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Typical problems in developing countries

1. Limited or no technical capacity. Priority is always on GHG accounting

2. Limited staff with statistical background and experience in uncertainty assessment

3. Lack of data collection on uncertainty (institutional arrangements for data collection)

4. Data reported without associated uncertainty

5. Use of default uncertainty data from the 2006 IPCC GLs may not represent national 

circumstances or level of aggregation

6. Limited/lack of knowledge of 2006 IPCC GLs, tools/software

GHG Support Unit, Transparency Division

Uncertainty analysis in National Greenhouse Gas Inventories
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2. Overview of Uncertainty Analysis in National GHG Inventories

3. Causes of uncertainties associated with input data used in 

National GHG Inventories

4. How to reduce the uncertainty associated with input data used 

in National GHG Inventories
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5. Uncertainty associated with the use of national statistics, 

surveys, censuses and sampling

6. Uncertainty associated with the Use of Empirical Data
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7. Methods to combine uncertainties: 

Approach 1 - Propagation of errors
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Hands-on exercises!

Energy, IPPU, Agriculture, LULUCF and Waste



Session 2. Overview of Uncertainty Analysis in National 

GHG Inventories

By the end of this session, you will:

1. Know where to find more details

2. Understand the terminology

3. Differentiate accuracy and precision

GHG Support Unit, Transparency Division
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2006 IPCC Guidelines for

National Greenhouse Gas Inventories

Guidelines      Energy IPPU          AFOLU         Waste

Vol. 1 - Ch. 3: uncertainty

Vol. 1 - Ch. 4: KCA based on uncertainty

Good Practice Guidance and Uncertainty Management 

in National Greenhouse Gas Inventories

Chapter 1 Introduction

Chapter 2 Energy

Chapter 3 Industrial Processes

Chapter 4 Agriculture

Chapter 5 Waste

Chapter 6 Quantifying Uncertainties in Practice

Chapter 7 Methodological Choice and Recalculation

Chapter 8 Quality Assurance and Quality Control

Vol. 1 - Ch. 5: Splicing techniques

Uncertainty overview [1]

https://www.ipcc-nggip.iges.or.jp/public/gp/english/1_Introduction.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/2_Energy.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/3_Industry.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/4_Agriculture.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/5_Waste.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/6_Uncertainty.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/7_Methodological.pdf
https://www.ipcc-nggip.iges.or.jp/public/gp/english/8_QA-QC.pdf


General approach

Uncertainty

Lack of knowledge of the true value of a variable that can be described as a probability density function (PDF).

Uncertainty depends on the analyst’s state of knowledge, which in turn depends on the quality and quantity of

applicable data as well as knowledge of underlying processes and inference methods.

Uncertainty analysis

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to

reduce the uncertainty of inventories in the future, and guide decisions on methodological choice.

Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions

and removals estimates for individual categories and for the total inventory

Uncertainty assessment

The term “ASSESSMENT” is intended to convey an exercise that includes the investigation of quantitative and

qualitative aspects. In the glossary to the Guidelines, “uncertainty analysis” is defined as only a quantitative

exercise.

GHG Support Unit, Transparency Division

Uncertainty overview [2]



General approach

AD - EF - Parameters

95% Confidence 

interval

GHG Emissions

95% Confidence 

interval

Linear Error 

Propagation

-LEP-

2006 IPCC Guidelines

Monte Carlo 

Simulation

-MCS-

Key data identification

Contribution to total 

uncertainty

GHG Support Unit, Transparency Division

Uncertainty overview [3]



Key concepts

Confidence interval: range that encloses the true, but unknown value, with a determined

confidence (probability). Typically, a 95 percent confidence interval is used in greenhouse gas

inventories.

Alternative interpretation: Range that may safely be declared to be consistent with observed data or 

information

Probability Density Function (PDF): describes the range and relative likelihood of possible

values.

For emission inventory, it is used to describe uncertainty in the estimate of a quantity that is a fixed

constant whose value is not exactly known.

Sensitivity analysis: method to determine which of the input uncertainties to an inventory

contributes most substantially to the overall uncertainty.

GHG Support Unit, Transparency Division

Uncertainty overview [4]



Key concepts

Accuracy: Agreement between the true value and the average of repeated measured observations or

estimates of a variable.

An accurate measurement or prediction lacks bias or, equivalently, systematic error.

Bias / Systematic error: Lack of accuracy. Bias (systematic error), can occur because of failure to capture all

relevant processes involved or because the available data are not representative of all real-world situations, or

because of instrument error.

Precision: Agreement among repeated measurements of the same variable. 

Better precision means less random error. Precision is independent of accuracy.

Random errors: Random variation above or below a mean value. Random error is inversely proportional to 

precision. Usually, the random error is quantified with respect to a mean value, but the mean could be biased or 

unbiased. Thus, random error is a distinct concept compared to systematic error.

GHG Support Unit, Transparency Division

Uncertainty overview [5]



Key concepts

Lack of knowledge of the true value

How far is the true value from the value used?

Accuracy (systematic errors or bias) vs. Precision (random errors)

GHG Support Unit, Transparency Division

Uncertainty overview [6]



Key concepts

Accuracy (systematic errors or bias) vs. Precision (random errors)

GHG Support Unit, Transparency Division

Uncertainty overview [7]

Source: Hitachi, 3. Semiconductor - Accuracy and Precision, Fig.3-5



Key concepts

The quantitative uncertainty analysis tends to deal primarily with random errors

based on the inherent variability of a system and the finite sample size of available

data, random components of measurement error, or inferences regarding the

random component of uncertainty obtained from expert judgment

It is important to recognize that some uncertainties that are not addressed by

statistical means may exist, including those arising from omissions or double

counting, or other conceptual errors, or from incomplete understanding of the

processes that may lead to inaccuracies in estimates developed from models.

Bias or systematic errors

PRECISION

ACCURACY

GHG Support Unit, Transparency Division

Uncertainty overview [8]



Terminology

i) Confidence interval: range that encloses the true value with a determined confidence 

(probability)

95 % CI 2.5 th [……………………..] 97.5 th

Symmetric: 80 (64-96) 80  16 80  20%

64 [--------80--------] 96

Asymmetric: 80 (72-104) 80 -8/+24            80  -10%/+30%

72 [-----80---------------] 104

Large uncertainty:

100 (50-200)        100 -50/+100       100 -50%/+100% 100  factor of 2    (half or double)

Factor of “n”  (mean/n) and (mean x n)

RelativeAbsolute

Ui16/80 = 0.2

16 16

Uncertainty

GHG Support Unit, Transparency Division 

Uncertainty overview [9]



Hands-on exercises

Terminology

75.5 [---77.4---] 78.8 77.4 (-2.5% ; +1.8%)

Approx. 77.4  2%

Uncertainty overview [10]

1 (---3-----------) 10 3 -67% / +233%

Approx. 3  factor of 3



Terminology

Uncertainty overview [11]



Terminology

ii) Probability Density Function: range and relative likelihood of possible values

Symmetric (normal distribution) 

GHG Support Unit, Transparency Division

Uncertainty overview [12]



Terminology

ii) Probability Density Function: range and relative likelihood of possible values

Asymmetric (Skewed)

GHG Support Unit, Transparency Division 

Uncertainty overview [13]



Session 3. Causes of uncertainties associated with input 

data used in National GHG Inventories

By the end of this session, you will:

1. Understand why data is uncertain

2. Identify the causes and implications 

GHG Support Unit, Transparency Division

Learning 

objectives
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Causes of uncertainty: Animal population? Age? Livestock characterization? Diet?

GHG Support Unit, Transparency Division 

Causes of uncertainty [1]



Causes of uncertainty: Land representation? Stand volume? Carbon stock? Below ground biomass?

GHG Support Unit, Transparency Division 

Causes of uncertainty [2]



Causes of uncertainty: Pipe length? No. of fittings? Gas composition? Maintenance? Venting?

GHG Support Unit, Transparency Division 

Causes of uncertainty [3]



Causes of uncertainty: Waste generation? Composition? Climate? Treatment? Management type?

GHG Support Unit, Transparency Division 

Causes of uncertainty [4]



Causes of uncertainty

Lack of completeness

Model

Lack of data

Representativeness of data

Random sampling error

Measurement errors

Misreporting

Data gaps

-Bias and Random errors

-Bias

-Bias and Random errors

-Bias

-Random errors

-Bias and Random errors

-Bias

-Bias and Random errors

Causes of uncertainty [5]

GHG Support Unit, Transparency Division 



Causes of uncertainty & examples

Lack of completeness -Bias

e.g. sources/sink categories not included in the inventories 

Energy: emissions from coke production

IPPU: fluorinated gases not reported

Agriculture: methane emissions from enteric fermentation for dairy cows.

LULUCF: a region is not reported

Waste: industrial wastewater for some products not included

Causes of uncertainty [6]

GHG Support Unit, Transparency Division 



Causes of uncertainty & examples

Lack of data -Bias and Random errors

e.g. activity data obtained by interpolation or other methods for missing year

Energy: provisional information in National Energy Balance for recent year

IPPU: cement production missing in national statistics 

Agriculture: population for some animal category not informed in the statistics

LULUCF: partial information in forest inventory

Waste: amount of MSW surrogated from population, extrapolated from census

Causes of uncertainty [7]

GHG Support Unit, Transparency Division 



Causes of uncertainty & examples

Representativeness of data -Bias

e.g. emission factor based on particular conditions

Energy: N2O from internal combustion engines from laboratory test instead of real driving conditions

IPPU: CO2 emissions form steel production based on full load capacity plant

Agriculture: fertilizer application rates based on best practices

LULUCF: biomass growth rate based on sampling that do not cover all relevant regions

Waste: wastewater treatment efficiency based on newly built plants data

Causes of uncertainty [8]

GHG Support Unit, Transparency Division 



Causes of uncertainty & examples

Random sampling error 

e.g. activity data or emission factors based on limited sampling

Energy: limited reporting in census of liquid fuels used in transport 

IPPU: amount of glass recovered (by type) based on surveys

Agriculture: fertilizer application rates based on samples from one region 

LULUCF: C stored in forest based on limited sampling capacity (few trees)

Waste: MSW treatment distribution based on information from few cities in the country

Causes of uncertainty [9]

-Bias and Random errors

GHG Support Unit, Transparency Division 



Session 4. How to reduce the uncertainty associated with 

input data used in National GHG Inventories

By the end of this session, you will:

1. Learn strategies to deal with uncertainty

2. Understand how to set priorities 

GHG Support Unit, Transparency Division

Learning 

objectives
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Causes of uncertainty & strategies

Lack of completeness Concept, QA/QC

Model Concept, QA/QC

Lack of data Experts, QA/QC

Representativeness of data QA/QC, verification

Random sampling error Statistics sizes

Measurement errors QA/QC, verification

Misreporting QA/QC

Data gaps Statistics, experts

Bias and Random errors

Bias

Bias and Random errors

Bias

Random errors

Bias and Random errors

Bias

Bias and Random errors

Reducing uncertainty [1]

GHG Support Unit, Transparency Division 



Reducing uncertainty [2]

Improving accounting

Improving conceptualization Structural assumptions

Improving models Structure and parameterization

Improving representativeness Sampling strategies

Using + precise measurement methods Measurement technologies

Collecting more measured data Sample size

Eliminating known risk of bias Following decision trees

Improving state of knowledge Understanding of the categories 

GHG Support Unit, Transparency Division 



Reducing uncertainty [3]

Improving accounting

Improving conceptualization Structural assumptions

Improving models Structure and parameterization

e.g. better treatment of seasonality effects leading to more accurate annual estimates of emissions or 

removals in Agriculture.

e.g. moving to higher Tiers in steel production to account for local data at plant level.

GHG Support Unit, Transparency Division 



Reducing uncertainty [4]

Improving accounting

Improving representativeness Sampling strategies

Collecting more measured data Sample size

e.g. including emissions data for situations involving start-up or load changes, if frequent, instead of 

only full load operations. 

e.g. perform stratified sampling in forest to account for different characteristics, climate and species

e.g. increasing the sample size for determination of soil organic carbon.

GHG Support Unit, Transparency Division 



Reducing uncertainty [5]

Improving accounting

Using more precise measurement methods Measurement technologies

Eliminating known risk of bias Following decision trees, expert knowledge

Improving state of knowledge Understanding of the categories 

e.g. collecting data using standardized measurement methods (i.e. ISO)

e.g. using measured parameters instead of simplified assumptions (density, temperature, mass vs. volume)

e.g. Verifying the correct positioning and calibration of instruments in gas measurement.

e.g. moving to higher tiers to account for national conditions

e.g. Involving producers to better understand the details and appropriateness of assumptions.

GHG Support Unit, Transparency Division 



Reducing uncertainty [6]

Sensitivity analysis

Purpose: Identify categories, and key variables used that contribute the most to overall 

uncertainty of the inventory.

How: Introduce a perturbation to one variable, of the magnitude of its uncertainty, and assess the 

variation in the result, one at a time (ceteris paribus).  

Input data

AD, EF, etc.

Inventory

calculation

system Output

Emissions

ALLOCATE  RESOURCES

e.g. Sensitivity in CH4 emission from manure 

GHG Support Unit, Transparency Division 



Conclusions

Uncertainty assessment

▪ It is a means to help prioritise national efforts to reduce the uncertainty of inventories in 

the future

▪ It guides decisions on methodological choice

▪ It helps understand the quality of the information use

▪ It is a requirement of GHG Inventories

Assessment of uncertainty in the input parameters
should be part of the data collection

GHG Support Unit, Transparency Division 



Thank you!

End of day 1

Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division 

We need to update our GHG forecast.

Heads, we will reach net zero soon.

Tails, it´s the end of the world.
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Session 5. Uncertainty associated with the use of national 

statistics, surveys, censuses and sampling

By the end of this session, you will:

1. Differentiate census and survey

2. Learn when to use std deviation or std error

3. Derive uncertainty based on available data

GHG Support Unit, Transparency Division
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Uncertainty associated with activity data [1]

National statistics: census, survey

▪ Activity data are closely linked to economic activity

▪ well established price incentives and fiscal requirements for accurate accounting

Contact the statistical agencies directly

Censuses Surveys

National statistics

Counting every instance of a particular activity. 

Typically includes both systematic and random errors.

Random errors are typically normally 

distributed and uncorrelated

Counting a portion of a particular activity. 

Typically includes both systematic and random errors.

Random errors are typically normally

distributed and uncorrelated

V1_Ch2. - Annex 2A.2

2006 IPCC Guidelines

General guidance on performing surveys

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [2]

National statistics: census

Censuses Surveys

National statistics

• Check for the size of random errors, look for fluctuations over time, and differential fluctuations in series 

that ought to be highly correlated with the data of interest

• To check for bias errors, cross-check the data of interest with other, related information. (look up and down 

the supply chain for fuels, or highly correlated activities with the data of interest, for instance reported fuel 

input vs. electricity output). 

• Interpretation of statistical differences, within, for instance, national energy data are an example of cross 

checking (e.g. reference approach).. 

Often ‘precise but inaccurate’

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [3]

National statistics: census

Censuses Surveys

National statistics

Hands-on exercises

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [4]

National statistics: census

Periodic publications

ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of 

Energy every year for gasoil and gasoline. The statistics contains the most updated information for the 

current and previous years.

Evaluate consistency and identify fluctuations over time in series to derive the uncertainty of the data

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 666.065 533.358

2019 770.377 599.242

2020 866.303 554.953

2021

2022

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 697.641 533.358

2019 770.377 599.242

2020 866.303 554.953

2021 847.566 498.429

2022

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 697.641 533.358

2019 770.377 599.242

2020 866.303 554.953

2021 847.566 480.723

2022 884.250 426.849

Source: commercialization tables, 12 July 2021 Source: commercialization tables, 18 June 2022 Source: commercialization tables, 23 June 2023

697.641666.065

498.429 480.723

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [4]

National statistics: census

Periodic publications

ENERGY: liquid fuels commercialization. Fuel consumption statistics are published by the Ministry of 

Energy every year for gasoil and gasoline. The statistics contains the most updated information for the 

current and previous years.

Evaluate consistency and identify fluctuations over time in series to derive the uncertainty of the data

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 666.065 533.358

2019 770.377 599.242

2020 866.303 554.953

2021

2022

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 697.641 533.358

2019 770.377 599.242

2020 866.303 554.953

2021 847.566 498.429

2022

Year Gasoil Gasoline

2016 659.034 479.291

2017 662.157 504.563

2018 697.641 533.358

2019 770.377 599.242

2020 866.303 554.953

2021 847.566 480.723

2022 884.250 426.849

4,5% 3,7%U ≈ 5%

GHG Support Unit, Transparency Division 

Source: commercialization tables, 12 July 2021 Source: commercialization tables, 18 June 2022 Source: commercialization tables, 23 June 2023



Uncertainty associated with activity data [5]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty. 

NCV: 48 TJ/Gg

Density: 0,714 kg/m3

efficiency ?

Total

Gas Turbine Generation (MWh) 59.757.516

Natural Gas Consumption (103 m3) 14.975.637
42%

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [6]

National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 157.041 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 14.975.637

NCV: 48 TJ/Gg

Density: 0,714 kg/m3 Monthly efficiency ?

0,33 0,30 0,30 0,29 0,29 0,30 0,03 0,30 0,31 0,32 0,29 0,31 0,25

January February March April May June July August September October November December Total

Generation (TJ) 18.559 16.397 18.039 16.765 16.973 19.038 19.555 20.134 19.139 15.446 16.244 18.838 215.127

Consumption (TJ) 58.670 47.135 50.734 45.625 46.127 53.908 5.382 57.382 55.953 47.170 45.375 55.602 513.245

Efficiency 32% 35% 36% 37% 37% 35% 363% 35% 34% 33% 36% 34% 42%

GHG Support Unit, Transparency Division 



National statistics: census

Highly correlated activities

ENERGY: fuel consumption vs electricity generation. Fuel consumption and electricity generation are 

reported every year by the electricity grid administrator.

Evaluate the reported data, calculate the efficiency to identify any inconsistency and assess uncertainty

Uncertainty associated with activity data [7]

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 157.041 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 14.975.637

NCV: 48 TJ/Gg

Density: 0,714 kg/m3

January February March April May June July August September October November December Total

GT (MWh) 5.155.358 4.554.661 5.010.912 4.657.051 4.714.604 5.288.447 5.432.010 5.592.661 5.316.355 4.290.471 4.512.174 5.232.812 59.757.516

NG (103 m3) 1.711.896 1.375.323 1.480.325 1.331.261 1.345.921 1.572.943 1.570.410 1.674.304 1.632.617 1.376.352 1.323.954 1.622.381 18.017.687

32% 35% 36% 37% 37% 35% 36% 35% 34% 33% 36% 34% 35%

1.570.410 18.017.687

≈ 20%

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [8]

National statistics: survey

Censuses Surveys

National statistics

• Sample size and inter-individual variability 

• Typical cases: consumer surveys, home expenses survey, land use surveys or forest cover surveys

• The agency conducting the sample will normally be able to advise on sampling error. 

• If there is no information available, it may be possible to identify, or infer, the sample and population sizes 

and calculate sampling error directly.

precision depends on sample size, accuracy depends on sampling design

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [9]

National statistics: survey

Heterogeneity (standard deviation) vs. uncertainty in sample mean (standard error)

Variability within the sample Variability of the mean of the sample

Applicable for individual value Applicable for country average

Standard deviation tends to remain constant Standard error falls as sample size grows

GHG Support Unit, Transparency Division 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝜎

𝜇
∙ 100%

𝜎 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖 − 𝜇 2

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝑆𝐸

𝜇
∙ 100%

𝑆𝐸 =
𝜎

𝑛



Uncertainty associated with activity data [10]

National statistics: survey

Censuses Survey

National statistics

Hands-on exercises

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [11]

National statistics: survey

LULUCF: Carbon stock in forest from surveys

a) Given a sample with 80 individual values, calculate the mean, standard deviation and 

standard error.

b) If the sampling is repeated ten times, calculate the mean for each sample and the 

standard deviation of the sampling distribution of the mean and compare with a).

Mean   STD

101      2,1

GHG Support Unit, Transparency Division 



Uncertainty associated with activity data [12]

National statistics: survey

LULUCF: Carbon stock in forest from surveys

Calculate the uncertainty of the carbon stock obtained from the sampling to be used in the 

GHG inventory. The emissions from land use change will be calculated for the entire 

country in the year in which the survey was carried out.

Sample size: 30

Average C stock: 93.7 tC/ha

Standard deviation: 10.2 tC/ha

SE: 1.9 tC/ha

U: 4 %

What if the carbon stock is applied to account for emissions in one deforested area?

σ or SE ?

GHG Support Unit, Transparency Division 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±
1.96 ∙ 𝑆𝐸

𝜇
∙ 100%

𝑆𝐸 =
𝜎

𝑛



Uncertainty associated with activity data [13]

National statistics: survey

WASTE: Municipal solid waste amount and composition

1) The amount per capita is obtained from a sample that covers vehicles collecting in a wide 

range of areas: urban and rural, wealthy and poor, with and without gardens, etc. and 

covering several periods throughout the year. 

Uncertainty for the entire MSW category? σ or SE ?

Uncertainty for the emissions from managed landfills? σ or SE ?

2) The composition of the MSW was done through a survey at different landfills. A national 

waste composition was calculated based on the results and is used to calculate the 

methane emissions in each individual landfill. 

Uncertainty for the composition based on amount from each landfill? σ or SE ?

GHG Support Unit, Transparency Division 



Session 6. Uncertainty associated with the Use 

of Empirical Data

By the end of this session, you will:

1. Learn how to apply statistical analysis

2. Derive uncertainty based on available data

GHG Support Unit, Transparency Division

Learning 

objectives
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Uncertainty associated with empirical data [1]

Techniques for quantifying uncertainties

• Approach to quantify uncertainty in inventories, mainly associated to emission 

factors and other estimation parameters

• 6 steps approach to apply systematically

Measurement Publications Statistics

Statistical analysis
V1_Ch.3 – 3.2.2.2

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [2]

Techniques for quantifying uncertainties

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

3. Fitting, evaluation, and selection of alternative PDF

4. Characterisation of uncertainty in the mean of the distributions for variability

5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis

Statistical analysis

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [3]

Techniques for quantifying uncertainties

1. Compilation and evaluation of a database

2. Visualisation of data by developing empirical distribution functions

Statistical analysis

HistogramData series Pareto

Outliers

Consistency

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [4]

Techniques for quantifying uncertainties

3. Fitting, evaluation, and selection of alternative PDF

Statistical analysis

Possible 
PDF

Physical 
process

Expert 
judgement

Goodness 
of fit testVariability

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [5]

Techniques for quantifying uncertainties

4. Characterisation of uncertainty in the mean of the distributions for variability

5. Input to a probabilistic analysis to estimate uncertainty in total emissions

6. Sensitivity analysis

Statistical analysis

95% CI → Ui
σ or SE ?

Ui → UTotal

UTotal → Xi

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [6]

Techniques for quantifying uncertainties

Measurement Publications Statistics

Statistical analysis

Hands-on exercises

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [7]

Statistical analysis

IPPU: Emission factor for aluminum production

A monitoring system was set to detect the anode effect. Average monthly EF were 

calculated for CF4 and recorded for three years. 

Perform statistical analysis to identify PDF candidates, calculate the mean, standard 

deviation, standard error and uncertainty.

μ: 64.3 g CF4/tAl

σ: 13.8 g CF4/tAl

SE: 2.3 g CF4/tAl

U: 7 %

GHG Support Unit, Transparency Division 



Uncertainty associated with empirical data [8]

Statistical analysis

Attention!

Measurements taken for another purpose may not be representative. 

For example, methane measurements made for safety reasons at coal mines and landfills 

may not necessarily reflect total emissions because they may have been made only when 

methane emissions were suspected of being high, as a compliance check. 

In such cases, the ratio between the measured data and total emissions should be 

estimated for the uncertainty analysis.

GHG Support Unit, Transparency Division 



Thank you!

End of day 2

Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division 



MONDAY

2. Overview of Uncertainty Analysis in National GHG Inventories

3. Causes of uncertainties associated with input data used in 

National GHG Inventories

4. How to reduce the uncertainty associated with input data used 

in National GHG Inventories

TUESDAY

5. Uncertainty associated with the use of national statistics, 

surveys, censuses and sampling

6. Uncertainty associated with the Use of Empirical Data

WEDNESDAY

7. Methods to combine uncertainties: Approach 1 

Propagation of errors

40%



Session 7. Methods to combine uncertainties: Approach 1 

Propagation of errors

By the end of this session, you will:

1. Understand the basics and assumptions

2. Learn how to apply it to several cases

3. Identify key variables and avoid pitfalls

4. Learn how to deal with asymmetric cases

GHG Support Unit, Transparency Division

Learning 

objectives

7



Assumptions:

•Small std. Deviation (~30% from the mean)

•Symmetric (not skewed)

•Normal distribution

•Uncorrelated variables

•Multiplication or addition

Combining uncertainty: Approach 1 [1]

Linear Error Propagation (LEP) First order Taylor series expansion

 f(x)

xi

2 f(x)

xi
2

f(x)

Equations 3.1 and 3.2



Assumptions:

1) Small std. Deviation (~30%)

2) Symmetric (not skewed)

Normal distribution

3) Uncorrelated variables

4) Multiplication or addition

Combining uncertainty: Approach 1 [2]

Linear Error Propagation (LEP)

𝑓 = 𝑓 𝑎; 𝑏 +
𝜕𝑓

𝜕𝑎
𝛿𝑎 +

𝜕𝑓

𝜕𝑏
𝛿𝑏 + ⋯ 𝑓 − 𝑓 𝑎; 𝑏 =

𝜕𝑓

𝜕𝑎
𝛿𝑎 +

𝜕𝑓

𝜕𝑏
𝛿𝑏 𝛿𝑓 =

𝜕𝑓

𝜕𝑎
𝛿𝑎 +

𝜕𝑓

𝜕𝑏
𝛿𝑏

𝜎𝑓
2 =

𝜕𝑓

𝜕𝑎

2
𝜎𝑎
2 +

𝜕𝑓

𝜕𝑏

2
𝜎𝑏
2 + 2

𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕𝑏
𝜎𝑎𝑏

𝜎𝑓
2 = 𝑏2 𝜎𝑎

2 + 𝑎2 𝜎𝑏
2 + 2 𝑎 𝑏 𝜎𝑎𝑏

𝑢𝑓
2 = 𝑢𝑎

2 + 𝑢𝑏
2

𝜎𝑓

𝑓

2

=
𝑏 𝜎𝑎
𝑎 𝑏

2

+
𝑎 𝜎𝑏
𝑎 𝑏

2

+
2 𝑎 𝑏 𝜎𝑎𝑏
(𝑎 𝑏)2

Taylor 1st order:

Variance of a summation:

Case f = a x b:

Or, in relative terms

𝑢𝑓 = 𝑢𝑎
2 + 𝑢𝑏

2

Theory behind it – Don’t panic! Bear with me :) 

Equations 3.1



Combining uncertainty: Approach 1 [3]

Linear Error Propagation (LEP)

The most important is how the uncertainty 

of the data affects the result.

𝜎𝑓
2 =

𝜕𝑓

𝜕𝑎

2

𝜎𝑎
2 +

𝜕𝑓

𝜕𝑏

2

𝜎𝑏
2

Small impact from the input uncertainty Large impact from the input uncertainty 

a x

f(a)

f(x)

f(x)

L(x)y

x
a x

f(a)

f(x)

f(x)

L(x)

x

y

Small impact from large input uncertainty 



AD x EF

E1 + E2 + … + En

Ui: relative

Linear Error Propagation (LEP)

xi: CO2e

Combining uncertainty: Approach 1 [4]



Linear Error Propagation (LEP)

Combining uncertainty: Approach 1 [4]

Hands-on exercises



AD x EF

Ui: relative

Linear Error Propagation (LEP)

Example: CO2 emissions due to fuel consumption

Gasoil consumption = 18 710 GJ

Uncertainty in activity data: 10%

Uncertainty in emission factor: 2%

E = 𝐶 × 𝐸𝐹

E = 18 710 𝐺𝐽 × 0.0741 [
𝑡

𝐺𝐽
] = 1 386 𝑡𝐶𝑂2

[72 600 - 74 100]

74 100

2%

[74 800 - 74 100]

74 100

1%

U = 𝟎. 𝟏𝟐 + 𝟎. 𝟎𝟐𝟐 = 𝟎. 𝟏𝟎𝟐 = 𝟏𝟎. 𝟐% ~ 𝟏𝟎%

Uncertainty in emissions = 𝟏𝟎𝟐 + 𝟐𝟐 = 𝟏𝟎. 𝟐% ~ 𝟏𝟎%

Combining uncertainty: Approach 1 [5]



Linear Error Propagation (LEP)

Example: CO2 emissions due to fuel consumption

C: Gasoil consumption = 500 m3

𝛿: Density = 0.87 t/m3

Uncertainty in activity data: 5%

Uncertainty in density: 5%

Uncertainty in emission factor: 2%

Uncertainty in NCV: 4%

E = 500 × 0.87 × 43.0 × 0.0741 = 1 386 𝑡𝐶𝑂2

2% 1%

E = 𝐶 × 𝛿 × 𝑁𝐶𝑉 × 𝐸𝐹

[41.4 – 43.0]

43.0

4%

[41.4 – 43.0]

43.0

1%

Uncertainty in emissions= 𝟓𝟐 + 𝟓𝟐 + 𝟒𝟐 + 𝟐𝟐 = 𝟖%

AD x EF

Ui: relative

Combining uncertainty: Approach 1 [6]



Linear Error Propagation (LEP)

E = 𝐷𝐸2 × 𝐸𝐹

AD x EF

Ui: relative

E =
𝐷×𝐸𝐹

η

E = 𝐷𝐷𝑂𝐶 × 𝑒−𝑘

E = 𝐷𝐸 × 𝐷𝐸 × 𝐸𝐹

E = 𝐷 × 𝐸𝐹 × 𝑆𝐶

𝜎𝑓
2 =

𝜕𝑓

𝜕𝑎

2

𝜎𝑎
2 +

𝜕𝑓

𝜕𝑏

2

𝜎𝑏
2

U = 𝒖𝑫𝑬
𝟐 + 𝒖𝑫𝑬

𝟐 + 𝒖𝑬𝑭
𝟐

U = 𝒖𝑫
𝟐 + 𝒖𝑬𝑭

𝟐 + 𝒖𝑺𝑪
𝟐

U = 𝒖𝑫𝑫𝑶𝑪
𝟐 + 𝒖𝒌 × 𝒌 𝟐

Examples: enteric fermentation, transportation, waste treatment

Combining uncertainty: Approach 1 [7]

WOW! It was useful! :)

U = 𝟒𝒖𝑫𝑬
𝟐 + 𝒖𝑬𝑭

𝟐𝜎𝑓
2 =

𝜕𝑓

𝜕𝑎

2

𝜎𝑎
2 +

𝜕𝑓

𝜕𝑏

2

𝜎𝑏
2

! independent?



E1 + E2 + … + En

Linear Error Propagation (LEP)

xi: CO2e

Example: CO2 emissions due to vent and flare

Event = 7 310 tCO2e

Eflare = 5 282 tCO2e

Uncertainty in vent emissions: 40% (± 2 924)

Uncertainty in flare emissions: 10% (± 528)

E = 𝐸𝑣𝑒𝑛𝑡 + 𝐸𝑓𝑙𝑎𝑟𝑒

E = 7 310 + 5 282 = 12 592 𝑡𝐶𝑂2e 

Uncertainty in emissions =
(𝟎.𝟒×𝟕 𝟑𝟏𝟎)𝟐+(𝟎.𝟏×𝟓 𝟐𝟖𝟐)𝟐

𝟏𝟐 𝟓𝟗𝟐

Uncertainty in emissions = 
(𝟐 𝟗𝟐𝟒)𝟐+(𝟓𝟐𝟖)𝟐

𝟏𝟐 𝟓𝟗𝟐
= 24%

Combining uncertainty: Approach 1 [8]



E1 + E2 + … + En

Linear Error Propagation (LEP)

xi: CO2e

Example: adding multiple emission sources

E1 = 200 tCO2e  ± 40%

E2 = 500 tCO2e  ± 30%

E3 = 300 tCO2e  ± 10%

E4 = 100 tCO2e  ± 80%

E5 = 800 tCO2e  ± 20%

E = 1 900 tCO2e

Addition reduces overall uncertainty

E = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5

UE = 
(𝟎.𝟒×𝟐𝟎𝟎)𝟐+(𝟎.𝟑×𝟓𝟎𝟎)𝟐+(𝟎.𝟏×𝟑𝟎𝟎)𝟐+(𝟎.𝟖×𝟏𝟎𝟎)𝟐+(𝟎.𝟐×𝟖𝟎𝟎)𝟐

𝟏𝟗 𝟎𝟎𝟎
= 13%

=> 10% 

=> 36%

=>   1%

=> 10%

=> 41%

Contribution 

to uncertainty

(Ui x Ei)2

∑(Ui x Ei)2

Contribution 

to variance

(Ui x Ei)2

(∑Ei)2

Combining uncertainty: Approach 1 [9]



E1 + E2 + … + En

Linear Error Propagation (LEP)

xi: CO2e

Example: subtracting

E1 = 500 tCO2e  ± 30%

E2 = 100 tCO2e  ± 20%

E = 400 tCO2e

IF

E1 = 500 tCO2e  ± 30%

E2 = 400 tCO2e  ± 20%

E = 100 tCO2e

E = 𝐸1 − 𝐸2

UE = 
(𝟎.𝟑×𝟓𝟎𝟎)𝟐+(𝟎.𝟐×𝟏𝟎𝟎)𝟐

𝟒𝟎𝟎
= 38% Subtraction increases overall uncertainty!

UE = 
(𝟎.𝟑×𝟓𝟎𝟎)𝟐+(𝟎.𝟐×𝟒𝟎𝟎)𝟐

𝟏𝟎𝟎
= 170%

Careful if similar values!

Combining uncertainty: Approach 1 [10]



E1 + E2 + … + En
Linear Error Propagation (LEP)

xi: CO2e

Example: combining Eq 3.1 and 3.2

AD x EF

Ui: relative

Source
Emission 
(tCO2e)

Uncertainty 
in AD

Uncertainty 
in EF

Combined 
uncertainty 

Ui 

Contribution 
to variance

UAD UEF √(UAD
2+UEF

2)
  (Ui x Ei)2 

(∑Ei)2

a 100 3% 5% 5.8% 0.14%
b 5 3% 75% 75.1% 0.06%
c 28 3% 45% 45.1% 0.65%
d 3.2 3% 100% 100.0% 0.04%
e 21 3% 10% 10.4% 0.02%

157.2 0.90%
9%

Combining uncertainty: Approach 1 [11]



 

TABLE 3.2 

APPROACH 1 UNCERTAINTY CALCULATION 

A B C D E F G H I J K L M 

IPCC 

category 

Gas Base year 

emissions 

or removals 

 

 

Year t 

emissions or 

removals 

 

 

Activity 

data 

uncertainty 

 

 

Emission 

factor / 

estimation 

parameter 
uncertainty 

Combined 

uncertainty 

 

 

 

Contribution 

to Variance 

by Category 

in Year t  

Type A 

sensitivity 

Type B 

sensitivity 

Uncertainty in trend 

in national emissions 

introduced by 

emission factor / 
estimation parameter  

uncertainty 

Uncertainty in trend 

in national emissions 

introduced by activity 

data uncertainty 

Uncertainty 

introduced into 

the trend in total 

national 
emissions 

  Input data Input data Input data 

Note A 

Input data 

Note A 

22 FE +
 

( )

( )2
2

D

DG



•
 

Note B 

C

D
 

FI •  

Note C 
2EJ ••  

Note D 

22 LK +  

  
Gg CO2 

equivalent 

Gg CO2 

equivalent 
% % %  % % % % % 

E.g.,  
1.A.1.  

Energy 

Industries 
Fuel 1  

CO2            

E.g.,  

1.A.1. 

Energy 
Industries 

Fuel 2 

CO2            

Etc... …            

Total  C  D     H      M  

     
Percentage uncertainty in 

total inventory: H     Trend uncertainty: M  

Enter Emissions Data

Enter Uncertainties

Data Calculated using 

simple equations

Linear Error Propagation (LEP)

Combining uncertainty: Approach 1 [12]



A B C D E F G H I J K L M

IPCC category Gas Base year 

emissions or 

removals

Year t  emissions 

or removals

Activity data 

uncertainty

Emission factor / 

estimation 

parameter 

uncertainty

Combined 

uncertainty

Contribution to 

Variance by 

Category in Year 

t

Type A 

sensitivity

Type B 

sensitivity

Uncertainty in 

trend in national 

emissions 

introduced by 

emission factor / 

estimation 

parameter  

uncertainty

Uncertainty in 

trend in national 

emissions 

introduced by 

activity data 

uncertainty

Uncertainty 

introduced into 

the trend in total 

national 

emissions

Input data Input data Input data Input data Note B

Gg CO2 

equivalent

Gg CO2 

equivalent % % % % % % % %

1.A.1.  Energy Industries CH4 35.5346662 32.9951217 5 25 25.50 0.0 3.20506E-05 0.00010495 0.000801264 0.000742109 1.19275E-06

1.A.2.  Manufacturing Industries and ConstructionCH4 57.0302899 51.8776096 5 25 25.50 0.0 4.80131E-05 0.000165011 0.001200328 0.001166804 2.80222E-06

1.A.3.  Transport CH4 81.7067834 37.1466612 5 25 25.50 0.0 -4.94664E-05 0.000118155 -0.00123666 0.000835483 2.22736E-06

1.A.4.  Other Sectors CH4 1041.24025 428.554682 5 25 25.50 0.0 -0.000772946 0.001363136 -0.019323647 0.009638828 0.00046631

1.A.5.  Other CH4 330.338228 97.5658895 5 25 25.50 0.0 -0.000367351 0.000310335 -0.009183772 0.002194401 8.91571E-05

1.B.1.  Solid Fuels CH4 24867.6834 12364.38 10 25 26.93 2.7 -0.011678579 0.039328314 -0.291964463 0.556186352 0.394586505

1.B.2.  Oil and Natural Gas CH4 12570.348 4022.34735 10 25 26.93 0.3 -0.012988732 0.012794183 -0.324718297 0.180937071 0.138180196

2.B.  Chemical Industry . CH4 40.53 37.5018 10 25 26.93 0.0 3.61373E-05 0.000119285 0.000903433 0.001686942 3.66196E-06

4.A.  Enteric Fermentation. CH4 14054.9863 7346.85 15 30 33.54 1.5 -0.005462727 0.023368679 -0.163881819 0.495724537 0.272600067

4.B.  Manure Management. CH4 1903.28061 1199.63088 15 30 33.54 0.0 -8.88245E-05 0.003815756 -0.002664735 0.080944413 0.006559099

4.C.  Rice Cultivation. CH4 522.9 338.94 10 30 31.62 0.0 5.3609E-06 0.001078092 0.000160827 0.015246523 0.000232482

4.F.  Field Burning of Agricultural Residues. CH4 64.3314 37.59 20 30 36.06 0.0 -1.24107E-05 0.000119565 -0.000372321 0.003381819 1.15753E-05

6.A.  Solid Waste Disposal on Land. CH4 1959.72 3738.63 15 30 33.54 0.4 0.00787088 0.011891742 0.236126385 0.252261939 0.119391756

6.B.  Wastewater Handling. CH4 787.08 747.18 15 30 33.54 0.0 0.000761896 0.002376612 0.022856865 0.050415547 0.003064164

1.A.1.  Energy Industries CO2 (1)102607.31 95966.95 5 5 7.07 11.2 0.094441853 0.305249301 0.472209267 2.158438506 4.881838378

1.A.2.  Manufacturing Industries and ConstructionCO2 (1) 33991.06 30164.34 5 5 7.07 1.1 0.02618491 0.095945987 0.130924551 0.678440577 0.477422855

1.A.3.  Transport CO2 (1) 23987.07 8406.48 5 5 7.07 0.1 -0.022453294 0.026739124 -0.11226647 0.189074157 0.048352797

1.A.4.  Other Sectors CO2 (1) 44532.52 11784.04 5 5 7.07 0.2 -0.053800014 0.037482383 -0.269000072 0.265040472 0.14260749

1.A.5.  Other CO2 (1) 8370.16 4124.19 5 5 7.07 0.0 -0.004052209 0.013118122 -0.020261045 0.092759127 0.009014766

1.B.2.  Oil and Natural Gas CO2 (1) 3408.21 5171.49583 10 15 18.03 0.2 0.009456387 0.016449366 0.141845811 0.232629165 0.074236563

2.A.  Mineral Products. CO2 (1) 5744.63 2507.20146 10 15 18.03 0.0 -0.003809586 0.007974844 -0.057143788 0.112781331 0.015985041

2.B.  Chemical Industry . CO2 (1) 1355.56 171.93456 10 15 18.03 0.0 -0.002233954 0.000546885 -0.033509311 0.007734125 0.001182691

2.C.  Metal Production. CO2 (1)12932.6799 10507.4715 10 15 18.03 0.9 0.006887639 0.033421905 0.103314586 0.47265712 0.234078657

5.A.  Changes in Forest and Other Woody Biomass Stocks.CO2 (1) 97.19 50 80 94.34 0.0 -0.000199385 0 -0.015950798 0 0.000254428

5.A.  Changes in Forest and Other Woody Biomass Stocks.CO2 Removals-7810.79 -7721.7341 50 80 94.34 12.9 -0.008539362 0.024561101 -0.683148991 1.736732102 3.482930938

5.B.  Forest and Grassland Conversion. CO2 (1) 6.26 280.43888 25 75 79.06 0.0 0.00087917 0.000892013 0.065937785 0.031537424 0.005342401

1.A.1.  Energy Industries N2O 388.516902 328.741673 5 50 50.25 0.0 0.000248607 0.001045653 0.012430334 0.007393886 0.000209183

1.A.2.  Manufacturing Industries and ConstructionN2O 112.709781 114.844426 5 50 50.25 0.0 0.000134069 0.000365294 0.006703468 0.002583021 5.16085E-05

1.A.3.  Transport N2O 57.3319301 21.6195922 5 50 50.25 0.0 -4.88495E-05 6.87671E-05 -0.002442474 0.000486257 6.20212E-06

1.A.4.  Other Sectors N2O 194.497577 46.1816455 5 50 50.25 0.0 -0.000252117 0.000146893 -0.01260587 0.001038693 0.000159987

1.A.5.  Other N2O 27.4386549 13.5195061 5 50 50.25 0.0 -1.3288E-05 4.30025E-05 -0.000664398 0.000304074 5.33886E-07

4.B.  Manure Management. N2O 375.1 198.4 15 30 33.54 0.0 -0.000138451 0.000631066 -0.004153541 0.013386927 0.000196462

4.D.  Agricultural Soils(2). N2O 25217.694 9798.17 20 30 36.06 3.0 -0.020551916 0.031165777 -0.616557485 0.881501284 1.157187646

4.F.  Field Burning of Agricultural Residues. N2O 24.304 21.297 20 30 36.06 0.0 1.78812E-05 6.7741E-05 0.000536437 0.001916004 3.95884E-06

6.B.  Wastewater Handling. N2O 452.6 384.4 15 30 33.54 0.0 0.000294175 0.00122269 0.008825264 0.025937172 0.000750622

Keep Blank! … 0

Total 314388.7626 202771.1719 34.6 11.4670044

5.880740472

Trend 

uncertainty: 3.386296561
Percentage uncertainty in total 

inventory:

Approach 1 uncertainty calculation

22 FE +
( )

( )2
2

D

DG



•

C

D

FI • 2EJ •• 22 LK +

H M

List of source/sinks

EF uncertainties based 

on data used
AD uncertainties based 

on source of data



E1 + E2 + … + En
Linear Error Propagation (LEP)

xi: CO2e

Bonus track!: one way of dealing with asymmetric uncertainties

AD x EF

Ui: relative

Source
Emission 
(tCO2e)

Uncertainty 
in AD

Uncertainty 
in EF (-)

Uncertainty 
in EF (+)

Combined 
uncertainty 

Ui (-)

Combined 
uncertainty 

Ui (+)

Contribution 
to variance (-)

Contribution 
to variance (+)

UAD

a 100 3% -5% 5% 6% 6% 0.1% 0.1%
b 5 3% -50% 100% 50% 100% 0.0% 0.1%
c 28 3% -30% 60% 30% 60% 0.3% 1.1%
d 3.2 3% -100% 900% 100% 900% 0.0% 3.4%
e 21 3% -10% 10% 10% 10% 0.0% 0.0%

157.2 0.5% 4.8%
-7% 22%

√(UAD
2+UEF

2)
  (Ui x Ei)2 

(∑Ei)2UEF

Combining uncertainty: Approach 1 [14]



Thank you!

End of day 3

Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division 
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Session 8. Methods to combine uncertainties: Approach 2

Monte Carlo simulation

By the end of this session, you will:

1. Understand the basics of the simulation

2. Learn how to select probability density functions

3. Identify typical problems and avoid misinterpretation

4. Understand how to deal with correlation

GHG Support Unit, Transparency Division

Learning 

objectives

8



Numerical simulation method, nondeterministic, which simulates the behavior of a random
static system where input parameters are defined by a known Probability Density Function.

Random processes

Deterministic processes

Random 

output

Monte Carlo Simulation (MCS)

Combining uncertainty: Approach 2 [1]



Monte Carlo Simulation (MCS)

Applicable even if:

•Large std. dev.

•Skewed distributions

•Correlated variables

•Complex equations

Combining uncertainty: Approach 2 [2]

Inventory

calculation

system



Monte Carlo Simulation (MCS)

Steps

1.Build the calculation model in which uncertainty needs to be evaluated

2.Identify relevant key variables 

3.Establish the Probability Distribution Functions for each of the inputs identified and obtain the 

parameters to define them

4.Run the simulation

5.Obtain the PDF of the result and determine uncertainty as the 95% CI.

Sensitivity

Mean = 100

Standard deviation = 15

CI = [ 70 ; 130 ]

Uncertainty = 30%

Combining uncertainty: Approach 2 [3]



Example

Combining uncertainty: Approach 2 [4]

Monte Carlo Simulation (MCS)



Example

Combining uncertainty: Approach 2 [5]

Monte Carlo Simulation (MCS)



Example

Combining uncertainty: Approach 2 [6]

Monte Carlo Simulation (MCS)



Example

Inventory

calculation

system

Combining uncertainty: Approach 2 [7]

Monte Carlo Simulation (MCS)



GOOD PRACTICE GUIDANCE FOR SELECTING PROBABILITY DENSITY FUNCTIONS

V1_Ch3. 3.2.2.4

2006 IPCC Guidelines

Recommendations for different cases and commonly applied criteria to follow

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [8]

Monte Carlo Simulation (MCS)



Others

Domain (+, -, ∞)

Underlying process (+, x)Shape (symmetry)

Range (narrow or broad)

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [9]

Monte Carlo Simulation (MCS)



Most used PDF

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [10]

Selecting PDF



Selecting PDF

All values with same probability

Parameters: Uniform (min, max)

Application to inventories: large uncertainty and lack of information

Uniform

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [11]



Selecting PDF

Intuitive and flexible.

Parameters: Triang (min, mean, max)

Application to inventories: expert judgment, knowledge from experience. 

Limited information.

Triangular

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [12]



Selecting PDF

Distribution around a most likely central value.

Parameters: Normal (mean [], std. Dev. [])

Application to inventories: most of situations (central limit). Additive processes.

The interval +/- 2*σ (1.96) accounts for approx. 95% of the values. 

σ may be estimated as: (max - mean) / 2

Normal

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [13]



Selecting PDF

The natural logarithm of the variable adjusts to a Normal distribution

Parameters: Lognormal (mean [], std. Dev. [])

Application to inventories: Generally good representation for skewed non-

negative values (emission factors for N2O). Multiplicative processes.

Log-normal

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [14]



Selecting PDF

Similar to lognormal but with not so heavy tails

Parameters: Gamma (shape [k], scale [θ])

Application to inventories: Good representation for skewed values. Very flexible 

depending on its parameters. Mean value: k.θ

Gamma

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [15]



Selecting PDF

Version of the Beta using PERT (Program Evaluation and Review Technique).

Parameters: BetaPert (min, mean, max)

Application to inventories: similar to triangular but with lower standard deviation.

Beta pert

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [16]



Selecting PDF - Good practice guidance

• The minimum number of probability functions are used

• These probability functions are well known and well based (theoretical or empirical)

• Where empirical data are available, the first choice should be to assume a normal 

distribution

• If the variable must be non-negative and a normal distribution is assumed, the standard 

deviation should not exceed 30%

• Truncation of the negative tail of the normal distribution should be avoided (use instead 

lognormal, Weibull, or Gamma).

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [17]



Selecting PDF - Good practice guidance

• Where expert judgment is used, the distribution function adopted might be normal or

lognormal, supplemented by uniform or triangular distributions

• If only the interval is known (upper and a lower value), assume that the probability

density function is uniform and that the range corresponds to the 95% confidence

interval

• If the distribution observed based on data does not seem correct, the data may be the

problem (not representative, not random, small sample size, different timing, etc.)

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [18]



Selecting PDF - Good practice guidance

• When selecting the PDF from Goodness-of-Fit test, several functions will fit the data

satisfactorily within a given probability limit

• Different functions can have radically different distributions at the extremes (few or

no data to constrain them), and the choice of one function over another can

systematically change the outcome of an uncertainty analysis.

“it must be knowledge of the underlying physical processes 

that governs the choice of a probability function”

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [19]



DEPENDENCE AND CORRELATION AMONG INPUTS

Relationship between two variables that make them not independent

One variable is determined (partially or totally) by another one

Dependence / Correlation

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [20]



DEPENDENCE AND CORRELATION AMONG INPUTS

Negative Positive

Reduces uncertainty range 

when included

If not included: 

overestimation of uncertainty

Increases uncertainty range 

when included

If not included: 

underestimation of uncertainty

Dependence / Correlation

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [21]



DEPENDENCE AND CORRELATION AMONG INPUTS

?

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [22]



DEPENDENCE AND CORRELATION AMONG INPUTS

Correlation degree

< 0.2           Very low

0.2 – 0.4     Low

0.4 – 0.6     Moderate

0.6 – 0.8     High

> 0.8           Very high

* Indicative ranges

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [23]



DEPENDENCE AND CORRELATION AMONG INPUTS

Attention! Non-linear correlation also exists

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [24]



DEPENDENCE AND CORRELATION AMONG INPUTS

E  =  FC  x  NCV  x  EF

FC: Fuel consumption (tonnes)

NCV: Net calorific value (GJ/t)

EF: Emission factor (tCO2/GJ)

𝑬𝑭 =
%𝑪

𝑵𝑪𝑽
𝒙
𝟒𝟒

𝟏𝟐

Are NCV and EF independent?

FC (GJ) Are FC (GJ) and EF independent?

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [25]



DEPENDENCE AND CORRELATION AMONG INPUTS

Are always important 

to uncertainty assessment?

Degree: strong or weak correlation (i.e.   0.8  or  0.2) 

Sensitivity: impact to the overall uncertainty

Dependencies / Correlations

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [26]



DEPENDENCE AND CORRELATION AMONG INPUTS

Exists between 2 variables to which 

uncertainty is sensitive to 

and 

dependency is weak

Exists between 2 variables to which 

uncertainty is sensitive to 

and 

dependency is strong

Exists between 2 variables to which 

uncertainty is NOT sensitive to 

and 

dependency is weak

Exists between 2 variables to which 

uncertainty is NOT sensitive to 

and 

dependency is strong

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [27]



DEPENDENCE AND CORRELATION AMONG INPUTS

Strategies

• Define the model so that the inputs are as statistically independent as possible

• Stratify or aggregate the category to minimise the dependency effect 

• Model dependency explicitly

• Use sensitivity cases (independent, fully positive and fully negative correlated)

Dependence / Correlation

GHG Support Unit, Transparency Division 

Combining uncertainty: Approach 2 [28]



Thank you!

End of day 4

Thank you!

Diego M. Ezcurra

GHG Support Unit, Transparency Division 
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80%



Session 9. Methods to combine uncertainties: 

Hybrid combinations of Approaches 1 and 2

By the end of this session, you will:

1. Understand how to combine approaches

2. Understand why it can efficiently improve results

GHG Support Unit, Transparency Division

Learning 

objectives

9



Combining uncertainty: Hybrid approach 1 and 2 [1]

Methods to combine uncertainties

Approach 1: 

Linear Error Propagation

Approach 2: 

Monte Carlo Simulation

Hybrid approach: 

Linear Error Propagation with Monte Carlo Simulation

Identify categories that require more complex calculations, have high uncertainty ranges

or where dependency is not negligible. Those cases can be propagated using Monte Carlo

Simulations and the remaining categories can apply Linear Error Propagation.



1A1 - Energy industries (2%)

1A2 - Manufacturing industries (3%)

1A3 - Transport (2%)

1A4 - Other sectors (2%)

1B1 - Solid fuels (36%)

1B2 - Oil and natural gas (30%)

1A: 1%

1B: 29%

1 Energy:  2%

Linear Error Propagation (LEP)

EF: Monte Carlo

Combining uncertainty: Hybrid approach 1 and 2 [2]



2A1 - Cement (3%)

2A2 - Lime (30%)

2A4 - Carbonates use (10%)

2B1 - Ammonia (9%)

2B2 - Nitric acid (40%)

2B5 - Carbide (11%)

2B7 - Carbonates (21%)

2B8 - Petrochemical (18%)

2B9 - Fluorochemical (50%)

2C1 - Iron and steel (33%)

2C2 - Ferrous allay (56%)

2C3 - Aluminum (10%)

2C6 - Zinc (56%)

2D1 - Lubricant use (52%)

2D2 - Paraffin wax use (52%)

2F4 - Aerosols (50%)

2A - 9%

2B - 14%

2 IPPU: 11%

2C - 28%

2D - 50%

2F - 50%

EF: Monte Carlo

EF Monte Carlo

EF: Monte Carlo

Linear Error Propagation (LEP)

Combining uncertainty: Hybrid approach 1 and 2 [3]



3A1 - Enteric fermentation (6%)

3A2 - Manure management (16%)

3B1 - Forest land (219%)

3B2 - Cropland (89%)

3B3 - Grassland (20%)

3B7 - Soil organic matter content (93%)

3C1 - Biomass burning (12%)

3C3 - Urea application (5%)

3C4 - Direct N2O emissions from managed soils (43%)

3C5 - Indirect N2O emissions from managed soils (62%)

3C6 - Indirect N2O emissions (77%)

3C7 - Rice cultivation (115%)

3A - 5%

3B - 57%

3 AFOLU: 18%

3C - 32%

Cattle and dairy cattle: Monte Carlo

Linear Error Propagation (LEP)

Combining uncertainty: Hybrid approach 1 and 2 [4]



4A1 - Managed solid waste disposal (32%)

4A3 - Uncategorized solid waste disposal (50%)

4B   - Solid waste biological treatment (79%)

4C1 - Waste incineration (64%)

4D1 - Domestic wastewater treatment (19%)

4D2 - Industrial wastewater treatment (76%)

4A - 29%

4D - 31%

4 Waste: 21%
4B - 79%

4C - 64%

Linear Error Propagation (LEP)

Monte Carlo Simulation

Combining uncertainty: Hybrid approach 1 and 2 [5]



4 Waste: 21%

Linear Error Propagation (LEP)

Combining uncertainty: Hybrid approach 1 and 2 [6]

1 Energy:  2% 2 IPPU: 11%

3 AFOLU: 18%

National GHG 

Inventory

10%



Session 10. Application of uncertainty estimates to identify 

areas for improvement: Approach 2 to identify key categories

By the end of this session, you will:

1. Learn how to identify key categories

2. Understand why uncertainty can help with efficiency

GHG Support Unit, Transparency Division

Learning 

objectives

10



Approach 1

Level

Approach 2

Uncertainty

Key categories

Objective: to identify those categories that contribute 

the most to total inventory value.

“Hot spots” can be used to assign resources for 

improvement and identify mitigation alternatives.

V1_Ch4

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Key category analysis [1]

𝑳𝒙,𝒕 =
𝑬𝒙,𝒕

σ𝒚 𝑬𝒚,𝒕
𝑳𝑼𝒙,𝒕 =

(𝑳𝒙,𝒕 × 𝑼𝒙,𝒕)

σ𝒚(𝑳𝒚,𝒕 × 𝑼𝒚,𝒕)

Objective: to identify those categories that contribute 

the most to total inventory uncertainty.

“Hot spots” can be used to assign resources for 

improvement in data collection



Approach 1

Level

Approach 2

Uncertainty

Key categories

V1_Ch4

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Key category analysis [2]

𝑳𝒙,𝒕 =
𝑬𝒙,𝒕

σ𝒚 𝑬𝒚,𝒕
𝑳𝑼𝒙,𝒕 =

(𝑳𝒙,𝒕 × 𝑼𝒙,𝒕)

σ𝒚(𝑳𝒚,𝒕 × 𝑼𝒚,𝒕)

𝑳𝑼𝒙,𝒕 =
( 𝑬𝒙,𝒕 × 𝑼𝒙,𝒕)

σ𝒚( 𝑬𝒚,𝒕 × 𝑼𝒚,𝒕)
𝑳𝑼𝒙,𝒕 =

∆𝑬𝒙,𝒕

σ𝒚 ∆𝑬𝒚,𝒕



Emission 
Source

Emission 
(tCO2e)

Absolute 
value of 

Emission 
(tCO2e)

Level 
Li

Uncertainty 
Ui 

Li x Ui

LUi

  (Li x Ui)
∑(Li x Ui)

 Cumulative 
LUi

E3 28 28 11% 50% 5.3% 28% 28%
E6 8 8 3% 100% 3.0% 16% 44%
E1 80 80 30% 8% 2.4% 13% 56%
E5 37 37 14% 15% 2.1% 11% 67%
E10 19 19 7% 25% 1.8% 9% 77%
E2 5 5 2% 75% 1.4% 7% 84%
E4 -15 15 6% 20% 1.1% 6% 90%
E9 3 3 1% 80% 0.9% 5% 95%
E7 21 21 8% 8% 0.6% 3% 98%
E8 49 49 18% 2% 0.4% 2% 100%

235 265 0.19

Approach 1

Level

Approach 2

Uncertainty

Key categories

V1_Ch4

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Key category analysis [3]

Sort high to low

90% cumulative

Key categories 

based on Level



Session 11. Uncertainty associated with the use of proxy, 

splicing techniques and expert judgment to fill data gaps

By the end of this session, you will:

1. Learn to solve data gaps with splicing techniques 

2. Understand how to derive uncertainty for missing data

3. Learn how to derive uncertainty from expert judgement

GHG Support Unit, Transparency Division

Learning 

objectives

11



Splicing techniques for Data gaps 

Splicing techniques

Periodic data
Changes and gaps 

in data availability

Data gaps

Data are available less frequently than annual or may not 

cover the entire country. 

Estimates need to be updated each time new data becomes 

available.

New estimates should be extrapolated and then recalculated 

when new data become available

Changes in data collection systems or methodologies 

(improve or decrease or gaps)

Higher tier methods can be applied for recent years, but 

not for earlier years

Discontinuation of data sets or different definitions, 

classifications and levels of aggregation

V1_Ch5 . 5.3 Resolving Data Gaps

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [1]



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

New method implemented 

not available before (or 

after)

No data for the category 

but other related available

Ratios or regression

Data gap for some years 

or outliers identified

Data unavailable for last 

or first year

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [2]



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

𝑦0 = 𝑥0.
1

𝑛 − 𝑚 + 1
.

𝑖=𝑚

𝑛 𝑦𝑖
𝑥𝑖

New method implemented not available before (or after)

Requires consistent relationship between the two methods

Variability in ratios can be used to assess consistency and 

uncertainty

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [3]



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

No data for the category but other related available

Ratios or regression analysis (simple, multiple, linear, non-linear)

Requires identifying the dependent and independent variable/s 

and the dependency (correlation)

Standard error for the regression can be used to assess 

uncertainty (other criteria also possible)

𝑦0 = 𝑦𝑡 .
𝑆0
𝑆𝑡

𝑦𝑗 = 𝐶 + p. 𝑆𝑗

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [4]



Overlap Extrapolation

Proxy: Splicing techniques and Expert Judgement [5]

Surrogate Interpolation

Data gap for some years or outliers identified. 

Linear models are commonly used but others may apply (quadratic)

It can be applied intermittently as necessary. Requires smooth or 

stable trend (low variability). If not, surrogate is a better practice.

Variability in available data can be used to assess uncertainty

𝑦𝑗 = 𝑦𝑎 +
(𝑦𝑏 − 𝑦𝑎)

(𝑥𝑏 − 𝑥𝑎).
. (𝑥𝑗−𝑥𝑎)

GHG Support Unit, Transparency Division 

Splicing techniques for Data gaps 



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

Data unavailable for last or first year/s

Continuation of the trend, if stable, or surrogate, if higher 

variability, beyond data´s period. 

Not recommended for estimations over long periods of time

Uncertainty depending on the extrapolation method (trend or 

surrogate). Could be evaluated ex post if data becomes available.

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [6]



Splicing techniques for Data gaps 

Overlap ExtrapolationSurrogate Interpolation

Hands-on exercises

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [7]



Splicing techniques for Data gaps 

IPPU: Lime production statistics were not available for the last two years. 

Investigate the relationship with the production of cement, surrogate lime production and determine 

the uncertainty of the estimation used.

Overlap ExtrapolationSurrogate Interpolation

Year Lime Cement

1 1.167.701 3.751.759 

2 1.119.942 3.398.621 

3 943.108 2.396.907 

4 988.285 3.197.714 

5 1.444.813 3.833.116 

6 1.527.389 4.654.673 

7 1.808.855 5.472.815 

8 2.016.509 5.885.219 

9 1.834.096 5.947.131 

10 1.717.285 5.752.006 

11 1.949.142 6.388.311 

12 2.000.257 7.104.927 

13 2.154.948 6.567.993 

14 2.348.841 7.288.507 

15 6.992.203 

16 7.172.822 

U: 15 %

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [8]



Splicing techniques for Data gaps 

Waste: municipal solid waste generation per capita is used to calculate the amount of waste to be treated

in a landfill that serves a specific region. Obtain the yearly population for the region using data from the

census and asses the uncertainty. Extrapolate the data from the census to calculate the population in

2020 and asses the uncertainty.

Overlap ExtrapolationSurrogate Interpolation

Year Population

1980 27.949.480

1991 32.615.528

2001 36.260.130

2010 40.117.096
0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

35.000.000

40.000.000

45.000.000

1975 1980 1985 1990 1995 2000 2005 2010 2015

y = 396.217,8218x - 756.462.564,5015

R² = 0,9981

20.000.000

25.000.000

30.000.000

35.000.000

40.000.000

45.000.000

1975 1980 1985 1990 1995 2000 2005 2010 2015

U: 1 %

y = 401.480x - 766.919.020

R² = 0,9991

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

35.000.000

40.000.000

45.000.000

50.000.000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [9]



ENCODING EXPERT JUDGEMENT

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [10]



ENCODING EXPERT JUDGEMENT

Key goal is to characterise the state of knowledge regarding 

possible values of a particular variable and to develop a PDF

• When no relevant empirical data is available

• Well informed judgements from domain experts

• Formal expert elicitation protocols

Experience Knowledge

Understanding

Full range of values

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [11]

IMPORTANT!

Document all the process!



ENCODING EXPERT JUDGEMENT

• Motivation: explaining the problem and purpose

• Structuring: defining the specifics of the protocol and problem

• Conditioning: previous experiences, models, theory and results

• Encoding/Elicitation: obtaining the data and information

• Verification: confirmation of outputs, bias testing and feeling of outliers 

Experience Knowledge

Understanding

Elicitation protocols
V1_Ch. 2 Annex 2A.1

2006 IPCC Guidelines

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [12]



Elicitation protocols- EXPERT JUDGEMENT

Key concern with expert elicitation is to overcome the typical heuristic biases 

of availability, representativeness, and anchoring and adjustment 

• Fixed Value Probability?

• Fixed Probability Value?

• Interval Methods Median and quartiles?

• Graphing Drawing PDF

Experience Knowledge

Understanding

Elicitation protocols

 Overconfident estimate

(narrow interval)

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [13]

V1_Ch. 2 Annex 2A.1

2006 IPCC Guidelines



Elicitation protocols- EXPERT JUDGEMENT

Fixed Value: Estimate the probability of being

higher (or lower) than an arbitrary value and

repeat, typically three or five times.

Fixed Probability: Estimate the value associated with a

specified probability of being higher (or lower).

Interval Methods: It focuses on identifying the median and the quartiles.
Graphing: The expert draws

his/her own distributions.

GHG Support Unit, Transparency Division 

Proxy: Splicing techniques and Expert Judgement [14]

e.g. what is the probability that an emission factor

would be less than 100?

e.g. what is the emission factor such that there is only a 2.5

percent probability (or 1 in 40 chance) that the emission factor

could be lower (or higher) than that value?

e.g. Choose a value of the emission factor such that it is equally likely that the true

emission factor would be higher or lower than that value (this yields the median).

Divide the lower range into two bins such that you feel it to be equally likely (25

percent probability) that the emission factor could be in either bin. Repeat for the

other end.

Extreme values could be judged by either fixed probability or fixed value methods.

e.g. Draw a distribution you feel is

representative of the emission factor.

This should be used cautiously since

some experts may be overconfident

about their knowledge of PDFs
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100%



Thank you!

End of webinar!

Thank you

Diego M. Ezcurra

GHG Support Unit, Transparency Division 


