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Focus on model-based Tier 3 methods Q&A Break
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Agenda

Focus on model-based Tier 3 methods Q&A Break

Demonstration Q&A
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Learning objectives

•Data need for model-based Tier 3 methods

•Understand advantages and limitations

•See examples of inventory report with Tier 3
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Advantages and limitations

Steps of modeling

Case study
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Annual carbon stock changes in AFOLU
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∆CAFOLU = ∆CFL + ∆CCL + ∆CGL + ∆CWL + ∆CSL + ∆COL

• AFOLU = Agriculture, Forestry and Other Land Use

• FL = Forest Land, CL= Cropland, GL = Grassland,  

WL=Wetlands, SL= Settlements, OL = Other Land

Soil organic carbon models1

Eq 2.1 IPCC Guidelines 2006



For a given land-use category

∆CLU = ∆CAB + ∆CBB + ∆CDW + ∆CLI + ∆CSO + ∆CHWP

Soil organic carbon models1

Eq 2.3 IPCC Guidelines 2006

•  AB = above-ground biomass

• BB = below-ground biomass

• DW = deadwood 

• LI= litter

• SO = soils

• HWP = harvested wood products
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Soil organic carbon models1
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•  AB = above-ground biomass
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Soil organic carbon stock changes

10

Soil organic carbon models1



Soil organic carbon stock changes

11

Soil organic carbon models1



Soil organic carbon stock changes
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Soil organic carbon stock changes
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Soil organic carbon models1



Discretization of the soil in compartments
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Soil organic carbon models1



Discretization of the soil in compartments

ACTIVE SLOW

15

Soil organic carbon models1



A two-pool model

ACTIVE SLOW
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Soil organic carbon models1
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Soil organic carbon models1



Other possible model structures

Sierra et al., 2012

n˚ of pools

Parallel

Series

Feedback

1 2 3

18

Soil organic carbon models1



Sierra et al., 2012

Effect of the structure on the predictions
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Soil organic carbon models1



Models used for national C inventories
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Soil organic carbon models1



Young

Old

ICBM

C INPUT• ICBM in Sweden1

CO2 fluxes
Transfer among pools
Carbon input

1 Swedish Environmental Protection Agency, 2017

Models used for national C inventories
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Soil organic carbon models1
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ICBM

FOM

ROM

C-TOOL

HUM

C INPUT• ICBM in Sweden1

• C-TOOL in Denmark2

CO2 fluxes
Transfer among pools
Carbon input

1 Swedish Environmental Protection Agency, 2017; 2Nielsen et al., 2017

Models used for national C inventories
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Soil organic carbon models1



Models used for national C inventories

• ICBM in Sweden1

• C-TOOL in Denmark2

• YASSO07 in Finland3
Young

Old

ICBM
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Carbon input

1 Swedish Environmental Protection Agency, 2017; 2Nielsen et al., 2017; 3Pipatti et al., 2017
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Soil organic carbon models1



Yasso07 adapted to tropical conditions
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Soil organic carbon models1
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Yasso07 adapted to tropical conditions
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Soil organic carbon models1
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Yasso07 adapted to tropical conditions
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Soil organic carbon models1
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Century adapted to semi-arid conditions

27Parton et al., 1988

Soil organic carbon models1
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Century adapted to semi-arid conditions
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AM BM AS BS

Active

Passiv
e

Slow

CENTURY

Legend
CO2 fluxes
Transfer among pools
Carbon input

Araújo Neto et al., 2021

Soil organic carbon models1

Century in Brazil

Parton et al., 1988



Century adapted to semi-arid conditions
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AM BM AS BS

Active

Passiv
e

Slow

CENTURY

Legend
CO2 fluxes
Transfer among pools
Carbon input

Araújo Neto et al., 2021

Soil organic carbon models1

Need of long-term 
experimental research to 
constrain decomposition 
dynamics

Parton et al., 1988
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Tier 3 methods

•Measurement-based

•Model-based
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Advantages and limitations2



Tier 3 methods

•Measurement-based

Extensive measurements 
networks to calculate SOC 
stock changes

Jolivet et al., 2018

RMQS
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Advantages and limitations2



Tier 3 methods
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•Model-based

Field data to 
evaluate model 
performance
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Advantages
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Advantages

• Capture complexity of the system and diversity of 
practices, e.g., climate and disturbances effects
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Advantages and limitations2



Advantages

• Higher spatial and temporal resolution
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Advantages and limitations2



Advantages

• Improved completeness: coverage of land areas and/or 
carbon pools
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TOTAL 
CARBON

LABILE 
CARBON

RESISTANT 
CARBON

Advantages and limitations2



Advantages

• Cost-efficient compared to Tier 2 (which may need 
extensive data collection)
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Advantages and limitations2



Advantages

• Improved uncertainty assessment

40Lane et al., 2014

Advantages and limitations2



Advantages

• Predict: better assessment of the impacts of 
mitigation efforts and policy measures

41
O’Neill et al. 2016

Advantages and limitations2



Advantages

• Improved time-series consistency for past and future 
projections
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Advantages and limitations2



Limitations
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Advantages and limitations2



Limitations

• “Models are a way to increase the power of data”: 
they still need a lot of data as input and for evaluation

44

Advantages and limitations2

IPCC, 2010



Limitations

• “Models are a simplified representation of reality”:
they are still associated with uncertainty and errors
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Advantages and limitations2



Limitations

• Uncertainty IN  uncertainty OUT
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MODEL

Advantages and limitations2



Limitations

• Incorrect use can lead to high errors and biases 
(e.g., application outside their domain, incorrect evaluation) 
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Advantages and limitations2



Limitations

• Technical difficulties to calibrate and implement
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QUESTIONS?
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When to use a Tier 3 approach?

IPCC Guidelines, 2006 50

Advantages and limitations2
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Select/develop a model
Evaluate with calibration data

Identify model input
Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



Select/develop a model
Evaluate with calibration data

Identify model input
Quantify uncertainties
Implement the model

Evaluate with independent data
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Steps of modeling3



Model selection

Select/develop a model1
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Steps of modeling3



Model selection
More than 200 soil carbon models are available

Select/develop a model1

55Le Noe et al., 2023

Steps of modeling3



Model selection
Validated for the desired land-use

Select/develop a model1

56Garsia et al., 2023

Steps of modeling3



Model selection
Validated for the desired pedo-climatic conditions

Select/develop a model1

57Garsia et al., 2023

Steps of modeling3



Model selection
Availability of the necessary resources for implementation

Select/develop a model1
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Steps of modeling3



Model selection
Availability of the data required (see Step 3)

Select/develop a model1
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Steps of modeling3



Model adaptation

Select/develop a model1
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Steps of modeling3



Model adaptation
Factors that influence SOC 
persistence depend on pedo-
climatic conditions

Select/develop a model1

61Von Fromm et al., 2023

Steps of modeling3

Arid

Tropical
(seas.)

Temp
(humid)

Temp
(seas.)

Trop
(humid)

Explained variation (%)



Model adaptation
Some human activities may be important in some countries, not in other 

Select/develop a model1
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© Ramesh Singh Yadav

Steps of modeling3



Select/develop a model
Evaluate with calibration data

Identify model input
Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



Demonstrate that the model effectively simulates 
measured trends for a variety of conditions in the 
category of interest

Evaluate with calibration data2
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Steps of modeling3



Evaluation with statistical and graphical tests

Evaluate with calibration data2
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Evaluation with statistical and graphical tests

Evaluate with calibration data2
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Default k = 0.165
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Evaluation with statistical and graphical tests

Evaluate with calibration data2
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Examples of statistics for evaluation

• Root mean squared error, 

• Coefficient of determination, 

• Willmott index of agreement, 

Evaluate with calibration data2
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Steps of modeling3



Examples of statistics for evaluation

• Root mean squared error, 

• Coefficient of determination, 

• Willmott index of agreement, 

The model effectively simulates measured trends

Evaluate with calibration data2
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Steps of modeling3



If the evaluation is not satisfactory, re-calibrate or 
change model
Model evaluation needs to be in the reporting 

documentation to justify the use of a particular model

Evaluate with calibration data2
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Steps of modeling3
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Select/develop a model
Evaluate with calibration data
Identify model input

Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate

• Temperature (surface or soil)
• Precipitation
• Potential evapotranspiration
• Soil moisture

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate

• Temperature (surface or soil)
• Precipitation
• Potential evapotranspiration
• Soil moisture

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil

• Clay content
• Initial SOC stocks in the soil pools
• pH
• C:N ratio
• CaCO3 content

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation

• Litter input
• Woody debris
• Animal manure

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management

• Agricultural practices (e.g., tillage, cover cropping)
• Forest practices (e.g., clear-cut, thinning)

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

• Fires
• Insects outbreaks

Identify model input3
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Steps of modeling3



Spatial and temporal data on:
• Climate
• Soil
• Vegetation
• Land-management
• Disturbances

Consistent with spatial-temporal scale of the model!

Identify model input3
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Steps of modeling3



Select/develop a model
Evaluate with calibration data
Identify model input

Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



• Uncertainty measures the confidence of the model 
estimate

• Imperfect knowledge of activities and processes 
 uncertainties in the structure, parametrization and 
inputs

Methods to conduct these analyses: see IPCC Guidelines 
(2006) Volume 1 Chapter 3

Quantify uncertainties4
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Steps of modeling3



Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
εS

Observed SOC stocks

εO
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Quantify uncertainties4

Steps of modeling3
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Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
εS

Observed SOC stocks

εO

Quantify uncertainties4

Steps of modeling3
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Quantify uncertainties4

Steps of modeling3

Model structure

Sierra et al., 2012
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Quantify uncertainties4

Steps of modeling3

Model structure

Bruni et al, 2022
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Quantify uncertainties4

Steps of modeling3

Model structure

Multi-modeling approaches can help assessing the 
effect of model structure on the simulations



Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
εS

Observed SOC stocks

εO
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Quantify uncertainties4

Steps of modeling3
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MODEL

Quantify uncertainties4

Steps of modeling3

Data input



Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
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Observed SOC stocks

εO
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Quantify uncertainties4

Steps of modeling3
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Quantify uncertainties4

Steps of modeling3
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Quantify uncertainties4

Steps of modeling3
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Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
εS

Observed SOC stocks

εO
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Quantify uncertainties4

Steps of modeling3
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Quantify uncertainties4

Steps of modeling3

Parameters

Shi et al., 2018



Model
structure

Initial conditions

Data input

Parameters

Simulated SOC stocks

εIC

εFV

εP

εM
εS

Observed SOC stocks

εO
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Quantify uncertainties4

Steps of modeling3
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Select/develop a model
Evaluate with calibration data
Identify model input

Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation

1
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7
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Steps of modeling3



• Run the model code on a computer

Implement the model5
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Steps of modeling3



• Run the model code on a computer

Implement the model5
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Steps of modeling3

Higher temporal and spatial resolution require higher 
computational resources!



Select/develop a model
Evaluate with calibration data
Identify model input

Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



• Independent database means a database other than 
the one that was used for calibration of the parameters

• Database of observations based on a monitoring 
network or research sites (~ similar to measurement-
bases Tier 3, but with a lesser density)

Evaluate with independent data6
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Steps of modeling3
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Evaluate with independent data6

107
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Evaluate with independent data6
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Steps of modeling3
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Evaluate with independent data6
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Steps of modeling3
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If evaluation is not satisfactory, go back to step 2, 3 or 1!
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Select/develop a model
Evaluate with calibration data
Identify model input

Quantify uncertainties
Implement the model

Evaluate with independent data
Reporting and documentation
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Steps of modeling3



Transparency: information needed to 
understand the model and assess its outputs

• Model description from literature
• Model assessment from the evaluation

Reporting and documentation7
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Steps of modeling3



QUESTIONS?

112



Soil organic carbon models

Advantages and limits

Steps of modeling

Case study

1

2

3

4
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Example of a Tier 3 application

FAO, 2020114

Case study4



Example of a Tier 3 application

FAO guidelines 
of Roth-C model application 
to produce national maps of SOC 
sequestration potential in croplands 
under different sustainable soil 
management practices

FAO, 2020115

Case study4



Example of a Tier 3 application

FAO, 2020

Procedure steps

Limitation of this case-study
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Case study4



DPM

BIO

ROTH-C

RPM

HUM

IOM

Coleman and Jenkinson, 1996

C INPUT
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Case study4



Modeling procedure

• Gather the data input
• Determine the initial 

conditions
• Run the model for 

different 
management 
scenarios

• Generate SOC 
sequestration maps
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Case study4



Data requirements for Roth-C
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Case study4



Modeling procedure

• Gather the data input
• Determine the initial 

conditions
• Run the model for 

different 
management 
scenarios

• Generate SOC 
sequestration maps
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Case study4



Modeling procedure

• Gather the data input
• Determine the initial 

conditions
• Run the model for 

different management 
scenarios

• Generate SOC 
sequestration maps
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Case study4



Modeling procedure

• Gather the data input
• Determine the initial 

conditions
• Run the model for 

different management 
scenarios

• Generate SOC 
sequestration maps

FAO, 2020122

Case study4



•WHAT ARE THE LIMITATIONS OF 

THIS CASE STUDY?

•CAN YOU IDENTIFY AN IMPORTANT 

MISSING STEP?
123

Case study4



Key conclusions
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Key conclusions

125

• Select a model adapted to the ecosystem you want to study
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• Adapt the model to your local conditions
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• Gather required data to implement the model
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• Select a model adapted to the ecosystem you want to study

• Adapt the model to your local conditions

• Gather required data to implement the model

• Evaluate the performance of the model with observational data

• Assess the uncertainty of the predictions, e.g., multi-model ensembles



Key conclusions

130

• Select a model adapted to the ecosystem you want to study

• Adapt the model to your local conditions

• Gather required data to implement the model

• Evaluate the performance of the model with observational data

• Assess the uncertainty of the predictions, e.g., multi-model ensembles

“Models are a way to increase the power of data”
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Thank you for your attention!
bruni@geologie.ens.fr
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