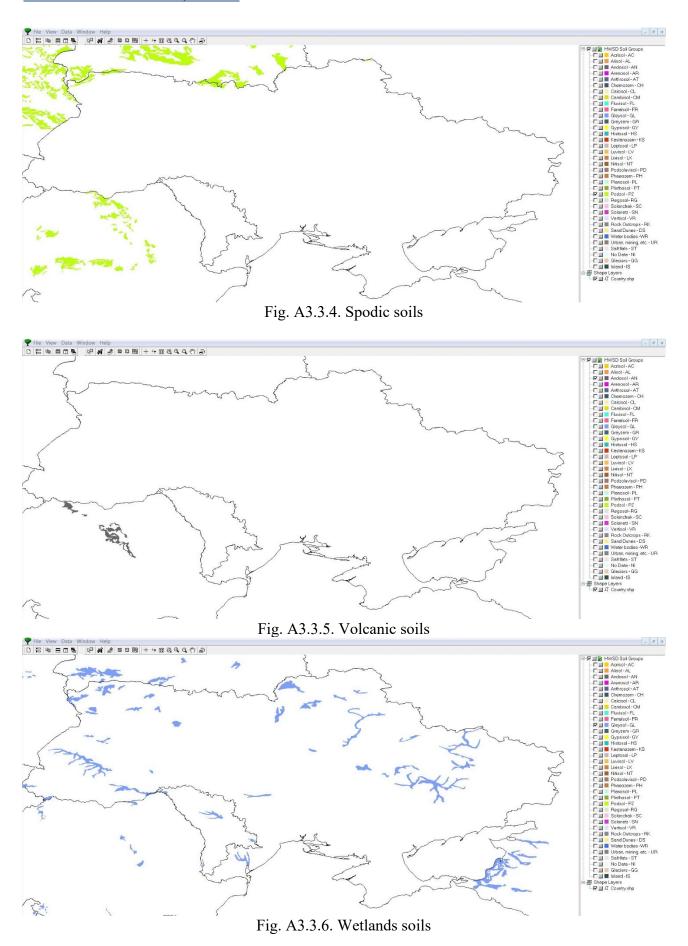
land (national data), t/ha/yr

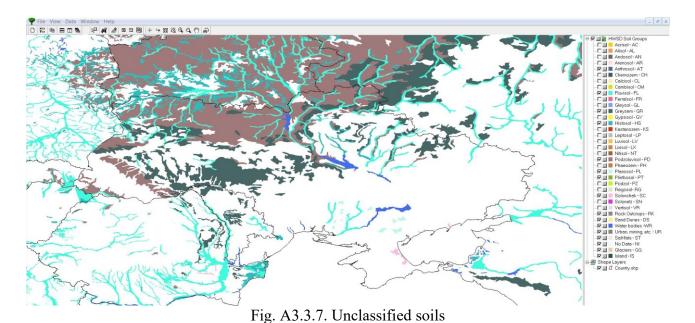

Natural zones and species	Increase in above- ground biomass	Ratio of below-ground and above-ground bio- mass growth	Aggregated value of the factors adopted for esti- mation
			Polissia
Pine	3.1	0.20	3.72
Spruce	4.8	0.30	6.24
Other conifers	3.4	0.20	4.08
Oak	2.5	0.25	3.13
Other hardwood	2.4	0.24	2.98
Birch	2.6	0.15	2.99
Alder	3.8	0.15	4.37
Aspen	4.2	0.15	4.83
Other softwood	4.0	0.15	4.60
Other tree species	3.4	0.15	3.91
			Forest Steppe
Pine	2.5	0.20	3.00
Spruce	4.4	0.30	5.72
Other conifers	3.4	0.20	4.08
Oak	2.6	0.25	3.25
Beech	1.6	0.22	1.95
Other hardwood	2.0	0.20	2.40
Birch	2.6	0.20	3.12
Alder	3.8	0.20	4.56
Aspen	4.2	0.20	5.04
Other softwood	4.0	0.20	4.80
Other tree species	3.4	0.20	4.08
			North Steppe
Pine	2.0	0.22	2.44
Oak	1.4	0.27	1.78
Other hardwood	1.5	0.25	1.88
Birch	2.5	0.21	3.03
Alder	3.6	0.21	4.36
Aspen	4.0	0.21	4.84
Other softwood	3.8	0.20	4.56
Other tree species	3.2	0.20	3.84
			South Steppe
Pine	1.6	0.22	1.95

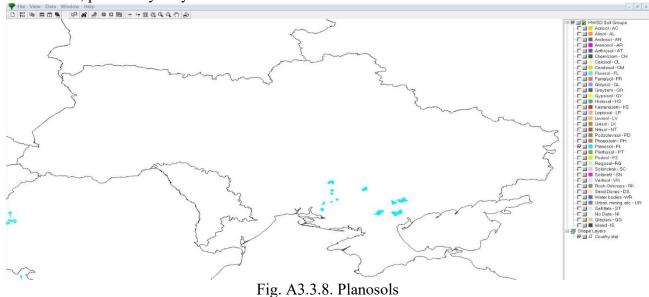

Natural zones and species	Increase in above-ground biomass	Ratio of below-ground and above-ground bio- mass growth	Aggregated value of the factors adopted for esti- mation
Oak	1.2	0.28	1.54
Other hardwood	1.4	0.25	1.75
Birch	2.4	0.20	2.88
Alder	3.5	0.20	4.20
Other softwood	3.6	0.20	4.32
Other tree species	3.2	0.20	3.84
			<u>Carpathian Mts.</u>
Pine	2.4	0.20	2.88
Spruce	5.0	0.30	6.50
Other conifers	4.8	0.20	5.76
Oak	1.6	0.25	2.00
Beech	1.8	0.22	2.20
Other hardwood	1.5	0.20	1.80
Birch	2.6	0.20	3.12
Alder	3.8	0.20	4.56
Aspen	4.2	0.20	5.04
Other softwood	4.0	0.20	4.80
Other tree species	3.4	0.20	4.08
			<u>Crimean Mts.</u>
Pine	1.6	0.20	1.92
Oak	1.4	0.26	1.76
Beech	1.5	0.24	1.86
Other hardwood	1.6	0.24	1.98
Aspen	3.2	0.20	3.84
Other softwood	2.8	0.20	3.36
Other tree species	2.6	0.20	3.12
Shrubs (all zones)	0.4	0.20	0.5


Annual changes in carbon stocks in dead organic matter pool were calculated using Tier 1 method and default EFs. Until new approach for DOM CSC estimations will be delivered it is assumed to have Carbon balance in DOM pool for Forest land remaining Forest land. For Land converted to Forest land equation 2.23 of IPCC 2006 was used with default EFs (table 2.2). This approach was used consistently for entire time series for any conversions to and from Forest land.


Estimation of carbon stock changes in soils for forest land remaining forest land was not performed, since national studies confirm stable carbon stocks in forest soils [4]. It was also assumed that after a period of conversion from sub-category 4.A.2 to 4.A.1, in those areas a stable stock of carbon in soil is formed as well, so the carbon balance was also taken to be zero.


Estimation of carbon stock change in SOM pool of Land converted to forest land was held under Tier 1 with application of default factors. Ukraine made an estimation of soils based on data from Harmonized World Soil Database v.1.2 for use of Table 2.3 of 2006 IPCC guidelines. The exact soil types were selected as included into description of Table 2.3 of IPCC 2006. The following results were observed.





Among soils, not classified clearly by IPCC:

- a) Anthrosol absent in Ukraine;
- b) Fluvisol in Ukraine clearly common alongside rivers. According to the HWSD, sand content is 80 %, clay is 8 %, so it's a sandy soil, in accordance with guidance from fig. 3A.5.3 of IPCC 2006.
- c) Greyzem in the current FAO classification it is included into Phaeozems, which are HAC soils;
- d) Histosols organic soils;
- e) Podzoluvisols in the current FAO classification included into Albeluvisols, which are HAC soils;
- f) Planosols low sand content (14 %) and high clay content (41 %) in 0-30 cm layer. Literature sources indicates its low C-content, thus potentially SOCref for this soil might be taken as for LAC soils;
- g) Plinthosols absent in Ukraine;
- h) Solonchak commonly grouped with Solonetz soils, it is expected to be included into the same group of soils by C content in 30 cm layer (HAC soils).

So, potentially only Planosols could be LAC soils.

Based on that, the absolute majority of mineral soils in Ukraine are HAC soils. Thus, conservatively all conversions between land-use categories consider to occur on HAC soils.

Direct and indirect nitrogen emissions from mineralization from land conversion to forest land emissions were estimated using the Tier 1 method (equations 11.1 and 11.8 of the 2006 IPCC Guidelines). However, due to Carbon stock gains on lands converted to Forest Land, these emissions do not occur.

A3.3.2 Methodological issues for the land-use categories Cropland and Grassland

Information on areas in the Cropland category was taken from statistical reporting form 16-zem, and from the land-use change matrix (Table 6.4) the areas of land converted to cropland were used.

To determine carbon stock changes in living biomass, the area of perennial fruit trees from form 16-zem and default EFs were used [1]. In Ukrainian statistics, there are no data on the dynamics of the areas of orchards, 6-zem form provides total area only.

To perform calculations of CSC the total area of orchards of 1990 was divided equally by default 30-year living cycle according to 2006 IPCC (see table A3.3.11). Any changes in the total area from 16-zem form was interpret as increase or decrease of planting of perennial woody vegetation, resulting in corresponding increase or decrease of 1-year old area of plants.

To calculate losses 30-year-old vegetation area was used as well as default carbon stock from Table 5.1 of Chapter 4 Volume 4 of 2006 IPCC Guidelines.

Table A3.3.11. Distribution of orchards areas by age and corresponding emissions, kha

	Table As	العادة،	istributio			, .	illa colle	sponding	CIIIISSIO	iis, Kiia					ı	
Age	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47
2	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97
3	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57
4	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37
5	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57
6	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22
7	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22
8	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32
9	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32
10	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27
11	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77
12	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47
13	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67
14	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37
15	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37
16	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
17	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
18	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
19	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
20	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
21	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
22	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
23	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
24	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
25	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
26	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
27	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
28	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
29	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
30	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37
Gains, kt C	1787.10	1768.20	1751.40	1764.63	1748.04	1715.28	1698.27	1656.17	1614.06	1596.95	1579.83	1567.65	1552.95	1542.87	1533.63	1529.64
Losses, kt C	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10

Age	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37	28.37	28.37	19.37	20.37
2	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37	28.37	28.37	19.37
3	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37	28.37	28.37
4	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37	28.37
5	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37	28.37
6	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37	28.37
7	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77	28.37
8	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77	27.77
9	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07	28.77
10	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37	28.07
11	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57	28.37
12	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97	29.57
13	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57	27.97
14	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67	27.57
15	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67	28.67
16	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07	29.67
17	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47	26.07
18	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97	26.47
19	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57	23.97
20	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37	23.57
21	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57	21.37
22	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22	22.57
23	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22	20.22
24	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32	20.22
25	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32	8.32
26	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27	8.32
27	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77	20.27
28	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47	12.77
29	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67	20.47
30	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	28.37	19.37	20.37	34.67
Gains. kt C	1524.81	1527.54	1528.17	1526.49	1525.65	1528.17	1528.17	1527.54	1528.38	1527.12	1527.12	1527.12	1527.12	1527.12	1527.12	1527.12	1527.12
Losses. kt C	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1787.10	-1220.10	-1283.10	-2184.00

A	2022
Age	2023
1	34.67
2	20.37
3	19.37
4	28.37
5	28.37
6	28.37
7	28.37
8	28.37
9	27.77
10	28.77
11	28.07
12	28.37
13	29.57
14	27.97
15	27.57
16	28.67
17	29.67
18	26.07
19	26.47
20	23.97
21	23.57
22	21.37
23	22.57
24	20.22
25	20.22
26	8.32
27	8.32
28	20.27
29	12.77
30	20.47
Gains. kt C	1527.12
Losses. kt C	-1289.40

For estimation of carbon emissions in the pool of mineral soils, the nitrogen flow estimation balance method was used with subsequent recalculation for carbon.

The method is based on estimation of the balance between the amount of nitrogen outflow from soil, its removal from the field, and nitrogen inflow into the soil surface, taking into account the intensity and vectors of flows, its further movement. Removal of nitrogen from soil takes place with main products (harvest), side products, post-harvest crop residues, and plant roots. Inflow of nitrogen on the soil surface (or into the upper soil horizon) occurs with post-harvest crop residues, roots, organic and nitrogen mineral fertilizers, as a result of nitrogen fixation by legume crops, with precipitations.

Formation of the nitrogen balance indicating the link between the amount of carbon and nitrogen for agricultural land is explored in detail in national studies [16, 17, 18, 19] and originates from the soviet practice of the soil science [20-26]. Also, prior to application of this method for preparation of the GHG inventory for the pool of mineral soils in the land use Cropland category, it was presented at workshops [27, 28], and also was published [12, 29]. Before moving from application of IPCC Tier 2 methods to the national method of balance estimations, consultation with industry experts were held. The method was approved.

Thus, determination of the dynamics of nitrogen during agricultural land cultivation was held based on the following components of the credit and debit sides of balance estimations:

- components of the nitrogen debit part are soil inflows from:
 - > humification of plant residues processes;
 - humification of organic fertilizers processes;
 - > nitrogen-fixation by legumes;
 - > precipitations;
- components of the credit part of the nitrogen are its removal with:
 - > the yield of main products;
 - > post-harvest crop residues;
 - > by-products;
 - > roots

Besides, in the total amount of nitrogen removed with plants, it is necessary to determine the part that consumed by the plants due to humus mineralization processes. For this purpose, from the total nitrogen content in plants is reduced by the amount of nitrogen that entered the plant from:

- crop residues (above- and below-ground);
- organic fertilizers (the effect of leaching processes is taken into account);
- nitrogen mineral fertilizers (the effect of run-off processes is taken into account).

The amount of nitrogen that consumed by the plants due to processes of soil humus mineralization and led to carbon emissions into the atmosphere is estimated as the difference between the credit and debit sides of the balance calculation. If as a result of the estimations a value more than zero (>0) is obtained, it indicates accumulation of nitrogen and humus in soil, and, as a result, presence of carbon removal processes in mineral soils. In the NIR preparation, the described calculation scheme was applied taking into account the effect of climatic conditions and soil differences. This is because the intensity of the processes mentioned above is dependent on temperature conditions, humidity, soil texture, and other factors.

The values obtained for nitrogen credit and debit are converted into carbon volumes, equation A3.3.6:

$$\overline{C_r} = (\sum N_{D_i} + \sum N_j - \sum N_{M_{is}}) \times k_{C:N_s}, \tag{A3.3.6}$$

where $\overline{C_r}$ is the average annual carbon balance of soil humus, t/ha; r - the index of the territory for which the estimation is performed;

 N_{D_i} - the total amount of nitrogen released into the humus as a result of humification of dead organic matter (above- and below-ground) under crops grown for 2 years prior to the inventory, t/ha;

i - the type of crop;

 N_j - the total amount of nitrogen released into the humus as a result of humification of organic fertilizers introduced into soil in the inventory year, t/ha;

j - the index of the type of organic fertilizer (manure bedding, liquid manure, poultry manure);

 $N_{M_{is}}$ - the total amount of nitrogen in humus mineralized as a result of cultivation of crop i in the inventory year on soil s, t/ha;

s - the index of the soil type for which estimations were performed;

 $k_{C:N_c}$ - carbon to nitrogen content ratio (C:N) in humic substances of ploughed layer.

To perform estimations based on data of the carbon in soil inventory, the assumption was made that humification processes take place one year after the harvest and introduction of the materials into the soil. Thus, the amounts of nitrogen input from crop residues, for example, for 1990, were calculated on the basis of data the harvest of 1988. The assumption makes it possible to more accurately take into account the features of the dynamics of nitrogen flows and does not introduce a substantial error into the calculations, because the increment adopted is covered by the estimation period (from 1990 to the inventory year).

The debit part of equation A3.3.6 is the sum of values of plant residue and organic fertilizer humification volumes.

The amount of nitrogen generated as a result of humification of the dead below- and above-ground organic matter (N_{D_i}) of agricultural crop biomass is estimated by multiplying the amount of biomass returned into soil after harvesting by the value of nitrogen content in it (taking into account direct emissions of nitrogen), and by humification factors, equation A3.3.7:

$$N_{D_i} = \sum_{RS_i} [(B \times \eta - N_{CR}) \times k] + \sum_{Rt_i} [(B \times \eta - N_{CR}) \times k], \quad (A3.3.7)$$

where B is the amount of aboveground (Rs_i) and underground (Rs_i) crop residues, t/ha;

 η - nitrogen content is aboveground (Rs_i) and underground (Rt_i) plant residues, relative units;

k - the factor of humification of above-ground (Rsi) and below-ground (Rti) crop residues, relative units;

 N_{CR} - the amount of nitrogen that is released annually as direct emissions from above-ground (Rs_i) and below-ground (Rt_i) plant residues, t/ha;

i - the crop index;

The amount of nitrogen coming from above- and below-ground plant residues is calculated on the basis of the linear regression equations [30], Table A3.3.12; their humification factors - Table A3.3.13 [17, 22], and their nitrogen content - Table A3.3.14 [23].

Table A3.3.12. Regression equation to determine the mass of crop residues based on the main product yield

	Yield of the main	Weight de	etermination regression	n equation
Crop	products	for by-products	for above-ground residues	for roots
Winterma	10-25	x=1.8y+3.8	x=0.3y+3.2	x=0.6y+8.9
Winter rye	26-40	x=1.0y+25	x=0.2y+3.6	x=0.6y+13.9
Winter wheat	10-25	x=1.7y+3.4	x=0.4y+2.6	x=0.9y+5.8
winter wheat	26-40	x=0.8y+25.9	x=0.1y+8.9	x=0.7y+10.2
C	10-20	x=1.3y+4,2	x=0.4y+1.8	x=0.8y+6.5
Spring wheat	21-30	x=0.5y+19.8	x=0.2y+5.4	x=0.8y+6.0
D1	10-20	x=0.9y+6.5	x=0.4y+1.8	x=0.8y+6.5
Barley	21-35	x=0.9+7.2	x=0.09y+7.6	x=0.4y+13.4
Oats	10-20	x=1.5y-1.2	x=0.3y+3,2	x=1.0y+2
Oals	21-35	x=0.7y+16.2	x=0.15y+6.1	x=0.4y+16
Millet	5-20	x=1.5y+4.5	x=0.2y+5	x=0.8y+7
Millet	21-30	x=2.0y-7.1	x=0.3y+3,3	x=0.56y+11.2
Maize for grain	10-35	x=1.2y+17.5	x=0.23y+3.5	x=0.8y+5.8
Dana	5-20	x=1.3y+4,5	x=0.14y+3.5	x=0.66y+7.5
Peas	21-30	x=1.2y+3	x=0.20y+1.7	x=0.37y+12.9
Buckwheat	5-15	x=1.7y+4.7	x=0.25y+4.3	x=1.1y+5.3

	Yield of the main	Weight do	etermination regression	n equation	
Crop	products	for by-products	for above-ground residues	for roots	
	16-30	x=1.3y+10.3	x=0.2y+5.2	x=0.54y+14.1	
Sunflower	8-30	x=1.8y+5.3	x=0.4y+3.1	x=1.0y+6.6	
D-4-4-	50-200	x=0.12y+2	x=0.04y+1	x=0.08y+4	
Potato	201-350	x=0.1y+3.9	x=0.03y+4.1	x=0.06y+8.6	
C14	100-200	x=0.14y-1.7	x=0.02y+0.8	x=0.07y+3.5	
Sugar beet	201-400	x=0.1y+10	x=0.003y+2.3	x=0.06y+5.4	
Vacatablas	50-200	x=0.12y+0.5	x=0.02y+1.5	x=0.06y+5	
Vegetables	250-400	x=0.12y+0.0	x=0.006y+3.6	x = 0.04y + 6	
Earl most sugar	50-200	x=0.08y+0.1	x=0.01y+1	x=0.05y+5.5	
Feed root crops	200-400	x=0.11y-4.6	x=0.003y+2.4	x=0.05y+5.2	
Flax	3-10	x=5y+15	-	x=1.3y+9,4	
Hemp	3-10	x=5y+30	-	x=2.2y+9.1	
Silage crops (without maize)	100-200	-	x=0.04y+4	x=0.09y=7	
M-: f:1	100-200	-	x=0.03y+3.6	x=0.12y+8.7	
Maize for silage	201-350	-	x=0.02y+5	x=0.08y+16.2	
Annual grasses (vetch, peas, oats)	10-40	-	x=0.13y+6	x=0.7y+7.5	
Darannial arassas	10-30	-	x=0.2y+6	x=0.8y+11	
Perennial grasses	30-60	-	x=0.1y+10	x=1y+15	

Table A3.3.13. Humification and mineralization factors for crop residues in the ploughed layer of soil

ayer or son	-		units	ors, rela-	Crop resi	due mineraliza tors, t/ha	ation fac-
Agricultural crop	Poliss	ia, Forest S				Forest	
	humus <2.5%	humus >2.5%	humus >3.0%	Steppe	Polissia	Steppe	Steppe
Winter wheat	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Spring wheat	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter rye	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Spring rye	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter barley	0.15	0.20	0.20	0.22	0.8	0.7	0.7
Spring barley	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Oats	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Millet	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Buckwheat	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Maize for grain	0.15	0.15	0.20	0.20	0.8	0.8	0.8
Rice	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Sorghum	0.15	0.20	0.20	0.20	0.8	0.8	0.8
Peas	0.15	0.20	0.21	0.23	0.8	0.7	0.7
Vetch	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Annual grasses	0.15	0.20	0.20	0.23	0.8	0.7	0.7
Perennial grasses	0.20	0.20	0.23	0.23	0.8	0.7	0.7
Fodder beans for grain	0.20	0.20	0.23	0.23	0.8	0.7	0.7
Sugar beet	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Potato	0.05	0.07	0.07	0.13	0.8	0.8	0.8
Vegetables	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Fodder root crops	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Food cucurbits	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Fodder cucurbits	0.05	0.07	0.07	0.10	0.8	0.8	0.8
Sunflower	0.15	0.20	0.15	0.14	0.8	0.8	0.8
Long-stalked flax (fiber)	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Soybean	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Hemp	0.15	0.20	0.20	0.20	0.8	0.7	0.7
Winter and spring rape	0.15	0.20	0.22	0.23	0.8	0.7	0.7
Maize for silage, green fod- der, haylage	0.10	0.15	0.15	0.17	0.8	0.8	0.8

Table A3.3.14. Nitrogen content in crop plant residues, %

Crop	Above-ground residues	Roots
Winter rye	0.45	0.75
Winter wheat	0.45	0.75
Spring wheat	0.65	0.80
Barley	0.50	1.20
Oats	0.60	0.75
Millet	0.50	0.75
Buckwheat	0.80	0.85
Maize for grain	0.75	1.00
Sunflower	0.75	1.00
Peas, vetch	1.25	1.70
Flax	0.50	0.80
Нетр	0.25	0.50
Sugar beet	1.40	1.20
Fodder root crops	1.30	1.00
Potato	1.80	1.20
Vegetables	0.35	1.00
Silage crops (without corn)	1.00	1.10
Maize for silage	0.80	1.20
Annual grasses	1.10	1.20
Perennial grasses:		·
- with clover	1.80	2.00
- with lucerne	2.00	2.20

Areas of crop harvest and yields, which are the AD for the calculations of volumes of crop residues (used in the calculation of N_{D_i}), as well as in the calculations of the amount of nitrogen in humus mineralized as a result of cultivation of crop i in the inventory year on soil s ($N_{M_{is}}$), are presented in the tables A3.3.15 and A3.3.16.

Table A3.3.15. The areas of crop harvest by main crop groups, thousand ha

	Grain (wheat, rye, barley etc.)	Pulses (beans, peas)	Industrial crops (sugar beet, flax, hemp etc.)	Oilseeds (sun- flower, soybeans, rapeseeds)	Potato	Vegetables	Melons and gourds	Fodder crops	Grasses for hay and green mass	TOTAL
1990	13084.20	1405.20	1835.51	1821.18	1425.04	489.98	119.99	694.70	13417.39	34304.96
1991	13180.10	1352.80	1759.89	1757.18	1524.51	497.03	116.51	674.20	12892.86	33765.86
1992	12665.62	1289.99	1682.53	1783.83	1698.76	511.58	82.79	626.80	13256.22	33610.06
1993	12967.52	1229.69	1690.06	1739.57	1526.21	534.47	82.87	612.00	12627.03	33018.61
1994	12038.00	1183.10	1586.30	1792.68	1524.01	472.99	54.05	572.70	12981.10	32206.77
1995	12863.64	1076.21	1588.09	2082.46	1526.94	511.52	91.61	508.64	12074.99	32325.03
1996	11646.50	830.70	1352.69	2077.18	1545.55	464.61	79.54	427.50	11995.50	30419.85
1997	13811.40	690.94	1073.87	2048.25	1577.40	461.49	69.21	484.80	10623.40	30843.51
1998	12174.20	578.30	941.07	2563.69	1513.17	452.73	66.57	398.60	9965.10	28658.99
1999	11959.22	492.89	947.37	3091.12	1551.09	489.01	91.05	393.41	9257.58	28277.92
2000	12203.80	383.20	794.48	3084.86	1630.98	526.70	85.96	343.90	7722.60	26777.73
2001	14243.10	411.50	902.04	2596.91	1604.68	486.35	62.62	375.80	7154.00	27840.81
2002	13797.90	444.90	807.38	2943.23	1592.30	475.12	76.60	377.10	6440.70	26960.75
2003	10633.60	479.40	706.08	4204.03	1586.91	473.64	73.37	385.50	5737.20	24289.33
2004	14408.80	367.04	742.74	3986.50	1556.39	472.96	59.40	364.90	5017.30	26976.03
2005	14204.10	401.10	657.70	4412.92	1515.90	469.01	52.48	357.90	4716.40	26787.51
2006	13803.00	388.50	805.88	5106.71	1461.46	478.93	83.44	327.80	4171.90	26627.62
2007	13113.30	314.40	592.94	4847.88	1453.31	455.61	78.87	319.60	3946.90	25122.81
2008	15123.30	257.30	385.41	6283.75	1408.92	461.66	87.48	300.80	3604.90	27919.56
2009	15114.90	355.00	323.37	6057.14	1411.79	460.66	82.52	285.50	3481.10	27584.06
2010	14184.40	391.30	494.93	6591.37	1411.85	473.13	82.39	292.00	3367.90	27311.75
2011	14985.20	336.10	518.64	6766.09	1443.18	508.77	82.31	280.40	3180.20	28123.28
2012	14488.60	303.30	452.44	7143.51	1444.10	505.43	80.94	271.15	3238.30	27944.71
2013	15548.60	255.80	273.66	7529.38	1394.09	490.39	82.16	264.24	3109.40	28959.00

	Grain (wheat, rye, barley etc.)	Pulses (beans, peas)	Industrial crops (sugar beet, flax, hemp etc.)	Oilseeds (sun- flower, soybeans, rapeseeds)	Potato	Vegetables	Melons and gourds	Fodder crops	Grasses for hay and green mass	TOTAL
2014	14940.69	249.64	333.46	8188.35	1370.94	491.69	79.62	257.86	2994.40	28912.66
2015	15055.80	272.49	241.07	8356.98	1325.55	483.93	76.17	258.66	2694.25	28785.80
2016	14672.04	348.00	306.36	8780.94	1345.95	483.47	73.55	261.58	2481.60	28776.08
2017	14702.53	534.67	329.32	9186.41	1356.76	475.51	72.42	259.12	2398.52	29323.98
2018	14879.51	589.79	286.82	9276.29	1352.32	467.57	66.90	250.34	2342.90	29517.34
2019	15582.14	376.90	231.72	9171.55	1340.40	479.33	67.78	245.95	2332.99	29832.65
2020	15594.68	340.17	230.12	9250.67	1356.45	490.06	66.08	244.09	2074.64	29651.87
2021	16298.31	343.59	239.82	9287.37	1314.09	485.06	64.65	231.81	2084.99	30356.67
2022	12972.68	210.45	189.51	8613.22	1282.07	424.51	41.64	208.88	1734.60	25681.46
2023	11258.29	230.52	256.95	8782.16	1236.06	419.92	36.36	194.91	1634.49	24057.34

Table A3.3.16. The total yields of crop harvest by main crop groups, thousand t

	Table I	13.3.10.	The total y	icias of c	Top nai v	est by Inc	im crop g	groups, inousana i			
	Grain (wheat, rye, barley etc.)	Pulses (beans, peas)	Industrial crops (sugar beet, flax, hemp etc.)	Oilseeds (sunflower, soybeans, rapeseeds)	Potato	Vegetables	Melons and gourds	Fodder crops	Grasses for hay and green mass	TOTAL	
1990	49323	3205	45175	2916	16602	6238	682	25277	187544	336973	
1991	38067	2146	36822	2618	14376	5494	650	21045	175830	297054	
1992	35551	2986	29208	2388	20147	4907	153	16539	145787	257674	
1993	44609	3134	34397	2175	20894	6316	314	19747	161223	292815	
1994	34687	2848	28658	1756	16063	5152	181	14226	114901	218475	
1995	33770	1701	30211	3129	14689	5879	494	13242	125549	228665	
1996	25326	1218	23322	2326	18377	5065	361	10509	90556	177061	
1997	36088	1206	17892	2581	16720	5164	312	11416	96750	188130	
1998	27017	765	15696	2590	15404	5501	267	9002	71211	147455	
1999	25786	697	14208	3231	12719	5331	477	7356	54665	124472	
2000	26519	715	13375	3900	19833	5833	373	7264	49520	127334	
2001	40514	896	15751	2639	17347	5916	354	8433	44407	136258	
2002	38383	809	14593	3480	16624	5830	404	8150	40041	128317	
2003	19661	571	13515	4631	18456	6545	382	8665	34729	107160	
2004	41029	811	16741	3728	20762	6968	369	9091	32305	131805	
2005	37296	757	15565	5694	19464	7300	311	9087	28787	124261	
2006	33512	748	22468	6897	19467	8066	688	8567	25578	125990	
2007	28967	358	17005	5954	19096	6839	482	8108	21060	107869	
2008	52708	550	13458	10728	19542	7966	523	8665	22985	137131	
2009	46150	671	10077	9834	19666	8344	635	8133	20723	124241	
2010	38698	591	13760	10455	18707	8076	751	7479	19515	118048	
2011	56253	492	18750	12466	24245	9833	729	8135	22353	153278	
2012	46475	505	18456	12533	23250	10019	799	7693	19283	139023	
2013	62686	372	10800	16222	22264	9773	795	8018	19722	150657	
2014	64404	503	15751	16591	24135	10114	707	7745	19345	159299	
2015	60904	526	10340	17342	21348	9728	602	6992	17552	145354	
2016	66596	905	14042	19632	22269	9934	606	7375	18180	160996	
2017	62056	1277	14901	18814	22739	9778	457	7259	15683	152969	
2018	70287	984	13982	21841	22989	9950	525	7290	15929	163783	
2019	75789	739	10219	22748	20748	10204	581	6985	14945	162962	
2020	65641	632	9165	18892	21326	10152	518	6646	14147	147124	
2021	86663	712	10871	23308	21847	10442	526	6383	14875	175639	
2022	54350	356	9951	18355	21321	7976	293	5978	12197	130784	
2023	60112	482	13140	2204	21776	8758	295	5681	12823	145120	

The amount of nitrogen appeared as a result of humification of organic fertilizers (N_j) is calculated by multiplying the values for the amount of their application (by type) by the value of nitrogen content in them (excluding direct and indirect emissions of nitrogen), equation A3.3.8:

$$N_i = N'_i \times k_r, \tag{A3.3.8}$$

where N_j is the amount of nitrogen introduced into the soil with organic fertilizers (this factor accounts for nitrogen loss through leaching processes - the IPCC default value of 30% was used), t N; k_r - manure humification factor, %.

Amount of nitrogen introduced into soil with organic fertilizers, calculated under equation A3.3.9:

$$N'_{i} = (N_{Ai} - V_{m}) \times d_{i},$$
 (A3.3.9)

where N_{Aj} is the amount of nitrogen in manure of animals after its storage (in the j system), just before introduction into the soil, t N;

V_m - direct nitrogen emissions released annually at application of organic fertilizers, t N/ha;

 d_j - the conversion rate for organic fertilizer into the equivalent of standard bedding manure, relative units.

Table A3.3.17 provides the amounts of applied to soils for the crop production

Table A3.3.17. Fertilization of Cropland and Grassland

	Organic fertilizers	1	Mineral fertilizers applied tive n	
	Cropland	Grassland	Cropland	Grassland
1990	257131	974	1784	57.50
1991	229697	804	1522	45.10
1992	202263	633	1259	32.70
1993	174829	462	996	20.30
1994	143424	413	788	14.30
1995	112019	363	580	8.31
1996	80615	314	372	2.31
1997	64050	384	413	2.71
1998	46659	280	406	3.04
1999	39403	332	327	1.87
2000	28410	303	223	0.90
2001	26535	252	318	0.85
2002	22685	202	313	0.79
2003	17449	151	272	0.74
2004	15083	100	365	0.68
2005	13246	61	377	0.39
2006	13027	49	467	0.43
2007	11911	36	578	0.29
2008	10466	30	736	0.34
2009	10433	11	635	0.22
2010	9874	13	775	0.22
2011	9846	11	899	0.17
2012	9638	11	928	0.25
2013	9602	2	1041	0.20
2014	10183	1	1053	0.29
2015	9989	1	1016	0.11
2016	9466	4	1227	0.29
2017	9614	3	1396	0.20
2018	12109	5	1563	0.20
2019	11924	6	1632	0.23
2020	11898	1	1946	0.40
2021	12361	0	1999	0.30
2022	9975	0	1241	0.17
2023	8858	0	1022	0.30

The direct emissions of nitrogen released annually at application of organic fertilizer is calculated in the Agriculture sector.

Conversion factors for the different types of organic fertilizers to the equivalent amount of standard bedding manure are presented in Table A3.3.18. The humification of bedding manure factor [18] is for Polissia 0.042, Forest Steppe 0.054, Steppe 0.059.

Table A3.3.18. Organic fertilizers to the equivalent bedding manure conversion factors, relative units

Organic fertilizers	Factor
Bedding manure (77% humidity)	1.0
Other manure:	
- semi-liquid, humidity does not exceed 92%	0.5
- liquid, humidity 93-97%	0.25
Peat-manure compost	1.5
Peat-litter compost	2.0
Poultry manure	1.4
Sapropel	0.25
Defecate	0.25

Information on the amount of direct nitrous oxide emissions at crop residues (N_{CR}) and organic fertilizers (V_m) introduction into soil is also taken into account during GHG inventory in the Agriculture sector.

The estimations include the factors accounting for gaseous nitrogen losses at application of mineral nitrogen fertilizers to soil on the basis of expert assessments and analysis of domestic studies [31] - 14.5%. The estimations also take into account the amount of nitrogen introduced into soil from the atmosphere - 2-5 kg/ha [28]. The conservative value used for the estimates was 2.5 kg/ha. Another section of nitrogen input into soil is the symbiotic nitrogen fixation with legumes (Table A3.3.19) [17].

Table A3.3.19. Symbiotic nitrogen fixation factors, kg/t

Crop	Nitrogen fixation
Peas for hay	10
Peas for green mass	3
Legumes	18
Annual grasses, hay	8
Annual grasses for green mass	2
Vetch	15
Perennial legumes for hay	24
Legume cereals for hay	24
Lucerne for hay	27
Clover for hay	24
Clover for green mass	5
Hayfields and pastures for hay	4

The credit part of equation 3.3.6 is the sum of the amount of mineralized humus in the inventory year in view of the crop and soil type (A3.3.10):

$$N_{M_{is}} = \left[N_i^* - \left(\frac{N_{fi} + N_{ri}}{2} + v_j \times N_j \right) \right] \times k_{mnr}, \tag{A3.3.10}$$

where $N_{M_{is}}$ is nitrogen emissions from humus mineralization at growing of crop i on soil s, t N/year; N_i^* - the volume of nitrogen removed by agricultural crops in the inventory year, t N/year;

 N_{fi} - the volume of nitrogen from soil fertilizer input into soil, t N/year;

 N_{ri} - the volume of nitrogen from organic residues input into soil, t N/year;

½ - the factor for nitrogen removal by plants consumed by roots of agricultural crops;

 v_i - the average amount of available nitrogen nutrient in animal manure factor, kg/t (Table A3.4.20);

 N_j - the amount of nitrogen introduced into soil with organic fertilizers (equation A3.3.10) t N/year; k_{mnr} - the factor to consider the links among the processes of nitrogen consumption by crops and humus mineralization, p.p.

Table A3.3.20. The average amount of nitrogen available to plants in animal manure

Animal species	Nitrogen content
Spring application	n (for all soil types)
Semi-liquid (kg/1,000 l)	
Cows	25
Calves	19
Piglets	41
Pigs	25
Hens	63
Bedding manure (kg/t)	
Cows	16
Piglets	22
Hens (wet)	68
Hens (humid)	129
Broilers	142
Mushroom compost	18

It should be noted that the amount of nitrogen coming into the soil with organic residues of roots of perennial grasses (N_{ri}) should be multiplied by 0.25, because the duration of the plants' life cycle is 4 years.

The value of the nitrogen coming into the soil with fertilizers, which are calculated based on the total amount of mineral fertilizers (in weight units) by multiplying them by the corresponding factors, should include the amount of direct and indirect emissions of nitrogen. As already noted, the volumes of direct and indirect emissions of nitrogen from soil application of nitrogen-containing substances (such as fertilizers or plant residues) are considered in the Agriculture sector.

The amounts of nitrogen removals are determined for the plant species based on standard indicators of nitrogen removal in the main product and by-product harvest of crops, Table A3.3.21 [32].

Table A3.3.21. Standard removal factor of nutrients with the harvest of agricultural crops

Economic regions* and	Removal o	f nitrogen per kg	· 1 ton of product,	Absolute dry matter of the product, %		Ratio of by- products vs	
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	main products	
						Winter wheat	
Ukraine, on average	18.6	4.5	26.7	86	86	1.8	
Donetsko-Dniprovsky	17.5	4.1	24.5	86	86	1.7	
Forest-Steppe	16.5	4.8	24.5	86	86	1.7	
Steppe	18.7	3.6	25.0	86	86	1.7	
Southwestern	19.4	4.9	29.1	86	86	2.0	
Forrest and Meadow	19.3	4.4	26.7	86	86	1.7	
Forest-Steppe	19.7	5.3	31.2	86	86	2.2	
Southern	19.6	4.6	27.8	86	86	1.8	
Steppe	18.4	5.5	27.2	86	86	1.6	
				W	inter wheat (under irrigation)	
Ukraine, on average	19.6	4.3	27.3	86	86	1.8	
						Winter rye	
Southwestern	16.5	4.8	26.1	86	86	2.0	
						Winter barley	
Southern	15.0	5.7	22.4	86	86	1.3	
						Spring barley	
Ukraine, on average	16.8	5.4	23.8	86	86	1.3	
Donetsko-Dniprovsky	16.7	5.6	24.5	86	86	1.4	
Forest-Steppe	14.4	4.9	20.3	86	86	1.2	
Steppe	19.1	6.5	28.9	86	86	1.5	

Economic regions* and	Removal o	f nitrogen per kg	1 ton of product,		ry matter of duct, %	Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
Southwestern	16.5	5.2	23.3	86	86	1.3
Forrest and Meadow	16.7	5.3	23.1	86	86	1.2
Forest-Steppe	16.3	5.1	23.1	86	86	1.3
Southern	18.5	6.0	25.7	86	86	1.2
2 S G G G G G G G G G G G G G G G G G G	10.0	0.0	2011			Spring cereals
Ukraine, on average	16.8	5.4	23.8	86	86	1.3
Donetsko-Dniprovsky	16.7	5.6	24.5	86	86	1.4
Southwestern	16.5	5.2	23.3	86	86	1.3
Southern	18.5	6.0	25.7	86	86	1.2
Souriern	10.5	0.0	23.7	00		Oats
Ukraine, on average	17.4	6.6	26.6	86	86	1.4
Oktaine, on average	17.4	0.0	20.0	00	00	Maize for grain
Ukraine, on average	13.7	6.4	22.2	86	86	1.3
Donetsko-Dniprovsky	14.6	6.2	23.1	86	84	1.4
Forest-Steppe	15.7	5.0	24.5	86	72	1.8
**	14.1	6.9	22.1	86	91	1.8
Steppe Southern	13.5	6.9	21.9	86	93	1.2
Southern	13.3	0.9	21.9			under irrigation)
I II-u-i-u-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a	12.7	7.0	22.0			
Ukraine, on average	13.7	7.0	22.0	86	92	1.2
TH.	16.6		22.0	0.6	0.6	1.2
Ukraine, on average	16.6	5.2	23.0	86	86	
TH.	10.1	0.0	27.5	0.6	0.2	Buckwheat
Ukraine, on average	18.1	8.8	37.5	86	83	2.2
7.1	10.0		1.50	0.6	I 00	Rice
Ukraine, on average	10.8	5.4	15.8	86	90	0.9
		T	T=	T	T	Peas
Ukraine, on average	31.8	10.1	48.7	86	80	1.7
		T	T	T		ong-stalked flax
Ukraine, on average	5.6	35.4	53.8	81	88	0.6
		T	T	T	T	Hemp
Ukraine, on average (fi-	6.3	7.8	60.0	87	81	0.6
ber)		,	00.0	0,	0.1	0.0
Ukraine, on average	37.4	_	_	_	_	_
(seeds)						
		T	T		T	Sugar beet
Ukraine, on average	2.02	3.62	4.19	22.4	14.2	0.6
Donetsko-Dniprovsky	2.02	4.05	3.96	22.9	15.8	0.5
Forest-Steppe	1.99	3.84	3.72	21.9	14.7	0.4
Steppe	2.19	4.36	4.41	23.8	17.1	0.5
Southwestern	2.03	3.42	4.29	22.1	13.4	0.7
Forest-Steppe	1.99	3.43	4.29	22.3	13.3	0.7
			1			under irrigation)
Ukraine, on average	1.91	4.86	4.78	21.1	15.3	0.6
						Sunflower
Ukraine, on average	22.6	7.9	40.7	88	86	2.2
Donetsko-Dniprovsky	21.7	7.9	37.1	88	86	2.2
Forest-Steppe	24.2	7.7	43.5	88	87	2.5
Steppe	21.4	7.9	38.8	88	85	2.2
Southern	24.6	8.1	40.8	88	86	2.0
						Soy
Ukraine, on average	53.7	7.3	61.7	86	88	1.1
						Potato
Ukraine, on average	3.6	3.0	5.0	22.5	19.5	0.5
Donetsko-Dniprovsky	3.8	3.2	5.1	22.5	20.0	0.4
Southwestern	3.5	2.9	5.0	22.5	19.4	0.5
Forrest and Meadow	3.6	3.0	5.1	22.6	19.1	0.5
Forest-Steppe	3.4	2.7	4.7	22.3	20.0	0.5
11						Fodder beet

Economic regions* and	Removal of nitrogen per 1 ton of product, kg				ry matter of duct, %	Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
Southwestern	1.9	4.7	3.5	13.2	14.1	0.3
						Fodder turnip
Ukraine, on average	2.1	4.3	3.2	10.8	12.1	0.25
	·	·		<u> </u>	·	Turnips
Ukraine, on average	1.6	-	-	9.1	-	-
771	1 10		T 2.5	T = =		under irrigation)
Ukraine, on average	1.9	3.2	3.5	7.7	12.7	0.5
T T1 '	1.6	2.6	2.5			under irrigation)
Ukraine, on average	1.6	3.6	3.5	4.8	15.3	0.5 under irrigation)
Ukraine, on average	1.5	3.9	2.4	5.6	18.8	0.2
Okraine, on average	1.3	3.9	2.4	3.0	10.0	Red beet
Ukraine, on average	3.6	_	_	14.0	_	Keu beet
Oktanie, on average	3.0	_	-	14.0		under irrigation)
Ukraine, on average	1.4	4.4	2.2	7.7	18.1	0.2
Oktaine, on average	1.7	7.7	2.2	7.7	10.1	Onion
Ukraine, on average	1.7	4.9	2.9	13.2	22.2	0.2
		112				Carrots
Ukraine, on average	1.5	3.4	2.9	10.9	15.8	0.4
, 8						Pepper
Ukraine, on average	2.0	3.7	5.0	9.5	15.4	0.8
, S						Tobacco
Ukraine, on average	35.3	15.3	47.5	81	82	0.8
j						Lavender
Southern	7.6	7.6	19.8	35.6	40.4	1.6
						Clary sage
Ukraine, on average	8.4	4.8	14.6	30	30	1.3
_						Mint
Ukraine, on average	24.1	15.3	37.9	86	85	0.9
						Maize for silage
Ukraine, on average	-	-	3.2	21.8	-	-
Donetsko-Dniprovsky	-	-	3.5	25.1	-	-
Southwestern	-	-	3.0	19.5	-	-
Southern	-	-	3.8	25.5	-	-
	T	T	Ī		ze for silage (under irrigation)
Ukraine, on average	-	-	3.3	22.1	-	-
7.1	T	T	10.0		l grasses (hay	, legume-cereals)
Ukraine, on average	-	-	18.8	84	-	-
Donetsko-Dniprovsky	-	-	14.8	84	-	-
Southwestern	-	-	19.0	84	-	-
Southern	-		19.8	84	-	-
I Ilrusia a			12.2	0.4		ses (hay, cereals)
Ukraine, on average	-	-	13.2	84	-	-
Donetsko-Dniprovsky Southwestern	-	-	12.5 15.4	84 84	-	-
Souniwestern	-	<u>-</u>	13.4	04	Annual av	rasses, total (hay)
Ukraine, on average	_		15.9	84	- Annuai gr	asses, total (nay)
Donetsko-Dniprovsky	-	_	13.5	84	-	<u>-</u>
Southwestern	-		17.9	84		
Southern	_	_	19.8	84	_	-
Southern			17.0		Perennial grad	sses (hay, alfalfa)
Ukraine on average (dur-					orominar gras	soos (may, amana)
ing irrigation)	-	-	29.8	84	-	-
-55)				Perennia	l grasses (hav	, legume-cereals)
Ukraine, on average	-	-	20.9		-	-
, 6					Perennial gra	sses (hay, clover)
Ukraine, on average	-	_	24.3	84	-	-
Donetsko-Dniprovsky	-	-	19.3	84	-	-

Economic regions* and	Removal o	f nitrogen per kg	1 ton of product,	Absolute dry matter of the product, %		Ratio of by-
natural zones	main products	by-prod- ucts	totally	main products	by-prod- ucts	products vs main products
Southwestern	-	-	24.8	84	-	-

^{*} The economic regions of Ukraine during the times of the USSR included the following oblasts: Donetsko-Dnieprovsky economic region - Dnipropetrovsk, Donetsk, Zaporizhya, Kirovograd, Luhansk, Poltava, Sumy, and Kharkiv Oblasts; Southwest - Vinnytsia, Volyn, Zhytomyr, Ivano-Frankivsk, Kyiv, Rivne, Ternopil, Khmelnytsky, Cherkasy, Chernivtsi, and Chernihiv Oblasts; Southern - Odessa, Mykolaiv, Kherson Oblasts, and the AR Crimea

The factor to consider the links between the processes of plant consumption of nitrogen and the processes of humus mineralization of (k_{mnr}) in equation 3.3.11 is calculated by taking into account the correction factors for the soil particle size distribution and the type of agricultural plants based on the equation:

$$k_{mnr} = k_i \times k_s, \tag{A3.3.11}$$

where k_i is mineralization factors to account for the effect of the type of crop cultivated; k_s - factors to account the soil particle size distribution.

The above factors are shown in Tables A3.3.22 and 3.3.23, respectively [18].

Table A3.3.22. The factors to account the type of agricultural crops at soil humus mineralization, relative units

Cron	Soil and climatic zone							
Crop	Polissia	Forest Steppe	Steppe					
Winter grains	0.9	0.7	1.35					
Sugar beet	1.7	1.5	1.59					
Maize for grain	1.4	1.1	1.56					
Maize for silage	0.3	0.25	1.47					
Barley	0.05	0.7	1.23					
Oats	0.27	0.82	1.20					
Millet	0.00	0.72	1.10					
Buckwheat	0.12	1.06	1.10					
Spring wheat	-	-	1.10					
Vegetables	1.34	1.20	1.60					
Flax	0.90	-	-					
Potato	1.50	1.20	1.61					
Sunflower	-	1.00	1.39					
Annual grasses	0.80	0.80	1.10					
Perennial grasses	0.55	0.30	0.60					

Table A3.3.23. The factors to account for the soil particle size distribution at soil humus mineralization, p.p.

mmeranzacien, p.p.	·
The soil group based on particle size distribution	Mineralization factor
Sandy	1.8
Sandy loam	1.4
Light loamy	1.2
Medium loamy	1.0
Heavy loamy and clay	0.8

Equation A3.3.8 includes the factor, which allow to consider the ratio of carbon and nitrogen (C:N) content in ploughed layer humic substances. Values of the parameters are shown in Table A3.3.24 [32].

Table A3.3.24. The ratio of carbon and nitrogen (C:N) content in ploughed level humic sub-

stances for various types of soils

Types of soil	Humus content, %	Organic C in the general initial soil,	Gross ni- trogen, %	C:N
			Polis	ssia soils
Sod-podzolic clay and sandy soils on water-glacial sands	0.57	0.33*	0.03	11.02
Sod-mesopodzolic sabulous soils on layered water-glacial sands	0.87	0.5*	0.05	10.09
Sod-mesopodzolic light loamy soils on water-glacial loam underlaid by layered sands	1.17	0.67	0.07	9.57
		Soils	of the Fores	t Steppe
Light gray podzolized soils on loess	4.19	2.43	0.23	10.57
Gray podzolized soils on loess	2.03	1.18	0.13	9.08
Dark gray podzolized soils on loess	7.29	4.23	0.14	10.58
Dark gray degraded soils on loess	3.48	2.02	0.21	9.62
Degraded black soil on loess	3.53	2.05	0.21	9.76
Typical thick low-humic black soil on loess	4.58	2.66	0.30	8.87
Typical thick medium-humic black soil on loess	5.61	3.25	0.29	11.21
Meadow black soil on loess loam	4.90	2.84	0.28	10.15
Alkali meadow deep black soil on loess loam	2.40	1.39	0.14	9.94
Meadow surface alkaline loamy soil on alluvial sediments	6.90	4.00	0.43	9.30
			Ste	ppe soils
Ordinary thick medium-humic black soil on loess	6.10	3.54*	0.30	11.79
Ordinary thick low-humic black soil on loess	4.70	2.73*	0.27	10.10
Ordinary medium-thick low-humic black soil on loess	4.60	2.90	0.25	11.60
Black soils on clay shale eluvium	4.59	2.66*	0.23	11.58
Black soils on sandy shale eluvium	3.30	1.91*	0.16	11.96
Highly alkalinized saline balck soils on saline Paleogene clays	3.00	1.74*	0.15	11.60
Southern micellar-carbonate black soils on loess	3.40	1.97*	0.22	8.96
Dark brown alkaline (arable) on loess	3.40	1.97*	0.16	12.33
Brown alkaline soils on loess	3.60	2.09*	0.21	9.94
Brown medium alkali on loess	4.10	1.97	0.20	9.85
Meadow black soil surface gley low-solodized soils on gleying loess	5.20	2.33	0.27	8.63
Solodized gley soils (gley-malt) on gleyed loess	4.40	2.47	0.26	9.50
	Soils of	the Carpathian bro	wnsoil-fores	t region
Acid moderate-humic brownsoil on eluvium shale	21.04	12.20*	1.06	11.51
Meadowlike brownsoil acid on ancient lake alluvial sediments	5.91	3.43	0.29	11.83
		Soils of th	e mountain	Crimea
Ordinary micellar-carbonate foothills black soil on ancient clay talus	3.60	2.66	0.25	10.64

Calculated by multiplying the value of the humus content in soil by the factor of 1/1.724.

To perform estimations using the described method, it is necessary to know the areas by soil types in Ukraine (Table A3.3.25), as well as take into account the distribution of soil types by natural zones (Table A3.3.26) [32].

Table A3.3.25. The area of soil types in Ukraine, ha

	Area of t	he soils	Area of arable land			
Soil	kha	%	kha	% of the total	% of ar- able land	
Sod-podzolic sabulous and clay sabulous	1573.0	3.5	1015.0	64.5	3.5	
Sod-podzolic gley	1916.3	4.3	1140.7	59.5	3.6	
Gray forest	7924.0	17.8	6719.1	84.8	21.3	
Typical black soils (on-eroded and eroded) on loess rocks	6272.2	14.1	5731.4	91.4	18.1	
Ordinary black soils (on-eroded and eroded) on loess rocks	10395.0	23.4	8760.0	84.3	27.7	

	Area of t	he soils	Arc	ea of arable la	ınd
Soil	kha	%	kha	% of the total	% of ar- able land
Southern black soils (on-eroded and eroded) on loess rocks	6237.9	14.1	4662.4	74.7	14.8
Meadow black soil, mainly on loess rocks	1124.9	2.5	700.7	62.3	2.2
Dark brown and chestnut in loess rocks	1489.9	3.4	1241.0	83.3	3.9
Meadow, mainly on alluvial rocks	1939.1	4.4	663.0	34.2	2.1
Swampy, peat swampy, and peatlands	2061.8	4.6	83.5	3.8	0.26
Alkali and solodized	537.8	1.2	256.1	47.6	0.8
Sod	1627.1	3.7	396.3	24.4	1.3
Brownsoil, sod-brownsoil	956.4	2.2	192.7	20.1	0.6
Brown mountain, mountain meadow	41.8	0.1	7.2	17.2	0.02
Rock exposures	311.0	0.7	21.6	6.9	0.1
TOTAL	44406	100	31586.3	71.7	100

Table A3.3.26. Characteristics of agricultural land by the mechanical composition (without homestead land for personal use), kha

nomestead fand fe	p tradition), 11110			Mechanica	al compositi	on of soils		
Region	Total area as on November 1, 1990	Of them explored	Hard and medium-clay	Light clay	Hard loamy	Average loamy	Light loamy	Sandy loam	Arenaceous
AR Crimea	1729.2	1668.4	378.10	861.20	340.50	70.80	15.00	2.30	0.50
Vinnytska	1850.2	1824.9	8.00	30.50	579.20	1042.40	135.10	17.50	5.90
Volynska	967.5	960.2	0.00	0.00	1.10	9.60	269.10	216.60	289.50
Dnipropetrovska	2373.1	2351.4	14.90	672.40	1251.8	334.20	39.90	27.30	10.20
Donetska	1917.3	1896.1	161.70	1265.3	338.70	94.20	14.90	19.90	1.40
Zhytomyrska	1475.0	1455.2	0.00	0.00	1.20	203.20	441.10	591.30	195.90
Transcarpathian	357.2	343.2	7.30	34.60	91.70	155.50	43.90	9.70	0.50
Zaporizhska	2160.5	2117.7	235.20	1241.2	417.50	154.00	51.50	16.00	2.30
Ivano-Frankivska	340.1	333.4	6.40	47.40	88.40	100.70	82.90	6.10	0.00
Kyivska	1539.3	1522.1	0.00	0.00	5.80	275.40	778.90	241.30	119.50
Kirovohradska	1938.3	1892.6	0.80	1041.8	626.60	182.20	21.90	8.30	1.10
Luganska	1816.3	1807.3	24.10	735.40	789.60	179.10	44.20	29.30	5.60
Lvivska	1118.3	1113.8	2.30	4.80	32.60	210.50	555.80	149.60	77.00
Mykolaivska	1934.8	1902.7	18.60	980.60	750.10	126.40	16.50	6.60	3.60
Odesska	2445.9	2427.9	54.20	400.40	1649.2	245.90	36.50	35.40	6.30
Poltavska	2054.3	2027.2	0.00	0.90	416.70	1129.50	362.30	57.10	24.00
Rivnenska	815.6	798.9	0.00	0.00	0.50	37.20	350.70	123.70	188.10
Sumska	1618.0	1610.9	0.20	6.70	101.50	719.00	474.30	189.40	46.80
Ternopilska	962.2	947.2	0.00	0.00	137.60	671.10	92.30	12.90	2.10
Kharkivska	2287.6	2244.7	16.10	1284.7	768.80	117.50	28.70	22.60	5.90
Khersonska	1908.6	1886.5	16.30	436.90	806.20	363.50	159.30	76.00	27.80
Khmelnytska	1437.8	1418.6	0.00	2.20	110.50	656.70	500.30	56.90	12.00
Cherkaska	1293.7	1285.2	0.60	55.10	422.80	458.40	285.60	37.20	8.30
Chernivetska	410.3	408.8	3.80	46.50	179.00	114.20	55.60	8.70	1.00
Chernihivska	1954.3	1943.4	0.00	0.00	0.00	54.10	981.60	579.00	184.10
Total	38705.4	38188.3	948.6	9148.6	9907.7	7705.3	5837.9	2540.7	1219.3

Data on fires on agricultural land is shown in Table A3.3.27.

Table A3.3.27. Distribution of areas damaged by fires by agricultural crops, ha

Crop	Wheat	Barley	Maize	Oats	Rye	Millet	Rice	Buckwheat	Peas	Sunflower	Soybeans	Rapeseed	Spring vetch	Medicago	Sorghum	Phalaris	Sainfoin	Miscanthus
2005	46	19	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2010	143	76	99	0	0	0	0	4	0	0	10	0	6	0	0	0	0	0
2015	2 203	118	1 718	31	10	0	0	0	0	0	9	0	0	2	0	0	0	0
2016	1 353	337	67	1	3	3	0	0	1	0	23	0	0	2	1	170	0	0
2017	1 527	286	476	0	3	4	0	0	6	41	0	0	0	0	7	0	0	0
2018	1 177	30	103	0	0	1	0	0	0	21	53	0	0	0	2	24	0	0
2019	1 837	592	786	1	28	0	0	0	0	0	48	0	0	0	0	0	0	0
2020	4 502	95	262	1	24	1	0	0	0	1	0	0	0	1	0	0	0	0
2021	1 987.3	427	73	0	0	0	9	0	5	0	0	21	0	15	0	0	0	5
2022	12 011	950	120	2	0	0	0	0	107	50	0	440	0	2	0	0	43	0
2023	2 150	106	29	0	4	0	0	0	7	1	21	0	0	7	0	0	0	0

Estimation of CH_4 , N_2O , CO, and NO_x emissions was conducted under Tier 1 of 2006 IPCC (2006 IPCC equation 2.27) using default EFs.

To estimate emissions of non-methane volatile organic compounds, 2013 EMEP/EEA Emission Inventory Guidebook [8] was used. In accordance with the methodological guidelines, estimation of NMVOC emissions was carried out according to equation A3.3.12:

$$E_{pollutant} = AR_{residues_burnt} \times EF_{pollutant}$$
 (A3.3.12)

where:

E_{pollutant} - emissions of pollutant (kg);

 $AR_{residues_burnt} \text{ - the indicator of activity data, the burnt residue mass (kg of dry matter);} \\$

EF_{pollutant} - the emission factor for pollutant (kg/kg of dry matter).

To determine the mass of burnt residues, equation A3.3.13 was used:

$$AR_{reidues\ burnt} = A \times M_B \times C_f \tag{A3.3.13}$$

where:

A - burned area, ha;

M_B - mass of fuel available for combustion, t/ha;

C_f - combustion factor (dimensionless).

To estimate emissions of non-methane volatile organic compounds, the default emission factor was used from Table 3-1 of 2013 EMEP/EEA Emission Inventory Guidebook [8].

The same M_B and C_f values were used as for estimation of CH_4 , CO, N_2O , and NO_x . Their source was Table 2.4. of the 2006 IPCC Guidelines [1].

Also, information was obtained on the number of fires and the areas affected by fires on pastures and wetlands (Table A3.3.28) from the Ukrainian Scientific Research Institute of Civil Protection.

Table A3.3.28. The number of fires and the area of burnt pastures and non-forest peatlands in Ukraine

	Destroyed and damaged pastures, ha	Destroyed and damaged non-for est peatlands, ha
2000	-	-
2001	-	-
2002	-	-
2003	-	-
2004	-	-
2005	752	156
2006	193	259
2007	338	90
2008	157	125
2009	230	310
2010	1049	242
2011	839	123
2012	733	89
2013	739	51
2014*	876	420
2015*	2533	1167
2016*	299	33
2017*	861	221
2018*	860	271
2019*	929	515
2020*	5589	311
2021*	685	55
2022*	4107	135
2023*	1644	30

Statistics on the number of fires has been conducted since 2000, and that on the areas - only since 2005.

The estimation of GHG emissions from burning of pastures was produced using Equation 2.27 of the 2006 IPCC Guidelines [1]. The default EFs were also used.

Nitrogen emissions from mineralization of soil Carbon during land-use conversions were estimated using the Tier 1 method (Equations 11.1 and 11.8 of the 2006 IPCC Guidelines). For lands converted to cropland, nationally determined C:N ratio was used (table A3.3.22), for grassland the default ratio was used - 15.

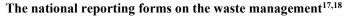
A3.3.3 Methodological aspects of the HWP category

Calculations in HWP category was performed with Tier 1 method by production approach. With necessity to comply requirements of KP-Supplement it was decided to apply KP reporting approach to reporting under the Convention also.

The main data sources for the calculations are the State Statistic Service of Ukraine (production of sawnwood, industrial roundwood production, import and export, production for particular years, import and export of pulp) and FAO. For recent years due to necessity to comply with legislation the State Statistic Service of Ukraine do not provide data of pulp production, this data was derived from the Ukrainian Association of Pulp and Paper industry «UkrPapir».

Activity data for the calculations is provided in table A3.3.29. For the years 1990-1991 FAO data for production of wood panels, paper and paperboard is absent. Thus, GDP data was used to derive data for these years using splicing techniques.

Table A3.3.29. Activity data for HWP category calculations


	Sawnwood production, m ³	Industrial round- wood production, m ³	Industrial round- wood export, m ³	Industrial round- wood import, m ³	Wood panels production, m ³	Paper and paperboard production,	Pulp production, t	Pulp export, t	Pulp import, t
1990	7 441 000	8 900 000	No data	No data	1 564 365	312 325	104 049	No data	No data
1991	6 106 000	7 600 000	No data	No data	1 395 154	267 888	89 685	No data	No data
1992	4 700 000	7 000 000	693	No data	1 215 000	228 790	75 810	0	2 112
1993	3 882 000	6 600 000	1 100	200	988 000	145 290	47 699	0	2 100
1994	3 124 000	6 200 000	1 100	200	614 000	78 500	51 167	0	2 100
1995	2 917 000	5 900 000	20 100	470 300	560 000	85 200	60 751	0	2 100
1996	2 296 000	5 200 000	303 692	391 662	382 000	292 890	33 988	600	63 200
1997	2 306 000	4 741 900	452 013	167 079	372 000	264 000	26 334	500	48 100
1998	2 258 000	4 659 000	825 459	90 658	355 000	292 900	29 537	300	53 445
1999	2 141 000	4 700 500	2 305 667	83 828	392 000	310 900	37 302	301	54 827
2000	2 127 000	5 239 200	1 259 205	94 890	490 000	411 000	38 639	301	54 827
2001	1 995 000	5 350 100	1 086 604	112 020	659 000	479 900	40 777	50	64 600
2002	1 950 000	5 584 400	1 757 505	89 177	868 300	531 600	41 243	0	73 030
2003	2 197 000	5 788 900	1 845 406	116 784	970 000	618 037	39 633	0	87 090
2004	2 414 000	6 536 500	2 607 308	135 505	1 239 000	722 999	34 400	310	95 050
2005	2 409 000	6 617 000	2 394 944	170 124	1 443 000	768 010	38 600	0	91 440
2006	2 385 000	6 906 700	2 205 802	172 537	1 604 000	804 000	31 400	949	88 049
2007	2 525 000	7 364 400	2 586 028	133 351	1 944 000	937 001	32 300	344	107 841
2008	2 266 000	7 062 600	2 066 372	125 803	1 944 000	937 001	29 800	99	95 636
2009	1 753 000	6 181 600	1 883 311	11 955	1 522 000	813 999	4 100	12	82 726
2010	1 736 000	7 536 000	2 933 874	18 519	1 751 000	857 001	5 800	66	84 131
2011	1 888 000	7 989 400	3 008 873	22 268	1 989 000	986 998	4 100	53	77 385

	Sawnwood production, m ³	Industrial round- wood production, m ³	Industrial round- wood export, m ³	Industrial round- wood import, m ³	Wood panels production, m ³	Paper and paperboard production, m^3	Pulp production, t	Pulp export, t	Pulp import, t
2012	1 832 600	7 850 800	3 018 713	19 808	2 097 300	1 123 060	0	0	73 421
2013	1 786 100	8 102 100	3 453 913	14 009	2 167 700	1 079 350	0	0	68 819
2014	1 767 300	8 158 792	3 518 169	7 699	1 886 000	1 079 350	0	0	61 454
2015	1 927 300	8 302 600	2 976 300	14 000	1 936 000	1 079 350	0	0	49 924
2016	2 166 800	8 311 300	2 074 100	14 000	2 267 700	1 079 350	0	0	57 368
2017	2 636 100	7 296 600	12 100	9 290	2 195 700	983 000	0	0	58 928
2018	3 271 600	8 976 000	3 300	23 117	3 222 700	1 155 000	0	0	66 295
2019	3 103 900	9 303 400	3 374	4 667	2 889 700	1 033 000	0	0	72 059
2020	3 025 100	8 996 300	142	7 425	2 844 700	1 039 000	0	0	76 052
2021	3 172 400	8 215 000	400	52 091	3 589 700	1 198 000	0	0	78 500
2022	3 201 000	6 395 800	400	24 581	3 419 700	982 429	0	0	37 806
2023	3 201 000	6 640 000	400	4 500	3 419 700	982 429		0	37 500

A3.4 Waste (CRT Sector 5)

A3.4.1 Waste management reporting responding to the state statistical

There are two statistical observations on waste management in Ukraine – reporting forms No. 1-waste "Waste Management" and No.1-MSW "MSW management". The structures of the reporting forms and general schema of statistics flow as per forms are shown in Figure A3.4.1.

Structure of reporting forms

information on volumes of generation and waste management by:

- ✓ management operations:
- Chapter 1. MSW collection and transportation
- Chapter 2. MSW processing and/or utilization
- Chapter 3. MSW landfilled and damped
- Chapter 4. Monitoring of MSW management
 - ✓ regions

- ✓ by the types of economic activity which is the national analogue of NACE Rev. 2 (Table A3.4.1)
- ✓ codes and names of waste according to the Waste classifier DK 005-96¹⁹ (Figure A3.4.2);
- ✓ management operations^{20,21} in accordance with the *Annex I, II of* Directive 2008/98/EC²² and Basel Convention²³ (Table A3.4.2);
- categories of waste by material^{4,5} (in accordance with EWC-Stat Rev.4 adapted to national conditions) (Table A3.4.3);
- ✓ waste hazard classes (I- IV)⁴:
- ✓ groups of waste by the main hazardous component^{4,5};

Fig.A3.4.1. The structures of the reporting forms on the waste management

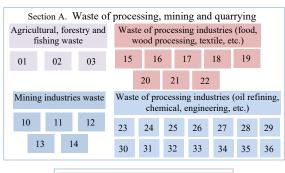
¹⁷ On the approval of reporting form No. 1-MSW and Instructions for filling out reporting form No. 1-MSW "Report on solid household waste management" No. 308 (2006, September 19). Ministry of Construction, Architecture and Communal Services of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0308667-06#Text (In Ukrainian)

¹⁸ On the approval of the form of state statistical observation No. 1-waste (annual) "Report on generation and waste management" № 176 (2022, June 10). State Statistics Service of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0176832-22#Text (In Ukrainian)

¹⁹ State Classifier of Ukraine. Waste classifier DK 005-96. State Committee of Ukraine for Standardization, Metrology and Certification. Approved and put into effect by the order № 89 (1996, February 29) of the State Statistics Service of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0089217-96#Text (In Ukrainian)

²⁰ On the approval of the Methodological Provisions on the Organization of State Statistical Monitoring of Waste Management №328 (2013, October 28). State Statistics Service of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0328832-13#n273 (In Ukrainian)

²¹ On approval of lists of categories, groups of waste and waste management operations №24 (2015, January 23). The State Statistics Service of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0024832-15#Text. (In Ukrainian)


²² Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Available at: https://zakon.rada.gov.ua/rada/show/984 029-08#n486. (In Ukrainian)

²³ Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. Available at: https://za-kon.rada.gov.ua/laws/show/995 022#Text (In Ukrainian)

The Waste classifier (DK 005-96) is based on the same principles as the Classification of Types of Economic Activity (CTEA). In turn, the CTEA was developed by analogy with the NACE Rev. 2 of European Classification of Economic Activities (Table A3.4.1).

The Waste classifier consists of two parts:

- classification of waste (part 1) generated in the mining, quarrying and processing sectors of the economy (section A), as well as waste generated in the sphere of services activities (section B);
- classification of services related to waste (part 2). The structure of Waste classifier (DK 005-96) (part 1) is shown in Figure A3.4.2.

Codes and names of wastes as per State classifier of wastes (DK 005-

Waste generated by: 01 – Agriculture; 02 – Forestry; 05 – Fishing;

- 10 Mining of coal and lignite; 11 Extraction of crude petroleum and natural gas; 12 - Mining of uranium and thorium ores; 13 - Extraction of metal ores; 14 - Other mining and quarrying;
- 15 Manufacture of food and beverage products; 16 Manufacture of tobacco products; 17 - Manufacture of textiles; 18 - Manufacture of wearing and fur apparel; 19 - Manufacture of leather and related products; 20 - Manufacture of wood and of products of wood and cork; 21 - Manufacture of pulp, paper and paper products; 22 - Printing and reproduction of recorded media;
- 23 Manufacture of coke and refined petroleum products; 24 Manufacture of chemicals and chemical products and man-made fibres; 25 - Manufacture of rubber and plastic products; 26 - Manufacture of other non-metallic mineral products; 27 - Manufacture of basic metals; 28 - Manufacture of fabricated metal products; 29 - Manufacture of machinery and equipment; 30 -Manufacture of computer and electronic products; 31 - Manufacture of electrical equipment; 32 - Manufacture of radio, television and communication equipment and apparatus; 33 - Manufacture of medical instruments and appliances for measuring: optical instruments, watches and clocks: 34 – Manufacture of motor vehicles, trailers and semi-trailers; 35 - Manufacture of other transport equipment; 36 - Other manufacturing;
- 40 Electricity, gas, steam and air conditioning supply; 41 Water collection, treatment and supply; 45 - Waste construction, demolition and repair of buildings, man-made disasters and natural disasters and phenomena; 52 - Retail trade; 60 - Transport services; 77 - Waste from common canteen, restaurant, etc, maintenance and repair of equipment, municipal and similar waste; $85-Human\ health\ activities\ and\ veterinary\ services;\ 90-Waste\ collection,$ treatment and disposal activities; materials recovery.

Fig. A3.4.2. Structure of Waste classifier (DK 005-96)²⁴

Table A3.4.1. Structure of economic activity which is the national analogue of NACE

Rev. 2

	Classification of Types of Economic Activity (CTEA)	Structure of Waste classifier (DK 005-96)
Sections	Division	Structure of Waste Classifier (DK 003-90)
A	Agriculture, forestry and fishing	
	01 Crop and animal production, hunting and related service ac-	01 Agriculture
	tivities	02 Forestry
	02 Forestry and logging	05 Fishing
	03 Fishing and aquaculture	
В	Mining and quarrying	
	05 Mining of coal and lignite	10 Mining of coal and lignite
	06 Extraction of crude petroleum and natural gas	11 Extraction of crude petroleum and natural gas
	07 Mining of metal ores	12 Mining of uranium and thorium ores
	08 Other mining and quarrying	13 Extraction of metal ores
	09 Mining support service activities	14 Other mining and quarrying
C	Manufacturing	
	10 Manufacture of food products	15 Manufacture of food and beverage products
	11 Manufacture of beverages	16 Manufacture of tobacco products
	12 Manufacture of tobacco products	17 Manufacture of textiles
	13 Manufacture of textiles	18 Manufacture of wearing and fur apparel
	14 Manufacture of wearing apparel	19 Manufacture of leather and related products
	15 Manufacture of leather and related products	20 Manufacture of wood and of products of wood and
	16 Manufacture of wood and of products of wood and cork, ex-	cork
	cept furniture; manufacture of articles of straw and plaiting mate-	21 Manufacture of pulp, paper and paper products
	rials	22 Printing and reproduction of recorded media
	17 Manufacture of paper and paper products	23 Manufacture of coke and refined petroleum products
	18 Printing and reproduction of recorded media	24 Manufacture of chemicals and chemical products and
	19 Manufacture of coke and refined petroleum products	man-made fibres
	20 Manufacture of chemicals and chemical products	25 Manufacture of rubber and plastic products
		26 Manufacture of other non-metallic mineral products

²⁴ Waste classifier DK 005-96. Available at: https://zakon.rada.gov.ua/rada/show/v0089217-96#Text (In Ukrainian)

	21 Manufacture of basic pharmaceutical products and pharma-	27 Manufacture of basic metals
	ceutical preparations	28 Manufacture of fabricated metal products
	22 Manufacture of rubber and plastic products	29 Manufacture of machinery and equipment
	23 Manufacture of other non-metallic mineral products	30 Manufacture of computer and electronic products
	24 Manufacture of basic metals	31 Manufacture of electrical equipment
	25 Manufacture of fabricated metal products, except machinery	32 Manufacture of radio, television and communication
	and equipment	equipment and apparatus
	26 Manufacture of computer, electronic and optical products	33 Manufacture of medical instruments and appliances
	27 Manufacture of electrical equipment 28 Manufacture of machinery and equipment	for measuring; optical instruments, watches and clocks 34 Manufacture of motor vehicles, trailers and semi-trail-
	29 Manufacture of motor vehicles, trailers and semi-trailers	ers
	30 Manufacture of other transport equipment	35 Manufacture of other transport equipment
	31 Manufacture of furniture	36 Other manufacturing
	32 Other manufacturing	50 Culti manufaturing
	33 Repair and installation of machinery and equipment	
D	Electricity, gas, steam and air conditioning supply	
	35 Electricity, gas, steam and air conditioning supply	40 Electricity, gas, steam and air conditioning supply
Е	Water supply, sewerage, waste management and remediation ac-	
	tivities	
	36 Water collection, treatment and supply	41 Water collection, treatment and supply
	37 Sewerage	77 Waste from common canteen, restaurant, etc, mainte-
	38 Waste collection, treatment and disposal activities; materials	nance and repair of equipment, municipal and similar
	recovery	waste
	39 Remediation activities and other waste management services	90 Waste collection, treatment and disposal activities;
E	Countration	materials recovery
F	Construction	45 W
	41 Construction of buildings	45 Waste construction, demolition and repair of build-
	42 Civil engineering 43 Specialised construction activities	ings, man-made disasters and natural disasters and phe- nomena
G	Wholesale and retail trade; repair of motor vehicles and motorcy-	HOHICHA
J	cles	
	45 Wholesale and retail trade and repair of motor vehicles and	52 Retail trade
	motorcycles	52 Lower Hade
	46 Wholesale trade, except of motor vehicles and motorcycles	
	47 Retail trade, except of motor vehicles and motorcycles	
Н	Transportation and storage	
	49 Land transport and transport via pipelines	60 Transport services
	50 Water transport	1
	51 Air transport	
	52 Warehousing and support activities for transportation	
	53 Postal and courier activities	
I	Accommodation and food service activities	
	55 Accommodation	
	56 Food and beverage service activities	
J	Information and communication	
	58 Publishing activities	
	59 Motion picture, video and television programme production,	
	sound recording and music publishing activities	
	60 Programming and broadcasting activities	
	61 Programming and broadcasting activities 62 Computer programming, consultancy and related activities	
	62 Computer programming, consultancy and related activities 63 Computer programming, consultancy and related activities	
K	Financial and insurance activities	
IX	64 Financial service activities, except insurance and pension	
	funding	
	65 Insurance, reinsurance and pension funding, except compul-	
	sory social security	
	66 Activities auxiliary to financial services and insurance activi-	
	ties	
L	Real estate activities	
	68 Real estate activities	
M	Professional, scientific and technical activities	
	69 Legal and accounting activities	
	70 Activities of head offices; management consultancy activities	
	71 Architectural and engineering activities; technical testing and	
	analysis	
	72 Scientific research and development	
	73 Advertising and market research	
	74 Other professional, scientific and technical activities	
>.r	75 Veterinary activities	
N	Administrative and support service activities	
	77 Rental and leasing activities	
	78 Employment activities	
	79 Travel agency, tour operator reservation service and related	
	activities 80 Security and investigation activities	
	80 Security and investigation activities 81 Services to buildings and landscape activities	
	82 Office administrative, office support and other business sup-	
	port activities	
0	Public administration and defence; compulsory social security	
	- Latte definition and defence, comparisony social seediffy	

	84 Public administration and defence; compulsory social security	
P	Education	
	85 Education	
Q	Human health and social work activities	
	86 Human health activities	85 Human health activities and veterinary services
	87 Residential care activities	
	88 Social work activities without accommodation	
R	Arts, entertainment and recreation	
	90 Creative, arts and entertainment activities	
	91 Libraries, archives, museums and other cultural activities	
	92 Gambling and betting activities	
	93 Sports activities and amusement and recreation activities	
S	Other service activities	
	94 Activities of membership organisations	
	95 Repair of computers and personal and household goods	
	96 Other personal service activities	
T	Activities of households as employers; undifferentiated goods-	
	and services-producing activities of households for own use	
	97 Activities of households as employers of domestic personnel	
	98 Undifferentiated goods-and services-producing activities of	
	private households for own use	
U	Activities of extraterritorial organisations and bodies	
	99 Activities of extraterritorial organisations and bodies	

Form No. 1-wastes "Waste Management" has been introduced since 2010. The form is unified, brought into compliance with international standards on accounting of waste generation and management and allows obtaining information from enterprises by place of their activity. State statistical observation covers all possible sources of waste (economic activity and households) and all types of waste (including secondary waste) except for radioactive waste 25. When generating statistical reports as per Form No. 1-wastes the classification of waste management operations in accordance with the *Annex I, II* of Directive 2008/98/EC and Basel Convention (Table A3.4.2) was used, as well as the classification of waste categories by materials in accordance with the international statistical classification EWC-Stat 4 (Table A3.4.3) adapted to national conditions.

Table A3.4.2. List of Recovery and Disposal Operations; the codes refer to the codes in Annexes I and II to Directive 2008/98/EC

List of	waste Recovery Operations
R1	Use as a fuel (other than in direct incineration) or other means to generate energy
R2	Solvent reclamation/regeneration
R3	Recycling/reclamation of organic substances which are not used as solvents
R4	Recycling/reclamation of metals and metal compounds
R5	Recycling/reclamation of other inorganic materials
R6	Regeneration of acids or bases
R7	Recovery of components used for pollution abatement
R8	Recovery of components from catalysts
R9	Used oil re-refining or other reuses of previously used oil
R10	Land treatment resulting in benefit to agriculture or ecological improvement
R11	Uses of residual materials obtained from any of the operations numbered R1-R10
R12	Exchange of wastes for submission to any of the operations numbered R1-R11
R13	Accumulation of material intended for any operations numbered R1-R12
List of	waste Disposal Operations
D1	Deposit into or onto land, (e.g., landfill, etc.)
D2	Land treatment, (e.g., biodegradation of liquid or sludgy discards in soils, etc.)
D3	Deep injection, (e.g., injection of pumpable discards into wells, salt domes of naturally occurring reposi-
	tories, etc.)
D4	Surface impoundment, (e.g., placement of liquid or sludge discards into pits, ponds or lagoons, etc.)
D5	Specially engineered landfill, (e.g., placement into lined discrete cells which are capped and isolated
	from one another and the environment, etc.)
D6	Release into a water body except seas/oceans
D7	Release into seas/oceans including sea-bed insertion

²⁵ Methodological regulations on the organization of state statistics observations on waste generation and management. The order № 27 (2023, January 16) of the State Statistics Service of Ukraine. Available at: https://ukrstat.gov.ua/norm_doc/2023/27/27.pdf (In Ukrainian)

D8	Biological treatment not specified elsewhere in this Annex which results in final compounds or mixtures which are discarded by means of any of the operations in Section A
D9	Physico chemical treatment not specified elsewhere in this Annex which results in final compounds or mixtures which are discarded by means of any of the operations in Section A, (e.g., evaporation, drying, calcination, neutralization, precipitation, etc.)
D10	Incineration on land
D11	Incineration at sea
D12	Permanent storage (e.g., emplacement of containers in a mine, etc.)
D13	Blending or mixing prior to submission to any of the operations numbered D1-R12
D14	Repackaging prior to submission to any of the operations numbered D1-R13
D15	Storage pending any of the operations numbered D1-R14

Table A3.4.3. List of waste categories by material

Code	Description
01.1	Spent solvents
01.2	Acid, alkaline or saline wastes
01.3	Used oils
02	Chemical wastes
03.2	Industrial effluent sludges
03.3	Sludges and liquid wastes from waste treatment
05	Health care and biological wastes
06.1	Metallic wastes, ferrous
06.2	Metallic wastes, non-ferrous
06.3	Metallic wastes, mixed ferrous and non-ferrous
07.1	Glass wastes
07.2	Paper and cardboard wastes
07.3	Rubber wastes
07.4	Plastic wastes
07.5	Wood wastes
07.6	Textile wastes
07.7	Waste containing PCB
08	Discarded equipment
08.1	Discarded vehicles
08.41	Batteries and accumulators waste
09.1	Animal and mixed food waste
09.2	Vegetal wastes
09.3	Animal faeces, urine and manure
10.1	Household and similar wastes
10.2	Mixed and undifferentiated materials
10.3	Sorting residues
11	Common sludges
12.1	Mineral waste from construction and demolition
12.4	Combustion wastes
12.5	Other mineral wastes (excluding 12.1, 12.4, 12.6, 12.7, 12.8)
12.6	Soils
12.7	Dredging spoils
12.8	Mineral wastes from waste treatment and stabilised wastes

For 2023, aggregated data on the amount of waste generation and management operations (columns) by the materials/categories (rows) according to statistical form No. 1-wastes, are presented in Table A3.4.4.

Table A3.4.4 presents the activity data (marked by colors) on the amount of waste composted (5.B.1), incinerated (5.C.1), and organic industrial waste landfilled at SWDS (5.A), which are used to estimate emissions in the relevant sector categories. The form No. 1 – waste «Waste Management» also provides information on the amount of sewage sludge generated and management (codes 11, 9.2, 9.3). However, the reported data on the amount of generated sewage sludge were not taken into account. The amount of organically degradable material generated from wastewater treatment and discharged on the sludge-drying beds as sludge were calculated according to formulas 7.19-7.22 (domestic sludge) and 7.33 (industrial sludge).

To estimate methane emissions from the disposal of municipal solid waste at landfills and dumps, data on the amount of MSW landfilled and dumped are taken from the No.1-MSW "MSW Management" reporting form. This observation/reporting has been implemented to monitor the state of municipal solid waste management. Data on waste generated by households (MSW) from form No.1-Waste are based on statistics from waste collection companies. It was found that the amount of household waste (MSW) collected is reported by these companies as a percentage of the total waste collected and, in some cases, is not reported at all. Thus, due to inaccuracies in data collection, particularly regarding MSW collection in form No.1-Waste, the relevant data for estimation were taken from No.1-MSW.

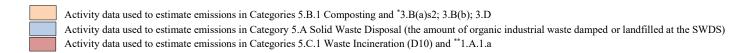
The schema of waste management practices in 2023 according to reporting forms No.1-wastes and No.1-MSW is presented in Figure A3.4.3.

On 9 July 2023, the new Law of Ukraine "On Waste Management" ²⁶, adopted on 20 June 2022, came into force. This Law introduced a new division of waste into classes in accordance with the requirements of the EU framework directive. According to it, waste is divided into hazardous and non-hazardous waste. The classification is carried out in accordance with the National Waste List and the Waste Classification Procedure, which are approved by the Ukrainian government and reviewed every 3 years. On October 20, 2023, by its Resolution No. 1102, the Government approved the Waste Classification Procedure and the National List of Waste²⁷.

Waste accounting for the reporting year was carried out according to the legislation in force before 2023.

²⁶ Law on Waste Management, enacted by Verkhovna Rada of Ukraine, No 2320-IX, 2022. Available at: https://za-kon.rada.gov.ua/laws/show/2320-20#Text. (In Ukrainian)

²⁷ On Approval of the Procedure for Waste Classification and the National Waste List, No. 1102 (2023, October 20). Resolution of the Cabinet of Ministers of Ukraine. Available at: https://zakon.rada.gov.ua/laws/show/1102-2023-%D0%BF#Text (In Ukrainian)


Table A3.4.4. The amount of waste generation and waste management operations by the material, I-IV hazardous classes, 2023 (form No. 1-

wastes)1

Code ²	Gener-	Ten	porary stora	age ⁴					waste R	Recovery (Operations							wa	ste Disposa	l Operati	ons			I	ncineratio	n
Code-	ated	input	output	stock	Total	R2	R3	R3A	R3B	R4	R5	R7	R10	R11	R12	Total	D1	D5	Total	D2	D4	D8	D9	Total	R1**	D10
	kt																									
Total	176 289.8	186 326.0	187 513.7	2 935.2	41 742.6	13.2	80.4	305.1	206.9	883.6	12 555.8	10 503.8	14 591.0	29.2	2 453.3	105 979.1	93 180.5	12 798.4	25 509.0	33.2	25 180.8	62.0	232.8	905.1	765.9	139.1
01.1	1.6	1.6	1.6	0.0	0.0	0.0	-	-	-	-	0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	0.0	-	0.0
01.2	117.0	118.9	119.0	0.3	13.4	12.4	-	-	-	-	0.0	-	-	0.0	0.0	102.1	-	102.1	0.1	-	0.1	-	0.0	-	-	-
01.3	13.5	20.0	21.1	3.8	4.1	0.0	0.0	-	-	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	-	-	-	0.0	1.3	0.5	0.8
02	319.3	322.2	322.2	1.4	1.1	0.3	0.1	-	-	0.0	-	0.1	-	-	-	305.8	1.1	304.7	0.0	-	-	0.0	0.0	1.8	0.9	1.0
03.2	758.4	760.4	872.0	14.8	245.6	0.4	0.0	-	-	216.7	0.8	-	22.0	0.1	-	83.4	2.9	80.5	359.2	0.0	349.6	0.5	9.0	98.7	0.8^{3}	-
03.3	282.6	299.5	518.1	100.9	2.7	-	-	-	0.3	0.0	0.4	-	0.3	0.1	0.5	188.1	7.1	180.8	244.5	-	244.4	0.0	-	0.0	-	0.0
05	1.7	5.9	5.8	0.1	0.0	-	-	-	-	0.0	-	-	-	-	-	-	-	-	0.0	-	-	-	0.0	3.6	0.6	3.0
06.1	479.1	962.4	948.7	70.3	255.4	-	0.0	-	-	254.7	0.2	-	-	0.0	0.5	0.7	0.1	0.6	0.0	-	-	-	0.0	0.0	-	0.0
06.2	18.4	20.8	19.0	4.3	2.2	-	-	-	-	2.2	-	-	-	0.0	0.0	0.0	0.0	-	-	-	-	-	-	0.0	-	0.0
06.3	12.7	19.5	19.5	2.0	7.3	-	-	-	-	7.3	0.0	-	-	0.0	0.0	0.2	0.1	0.1	-	-	-	-	-	0.0	-	0.0
07.1	13.9	16.1	15.9	1.2	0.3	-	-	-	-	-	0.3	-	-	-	-	0.3	0.3	0.0	-	-	-	-	-	0.0	-	0.0
07.2	166.4	326.8	327.8	3.6	76.6	-	0.3	-	-	-	-	-	-	0.0	2.0	4.3	0.7	3.6	-	-	-	-	-	1.7	1.6	0.1
07.3	15.7	21.2	19.7	4.7	2.5	-	0.3	-	-	-	0.1	0.0	-	0.1	2.1	0.1	0.0	0.0	-	-	-	-	-	0.0	0.0	0.0
07.4	37.4	57.5	57.8	3.7	11.6	0.0	3.2	-	-	-	3.5	4.0	-	0.4	0.0	0.8	0.1	0.7	-	-	-	-	-	0.2	0.2	0.0
07.5	511.2	542.5	538.5	24.9	74.5	0.0	36.4	5.0	-	-	0.0	0.1	0.0	0.4	32.6	7.9	0.5	7.4	0.0	0.0	-	-	-	244.2	237.5	6.7
07.6	7.8	9.6	9.5	0.4	0.3	-	-	-	0.1	-	0.1	0.1	-	0.0	0.0	0.9	0.3	0.6	-	-	-	-	-	0.9	0.1	0.7
07.7	0.1	0.1	0.1	0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
08	14.6	15.7	15.8	0.5	0.3	0.0	-	-	-	0.1	0.0	0.1	-	0.0	-	0.0	0.0	0.0	0.1	-	-	-	0.1	0.1	0.0	0.1
08.1	0.4	0.4	0.4	0.1	0.0	-	-	-	-	0.0	-	-	-	-	-	-	-	-	0.0	-	-	-	-	0.0	-	0.0
08.4	4.1	20.2	19.4	1.7	10.1	-	-	-	-	10.1	-	-	-	-	-	-	-	-	0.1	-	-	-	0.1	-	-	
09.1	241.5	250.3	257.1	9.4	24.3	-	3.8	4.0	15.6	-	0.0	-	0.8	0.1	-	0.9	0.0	0.9	35.1	3.4	31.7	-	0.1	3.1	0.4	2.8
09.2	4529.3	4989.9	4948.9	674.6	1242.2	0.0	21.4	4.1	190.6	-	-	-	1021.7	4.2	0.2	17.4	12.2	5.2	309.9	1.5	83.3	4.2	221.0	362.5	338.2	24.3
09.3	2952.0	2952.0	2987.1	294.8	1826.5	-	-	292.0	-	-	-	-	1497.4	20.1	16.9	154.1	65.1	89.0	53.0	28.3	-	24.7	-	5.0	5.0	0.0
10.1	4858.6	10519.7	10434.9	1235.7	28.4	0.0	14.7	-	-	202.2	0.0	-	0.0	0.2	13.4	5944.5	2149.6	3794.9	0.4	-	0.4	0.0	-	157.5	156.3	1.2
10.2	1461.6	1716.4	2338.9	11.9	451.4	-	- 0.1	-	- 0.0	392.2	59.1	0.0	-	0.0	0.0	858.6	850.1	8.5	32.7	-	32.7	-	-	0.7	0.7	0.0
10.3	12.9	17.4	17.2	1.2	1.4	-	0.1	- 0.002	0.2	-	0.1	-	0.9	0.0	-	4.3	0.2	4.1	- 04.6	- 0.1	- 40.2	- 22.6	- 27	0.0	0.0	- 07.03
11	363.9	1456.0	1349.9	182.9	61.8	-	-	0.002	-	-	0.1	-	59.2	1.4	- 10.0	1126.4	11.2	1115.2	84.6	0.1	49.3	32.6	2.6	-	-	97.9 ³
12.1	540.1	1469.4	1703.7	20.0	20.4	-	-	-	-	- 0.4	0.9	0.6	-	-	18.8	1040.1	112.4	927.6	- 1221.0	-	- 1221.0	-	-	0.0	0.0	0.0
12.4	3662.0	3747.0	3810.3	64.0	446.1	0.0	0.0	-	-	0.4	328.7	0.0	2.0	1.5	113.5	1307.2	6.9	1300.4	1331.9	0.0	1331.9	-	-	0.4	0.1	0.3
12.5	148186.1	148735.1	148897.5	139.4	31038.2	0.0	0.1	-	-	0.0	12056.1	4710.1	11986.6	0.7	2252.8	93902.5	89129.8	4772.7	23057.4	-	23057.4	-	-	23.1	23.1	0.0
12.6	631.9	700.3	700.3	0.0	0.1		-	0.0		-	0.1	- 5700 4	-	-	-	623.6	584.0	39.6	0.0	-	0.0	-	-	0.0	-	0.0
12.7	6056.0	6103.9	6093.0	10.9	5788.4	-	-	-	-	-	105.5	5788.4	-	-	- 0.1	304.5	245.2	59.2	-	-	-	-	-	-	-	
12.8	18.2	127.2	123.1	51.6	105.6	-	-	-	-	-	105.5	-	0.0	0.0	0.1	0.3	0.3	0.0	0.0	0.0	-	-	-	-	-	-

¹according to official statistics;

⁴ storage period of waste does not exceed one year from the moment of its generation. The amount of waste is not taken into account if the waste was stored at the enterprise for more than one year from the moment of its generation.

² the name code of waste categories by material is provided in Table A3.4.3;

³ in wet weigh

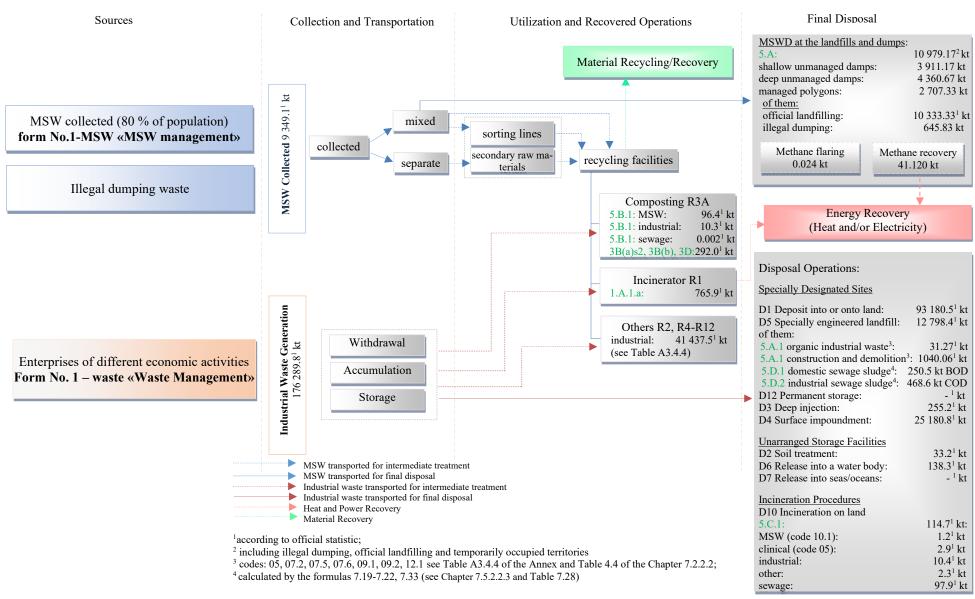


Figure A3.4.3. Waste management practices in Ukraine according to reporting forms No.1-wastes and No.1-MSW, 2023

A3.4.2 Information on the amount of solid waste disposed at SWDS and methane emissions adopted for estimations in general and by landfill categories for the period of 1900-2023

9												
Year	Specific MSW generation	The share of MSW disposed	Specific MSW disposing	Urban population	MSW disposed official*	MSW disposed unofficial**	MSW disposed, total	Wi	al organic aste	Unmanaged shallow landfills	Unmanaged deep landfills	Managed landfills
		uisposeu						manufacturing	demolition			
				thous. peo-					demontion			
	kg/person/year		kg/person/year	ple	kt	kt	kt	kt		kt	kt	kt
1900	173.1	0.85	147.2	3590.31	528.38	93.24	621.62	_	-	265.50	356.13	0.00
1901	173.5	0.85	147.5	3772.55	556.51	98.21	654.71	_	-	279.63	375.08	0.00
1902	174.0	0.85	147.9	3954.79	584.76	103.19	687.95	_	_	293.82	394.13	0.00
1903	174.4	0.85	148.2	4137.02	613.13	108.20	721.33	-	-	308.08	413.25	0.00
1904	174.8	0.85	148.6	4319.26	641.64	113.23	754.87	-	-	322.40	432.46	0.00
1905	175.2	0.85	148.9	4501.50	670.27	118.28	788.55	-	-	336.79	451.76	0.00
1906	175.6	0.85	149.2	4683.74	699.02	123.36	822.38	-	-	351.24	471.14	0.00
1907	176.0	0.85	149.6	4865.98	727.90	128.45	856.36	-	-	365.75	490.61	0.00
1908	176.4	0.85	149.9	5048.22	756.91	133.57	890.48	-	-	380.33	510.16	0.00
1909	176.8	0.85	150.3	5230.46	786.04	138.71	924.76	-	-	394.96	529.79	0.00
1910	177.2	0.85	150.6	5412.70	815.30	143.88	959.18	_	-	409.67	549.51	0.00
1911	177.6	0.85	151.0	5544.57	837.09	147.72	984.81	_	-	420.61	564.20	0.00
1912	178.0	0.85	151.3	5676.45	858.96	151.58	1010.54	_	-	431.60	578.94	0.00
1913	178.4	0.85	151.7	5808.32	880.92	155.46	1036.38	_	-	442.64	593.74	0.00
1914	178.8	0.85	152.0	5940.19	902.98	159.35	1062.33	_	-	453.72	608.61	0.00
1915	179.2	0.85	152.4	6072.07	925.12	163.26	1088.38	_	-	464.85	623.53	0.00
1916	179.7	0.85	152.7	6203.94	947.36	167.18	1114.54	_	-	476.02	638.52	0.00
1917	180.1	0.85	153.0	6335.81	969.69	171.12	1140.81	-	-	487.24	653.57	0.00
1918	180.5	0.85	153.4	6467.68	992.11	175.08	1167.19	_	-	498.51	668.68	0.00
1919	180.9	0.85	153.7	6599.56	1014.62	179.05	1193.68	_	-	509.82	683.86	0.00
1920	181.3	0.85	154.1	6731.43	1037.23	183.04	1220.27	_	-	521.18	699.09	0.00
1921	181.7	0.85	154.4	6834.86	1055.53	186.27	1241.80	_	-	530.37	711.43	0.00
1922	182.1	0.85	154.8	6938.28	1073.90	189.51	1263.41	_	-	539.60	723.81	0.00
1923	182.5[5]	0.85	155.1	7041.71	1092.35	192.77	1285.11	_	-	548.87	736.24	0.00
1924	182.9	0.85	155.5	7145.14	1110.86	196.03	1306.90	-	-	558.18	748.72	0.00
1925	183.3	0.85	155.8	7248.56	1129.45	199.31	1328.76	=	=	567.51	761.25	0.00
1926	183.7	0.85	156.2	7351.99	1148.11	202.61	1350.71	=	=	576.89	773.82	0.00
1927	184.1	0.85	156.5	7455.42	1166.84	205.91	1372.75	=	=	586.30	786.45	0.00
1928	184.5	0.85	156.9	7558.84	1185.64	209.23	1394.87	=	=	595.75	799.12	0.00
1929	184.9	0.85	157.2	7662.27	1204.51	212.56	1417.07	_	-	605.23	811.84	0.00
1930	185.3	0.85	157.5	7765.70	1223.46	215.90	1439.36	_	-	614.75	824.61	0.00
1931	185.8	0.85	157.9	7998.80	1262.95	222.87	1485.82	_	-	634.60	851.23	0.00
1932	186.2	0.85	158.2	8231.91	1302.60	229.87	1532.47	=	=	654.52	877.95	0.00
1933	186.6	0.85	158.6	8465.01	1342.42	236.90	1579.31	_	_	674.53	904.79	0.00
1934	187.0	0.85	158.9	8698.11	1382.39	243.95	1626.34	=	=	694.61	931.73	0.00
1935	187.4	0.85	159.3	8931.22	1422.53	251.03	1673.56	_	_	714.78	958.79	0.00

Year	Specific MSW generation	The share of MSW	Specific MSW disposing	Urban population	MSW disposed	MSW disposed unof-	MSW disposed,		al organic aste	Unmanaged shallow	Unmanaged deep landfills	Managed landfills
		disposed		1 1	official*	ficial**	total	manufacturing construction and demolition		landfills	·	
	kg/person/year		kg/person/year	thous. peo-	kt	kt	kt	kt		kt	kt	kt
1936	187.8	0.85	159.6	9164.32	1462.83	258.15	1720.97	-	-	735.03	985.95	0.00
1937	188.2	0.85	160.0	9397.42	1503.29	265.29	1768.57	_	_	755.36	1013.22	0.00
1938	188.6	0.85	160.3	9630.53	1543.91	272.45	1816.36	_	_	775.77	1040.59	0.00
1939	189.0	0.85	160.7	9863.63	1584.69	279.65	1864.34	_	_	796.26	1068.08	0.00
1940	189.4	0.85	161.0	10096.73	1625.63	286.88	1912.51	_	_	816.83	1095.68	0.00
1941	189.8	0.85	161.4	10367.06	1672.74	295.19	1967.93	_	_	840.50	1127.43	0.00
1942	190.2	0.85	161.7	10637.39	1720.04	303.54	2023.58	-	_	864.27	1159.31	0.00
1943	190.6	0.85	162.0	10907.71	1767.53	311.92	2079.44	-	_	888.13	1191.31	0.00
1944	191.0	0.85	162.4	11178.04	1815.20	320.33	2135.53	-	_	912.08	1223.44	0.00
1945	191.5	0.85	162.7	11448.37	1863.06	328.77	2191.83	-	-	936.13	1255.70	0.00
1946	191.9	0.85	163.1	11718.69	1911.10	337.25	2248.35	-	_	960.27	1288.08	0.00
1947	192.3	0.85	163.4	11989.02	1959.33	345.76	2305.10	-	_	984.51	1320.59	0.00
1948	192.7	0.85	163.8	12259.35	2007.75	354.31	2362.06	_	_	1008.84	1353.23	0.00
1949	193.1	0.85	164.1	12529.67	2056.36	362.89	2419.25	10.72	655.29	1033.26	1385.99	0.00
1950	193.5	0.85	164.5	12800.00	2105.15	371.50	2476.65	21.44	655.29	1057.78	1418.87	0.00
1951	193.9	0.85	164.8	13400.00	2208.47	389.73	2598.20	32.16	762.64	1109.69	1488.51	0.00
1952	194.3	0.85	165.2	14200.00	2345.23	413.86	2759.09	42.89	869.98	1178.41	1580.68	0.00
1953	194.7	0.85	165.5	14800.00	2449.44	432.25	2881.70	53.61	977.32	1230.77	1650.92	0.00
1954	195.1	0.85	165.8	15400.00	2554.07	450.72	3004.79	64.33	1 084.66	1283.35	1721.44	0.00
1955	195.5	0.85	166.2	15700.00	2609.26	460.46	3069.72	75.05	1 192.01	1311.08	1758.64	0.00
1956	195.9	0.85	166.5	16000.00	2664.65	470.23	3134.88	85.77	1 299.35	1338.91	1795.97	0.00
1957	196.3	0.85	166.9	17000.00	2837.07	500.66	3337.73	96.49	1 299.35	1425.55	1912.19	0.00
1958	196.7	0.85	167.2	18300.00	3060.36	540.06	3600.42	107.21	1 299.35	1537.74	2062.68	0.00
1959	197.2	0.85	167.6	19147.40	3208.69	566.24	3774.93	117.93	1 299.35	1612.27	2162.66	0.00
1960	197.6	0.85	167.9	19850.60	3333.40	588.25	3921.65	128.66	1 299.35	1674.94	2246.71	0.00
1961	198.0	0.85	168.3	20646.80	3474.24	613.10	4087.35	139.38	1 299.35	1745.71	2341.64	0.00
1962	198.4	0.85	168.6	21130.20	3562.90	628.75	4191.64	150.10	1 299.35	1790.25	2401.39	0.00
1963	198.8	0.85	169.0	21628.00	3654.31	644.88	4299.19	160.82	1 299.35	1836.19	2463.01	0.00
1964	199.2	0.85	169.3	22228.80	3763.52	664.15	4427.67	171.54	1 299.35	1891.06	2536.61	0.00
1965	199.6	0.85	169.7	22786.00	3865.74	682.19	4547.93	182.26	1 299.35	1942.42	2605.51	0.00
1966	200.0[6]	0.85	170.0	23357.90	3970.84	700.74	4671.58	192.98	1 295.00	1995.23	2676.35	0.00
1967	202.2	0.85	171.9	23939.30	4115.19	726.21	4841.40	203.70	1 290.65	2067.76	2773.64	0.00
1968	204.5	0.85	173.8	24519.00	4261.45	752.02	5013.47	214.43	1 286.30	2141.25	2872.22	0.00
1969	206.7	0.85	175.7	25126.10	4414.72	779.07	5193.79	225.15	1 281.95	2218.27	2975.52	0.00
1970	208.9	0.85	177.6	25688.60	4562.39	805.13	5367.52	235.87	1 277.60	2292.47	3075.05	0.00
1971	211.2	0.85	179.5	26244.00	4710.92	831.34	5542.26	246.59	1 273.25	2367.10	3175.16	0.00
1972	213.4	0.85	181.4	26918.20	4883.11	861.72	5744.83	257.31	1 268.89	2453.62	3291.21	0.00
1973	215.7	0.85	183.3	27519.20	5044.44	890.20	5934.64	268.03	1 264.54	2534.68	3399.96	0.00
1974	217.9	0.85	185.2	28042.60	5193.69	916.53	6110.23	278.75	1 260.19	2609.68	3500.55	0.00

Year	Specific MSW generation	The share of MSW	Specific MSW disposing	Urban population	MSW disposed official*	MSW disposed unofficial**	MSW disposed, total		al organic aste	Unmanaged shallow landfills	Unmanaged deep landfills	Managed landfills
		disposed						manufacturing	construction and demolition			
	kg/person/year		kg/person/year	thous. peo-	kt	kt	kt	kt		kt	kt	kt
1975	220.1	0.85	187.1	28561.00	5344.00	943.06	6287.06	289.47	1 255.84	2685.20	3601.85	0.00
1976	222.4	0.85	189.0	29112.50	5502.53	971.03	6473.56	300.20	1 251.49	2764.86	3708.70	0.00
1977	224.6[7]	0.85	190.9	29579.60	5647.04	996.54	6643.58	310.92	1 247.14	2837.47	3806.11	0.00
1978	229.3	0.85	194.9	30049.20	5857.38	1033.65	6891.03	321.64	1 242.79	2943.16	3947.87	0.00
1979	234.0	0.85	198.9	30511.50	6069.98	1071.17	7141.16	332.36	1 238.44	3049.99	4091.17	0.00
1980 1981	238.8 243.5	0.85 0.85	203.0 207.0	30917.90 31315.80	6274.96 6481.43	1107.35 1143.78	7382.30 7625.22	343.08 353.80	1 234.09 1 260.68	3152.98 3256.73	4229.32 4368.49	0.00
1982	248.2	0.85	211.0	31515.80	6685.87	1179.86	7865.73	364.52	1 287.28	3359.45	4506.28	0.00
1983	252.9	0.85	215.0	32053.50	6891.48	1216.14	8107.62	375.24	1 313.87	3462.77	4644.86	0.00
1984	257.7	0.85	219.0	32492.70	7116.35	1255.83	8372.18	385.97	1 340.47	3575.76	4796.42	0.00
1985	262.4[8]	0.85	223.0	32921.30	7342.77	1295.78	8638.55	396.69	1 367.07	3689.52	4949.02	0.00
1986	267.1	0.86	229.7	33311.90	7652.52	1245.76	8898.27	407.41	1 342.19	3740.48	5157.80	0.00
1987	271.8	0.87	236.5	33731.30	7977.48	1192.04	9169.52	418.13	1 317.32	3792.70	5376.82	0.00
1988	276.6	0.88	243.4	34163.70	8314.52	1133.80	9448.31	428.85	1 292.45	3844.33	5603.98	0.00
1989	281.3	0.89	250.3	34587.60	8658.63	1070.17	9728.80	439.57	1 267.58	3892.88	5835.92	0.00
1990	286.0[9]	0.90	257.4	34869.20	8975.33	997.26	9972.59	450.29	1 242.70	3918.73	5909.70	144.17
1991	277.4	0.90	249.6	35085.20	8758.84	973.20	9732.05	411.12	1 117.57	3819.83	5630.84	281.38
1992	268.8	0.90	241.9	35296.90	8537.97	948.66	9486.63	370.42	992.44	3719.23	5355.97	411.42
1993	260.2	0.90	234.1	35471.00	8305.00	922.78	9227.78	317.82	867.31	3613.60	5080.59	533.60
1994	251.5	0.90	226.4	35400.70	8014.01	890.45	8904.46	245.04	742.18	3482.98	4777.85	643.63
1995	242.9	0.90	218.6	35118.80	7677.85	853.09	8530.94	215.14	617.04	3333.04	4457.95	739.95
1996	234.3[10]	0.90	210.9	34767.90	7331.51	814.61	8146.12	193.63	572.81	3179.02	4142.76	824.34
1997	234.3[10]	0.90	224.0	34767.90	7702.76	855.86	8558.62	187.82	528.58	3336.15	4232.66	989.80
1998	263.5	0.90	237.1	34048.20	8073.76	897.08	8970.85	184.25	484.35	3492.80	4310.89	1167.16
1999	278.1	0.90	250.3	33702.10	8434.16	937.13	9371.29	183.88	440.11	3644.49	4372.06	1354.74
2000	292.7	0.90	263.4	33338.60	8780.89	975.65	9756.54	194.73	395.88	3789.93	4415.14	1551.47
2001	307.2	0.90	276.5	32951.70	9111.60	1012.40	10124.00	211.87	423.02	3928.11	4439.63	1756.26
2002	321.8	0.90	289.6	32574.40	9434.93	1048.33	10483.26	223.18	432.56	4062.79	4450.34	1970.13
2002								244.42	458.21			
2003	336.4 351.0	0.90	302.8	32328.40	9788.11	1087.57	10875.68	273.25	538.91	4209.97	4464.60	2201.10
2004	351.0	0.90	315.9	32146.41	10155.05	1128.34	11283.39	273.23	556.71	4362.72	4473.93	2446.73
2003	_	_	_	_	10350.82	1114.99	11465.81	302.97	614.55	4406.55	4399.10	2660.16
2007	_	_	_	-	10546.59	1184.58	11731.17	302.97	729.65	4570.04	4440.12	2721.02
			_	_	10769.73	1153.90	11923.63		747.60	4571.32	4560.16	2792.15
2008	_	-	_	_	10757.76	1098.50	11856.26	335.21		4505.31	4545.99	2804.97
2009	_	_	_	_	11226.16	1091.43	12317.59	284.47	455.86	4638.90	4737.44	2941.25

Year	Specific MSW generation	The share of MSW	Specific MSW disposing	Urban population	MSW disposed official*	MSW disposed unofficial**	MSW disposed, total		al organic aste	Unmanaged shallow landfills	Unmanaged deep landfills	Managed landfills
		disposed			Official	Helai	totai	manufacturing	construction and demolition	landinis		
	kg/person/year		kg/person/year	thous. peo-	kt	kt	kt	kt		kt	kt	kt
2010	_	_	_	_	11332.54	1047.87	12380.41	296.11	665.19	4628.95	4782.33	2969.13
2011	_	_	_	_	11682.60	1026.17	12708.78	270.50	670.25	4717.88	4930.06	3060.84
2012	-	_	-	_	12101.93	1008.49	13110.43	161.71	862.17	4832.71	5107.02	3170.71
2013	-	_	-	_	12131.96	957.79	13089.75	59.61	606.90	4791.49	5119.69	3178.57
2014	-	_	-	_	10773.25	804.50	11577.75	90.98	700.00	4208.84	4546.31	2822.59
2015	-	_	-	_	10321.50	770.76	11092.26	219.71	1 117.47	4032.35	4355.67	2704.23
2016	-	_	-	_	12466.33	879.04	13345.37	38.76	882.32	4818.40	5260.79	3266.18
2017	-	_	-	_	10841.41	764.46	11605.86	30.74	1 108.48	4190.34	4575.07	2840.45
2018	-	_	-	_	10259.10	723.40	10982.49	181.45	1 168.92	3965.27	4329.34	2687.88
2019	-	_	_	-	12176.69	858.61	13035.30	35.51	1 510.22	4706.45	5138.56	3190.29
2020	-	_	_	-	12471.75	828.82	13300.56	43.75	1 880.93	4769.89	5263.08	3267.60
2021	-	_	_	-	12140.45	806.80	12947.25	36.93	1 923.02	4643.19	5123.27	3180.80
2022	-	_	_	-	9246.87	614.51	9861.38	19.49	923.92	3536.52	3902.18	2422.68
2023	_	_	_	_	10333.33	645.83	10979.17	31.27	1040.06	3911.17	4360.67	2707.33

^{* –} includes MSW collected from the urban territories and self-organized removal at the containers' sites and landfills from rural ones

** – includes MSW from rural territories thrown out at the dumps illegally

A3.4.3 The content of biodegradable components, DOC and MCF parameters, recycling, as well as methane emissions for

MSW landfill categories in the period of 1990-2023

								1770-20									
Year	I*	II*	III*	IV*	V*	VI*	VII*	VIII*	DOC	MCF	R**	TOTAL	Unman- aged MSW	Unman- aged MSW	Managed MSW	Unmanaged dumps,	
T Car	1	п	111	T V	•	VI	VII	VIII	Бос	WICI	K	TOTAL	dumps, shallow	dumps, deep	landfills	05, 07.2, 07.5, 07.6, 09.1, 09.2	12.1
		1	Morphol	ogical st	tructure o	of MSW	, %		%		kt CO ₂ -eq	N	dethane emissi	ions from MSV	W dumping,	kt CO2-eq.	
1990	27.5	5.5	37.8	2.3	1.7	0.0	3.0	22.3	20.47	0.673	0.00	7661.08	1871.51	5143.69	0.00	418.71	227.16
1991	25.9	5.3	38.1	2.3	2.0	0.0	2.9	23.5	19.88	0.676	0.00	7922.08	1920.08	5322.47	15.81	433.34	230.37
1992	24.4	5.1	38.4	2.4	2.4	0.0	2.7	24.7	19.29	0.680	0.00	8134.65	1958.11	5455.83	44.91	443.17	232.63
1993	22.8	4.9	38.7	2.5	2.7	0.0	2.6	25.9	18.71	0.683	0.00	8301.68	1986.31	5547.97	84.97	448.45	233.98
1994	21.3	4.6	39.0	2.5	3.0	0.0	2.5	27.1	18.12	0.687	0.00	8424.30	2005.23	5602.46	133.80	448.38	234.43
1995	19.7	4.4	39.3	2.6	3.3	0.0	2.4	28.3	17.53	0.690	0.00	8499.44	2014.61	5620.46	188.95	441.41	234.00
1996	18.1	4.2	39.6	2.7	3.7	0.1	2.2	29.4	16.97	0.693	0.00	8531.65	2014.47	5604.03	248.11	432.32	232.72
1997	16.6	4.0	39.9	2.7	4.0	0.4	2.1	30.3	16.45	0.697	0.00	8525.39	2005.53	5557.19	309.44	422.07	231.16
1998	15.0	3.8	40.2	2.8	4.3	0.5	2.0	31.5	15.88	0.700	0.00	8536.54	2000.35	5514.34	380.24	412.28	229.33
1999	13.4	3.5	40.5	2.9	4.6	0.4	1.8	32.8	15.27	0.704	0.00	8561.45	1998.20	5472.95	459.94	403.11	227.24
2000	11.8	3.3	40.8	2.9	5.0	0.4	1.7	34.0	14.69	0.707	0.00	8596.35	1998.26	5430.59	547.78	394.82	224.90
2001	10.3	3.1	41.2	3.0	5.3	0.5	1.6	35.1	14.12	0.711	0.00	8639.34	1999.75	5385.79	643.09	388.40	222.30
2002	8.6	2.9	41.2	3.1	5.6	0.6	1.4	36.6	13.47	0.714	0.00	8688.58	2001.90	5337.27	745.14	384.32	219.95
2003	9.3	3.0	40.5	2.9	5.4	0.7	1.5	36.8	13.59	0.717	8.12	8729.08	2003.36	5282.20	844.00	381.78	217.73
2004	9.8	3.1	39.4	2.8	5.2	0.7	1.5	37.3	13.62	0.721	8.12	8797.96	2008.64	5230.49	961.46	381.64	215.73
2005	10.4	3.2	38.4	2.7	5.0	0.8	1.6	37.9	13.66	0.724	0.00	8892.36	2016.85	5179.96	1096.78	384.42	214.35
2006	11.0	3.4	37.4	2.5	4.8	0.9	1.6	38.5	13.69	0.723	0.28	8981.10	2024.28	5125.62	1230.20	387.89	213.11
2007	11.6	3.5	36.4	2.4	4.5	1.0	1.7	39.0	13.75	0.725	0.00	9072.89	2034.99	5075.15	1357.19	393.25	212.31
2008	12.2	3.6	35.3	2.2	4.3	1.3	1.7	39.3	13.83	0.725	4.09	9165.42	2043.56	5034.07	1474.78	400.70	212.32
2009	12.7	3.7	34.3	2.1	4.1	1.2	1.8	40.0	13.84	0.726	60.48	9193.81	2048.13	4993.60	1531.27	408.35	212.45
2010	13.3	3.8	33.3	1.9	3.9	1.3	1.8	40.6	13.87	0.726	64.79	9283.67	2055.54	4966.06	1641.03	410.48	210.57
2011	13.7	3.9	31.8	1.8	3.6	1.3	1.9	42.0	13.72	0.726	127.86	9312.32	2061.07	4941.45	1684.79	414.84	210.17
2012	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	280.95	9248.43	2066.16	4922.15	1633.88	416.42	209.82
2013	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	296.10	9331.15	2074.69	4916.04	1723.13	406.49	210.81
2014	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	374.23	9332.12	2081.55	4911.47	1743.19	385.90	210.01
2015	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	230.61	9472.60	2070.12	4871.42	1950.67	370.53	209.87
2016	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	217.25	9474.47	2054.37	4822.71	2014.89	369.88	212.62
2017	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	458.19	9329.48	2064.38	4834.93	1866.32	350.17	213.68
2018	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	622.54	9159.99	2054.38	4803.17	1754.85	331.31	216.27

2019	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	742.19	9019.25	2038.40	4758.53	1673.17	329.93	219.23
2020	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	1028.16	8815.84	2046.74	4768.38	1462.89	313.36	224.47
2021	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	1137.76	8803.11	2056.54	4785.34	1430.27	298.81	232.15
2022	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	1111.62	8900.71	2061.78	4792.24	1521.66	285.08	239.95
2023	13.7	3.9	31.8	1.8	3.6	1.4	1.9	41.9	13.73	0.726	1152.05	8748.64	2032.54	4721.80	1482.83	270.82	240.64

^{*}I - paper, II - textiles, III - food waste, IV - wood, V - garden and park waste, VI - personal care, VII - rubber and leather, VIII - non-biodegradable components ** - the total reduction in methane emissions from flaring and landfill biogas recovery

ANNEX 4 FUEL BALANCES

A4.1 Balance of natural gas

Col- umn	Balance sheet item	Unit	2015	2016	2017	2018	2019	2020	2021	2022	2023
1	Visible (balance) consumption. Total, including:	mln. m ³	38008.41	36281	33781	33905	30726	31564	27130	24431	19361
2	- production	mln. m ³	20765.02*	21741*	21761*	22558*	21996*	21527*	20993	20058	18700
3	- imports (+ export)	mln. m ³	15584.89	13942	14051	10472	11768	9144	3137	1373	1191
34	- stocks change	mln. m ³	-1658.50	-598	2031	-875	3037	-893	-3000	-3000	530
5	Actual consumption total, including:	mln. m ³	35135.06	34153	34309	33829	31695	32873	28711	23798	24019
6	- Stationary Combustion	mln. m ³	30408.21*	29499*	30225*	31971*	27101*	28177*	24120 *	21732 *	22797*
7	- Mobile Combustion	mln. m ³	1145.11*	1400*	1944*	1802*	1861*	948*	816*	404*	269*
8	- Non-energy use	mln. m ³	174.87	494	407	226	124	125	152	152	152
9	- Category 2.B.1 Ammonia Production	mln. m³	2779.87	2153	1077	884	1731	2742	2742	629	174
10	- Natural Gas Leaks	mln. m ³	627.01	607	656	748	878	881	881	881	801
	ference between the balance sheet and	mln. m ³	2873.34	2128	528	-76	-969	-1309	-1581	247	-4658
actual o	consumption	%	7.56%	5.9%	1.5%	-0.22%	-3.15%	-3.98%	-5.5%	1.0%	-19,4%

^{*} in view of analytical study [14]

A4.2 Coal Balance

Col- umn	Balance sheet item	Uni t	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1	Visible consumption (according to national statistics), including	kt	71499.99	58930.96	52938.26	51905	48406	52208	49252	46052	45270	30647	25547
2	- mining	kt	64203.10	48866.74*	39673.2*	33985*	28879*	31026*	30001*	26750*	24412*	25412*	25412*
3	- imports	kt	14207.72	14694.16	14598.17	15648	19778	21387	21082	16951	19563	8147	806
4	- exports	kt	8537.28	7033.94	563.11	52	636	63	61	3	5	1412	671
5	- stocks change	kt	-1626.45	-2404.00	770.00	-2324	-385	142	1771	-2354	-1300	1500	0
6	Actual consumption total, including:	kt	74043.46	60182.05	48451.38	56705	51468	51203	47737	43748	43035	28606	26315
7	- Stationary Combustion	kt	47271.03	41602.00*	35849*	37456*	33622*	36287*	34341*	30600*	29887*	23256*	21097*
8	- Used by coke production enterprises	kt	24154.64	17020.00	11898.00	19083	17641	14691	13394	12998	12998	5200	6568
9	- Non-energy use and losses	kt	2617.79	1560.05	704.53	166	205	225	447	150	150	150	150
	ference between the balance	kt	-2543.47	-1251.09	4486.88	-4800	-3062	1005	1070	2304	2235	2041	-768
sheet an	nd actual consumption	%	-3.56%	-2.12%	8.48%	-8.46%	-5.95%	1.96%	2.22%	5.00%	5.19%	6,7%	-3,0%

^{*} in view of analytical study [14]

A4.3 The coking coal, coke and coke gas balance

Table A4.3.1 presents the balance of coal for coking in 2023 compiled on the basis of data on the production amount (finished hard coal for coking in accordance with statistical form 1P and the analytical study [14], exports, imports as well as information on stocks of coal for coking stored by enterprises as of the beginning and end of the reporting period (according to statistical form No. 4-MTP).

Table A4.3.1. The balance of apparent consumption of coal for coking in 2023

	Production (extraction)	Import	Export	Stocks change	Total consump- tion
Amount, kt	6800	439	671	-	6568

According to coke enterprises, the humidity of the coking charge is on average approximately 10%. Thus, the charge consumption of coal for coking calculated as the dry state was 4561 kt.

The result of the cooking process is coke, coke oven gas, coal tars and other products (Table A4.3.2).

Table A4.3.2. Yield of coke ovens in 2023

Indicator	Coke, kt	Coke oven gas, kt	Coal tars, calcu- lated as the anhy- drous state, kt	Other products (benzene, ammo- nium sulfate, etc.), kt
Amount	4602	1464	170	352
Yield by weight as dry- charge	69.9%	22.2%	2.6%	5.3%

Table A4.3.3 presents the coke weight balance in 2023 (in terms of dry weight) compiled on the basis of data on the production volume, imports, exports and reserves of coke in warehouses of enterprises as of the beginning and the end of the reporting period.

Table A4.3.3. Balance of coke in 2023, kt

_	1 00	01 0 11 1.3.3. D		110 111 = 0 = 0 ;	110			
		Production	Import	Export	Stock change	Total consump- tion on the bal- ance	Actual consumption	Discrepancy
ſ	Amount	6800	329	3	-	7126	6428	9.8%

Table A4.3.4 presents data on aggregated volumes of coke consumption by industries with an indication of the categories of the respective amounts of GHG emissions.

Table A4.3.4 coke consumption in 2023, according to information from iron production en-

terprises, and its accounting by CRT categories.

Indicator	The index value, kt	Percentage of total consumption	CFR category of the GHG emissions
Total consumption	6428	100.00%	
Consumption for iron production	6381	99.3%	2.C. Iron Production. Ferroalloys Production
Other consumption	95	0.7%	

Table A4.3.5 presents aggregated data on the volumes of coke gas production and consumption by industries with an indication of the categories of the respective GHG emissions.

Table A4.3.5 Coke oven gas consumption in 2022

Indicator	Index value, mln. m ³	Index value, %	CFR category of the GHG emissions
Consumption of coke oven gas for stationary combustion in coke batteries, boilers of enterprises, etc.	3115	97.1	1.A
Losses due to non-use, no account and for other reasons	95	2.9	1.B.1.b

ANNEX 5 COMPLETENESS ASSESSMENT

Table A5.1 shows detailed information about the categories, where notation keys were used (NE, IE) during the GHG inventory.

Table A5.1 Absent sources / sinks in the NIR

Tuble 1	13.17		ices / sinks in the NIK	>		
Sector	Gas		Category source	Notation Key	The reason for the use in the NIR	
ENERGY	CO ₂	1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.3.b.iii	Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, lique- fied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.4.c.ii	Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petro- leum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery	
		1.A.4.c.iii	Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery	
		1.B.1.a.i.2	Post-mining activities	NE	Not considered by IPCC Guidelines	
		1.B.1.a.ii. 1	Mining activities	NE	Not considered by IPCC Guidelines	
		1.B.1.a.ii. 2	Post-mining activities	NE	CO ₂ emissions were not estimated due to lack of the IPCC methodology	
		1.B.2.a.v	Distribution of oil products	NE	CO ₂ emissions are not estimated due to lack of IPCC default EFs	
		1.B.2.c.i.2	Gas	IE	CO ₂ emissions included in 1.B.2.b.4 Transmission and storage and 1.B.2.b.5 Distribution	
		1.B.2.c.i.3	Combined	IE	CO ₂ emissions included in 1.B.2.c.1.i Oil and 1.B.2.c.1.ii Gas	
		1.B.2.c.ii. 3	Combined	ΙE	CO ₂ emissions included in 1.B.2.c.2.i Oil and 1.B.2.c.2.ii Gas	
			1.A	Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Produc- tion
		1.AD	Feedstocks, reductants and other non- energy use of fuels / Naphtha	ΙE	Emissions are accounted in 1.AD Lubricants	
	CH4	1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.3.b.iii	Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	ΙE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, lique- fied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery	
		1.A.4.c.ii	Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petro- leum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery	
		1.A.4.c.iii	Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machinery	
		1.B.2.a.v	Distribution of Oil Products	NE	Rrefinery outputs generally contain negligible amounts of methane. Con- sequently, methane emissions are not estimated for transporting and distrib- uting refined products	

	l	1	T	1	CH : : 1 1 1: 1 D 21 4
		1.B.2.c.i.2	Gas	IE	CH4 emissions included in 1.B.2.b.4 Transmission and storage and 1.B.2.b.5 Distribution
		1.B.2.c.i.3	Combined	IE	CH ₄ emissions included in 1.B.2.c.1.i Oil and 1.B.2.c.1.ii Gas
		1.B.2.c.ii. 3	Combined	IE	CH ₄ emissions included in 1.B.2.c.2.i Oil and 1.B.2.c.2.ii Gas
		1.A	Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Produc- tion
	N ₂ O	1.A.3.b.ii	Light duty trucks (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iii	Heavy duty trucks and buses (gasoline, diesel oil, liquefied petroleum gases, other liquid fuels, biomass, kerosene, lubricants)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.3.b.iv	Motorcycles (gasoline, diesel oil, lique- fied petroleum gases, other liquid fuels, biomass, kerosene)	IE	Emissions are accounted in 1.A.3.b.i Cars and 1.A.3.e.ii Off-road vehicles and other machinery
		1.A.4.c.ii	Off-road vehicles and other machinery (gasoline, diesel oil, liquefied petroleum gases, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.A.4.c.iii	Fishing (residual fuel oil, diesel oil, gasoline, gaseous fuels, biomass)	IE	Emissions are accounted in 1.A.3.e.ii Off-road vehicles and other machin- ery
		1.B.2.c.ii. 3	Combined	IE	N ₂ O emissions included in 1.B.2.c.2.i Oil and 1.B.2.c.2.ii Gas
		1.A	Fuel Combustion activities (Sectoral approach)/Information item/(Biomass, Fossil fuels)	IE	Emissions are accounted in 1.A.1.a Public Electricity and Heat Production
INDUSTRIAL PROCESSES AND PRODUCT USE	CO ₂	2.B.5.a	Silicon carbide	IE	Included in 2.B.5.b Calcium Carbide
		2.C.1.d	Sinter	IE	Included in 2.C.1.b Pig Iron
		2.C.1.e	Pellet	ΙE	Included in 2.C.1.b Pig Iron
	CH ₄	2.B.1	Ammonia Production	NE	No IPCC Metodology provided
		2.B.5.b	Calcium Carbide	NE	No IPCC Metodology provided
	HFC - 134a	2.F.4.a	Metered dose inhalers	IE	HFC-134a emissions from manufacturing are included with emissions from stock
AGRICULTURE	CO ₂	3	Sectors/Totals Agriculture Indirect emissions	NE	Indirect CO ₂ emissions reported as "NE" in accordance with paragraph 31(b) of the UNFCCC Annex Modalities, procedures and guidelines for the transparency framework for action and referred to in Article 13 of the Paris Agreement
		3.G.2	Dolomite CaMg(CO ₃) ₂	NE	Notation key "NE" used in accordance with paragraph 31(b) of the UNFCCC Annex Modalities, procedures and guidelines for the transparency framework for action and referred to in Article 13 of the Paris Agreement
	CH ₄	3.A.4.g	Other livestock > Poultry	NE	There is no methodology to estimate GHG emissions from poultry enteric fermentation
	N ₂ O	3.B.5	Indirect N₂O emissions	NE	There are no country specific factors to estimate "N lost through leaching and run-off"
		3.D.1.b.ii	Sewage sludge applied to soils > Sewage Sludge Applied to Soils	NE	Notation key "NE" used in accordance with paragraph 31(b) of the UN-FCCC Annex Modalities, procedures

					and guidelines for the transparency		
					framework for action and referred to in Article 13 of the Paris Agreement		
LAND USE, LAND-USE CHANGE AND FORESTRY	CO ₂	4	Sectors/Totals Land use, land-use change and forestry Indirect emissions	NE	Indirect CO ₂ emissions are not esti- mated due to lack of clear methodol- ogy in the LULUCF sector		
		4(II).A.1	Forest land remaining forest land > Drained Organic Soils	IE	CO ₂ emissions from drainage of organic soils are reported in Carbon stock change table (4.A)		
		4(II).B.1	Cropland remaining cropland > Drained Organic Soils	ΙE	CO ₂ emissions from drainage of organic soils are reported in Carbon stock change table (4.B)		
		4(II).C.1	Grassland remaining grassland > Drained Organic Soils	ΙE	CO ₂ emissions from drainage of organic soils are reported in Carbon stock change table (4.C)		
		4(II).D.1.a	Peat extraction remaining peat extraction > Drained Organic Soils	IE	CO ₂ emissions are reported in Carbon stock change table (4.D)		
		4(IV).D.2	Land converted to wetlands > Wildfires	IE	There are no data available to calculate emissions separately		
	CH ₄	4(II).A.1	Forest land remaining forest land > Drained Organic Soils	NE	There is no methodology for CH4 emission calculations in IPCC 2006		
		4(II).B.1	Cropland remaining cropland > Drained Organic Soils	NE	There is no methodology for CH4 emission calculations in IPCC 2006		
		4(IV).B.2	Land converted to cropland > Wildfires	IE	There are no data available to calculate emissions separately		
		4(II).C.1	Grassland remaining grassland > Drained Organic Soils	NE	There is no methodology for CH ₄ emission calculations in IPCC 2006		
		4(IV).C.2	Land converted to grassland > Wild- fires		There are no data available to calculate emissions separately		
		4(IV).D.2	Land converted to wetlands > Wildfires	IE	There are no data available to calculate emissions separately		
	N ₂ O	4(IV).B.2	Land converted to cropland > Wildfires	IE	There are no data available to calculate emissions separately		
		4(IV).C.2	Land converted to grassland > Wild- fires	IE	There are no data available to calculate emissions separately		
		4(IV).D.1	Wetlands remaining wetlands > Wild- fires	NE	IPCC Wetlands Supplementary does not provide EF for N ₂ O emissions during fires on Wetlands		
		4(IV).D.2	Land converted to wetlands > Wildfires	IE	There are no data available to calculate emissions separately		
WASTE	CO ₂	5.C.2.a.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.a.ii	Other	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.ii	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
	CH ₄	5.C.2.a.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.a.ii	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.ii	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
	N ₂ O	5.C.2.a.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.a.ii	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.i	Municipal solid waste	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		
		5.C.2.b.ii	Other (please specify)	NE	Emissions are insignificant with accordance with Decision 18/CMA.1		

ANNEX 6 SUPPLEMENTARY INFORMATION

A6.1 The legal framework for implementation of Ukraine's commitments under the United Nations Framework Convention on Climate Change and the Kyoto Protocol in terms of the national inventory of anthro-

pogenic emissions and removals of greenhouse gases

pus	enic emissions and removals of greenhouse gases	
##	Legal act (in the chronological order)	Links to the full text of the document
1	Law of Ukraine "On Ratification of UN Framework Convention on Climate Change" of 29.10.1996 No. 435/96-VR	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=435%2F96-%E2%F0
2	Resolution of the Cabinet of Ministers of Ukraine "On the Inter-agency Committee of UNFCCC Implementation" of 14.04.1999 No.583 with amendments (Resolution of the Cabinet of Ministers of December 04, 2019 of No. 1065)	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=583-99-%EF
3	Law of Ukraine "On Ratification of the Kyoto Protocol for UN Framework Convention on Climate Change" of 04.02.2004 No. 1430-IV	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=995_801
4	Law of Ukraine "On the Basic Principles of State Climate Policy" No. 3991-IX of October 8, 2024	
5	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the National Action Plan for the Implementation of the Kyoto Protocol to the UN Framework Convention on Climate Change" of 18.08.2005, No. 346-r	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=346-2005-%F0
6	Decree of the President of Ukraine "On the Coordinator of Activities to Implement Ukraine's Commitments under the UN Framework Convention on Climate Change and Kyoto Protocol to the United Nations Framework Convention on Climate Change" of 12.09.2005 No. 1239/2005	https://zakon.rada.gov.ua/laws/show/1239/2005
7	Resolution of the Cabinet of Ministers of Ukraine "On the Coordination of Activities to Implement Ukraine's Commitments under the UN Framework Convention on Climate Change and the Kyoto Protocol to the Convention" of 10.04.2006, No. 468	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=468-2006-%EF
8	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the National System for Estimation of Anthropogenic Emissions and Sinks of Greenhouse Gases not Regulated under Montreal Protocol on Ozone Layer Depleting Substances" of 21.04.2006, No. 554	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=554-2006-%EF
9	Resolution of the Cabinet of Ministers of Ukraine "On Establishment of the National Environmental Investment Agency of Ukraine" of 04.04.2007 No. 612	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=612-2007-%EF
10	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the National Environmental Investment Agency of Ukraine" of 30.07.2007 No. 977	http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=977-2007-%EF
11	Resolution of the Cabinet of Ministers of Ukraine "On Ensuring Implementation of International Commitments of Ukraine under the UN Framework Convention on Climate Change and the Kyoto Protocol to It" of 17.04.2008, No. 392	http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=392-2008-%EF
12	Resolution of the Cabinet of Ministers of Ukraine "On Optimization of the System of Central Executive Authorities" of 10.10.2014, No. 442	https://zakon.rada.gov.ua/laws/show/442-2014-п

13	Resolution of the Cabinet of Ministers of Ukraine "On Approval of the Regulations on the Ministry of Ecology and Natural Resources" of 21.01.2015, No. 32	https://zakon.rada.gov.ua/laws/show/32-2015-π
14	Resolution of the Cabinet of Ministers of Ukraine "On Amendments to Some Regulations of the Cabinet of Ministers of Ukraine and Deeming Void Paragraph 1 of Resolution of the Cabinet of Ministers of Ukraine of July 16, 2012 No. 672" of 12.08.2015 No. 616	https://zakon.rada.gov.ua/laws/show/616-2015-π/print
15	Resolution of the Cabinet of Ministers of Ukraine "On Approving the Concept of State Climate Change Policy Implementation until 2030" of 07.12.2016 No. 932-p	https://zakon.rada.gov.ua/laws/show/932-2016-p
16	Resolution of the Cabinet of Ministers of Ukraine "On Enactment of Action Plan on Concept of State Climate Change Policy Implementation until 2030" of 06.12.2017 No. 878-p	https://zakon.rada.gov.ua/laws/show/878-2017-p
17	Resolution of the Cabinet of Ministers of Ukraine "Some Issues of Optimization of the System of Central Executive Government Bodies" of 02.09.2019 No. 829	https://zakon.rada.gov.ua/laws/show/829-2019-π
18	Resolution of the Cabinet of Ministers of Ukraine "On Amendments to Some Regulations of the Cabinet of Ministers of Ukraine" of 18.09.2019 No. 847	https://zakon.rada.gov.ua/laws/show/847-2019-π
19	Resolution of the Cabinet of Ministers of Ukraine "Some Issues of Optimization of the System of Central Executive Government Bodies" of 27.05.2020 No. 425	https://zakon.rada.gov.ua/laws/show/425-2020-π#Text
20	Resolution of the Cabinet of Ministers of Ukraine "Some Issues of Ministry of Environmental Protection and Natural Resources" of 25.06.2020 No. 614	https://zakon.rada.gov.ua/laws/show/614-2020-п#Техt
21	Resolution of the Cabinet of Ministers of Ukraine "On the formation of Inter-Agency Commission of Climate Change and Ozone Layer Protection" of 23.09.2020 No. 879	https://zakon.rada.gov.ua/laws/show/879-2020-п#Техt
22	Order of the Cabinet of Ministers of Ukraine "On making changes to the composition of the Inter-Agency Commission of Climate Change and Ozone Layer Protection" of April 18, 2023 No. 331-p	https://www.kmu.gov.ua/npas/pro-vnesennia-zmin-do-skladu-mizhvidomchoi-komisii-z-pytan-zminy-klimatu-ta-zberezhennia-ozonovoho-sharu-331r-180423

ANNEX 7 UNCERTAINTIES

In this inventory, the uncertainty estimate is performed by using level 1 approach of the IPCC. This approach provides an estimation of uncertainty for types of emitted gases for each of the IPCC sectors. The uncertainty estimate is prepared of the inventory involves an estimating of AD uncertainties, which characterize the activity, and the uncertainty of EFs for major sources of emissions and their subsequent integrated assessment produced by combining uncertainties in accordance with the methodology set out by the 2006 IPCC Guidelines.

The results of the combined uncertainty estimate of GHG emissions (including and excluding LULUCF) reported in the Table A7.1 and Table A7.2, respectively.

The results of the combined uncertainty estimate of GHG emissions (including and excluding the LULUCF sector) for the base 1990 year reported in the Table A7.3 and Table A7.4, respectively.

Table A7.1 The results of the evaluation of the combined uncertainty of GHG emissions including the LULUCF sector

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
1	ENERGY												
1.A.1	Energy Industries	CO_2	271861.68	61017.20	6.02	3.22	6.83	3.53	-0.01	0.07	-0.02	0.57	0.32
		$\mathrm{CH_4}$	206.40	83.09	6.02	89.54	89.74	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	564.82	214.89	6.02	363.91	363.96	0.12	0.00	0.00	0.03	0.00	0.00
1.A.2	Manufacturing Industries and Construction	CO ₂	111029.98	15773.08	8.99	3.33	9.59	0.47	-0.01	0.02	-0.04	0.22	0.05
		CH ₄	90.45	27.10	8.99	114.97	115.32	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	128.31	36.19	8.99	400.33	400.43	0.00	0.00	0.00	0.00	0.00	0.00
1.A.3	Transport	CO ₂	107066.83	25935.85	17.11	4.90	17.79	4.33	0.00	0.03	0.00	0.68	0.47
		CH ₄	787.59	179.02	17.11	15.46	23.06	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	3577.33	858.27	17.11	10.95	20.31	0.01	0.00	0.00	0.00	0.02	0.00
1.A.4	Other Sectors	CO_2	98704.92	16579.40	10.25	6.00	11.87	0.79	-0.01	0.02	-0.05	0.26	0.07
		CH ₄	3370.14	23.56	10.25	98.80	99.33	0.00	0.00	0.00	-0.09	0.00	0.01
		N ₂ O	263.78	27.91	10.25	335.40	335.56	0.00	0.00	0.00	-0.01	0.00	0.00
1.A.5	Other (Not specified elsewhere)	CO_2	105.56	869.85	50.00	2.00	50.04	0.04	0.00	0.00	0.00	0.07	0.00
		CH ₄	0.12	1.00	50.00	150.00	158.11	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.23	1.90	50.00	500.00	502.49	0.00	0.00	0.00	0.00	0.00	0.00
1.B.1	Solid Fuels	CO_2	458.73	154.36	6.10	5.00	7.89	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	69354.20	12284.62	14.72	5.00	15.55	0.74	0.00	0.01	-0.02	0.28	0.08
1.B.2	Oil and Natural Gas and Other Emissions from Energy Produc- tion	CO ₂	3023.81	1923.24	12.45	4.94	13.39	0.01	0.00	0.00	0.01	0.04	0.00
		CH ₄	69513.40	27996.73	23.18	17.86	29.26	13.66	0.01	0.03	0.22	1.00	1.05
		N ₂ O	2.08	1.11	7.78	3.56	8.56	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
2	INDUSTRIAL PROCESSES A							1					
2.A.1	Cement Production	CO ₂	9400.94	3329.95	20.06	5.41	20.77	0.10	0.00	0.00	0.01	0.10	0.01
2.A.2	Lime Production	CO ₂	5121.81	1337.74	28.28	16.06	32.53	0.04	0.00	0.00	0.00	0.06	0.00
2.A.3	Glass Production	CO ₂	187.02	128.04	22.85	2.31	22.97	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.a	Ceramics	CO ₂	111.77	24.02	20.40	5.00	21.00	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.b	Other uses of Soda Ash	CO_2	285.84	22.58	22.36	7.00	23.43	0.00	0.00	0.00	0.00	0.00	0.00
2.B.1	Ammonia Production	CO_2	9798.96	1505.65	5.83	7.00	9.11	0.00	0.00	0.00	-0.01	0.01	0.00
2.B.2	Nitric Acid Production	N_2O	4699.37	1744.40	2.00	22.36	22.45	0.03	0.00	0.00	0.01	0.01	0.00
2.B.3	Adipic Acid Production	N ₂ O	209.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.4.a	Caprolactam	N ₂ O	121.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.5	Carbide Production	CO ₂	122.08	43.42	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	4.23	5.38	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
2.B.6	Titanium Dioxide Production	CO ₂	226.30	113.50	25.00	5.00	25.50	0.00	0.00	0.00	0.00	0.00	0.00
2.B.7	Soda ash production	CO ₂	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO ₂	1962.33	68.38	17.52	15.00	23.06	0.00	0.00	0.00	-0.01	0.00	0.00
		CH ₄	79.07	0.04	17.52	17.40	24.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.74	9524.73	5.27	4.54	6.95	0.09	-0.01	0.01	-0.05	0.08	0.01
		CH ₄	1251.59	169.61	5.00	20.00	20.62	0.00	0.00	0.00	0.00	0.00	0.00
2.C.2	Ferroalloys Production	CO ₂	3533.41	351.54	21.21	5.00	21.79	0.00	0.00	0.00	0.00	0.01	0.00
		CH ₄	16.93	0.29	5.25	31.25	31.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.3	Aluminium Production	CO_2	170.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
		PFCs	211.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.C.5	Lead Production	CO_2	22.10	1.46	20.00	50.00	53.85	0.00	0.00	0.00	0.00	0.00	0.00
2.C.6	Zinc Production	CO ₂	24.25	0.10	20.00	50.00	53.85	0.00	0.00	0.00	0.00	0.00	0.00
2.D.1	Lubricant Use	CO_2	304.83	96.69	22.36	50.09	54.85	0.00	0.00	0.00	0.00	0.00	0.00
2.D.2	Paraffin Wax Use	CO ₂	122.84	7.57	22.36	100.12	102.59	0.00	0.00	0.00	0.00	0.00	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Substances	HFCs	_	2423.14	54.57	33.90	64.24	0.49	0.00	0.00	0.09	0.20	0.05
2.G.1	Electrical Equipment	SF ₆	0.01	57.21	34.10	18.00	38.56	0.00	0.00	0.00	0.00	0.00	0.00
2.G.3	N ₂ O from Product Uses	N_2O	13.61	122.66	13.63	28.25	31.37	0.00	0.00	0.00	0.00	0.00	0.00
3	AGRICULTURE												
3.A	Enteric Fermentation	CH ₄	45231.20	6681.90	3.17	10.13	10.61	0.10	0.00	0.01	-0.05	0.03	0.00
3.B(a)	Manure management / CH ₄ Emissions	CH ₄	4078.91	1436.48	5.60	20.05	20.82	0.02	0.00	0.00	0.01	0.01	0.00
3.B(b)	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3096.86	747.42	3.96	54.41	54.55	0.03	0.00	0.00	0.00	0.00	0.00
3.C	Rice cultivation	CH ₄	242.48	47.31	6.00	15.14	16.28	0.00	0.00	0.00	0.00	0.00	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	26594.95	18774.79	3.58	84.14	84.21	50.86	0.01	0.02	1.13	0.10	1.29
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	7215.42	4754.70	6.42	55.90	56.27	1.46	0.00	0.01	0.18	0.05	0.04
3.G	Liming	CO ₂	2592.08	65.95	6.00	50.00	50.36	0.00	0.00	0.00	-0.03	0.00	0.00
3.H	Urea application	CO ₂	568.93	446.89	6.00	50.00	50.36	0.01	0.00	0.00	0.02	0.00	0.00
4	LAND USE, LAND-USE CHAN	IGE ANI	D FORESTRY	Y									
4.A	Forest Land	CO ₂	-37652.55	-36318.31	13.00	35.81	38.09	38.94	-0.03	-0.04	-1.06	-0.73	1.66
		CH ₄	8.89	1.34	145.00	23.31	146.86	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO2 equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
		N ₂ O	47.00	48.85	145.00	113.17	183.94	0.00	0.00	0.00	0.00	0.01	0.00
4.B	Cropland	CO ₂	-20303.50	24547.86	13.00	116.87	117.59	169.55	0.03	0.03	3.76	0.49	14.36
		CH ₄	_	0.97	153.00	22.70	154.67	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.01	9.08	153.00	27.50	155.45	0.00	0.00	0.00	0.00	0.00	0.00
4.C	Grassland	CO ₂	-1673.50	78.42	13.00	1356.28	1356.34	0.23	0.00	0.00	0.72	0.00	0.51
		CH ₄	0.15	0.43	153.00	39.10	157.92	0.00	0.00	0.00	0.00	0.00	0.00
4.D	Wetlands	N ₂ O CO ₂	0.13 12232.72	0.38 119.91	153.00 13.00	47.60 58.04	160.23 59.47	0.00	0.00	0.00	0.00 -0.18	0.00	0.00
4.D	wetlands	CH ₄	33.22	8.79	13.00	27.08	30.04	0.00	0.00	0.00	0.00	0.00	0.03
		+				36.89		0.00	0.00				+
1 = 2		N ₂ O	4.01	1.11	13.00		39.11			0.00	0.00	0.00	0.00
4.E.2	Land converted to Settlements	CO ₂	9.18	1617.52	13.00	49.16	50.85	0.14	0.00	0.00	0.09	0.03	0.01
		N ₂ O	0.02	94.93	13.00	80.78	81.82	0.00	0.00	0.00	0.01	0.00	0.00
4.F.2	Land converted to Other Land	CO_2	1589.43	91.54	13.00	63.69	65.00	0.00	0.00	0.00	-0.02	0.00	0.00
		N ₂ O	120.51	6.95	13.00	78.65	79.71	0.00	0.00	0.00	0.00	0.00	0.00
4.G	Harvested Wood Products (HWP)	CO ₂	-2312.91	-1471.06	15.00	31.05	34.49	0.05	0.00	0.00	-0.03	-0.03	0.00
5	WASTE							ı					
5.A.	Solid Waste Disposal	CH ₄	7661.08	8748.64	54.85	88.33	103.97	16.83	0.01	0.01	0.66	0.74	0.99
5.B.	Biological Treatment of Solid Waste	CH ₄	15.74	12.01	35.29	100.00	106.05	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	11.17	8.53	35.29	100.00	106.05	0.00	0.00	0.00	0.00	0.00	0.00
5.C.	Incineration and Open Burning of Waste	CO ₂	28.66	4.19	37.02	31.22	48.43	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	1.34	1.38	37.02	100.00	106.63	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
		N ₂ O	4.28	5.46	37.02	100.00	106.63	0.00	0.00	0.00	0.00	0.00	0.00
5.D.1	Domestic Wastewater	CH ₄	5462.84	3897.56	37.08	49.49	61.84	1.18	0.00	0.00	0.14	0.22	0.07
		N ₂ O	1749.88	945.82	48.33	158.11	165.33	0.50	0.00	0.00	0.09	0.07	0.01
5.D.2	Industrial Wastewater	CH ₄	1896.36	1160.05	36.89	38.85	53.57	0.08	0.00	0.00	0.03	0.07	0.01
		N ₂ O	115.53	48.98	37.23	50.00	62.34	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL		916472.68	221693.25				304.46					21.12
						Percentage in total inve	uncertainty entory	17.45				Trend un- certainty	4.60

Table A7.2 the Results of the evaluation of the combined uncertainty of GHG emissions **excluding the LULUCF sector**

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	H	I	J	K	L	M
1	ENERGY	1			ı		ı	T	T	T			
1.A.1	Energy Industries	CO_2	271861.68	61017.20	6.02	3.22	6.83	3.20	0.00	0.06	-0.02	0.54	0.29
		CH ₄	206.40	83.09	6.02	89.54	89.74	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	564.82	214.89	6.02	363.91	363.96	0.11	0.00	0.00	0.03	0.00	0.00
1.A.2	Manufacturing Industries and Construction	CO ₂	111029.98	15773.08	8.99	3.33	9.59	0.42	-0.01	0.02	-0.04	0.21	0.04
		CH ₄	90.45	27.10	8.99	114.97	115.32	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	128.31	36.19	8.99	400.33	400.43	0.00	0.00	0.00	0.00	0.00	0.00
1.A.3	Transport	CO_2	107066.83	25935.85	17.11	4.90	17.79	3.93	0.00	0.03	0.00	0.65	0.42
		CH ₄	787.59	179.02	17.11	15.46	23.06	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	3577.33	858.27	17.11	10.95	20.31	0.01	0.00	0.00	0.00	0.02	0.00
1.A.4	Other Sectors	CO ₂	98704.92	16579.40	10.25	6.00	11.87	0.71	-0.01	0.02	-0.05	0.25	0.06
		CH ₄	3370.14	23.56	10.25	98.80	99.33	0.00	0.00	0.00	-0.08	0.00	0.01
		N ₂ O	263.78	27.91	10.25	335.40	335.56	0.00	0.00	0.00	-0.01	0.00	0.00
1.A.5	Other (Not specified elsewhere)	CO ₂	105.56	869.85	50.00	2.00	50.04	0.03	0.00	0.00	0.00	0.06	0.00
		CH ₄	0.12	1.00	50.00	150.00	158.11	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	0.23	1.90	50.00	500.00	502.49	0.00	0.00	0.00	0.00	0.00	0.00
1.B.1	Solid Fuels	CO_2	458.73	154.36	6.10	5.00	7.89	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	69354.20	12284.62	14.72	5.00	15.55	0.67	0.00	0.01	-0.02	0.27	0.07
1.B.2	Oil and Natural Gas and Other Emissions from Energy Pro- duction	CO ₂	3023.81	1923.24	12.45	4.94	13.39	0.01	0.00	0.00	0.01	0.04	0.00
		CH ₄	69513.40	27996.73	23.18	17.86	29.26	12.38	0.01	0.03	0.21	0.95	0.95

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
		N ₂ O	2.08	1.11	7.78	3.56	8.56	0.00	0.00	0.00	0.00	0.00	0.00
2	INDUSTRIAL PROCESSES	AND PR	ODUCT USE										
2.A.1	Cement Production	CO_2	9400.94	3329.95	20.06	5.41	20.77	0.09	0.00	0.00	0.01	0.10	0.01
2.A.2	Lime Production	CO_2	5121.81	1337.74	28.28	16.06	32.53	0.03	0.00	0.00	0.00	0.06	0.00
2.A.3	Glass Production	CO_2	187.02	128.04	22.85	2.31	22.97	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.a	Ceramics	CO_2	111.77	24.02	20.40	5.00	21.00	0.00	0.00	0.00	0.00	0.00	0.00
2.A.4.b	Other uses of Soda Ash	CO_2	285.84	22.58	22.36	7.00	23.43	0.00	0.00	0.00	0.00	0.00	0.00
2.B.1	Ammonia Production	CO_2	9798.96	1505.65	5.83	7.00	9.11	0.00	0.00	0.00	-0.01	0.01	0.00
2.B.2	Nitric Acid Production	N ₂ O	4699.37	1744.40	2.00	22.36	22.45	0.03	0.00	0.00	0.01	0.01	0.00
2.B.3	Adipic Acid Production	N ₂ O	209.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.4.a	Caprolactam	N ₂ O	121.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.5	Carbide Production	CO_2	122.08	43.42	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	4.23	5.38	5.00	10.00	11.18	0.00	0.00	0.00	0.00	0.00	0.00
2.B.6	Titanium Dioxide Production	CO ₂	226.30	113.50	25.00	5.00	25.50	0.00	0.00	0.00	0.00	0.00	0.00
2.B.7	Soda ash production	CO_2		_	_		0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO ₂	1962.33	68.38	17.52	15.00	23.06	0.00	0.00	0.00	-0.01	0.00	0.00
		CH ₄	79.07	0.04	17.52	17.40	24.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.74	9524.73	5.27	4.54	6.95	0.08	-0.01	0.01	-0.05	0.07	0.01
		CH ₄	1251.59	169.61	5.00	20.00	20.62	0.00	0.00	0.00	0.00	0.00	0.00
2.C.2	Ferroalloys Production	CO_2	3533.41	351.54	21.21	5.00	21.79	0.00	0.00	0.00	0.00	0.01	0.00
		CH ₄	16.93	0.29	5.25	31.25	31.69	0.00	0.00	0.00	0.00	0.00	0.00
2.C.3	Aluminium Production	CO ₂	170.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		PFCs	211.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.C.5	Lead Production	CO_2	22.10	1.46	20.00	50.00	53.85	0.00	0.00	0.00	0.00	0.00	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	A	В	C	D	E	F	G	Н	I	J	K	L	M
2.C.6	Zinc Production	CO ₂	24.25	0.10	20.00	50.00	53.85	0.00	0.00	0.00	0.00	0.00	0.00
2.D.1	Lubricant Use	CO ₂	304.83	96.69	22.36	50.09	54.85	0.00	0.00	0.00	0.00	0.00	0.00
2.D.2	Paraffin Wax Use	CO ₂	122.84	7.57	22.36	100.12	102.59	0.00	0.00	0.00	0.00	0.00	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Sub- stances	HFCs	_	2423.14	54.57	33.90	64.24	0.45	0.00	0.00	0.09	0.19	0.04
2.G.1	Electrical Equipment	SF ₆	0.01	57.21	34.10	18.00	38.56	0.00	0.00	0.00	0.00	0.00	0.00
2.G.3	N ₂ O from Product Uses	N ₂ O	13.61	122.66	13.63	28.25	31.37	0.00	0.00	0.00	0.00	0.00	0.00
3	AGRICULTURE									<u> </u>			
3.A	Enteric Fermentation	CH ₄	45231.20	6681.90	3.17	10.13	10.61	0.09	0.00	0.01	-0.04	0.03	0.00
3.B(a)	Manure management / CH ₄ Emissions	CH ₄	4078.91	1436.48	5.60	20.05	20.82	0.02	0.00	0.00	0.01	0.01	0.00
3.B(b)	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3096.86	747.42	3.96	54.41	54.55	0.03	0.00	0.00	0.00	0.00	0.00
3.C	Rice cultivation	CH ₄	242.48	47.31	6.00	15.14	16.28	0.00	0.00	0.00	0.00	0.00	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	26594.95	18774.79	3.58	84.14	84.21	46.11	0.01	0.02	1.08	0.10	1.17
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	7215.42	4754.70	6.42	55.90	56.27	1.32	0.00	0.00	0.17	0.04	0.03
3.G	Liming	CO_2	2592.08	65.95	6.00	50.00	50.36	0.00	0.00	0.00	-0.03	0.00	0.00
3.H	Urea application	CO_2	568.93	446.89	6.00	50.00	50.36	0.01	0.00	0.00	0.02	0.00	0.00
5	WASTE												
5.A.	Solid Waste Disposal	CH ₄	7661.08	8748.64	54.85	88.33	103.97	15.26	0.01	0.01	0.63	0.70	0.89
5.B.	Biological Treatment of Solid Waste	CH ₄	15.74	12.01	35.29	100.00	106.05	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	11.17	8.53	35.29	100.00	106.05	0.00	0.00	0.00	0.00	0.00	0.00

IPCC category		Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	2023 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 2023 year, %	Type A sensitivity, %	Type B sensitivity, %	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty, %	Uncertainty in trend in national emissions introduced by activity data uncertainty, %	Uncertainty introduced into the trend in total national emissions, %
	\mathbf{A}	В	C	D	E	F	G	Н	I	J	K	L	M
5.C.	Incineration and Open Burning of Waste	CO ₂	28.66	4.19	37.02	31.22	48.43	0.00	0.00	0.00	0.00	0.00	0.00
		CH ₄	1.34	1.38	37.02	100.00	106.63	0.00	0.00	0.00	0.00	0.00	0.00
		N ₂ O	4.28	5.46	37.02	100.00	106.63	0.00	0.00	0.00	0.00	0.00	0.00
5.D.1	Domestic Wastewater	CH ₄	5462.84	3897.56	37.08	49.49	61.84	1.07	0.00	0.00	0.13	0.21	0.06
		N ₂ O	1749.88	945.82	48.33	158.11	165.33	0.45	0.00	0.00	0.09	0.07	0.01
5.D.2	Industrial Wastewater	CH ₄	1896.36	1160.05	36.89	38.85	53.57	0.07	0.00	0.00	0.03	0.06	0.00
		N ₂ O	115.53	48.98	37.23	50.00	62.34	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL		964369.85	232854.53				86.60					4.10
						Percentage in total inve		9.31				Trend un- certainty	2.03

Table A7.3 The results of the evaluation of the combined uncertainty of GHG emissions including the LULUCF sector for the base 1990 year

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	G
1	ENERGY						
1.A.1	Energy Industries	CO_2	271861.68	0.64	2.88	2.95	0.77
		CH ₄	206.40	0.64	96.70	96.70	0.00
		N ₂ O	564.82	0.64	364.90	364.90	0.05
1.A.2	Manufacturing Industries and Construction	CO_2	111029.98	1.85	2.68	3.26	0.16
		CH ₄	90.45	1.85	86.73	86.75	0.00
		N ₂ O	128.31	1.85	308.53	308.54	0.00
1.A.3	Transport	CO_2	107066.83	4.48	4.57	6.40	0.56
		CH ₄	787.59	4.48	15.39	16.03	0.00
		N ₂ O	3577.33	4.48	10.94	11.82	0.00
1.A.4	Other Sectors	CO_2	98704.92	2.35	2.82	3.67	0.16
		CH ₄	3370.14	2.35	141.02	141.04	0.27
		N ₂ O	263.78	2.35	390.73	390.74	0.01
1.A.5	Other (Not specified elsewhere)	CO ₂	105.56	5.00	2.00	5.39	0.00
		CH ₄	0.12	5.00	150.00	150.08	0.00
		N ₂ O	0.23	5.00	500.00	500.02	0.00
1.B.1	Solid Fuels	CO ₂	458.73	5.00	5.00	7.07	0.00
		CH ₄	69354.20	5.00	5.00	7.07	0.29
1.B.2	Oil and Natural Gas and Other Emissions from Energy Production	CO_2	3023.81	9.42	5.00	10.66	0.00
		CH ₄	69513.40	22.65	17.65	28.71	4.74
		N ₂ O	2.08	8.23	3.57	8.97	0.00
2	INDUSTRIAL PROCESSES AND PRODUCT USE						
2.A.1	Cement Production	CO ₂	9400.94	1.73	5.41	5.68	0.00
2.A.2	Lime Production	CO ₂	5121.81	10.04	16.06	18.94	0.01
2.A.3	Glass Production	CO_2	187.02	5.53	2.31	5.99	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	G
2.A.4.a	Ceramics	CO_2	111.77	2.00	5.00	5.39	0.00
2.A.4.b	Other uses of Soda Ash	CO ₂	285.84	5.00	7.00	8.60	0.00
2.B.1	Ammonia Production	CO ₂	9798.96	5.39	7.00	8.83	0.01
2.B.2	Nitric Acid Production	N ₂ O	4699.37	2.00	5.00	5.39	0.00
2.B.3	Adipic Acid Production	N ₂ O	209.32	2.00	10.00	10.20	0.00
2.B.4.a	Caprolactam	N ₂ O	121.18	2.00	40.00	40.05	0.00
2.B.5	Carbide Production	CO ₂	122.08	5.00	10.00	11.18	0.00
		CH ₄	4.23	5.00	10.00	11.18	0.00
2.B.6	Titanium Dioxide Production	CO ₂	226.30	5.00	15.00	15.81	0.00
2.B.7	Soda ash production	CO_2	_		_	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO_2	1962.33	7.09	16.12	17.61	0.00
		CH ₄	79.07	6.61	30.04	30.76	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.74	4.05	4.08	5.75	0.25
		CH ₄	1251.59	5.00	20.00	20.62	0.00
2.C.2	Ferroalloys Production	CO ₂	3533.41	7.07	5.00	8.66	0.00
		CH ₄	16.93	5.25	31.25	31.69	0.00
2.C.3	Aluminium Production	CO ₂	170.28	1.00	10.00	10.05	0.00
		PFCs	211.99	1.41	78.59	78.60	0.00
2.C.5	Lead Production	CO_2	22.10	10.00	50.00	50.99	0.00
2.C.6	Zinc Production	CO ₂	24.25	10.00	50.00	50.99	0.00
2.D.1	Lubricant Use	CO ₂	304.83	5.00	50.09	50.34	0.00
2.D.2	Paraffin Wax Use	CO ₂	122.84	5.00	100.12	100.25	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Substances	HFCs	_	_	_	0.00	0.00
2.G.1	Electrical Equipment	SF ₆	0.01	33.97	22.91	40.97	0.00
2.G.3	N ₂ O from Product Uses	N ₂ O	13.61	13.63	28.25	31.37	0.00

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
_	A	В	C	D	E	F	G
3	AGRICULTURE		ı	1			T
3.A	Enteric Fermentation	CH ₄	45231.20	2.75	11.22	11.55	0.33
3.B(a)	Manure management / CH ₄ Emissions	CH ₄	4078.91	4.06	17.52	17.99	0.01
3.B(b)	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3096.86	2.87	50.30	50.38	0.03
3.C	Rice cultivation	CH ₄	242.48	5.00	13.45	14.35	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	26594.95	3.10	84.14	84.20	5.97
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	7215.42	4.71	55.90	56.10	0.20
3.G	Liming	CO ₂	2592.08	5.00	50.00	50.25	0.02
3.H	Urea application	CO ₂	568.93	5.00	50.00	50.25	0.00
4	LAND USE. LAND-USE CHANGE AND FORESTRY	1	1	1			
4.A	Forest Land	CO_2	-37652.55	15.00	48.00	50.29	4.27
		CH ₄	8.89	15.00	37.90	40.76	0.00
		N ₂ O	47.00	15.00	22.98	27.44	0.00
4.B	Cropland	CO ₂	-20303.50	6.00	126.38	126.52	7.86
		CH ₄	-	6.00	22.70	23.48	0.00
		N ₂ O	0.01	6.00	27.50	28.15	0.00
4.C	Grassland	CO_2	-1673.50	6.00	153.47	153.59	0.08
		CH ₄	0.15	6.00	39.10	39.56	0.00
		N ₂ O	0.13	6.00	47.60	47.98	0.00
4.D	Wetlands	CO ₂	12232.72	10.00	24.50	26.46	0.12
		CH ₄	33.22	10.00	27.20	28.98	0.00
		N ₂ O	4.01	10.00	36.70	38.04	0.00
4.E.2	Land converted to Settlements	CO_2	9.18	10.00	62.00	62.80	0.00
		N ₂ O	0.02	10.00	92.00	92.54	0.00
4.F.2	Land converted to Other Land	CO_2	1589.43	10.00	92.00	92.54	0.03
		N ₂ O	120.51	10.00	113.61	114.05	0.00

	IPCC category	Gas	Base 1990 year emissions or removals,	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	G
4.G	Harvested Wood Products (HWP)	CO ₂	-2312.91	13.00	26.80	29.79	0.01
5	WASTE						
5.A.	Solid Waste Disposal	CH ₄	7661.08	52.80	88.33	102.91	0.74
5.B.	Biological Treatment of Solid Waste	CH ₄	15.74	60.00	100.00	116.62	0.00
		N ₂ O	11.17	60.00	100.00	116.62	0.00
5.C.	Incineration and Open Burning of Waste	CO_2	28.66	60.00	31.22	67.64	0.00
		CH ₄	1.34	60.00	100.00	116.62	0.00
		N ₂ O	4.28	60.00	100.00	116.62	0.00
5.D.1	Domestic Wastewater	CH ₄	5462.84	40.75	49.24	63.92	0.15
		N ₂ O	1749.88	47.29	158.11	165.03	0.10
5.D.2	Industrial Wastewater	CH ₄	1896.36	36.89	41.65	55.64	0.01
		N ₂ O	115.53	36.89	50.00	62.14	0.00
	TOTAL		916472.68				27.19
					Percentage u in total inven		5.21

Table A7.4 The results of the evaluation of the combined uncertainty of GHG emissions excluding the LULUCF sector for the base 1990 year

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	G
1	ENERGY	T					
1.A.1	Energy Industries	CO ₂	271861.68	0.64	2.88	2.95	0.69
		CH ₄	206.40	0.64	96.70	96.70	0.00
		N ₂ O	564.82	0.64	364.90	364.90	0.05
1.A.2	Manufacturing Industries and Construction	CO ₂	111029.98	1.85	2.68	3.26	0.14
		CH ₄	90.45	1.85	86.73	86.75	0.00
		N ₂ O	128.31	1.85	308.53	308.54	0.00
1.A.3	Transport	CO ₂	107066.83	4.48	4.57	6.40	0.50
		CH ₄	787.59	4.48	15.39	16.03	0.00
		N ₂ O	3577.33	4.48	10.94	11.82	0.00
1.A.4	Other Sectors	CO ₂	98704.92	2.35	2.82	3.67	0.14
		CH ₄	3370.14	2.35	141.02	141.04	0.24
1 4 5		N ₂ O	263.78	2.35	390.73	390.74	0.01
1.A.5	Other (Not specified elsewhere)	CO ₂	105.56	5.00	2.00	5.39	0.00
		CH ₄	0.12	5.00	150.00	150.08	0.00
1.77.1	0.1117. 1	N ₂ O	0.23	5.00	500.00	500.02	0.00
1.B.1	Solid Fuels	CO ₂	458.73	5.00	5.00	7.07	0.00
1 D 2	Oil and Natural Control Other Edition Co. Ed. (2011)	CH ₄	69354.20	5.00	5.00	7.07	0.26
1.B.2	Oil and Natural Gas and Other Emissions from Energy Production	CO ₂	3023.81 69513.40	9.42 22.65	5.00 17.65	10.66 28.71	0.00 4.28
		N ₂ O	2.08	8.23	3.57	8.97	0.00
2	INDUSTRIAL PROCESSES AND PRODUCT USE	IN2U	2.08	0.23	3.37	0.97	0.00
2.A.1	Cement Production	CO ₂	9400.94	1.73	5.41	5.68	0.00
2.A.1 2.A.2	Lime Production	CO_2	5121.81	10.04	16.06	18.94	0.00
2.A.2 2.A.3	Glass Production	CO_2	187.02	5.53	2.31	5.99	0.00
2.A.4.a	Ceramics	CO_2	111.77	2.00	5.00	5.39	0.00

	IPCC category	Gas	Base 1990 year emissions or removals,	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	\mathbf{G}
2.A.4.b	Other uses of Soda Ash	CO ₂	285.84	5.00	7.00	8.60	0.00
2.B.1	Ammonia Production	CO_2	9798.96	5.39	7.00	8.83	0.01
2.B.2	Nitric Acid Production	N ₂ O	4699.37	2.00	5.00	5.39	0.00
2.B.3	Adipic Acid Production	N ₂ O	209.32	2.00	10.00	10.20	0.00
2.B.4.a	Caprolactam	N ₂ O	121.18	2.00	40.00	40.05	0.00
2.B.5	Carbide Production	CO_2	122.08	5.00	10.00	11.18	0.00
		CH ₄	4.23	5.00	10.00	11.18	0.00
2.B.6	Titanium Dioxide Production	CO ₂	226.30	5.00	15.00	15.81	0.00
2.B.7	Soda ash production	CO ₂	_	_	_	0.00	0.00
2.B.8	Petrochemical and Carbon Black Production	CO ₂	1962.33	7.09	16.12	17.61	0.00
		CH ₄	79.07	6.61	30.04	30.76	0.00
2.C.1	Iron and Steel Production	CO ₂	79689.74	4.05	4.08	5.75	0.23
		$\mathrm{CH_4}$	1251.59	5.00	20.00	20.62	0.00
2.C.2	Ferroalloys Production	CO ₂	3533.41	7.07	5.00	8.66	0.00
		CH ₄	16.93	5.25	31.25	31.69	0.00
2.C.3	Aluminium Production	CO_2	170.28	1.00	10.00	10.05	0.00
		PFCs	211.99	1.41	78.59	78.60	0.00
2.C.5	Lead Production	CO_2	22.10	10.00	50.00	50.99	0.00
2.C.6	Zinc Production	CO ₂	24.25	10.00	50.00	50.99	0.00
2.D.1	Lubricant Use	CO ₂	304.83	5.00	50.09	50.34	0.00
2.D.2	Paraffin Wax Use	CO ₂	122.84	5.00	100.12	100.25	0.00
2.F	Product Uses as Substitutes for Ozone Depleting Substances	HFCs	_	_	_	0.00	0.00
2.G.1	Electrical Equipment	SF ₆	0.01	33.97	22.91	40.97	0.00
2.G.3	N ₂ O from Product Uses	N ₂ O	13.61	13.63	28.25	31.37	0.00
3	AGRICULTURE						

	IPCC category	Gas	Base 1990 year emissions or removals, kt CO ₂ equivalent	Activity data uncertainty, %	Emission factor / estimation parameter Uncertainty, %	Combined uncertainty, %	Contribution to Variance by Category in 1990 year, %
	A	В	C	D	E	F	G
3.A	Enteric Fermentation	CH ₄	45231.20	2.75	11.22	11.55	0.29
3.B(a)	Manure management / CH ₄ Emissions	CH ₄	4078.91	4.06	17.52	17.99	0.01
3.B(b)	Manure management / N ₂ O and NMVOC Emissions	N ₂ O	3096.86	2.87	50.30	50.38	0.03
3.C	Rice cultivation	CH ₄	242.48	5.00	13.45	14.35	0.00
3.D.1	Direct N ₂ O Emissions from managed soils	N ₂ O	26594.95	3.10	84.14	84.20	5.39
3.D.2	Indirect N ₂ O Emissions from managed soils	N ₂ O	7215.42	4.71	55.90	56.10	0.18
3.G	Liming	CO ₂	2592.08	5.00	50.00	50.25	0.02
3.H	Urea application	CO_2	568.93	5.00	50.00	50.25	0.00
5	WASTE						
5.A.	Solid Waste Disposal	CH ₄	7661.08	52.80	88.33	102.91	0.67
5.B.	Biological Treatment of Solid Waste	CH ₄	15.74	60.00	100.00	116.62	0.00
		N ₂ O	11.17	60.00	100.00	116.62	0.00
5.C.	Incineration and Open Burning of Waste	CO_2	28.66	60.00	31.22	67.64	0.00
		CH ₄	1.34	60.00	100.00	116.62	0.00
		N ₂ O	4.28	60.00	100.00	116.62	0.00
5.D.1	Domestic Wastewater	CH ₄	5462.84	40.75	49.24	63.92	0.13
		N ₂ O	1749.88	47.29	158.11	165.03	0.09
5.D.2	Industrial Wastewater	CH ₄	1896.36	36.89	41.65	55.64	0.01
		N ₂ O	115.53	36.89	50.00	62.14	0.00
	TOTAL		964369.85				13.39
					Percentage in total inve		3.66

ANNEX 8 INFORMATION ON IMPROVEMENTS IN THE NATIONAL INVENTORY

A8.1 Consideration of the recommendations of the expert review team (ERT) presented in the Report of the individual

review of the inventory submission of Ukraine submitted in 2023 (ARR 23)

review of t	tne inv	ventory submission of	Ukraine submitted in 2023 (ARR 23)	
Sector	ID#	Category	Recommendation	Comment
General	G.1	National system (G.5, 2021) (G.7, 2019) Convention reporting adherence	Submit the annual GHG inventory by 15 April each year. The ERT considers that the recommendation has not yet been addressed because the Party did not comply with the deadline set in paragraph 3 of decision 24/CP.19 for its 2023 inventory submission.	As part of the inventory of greenhouse gas emissions, an annual step-by-step process planning is provided in accordance with the IPCC Guidelines for National Greenhouse Gas Inventories, 2006 (see 1.3.2 Planning and control of activities on greenhouse gas inventory and report development). For the 2024 the plan had foreseen the development and submission of Ukraine's GHG inventory submission before 31 December, which is in accordance with set paragraph 6 of decision 6/CP.27. After the 2024 the plan will provide for the development and submission of Ukraine's GHG inventory submission before 15 April, which is in accordance with the deadline of 15 April set in paragraph 3 of decision 24/CP.19.
	G.2	National system (G.7, 2021) Convention reporting adherence	Prepare and report in the next annual inventory submission an action plan detailing the steps, time frames, responsibilities, and human and financial resources required for addressing the issues identified in the LULUCF sector. The ERT considers that the recommendation has not yet been fully addressed because, although the Party prepared a plan, it does not address all issues with the reporting of the LULUCF sector (e.g. land representation), which are related to the performance of the national system and the institutional arrangements for preparing the national GHG inventory.	The majority of recommendations in LULUCF is related to the land-use change matrix. There are also other issues that need research to fully implement the recommendations. Ukraine is constantly seeking funding from other than public sources. Since donors usually prefer to perform the work under their own guidelines and timelines it is not possible to develop the action plan that will not be changed as soon as the funding is secured. As already provided in the LULUCF sector funding for the development of land-use change matrix is expected to come from the international sources but that was postponed several times. The action plan will be provided as soon as the funding will be secured.
	G.3	National system (G.7, 2021) Transparency	Report on the progress of implementation of the action plan for the LULUCF sector in subsequent annual submissions.	The progress on implementation of action plan will be provided when the activities from the action plan will be performed

Sector	ID#	Category	Recommendation	Comment
			The ERT notes that the Party continues to face difficulties in implementing the plan and considers that the recommendation has not yet been fully addressed because information on the progress of implementation of the plan, including challenges faced, was not included in the NIR	
	G.4	Notation keys (G.8, 2021) Convention reporting adherence	Ensure that the total national aggregate of estimated emissions for all gases and categories considered insignificant remains below 0.1 per cent of national total GHG emissions, in accordance with paragraph 37(b) of the UNFCCC Annex I inventory reporting guidelines, and include that information in the NIR.	Please, see 1.7.1. Completeness assessment of GHG inventory.
Energy	E.1	Fuel combustion – reference approach – solid fuels – CO ₂ (E.1, 2021) (E.8, 2019) Con- vention reporting adherence	Correct the unit (i.e. from TJ to kt) used to report solid fuels in CRF table 1.A(b).	Corrected, CRF table 1.A(b).
	E.2	1.A Fuel combustion – sectoral approach – liquid fuels – CO ₂ (E.2, 2021) (E.1, 2019) (E.2, 2017) (E.8, 2016) (E.11, 2015) (31, 2014) Accuracy	Develop and use country-specific CO ₂ EFs for liquid fuels (i.e. residual fuel, diesel oil, LPG, petroleum coke and refinery gases), which have a significant share in the fuel mix of stationary combustion.	Development of the country-specific CO ₂ EF for residual fuel oil is included in the Improvement Plan.
	E.3	1.A.2.f Non-metallic minerals – liquid fuels – CO ₂ (E.19, 2021) Transparency	Investigate and provide in the NIR a detailed explanation of the sector-specific drivers behind the significant inter-annual changes in AD across the time series. The ERT considers that the recommendation has not yet been fully addressed because the Party did not include in the NIR a detailed explanation of the sector-specific drivers behind the significant inter-annual changes in AD across the time series.	Addressed chap. 3.2.8.1.
	E.4	1.A.3.b Road transportation - LPG - CO ₂ , CH ₄ and N ₂ O (E.4, 2021) (E.11, 2019) Consistency	Demonstrate that the use of different data sources for 1990–2015 and 2016 onward result in consistent CO ₂ , CH ₄ and N ₂ O emission estimates across the time series.	Addressed chap. 3.2.9.2.2.
	E.6	1.B.1.c Other (solid fuels) – solid fuels – CO ₂ and CH ₄ (E.9, 2021) (E.13, 2019) Transparency	Improve the information on allocation of CH4 emissions from coal bed CH4 flaring.	Addressed chap. 3.3.1.4.
	E.7	1.B.1.c Other (solid fuels) – solid fuels – CO ₂ and CH ₄ (E.10, 2021) (E.13, 2019) Transparency	Investigate whether double counting now occurs for coal bed CH4 flaring between categories 1.B.1.c and 1.A.1.c (i.e. clarify whether the flaring emissions reported under category 1.A.1.c in the 2017 submission were removed from category 1.A.1.c with the reporting of flaring under category 1.B.1.c) and report in the NIR on the findings. The ERT considers that the Party could split NIR table 3.19 into two tables, one for flared CH4 under category 1.B.1.c and the other for recovered CH4 under category 1.A.1.c, to help to resolve this issue	Addressed table 3.19, Column "Note" (Flaring).

Sector	ID#	Category	Recommendation	Comment
	E.8	1.B.2.a Oil – CO ₂ , CH ₄ and	Include an explanation in the NIR for the choice of CO ₂ , CH ₄ and N ₂ O EFs	Addressed chap. 3.3.2.1.2.
		N ₂ O	for estimating emissions for the oil category, including documentation of the	
		(E.11, 2021) (E.7, 2019)	current state of oil industry infrastructure.	
		(E.25, 2017) Transparency	The ERT considers that the recommendation has not yet been fully addressed	
		(E.11, 2021) (E.7, 2019)	because the Party did not include the above-mentioned information provided during the review in the NIR.	
	E.10	(E.25, 2017) Transparency 1.B.2.b Natural gas – CO ₂	Improve the transparency of reporting for this category by including in the	Addressed show 2.2.2.2
	E.10	and CH ₄	NIR the explanation for the decreasing trend observed in the natural gas trans-	Addressed chap. 3.3.2.2.2.
		(E.14, 2021) (E.16, 2019)	mission (compared with production increases) that was provided during the	
		Transparency	review.	
	E.11	1.B.2.b Natural gas – CO ₂	Revise emission estimates for the exploration, production and processing of	Development of the country-specific EFs is in-
	2.11	and CH ₄	natural gas using a tier that is in accordance with the 2006 IPCC Guidelines	cluded in the Improvement Plan.
		(E.15, 2021) (E.18, 2019)	(vol. 2, figure 4.2.1).	1
		Accuracy		
	E.13	1.B.2.b Natural gas – CO ₂	Improve the transparency of the information in its NIR by including all rele-	Addressed chap. 3.3.2.2.2.
		and CH ₄	vant contextual information on its natural gas exploration, production and pro-	
		(E.20, 2021) Transparency	cessing industries, which should justify the choice of method for estimating	
			emissions.	
	E.14	1.B.2.c Venting and flaring	Enhance the transparency of the plans to improve the national inventory by	Development of the country-specific EFs is in-
		- all gases	including a detailed description of the planned improvement for estimating	cluded in the Improvement Plan.
		E.17, 2021) (E.19, 2019)	natural gas venting emissions.	
	E.15	Transparenc 1.A.3 Transport – all fuels –	The ERT recommends that the Party report "NO" for categories 1.A.3.b (road	Reported "NO" for listed categories.
	E.13	CO ₂ , CH ₄ and N ₂ O	transportation – gaseous fuels and other fossil fuels); 1.A.3.c (railways – solid	Reported NO for fisted categories.
		CO_2 , CH_4 and N_2O	fuels, gaseous fuels and other fossil fuels); 1.A.3.d (domestic navigation –	
			gasoline, lubricants and gaseous fuels); and 1.A.3.e.i (pipeline transport – liq-	
			uid fuels, solid fuels and other fossil fuels) in CRF table 1.A(a)s3	
	E.16	1.A.3 Transport – all fuels –	The ERT recommends that the Party transparently report in the NIR how it	Addressed chap. 3.2.9.2.2.
		CO ₂ , CH ₄ and N ₂ O	used the surrogate method, including why the method was chosen to resolve	
			the data gaps over other methods described in the 2006 IPCC Guidelines (vol.	
			1, chap. 5), a description of the source and nature of the surrogate parameters	
			and its approach to ensuring time-series consistency.	
IPPU	I.7	2.B.2 Nitric acid production	in the NIR to improve the transparency of the emissions estimates.	Taken into account. Please see relevant section
		$-N_2O$	The ERT recommends that Ukraine include in the NIR that emission estimates	4.3.2 Nitric Acid Production (CRF category
			for this category does not include data from the low-pressure plant from 2015	2.B.2)/ 4.3.2.2 Methodological issues respec-
			onward because this plant ceased production of nitric acid in 2014.	tively.
	I.8	2.B.2 Nitric acid production	The ERT recommends that Ukraine revise the assumption made for the EF	Taken into account. Please see relevant sections
		$-N_2O$	applied for medium-pressure plants and update the emission estimates across	4.3.2 Nitric Acid Production (CRF category
			the time series accordingly.	2.B.2)/ 4.3.2.2 Methodological issues and
				4.3.2.5 Category-specific recalculations respec-
	_1			tively.

Sector	ID#	Category	Recommendation	Comment
	1.9	2.B.7 Soda ash production – CO ₂	The ERT recommends that Ukraine estimate CO ₂ emissions from soda ash production taking into consideration the guidance provided in the 2006 IPCC Guidelines (vol. 3, chap. 3, p.3.56).	Soda ash in Ukraine is produced at only one plant in small amounts, which is now located on the temporarily occupied territory of the Autonomous Republic of Crimea. Thus, the data of limestone and coke consumption for Solvay process could not be directly obtained. According to researches of the scientific-research work "Development of the method of calculation and determination of GHG emissions in the chemical industry with the construction of particular time-series" on the mentioned plant during the process all the CO ₂ generated as a by-product, is recovered and recycled for use in the carbonation stage. For improve the transparency in this category the calculation with using balance of CO ₂ around the whole chemical process might be performed, but taking into account the data collection issue, currently this is not possible to do. Thus, the assessment of CO ₂ emissions from the soda ash production process was not performed.
	I.10	2.F.1 Refrigeration and air conditioning – HFCs	The ERT noted that the HFC 134a amounts reported as filled into new manufactured products for transport refrigeration (category 2.F.1.d) do not correlate with the amounts reported as stock (sum of new refrigerant is lower than stock, even if considering initial emissions and annual leakage; e.g. for R134a the sum of amounts filled into new equipment for 2000–2013 amounts to 15.7 t, and considering IEFs for product manufacturing factor of 2 per cent and for product life factor of 15 per cent the stock in 2014 would amount to 12.1 t, whereas the reported stock is 6.3 t). The ERT recommends that Ukraine correct the calculation of average annual stocks for HFC 134a, for transport refrigeration for the entire time series in the next inventory submission.	Taken into account. Please see relevant sections 4.7.1 Refrigeration and Air Conditioning Systems/ Table 4.32 Basic data on results of GHG inventory in production and operation of refrigeration equipment in Ukraine in 2022 and 4.7.1.1.5. Category-specific recalculations. The emissions across the time series please see in Annex 3/ Table A3.1.1.15 Greenhouse gas emissions from product uses as substitutes for ozone-depleting substances and the relevant CRT tables.
	I.11	2.F.1 Refrigeration and air conditioning – HFCs	The ERT recommends that Ukraine correctly reference the parameter initial charge remaining in NIR table 4.30.	Taken into account. Please see relevant section 4.7.1 Refrigeration and Air Conditioning Systems/ Table 4.32 Basic data on results of GHG inventory in production and operation of refrigeration equipment in Ukraine in 2022.
	I.12	2.F.1 Refrigeration and air conditioning – HFCs	The ERT recommends that Ukraine include the additional information provided during the review regarding blends used and import of blends and pure HFCs for industrial and commercial refrigeration in its next NIR.	Taken into account. Please see relevant section 4.7.1.1 Refrigeration Equipment/ 4.7.1.1.1 Category description.
	I.13	2.F.1 Refrigeration and air conditioning – HFCs	The ERT recommends that Ukraine review its assumption concerning refilling and the application thereof in the calculation and report on the results of this review in its next NIR.	Taken into account. Please see relevant sections 4.7.1.2 Mobile Air-Conditioning/4.7.1.2.1 Cat-

Sector	ID#	Category	Recommendation	Comment
				egory description/ Table 4.34 Basic data on results of GHG inventory in production and operation of vehicle MACs in Ukraine in 2022/4.7.1.2.2 Methodological issues and 4.7.1.1.5. Category-specific recalculations the entire time series in Annex 3/ Table A3.1.1.15 Greenhouse gas emissions from product uses as substitutes for ozone-depleting substances and the relevant CRT tables.
	I.14	2.F.1 Refrigeration and air conditioning – HFCs	The ERT recommends that Ukraine review the values and its assumptions for initial charge remaining for MAC in cars and the application thereof and recalculate emissions, if necessary. The ERT also recommends that the Party update the text in the NIR accordingly in the next inventory submission.	Taken into account. Please see relevant sections 4.7.1.2 Mobile Air-Conditioning/4.7.1.2.1 Category description/ Table 4.34 Basic data on results of GHG inventory in production and operation of vehicle MACs in Ukraine in 2022 as well as in the relevant CRT tables. In accordance with the 2006 IPCC Guidelines (vol. 3, chap. 7, table 7.9,p. 7.52) disposal EF of 50 percent as initial charge remaining was used.
	I.15	2.F.4 Aerosols – HFCs	The ERT recommends that Ukraine report emissions of HFC 134a from manufacturing separately from stock or report the correct notation key "IE" for manufacturing in CRF table (II)B-Hs2 and indicate in the NIR and in CRF table 9 that emissions from manufacturing are included with emissions from stock.	Taken into account. The notation key "IE" for manufacturing in CRF table (II)B-Hs2 was used. In the NIR please see the relevant section 4.7.4 Aerosols/ 4.7.4.2 Methodological issues.
Agriculture	A.2	3.B.1 Cattle 3.B.3 Swine – CH ₄ (A.3, 2021) (A.12, 2019) (A.10, 2017) (A.23, 2016) Transparency	Include in the NIR relevant information on the reported MMS (e.g. how manure is handled, mechanically separated and stored, and the emptying frequencies of the lagoons/manure stores and field application) (the description should include a mass balance for all handled manure based on excreted VS in each MMS and indicate whether or not the manure is covered by a crusting layer).	Information about mass balance of manure, that handled in each MMS, reported in Annex 3.2.3 (Table A3.2.3.8).
	A.4	3.D.a.2.b Sewage sludge applied to soils – N ₂ O (A.9, 2021) Convention reporting adherence	Clearly justify in the NIR why the emissions from the use of sewage sludge as organic fertilizer are considered to be insignificant and use notation key "NE" in CRF table 3.D in accordance with paragraph 37(b) of the UNFCCC Annex I inventory reporting guidelines.	Notation key "NE" used in CRT table "3.D.1.b.ii. Sewage sludge applied to soils" in accordance with current ERT recommendation. Since 2018, SSSU has changed the reporting form and more detailed data on the amount of applied organic fertilizers by the types (silt and sapropel, peat and its substrates, other types of organic fertilizers) has become available. However, similar data for 1990-2017 are still unavailable. AD for 1990-2017 is planned to be collected before making any calculations.

Sector	ID#	Category	Recommendation	Comment
	A.5	3.G Liming – CO ₂ (A.6, 2021) (A.21, 2019) (A.31, 2017) Transparency	Conduct an assessment of the proportion of inert materials in ground lime and document the results in the NIR; and, if ground lime is considered to include inert materials, revise the CO ₂ emissions for the entire time series, excluding the portion of the inert materials in ground lime. The ERT notes that the Party has not yet demonstrated that the estimated proportion of inert materials in ground lime matches that proposed in the expert judgment across the time series, as suggested by the previous ERT.	National statistics do not collect a data about amount of applied liming fertilizers by the kind (collected data only total weight of lime materials). So, information about actual kinds of liming fertilizers, their number, which was applied, and content of inert materials in them are not available for all report period. It is impossible to estimate proportion of inert materials in ground lime matches. A conservative judgment that limestone fertilizers contain not less than 85 % of the active substance used to account this issue. An additional study is needed to clarify this issue.
	A.6	3.G Liming – CO ₂ (A.10, 2021)	Include information in the NIR in order to justify the decision not to estimate emissions from this source, and report emissions for this category as "NE" in CRF table 3.G-I in accordance with paragraph 37(b) of the UNFCCC Annex I inventory reporting guidelines.	National statistics do not collect a data about amount of applied liming fertilizers by the kind (collected data only total weight of lime materials). So, information about actual kinds of liming fertilizers, their number, which was applied, and content of inert materials in them are not available for all report period. It is a conservative judgment that dolomite used as liming material, but its number is insignificant and it is impossible to identify/calculate it. That is why notation key "NE" used in CRT table "3.G.2. Dolomite CaMg(CO ₃) ₂ ". An additional study is needed to clarify this issue.
	A.7	3.H Urea application – CO ₂ (A.11, 2021) Accuracy	(a) Revise the AD used for the estimation of emissions for this category to ensure consistency across the time series, in particular the approach used to fill the gaps for the years for which no information is available from national sources or FAOSTAT, to ensure that there is no underestimation of emissions; (b) Make sure that national data sources cover all uses of urea on soils under the agriculture sector, in particular for uncultivated grassland, and update the emission estimates for categories 3.H and 3.D accordingly.	(a) AD for 3.H Urea application was revised. Analysis of AD sources show that for 1990-2017 used only alternative sources: - 1990-2001 – estimated data – as a share (conservative coefficient, which is 0.2, according to country specific practice) of the total annual number of the applied N fertilizers in the active substance; - 2002-2004 – FAO data; - 2005-2007 – estimated data – as an interpolation between 2004 and 2008; - 2008-2011 – FAO data; - 2012-2017 – estimated data – as an interpolation between 2011 and 2018.

Sector	ID#	Category	Recommendation	Comment
				SSSU and FAO data for 2018-2021 have some differences which resulted from FAO's use of data without decimal values. (b) Data for "3.H Urea application" include urea that applied as fertilizer on Cropland (for agricultural crops: cereal crops, leguminous crops, industrial crops, roots and tubers, vegetables, food melons, fodder crops and other) and Grassland (hayfields and cultivated pastures). Urea is not used as a fertilizer on other lands.
	A.8	3.A.4 Other livestock – CH ₄	Ukraine reported the CH4 EFs for enteric fermentation of rabbits and furbearing animals in its NIR (annex A3.2.8, table A3.2.8.3, p.450) as 0.7 and 0.25 kg CH4/head respectively. The ERT noted that the 2006 IPCC Guidelines do not provide EFs for rabbits or poultry and there is no information about the estimation of the EFs for rabbits and fur-bearing animals for enteric fermentation in the Party's NIR or CRF tables. The ERT recommends that Ukraine explain in the NIR how the EFs for enteric fermentation for rabbits and fur-bearing animals were estimated and provide documentation that supports the expert judgment (e.g. country-specific studies, research articles, etc.) in the next inventory submission.	EF for rabbits and fur-bearing animals estimated in accordance with specific emission estimation method of 2006 IPCCC (Volume 4.10, Chapter 10.2.4, p. 10.23). Mules and asses are the similarly by digestive system for rabbits, and swine – for furbearing animals. An additional study is needed to clarify this issue.
	A.9	3.D.b.2 N leaching and run-off – N ₂ O	Ukraine reported in its NIR (chap. 5, p.195) that N ₂ O emissions from leaching and run-off of introduced or deposited N were estimated using equation 11.10 of the 2006 IPCC Guidelines (vol. 4, chap. 11, p.11.21). The values of the parameters used in the equation are given in CRF table 3.D and in the NIR (table A3.2.8.7, p.458). The ERT reproduced the emission estimates for N ₂ O from leaching and runoff and found different values (e.g. for 2021 the value was 20,838.91 t N ₂ O instead of the 20,834.55 t N ₂ O reported by the Party). During the review, the Party clarified that an error occurred because the total AD for N input from organic N fertilizers to cropland and grassland were reported for N input from manure applied to soils and as a result the AD for the former were reported twice. The ERT recommends that Ukraine correct the error in the AD and recalculate the emission estimates for N ₂ O for the entire time series for its next inventory submission.	ERT's recommendation to correct an error in the reported data has been implemented.
LULUCF	L.1	4. General (LULUCF) – CO ₂ (L.1, 2021) (L.1, 2019) (L.2, 2017) (L.3, 2016) (L.4, 2015) (67, 2014) Convention reporting adherence	For the model used to calculate the net changes in SOM in mineral soils, verify the model's outputs with measurements annually conducted in the country. The ERT considers that the recommendation has not yet been fully addressed because the Party has not been able to perform the scientific research required to verify the model outputs with measurements.	The scientific research to verify Tier 3 model estimates for Cropland is included into a list of high-priority improvements needed (Annex 8.2).

Sector	ID#	Category	Recommendation	Comment
	L.2	4. General (LULUCF) – CO ₂ , CH ₄ and N ₂ O (L.2, 2021) (L.2, 2019) (L.30, 2017) Accuracy	Enhance data collection on the other land uses under which organic soils are reported and on their status, either drained or rewetted or, for wetlands only, natural conditions, and supplement the current data gaps with available ancillary data and expert judgment to ensure that no systematic errors affect the estimates of GHG emissions in the time series of each land-use category. The ERT considers that the recommendation has not yet been addressed because the Party has not been able to develop the overlay of the soil-type map and land-use map and no specific steps have been taken to resolve the issue since 2021.	As reported already Ukraine has limited information on organic soils management. Currently reported in the Forest land, Cropland and Grassland organic soils assumed to be all drained (thus N ₂ O emissions estimated as well). More accurate data is possible to obtain by overlapping soil type map and land use map only when land-use map will be ready.
	L.3	4. General (LULUCF) (L.3, 2021) (L.4, 2019) (L.5, 2017) (L.7, 2016) (L.18, 2015) Transparency	Enhance the information reported in the NIR to improve transparency and include, for each estimated category, the verification of outputs (i.e. GHG estimates), if any, noting that the verification of outputs is mandatory for tier 3 estimates. The ERT noted some changes in NIR table 6.11 (see ID# L.1 above). However, no enhanced information related to the verification of tier 3 estimates was included in the NIR	See L.1 on verification issue. Ukraine has provided all information with regard to steps taken to adhere to reporting guidance. No additional information is possible to provide before the scientific research (mentioned in L.1) is done.
	L.4	4. General (LULUCF) (L.5, 2021) (L.24, 2019) Convention reporting adherence	Improve the documentation of uncertainty estimates reported in NIR table 6.10, particularly when expert judgment is involved; and describe in the NIR the methodology used to calculate total uncertainty, in accordance with good practice to document any expert judgment (2006 IPCC Guidelines, vol. 1, chap. 2, annex 2A.1). The ERT considers systematization of the information provided by experts (via official letter and expert opinion) to be important in order to improve the documentation of uncertainty. The ERT considers that the recommendation has not yet been fully addressed because the Party has not improved the documentation of uncertainty when expert judgment is involved and did not describe in the NIR the methodology used to calculate total uncertainty, in accordance with good practice to document any expert judgment (2006 IPCC Guidelines, vol. 1, chap. 2, annex 2A.1).	Information about the approach to combine uncertainties is reported in chapter 6.2.3 (propagation of error). Current uncertainties were developed not in form of annex 2A.1 of 2006 IPCC Guidelines which is not mandatory to be followed. While the mentioned form is well noted to be used in the future improvements in the sector, it is not possible currently to receive additional rationale of those experts that made these uncertainties.
	L.5	4. General (LULUCF) – CO ₂ , CH ₄ and N ₂ O (L.37, 2021) Transparency	Describe in the NIR the methodology used to calculate total uncertainty for grassland and cropland, in accordance with good practice on documenting any expert judgment (2006 IPCC Guidelines, vol. 1, chap. 2, annex 2A.1). The ERT considers that the recommendation has not yet been fully addressed because the Party did not include information in the NIR on any expert judgment in accordance with good practice, in particular related to uncertainty of AD. The ERT considers that the information provided during the review on uncertainty of AD should be included in the next NIR.	The information on uncertainties in Cropland and Grassland categories was updated considering new circumstances of Ukraine
	L.6	Land representation – CO ₂ , CH ₄ and N ₂ O (L.6, 2021) (L.5, 2019) (L.7, 2017) (L.33, 2016) Accuracy	Collect sufficient data on the land area and changes in the land area, verify the conversions between land-use categories and demonstrate how the accuracy of land representation has improved, clearly documenting the AD used for the sector in the NIR.	Ukraine has received assurance of funding from the donors for the work to develop land-use change matrix based on remote sensing data and GIS.

Sector	ID#	Category	Recommendation	Comment
			The ERT considers that the recommendation has not yet been addressed because the Party has no specific steps in place for resolving the land representation issue.	The scope of the work, methods and concrete plan will be developed as soon as the funding is secured.
	L.7	Land representation – CO ₂ , CH ₄ and N ₂ O (L.7, 2021) (L.6, 2019) (L.31, 2017) Consistency	Report annual land-conversion areas in CRF table 4.1 and report cumulated 20-year conversion areas in CRF tables 4.A–4.F, which requires the calculation of annual land use and land-use change matrices for 1971–1989. The ERT considers that the recommendation has not yet been fully addressed because, while annual areas of land-use change were reported in CRF table 4.1, CRF tables 4.A–4.F still require the annual land use and land-use change matrices to be calculated for 1971–1989.	Due to planned work with regard to land representation (please see comment on L.6), land use matrices for years 1971-1989 were not developed, but will be delivered after work on land representation based on spatial analysis will be finished.
	L.8	Land representation – CO ₂ , CH ₄ and N ₂ O (L.8, 2021) (L.7, 2019) (L.31, 2017) Consistency	Ensure that in any year X of the GHG inventory time series (1) the area (AX) of any land remaining category A is the area of A in the previous year (AX – 1) minus the area of A converted in year X to all other land-use categories (A to OLUX) plus the area converted to A from all other land-use categories 20 years before (OLU to AX – 20) (i.e. $AX = AX - 1 - A$ to OLUX + OLU to $AX - 20$); and (2) the area of any land converted category B to A (B to AX) is the cumulated area converted to category A from B (B to A) in the 20-year time period from year X to year X-19 (i.e. B to $AX = X_{X-19}^{X}B$ to A).	As previously communicated the issue or reporting is related to the data sources and its character. This issue waits for the completion of work mentioned in response to L.6 recommendation
	L.9	Land representation – CO ₂ , CH ₄ and N ₂ O (L.38, 2021) Accuracy	Reclassify the areas of other land to a land use that is more representative of the land category, where land-use conversion from other land to forest land, cropland and grassland has taken place. The ERT recognizes that this recommendation is aligned with that in ID# L.6 above, but nevertheless considers that the Party could reclassify the areas of other land to a land use that is more representative of the land category using the best available data or assumptions (e.g. not using the assumption of land-use changes from other land to forest land, cropland or grassland and adapting the land-use matrix based on national circumstances).	As previously communicated the issue or reporting is related to the data sources and its character. This issue waits for the completion of work mentioned in response to L.6 recommendation. The information provided by the responsible bodies that have activities on afforestation and deforestation specifically mention land conversions from and to Other land.
	L.10	4.A Forest land – CO ₂ (L.11, 2021) (L.9, 2019) (L.9, 2017) (L.14, 2016) (L.27, 2015) Accuracy	Revise the calculations of GHG emissions and removals from forest land in mineral soils following the methods presented in the 2006 IPCC Guidelines and implement sector-specific QC procedures to ensure the accuracy of the estimates reported across the time series.	The work to define land use categories using GIS is under progress. That would allow to assign proper soil types to land use conversions, and thus select proper SOC _{ref} . For the time being Ukraine applies Tier 1 method, until more accurate data will be available.
	L.11	4.A Forest land – CO ₂ (L.12, 2021) (L.10, 2019) (L.32, 2017) Accuracy	Recalculate nationwide CSC factors for biomass increments and for DOM net changes, stratified by forest type, ecological region and age class, by compiling available information in the country, and, where feasible, by collecting novel data through a national forest inventory system; and, while new CSC factors are being calculated, and noting that Ukraine referenced the use of a 2017 Buksha et al. report in its 2017 annual submission, use data contained in table 3.9 of that report for biomass increments as strati-	As informed previously Tier 1 method and default EFs are applied for CSC in DOM pool until country specific EFs will be available (please see chapter 6 and annex 3.3). Ukraine is unable to apply Tier 2 due to lack of proper country-specific data. The scientific research for estimation of country-specific DOM EFs is recognized in annex 8.2.

Sector	ID#	Category	Recommendation	Comment
			fied by age class and main forest species, together with an age-class distribution for the entire time series 1990–2016, and revise the DOM CSC factors and method to ensure time-series consistency.	
	L.12	4.A Forest land – CO ₂ (L.16, 2021) (L.31, 2019) Transparency	Improve the explanation in the NIR regarding how the correction factors for estimating carbon loss from disturbances were derived and what the implications may be of using a constant value for the factor. The ERT considers that an explanation should be provided of the impact of the use of a constant correction factor on the results, but a comparison against alternative methods is not necessary, as the ERT understands that there are no alternative methods available to the Party.	Discussion regarding use of constant value of correction factor is included into the Annex 3.3.1.
	L.15	4.A.1 Forest land remaining forest land – CO ₂ , CH ₄ and N ₂ O (L.18, 2021) (L.12, 2019) (L.11, 2017) (L.34, 2016) Transparency	Include clear definitions of managed and unmanaged forest land and an explanation of how unmanaged forest land is detected in the land representation and, if necessary, revise the distribution of forest land between managed and unmanaged. The ERT considers that this information should be included in the NIR. The ERT notes that the resolution of this issue is closely related to ID# L.6 above.	The information on methodology to define unmanaged forests is included into chapter 6.2.1.
	L.16	4.A.1 Forest land remaining forest land – CO ₂ (L.19, 2021) (L.34, 2019) Accuracy	Correct the value for the area of forest land remaining forest land in 2015 reported in CRF table 4.A from 10,370.69 to 10,373.36 kha. The ERT considers that the Party should clarify the reasons for the difference in the AD for 2015 between the 2019 submission onward (10, 370.69 kha) and previous submissions (10,373.36 kha) by explaining whether the value of 10,370,69 kha is a reporting error or an updated value after verifying national statistical data for the 2019 submission, concluding that the AD of 10,370.69 for 2015 is the correct one.	The data was corrected in the Table 4.A to 10,373.36 kha. The reason for this change was caused by necessities to include or exclude cumulative approach for 20-year period for area of conversions and consequent error caused by that.
	L.18	4.B Cropland – CO ₂ and N ₂ O (L.21, 2021) (L.13, 2019) (L.14, 2017) (L.16, 2016) (L.29, 2015) Accuracy	Enhance data collection on the use under which organic soils are reported, and supplement the current data gaps with available ancillary data and expert judgment, where needed, to ensure that no systematic errors affect the estimates of GHG emissions in the time series.	Unfortunately, the work mentioned during the review was postponed again. Although Ukraine has been assured that the funding is secured for the development of land-use change matrix based on remote data it is difficult to specify the exact date. Efforts have been made to search for data in different central governmental bodies but there are no bodies that collect such king of information.
	L.20	4.B Cropland – CO ₂ , CH ₄ and N ₂ O (L.41, 2021) Transparency	(a) Describe in more detail in the NIR the changes to crop structure, harvest volumes of specific crop types and volume of fertilizer application to transparently justify the large inter-annual changes in emissions, and provide information on the drivers behind these changes in comments beneath a figure presenting the time series (e.g. revised figure 6.2). NIR figure 6.2 (p.203) does not cover the years with the greatest inter-annual variability. The changes would be more transparently explained if the data provided in figure 6.2 were expanded to show the years where these large inter-annual variations in emissions occur.	(a) Information about total areas and yields or crops, application of mineral and organic fertilizers is provided in the Annex 3.2, tables 3.3.15-3.3.17. The main drivers for the inter-annual changes including 2007/2008, 2010/2011 and 2012/2013 are provided in chapter 6.3.2. (b) The information on QC procedure comparing the data used in the inventory with data from FAOSTAT are reported in the chapter 6.3.4.

Sector	ID#	Category	Recommendation	Comment
			(b) Report in the NIR the years where SSSU alters its methodology for data collection and describe the methods that the inventory team applies to ensure time-series consistency when these data collection methods are changed.	
	L.21	4.C.1 Grassland remaining grassland – CO ₂ (L.24, 2021) (L.15, 2019) (L.34, 2017) Accuracy	Use subdivisions of managed grassland to report those areas of grassland that are not subject to changes in management activities or for which management activities do not result in net emissions or net removals of GHGs. The ERT considers that the recommendation has not yet been addressed because the Party has no definitions of subcategories of managed grassland. The ERT also considers that the Party could distinguish between the categories of grazing or moving land and grass harvesting and explain how the differences in these lands affect the associated EF.	Ukraine considered all grasslands to be managed in NIR 2019. Ukraine does not see the need to exclude any area of grasslands from the calculations of CSC at the moment since there are no national regulations of formal definition of such areas (unlike forests). Further clarification is needed on rationale for introduction of such subdivision.
	L.22	4.D.1 Wetlands remaining wetlands – CO ₂ and N ₂ O (L.28, 2021) (L.16, 2019) (L.19, 2017) (L.18, 2016) (L.32, 2015) Accuracy	Enhance the data collection on the drainage status of peat production sites once abandoned; supplement the current data gaps with available ancillary data and expert judgment, where needed; and estimate GHG emissions in sites for peat production which, although abandoned, are still under drainage to ensure that no errors affect the GHG emission trend. The ERT considers that improvements to land representation (see ID# L.6 above) could help to resolve this issue concerning data collection.	Initial search of information demonstrated that there is limited information on status of lands previously drained including peat extraction sites. The work to collect information on status of these lands are continuing. It is foreseen that the work on use of GIS could deliver more accurate land use transition matrices will contribute to address this recommendation as well. No experts have been found to support any expert estimations on the status of drainage.
	L.23	4.D.2 Land converted to wetlands – CO ₂ , CH ₄ and N ₂ O (L.29, 2021) (L.17, 2019) (L.35, 2017) Accuracy	Report all land converted to wetlands under the organic soils subdivision and discount such areas from the original land-use category area of drained organic soils.	In order to keep consistent reporting of soils it is essentially that previous land use before conversions to Wetlands would have organic soils as well. But since there is an information on organic soils of Forest land, Cropland and Grassland and the area of organic soils in these categories is rather stable it is possible that the conversions were on mineral soils. The work to deliver land-use matrices based on remote sensing was postponed again. Although Ukraine has been assured that the funding is secured for the development of land-use change matrix based on remote data it is difficult to specify the exact date.
	L.24	4.F Other land – CO ₂ (L.30, 2021) (L.19, 2019) (L.25, 2017) (L.22, 2016) (L.36, 2015) Comparability	Revise the classification of category 66 ("dry open lands with special vegetation cover"), noting that category 66 appears to more closely match the definition of the IPCC category grassland than other land.	New statistical form 16-zem has other categories, thus category 66 is not applicable anymore. The revision of historical data is not reasonable at this moment since the work on use of GIS to deliver more accurate land use transition matrices is expected to address this recommendation anyways.

Sector	ID#	Category	Recommendation	Comment
	L.25	4.F.2.1 Forest land converted to other land – CO ₂ and N ₂ O (L.31, 2021) (L.21, 2019) (L.27, 2017) (L.24, 2016) (L.38, 2015) Transparency	Subdivide and report separately deforested areas between those that did contain trees and those that did not contain trees before deforestation; and report in the NIR a table where, for each carbon pool, the standing carbon stocks before deforestation and after deforestation are reported for those lands that did contain trees before deforestation.	The recommendation is closely related to L.6. Delivering of land use-change matrix based on spatial data is expected to address this recommendation as well.
	L.26	4.G HWP – CO ₂ (L.32, 2021) (L.41, 2019) Transparency	Explain in the NIR the methodology used for estimating emissions from HWP, including the splicing technique, the use of GDP data and the World Bank as the source of the GDP data, and the use of 2010 prices.	More information is added into chapter 6.8.2.
Waste	W.2	5. General (waste) – CO ₂ , CH ₄ and N ₂ O (W.2, 2021) (W.2, 2019) (W.8, 2017) Transparency	Revise the schematic representation of waste treatment (NIR figure 7.3) by including all categories (in all relevant sectors), the sources of each type of waste, ways of treatment and final destination, particularly of sludge from wastewater treatment. The ERT considers that the recommendation has not yet been fully addressed because the Party did not include the sources, ways of treatment and destination of sludge from wastewater treatment in NIR figure 7.3. The ERT is of the view that adding a footnote to figure 7.3 that refers to the sections of the NIR where more details are presented on sludge treatment and disposal routes would resolve this issue.	The schematic representation of waste treatment is provided in Annex A3.4.1 (Figure A3.4.3). This schema was supplemented with a footnote that refers to section 7.5.2.1, Figure 7.10 and sections 7.5.2.2.3 of detailed description of sludge treatment and disposal routes.
	W.3	5.A Solid waste disposal on land – CH ₄ (W.3, 2021) (W.4, 2019) (W.2, 2017) (W.10, 2016) Accuracy	Continue to further investigate MSW, taking into consideration the fact that the sampling should be conducted in several typical cities in each season and that the methods, frequency of sampling and implications for the time series should be documented with a view to developing a country-specific EF for the category.	Ukraine continues to use the default value of degradable organic carbon for food waste and for other types of waste according to the 2006 IPCC Guidelines. Research on the morphological composition of MSW is included in the list of necessary research to improve the inventory system (see Annex A8.2 Improvement Plan for the NIR).
	W.4	5.D Wastewater treatment and discharge – CH ₄ (W.10, 2021) Transparency	Improve the transparency of the NIR by reporting a complete sludge balance, including the total amount produced (from domestic and industrial wastewater) and the amount sent to each of the different treatments (landfill, composting, incineration and agriculture), specifying under which categories the related emissions are accounted for. The ERT considers that, even if the Party does not account for emissions from disposal of sewage sludge to land after treatment, AD should be presented in the sludge balance, or a footnote included to explain why the data have been omitted.	The footnote about explanation why the data of sewage sludge sent to land after treatment at the sludge-drying beds are omitted was included in the section 7.5.2.2.3.
	W.6	5. General (waste) – CO ₂ , CH ₄ and N ₂ O	The ERT recommends that Ukraine provide more information in the NIR on the differences between waste generated, collected and disposed for both MSW and industrial waste. In addition, the ERT recommends that the Party add more information to figure 7.3 or text in the NIR with information on the waste flow for industrial waste, including for temporary storage of industrial	More information is added into chapter 7.2.2.2.

Sector	ID#	Category	Recommendation	Comment
			waste, clarifying qualitative or quantitative expected differences between estimates for waste generation, collection and disposal.	
	W.7	5.A Solid waste disposal on land – CH ₄	The ERT recommends that Ukraine evaluate the DOC content of the ISW landfilled, particularly for soils, dredging spoils and mineral waste from construction and demolition, where non-zero DOC values could be chosen from the 2006 IPCC Guidelines (vol. 5, chap. 2, table 2.5) and estimate CH4 emissions for this portion of waste.	The Table 7.8 on the <i>DOC</i> and <i>k</i> values for biodegradable industrial waste was provided in the chapter 7.2.2.3. Methane emissions from the disposal of construction and demolition waste were estimated and included into general emission. Soils and dredging spoils did not take into account due to the absent of default DOC value.
	W.8	5.A Solid waste disposal on land – CH ₄	The ERT recommends that Ukraine investigate the possibility of updating the MCF values for 2010 onward and revise the CH4 emission estimates accordingly. If Ukraine concludes that the values reported in NIR table 7.4 are incorrect, the ERT recommends that the Party correct those values.	The MCF values reported in table 7.4 were corrected.
	W.9	5.A.2 Unmanaged waste disposal sites – CO ₂ and CH ₄	The ERT recommends that Ukraine increase the transparency of the NIR by including justification for the assumption about the mass of illegally dumped waste. The ERT also recommends that the Party harmonize the information presented in the NIR text with that in NIR figure 7.3 regarding the creation, detection and liquidation of unauthorized dumps.	An explanation of the assumption regarding the mass of illegally dumped waste was provided in section 7.2.2.2.
	W.10	5.D.1 Domestic wastewater – CH ₄ and N ₂ O	The ERT recommends that Ukraine apply 1.25 to F _{IND-COM} scaling factors to CH4 and N2O for municipal wastewater AD in accordance with the 2006 IPCC Guidelines (vol. 5, sections 6.2.2.3 and 6.3.1.3) or use an alternative method for addressing the co-discharge of wastewater from non-residential users.	The <i>I</i> and <i>Find-com</i> scaling factors to CH ₄ and N ₂ O for municipal wastewater AD in accordance with the 2006 IPCC Guidelines were applied.
	W.11	5.D.1 Domestic wastewater – CH ₄	The ERT recommends that Ukraine revise the MCF values applied for latrines, cesspools and centralized systems and recalculate emissions or justify properly the MCF values currently used in the emissions estimates.	The MCF values for latrines, cesspools and centralized systems were revised and an explanation for the selection was provided in the chapter 7.5.2.2.3.

A8.2 Improvement Plan for the national inventory

Taking into account the recommendations of the ERT contained in the ARR 2023, as well as the national planning process to improve the inventory system, below is a list of the areas where work should start as soon as possible.

IPCC sector	IPCC category	Description of improvements	Current status of implementation/financing/exploration of work on improvement implementation	Notes
	1.A Fuel combustion activities	Development of country-specific CO ₂ EF for residual fuel oil	Funding is envisaged from different sources including international technical assistance	
Energy	1.B.2 Oil and Natural Gas	Development of the method to account for greenhouse gas emissions by sources and losses of natural gas for end users in Ukraine to carry out the national greenhouse gas inventory	Funding is envisaged from different sources including international technical assistance	
	1.B.2.b Natural gas	Development of country-specific CH ₄ and CO ₂ EFs	Funding is envisaged from different sources including international technical assistance	
	1.B.2.c Venting and Flaring	Development of country-specific CH ₄ and CO ₂ EFs	Funding is envisaged from different sources including international technical assistance	
Industrial Processes and	2.C.1 Iron and Steel production 2.C.2 Ferroalloys Production	Improvement of the GHG emissions estimation methodology at metallurgical and other enterprises in Ukraine taking into account all technological aspects of iron, steel, sinter and iron ore pellets production	Taken for consideration to amend the activity plan of the Ministry of Environmental Protection and Natural Resources of Ukraine. It is expected to attract financing	
Product Use	2.F Use of Ozone-Depleting Substances 2.G.1 Electric Equipment	Actualization of the fluorinated GHG emissions estimation methodology	Taken for consideration to amend the activity plan of the Ministry of Environmental Protection and Natural Resources of Ukraine. It is expected to attract financing	
Agriculture	3.B Manure Management	Scientific researches on environmental impact assessment of the cattle and swine manure distribution, and the various sys- tems for its managing	The offer for including to the MENR activity plan. State funding	
	4.A Forest land	Development and clarification of national factors for carbon stock changes in living biomass, dead organic matter and soil pools in the Forest Land category	Funding is envisaged from different sources including international technical assistance	
	4.A Forest land	Filling the database of plots by activities under paragraphs 3 and 4, Article 3 of the Kyoto Protocol	Funding is envisaged from different sources including international technical assistance	
LULUCF	4.B Cropland 4.C Grassland	Improvement of parameters and factors used in the model of balance estimations of nitrogen flows in soils used in the GHG inventory in the categories Cropland and Grassland	Funding is envisaged from different sources including international technical assistance	
	4.B Cropland 4.C Grassland	Verification of calculation results from Tier 3 model applica- tion in soil organic matter pool of Cropland and Grassland categories by design and performance of measurements	Funding is envisaged from different sources including international technical assistance	

IPCC sector	IPCC category	Description of improvements	Current status of implementation/financing/exploration of work on improvement implementation	Notes
	4.A Forest land 4.B Cropland 4.C Grassland 4.D Wetlands 4.E Settlements 4.F Other Land	Development of methodology and carbon stock change factors of SOM pool during conversions between land-use categories	Funding is envisaged from different sources including international technical assistance	
	5.A Solid Waste Disposal	Investigation of the MSW composition in Ukraine	Funding is envisaged from different sources including international technical assistance	
Waste	5.A Solid Waste Disposal	Monitoring and type definition (classification) of solid waste disposal sites (SWDS) in Ukraine	Funding is envisaged from different sources including international technical assistance	
	5.D Wastewater Treatment and Discharge	Approach improvement for the estimation of emissions (CH ₄ , N ₂ O) from domestic and industrial wastewater treatment and sludge management	Funding is envisaged from different sources including international technical assistance	

In the framework of realization of Agreement between Ministry of Energy and Coal Industry of Ukraine and Ministry of foreign affairs of Denmark on development and cooperation for the Ukraine-Denmark Energy Center according to Output 2 indicator "Methodology for GHG registry and UNFCCC" the project "Calculations of Greenhouse Gas Emissions from Coal Combustion in Thermal Power Plants of Ukraine for 1990-2015" was carried out that resulted in scientifically based recalculations of CO₂ emissions from coal combustion at the TPPs of Ukraine.

Funding for research works indicated in the table above is envisaged from different sources including international technical assistance.

Moreover, the Ministry of Environmental Protection and Natural Resources of Ukraine is making efforts to attract financing for studies aimed at the improvements in the national GHG inventory in the sectors of Energy, LULUCF, IPPU, Agriculture and Waste.