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General approach

Uncertainty

Lack of knowledge of the true value of a variable that can be described as a probability density function (PDF).

Uncertainty depends on the analyst’s state of knowledge, which in turn depends on the quality and quantity of

applicable data as well as knowledge of underlying processes and inference methods.

Uncertainty analysis

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to

reduce the uncertainty of inventories in the future, and guide decisions on methodological choice.

Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions

and removals estimates for individual categories and for the total inventory

Uncertainty assessment

The term “ASSESSMENT” is intended to convey an exercise that includes the investigation of quantitative and

qualitative aspects. In the glossary to the Guidelines, “uncertainty analysis” is defined as only a quantitative

exercise.

Uncertainty overview [1]
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Uncertainty overview [2]

General approach

AD - EF - Parameters

95% Confidence 

interval

GHG Emissions

95% Confidence 

interval

Linear Error 
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-LEP-

2006 IPCC Guidelines

Monte Carlo 

Simulation

-MCS-

Key data identification

Contribution to total 

uncertainty
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Uncertainty overview [3]

General approach
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Key concepts

Confidence interval: range that encloses the true, but unknown value, with a determined

confidence (probability). Typically, a 95 percent confidence interval is used in greenhouse gas

inventories.

Alternative interpretation: Range that may safely be declared to be consistent with observed data or 

information

Probability Density Function (PDF): describes the range and relative likelihood of possible

values.

For emission inventory, it is used to describe uncertainty in the estimate of a quantity that is a fixed

constant whose value is not exactly known.

Sensitivity analysis: method to determine which of the input uncertainties to an inventory

contributes most substantially to the overall uncertainty.

Uncertainty overview [4]
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Key concepts

Accuracy: Agreement between the true value and the average of repeated measured observations or

estimates of a variable.

An accurate measurement or prediction lacks bias or, equivalently, systematic error.

Bias / Systematic error: Lack of accuracy. Bias (systematic error), can occur because of failure to capture all

relevant processes involved or because the available data are not representative of all real-world situations, or

because of instrument error.

Precision: Agreement among repeated measurements of the same variable. 

Better precision means less random error. Precision is independent of accuracy.

Random errors: Random variation above or below a mean value. Random error is inversely proportional to 

precision. Usually, the random error is quantified with respect to a mean value, but the mean could be biased or 

unbiased. Thus, random error is a distinct concept compared to systematic error.

Uncertainty overview [5]
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Key concepts

Lack of knowledge of the true value

How far is the true value from the value used?

Accuracy (systematic errors o bias) vs. Precision (random errors)

Uncertainty overview [6]
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Key concepts

Accuracy (systematic errors or bias) vs. Precision (random errors)

Uncertainty overview [7]
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Key concepts

The quantitative uncertainty analysis tends to deal primarily with random errors

based on the inherent variability of a system and the finite sample size of available

data, random components of measurement error, or inferences regarding the

random component of uncertainty obtained from expert judgment

It is important to recognize that some uncertainties that are not addressed by

statistical means may exist, including those arising from omissions or double

counting, or other conceptual errors, or from incomplete understanding of the

processes that may lead to inaccuracies in estimates developed from models.

Bias or systematic errors

PRECISION

ACCURACY

Uncertainty overview [8]
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Terminology

i) Confidence interval: range that encloses the true value with a determined confidence 

(probability)

95 % CI 2.5 th [……………………..] 97.5 th

Symmetrical: 80 (64-96) 80  16 80  20%

64 [--------80--------] 96

Not symmetrical: 80 (72-104) 80 -8/+24            80  -10%/+30%

72 [-----80---------------] 104

Large uncertainty:

100 (50-200)        100 -50/+100       100 -50%/+100% 100  factor of 2    (half or double)

Factor of “n”  (mean/n) and (mean x n)

RelativeAbsolute

Ui16/80 = 0.2

16 16

Uncertainty

Uncertainty overview [9]
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Uncertainty overview [10]

Terminology

ii) Probability Density Function: range and relative likelihood of possible values

Symmetrical (normal distribution) 
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Uncertainty overview [11]

Terminology

ii) Probability Density Function: range and relative likelihood of possible values

Not symmetrical (Skewed)
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Causes of uncertainty [1]

Causes of uncertainty: Animal population? Age? Livestock characterization? Diet?
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Causes of uncertainty [2]

Causes of uncertainty: Land representation? Stand volume? Carbon stock? Below ground biomass?
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Causes of uncertainty: Pipe length? No. of fittings? Gas composition? Maintenance? Venting?

Causes of uncertainty [3]
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Causes of uncertainty: Waste generation? Composition? Climate? Treatment? Management type?

Causes of uncertainty [4]
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Causes of uncertainty

Lack of completeness

Model

Lack of data

Representativeness of data

Random sampling error

Measurement errors

Misreporting

Data gaps

-Bias and Random errors

-Bias

-Bias and Random errors

-Bias

-Random errors

-Bias and Random errors

-Bias

-Bias and Random errors

Causes of uncertainty [5]
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Causes of uncertainty & examples

Lack of completeness -Bias

e.g. sources/sink categories not included in the inventories 

Energy: emissions from coke production

IPPU: fluorinated gases not reported

AFOLU: methane emissions from enteric fermentation for dairy cows.

Waste: industrial wastewater for some products not included

Causes of uncertainty [6]
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Causes of uncertainty & examples

Lack of data -Bias and Random errors

e.g. activity data obtained by interpolation or other methods for missing year

Energy: provisional information in National Energy Balance for recent year

IPPU: cement production missing in national statistics 

AFOLU: headcount for some animal category not informed in the statistics

Waste: amount of MSW surrogated from population, extrapolated from census

Causes of uncertainty [7]
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Causes of uncertainty & examples

Representativeness of data -Bias

e.g. emission factor based on particular conditions

Energy: N2O from internal combustion engines from laboratory test instead of real driving conditions

IPPU: CO2 emissions form steel production based on full load capacity plant

AFOLU: biomass growth rate based on sampling that do not cover all relevant regions 

Waste: wastewater treatment efficiency based on newly built plants data

Causes of uncertainty [8]
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Causes of uncertainty & examples

Random sampling error 

e.g. activity data or emission factors based on limited sampling

Energy: limited reporting in census of liquid fuels used in transport 

IPPU: amount of glass recovered (by type) based on surveys

AFOLU: C stored in forest based on limited sampling capacity (few trees)

Waste: MSW treatment distribution based on information from few cities in the country

Causes of uncertainty [9]

-Bias and Random errors
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Causes of uncertainty & strategies

Lack of completeness Concept, QA/QC

Model Concept, QA/QC

Lack of data Experts, QA/QC

Representativeness of data QA/QC, verification

Random sampling error Statistics sizes

Measurement errors QA/QC, verification

Misreporting QA/QC

Data gaps Statistics, experts

Bias and Random errors

Bias

Bias and Random errors

Bias

Random errors

Bias and Random errors

Bias

Bias and Random errors

Reducing uncertainty [1]
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Reducing uncertainty [2]

Improving accounting

Improving conceptualization Structural assumptions

Improving models Structure and parameterization

Improving representativeness Sampling strategies

Using + precise measurement methods Measurement technologies

Collecting more measured data Sample size

Eliminating known risk of bias Following decision trees

Improving state of knowledge Understanding of the categories 
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Reducing uncertainty [3]

Improving accounting

Improving conceptualization Structural assumptions

Improving models Structure and parameterization

e.g. better treatment of seasonality effects leading to more accurate annual estimates of emissions or 

removals in AFOLU.

e.g. moving to higher Tiers in steel production to account for local data at plant level.
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Reducing uncertainty [4]

Improving accounting

Improving representativeness Sampling strategies

Collecting more measured data Sample size

e.g. including emissions data for situations involving start-up or load changes, if frequent, instead of 

only full load operations. 

e.g. perform stratified sampling in forest to account for different characteristics, climate and species

e.g. increasing the sample size for determination of soil organic carbon.
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Reducing uncertainty [5]

Improving accounting

Using more precise measurement methods Measurement technologies

Eliminating known risk of bias Following decision trees, expert knowledge

Improving state of knowledge Understanding of the categories 

e.g. collecting data using standardized measurement methods (i.e. ISO)

e.g. using measured parameters instead of simplified assumptions (density, temperature, mass vs. volume)

e.g. Verifying the correct positioning and calibration of instruments in gas measurement.

e.g. moving to higher tiers to account for national conditions

e.g. Involving producers to better understand the details and appropriateness of assumptions.
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Reducing uncertainty [6]

Sensitivity analysis

Purpose: Identify categories, and key variables used that contribute the most to overall 

uncertainty of the inventory.

How: Introduce a perturbation to one variable, of the magnitude of its uncertainty, and assess the 

variation in the result, one at a time (ceteris paribus).  

Input data

AD, EF, etc.

Inventory

calculation

system Output

Emissions

ALLOCATE  RESOURCES

e.g. Sensitivity in CH4 emission from manure 
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Uncertainty overview

Conclusions

▪ It is a means to help prioritise national efforts to reduce the uncertainty of inventories in 

the future

▪ It guides decisions on methodological choice

▪ It helps understand the quality of the information use

▪ It is a requirement of GHG Inventories

Assessment of uncertainty in the input parameters
should be part of the data collection

GHG Support Unit, Transparency Division 29



Thank you!

End of day 1

Thank you!

Diego M. Ezcurra
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Uncertainty associated with activity data [1]

National statistics: census, survey

▪ Activity data are closely linked to economic activity

▪ well established price incentives and fiscal requirements for accurate accounting

Contact the statistical agencies directly

Censuses Surveys

National statistics

Counting every instance of a particular activity. 

Typically includes both systematic and random errors.

Random errors are typically normally 

distributed and uncorrelated

Counting a portion of a particular activity. 

Typically includes both systematic and random errors.

Random errors are typically normally

distributed and uncorrelated

V1_Ch2. - Annex 2A.2

2006 IPCC Guidelines

General guidance on performing surveys
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Uncertainty associated with activity data [2]

National statistics: census

Censuses Surveys

National statistics

• Check for the size of random errors, look for fluctuations over time, and differential fluctuations in series 

that ought to be highly correlated with the data of interest

• To check for bias errors, cross-check the data of interest with other, related information. (look up and down 

the supply chain for fuels, or highly correlated activities with the data of interest, for instance reported fuel 

input vs. electricity output). 

• Interpretation of statistical differences, within, for instance, national energy data are an example of cross 

checking (i.e. reference approach).. 

Often ‘precise but inaccurate’
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Uncertainty associated with activity data [3]

National statistics: census

Censuses Surveys

National statistics

Hands-on exercises
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Uncertainty associated with activity data [4]

National statistics: census

Periodic publications

ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of 

Energy every year for gasoil and gasoline. The statistics contains the most updated information for the 

current and previous years.

Evaluate consistency and identify fluctuations over time in series to derive the uncertainty of the data

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 666.065 533.358

2015 770.377 599.242

2016 866.303 554.953

2017

2018

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 697.641 533.358

2015 770.377 599.242

2016 866.303 554.953

2017 847.566 498.429

2018

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 697.641 533.358

2015 770.377 599.242

2016 866.303 554.953

2017 847.566 480.723

2018 884.250 426.849

Source: commercialization tables, 12 July 2017 Source: commercialization tables, 18 June 2018 Source: commercialization tables, 23 June 2019

697.641666.065

498.429 480.723
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Uncertainty associated with activity data [4]

National statistics: census

Periodic publications

ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of 

Energy every year for gasoil and gasoline. The statistics contains the most updated information for the 

current and previous years.

Evaluate consistency and identify fluctuations over time in series to derive the uncertainty of the data

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 666.065 533.358

2015 770.377 599.242

2016 866.303 554.953

2017

2018

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 697.641 533.358

2015 770.377 599.242

2016 866.303 554.953

2017 847.566 498.429

2018

Year Gasoil Gasoline

2012 659.034 479.291

2013 662.157 504.563

2014 697.641 533.358

2015 770.377 599.242

2016 866.303 554.953

2017 847.566 480.723

2018 884.250 426.849

4,5% 3,7%U ≈ 5%

Source: commercialization tables, 12 July 2017 Source: commercialization tables, 18 June 2018 Source: commercialization tables, 23 June 2019
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Uncertainty associated with activity data [5]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty. 

NCV: 48 TJ/Gg

Density: 0,714 kg/m3

efficiency ?

Total

Gas Turbine Generation (MWh) 59.757.516

Natural Gas Consumption (103 m3) 14.975.637
42%
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Uncertainty associated with activity data [6]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 157.041 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 14.975.637

NCV: 48 TJ/Gg

Density: 0,714 kg/m3 Monthly efficiency ?

0,33 0,30 0,30 0,29 0,29 0,30 0,03 0,30 0,31 0,32 0,29 0,31 0,25

January February March April May June July August September October November December Total

Generation (TJ) 18.559 16.397 18.039 16.765 16.973 19.038 19.555 20.134 19.139 15.446 16.244 18.838 215.127

Consumption (TJ) 58.670 47.135 50.734 45.625 46.127 53.908 5.382 57.382 55.953 47.170 45.375 55.602 513.245

Efficiency 32% 35% 36% 37% 37% 35% 363% 35% 34% 33% 36% 34% 42%
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National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

Uncertainty associated with activity data [7]

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 157.041 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 14.975.637

NCV: 48 TJ/Gg

Density: 0,714 kg/m3

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 1.570.410 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 18.017.687

32% 35% 36% 37% 37% 35% 36% 35% 34% 33% 36% 34% 35%

1.570.410 18.017.687

Bias ≈ 20%
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Uncertainty associated with activity data [8]

National statistics: survey

Censuses Surveys

National statistics

• Sample size and inter-individual variability 

• Typical cases: consumer surveys, home expenses survey, land use surveys or forest cover surveys

• The agency conducting the sample will normally be able to advise on sampling error. 

• If there is no information available, it may be possible to identify, or infer, the sample and population sizes 

and calculate sampling error directly.

precision depends on sample size, accuracy depends on sampling design

GHG Support Unit, Transparency Division 40



Uncertainty associated with activity data [9]

National statistics: survey

Heterogeneity (standard deviation) vs. uncertainty in sample mean (standard error)

Variability of the sample Variability of the mean of the sample

Applicable for individual value Applicable for country average

Standard deviation tends to remain constant Standard error falls as sample size grows

* n instead of n+1 for large samples 

GHG Support Unit, Transparency Division 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝜎

𝜇
∙ 100%

𝜎 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝑆𝐸

𝜇
∙ 100%

𝑆𝐸 =
𝜎

𝑛 ∗
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Uncertainty associated with activity data [10]

National statistics: survey

Censuses Survey

National statistics

Hands-on exercises

GHG Support Unit, Transparency Division 42



Uncertainty associated with activity data [11]

National statistics: survey

AFOLU: Carbon stock in forest from surveys

a) Given a sample with 80 individual values, calculate the mean, standard deviation and 

standard error.

b) If the sampling is repeated ten times, calculate the mean for each sample and the 

standard deviation of the sampling distribution of the mean and compare with a).

Mean   STD

101      2,1

GHG Support Unit, Transparency Division 43



Uncertainty associated with activity data [12]

National statistics: survey

AFOLU: Carbon stock in forest from surveys

Calculate the uncertainty of the carbon stock obtained from the sampling to be used in the 

GHG inventory. The emissions from land use change will be calculated for the entire 

country in the year in which the survey was carried out.

Sample size: 30

Average C stock: 93.7 tC/ha

Standard deviation: 10.2 tC/ha

SE: 1.9 tC/ha

U: 4 %

What if the carbon stock is applied to account for emissions in one deforested area?

σ or SE ?

GHG Support Unit, Transparency Division 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝑆𝐸

𝜇
∙ 100%

𝑆𝐸 =
𝜎

𝑛 ∗
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Uncertainty associated with activity data [13]

National statistics: survey

WASTE: Municipal solid waste amount and composition

1) The amount per capita is obtained from a sample that covers vehicles collecting in a wide 

range of areas: urban and rural, wealthy and poor, with and without gardens, etc. and 

covering several periods throughout the year. 

Uncertainty for the entire MSW category? μ or SE ?

Uncertainty for the emissions from managed landfills? μ or SE ?

2) The composition of the MSW was done through a survey at different landfills. A national 

waste composition was calculated based on the results and is used to calculate the 

methane emissions in each individual landfill. 

Uncertainty for the composition based on amount from each landfill? μ or SE ?

GHG Support Unit, Transparency Division 45



Thank you!

End of day 2

Thank you!

Diego M. Ezcurra
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Uncertainty associated with empirical data [1]

Techniques for quantifying uncertainties

• Approach to quantify uncertainty in inventories, mainly associated to emission 

factors and other estimation parameters

• 6 steps approach to apply systematically

Measurement Publications Statistics

Statistical analysis
V1_Ch.3 – 3.2.2.2

2006 IPCC Guidelines
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Uncertainty associated with empirical data [2]

Techniques for quantifying uncertainties

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

3. Fitting, evaluation, and selection of alternative PDF

4. Characterisation of uncertainty in the mean of the distributions for variability

5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis

Statistical analysis

GHG Support Unit, Transparency Division 49



Uncertainty associated with empirical data [3]

Techniques for quantifying uncertainties

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

Statistical analysis

HistogramData series Pareto

Outliers

Consistency

GHG Support Unit, Transparency Division 50



Uncertainty associated with empirical data [4]

Techniques for quantifying uncertainties

3. Fitting, evaluation, and selection of alternative PDF

Statistical analysis

Possible 
PDF

Physical 
process

Expert 
judgement

Goodness 
of fit testVariability

GHG Support Unit, Transparency Division 51



Uncertainty associated with empirical data [5]

Techniques for quantifying uncertainties

4. Characterisation of uncertainty in the mean of the distributions for variability

5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis

Statistical analysis

95% CI → Ui
σ or SE ?

Ui → UTotal

UTotal → Xi

GHG Support Unit, Transparency Division 52



Uncertainty associated with empirical data [6]

Techniques for quantifying uncertainties

Measurement Publications Statistics

Statistical analysis

Hands-on exercises

GHG Support Unit, Transparency Division 53



Uncertainty associated with empirical data [7]

Statistical analysis

IPPU: Emission factor for aluminum production

A monitoring system was set to detect the anode effect. Average monthly EF were 

calculated for CF4 and recorded for three years. 

Perform statistical analysis to identify PDF candidates, calculate the mean, standard 

deviation, standard error and uncertainty.

μ: 64.3 g CF4/tAl

σ: 13.8 g CF4/tAl

SE: 2.3 g CF4/tAl

U: 5 %

GHG Support Unit, Transparency Division 54



Uncertainty associated with empirical data [8]

Statistical analysis

Attention!

Measurements taken for another purpose may not be representative. 

For example, methane measurements made for safety reasons at coal mines and landfills 

may not necessarily reflect total emissions because they may have been made only when 

methane emissions were suspected of being high, as a compliance check. 

In such cases, the ratio between the measured data and total emissions should be 

estimated for the uncertainty analysis.

GHG Support Unit, Transparency Division 55



Thank you!

End of day 3

Thank you!

Diego M. Ezcurra
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Splicing techniques for Data gaps 

Splicing techniques

Periodic data
Changes and gaps 

in data availability

Data gaps

Data are available less frequently than annual or may not 

cover the entire country. 

Estimates need to be updated each time new data become 

available.

New estimates should be extrapolated and then recalculated 

when new data become available

Changes in data collection systems or methodologies 

(improve or decrease or gaps)

Higher tier methods can be applied for recent years, but 

not for earlier years

Discontinuation of data sets or different definitions, 

classifications and levels of aggregation

V1_Ch5 . 5.3 Resolving Data Gaps

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [1]
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Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

New method implemented 

not available before (or 

after)

No data for the category 

but other related available

Ratios or regression

Data gap for some years 

or outliers identified

Data unavailable for last 

or first year

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [2]
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Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

𝑦0 = 𝑥0.
1

𝑛 − 𝑚 + 1
.෍

𝑖=𝑚

𝑛 𝑦𝑖
𝑥𝑖

New method implemented not available before (or after)

Requires consistent relationship between the two methods

Variability in ratios can be used to assess consistency and 

uncertainty

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [3]
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Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

No data for the category but other related available

Ratios or regression analysis (simple, multiple, linear, non-linear)

Requires identifying the dependent and independent variable/s 

as well a the dependency (correlation)

Typical error for the regression can be used to assess 

uncertainty (other criteria also possible)

𝑦0 = 𝑦𝑡 .
𝑆0
𝑆𝑡

𝑦𝑗 = 𝐶 + p. 𝑆𝑗

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [4]
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Overlap Extrapolation

Proxy: Splicing techniques and Expert Judgement [5]

Surrogate Interpolation

Data gap for some years or outliers identified. 

Linear models are commonly used but others may apply (quadratic)

It can be applied intermittently as necessary. Requires smooth or 

stable trend (low variability). If not, surrogate is a better practice.

Variability in available data can be used to assess uncertainty

𝑦𝑗 = 𝑦𝑎 +
(𝑦𝑏 − 𝑦𝑎)

(𝑥𝑏 − 𝑥𝑎).
. (𝑥𝑗−𝑥𝑎)

GHG Support Unit, Transparency Division 

Splicing techniques for Data gaps 
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Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

Data unavailable for last or first year/s

Continuation of the trend, if stable, or surrogate, if higher 

variability, beyond data´s period. 

Not recommended for estimations over long periods of time

Uncertainty depending on the extrapolation method (trend or 

surrogate). Could be evaluated ex post if data becomes available.

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [6]

63



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

Hands-on exercises

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [7]
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Splicing techniques for Data gaps 

IPPU: Lime production statistics were not available for the last two years. 

Investigate the relationship with the production of cement, surrogate lime production and determine 

the uncertainty of the estimation used.

Overlap ExtrapolationSurrogate Interpolation

Year Lime Cement

1 1.167.701 3.751.759 

2 1.119.942 3.398.621 

3 943.108 2.396.907 

4 988.285 3.197.714 

5 1.444.813 3.833.116 

6 1.527.389 4.654.673 

7 1.808.855 5.472.815 

8 2.016.509 5.885.219 

9 1.834.096 5.947.131 

10 1.717.285 5.752.006 

11 1.949.142 6.388.311 

12 2.000.257 7.104.927 

13 2.154.948 6.567.993 

14 2.348.841 7.288.507 

15 6.992.203 

16 7.172.822 

U: 15 %

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [8]
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Splicing techniques for Data gaps 

Waste: municipal solid waste generation per capita is used to calculate the amount of waste to be treated

in a landfill that serves a specific region. Obtain the yearly population for the region using data from the

census and asses the uncertainty. Extrapolate the data from the census to calculate the population in

2020 and asses the uncertainty.

Overlap ExtrapolationSurrogate Interpolation

Year Population

1980 27.949.480

1991 32.615.528

2001 36.260.130

2010 40.117.096
0
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R² = 0,9981
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U: 1 %

y = 401.480x - 766.919.020

R² = 0,9991
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GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [9]
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ENCODING EXPERT JUDGEMENT

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [10]
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ENCODING EXPERT JUDGEMENT

Key goal is to characterise the state of knowledge regarding 

possible values of a particular variable and to develop a PDF

• When no relevant empirical data is available

• Well informed judgements from domain experts

• Formal expert elicitation protocols

Experience Knowledge

Understanding

Full range of values

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [11]
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ENCODING EXPERT JUDGEMENT

• Motivation: explaining the problem and purpose

• Structuring: defining the specifics of the protocol and problem

• Conditioning: previous experiences, models, theory and results

• Encoding/Elicitation: obtaining the data and information

• Verification: confirmation of outputs, bias testing and feeling of outliers 

Experience Knowledge

Understanding

Elicitation protocols
V1_Ch. 2 Annex 2A.1

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [12]
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Elicitation protocols- EXPERT JUDGEMENT

Key concern with expert elicitation is to overcome the typical heuristic biases 

of availability, representativeness, and anchoring and adjustment 

• Fixed Value Probability?

• Fixed Probability Value?

• Interval Methods Median and quartiles?

• Graphing Drawing PDF

Experience Knowledge

Understanding

Elicitation protocols
V1_Ch. 2 

Annex 2A.1

 Overconfident estimate

(narrow interval)

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [13]
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Elicitation protocols- EXPERT JUDGEMENT

Fixed Value: Estimate the probability of being

higher (or lower) than an arbitrary value and

repeat, typically three or five times.

For example, what is the probability that an

emission factor would be less than 100?

Fixed Probability: Estimate the value associated with a

specified probability of being higher (or lower). For

example, what is the emission factor such that there is only

a 2.5 percent probability (or 1 in 40 chance) that the

emission factor could be lower (or higher) than that value

Interval Methods: It focuses on the median and the quartiles. For example,

the expert would be asked to choose a value of the emission factor such that

it is equally likely that the true emission factor would be higher or lower than

that value. This yields the median.

Then the expert would divide the lower range into two bins such that he or

she felt it to be equally likely (25 percent probability) that the emission factor

could be in either bin, and repeat for the other end.

Finally, either fixed probability or fixed value methods could be used to get

judgements for extreme values.

Graphing: The expert draws

his/her own distributions.

This should be used

cautiously since some experts

are overconfident about their

knowledge of PDFs

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [14]
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Elicitation protocols- EXPERT JUDGEMENT

Experience Knowledge

Understanding

Elicitation protocols

Hands-on exercises

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [15]
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Elicitation protocols- EXPERT JUDGEMENT

• Motivation: to understand the methane content in landfill gas, identify an annual 

average and assess uncertainty

• Structuring: variability, climate & operation conditions, values and probabilities

• Conditioning: landfill characteristics, FOD model, cases

• Elicitation:

• Verification:

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [16]
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Thank you!

End of day 4

Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division 74



TUESDAY

4. Uncertainty associated with the use of national 

statistics, surveys/censuses and sampling

Practical examples in Energy, IPPU, AFOLU and Waste

80%

MONDAY

1. Overview of Uncertainty Analysis in National 

GHG Inventories

2. Causes of uncertainties associated with input 

data used in National GHG Inventories

3. How to reduce the uncertainty associated with 

input data used in National GHG Inventories

WEDNESDAY

5. Uncertainty associated with the Use of Empirical Data

Practical examples in Energy, IPPU, AFOLU and Waste

THURSDAY

6. Uncertainty associated with the use of proxy, splicing 

techniques and expert judgment to fill data gaps

Practical examples in Energy, IPPU, AFOLU and Waste

FRIDAY

7. Selecting Probability Density Functions (PDF) and 

addressing correlation

Practical examples in Energy, IPPU, AFOLU and Waste
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GOOD PRACTICE GUIDANCE FOR SELECTING PROBABILITY DENSITY FUNCTIONS

V1_Ch3. 3.2.2.4

2006 IPCC Guidelines

Recommendations for different cases and commonly applied criteria to follow

Selecting PDF and addressing correlation [1]

GHG Support Unit, Transparency Division 76



GOOD PRACTICE GUIDANCE FOR SELECTING PROBABILITY DENSITY FUNCTIONS

V1_Ch3. 3.2.2.4

Others

Domain (+, -, ∞)

Underlying process (+, x)Shape (symmetry)

Range (narrow or broad)

Selecting PDF and addressing correlation [2]

GHG Support Unit, Transparency Division 77



Selecting PDF

Most commonly used PDF

Selecting PDF and addressing correlation [3]

GHG Support Unit, Transparency Division 78



Selecting PDF

All values with same probability

Parameters: Uniform (min, max)

Application to inventories: large uncertainty and lack of information

Uniform

Selecting PDF and addressing correlation [4]

GHG Support Unit, Transparency Division 79



Selecting PDF

Intuitive and flexible.

Parameters: Triang (min, mean, max)

Application to inventories: expert judgment, knowledge from experience. 

Limited information.

Triangular

Selecting PDF and addressing correlation [5]

GHG Support Unit, Transparency Division 80



Selecting PDF

Distribution around a most likely central value.

Parameters: Normal (mean [], std. Dev. [])

Application to inventories: most of situations (central limit). Additive processes.

The interval +/- 2*σ (1.96) accounts for approx. 95% of the values. 

σ may be estimated as: (max - mean) / 2

Normal

Selecting PDF and addressing correlation [6]

GHG Support Unit, Transparency Division 81



Selecting PDF

The natural logarithm of the variable adjust to a Normal distribution

Parameters: Lognormal (mean [], std. Dev. [])

Application to inventories: Generally good representation for skewed non 

negative values (emission factors for N2O). Multiplicative processes.

Lognormal

Selecting PDF and addressing correlation [7]

GHG Support Unit, Transparency Division 82



Selecting PDF

Distribution characterized by a shape parameter and a scale parameter. Shape 

can change drastically.

Parameters: Weibull (λ [scale], k [shape], )

Application to inventories: positively skewed non-negative values (similar to 

lognormal).

Weibull

Selecting PDF and addressing correlation [8]

GHG Support Unit, Transparency Division 83



Selecting PDF

Version of the Beta using PERT (Program Evaluation and Review Technique).

Parameters: BetaPert (min, mean, max)

Application to inventories: similar to triangular but with lower standard deviation.

Beta pert

Selecting PDF and addressing correlation [9] 

GHG Support Unit, Transparency Division 84



Selecting PDF - Good practice guidance

• The minimum number of probability functions are used

• These probability functions are well known and well based (theoretical or empirical)

• Where empirical data are available, the first choice should be to assume a normal 

distribution

• If the variable must be non-negative and a normal distribution is assumed, the standard 

deviation should not exceed 30%

• Truncation of the negative tail of the normal distribution should be avoided (use instead 

lognormal, Weibull, or Gamma).

Selecting PDF and addressing correlation [10]

GHG Support Unit, Transparency Division 85



Selecting PDF - Good practice guidance

• Where expert judgment is used, the distribution function adopted might be normal or

lognormal, supplemented by uniform or triangular distributions

• If only the interval is known (upper and a lower value), assume that the probability

density function is uniform and that the range corresponds to the 95% confidence

interval

• If the distribution observed based on data does not seem correct, the data may be the

problem (not representative, not random, small sample size, different timing, etc.)

Selecting PDF and addressing correlation [11]

GHG Support Unit, Transparency Division 86



Selecting PDF - Good practice guidance

• When selecting the PDF from Goodness-of-Fit test, several functions will fit the data

satisfactorily within a given probability limit

• Different functions can have radically different distributions at the extremes (few or

no data to constrain them), and the choice of one function over another can

systematically change the outcome of an uncertainty analysis.

Selecting PDF and addressing correlation [12]

“it must be knowledge of the underlying physical processes 

that governs the choice of a probability function”

GHG Support Unit, Transparency Division 87



DEPENDENCE AND CORRELATION AMONG INPUTS

Relationship between two variables that make them not independent

One variable is determined (partially or totally) by another one

Selecting PDF and addressing correlation [13]

Dependence / Correlation

GHG Support Unit, Transparency Division 88



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [14]

Negative Positive

Reduces uncertainty range 

when included

If not included: 

overestimation of uncertainty

Increases uncertainty range 

when included

If not included: 

underestimation of uncertainty

Dependence / Correlation

GHG Support Unit, Transparency Division 89



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [15]

?

GHG Support Unit, Transparency Division 90



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [16]

Correlation degree

< 0.2           Very low

0.2 – 0.4     Low

0.4 – 0.6     Moderate

0.6 – 0.8     High

> 0.8           Very high

* Indicative ranges

GHG Support Unit, Transparency Division 91



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [17]

Attention! Non-linear correlation also exists

GHG Support Unit, Transparency Division 92



DEPENDENCE AND CORRELATION AMONG INPUTS

E  =  FC  x  NCV  x  EF

FC: Fuel consumption (tonnes)

NCV: Net calorific value (GJ/t)

EF: Emission factor (tCO2/GJ)

𝑬𝑭 =
%𝑪

𝑵𝑪𝑽
𝒙
𝟒𝟒

𝟏𝟐

Are NCV and EF independent?

Selecting PDF and addressing correlation [18]

FC (GJ) Are FC (GJ) and EF independent?
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DEPENDENCE AND CORRELATION AMONG INPUTS

Are always important 

to uncertainty assessment?

Degree: strong or weak correlation (i.e.   0.8  or  0.2) 

Sensitivity: impact to the overall uncertainty

Selecting PDF and addressing correlation [19]

Dependencies / Correlations

GHG Support Unit, Transparency Division 94



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [20]

Exists between 2 variables to which 

uncertainty is sensitive to 

and 

dependency is weak

Exists between 2 variables to which 

uncertainty is sensitive to 

and 

dependency is strong

Exists between 2 variables to which 

uncertainty is NOT sensitive to 

and 

dependency is weak

Exists between 2 variables to which 

uncertainty is NOT sensitive to 

and 

dependency is strong

GHG Support Unit, Transparency Division 95



DEPENDENCE AND CORRELATION AMONG INPUTS

Strategies

• Define the model so that the inputs are as statistically independent as possible

• Stratify or aggregate the category to minimise the dependency effect 

• Model dependency explicitly

• Use sensitivity cases (independent, fully positive and fully negative correlated)

Selecting PDF and addressing correlation [21]

Dependence / Correlation

GHG Support Unit, Transparency Division 96



DEPENDENCE AND CORRELATION AMONG INPUTS

Selecting PDF and addressing correlation [22]

Dependence / Correlation

Hands-on exercises

GHG Support Unit, Transparency Division 97



DEPENDENCE AND CORRELATION AMONG INPUTS

AFOLU: assess the relationship between different corps cultivated area in order to understand if 

correlation needs to be included to calculate the uncertainty of the emissions.

Selecting PDF and addressing correlation [23]

Dependence / Correlation

Soybean 
1°

Soybean 
2°

Soybean Maize Wheat Sunflower

Soybean 1° 1
Soybean 2° -0,10 1

Soybean 0,96 0,18 1
Maize 0,26 0,85 0,49 1
Wheat -0,86 0,47 -0,72 0,07 1
Sunflower -0,56 -0,15 -0,60 -0,49 0,47 1
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Cotton yield (kg/Ha)

R = 0.87

Attention! Correlation does 

not imply dependency
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DEPENDENCE AND CORRELATION AMONG INPUTS

Energy: Relationship between fuel consumption in different sectors

Total gasoil consumption is obtained at national level from fuel suppliers. The sectoral

distribution is estimated for transport, industrial and commercial sectors through

sampling. The residential fuel use is obtained as the difference between total fuel

consumption and usage in the other sectors.

Assess uncertainty in residential sector without and with correlation

Selecting PDF and addressing correlation [24]

Dependence / Correlation

U: 40%-70%U: 6 %
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TUESDAY

4. Uncertainty associated with the use of national 

statistics, surveys/censuses and sampling

Practical examples in Energy, IPPU, AFOLU and Waste

100%

MONDAY

1. Overview of Uncertainty Analysis in National 

GHG Inventories

2. Causes of uncertainties associated with input 

data used in National GHG Inventories

3. How to reduce the uncertainty associated with 

input data used in National GHG Inventories

WEDNESDAY

5. Uncertainty associated with the Use of Empirical Data

Practical examples in Energy, IPPU, AFOLU and Waste

THURSDAY

6. Uncertainty associated with the use of proxy, splicing 

techniques and expert judgment to fill data gaps

Practical examples in Energy, IPPU, AFOLU and Waste

FRIDAY

7. Selecting Probability Density Functions (PDF) and 

addressing correlation

Practical examples in Energy, IPPU, AFOLU and Waste
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Thank you!

End of webinar!

Thank you

Diego M. Ezcurra
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