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Uncertainty analysis in National Greenhouse Gas Inventories

Typical problems in developing countries

Limited or no technical capacity. Priority is always on GHG accounting
Limited staff with statistical background and experience in uncertainty assessment
Lack of data collection on uncertainty (institutional arrangements for data collection)

Data reported without associated uncertainty

a A 0 DN PF

Use of default uncertainty data from the 2006 IPCC GLs may not represent national
circumstances or level of aggregation
Limited/lack of knowledge of 2006 IPCC GLs, tools/software
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2. Overview of Uncertainty Analysis in National GHG Inventories 5. Uncertainty associated with the use of national statistics,

3. Causes of uncertainties associated with input data used in surveys, censuses and sampling
National GHG Inventories 6. Uncertainty associated with the Use of Empirical Data

4. How to reduce the uncertainty associated with input data used
in National GHG Inventories

7. Methods to combine uncertainties: 8. Methods to combine uncertainties:
Approach 1 - Propagation of errors Approach 2 - Monte Carlo simulation

9. Methods to combine uncertainties: Hybrid combinations
of Approaches 1 and 2 Hands-on exercises!

10. Application of uncertainty estimates to identify areas for improvement Energy, IPPU, Agriculture, LULUCF and Waste
— Approach 2 to identify key categories

11. Uncertainty associated with the use of proxy, splicing techniques and
expert judgment to fill data gaps




Session 2. Overview of Uncertainty Analysis in National
GHG Inventories

By the end of this session, you will:

1. Know where to find more details Learning

objectives

2. Understand the terminology

3. Differentiate accuracy and precision

@j\; GHG Support Unit, Transparency Division




Uncertainty overview [1]

2006 IPCC Guidelines for Good Practice Guidance and Uncertainty Management
National Greenhouse Gas Inventories in National Greenhouse Gas Inventories

Guidelines  Energy IPPU AFOLU Waste
Chapter 1  Introduction
Chapter 2 Energy
Vol. 1 - Ch. 3t uncertainty Chapter 3  Industrial Processes
Vol. 1 - Ch. 4: KCA based on uncertainty Chapter 4 Agriculture
\Vol. 1 - Ch. 5: Splicing techniques Chapter 5 Waste

Chapter 6 Quantifying Uncertainties in Practice
Chapter 7 Methodological Choice and Recalculation
Chapter 8 Quality Assurance and Quality Control



https://www.ipcc-nggip.iges.or.jp/public/gp/english/1_Introduction.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/2_Energy.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/3_Industry.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/4_Agriculture.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/5_Waste.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/6_Uncertainty.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/7_Methodological.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/8_QA-QC.pdf

Uncertainty overview [2]

General approach

Uncertainty

Lack of knowledge of the true value of a variable that can be described as a probability density function (PDF).
Uncertainty depends on the analyst’s state of knowledge, which in turn depends on the quality and quantity of
applicable data as well as knowledge of underlying processes and inference methods.

Uncertainty analysis

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to
reduce the uncertainty of inventories in the future, and guide decisions on methodological choice.

Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions
and removals estimates for individual categories and for the total inventory

Uncertainty assessment

The term “ASSESSMENT” is intended to convey an exercise that includes the investigation of quantitative and
qualitative aspects. In the glossary to the Guidelines, “uncertainty analysis” is defined as only a quantitative
exercise.

@ GHG Support Unit, Transparency Division




Uncertainty overview [3]

General approach

Conceptualisation
Data Collection |, . Background Assumptions
and Methodological Choice

AD - EF - Parameters ! @ | ]
» Input Uncertainty | .-~ Ty Key data identification

Quantification Emissions/Removal

Estimation Contribution to total

% Confi s
95/o_Conf|dence : | uncertainty
interval 5
¥ i‘ 3 l
Combination of Uncertainties; Emissions/Removals
(Approach 1 or 2) _I Estimates
Linear Error Monte Carlo Uncertainty
Propagation Simulation Estimates
_LEP- "MCS- GHG Emissions
. . 0 i
2006 IPCC Guidelines » 95% Confidence
interval
\l{\C Y GHG Support Unit, Transparency Division
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Uncertainty overview [4]

Key concepts

Confidence interval: range that encloses the true, but unknown value, with a determined
confidence (probability). Typically, a 95 percent confidence interval is used in greenhouse gas
inventories.
Alternative interpretation: Range that may safely be declared to be consistent with observed data or
information

Probability Density Function (PDF): describes the range and relative likelihood of possible
values.

For emission inventory, it is used to describe uncertainty in the estimate of a quantity that is a fixed
constant whose value is not exactly known.

Sensitivity analysis: method to determine which of the input uncertainties to an inventory
contributes most substantially to the overall uncertainty.

GHG Support Unit, Transparency Division
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Uncertainty overview [5]

Key concepts

Accuracy: Agreement between the true value and the average of repeated measured observations or
estimates of a variable.

An accurate measurement or prediction lacks bias or, equivalently, systematic error.

Bias / Systematic error: Lack of accuracy. Bias (systematic error), can occur because of failure to capture all
relevant processes involved or because the available data are not representative of all real-world situations, or
because of instrument error.

Precision: Agreement among repeated measurements of the same variable.
Better precision means less random error. Precision is independent of accuracy.

Random errors: Random variation above or below a mean value. Random error is inversely proportional to
precision. Usually, the random error is quantified with respect to a mean value, but the mean could be biased or
unbiased. Thus, random error is a distinct concept compared to systematic error.

g@}} GHG Support Unit, Transparency Division



Uncertainty overview [6]

Key concepts
Lack of knowledge of the true value
How far is the true value from the value used?

Accuracy (systematic errors or bias) vs. Precision (random errors)

(a) maccurate but precise; (b) inaccurate and imprecise; (c) accurate but imprecise; and (d) precise and accurate

N AW 7\
) &) &

(a) (b) (c) (d)
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Uncertainty overview [7]

Key concepts

Accuracy (systematic errors or bias) vs. Precision (random errors)

i \A
=
2
i

: ‘

3 =
o
(7p)

o (o)
(¢ b)
| -

= l o

£

n
ﬁ :
e; True value True value
o e

Low High
o Accuracy o
Source: Hitachi, 3. Semiconductor - Accuracy and Precision, Fig.3-5
g \ . L
y‘i\‘\C} GHG Support Unit, Transparency Division



Uncertainty overview [8]

Key concepts

The guantitative uncertainty analysis tends to deal primarily with random errors
based on the inherent variability of a system and the finite sample size of available
data, random components of measurement error, or inferences regarding the
random component of uncertainty obtained from expert judgment

I PRECISION

It iIs important to recognize that some uncertainties that are not addressed by
statistical means may exist, including those arising from omissions or double
counting, or other conceptual errors, or from incomplete understanding of the

processes that may lead to inaccuracies in estimates developed from models.
Bias or systematic errors

I ACCURACY

Q:@Jy GHG Support Unit, Transparency Division



Uncertainty overview [9]

Terminology

1) Confidence interval: range that encloses the true value with a determined confidence
(probability)

95 % Cl >  2.5th [oeeveereeeerereeerenennn, 197.5 th
Absolute —Re_l?_ti_‘f?___ Uncertainty
Symmetric: 80 (64-96) 80+ 16 80 + 20%. h P

Large uncertainty:
100 (50-200) 100 -50/+100 100 -50%/+100% 100 + factor of 2 (half or double)

Factor of “n” (mean/n) and (mean x n)
y{\C Y, GHG Support Unit, Transparency Division
NN



Uncertainty overview [10]

Terminology
TABLE 2.2
DEFAULT EMISSION FACTORS FOR STATIONARY COMBUSTION IN THE ENERGY INDUSTRIES
(ke of greenhouse gas per TJ on a Net Calorific Basis)
COy CH, N:D
Fuel Defanlt Lower Upper Defaule Lower Upper Defanlt | Lower | Upper
Emission Emission Emission
Factor Factor Factor

Crude 01l 73 300 71100 75 500 r 3 1 10 0.6 02 2
Orinmlsion r 77000 69 300 85 400 r 3 1 10 0.6 02 2
Natural Gas Liguads r 64200 58300 70 400 r 3 1 10 06 02 2
Motor Gasoline r 69300 67 300 73 000 r 3 1 10 0.6 02 2

E Aviation Gasoline r 70000 67 300 73 000 r 3 1 10 0.6 02 2
;% Jet Gasoline r 70000 67 300 73 000 r 3 1 10 0.6 0.2 2
Jet Kerosene r 713500 69 700 74 400 r 3 1 10 0.6 0.2 2
Cither Kerosene 71 900 70 800 73 700 r 3 1 10 0.6 0.2 2
Shale Ol 73300 67 2800 79 200 r 3 1 10 0.6 0.2 2
Gas/Diesel Cil T4 100 72600 74 BOO r 3 1 10 0.6 0.2 2
Besidual Fuel Oil 77 400 75 300 78 800 r 3 1 10 0.6 02 2

75.5[---77.4--] 78.8 77.4 (-2.5% ; +1.8%) 1 (-3 ) 10 3-67% / +233%
Approx. 77.4t 2% Approx. 3 = factor of 3




Uncertainty overview [11]

Terminology

Emission factor uncertainties

These will be the same as the uncertainties associated with estimation of the litter and dead organic matter stocks
per unit area on the previous land use. Uncertainties need not be estimated where zero carbon density in litter
and dead organic matter pools 1s assumed for Cropland. SWhere thic 35 not the case, uncertamties should be
assessed by analysis of local data and should both exceed a|factor of about 2

Uncertainties associated with carbon stocks and other parameter values|are likely to be at least a factor of three
unless country-specific data are available from well designed surveys.

The storage of manure, typically for a

period of several months. in Judgement of IPCC Expert Group

unconfined piles or stacks. Manure is in combination with Amon ef al.
Solid storage” able to be stacked due to the presence 0.003 Factor of 2 {2001}, which shows emissions

of a sufficient amount of bedding ranging from EI 0027 10 0.01 kg

material or loss of moisture by N0 (kg N]

evaporation.

(see Annex 10A.1). Table 10.11 presents the enteric fermentation emission factors for cattle. A ran_ge of

emission factors 1s shown for tvpical regional conditions. As shown in the table, the emussion factors vary by
|D‘L-'E1’ a factor of four on a per head b:lsisl




Uncertainty overview [12]

Terminology

i) Probability Density Function: range and relative likelihood of possible values

Symmetric (normal distribution)

Probability Density

g7 5t
FPercentile

E_Eth
Percentile

0 1 2
Example Emission Factor
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Uncertainty overview [13]

Terminology

i) Probability Density Function: range and relative likelihood of possible values

Asymmetric (Skewed)

2.5 97 5t

] P il
Percentile 95% Probability Range EFC:EF'I e

Probability Density
ikttt ‘il

0 1 2 3
Example Emission Factor

\Q’Z\C jy GHG Support Unit, Transparency Division
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Session 3. Causes of uncertainties associated with input
data used in National GHG Inventories

By the end of this session, you will:

1. Understand why data is uncertain Learning

objectives

2. ldentify the causes and implications

\\@j\; GHG Support Unit, Transparency Division




Causes of uncertainty [1]

Causes of uncertainty: Animal population? Age? Livestock characterization? Diet?
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Causes of uncertainty [2]

Causes of uncertainty: Land representation? Stand volume? Carbon stock? Below ground biomass?
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@;Y,/ GHG Support Unit, Transparency Division




Causes of uncertainty [3]

Causes of uncertainty: Pipe length? No. of fittings? Gas composition? Maintenance? Venting?
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Causes of uncertainty [4]

Causes of uncertainty: Waste generation? Composition? Climate? Treatment? Management type?
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Causes of uncertainty [5]

Causes of uncertainty

Lack of completeness BOS o o -

Model -Bias and Random errors

Lack of data -Bias and Random errors

Representativeness of data -Bias

Random Samp“ng error -Random errors == = mm - w- - -— >

Measurement errors -Bias and Random errors

Misreporting -Bias

Data gaps -Bias and Random errors

Small

o

Small

Precision

Precision oo

Low(bad)

High(good)
—_—

' g

Low(bad)
e

—l

Low
-

O
True value

p <l

True value

Accuracy

y"Z\C jy GHG Support Unit, Transparency Division




Causes of uncertainty [6]

Causes of uncertainty & examples

Lack of completeness -Bias

e.g. sources/sink categories not included in the inventories
Energy: emissions from coke production
IPPU: fluorinated gases not reported

Agriculture: methane emissions from enteric fermentation for dairy cows.

LULUCF: aregion is not reported

Waste: industrial wastewater for some products not included

\YT C ?y GHG Support Unit, Transparency Division
AN\



Causes of uncertainty [7]

Causes of uncertainty & examples

Lack of data -Bias and Random errors

e.g. activity data obtained by interpolation or other methods for missing year
Energy: provisional information in National Energy Balance for recent year
IPPU: cement production missing in national statistics
Agriculture: population for some animal category not informed in the statistics
LULUCEF: partial information in forest inventory

Waste: amount of MSW surrogated from population, extrapolated from census

\i/’f C ?y GHG Support Unit, Transparency Division
AN\



Causes of uncertainty [8]

Causes of uncertainty & examples

Representativeness of data -Bias

e.g. emission factor based on particular conditions

Energy: N,O from internal combustion engines from laboratory test instead of real driving conditions
IPPU: CO, emissions form steel production based on full load capacity plant

Agriculture: fertilizer application rates based on best practices

LULUCF: biomass growth rate based on sampling that do not cover all relevant regions

Waste: wastewater treatment efficiency based on newly built plants data

V‘/@:% GHG Support Unit, Transparency Division



Causes of uncertainty [9]

Causes of uncertainty & examples

Random sampling error -Bias and Random errors

e.g. activity data or emission factors based on limited sampling
Energy: limited reporting in census of liquid fuels used in transport
IPPU: amount of glass recovered (by type) based on surveys
Agriculture: fertilizer application rates based on samples from one region
LULUCF: C stored in forest based on limited sampling capacity (few trees)

Waste: MSW treatment distribution based on information from few cities in the country

V‘/@:% GHG Support Unit, Transparency Division



Session 4. How to reduce the uncertainty associated with
Input data used in National GHG Inventories

By the end of this session, you will:

1. Learn strategies to deal with uncertainty Learning

objectives

2. Understand how to set priorities

\\@j\; GHG Support Unit, Transparency Division




Reducing uncertainty [1]

Causes of uncertainty & strategies

Lack of completeness Bias Concept, QA/QC
Model Bias and Random errors Concept, QA/QC
Lack of data Bias and Random errors Experts, QA/QC
Representativeness of data Bias QA/QC, verification
Random sampling error Random errors Statistics sizes
Measurement errors Bias and Random errors QA/QC, verification
Misreporting Bias QA/QC

Data gaps Bias and Random errors Statistics, experts

AN
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Reducing uncertainty [2]

Improving accounting

Improving conceptualization

Improving models

Improving representativeness

Using + precise measurement methods

Collecting more measured data

Eliminating known risk of bias

Improving state of knowledge

Structural assumptions

Structure and parameterization

Sampling strategies

Measurement technologies

Sample size

Following decision trees

Understanding of the categories

\YZ\C j”y GHG Support Unit, Transparency Division




Reducing uncertainty [3]

Improving accounting

Improving conceptualization Structural assumptions

Improving models Structure and parameterization

e.g. better treatment of seasonality effects leading to more accurate annual estimates of emissions or
removals in Agriculture.

e.g. moving to higher Tiers in steel production to account for local data at plant level.

GHG Support Unit, Transparency Division
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Reducing uncertainty [4]

Improving accounting
Improving representativeness Sampling strategies

Collecting more measured data Sample size

e.g. including emissions data for situations involving start-up or load changes, if frequent, instead of
only full load operations.

e.g. perform stratified sampling in forest to account for different characteristics, climate and species

e.g. increasing the sample size for determination of soil organic carbon.

\YZ\C jy GHG Support Unit, Transparency Division
<&



Reducing uncertainty [5]

Improving accounting

Using more precise measurement methods Measurement technologies

e.g. collecting data using standardized measurement methods (i.e. ISO)

e.g. using measured parameters instead of simplified assumptions (density, temperature, mass vs. volume)

Eliminating known risk of bias Following decision trees, expert knowledge

Improving state of knowledge Understanding of the categories

e.g. Verifying the correct positioning and calibration of instruments in gas measurement.
e.g. moving to higher tiers to account for national conditions
e.g. Involving producers to better understand the details and appropriateness of assumptions.

i@j&' GHG Support Unit, Transparency Division



Reducing uncertainty [6]

Sensitivity analysis

Purpose: Identify categories, and key variables used that contribute the most to overall
uncertainty of the inventory. E— ALLOCATE RESOURCES

How: Introduce a perturbation to one variable, of the magnitude of its uncertainty, and assess the
variation in the result, one at a time (ceteris paribus).

e.g. Sensitivity in CH, emission from manure

3A2ai/ CH4
| Regression Coefficients
| P2
N22 1
Inventory N22 1 Sm— |
calculation P22 1 |
Input data ]
p ~ 5| system N Output 1;2;_
AD, EF etc. Emissions |
| E22 4
| 1198 -
P46
N46 -
1204 1
l ' , CoefficiéntVaIue
" \ ) oL
\{\(C:A\; GHG Support Unit, Transparency Division



Conclusions

Uncertainty assessment

» |tis a means to help prioritise national efforts to reduce the uncertainty of inventories in
the future

It guides decisions on methodological choice

It helps understand the quality of the information use

» |tis a requirement of GHG Inventories

Assessment of uncertainty in the input parameters |
should be part of the data collection o

g@}/ GHG Support Unit, Transparency Division



United Nations Framework Convention on Climate Change

We need to update our GHG forecast.

Heads, we will reach net zero soon.

End of day 1
Thank you!

Diego M. Ezcurra

Y GHG Support Unit, Transparency Division



5. Uncertainty associated with the use of national statistics,
surveys, censuses and sampling

6. Uncertainty associated with the Use of Empirical Data




Session 5. Uncertainty associated with the use of national
statistics, surveys, censuses and sampling

By the end of this session, you will:

1. Differentiate census and survey Learning

objectives

2. Learn when to use std deviation or std error

3. Derive uncertainty based on available data

\\@}' GHG Support Unit, Transparency Division




Uncertainty associated with activity data [1]

National statistics: census, survey

= Activity data are closely linked to economic activity
= well established price incentives and fiscal requirements for accurate accounting

National statistics

V1 _Ch2. - Annex 2A.2
2006 IPCC Guidelines
General guidance on performing surveys

Censuses Surveys

Counting every instance of a particular activity. Counting a portion of a particular activity.
Typically includes both systematic and random errors. Typically includes both systematic and random errors.
Random errors are typically normally Random errors are typically normally
distributed and uncorrelated distributed and uncorrelated

Contact the statistical agencies directly

\YZ\C jy GHG Support Unit, Transparency Division



Uncertainty associated with activity data [2]

National statistics: census

National statistics

Censuses

» Check for the size of random errors, look for fluctuations over time, and differential fluctuations in series
that ought to be highly correlated with the data of interest

To check for bias errors, cross-check the data of interest with other, related information. (look up and down
the supply chain for fuels, or highly correlated activities with the data of interest, for instance reported fuel
input vs. electricity output).

Interpretation of statistical differences, within, for instance, national energy data are an example of cross
checking (e.g. reference approach)..

Often ‘precise but inaccurate’

g@}/ GHG Support Unit, Transparency Division



Uncertainty associated with activity data [3]

National statistics: census

National statistics

Censuses

Hands-on exercises

in jy GHG Support Unit, Transparency Division



Uncertainty associated with activity data [4]

National statistics: census

Periodic publications

ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of
Energy every year for gasoil and gasoline. The statistics contains the most updated information for the
current and previous years.

Evaluate consistency and identify fluctuations over time in series to derive the uncertainty of the data

Year  Gasoil Gasoline Year Gasoil Gasoline Year Gasoil Gasoline

Source: commercialization tables, 12 July 2021 Source: commercialization tables, 18 June 2022  Source: commercialization tables, 23 June 2023

\VT@}; GHG Support Unit, Transparency Division




Uncertainty associated with activity data [4]

National statistics: census
4,5% U=5% 3,7%

Periodic publications i
ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of
Energy every year for gasoil and gasoline. The statistics contains the most updated information for the

current and previous years. : :

Evaluate consistency and identify fluctuations over tjme in series to derive the uncertalnty of the data

Year  Gasoil Gasoline Year Gasoil Gasoline Year Gasoil Gasoline

Source: commercialization tables, 12 July 2021 Source: commercialization tables, 18 June 2022  Source: commercialization tables, 23 June 2023

\VT@}; GHG Support Unit, Transparency Division




Uncertainty associated with activity data [5]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are
reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty.

42%

NCV: 48 TJ/Gg
Density: 0,714 kg/m3

efficiency ?

yz\@;”y GHG Support Unit, Transparency Division



Uncertainty associated with activity data [6]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are
reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

0,33 0,30 0,30

NCV: 48 TJ/Gg o
Density: 0,714 kg/m? Monthly efficiency ?

January  February March April May July August  September October | November December Total

\i\@) GHG Support Unit, Transparency Division



Uncertainty associated with activity data [7]

National statistics: census

Highly correlated activities = 20%

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are
reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

1.570.410 18.017.687

NCV: 48 TJ/Gg
Density: 0,714 kg/m3

January February March April May July August September October November December  Total

1.570.410 18.017.687

32% 35% 36% 37% 37% 35% 36% 35% 34% 33% 36% 34% 35%

z‘i' GHG Support Unit, Transparency Division




Uncertainty associated with activity data [8]

National statistics: survey

National statistics

Surveys

« Sample size and inter-individual variability
« Typical cases: consumer surveys, home expenses survey, land use surveys or forest cover surveys

The agency conducting the sample will normally be able to advise on sampling error.

If there is no information available, it may be possible to identify, or infer, the sample and population sizes
and calculate sampling error directly.

precision depends on sample size, accuracy depends on sampling design

Q:C jy GHG Support Unit, Transparency Division
=




Uncertainty associated with activity data [9]

National statistics: survey

Heterogeneity (standard deviation) VS. uncertainty in sample mean (standard error)
1.96 -0 1.96 - SE
Uncertainty = + ( ) - 100% Uncertainty = + ( ) - 100%
1 S 2 SE — i
0 = Ez(xi — 1) Jn
V =1

Variability within the sample Variability of the mean of the sample
Applicable for individual value Applicable for country average

Standard deviation tends to remain constant Standard error falls as sample size grows

y"f@j\; GHG Support Unit, Transparency Division



Uncertainty associated with activity data [10]

National statistics: survey

National statistics

Hands-on exercises

in jy GHG Support Unit, Transparency Division



Uncertainty associated with activity data [11]

National statistics: survey

LULUCF: Carbon stock in forest from surveys

a) Given a sample with 80 individual values, calculate the mean, standard deviation and

standard error.

b) If the sampling is repeated ten times, calculate the mean for each sample and the

standard deviation of the sampling distribution of the mean and compare with a).

Mean

102

101

100

97

100

100

101

102

5TD

21

19

19

21

nﬁ Excel

SE

2,0

2,4

2,0

2,5

2,3

2,2

2,1

2,2

2,2

2,4

Mean STD
101 2,1

GHG Support Unit, Transparency Division




Uncertainty associated with activity data [12]

National statistics: survey

LULUCF: Carbon stock in forest from surveys
Calculate the uncertainty of the carbon stock obtained from the sampling to be used in the

GHG inventory. The emissions from land use change will be calculated for the entire
country in the year in which the survey was carried out.

o 1.96 - SE

Sample size: 30 Uncertainty = i( 963 ) 100% SE: 1.9 tC/ha

Average C stock: 93.7 tC/ha o H

Standard deviation: 10.2 (C/hha  °F = /%
O or SE ?

What if the carbon stock is applied to account for emissions in one deforested area?

Vp@j&' GHG Support Unit, Transparency Division



Uncertainty associated with activity data [13]

National statistics: survey

WASTE: Municipal solid waste amount and composition

1) The amount per capita is obtained from a sample that covers vehicles collecting in a wide

range of areas: urban and rural, wealthy and poor, with and without gardens, etc. and
covering several periods throughout the year.

Uncertainty for the entire MSW category? O or SE ?
Uncertainty for the emissions from managed landfills? O or SE ?

2) The composition of the MSW was done through a survey at different landfills. A national
waste composition was calculated based on the results and is used to calculate the
methane emissions in each individual landfill.

Uncertainty for the composition based on amount from each landfill? O or SE ?

y"z\@j\; GHG Support Unit, Transparency Division




Session 6. Uncertainty associated with the Use
of Empirical Data

By the end of this session, you will:

1. Learn how to apply statistical analysis Learning

objectives

2. Derive uncertainty based on available data

\\@j\; GHG Support Unit, Transparency Division




Uncertainty associated with empirical data [1]

Techniques for quantifying uncertainties

Measurement Publications Statistics

V1l Ch.3-3.2.2.2

Statistical analysis o
2006 IPCC Guidelines

« Approach to quantify uncertainty in inventories, mainly associated to emission
factors and other estimation parameters

« 6 steps approach to apply systematically

N
(O
‘%‘(‘4’
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Uncertainty associated with empirical data [2]

Techniques for quantifying uncertainties

Statistical analysis

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

3. Fitting, evaluation, and selection of alternative PDF

4. Characterisation of uncertainty in the mean of the distributions for variability
5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis

y"z\@j\; GHG Support Unit, Transparency Division



Uncertainty associated with empirical data [3]

Techniques for quantifying uncertainties

Statistical analysis

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

Pareto Chart

0.35
600 -

*| . Outliers 70 T
-~ Data series *l & Pareto
Consistency =

i\g} GHG Support Unit, Transparency Division
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Uncertainty associated with empirical data [4]

Techniques for quantifying uncertainties

Statistical analysis

3. Fitting, evaluation, and selection of alternative PDF

Possible Physical - Expert
PDF process judgement

Variability Goodness

GHG Support Unit, Transparency Division

o N\
t
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Uncertainty associated with empirical data [5]

Techniques for quantifying uncertainties

Statistical analysis

4. Characterisation of uncertainty in the mean of the distributions for variability
5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis
O or SE? %% Cl — U
Ui — UTotal

UTotal — X

‘Q\@j‘/’ GHG Support Unit, Transparency Division



Uncertainty associated with empirical data [6]

Techniques for quantifying uncertainties

Measurement Publications Statistics

Statistical analysis

Hands-on exercises

\Yz\@}; GHG Support Unit, Transparency Division



Uncertainty associated with empirical data [/]

Statistical analysis
IPPU: Emission factor for aluminum production

A monitoring system was set to detect the anode effect. Average monthly EF were

calculated for CF, and recorded for three years.
Perform statistical analysis to identify PDF candidates, calculate the mean, standard

deviation, standard error and uncertainty.
M: 64.3 g CF,/tAl

0. 13.8 g CF,/tAl
|||I|| III i I Jj cvecet A

GHG Support Unit, Transparency Division

nﬁ Excel




Uncertainty associated with empirical data [8]

Statistical analysis

Attention!

Measurements taken for another purpose may not be representative.

For example, methane measurements made for safety reasons at coal mines and landfills
may not necessarily reflect total emissions because they may have been made only when
methane emissions were suspected of being high, as a compliance check.

In such cases, the ratio between the measured data and total emissions should be
estimated for the uncertainty analysis.

y"f@j\; GHG Support Unit, Transparency Division



United Nations Framework Convention on Climate Change

I'M SORRY MAN,
BUT WE JUST CANT
. TRUST YOU...

End of day 2
Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division




7. Methods to combine uncertainties: Approach 1

Propagation of errors




Session 7. Methods to combine uncertainties: Approach 1
Propagation of errors

By the end of this session, you will:

Understand the basics and assumptions Learning

objectives

Learn how to apply it to several cases

1
2
3. Identify key variables and avoid pitfalls
4

Learn how to deal with asymmetric cases

_ @ GHG Support Unit, Transparency Division



Combining uncertainty: Approach 1 [1]

Linear Error Propagation (LEP) First order Taylor series expansion

f(x)

/

Assumptions:

*Small std. Deviation (~30% from the mean)
Symmetric (not skewed)

*Normal distribution

*Uncorrelated variables

. Equations 3.1 and 3.2
*Multiplication or addition




Combining uncertainty: Approach 1 [2]

Linear Error Propagation (LEP)

db

Theory behind it — Don’t panic! Bear with me :)

ob

0 G, 0 0
Taylor 15t order: f = f(a; b)+—f§a+£6b+ = - f(a b)——fc‘i +—6b ) 5 = —f6a+—f§b
: : af | of of of
Variance of a summation: 0'f2=|£| 0§+|5 05 +25-=-0Oab

Casef=ax b: of =b*0f +a’of +2ab oy,

Or, in relative terms
&2= baa2+(aab)2+2abaab
f ab ab (a b)?

ur = /u§+u,2, )

uf = ug +uj )

Assumptions:

1) Small std. Deviation (~30%)

2) Symmetric (not skewed)
Normal distribution

3) Uncorrelated variables

4) Multiplication or addition

T "'2 "'2
Ut =\UZ +U2 4.+ U

Equations 3.1

\
0O
(’\wV(“/




Combining uncertainty: Approach 1 [3]

2

Linear Error Propagation (LEP)

2
0
ol + ‘—f of

zz‘ﬂ

% = |6a ab

Small impact from the input uncertainty Large impact from the input uncertainty Small impact from large input uncertainty

Xx L(x) Ya
slope =/"[a)
point = (a, fla)) f(x)
y = [fal(x-a) + ffa) “\.
-t L)
{:g; o f(x) _
| ‘i) : =
f(x) | i f(x)
=L |
i i X I! I! » X '! i » X
a x a X a X
— — —

The most important is how the uncertainty |

of the data affects the result.




Combining uncertainty: Approach 1 [4]

Linear Error Propagation (LEP)

AD x EF

Equartion 3.1
COMBINING UNCERTAINTIES — APPROACH 1 — MULTIPLICATION

ro_ 2 g 2
me;—vbl +U; +..+U,

U;: relative

Ei1+E2+.

.. + En

EquaTioN 3.2

U o0 + W 02 4 U, 0,

U total ~
[+, 4,

COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION

X;: CO,e




Combining uncertainty: Approach 1 [4]

Linear Error Propagation (LEP)

Hands-on exercises

S|

4
A

S
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Combining uncertainty: Approach 1 [5]

Linear Error Propagation (LEP)

AD x EF
Equation3.1
COMBINING UNCERTAINTIES — APPROACH 1 - MULTIPLICATION
Uy = U2 +U2 4.+ |
fotal = V1 T2 " U;: relative
(kg of greenhouse gas per TJ on a Net Calorific Basis)
Example: CO, emissions due to fuel consumption Co,
E=C X EF Fuel Default Lower Upper
Emission
Factor
_ _ Gas/Diesel Oil 74 100 72 600 74 800
Gasoil consumption =18 710 GJ
[72 600 - 74 100] [74 800 - 74 100]
t
E=18710[6]] x 0.0741 [.-] = 1386 tC0, 74100 74100

2% 1%

Uncertainty in activity data: 10%

o o Uncertainty in emissions =+/10% + 22 = 10.2% ~ 10%
Uncertainty in emission factor: 2%

U=+10.12 4+ 0.022 = 0.102 = 10.2% ~ 10%




Combining uncertainty: Approach 1 [6]

Linear Error Propagation (LEP)

AD x EF
Equation3.1
COMBINING UNCERTAINTIES — APPROACH 1 — MULTIPLICATION
Um al = ‘u'fUE + Uz2 + ..+ Uj _ (kg of greenhouse gas per TJ on a Net Calorific Basis)
U.: relative
0,
. . . Fuel Default Lower Upper
Example: CO, emissions due to fuel consumption Extlesten PP
Factor
E=CX86XNCV XEF
Gas/Dhesel (il 74 100 T2 600 74 800
) ) ) _ 3
C: Gasoil consumption = 500 m 2% 1%
§: Density = 0.87 t/m3 TABLE 1.2 .
DEFAULT NET CALORIFIC VALUES (NCVS) AND LOWER AND UPPER LIMITS OF THE 95% CONFIDENCE INTERVALS
. . . Net calorific
E=500x% 087 X 43.0x 0.0741 = 1 386 tCOZ Fuel type English description value (TJ/Gg) Lower Upper
Gas/Diesel il 4310 41 .4 433
Uncertainty in activity data: 5% [41.4-43.0]  [41.4-43.]
43.0 43.0
) ) L Eo
Uncertainty in density: 5% 2% 10

Uncertainty in emission factor: 2% Uncertainty in emissions= \/52 + 52 4+ 42 4+ 22 = 89
Uncertainty in NCV: 4%




Combining uncertainty: Approach 1 [7]

Linear Error Propagation (LEP)

AD x EF EqQuATION 3.1

COMBINING UNCERTAINTIES — APPROACH 1 — MULTIPLICATION

, 2 2 2
U =(UE+U2 +..+ U T
%a ™ |3b

U.: relative 2 ‘g

— 2 2

Examples: enteric fermentation, transportation, waste treatment

E= DE? X EF ) E= DE X DE X EF ) U= \/u%,E +udp +uip | independent?
Fe DanF - E=D X EF x SC =) U=\/u%+uﬁp+u§c

of|” of|
E=DDOC x e ¥ =) of = ‘% ol + ‘% op =) U= \/ulz)noc + (uy X k)?

WOW! It was useful! )




Combining uncertainty: Approach 1 [8]

Linear Error Propagation (LEP)
E1+E2+...+En

EquaTtion 3.2
COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION

J(U1 . x1)2 +(U, o Jr2)2 +..+ (U, onrﬂ)2

Dto!af =

Example: CO, emissions due to vent and flare

E= Epent + Eflare

V(0.4x7 310)2+(0.1x5 282)2
|12 592|

Uncertainty in emissions =
E,..= 7 310 tCO.,e

vent

Equre = 5 282 tCO,€

2 2
Uncertainty in emissions = V(2 920)7+(528)2 24%

EF=7310+5282 =12592tC0,e 112 592

Uncertainty in vent emissions: 40% (% 2 924)

Uncertainty in flare emissions: 10% (=% 528)

(¢
(\

@
\

(
4



Combining uncertainty: Approach 1 [9]

Linear Error Propagation (LEP)
517 E2 T o 2L EquatioNn 3.2

COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION

\j(U1 . xl]z £(U, . x2]3 ot (U, 'xﬂ]z

Uto!af =

Example: adding multiple emission sources

E:E1+E2+E3+E4+E5

V(0.4x200)24(0.3x500)2+(0.1x300)2+(0.8x100)2+(0.2x800)2

U= = 13%
: 119 000 ’
El =200 tCOZe + 40% Contribution e lOZ/o Contribution - Propagated uncertainty
E, =5001tCO,e = 30% o uncertainty = 36% to variance .
E; =300 tCO,e *= 10% e, = 1% R -
E, = 100 tCO,e =+ 80% % => 10% Jﬁl -
E-; =800 tCO,e * 20% =>41% 105
E - 1 900 tCOZe o 10 QOSumﬁumberGO 40 50

Addition reduces overall uncertainty

N

<<V
<&

C

(
4

&L
N



Combining uncertainty: Approach 1 [10]

Linear Error Propagation (LEP)
E1+E2+...+En

EquaTtion 3.2
COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION

J(U1 . x1)2 +(U, o Jr2)2 +..+ (U, onrﬂ)2

Ui‘o!af =
Example: subtracting
E: El - EZ
_ 0.3%500)2+(0.2x100)?2
El = igg tggze + 282;0 U= Y IZLOO(I )" _ 38% Subtraction increases overall uncertainty!
= t e £ 0
2 2
E — 400 tCOZe Propagated uncertainty ;.
I V(0.3x500)2+(0.2x400)2
E, =5001tCO,e =+ 30% c= 10| =170%
E, =400 tCO,e =* 20% -
E = 100 tCO.e Careful if similar values! | e;fﬂwe;m‘*°°f° o o
- 2
&/



Combining uncertainty: Approach 1 [11]

Linear Error Propagation (LEP)
E1+E2+...+En

AD x EF EquaTion 3.2

EquaTioN3.1 COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION
COMBINING UNCERTAINTIES — APPROACH 1 — MULTIPLICATION

J(U1 0 5) + (U, 00) 4.+ (U, ox)

T r2 2 2 L‘r =
Ut = /L' +U5 +..4U _ total

Example: combining Eq 3.1 and 3.2

" ' : Combined o
Source Emission Uncertainty Uncertainty e Contribution
(tCO4e) inAD in EF Ui tovariance
q 2
Unp Uer V(Upp +Ue) (ﬁl
a 100 3% 5% 5.8% 0.14%
b 5 3% 75% 75.1% 0.06%
C 28 3% 45% 45.1% 0.65%
d 3.2 3% 100% 100.0% 0.04%
e 21 3% 10% 10.4% 0.02%
157.2 0.90%
B
¢ 3



Combining uncertainty: Approach 1 [12]

Linear Error Propagation (LEP)

Enter Emissions Data

Data Calculated using
simple equations

/

APPROACH 1 UNCERTAINTY CALCULATION

TABLE 3.2

/

A B c p E F G H | R K [ L M
IPCC Gas Base yea Yeal Activity Emission Combined Contribution | Type A Type B Uficertainty i/ trend Uncertainty in trend Uncertainty
category emission emigsions or | data factor / uncertainty | to Variance sensitivity sensitivity infnational ejnissions | in national emissions introduced into

or removdls | rempovals uncertainty | estimation by Category introduced py introduced by activity | the trend in total
parameter in Yeart ethission ffictor / data uncertainty national
uncertainty edtimatioyl parameter emissions
uhcertaijity
Input data nput data Input data Input data (EZ N Fz (G N D)z Note B D leF JeEe \E Kz i LZ
Note A Note A > = S Note C
(z D) >C Note D
Gg CO, Gg CO; % % % % % % % %
equivalent equivalent
Eg., COz
1AL
Energy
Industries
Fuel 1
Eg., CO,
1AL
Energy
Industries
Fuel 2
Etc...
Total yC ) \ SH LY
Percentdge uhgertainty in A
total invegtory; N SH Trend uncertainty: 1/ >M

Enter Uncertainties




¢L<<v\

{

(\VY<<-L/

Approach 1 uncertainty calculation

A B C D E F H | J K L M
[IPCC category Gas Base year Year t emissions |Activity data Emission factor / [Combined Contribution to pre A pre B Uncertainty in  |Uncertainty in ~ [Uncertainty
emissions or  [or removals uncertainty estimation Variance by sensitivity sensitivity trend in national |trend in national |introduced into
removals parameter Category in the trend in total
uncertainty national
AD uncertainties based EF uncertainties based | |
on source of data on data used
Input data Input data Input data Input data PR (GeDY Note B L‘
E°+F of >c leF JeEe\2 K242
Gg CO, Gg CO,
equivalent equivalent % % % % % % %
1.A.1. Energy Industries CH4 5346662 32.9951217 B 25 25.50} 0.0] 3.20506E-05] 0.00010495 0.000801264 0.000742109 1.19275E-0¢
1.A.2. Manufacturing Industries and Constructior CH4 0302899 51.8776096 5 25 25.50 0.0 4.80131E-05) 0.000165011 0.001200328 0.001166804 2.80222E-04
1.A.3. Transport CH4 7067834 37.1466612 5 25 25.50] 0.0 -4.94664E-05) 0.000118155 -0.00123666| 0.000835483 2.22736E-04
1.A.4. Other Sectors CH4 1.24025 428.554682 5 25 25.50] 0.0 -0.000772946 0.001363136 -0.019323647 0.009638828 0.00046631)
1.A.5. Other CH4 .338228 97.5658895 5 25 25.50) 0.0 -0.000367351 0.000310335  -0.009183772 0.002194401 8.91571E-05
1.B.1. Solid Fuels CH4 67.6834 12364.38 10 25 26.93] 2.7] -0.011678579 0.039328314 -0.291964463 0.556186352 0.394586504
1.B.2. Oil and Natural Gas CH4 570.348 4022.34735 10 25 26.93] 0.3 -0.012988732 0.012794183 -0.324718297 0.180937071 0.138180194
2.B. Chemical Industry . CH4 40.53 37.5018 10 25 26.93] 0.0 3.61373E-05] 0.000119285 0.000903433 0.001686942 3.66196E-06
4.A. Enteric Fermentation. CH4 54.9863 7346.85 15 30 33.54] 15 -0.005462727 0.023368679 -0.163881819 0.495724537 0.272600067]
4.B. Manure Management, CH4 3.28061 1199.63088 15 30 33.54] 0.0 -8.88245E-05) 0.003815756 -0.002664735 0.080944413 0.006559099
4.C. Rice Cultivation. CH4 522.9 338.94 10 30 31.62 0.0 5.3609E-06| 0.001078092 0.000160827 0.015246523 0.000232482
4.F. Field Burning of Agricultural Residues. CH4 64.3314 6] 0.0 -1.24107E-05) 0.000119565 -0.000372321 0.003381819 1.15753E-04
6.A. Solid Waste Disposal on Land. CH4 1959.72 37 L I St Of S O u rC e/s I n kS 4 0.4 0.00787088 0.011891742 0.236126385 0.252261939 0.119391754
6.B. Wastewater Handling. CH4 787.08 74 4 0.0  0.000761896  0.002376612  0.022856865(  0.050415547|  0.003064164
1.A.1. Energy Industries C0O2 2607.31 9594 7] 11.2 0.094441853 0.305249301 0.472209267 2.158438506 4.881838378
1.A.2. Manufacturing Industries and Constructior CO2 3991.06 30 / 5 7.07| 11 0.02618491 0.095945987 0.130924551 0.678440577 0.47742285Y
1.A.3. Transport Cc02 3987.07 48 5 5 7.07| 0.1] -0.022453294 0.026739124 -0.11226647| 0.189074157 0.048352797
1.A.4. Other Sectors CcO2 . 11784.04 5 5 7.07| 0.2 -0.053800014 0.037482383 -0.269000072 0.265040472 0.14260749
1.A.5. Other CcO2 8370.16 4124.19 5 5 7.07] 0.0 -0.004052209 0.013118122 -0.020261045 0.092759127 0.009014764
1.B.2. Oil and Natural Gas C0O2 3408.21 5171.49583 10 15 18.03 0.2 0.009456387 0.016449366 0.141845811 0.232629165 0.074236563
2.A. Mineral Products. CcO2 5744.63 2507.20146 10 15 18.03] 0.0 -0.003809586 0.007974844 -0.057143788 0.112781331 0.015985041
2.B. Chemical Industry, CcO2 1355.56 171.93456 10 15 18.03] 0.0 -0.002233954 0.000546885 -0.033509311 0.007734125 0.00118269Y
2.C. Metal Production. CO2 12932.6799 10507.4715 10 15 18.03 0.9 0.006887639 0.033421905 0.103314586 0.47265712] 0.234078657]
5.A. Changes in Forest and Other Woody Bioma CO2 97.19 50 80 94.34] 0.0 -0.000199385 0 -0.015950798 0] 0.000254424
5.A. Changes in Forest and Other Woody Bioma CO2 -7810.79 -7721.7341 50 80 94.34] 12.9 -0.008539362 0.024561101 -0.683148991 1.736732102 3.482930934
5.B. Forest and Grassland Conversion. C0O2 6.26 280.43888 25 75 79.06f 0.0 0.00087917| 0.000892013 0.065937785 0.031537424 0.005342401
1.A.1. Energy Industries N20O 388.516902 328.741673 5 50 50.25] 0.0 0.000248607 0.001045653 0.012430334 0.007393886 0.000209183
1.A.2. Manufacturing Industries and ConstructiorN20 112.709781 114.844426 5 50 50.25] 0.0f  0.000134069|  0.000365294  0.006703468f ~ 0.002583021|  5.16085E-09
1.A.3. Transport N20O 573319301 21.6195922 5 50 50.25] 0.0 -4.88495E-05) 6.87671E-05 -0.002442474 0.000486257 6.20212E-06
1.A.4. Other Sectors N20O 19.497577 46.1816455 5 50 50.25] 0.0 -0.000252117 0.000146893 -0.01260587| 0.001038693 0.000159987
1.A.5. Other N20O 274386549 13.5195061 5 50 50.25] 0.0 -1.3288E-05] 4.30025E-05 -0.000664398 0.000304074 5.33886E-07]
4.B. Manure Management. N20 375.1 198.4 15 30 33.54] 0.0 -0.000138451 0.000631066  -0.004153541 0.013386927 0.000196462
4.D. Agricultural SoiIs(Z), N20 26217.694 9798.17 20 30 36.06) 3.0 -0.020551916 0.031165777 -0.616557485 0.881501284 1.157187644
4.F. Field Burning of Agricultural Residues. N20 24.304 21.297 20 30 36.06] 0.0 1.78812E-05 6.7741E-05 0.000536437 0.001916004 3.95884E-09
6.B. Wastewater Handling. N20 _/ 452.6 384.4 15 30 33.54] 0.0 0.000294175 0.00122269 0.008825264 0.025937172 0.000750622
Keep Blank! 0
Total | 314388.7626| 202771.1719| >H 34.6 >M 11.4670044
Percentage uncertainty in total Trend -
inventory: 5.880740472] uncertainty: 3.386296561




Combining uncertainty: Approach 1 [14]

Linear Error Propagation (LEP)
E1+E2+...+En

AD x EF FousTion 3.1 EquaTioNn 3.2
QUATIONJ. COMBINING UNCERTAINTIES — APPROACH 1 — ADDITION AND SUBTRACTION
COMBINING UNCERTAINTIES — APPROACH 1 — MULTIPLICATION

J(U1 ' .11'1)2 +(U, o Jr2]2 +..+ (U, urﬁ)2

: 2712 12 Ut =
Uptal = /L' +U;y +..+U _ total
foal = V1 T ' U;: relative 10, 4t X;: CO,e

Bonus track!: one way of dealing with asymmetric uncertainties

Combined Combined Contribution Contribution

Emission Uncertainty Uncertainty Uncertainty

Source (tCOse) in AD in EF (-) in EF (+) unce.rtainty unce.rtainty tovariance (-) tovariance (+)
Ui (-) Ui (+)
2 . 2 (Ui x Ei)?
Unp Uer V(Unp +Uge") (SEi)?
a 100 3% -5% 5% 6% 6% 0.1% 0.1%
b 5 3% -50% 100% 50% 100% 0.0% 0.1%
c 28 3% -30% 60% 30% 60% 0.3% 1.1%
d 3.2 3% -100% 900% 100% 900% 0.0% 3.4%
e 21 3% -10% 10% 10% 10% 0.0% 0.0%
157.2 0.5% 4.8%

(¢
(\

@
\



United Nations Framework Convention on Climate Change

End of day 3
Thank you!

Diego M. Ezcurra
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8. Methods to combine uncertainties: Approach 2
Monte Carlo simulation




Session 8. Methods to combine uncertainties: Approach 2
Monte Carlo simulation

By the end of this session, you will:

Learning
objectives

Understand the basics of the simulation

Learn how to select probability density functions

1
2
3. Identify typical problems and avoid misinterpretation
4

Understand how to deal with correlation

_ @ GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [1]

Monte Carlo Simulation (MCS)

Numerical simulation method, nondeterministic, which simulates the behavior of a random
static system where input parameters are defined by a known Probability Density Function.

Random processes >

Random

output

Deterministic processes =

LL<<\
\

(\



Combining uncertainty: Approach 2 [2]

Monte Carlo Simulation (MCS)

Lognor..

Inventory
calculation
system

wa

Values x 10...

o - - ~ ™~ w
wn [= w E= wn =3

=
=3

41

A

42

0
¢

< n © N ]
<+ <+ <+ <+ <+

49
50
51

Values in Thousa...

Il 5w o

Minimum  41475,0691
Maximum 50226,0509
Mean  45009,4076
StdDev  1417,9241
Values 1000

Applicable even if:
sLarge std. dev.
«Skewed distributions
*Correlated variables

Complex equations




Combining uncertainty: Approach 2 [3]

Monte Carlo Simulation (MCS)
|I|
@R’!K @

Steps ﬁ Excel

1.Build the calculation model in which uncertainty needs to be evaluated

2.ldentify relevant key variables > Sensitivity

3.Establish the Probability Distribution Functions for each of the inputs identified and obtain the

Unifor...

parameters to define them

4.Run the simulation

5.0Dbtain the PDF of the result and determine uncertainty as the 95% CI.

Mean = 100
Standard deviation = 15 Uncertainty = 30%
Cl=[70; 130]




Combining uncertainty: Approach 2 [4]

Monte Carlo Simulation (MCS)

|
\ )

X a Excel

Example @RISK
I ——
|
:—j Haome Insert Page Layout Formulas Data Review View Acrobat @RISK
- )
[~ & Cut . s - =" B = . *j ﬁ 1 ;_l-
Calib -1 - = = = - =1¢ Wrap Text A t A
_j Ca Cony alibri !A A | |_ _Ijl ;@i - | = Wrap Te; ccT:uun ing 5 | % ==
Pa-ste jFormat Fainter |B £ g '” — v” &.v & vl |§ = g”g; '1:'__E| ﬁMerge&Center ) | B a i ”"-EE -:'-:.IE| Iizoorr:nﬂal;:c‘ll:ionngal' asF?';r;Ia:' Stgleelé' Iﬂivt‘l't DE"EtE
Clipboard L] Font ] Alignment (] Mumber (] Styles Cells
DS e fe | =RiskLognorm(0,01;0,006;RiskStatic(0,01))
A B C D E F 3 H | | K

1 Direct N20 emissions from managed soils
2 |Pagina11.12-Guis IPCC 2006 Vaol. 4

3

4 Factor Unit Dafault Range

= EFy kg N2O-N kg N 0,002 -0,03
6 EF3pgp KgN20-N/KgN 0,007 - 0,06
7

¢ Indirect N20 emissions from soils (volatilization and leachate
9 |Pagina 11.26-Guia IPCC 2006 Vol. 4

10
11 Factor Unit Dafault Range

(kg NH3—N+NOx—N) (kg N
12 s e HD| iEHdD, - OJGE i 0’ 3

(¢

@
\

(\



Combining uncertainty: Approach 2 [5]

Monte Carlo Simulation (MCS)

X a Excel 'Illl

Example @RISK
. t:y Home Insert Page Layout Formulas Data Review View Acrobat @RISK
ﬁ % ji. \! | A E * &  Tterations 1000 - | i “G’ I:_K‘J‘% | 3 summary
: = ... - - =88 | 'Cimukations |1 " Define Filters ’
DisEiet::..lril:‘ieons Dﬂ?;;jut FuI::t?:Jtn' CGS:T;?ifms DI;;‘{II:FHUJI‘?H DISE:;LSJEIDH U\’:‘:r?ggnr |£ @ E E i @| SImS:Iaar;:Emn :r?:arr;:gd' ngis |=' : Iﬁl IE] IE” F{EE};{JCGEru:s Fusnwctaigns 4
Model Simulation Results Tools

| D5 e Fe | =RiskLognorm{0,01;0,006;RiskStatic(0,01))

A B c D E F G H I J K
1 Direct N20 emissions from managed soils
2 |Pagina 11.12 - Guia IPCC 2006 Val. &

= J L
i Dafault Range

4 Factor Unit

5 EFy kg N20-N fkg N 0,003 - 0,03
6 EF3pne KENZO-N/KgM 0,007 - 0,00
7

g Indirect N20 emissions from soils (volatilization and leachate
9 |Pagina 11.26-Guia IPCC 2006 Vol. 4

10
11 Factor Unit Dafault Range

(kg NH2-N + NOx-N) / (kg N
12 FraEGASF 2 P|iCEdD:| - 0:03 _ OJ ’

\

¢
(\



Combining uncertainty: Approach 2 [6]

Monte Carlo Simulation (MCS)

\ )

@RISK

X Excel

Example

it
t—-/r Home Insert Page Layout Formulas Data Review View Acrobat @RISK

ﬁ % j-'r -' ﬁ i f Iterations 1000 - | lﬁ' Ilﬁ'i il |i'-'l:|5ummar}r
' Simulations 1 : " Define Filters

Define Add Insert Define Distribution Distribution | Model Start Advanced |||Browse = Excel Swap |
Distributions Cutput Function ~ Correlations Fitting - Artist Window |£ @ E E i. @| Simulation Analyses ~ | |Results |_ |£] |_] |_” Reports Functions | !
Model Simulation Results Tools
| D5 ML 5 | =RiskLognorm({0,01;0,006;RiskStatic(0,01))
A B C D E i, @RISK - Simulated Input: DS .Er——ﬂ "
1 Direct N20 emissions from managed soils Cell DS
2 |Pagina 11.12-Guia IPCC 2006 Vol 4 Comparisonwith Lognorm{0,01;0,006)
3
4 Factor Unit Dafault Range X 95,0% X . Curve £1
5 EF: kg NZO-N /kgN 0,011 0,003-0,03 L= r re——r—
& EF3ear KgM2Z0-M /KN 0,007 - 0,66 . Mzximum  0,0551
1 Mzan 0,01000
b Std Dev  0,00538
Walues 1000
7 1 v
- . . - agn N 1 i ! — Theoretical
¢ Indirect N20 emissions from soils (volatilization and ] - 5080

Mazimum +oo

9 | Pagina 11.26-Guia IPCC 2006 Vol. 4

] = n:lh n:lu i 2 Maan 0,0100
10 - o o - ‘® SdDev  0,00500
11 Factor Unit Dafault Range Walues in Thousandths

4
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Combining uncertainty: Approach 2 [7]

Monte Carlo Simulation (MCS)

X ﬁ Excel .'llll

@RISK

Example

108 911

W eizs

Ve 1o
suver 2500

| 42,35 47,79

Womnisio
o o300
e

5100

Betap...

Séoer 010

Mean  45009,4076
StdDev  1417,9241
Values 1000

Inventory
. 3Alaii / CH4
calculation ; _ RS
W rens) - Minimum  41475,0691
Wamn_ 10000 Maximum  50226,0509
system
Sber 188 E

) < 1 © N @©
<+ <+ <+ <+ <+ <+

Values in Thousa...

41

42
49
50
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Combining uncertainty: Approach 2 [8]

Monte Carlo Simulation (MCS)

GOOD PRACTICE GUIDANCE FOR SELECTING PROBABILITY DENSITY FUNCTIONS

V1 Ch3.3.2.2.4
2006 IPCC Guidelines

Recommendations for different cases and commonly applied criteria to follow

y"f@j\; GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [9]

Monte Carlo Simulation (MCS)

Domain (+, -, «) Range (narrow or broad)
Shape (symmetry) Underlying process (+, X)
Others

GHG Support Unit, Transparency Division

@
ttV(‘é/

(
4



Combining uncertainty: Approach 2 [10]

Selecting PDF

Most used PDF

y"z\‘@} GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [11]

Selecting PDF

Uniform

All values with same probability

Parameters: Uniform (min, max)

Application to inventories: large uncertainty and lack of information

g@?} GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [12]

Selecting PDF

Triangular

Intuitive and flexible.

Parameters: Triang (min, mean, max)

Application to inventories: expert judgment, knowledge from experience.
Limited information.

((‘\
\

GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [13]

Selecting PDF

Normal

Distribution around a most likely central value.

Parameters: Normal (mean [4], std. Dev. [o])

Application to inventories: most of situations (central limit). Additive processes.

The interval +/- 2*0 (1.96) accounts for approx. 95% of the values.
0 may be estimated as: (max - mean) / 2

A C j\; GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [14]

Selecting PDF

Log-normal

The natural logarithm of the variable adjusts to a Normal distribution

Parameters: Lognormal (mean [y], std. Dev. [ad])

Application to inventories: Generally good representation for skewed non-
negative values (emission factors for N,O). Multiplicative processes.

y"z\@j\; GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [15]

[
k=
k=
k=
k=
02
01 f -
‘\‘\
0
0 2 4 6 8 10 12 14 16 18 20

Similar to lognormal but with not so heavy tails

Selecting PDF

Parameters: Gamma (shape [k], scale [0])

Application to inventories: Good representation for skewed values. Very flexible
depending on its parameters. Mean value: k.0

Q:@Jy GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [16]

Selecting PDF

Beta pert

Version of the Beta using PERT (Program Evaluation and Review Technique).

Parameters: BetaPert (min, mean, max)

Application to inventories: similar to triangular but with lower standard deviation.

((‘\
\

GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [17]

Selecting PDF - Good practice guidance

« The minimum number of probability functions are used
« These probability functions are well known and well based (theoretical or empirical)

* Where empirical data are available, the first choice should be to assume a normal

distribution

« If the variable must be non-negative and a normal distribution is assumed, the standard

deviation should not exceed 30%

 Truncation of the negative tail of the normal distribution should be avoided (use instead

lognormal, Welbull, or Gamma).

\

(\

GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [18]

Selecting PDF - Good practice guidance

« Where expert judgment is used, the distribution function adopted might be normal or

lognormal, supplemented by uniform or triangular distributions

* If only the interval is known (upper and a lower value), assume that the probability
density function is uniform and that the range corresponds to the 95% confidence

interval

* If the distribution observed based on data does not seem correct, the data may be the

problem (not representative, not random, small sample size, different timing, etc.)

\

(\

GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [19]

Selecting PDF - Good practice guidance

 When selecting the PDF from Goodness-of-Fit test, several functions will fit the data

satisfactorily within a given probability limit

« Different functions can have radically different distributions at the extremes (few or
no data to constrain them), and the choice of one function over another can

systematically change the outcome of an uncertainty analysis.

‘It must be knowledge of the underlying physical processes
that governs the choice of a probability function”

Q:C jy GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [20]

DEPENDENCE AND CORRELATION AMONG INPUTS

Dependence / Correlation

Relationship between two variables that make them not independent

One variable is determined (partially or totally) by another one

Q;@Jy GHG Support Unit, Transparency Division



Combining uncertainty: Approach 2 [21]

DEPENDENCE AND CORRELATION AMONG INPUTS

Dependence / Correlation

Negative Positive
Reduces uncertainty range Increases uncertainty range
when included when included
If not included: If not included:
overestimation of uncertainty underestimation of uncertainty

yz\@;”y GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [22]

DEPENDENCE AND CORRELATION AMONG INPUTS

Perfect High Low Low High Perfect
Posttive Posttive Positive No Negative Negative Negative
Correlation Correlation Correlation Correlation Correlation Correlation Correlation
A i ! ) ) H
° ‘ o: ° ' . : :0 c 0%0
o o0 ‘ . .0 ° - , o . | P : . i o : | o 0® " %

° o® 1 i o 5 ’ o i o n.—. L @ o o, R ’ %
‘ o ° ’ ° " o o e °

| 0.9 3.3 0 -0.5 -0.9 -1

[

V(‘é/

GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [23]

DEPENDENCE AND CORRELATION AMONG INPUTS

r=0 r=0.1 r=0.2 r=0.3
A . . 4- . .
z % . . =
: - I 2+ =% e 2
> 1 =t g .__.Td-q—""’ > __,_,-}"""::"—: i /
; ) It "BEANE 0 Correlation degree
1 . )
02 00 02 04 02 00 02 04 02 00 02 04 ) 02 00 02 04
X X X X
r=0.4 r=0.5 r=0.6
2 N . . ; .
, JHENEES <0.2 Very low
. 1-
7 o . = 0.2-04 Low
il
] - : i ] 0.4-0.6 Moderate
-Old -0l2 O)I(O 0‘2 0.4 .1- -0I3 0;(2 0.3 D|6 -0‘4 -0I2 )(2'0 0l2 -OISO -0.25)260 0'25 0'5('. 0.6 — 0.8 ngh
r=0.8 4_r=0.999 > 08 Very hlgh
1
> * Indicative ranges
"
-0{6 -0'3 0,'0 0I3 0I6 -1I0 AOI,S OIO 0‘5 170 IS 6 5l 1'0
X X X
y{\C Y, GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [24]

DEPENDENCE AND CORRELATION AMONG INPUTS Perfect quadratic correlation perfect exponential correlation

% {
140 d
20 4 120 4 C
100 4 :.
]5 -
. . . . 804 [
Attention! Non-linear correlation also exists N N :
5 7
Mo relation Linear relation Cuadratic relation 1
. - . . . - : : . . = : . " .
Foam 2 . . . " . e 2 4 -4 2 0 2 4
LA . "o g : :' L] h!‘l" i . Good quadratic correlation Good exponential correlation
" L
f'.':: . - 1‘i‘1.-1- " . 25-.:. ® . 140 d
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Combining uncertainty: Approach 2 [25]

DEPENDENCE AND CORRELATION AMONG INPUTS

FC (GJ) Are FC (GJ) and EF independent?
A

E ='FC x NCV x EF

FC: Fuel consumption (tonnes)
NCV: Net calorific value (GJ/t)
EF: Emission factor (tCO,/GJ)

o %C a4
“NCeV 12

Are NCV and EF independent?

\Vp@jy GHG Support Unit, Transparency Division




Combining uncertainty: Approach 2 [26]

DEPENDENCE AND CORRELATION AMONG INPUTS

Dependencies / Correlations

Are always important
to uncertainty assessment?

Degree: strong or weak correlation (i.e. 0.8 or 0.2)

Sensitivity: impact to the overall uncertainty

GHG Support Unit, Transparency Division
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Combining uncertainty: Approach 2 [27]

DEPENDENCE AND CORRELATION AMONG INPUTS

Exists between 2 variables to which Exists between 2 variables to which
uncertainty is NOT sensitive to uncertainty is sensitive to

and and

dependency is strong dependency is strong

Exists between 2 variables to which Exists between 2 variables to which
uncertainty is NOT sensitive to uncertainty is sensitive to

and and

dependency is weak dependency is weak

\
\4\@}' GHG Support Unit, Transparency Division
D




Combining uncertainty: Approach 2 [28]

DEPENDENCE AND CORRELATION AMONG INPUTS

Dependence / Correlation

« Define the model so that the inputs are as statistically independent as possible

Strateqies

« Stratify or aggregate the category to minimise the dependency effect
 Model dependency explicitly

« Use sensitivity cases (independent, fully positive and fully negative correlated)

Q:C jy GHG Support Unit, Transparency Division



United Nations Framework Convention on Climate Change

\M AFRAID HE CANT (ONE To
THE PHONE, HE'S IN THE MIDOLE
OF A MONTE CARLO SIMULATIEN

End of day 4
Thank you!

Diego M. Ezcurra

\i@}ﬁ' GHG Support Unit, Transparency Division



9. Methods to combine uncertainties: Hybrid combinations of
Approaches 1 and 2

10. Application of uncertainty estimates to identify areas for
improvement — Approach 2 to identify key categories

11. Uncertainty associated with the use of proxy, splicing techniques
and expert judgment to fill data gaps




Session 9. Methods to combine uncertainties:
Hybrid combinations of Approaches 1 and 2

By the end of this session, you will:

1. Understand how to combine approaches Learning

objectives

2. Understand why it can efficiently improve results

y"f@j\; GHG Support Unit, Transparency Division



Combining uncertainty: Hybrid approach 1 and 2 [1]

Methods to combine uncertainties

Approach 1: Approach 2:

Linear Error Propagation Monte Carlo Simulation

- J
Y

Hybrid approach:

Linear Error Propagation with Monte Carlo Simulation

|dentify categories that require more complex calculations, have high uncertainty ranges
or where dependency is not negligible. Those cases can be propagated using Monte Carlo
Simulations and the remaining categories can apply Linear Error Propagation.




Combining uncertainty: Hybrid approach 1 and 2 [2]

Linear Error Propagation (LEP)

e i
1A1 - Energy industries (2%) E

1A2 - Manufacturing industries (3%)

1A: 1%
1A3 - Transport (2%)

1 Energy: 2%

1A4 - Other sectors (2%)
1B1 - Solid fuels (36%)

1B: 29%
1B2 - Oil and natural gas (30%)

((‘\
\
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Combining uncertainty: Hybrid approach 1 and 2 [3]

Linear Error Propagation (LEP)

SN ~
2A2 - Lime (30%) - 2A-9%
2A4 - Carbonates use (10%) J
2B1 - Ammonia (9%) D
2B2 - Nitric acid (40%)
2B5 - Carbide (11%)
>~ 2B - 14%
2B7 - Carbonates (21%)
2B8 - Petrochemical (18%)
_ > 2 IPPU: 11%
2B9 - Fluorochemical (50%) J
2C1 - Iron and steel (33%) )
2C2 - Ferrous allay (56%) . 2C-28%
2C3 - Aluminum (10%)
2C6 - Zinc (56%) J
- i 0
2D1 - Lubricant use (52%) } 2D - 50%
2D2 - Paraffin wax use (52%)
2F4 - Aerosols (50%) 2F -50%

?

SN
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Combining uncertainty: Hybrid approach 1 and 2 [4]

Linear Error Propagation (LEP)

Cattle and dairy cattle: Monte Carlo

3Al - Enteric fermentation (6%)
3A -5%

3A2 - Manure management (16%)

3B1 - Forest land (219%)

3B2 - Cropland (89%)

> - 0

3B3 - Grassland (20%) 3B -o7%
3B7 - Soil organic matter content (93%)

3 AFOLU: 18%
3C1 - Biomass burning (12%) - >
3C3 - Urea application (5%)
3C4 - Direct N,O emissions from managed soils (43%)

: . _ > 3C - 32%
3C5 - Indirect N,O emissions from managed soils (62%)
3C6 - Indirect N,O emissions (77%)
3C7 - Rice cultivation (115%) )




Combining uncertainty: Hybrid approach 1 and 2 [5]

Linear Error Propagation (LEP)

Monte Carlo Simulation

4A1 - Managed solid waste disposal (32%)
4A - 29%
4A3 - Uncategorized solid waste disposal (50%)
) : : : 0 )
4B - Solid waste biological treatment (79%) 4B - 79% 4 Waste: 21%
4C1 - Waste incineration (64%) 4C - 64%
4D1 - Domestic wastewater treatment (19%)
4D - 31%
4D2 - Industrial wastewater treatment (76%)




Combining uncertainty: Hybrid approach 1 and 2 [6]

Linear Error Propagation (LEP)

e

1 Energy: 2% E

3 AFOLU: 18%

National GHG
Inventory

10%

2 IPPU: 11%

4 \Waste: 21%
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Session 10. Application of uncertainty estimates to identify
areas for improvement: Approach 2 to identify key categories

By the end of this session, you will:

1. Learn how to identify key categories Learning

objectives

2. Understand why uncertainty can help with efficiency

\\@}' GHG Support Unit, Transparency Division




Key category analysis [1]

Key categories

Approach 1 V1 Cha Approach 2
Level 2006 IPCC Guidelines Uncertainty
E L., xU
L ., - (X U
ZJ’lEJ’.t| Zy(Ly,t X Uy,t)
Obijective: to identify those categories that contribute Objective: to identify those categories that contribute

“Hot spots” can be used to assign resources for
improvement and identify mitigation alternatives.

the most to total inventory value. the most to total inventory uncertainty.

“Hot spots” can be used to assign resources for
improvement in data collection

GHG Support Unit, Transparency Division




Key category analysis [2]

Key categories

Approach 1 V1 Cha Approach 2
2006 IPCC Guidelines Uncertainty
L., = |Ex.t| LU,, = (Lx,t X Ux,t)
xt ZylEyt| ' Zy(Ly,t X Uy,t)

(|Ex,t| X Ux,t) > LUx,t — |AEx,t|
2|AEy,|

LU, , =
x't Z:y(|Ey,t| X Uy;)

yi\@jy GHG Support Unit, Transparency Division



Key category analysis [3]

Key categories

Approach 1 V1 _Ch4 Approach 2
Level 2006 IPCC Guidelines Uncertainty

Absolute LUi
Emission Emission value of Level Uncertainty Li x Ui Cumulative
Source (tCO.e) Emission Li Ui (Li x Ui) LUi

(tCO,e) 3(Li x Ui)

Key categories
based on Level

E9 3 3 1% 80% 0.9% 5% 95%

E7 21 8% 8% 0.6% 3% 98%

E8 49 49 18% 2% 0.4% 2% 100%
235 265 0.19

Sort high to low

<+—  00% cumulative

GHG Support Unit, Transparency Division

¢
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Session 11. Uncertainty associated with the use of proxy,
splicing techniques and expert judgment to fill data gaps

By the end of this session, you will:

1. Learn to solve data gaps with splicing techniques Learning

2. Understand how to derive uncertainty for missing data objectives

3. Learn how to derive uncertainty from expert judgement

\\@}' GHG Support Unit, Transparency Division




Proxy: Splicing techniques and Expert Judgement [1]

Splicing techniques for Data gaps

Data gaps

V1_Ch5 . 5.3 Resolving Data Gaps Changes and gaps
2006 IPCC Guidelines in data availability

Periodic data

Data are available less frequently than annual or may not Changes in data collection systems or methodologies

cover the entire country. (improve or decrease or gaps)

Estimates need to be updated each time new data becomes Higher tier methods can be applied for recent years, but
available.

New estimates should be extrapolated and then recalculated
when new data become available

not for earlier years
Discontinuation of data sets or different definitions,
classifications and levels of aggregation

Splicing techniques

\YZ\C jy GHG Support Unit, Transparency Division
<&




Proxy: Splicing techniques and Expert Judgement [2]

Splicing techniques for Data gaps

Interpolation Extrapolation

Overlap Surrogate

New method implemented No data for the category Data gap for some years  Data unavailable for last
not available before (or but other related available  or outliers identified or first year
after) Ratios or regression
Overlap - Consistent Relationship “onona . = Linear Interpolation [—=#—Actual Peridic) Data) - - -Orighal Extapolaton |
- W .. : o
i | e il I o § [T | 7
z — @ Tier2 E 200,000 g —o—m 8
2 150000 w08 :-
o X
1) : o
&C} GHG Support Unit, Transparency Division



Proxy: Splicing techniques and Expert Judgement [3]

Splicing techniques for Data gaps

Surrogate

Interpolation Extrapolation

Owverlap - Consistent Relationship

20
18
16
14

New method implemented not available before (or after)

Requires consistent relationship between the two methods

E 124 —e—Tier 1
@ 0] _ ---a--- Splice
8 : 1 noy =l L Variability in ratios can be used to assess consistency and

E l

= xg.| ———— . — -

4] Yo = %o <n —m+1 Zi=m Xi) uncertainty

3

0 T T T T r T r T r T

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Yaar
\\i\@;}‘" GHG Support Unit, Transparency Division



Proxy: Splicing techniques and Expert Judgement [4]

Splicing techniques for Data gaps

Overlap Surrogate Interpolation Extrapolation

450,000 120
-
400,000 4 " = ':'K“
150000 | I 1'% No data for the category but other related available
g 300,000 1 T80 -
E 250,000 1 & —— Ratios or regression analysis (simple, multiple, linear, non-linear)
2 So B0 g Production
E 200,000 T Yo = Yt-S_ § —#—Measured
£ s0000 - ‘ o B —===1 Requires identifying the dependent and independent variable/s
100,000 4 and the dependency (correlation)
=C+p.S } 20
N Standard error for the regression can be used to assess
10T 1952 1993 TH04 T995 995 THAT 1998 1959 =000 uncertainty (other criteria also possible)
Yeaar
7~N _ .
‘{\@‘:\} GHG Support Unit, Transparency Division



Proxy: Splicing techniques and Expert Judgement [5]

Splicing techniques for Data gaps

Emissions

20
18 -
16 -
14 |
12 |
10 -

(=T S T TN = I - -]
5 L 1 1

Vi =Y

Linear Interpolation

—— Method
- - - Interpolation

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

Interpolation

Extrapolation

Data gap for some years or outliers identified.

Linear models are commonly used but others may apply (quadratic)

It can be applied intermittently as necessary. Requires smooth or
stable trend (low variability). If not, surrogate is a better practice.

Variability in available data can be used to assess uncertainty

GHG Support Unit, Transparency Division




Proxy: Splicing techniques and Expert Judgement [6]

Splicing techniques for Data gaps

Interpolation Extrapolation

Overlap Surrogate

—#—Actual (Periodic) Data) - - # - - Original Extrapolation

65

Data unavailable for last or first year/s
.1
60 '
§ . Continuation of the trend, if stable, or surrogate, if higher
5 variability, beyond data’s period.
g 50 1
=
i | Not recommended for estimations over long periods of time
40 ' ' ' ' Uncertainty depending on the extrapolation method (trend or
1985 1990 1995 2000 2005 _ _
Year surrogate). Could be evaluated ex post if data becomes available.
T~ _ o
\Z@fy GHG Support Unit, Transparency Division
AN\ /4




Proxy: Splicing techniques and Expert Judgement [7]

Extrapolation

Splicing techniques for Data gaps

100 1
350,000 18 *’/\/‘

20
18 .
16 8 : 80
g 300,000 - o
14 . g ¥ -
Yy l-l w
g w2 G EREE e Tert E 250,000 2 o Coal i @ /_. Memcd 56
0 7k _ s splica|| 2 Production E 10 - e -l
8 * —{— Tier 2 2 200000 —— Measured ] 50
. g = Emissions N £
2 150000 °
. 4
45
2 100,000 2
o
40 T T T T
2005

1980 1991 1992 1993 1964 1995 1966 1997 1988 1999 2000 50,000 1990 1591 1962 1993 1694 1965 1956 1997 1598 1959 2000
Yaar 1885 1880 1895 2000

| =#=—~Actual (Periodic) Data) - - # - - Original Extrapolation |

jon Cubil
ree Growth

Emissi

8 ] 3 3

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Hands-on exercises

j\f’ GHG Support Unit, Transparency Division



Proxy: Splicing techniques and Expert Judgement [8]

Splicing techniques for Data gaps

IPPU: Lime production statistics were not available for the last two years.
Investigate the relationship with the production of cement, surrogate lime production and determine
the uncertainty of the estimation used.

Extrapolation

[ vear [ tme | cement | 3.000.000

1 1.167.701 3.751.759 -
2 1.119.942 3.398.621 -
3 943.108 | 2396907 e O T .
4 988.285 | 3.197.714 2 000.000 T . .°.
5 1.444.813 3.833.116 L .‘ )
E | 6 1.527.389 4.654.673 E 1.500.000 __‘__,,.-P"'----;- _l_l.-""-lll-- ¢ ______----"---_-- U. 15 %
Xce 7 1.808.855 | 5.472.815 = T
8 2.016.509 | 5.885.219 1 000,000 g
9 1.834.006 | 5947131 h [ o
10 1.717.285 5.752.006 500,000 —
11 1.949.142 6.388.311
12 2.000.257 7.104.927
13 2.154.948 | 6.567.993 1000000 2000000 3000000 4000000 5000000 6000000 7.000.000  8.000.000
14 2.348.841 7.288.507 Cement
15 6.992.203
16 7.172.822
(o989 GHG Support Unit, Transparency Division
A 4



Proxy: Splicing techniques and Expert Judgement [9]

Splicing techniques for Data gaps

Waste: municipal solid waste generation per capita is used to calculate the amount of waste to be treated
in a landfill that serves a specific region. Obtain the yearly population for the region using data from the
census and asses the uncertainty. Extrapolate the data from the census to calculate the population in
2020 and asses the uncertainty.

50.000.000

45.000.000 ot
Excel e000°?® 40.000.000
40.000.000 seaee®®
...-.'.'

35000000 |
o 35.000.000

45.000.000

30'000'000 gt y _ 401'480X : 766.919‘020
Year Population  2s.000.000 R?=0,9991
30.000.000
20.000.000
1980 27.949.480
15.000.000
1991 32.615.528  10.000000 25.000.000
2001 36.260.130 7 —
. 000.
2010 40.117.096 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 75 1980 198 990 1% 000 2005 000
g 3
v C ) . S
v( :v GHG Support Unit, Transparency Division
S



Proxy: Splicing techniques and Expert Judgement [10]

ENCODING EXPERT JUDGEMENT

y"z\‘@} GHG Support Unit, Transparency Division



Proxy: Splicing techniques and Expert Judgement [11]

ENCODING EXPERT JUDGEMENT

- -

Key goal is to characterise the state of knowledge regarding
possible values of a particular variable and to develop a PDF

Full range of values m

IMPORTANT!

 When no relevant empirical data is available

« Well informed judgements from domain experts
Document all the process!

« Formal expert elicitation protocols

GHG Support Unit, Transparency Division
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ENCODING EXPERT JUDGEMENT

Experience Knowledge

L V1_Ch. 2 Annex 2A.1
Elicitation protocols o
2006 IPCC Guidelines

« Motivation: explaining the problem and purpose

« Structuring: defining the specifics of the protocol and problem
« Conditioning: previous experiences, models, theory and results
 Encoding/Elicitation: obtaining the data and information

« Verification: confirmation of outputs, bias testing and feeling of outliers

\Q’Z\C jy GHG Support Unit, Transparency Division
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Elicitation protocols- EXPERT JUDGEMENT

Experience Knowledge

L V1_Ch. 2 Annex 2A.1
Elicitation protocols o
2006 IPCC Guidelines

Key concern with expert elicitation is to overcome the typical heuristic biases
of availability, representativeness, and anchoring and adjustment

® Overconfident estimate

* Fixed Value > Probablllty’7 (narrow interval)
» Fixed Probability > Value?

 Interval Methods > Median and quartiles?

« Graphing > Drawing PDF

\&’1\@ GHG Support Unit, Transparency Division
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Elicitation protocols- EXPERT JUDGEMENT

Fixed Value: Estimate the probability of being Fixed Probability: Estimate the value associated with a

higher (or lower) than an arbitrary value and

: S specified probability of being higher (or lower).
repeat, typically three or five times.

e.g. what is the emission factor such that there is only a 2.5
percent probability (or 1 in 40 chance) that the emission factor
could be lower (or higher) than that value?

e.g. what is the probability that an emission factor
would be less than 100?

Graphing: The expert draws

Interval Methods: It focuses on identifying the median and the quartiles. his/her own distributions.

e.g. Choose a value of the emission factor such that it is equally likely that the true  e.g. Draw a distribution you feel is
emission factor would be higher or lower than that value (this yields the median). representative of the emission factor.

Divide the lower range into two bins such that you feel it to be equally likely (25  This should be used cautiously since
percent probability) that the emission factor could be in either bin. Repeat for the  some experts may be overconfident

other end. about their knowledge of PDFs

Extreme values could be judged by either fixed probability or fixed value methods.

Q:g(\:;jy GHG Support Unit, Transparency Division







United Nations Framework Convention on Climate Change

End of webinar!
Thank you

Diego M. Ezcurra

GHG Support Unit, Transparency Division




