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Learning objectives

 Data need for model-based Tier 3 methods
* Understand advantages and limitations

*See examples of inventory report with Tier 3



Focus on model-based Tier 3 methods Q&A Break

9 Soil organic carbon models

e Advantages and limitations







e Soil organic carbon models

Annual carbon stock changes in AFOLU

ACproLy = ACg + AC¢ + ACg + ACy, + ACg + ACq,

AFOLU = Agriculture, Forestry and Other Land Use

FL = Forest Land, CL= Cropland, GL = Grassland,
WL=Wetlands, SL= Settlements, OL = Other Land

Eq 2.1 IPCC Guidelines 2006 7



e Soil organic carbon models

For a given land-use category

AC y =ACpg + ACgg + ACpy + AC |+ ACgq + ACp

AB = above-ground biomass
BB = below-ground biomass
DW = deadwood
LI= litter
SO = soils
HWP = harvested wood products
Eq 2.3 IPCC Guidelines 2006



Q Soil organic carbon models

For a given land-use category

AC y = ACpg + ACgg + ACp,, + AC, AChLwp

AB = above-ground biomass  Soil organic carbon stock changes
BB = below-ground biomass

DW = deadwood
LI= litter
SO = soils
HWP = harvested wood products
Eq 2.3 IPCC Guidelines 2006



0 Soil organic carbon models

Soil organic carbon stock changes

dfl—it) = Input — Output




0 Soil organic carbon models

Soil organic carbon stock changes

dc(t)

" Output

-
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0 Soil organic carbon models

Soil organic carbon stock changes

dc(t)
TR Input
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0 Soil organic carbon models

Soil organic carbon stock changes

e le

dc(t)
TR Input
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0 Soil organic carbon models

Discretization of the soil in compartments

|
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0 Soil organic carbon models

Discretization of the soil in compartments

ACTIVE SLOW
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0 Soil organic carbon models

A two-pool model

dCy(t)
= Input; — Output,
dt
dC,(t
;tf ) = Input, — Output,

C1(t=0)
C,(t =0)

16



SOC stock (mass area?)

0 Soil organic carbon models

TOTAL
o T
N
SLOW
w _
‘9 —
C,(t = 0)
S - ACTIVE
C1(t=0)
© - ]
I T T T T
0 D 10 15 20

Time

17



G Soil organic carbon models

Other possible model structures

n° of pools 1 2
!
Parallel ? =5 :
! !
Series ’
Vol !
Feedback l{r :
Voo !

Sierra et al., 21912



G Soil organic carbon models

Effect of the structure on the predictions
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a Soil organic carbon models

Models used for national C inventories

20



a Soil organic carbon models

Models used for national C inventories

ICBM
* ICBM in Sweden: CINPUT
\ 4
Young v
—» CO, fluxes v
— Transfer among pools old
=¥ Carbon input

21
1 Swedish Environmental Protection Agency, 2017



Q Soil organic carbon models

Models used for national C inventories

ICBM C-TOOL

* ICBM in Sweden:

C INPUT

e C-TOOL in Denmark? l l

\ 4
Young |7 Fom |7 HUm 7
—» CO, fluxes v v
— Transfer among pools old ROM

=¥ Carbon input

22
1 Swedish Environmental Protection Agency, 2017; 2Nielsen et al., 2017



Q Soil organic carbon models

Models used for national C inventories

ICBM C-TOOL YASSO

* ICBM in Sweden: CINPUT

 C-TOOL in Denmark? l l \ l

Young |7 Fom 7 HUM |7 A » w7

* YASSOO7 in Finland: 1l

—» CO, fluxes e = \ /
— Transfer among pools ROM H

old
=¥ Carbon input

23
1 Swedish Environmental Protection Agency, 2017; 2Nielsen et al., 2017; 3Pipatti et al., 2017



0 Soil organic carbon models

Yasso07 adapted to tropical conditions

YASSO
CINPUT
\ l
A » w7
4 N \ 4
2 B4
E N
o

Guendehou et al., 2013; 2014 24
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° Soil organic carbon models

Yasso07 adapted to tropical conditions

©= QObservations

=6 PredictionsYO07 software
=== PredictionsY07A

v~ PredictionsY07B

Guendehou et al., 2013; 2014

YASSO

C INPUT
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Q Soil organic carbon models

Yasso07 adapted to tropical conditions

YASSOO7 in Tanzania VASSO
CINPUT
Soil carbon monitoring using L

: I
surveys and modelling Ll .
General description and application ; .
in the United Republic of Tanzania \ /

26

Makipaa et al., 2012 - FAO



Century adapted to semi-arid conditions

CENTURY

Parton et al., 1988 2/



Century in Brazil
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G Soil organic carbon models

Century adapted to semi-arid conditions

CENTURY

A SOC under native
vegetation

1 2673.39 g m™

——Simulated (start in 2000)
© Measured in 2014 (cropland started in 2000-2014)

® Measured in 2014 (native vegetation)

1980 2000 2020 2040 2060 2080 2100
Araujo Neto et al., 2021 Year

—» CO, fluxes

Passiv
e

—» Transfer among pools
= Carbon input

Parton et al., 1988
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G Soil organic carbon models

Century adapted to semi-arid conditions

—» CO, fluxes
—» Transfer among pools
= Carbon input

Araujo Neto et al., 2021 Parton et al., 1988 2
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a Advantages and limitations

Vv



e Advantages and limitations

Tier 3 methods

*Measurement-based

*Model-based



Tier 3 methods

*Measurement-based

Extensive measurements
networks to calculate SOC
stock changes

e Advantages and limitations

RMQS

Jolivet et al., 23518



a Advantages and limitations

Tier 3 methods
*Model-based

W
O
1

w
©o
L

Field data to
evaluate model
performance
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a Advantages and limitations

Advantages

35



e Advantages and limitations

Advantages

e Capture complexity of the system and diversity of
practices, e.g., cllmate and disturbances effects

36



e Advantages and limitations

Advantages

* Higher spatial and temporal resolution

37



a Advantages and limitations

Advantages

* Improved completeness: coverage of land areas and/or
carbon pools

LABILE
CARBON

TOTAL
CARBON
RESISTANT

CARBON
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e Advantages and limitations

Advantages

* Cost-efficient compared to Tier 2 (which may need

extensive data collection)
9.5°N ’_/_C/)//
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e Advantages and limitations

Advantages

* Improved uncertainty assessment

= Emulator Mean
o — Emulator Reals
= Emu + Dis Mean

Emu + Dis Reals
—X— Observed Data
W - ¥~ Missing Data

-50 0 50
Lane et al., 2014 40



Advantages

a Advantages and limitations

* Predict: better assessment of the impacts of
mitigation efforts and policy measures

CMIP6 Scenarios - Global CO,Concentrations [ppm]
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a Advantages and limitations

Advantages

* Improved time-series consistency for past and future
projections

\
s s, s s il e s et i
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e Advantages and limitations

Limitations

43



e Advantages and limitations

Limitations

* “Models are a way to increase the power of data”:
they still need a lot of data as input and for evaluation

44

IPCC, 2010



e Advantages and limitations

Limitations

* “Models are a simplified representation of reality”:
they are still associated with uncertainty and errors

45



Advantages and limitations

Limitations

* Uncertainty IN = uncertainty OUT

46



a Advantages and limitations

Limitations

* Incorrect use can lead to high errors and biases
(e.g., application outside their domain, incorrect evaluation)

— = == = p  PREDICTIONS

P -

~—1

Year

SOC stock (Mg C ha)
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a Advantages and limitations

Limitations

* Technical difficulties to calibrate and implement

)

Mg C ba‘l

w
~

w
[=3)

w
(]

SOC stocks (

1998 2000 2002 2004 2006 2008 2010 2012

Year
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QUESTIONS?



a Advantages and limitations

When to use a Tier 3 approach?

D
|

Use the data for Tier 3
method (e.g., use of models

Do you have

the data and resources to es »
: and/or measurement-based
develop a Tier 3?
approach).
Box 3: Tier 3

IPCC Guidelines, 2006 o0



<3 Steps of modeling

Vv



e Steps of modeling

€Y Sclect/develop a model
&) Evaluate with calibration data
®) Identify model input
@ Quantify uncertainties
® Implement the model
© Evaluate with independent data

=89 Reporting and documentation



€Y Sclect/develop a model

\

53



€ Sclect/develop a model

Model selection

54



€ Sclect/develop a model

Model selection
More than 200 soil carbon models are available

2 300 -
L2
w® 250 -
L
o 200 -
3
= 150 -
<]
g 100 - I
=
50 -
>
Z ol om em - | |
up to 1970's  1980's 1990's 2000's Since 2010 Since 1933

Le Noe et al., 2023 55



€ Sclect/develop a model

Model selection
Validated for the desired land-use

Land use

Models

@ validated

W not valid. Osavanna

Garsia et al., 2023 56



€ Sclect/develop a model

Model selection

. [ ] [ ] [ ] [ ] [
Validated for the desired pedo-climatic conditions
Land use Soil types
M cropland
Models B forest
Mgrassland m>2
@ convers ion @2
m wetland
m1l
Eshrubland |
Ounclear X
M tundra
m validated W agroforestry
Hnot valid. Osavanna

Garsia et al., 2023 57



Steps of modeling

€ Sclect/develop a model

odel selection
vailability of the necessary resources for implementation

d Y . e e
— =1 —1k1Y
dt

ICBM: THE INTRODUCTORY CARBON BALANCE MODEL FOR
EXPLORATION OF SOIL CARBON BALANCES

OLOF ANDREN AND THOMAS KATTERER

il Sciences, PO, Box 7014, SLU,

Deparment of
S-750 07 Uppsala, Swede

Abstract. A two-component model was devised. comprising young and old soil C. twa
constants, and for litter inpui, i b external influences.

implicity, the differential equations were solved analytically, and
parameter optimizations can be made using generally available nonlinear regression pro-

1 2 ? ibration parameter values were derived from a 35-yr experiment with arable
soil in central Sweden. We show how the model can be used for medium-

grams. The c
crops an a clay
term (30 yr) predictions of the effects of changed inputs, ¢! Is, litter quality,

ete.. on soil carbon pools. Equations are provided for g ate pool sizes
as well as model parameters from litter bag or “C-labeled litter decomposition data. Strat-
egies for model parameterization to different inputs. climatic regions, and soils, as well as
the model's relations to other model families, are briefly discussed

Key words:

9

carbon budgets; global change: mathematical model; xoil carbon
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Steps of modeling

€ Sclect/develop a model

Model selection
Availability of the data required (see Step 3)

Climate data Soil data Land use- management data
1. Monthly rainfall(mm) 1. Total Initial 0=30cm SOC 1. Monthly Soil cover (binary: bare
2. Average monthly mean stocks (t C ha") vs. vegetated)
air temperature (°C) 3 ifitiai &stocks of e 2. Irrigation (to be added to rainfall

3. Monthly open pan amounts)

different pools (t C ha™'):

evaporation DPM, RPM, BIO, HUM, Monthly Carbon inputs from
(mm)/evapotranspiration IOM plant residue (aboveground +
(mm) roots + rhizodeposition), (t C har

3. Clay content (%) at
simulation depth. )
4. Monthly Carbon inputs from
organic fertilizers and grazing
animals’ excretion (t C ha™')
5. DPM/RPM ratio, an estimate of
the decomposability of the

incoming plant material

59



€ Sclect/develop a model

Model adaptation

60



€ Sclect/develop a model

Model adaptation Arid |
Factors that influence SOC Temp | I
persistence depend on pedo- (seas.) |
climatic conditions Tropical |

(seas.) |

Temp
(humid)
Trop
Cultivation [ | GPP [ | 2:1clays (humid)
Erosion SOC Mox ; % 1 3 5
: . 0
H 1:1 clays I Clay content . Feldspars Explained variation (%)
Pedogenic axides L Von Fromm et al., 2023 ol



€ Sclect/develop a model

Model adaptation

Some human activities may be important in some countries, not in other

62



Steps of modeling

&) Evaluate with calibration data
/

\

4

63



€ Evaluate with calibration data

Demonstrate that the model effectively simulates
measured trends for a variety of conditions in the
category of interest

64



e Steps of modeling

€ Evaluate with calibration data

Evaluation with statistical and graphical tests

Observations

S
=,
n

IS
in
o

SOC stock (Mg C ha')

1960 1970 1980 1990 2000

Year
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e Steps of modeling

€ Evaluate with calibration data

Evaluation with statistical and graphical tests

47.5- Observations
— Default k=0.165
(G 45.0-
e
O 425-
a0
pgen
v
O
O 37.5-
)
[%5]
O 35.0-
@)
)

32.5 -

30.0 -

19I60 19|70 19‘80 19I90 20I00

Year
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e Steps of modeling

€ Evaluate with calibration data

Evaluation with statistical and graphical tests

47.5 Observations
- Default k=0.165
c 450 ;
@ Calibrated
O 42.51
(o)
2 00
4
O
O 37.5-1
)
wm
8 35.0
) k =0.604
32.5 1
30.0 A
19[60 19I70 19|80 19|90 20|00

Year
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€ Evaluate with calibration data

Examples of statistics for evaluation

* Root mean squared error, RMSE
* Coefficient of determination, R?

* Willmott index of agreement, d

68



€ Evaluate with calibration data

Examples of statistics for evaluation

* Root mean squared error, RMSE «
* Coefficient of determination, R* J

* Willmott index of agreement, d /

The model effectively simulates measured trends

69



€ Evaluate with calibration data

> If the evaluation is not satisfactory, re-calibrate or
change model

»Model evaluation needs to be in the reporting
documentation to justify the use of a particular model

70
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Steps of modeling

\

\

€ |dentify model input

/

4
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€ |dentify model input

Spatial and temporal data on:
* Climate
*Soil
* Vegetation
* Land-management
* Disturbances
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€ |dentify model input

Spatial and temporal data on:
* Climate
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€ |dentify model input

Spatial and temporal data on:

* Climate
* Temperature (surface or soil)
* Precipitation
* Potential evapotranspiration
* Soil moisture

75



€ |dentify model input

Spatial and temporal data on:

* Climate
e Temperature (surface or soil)
* Precipitation
* Potential evapotranspiration
* Soil moisture
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€ |dentify model input

Spatial and temporal data on:

* Soil
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€ |dentify model input

Spatial and temporal data on:

*Soil
* Clay content
* Initial SOC stocks in the soil pools
* pH
* C:N ratio
* CaCO; content

78



€ |dentify model input

Spatial and temporal data on:

* Vegetation

79



€ |dentify model input

Spatial and temporal data on:

*Vegetation
* Litter input
* Woody debris
* Animal manure

80



€ |dentify model input

Spatial and temporal data on:

* Land-management

81



€ |dentify model input

Spatial and temporal data on:

* Land-management
 Agricultural practices (e.g., tillage, cover cropping)
* Forest practices (e.g., clear-cut, thinning)

82



€ |dentify model input

Spatial and temporal data on:

e Disturbances

83



€ |dentify model input

Spatial and temporal data on:

e Disturbances
* Fires
* Insects outbreaks

84



€ |dentify model input

Spatial and temporal data on:
* Climate
*Soil
* Vegetation
* Land-management
* Disturbances

85



a Steps of modeling

\

@ Quantify uncertainties

/
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a Steps of modeling

Quantify uncertainties

* Uncertainty measures the confidence of the model
estimate

* Imperfect knowledge of activities and processes

— uncertainties in the structure, parametrization and
Inputs

Methods to conduct these analyses: see IPCC Guidelines
(2006) Volume 1 Chapter 3

87



Initial conditions

€ry

Data input

€p

Parameters

Em

Model
structure

@) Quantify uncertainties

&c

&

" Simulated SOC stocks

&

Observed SOC stocks
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@) Quantify uncertainties

Em

Model
structure
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e Steps of modeling

@) Quantify uncertainties

Model structure

o
—~ | — Two-pool Parallel
'8 —— Two-pool Series
s w _| —— Two-pool Feedback
& «
o
£
¥ F -
o
]
(2]
@)
O v -
(%)
O —

I | [ [ I
0 5 10 15 20

Time Sierra et al., 2012



@) Quantify uncertainties

Model structure

B Non-calibrated
I Calibrated
—  SD

.iaJ'di&

entury CBM Mlllenmal MIMICS Roth G

NN
1

w
1

(Mg C halyrl)

Additional C input to the 4%o

MMMB LN et al, 2022 .,



@) Quantify uncertainties

Model structure

92
92



@) Quantify uncertainties

€rv

Data input

93



Steps of modeling

@) Quantify uncertainties
Data input
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@) Quantify uncertainties

&c

Initial conditions

95



e Steps of modeling

@) Quantify uncertainties

Initial conditions

TOTAL

SLO

ACTIVE

Time 96



e Steps of modeling

@) Quantify uncertainties

Initial conditions

—— (@) All Gy in slow decomposition pool
~ (b) Cy equally distributed among active pools
— - Difference between (a) and (b)

1

150

.-,
-~

I
I
I
I
I
I
\ I
I
I
I
I
I

.
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e i ]
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SOC stock (MgC ha'l)
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e
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@) Quantify uncertainties

€p

Parameters
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@) Quantify uncertainties

Parameters

600

I CcoN
B CLV4.5
" I VImIcS

400

200

Change in soil C (Pg)

2050 2060 2070 2080 2090 2100
Year

2010 2020 2030 2040

Shi et al., 2018
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Initial conditions

€ry

Data input

€p

Parameters

Em

Model
structure

@) Quantify uncertainties

&c

&

» Simulated SOC stocks

&

Observed SOC stocks
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a Steps of modeling

® Implement the model

/

4
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© 'mplement the model

* Run the model code on a computer

[

I 40
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—— o
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N Y 381

ﬁ £
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$ 374

o

@
8 361

w0
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© 'mplement the model

* Run the model code on a computer

104



a Steps of modeling
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a Steps of modeling

O Evaluate with independent data

* Independent database means a database other than
the one that was used for calibration of the parameters

* Database of observations based on a monitoring
network or research sites (~ similar to measurement-
bases Tier 3, but with a lesser density)
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a Steps of modeling

O Evaluate with independent data

Observations
40 /

N '

(¢0) i

- 39

@)

S 37 -

(V]

S

o) 36

)

« 35 1

U T T T T 1 T T T
8 1998 2000 \ 2002 2004 2006 2008 2010 2012

Simulations Year
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a Steps of modeling

O Evaluate with independent data

2
RMSE, R4, d

40
—
i
(¢0) i
- 39
@)
Qo ; 38 T
>
N 3']
(V]
S
o) 36 -
)
m -
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Year
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a Steps of modeling

O Evaluate with independent data

RMSE, R?, d

Eo
o

w
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w
oo
I

w
~

w
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w
w

SOC stocks (Mg C hal)

1998 2000 2002 2004 2006 2008 2010 2012
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a Steps of modeling

and documentation

110



&) Reporting and documentation

Transparency: information needed to
understand the model and assess its outputs

* Model description from literature
* Model assessment from the evaluation

111
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° Case study

Example of a Tier 3 application

Global -~ . _
Soil OrganicCarbon..
Sequestration
Potential
Map e e R
L GSOCseq T T oo}

. and coun
gt guideling? s

FAO, 2020



e Case study

Example of a Tier 3 application

FAO guidelines AR
of Roth-C model application g:’??g:“gﬁhig:;carbon.__
to produce national maps of SOC potantlale | -

sequestration potential in croplands

under different sustainable soil
management practices

FAO, 2020



Q Case study

Example of a Tier 3 application

»Procedure steps -

Global . _ |
Soil OrganicCarbon..
Sequestration &

» Limitation of this case-study

FAO, 2020



° Case study
ROTH-C

C INPUT

DPM RPM

BIO HUM

IOM

Coleman and Jenkinson, 1996



° Case study

Modeling procedure

e Gather the data input

118



e Case study

Data requirements for Roth-C

Climate data

Soil data

Land use- management data

2.

Monthly rainfall(mm)
Average monthly mean
air temperature (°C)
Monthly open pan
evaporation
(mm)/evapotranspiration
(mm)

1.  Total Initial 0—30cm SOC

stocks (t C ha™)

2. Initial C stocks of the
different pools (t C ha):
DPM, RPM, BIO, HUM,
IOM

3. Clay content (%) at
simulation depth.

—

Monthly Soil cover (binary: bare

vs. vegetated)

2. lrrigation (to be added to rainfall
amounts)

3. Monthly Carbon inputs from
plant residue (aboveground +
roots + rhizodeposition), (t C ha
")

4. Monthly Carbon inputs from
organic fertilizers and grazing
animals’ excretion (t C ha™)

5. DPM/RPM ratio, an estimate of

the decomposability of the

incoming plant material
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e Case study

Modeling procedure

Phase 1 Phase 2
o o .. e ‘Lo!1_g S.pin up’ ‘Warm-u;?‘
o Dete rm I n e t h e I n Itl a I (equilibrium runs) (Shol::jpm
conditions soc
ocC
(tC.ha)

Business as

|
I
. |
: |
: |
I |
I |
I |
I |
I |
: |

|
I
: I
. :
I |
I |
: |
I |
: |
I |
: |
I |
I |
I

I
| L

Usual
7
Yeci 2000 2020
-1000 GSOCMap YearO

(Year -20)
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e Case study

Modeling procedure

1 i : S$SM practices
Phase 1 | Phase2 | Phase3 | X
‘Long Spin up’ : ‘Warm-up’ |‘Forward run’ :
(equilibrium runs) : (Short Spin : I
| P i soc
SOC : | Sequestration
(relative and
DK I A absolute)
(tC.ha') | : :
| |
* Run the model for L | Stockat |
| |
. Usual : | petiod -
different management : (o) |Bvinessan
|
. | | |
scenarios Y | ! 1 2
o & 2000 2020 2040 /7 New
-1000 GSOCMap Year0  Year20  steady
(Year -20) state
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° Case study

Modeling procedure

* Generate SOC
sequestration maps

FAO, 2020



e Case study

*WHAT ARE THE LIMITATIONS OF
THIS CASE STUDY?

*CAN YOU IDENTIFY AN IMPORTANT
MISSING STEP?



Key conclusions
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* Select a model adapted to the ecosystem you want to study
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* Select a model adapted to the ecosystem you want to study
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* Assess the uncertainty of the predictions, e.g., multi-model ensembles



Key conclusions

* Select a model adapted to the ecosystem you want to study

e Adapt the model to your local conditions
» Gather required data to implement the model
* Evaluate the performance of the model with observational data

* Assess the uncertainty of the predictions, e.g., multi-model ensembles

“Models are a way to increase the power of data”
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