

Key Category Analysis

Remote Training on the Building of Sustainable National Greenhouse Gas Inventory Management Systems

> Dr. John Watterson On behalf of U.S. Environmental Protection Agency 30th June, 2022

Developing a Sustainable National GHG Inventory System

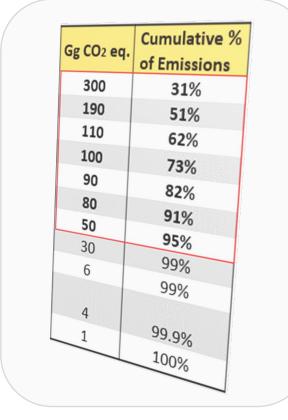
Key Category Analysis

Are you familiar with the concept of key categories?

a) Yes b) No

Respond using Mentimeter link in the chat!

Poll Question #2


What is a key category?

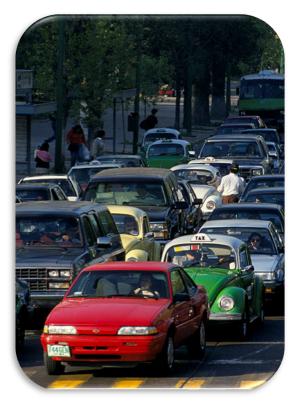
Please describe....

Respond using Mentimeter link in the chat!

Overview

Introduction to Key Category Analysis Review of the Template & Tools

What is a Key Category?

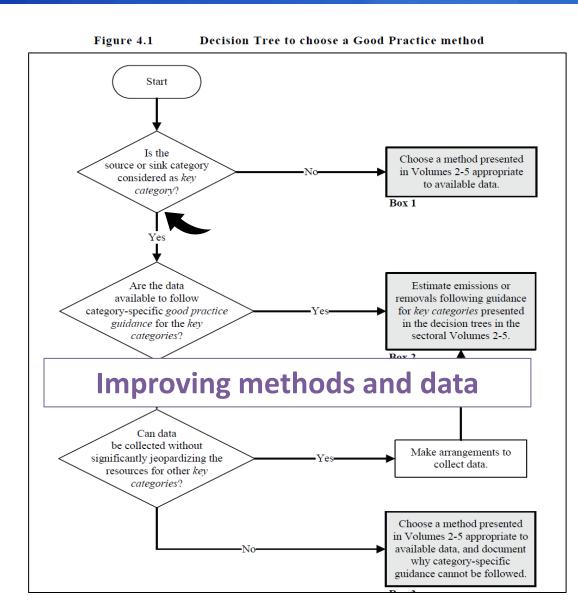

INTERGOVERNMENTAL PANEL ON Climate change

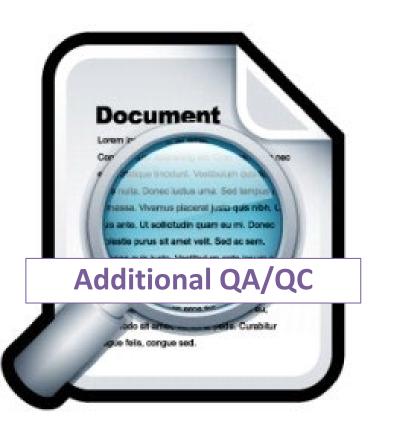
2006 IPCC Volume 1, Chapter 4

A <u>category</u> that is prioritized within the national inventory system because its <u>estimate</u> has a **significant influence** on a country's <u>total inventory</u> of greenhouse gases in terms of the **absolute level, the trend, or the uncertainty in emissions and removals.**

Example Key Source and Sink Categories

Absolute level contribution to total emissions




Trend: High growth rate in emissions

Uncertainty in emissions or removals

Prioritizing Key Categories in National GHG Inventories

How to Identify Key Categories

How to Identify Key Categories

Quantitative Approaches

Qualitative Approaches

 Use emission and sink estimates and uncertainty analysis results to analyze actual category contribution to both overall emissions and sinks and uncertainty.

How to Identify Key Categories

Qualitative Approaches Quantitative Approaches Completeness: If there are • known categories that are Use emission and sink excluded from the inventory, estimates and uncertainty consider qualitive criteria to analysis results to analyze identify any additional key actual category contribution categories. to both overall emissions and sinks and uncertainty. Other qualitative criteria include expected growth, lack of

quantified uncertainty

effects

assessment, and mitigation

Quantitative Assessment for Identifying Key Categories

A quantitative assessment **identifies** key categories that collectively contribute at least 95% of national emissions in the current GHG inventory.

- Approach 1 sorts and ranks source and sink categories according to their absolute contribution to total emissions and includes categories that collectively contribute 95% of total emissions
 - ✓ A "level assessment" looks at a particular year
 - ✓ A "trend assessment" looks at the category trend relative to national trend in emissions
- Approach 2 is similar, but sorts and ranks category estimates according to their absolute contribution weighted by uncertainty, and includes categories that collectively contribute 90% of uncertainty weighted total emissions

Note: If using the IPCC Inventory Software, quantitative KCA is performed automatically by the software as data is entered – no need to process separately

Before you get started:

- 1. Identify roles Decide who will conduct the KCA (e.g., National Inventory Coordinator).
- Organize your inventory estimates at disaggregation levels consistent with IPCC guidance: estimates are organized by the categories, subcategories where applicable, and gases as defined in the 2006 IPCC Guidelines, Volume 1, Chapter 4 → Perform including and excluding LULUCF sector

Step 1) List all inventory categories for year of level analysis (e.g., latest reported year)

Emission Category	Gas	Gg CO ₂ eq.

Step 1) List all inventory categories for year of level analysis (e.g., latest reported year)

Emission Category	Gas	Gg CO ₂ eq.
Energy Industries (solid fuel)	CO ₂	300
Road Transportation	CO ₂	110
Iron and Steel Production	CO ₂	90
Iron and Steel Production	CH ₄	1
Forest Land Remaining Forest Land	CO ₂	-190
Croplands Remaining Croplands	CO ₂	6
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4
Enteric Fermentation	CH ₄	100
Manure Management	N ₂ O	80
Cement Production	CO ₂	30
Rice Cultivation	CH ₄	50

Important good practice: The analysis should be performed at appropriate level of aggregation (i.e., at level at which you estimate IPCC categories or subcategories, per methods and decision trees).

pproach 1: Level Asses	sment Approach 1: Trend Assessment					
A	Ð	с	D	E	F	G
IPCC Category code	IPCC Category	Greenhouse gas	1994 Ex,t (Gg CO2 Eq)	(Gg CO2 Eq)	Lx,t	Cumulative Total of Column F
2.G	Other Product Manufacture and Use	SF6, PFCs	753201.6125	753201.6125	0.7526	0.752
2.F.6	Other Applications (please specify)	HFCs, PFCs	70736	70736	0.07068	0.8232
1.A.1	Energy Industries - Solid Fuels	CARBON DIOXID_	29743.85	29743.85	0.02972	0.85
2.F.5	Solvents	HFCs, PFCs	27420	27420	0.0274	0.880
1.B.2.a	Oil	NITROUS OXIDE_	26988.6	26988.6	0.02697	0.9073
3.D.1	Harvested Wood Products	CARBON DIOXID_	-22505.91952	22505.91952	0.02249	0.9298
2.E	Electronics Industry	SF6, PFCs, HFCs_	20600.3124	20600.3124	0.02058	0.9504
1.A.3.b	Road Transportation	CARBON DIOXID.	13448.0555	13448.0555	0.01344	0.9638
4.C	Incineration and Open Burning of Waste	CARBON DIOXID	7704.54027	7704.54027	0.0077	0.9715
4.A	Solid Waste Disposal	METHANE (CH4)	3705.3582	3705.3582	0.0037	0.9752
1.A2	Manufacturing Industries and Construction.	CARBON DIOXID.	3516.442	3516.442	0.00351	0.9787
1.A1	Energy Industries - Liquid Fuels	CARBON DIOXID.	3387,944	3387.944	0.00339	0.9821
2.G	Other Product Manufacture and Use	NITROUS OXIDE (3349.9096	3349.9096	0.00335	0.9855
2.D	Non-Energy Products from Fuels and Solv.	CARBON DIOXID	3342.603	3342.603	0.00334	0.9888

Step 2) Sort in descending order by contribution to total emissions (absolute values)

Emission Category	Gas	Gg CO ₂ eq.
Energy Industries (solid fuel)	CO ₂	300
Forest Land Remaining Forest Land	CO ₂	-190
Road Transport	CO ₂	110
Enteric Fermentation	CH ₄	100
Iron and Steel Production	CO ₂	90
Manure Management	N ₂ O	80
Rice Cultivation	CH_4	50
Cement Production	CO ₂	30
Croplands Remaining Croplands	CO ₂	6
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4
Iron and Steel Production	CH ₄	1

Step 2) Sort in descending order by contribution to total emissions (absolute values)

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄	1	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes	HFC&PFC		
(Aerosols)		4	
Iron and Steel Production	CH ₄	1	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	
Forest Land Remaining Forest Land	CO_2	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO_2	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PF	4	
Iron and Steel Production	CH ₄	1	L
	·	TOTAL : 961	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	= 300/961 × 100%
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO_2	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	2 4	
Iron and Steel Production	CH4	1	
	·	TOTAL : 961	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands		6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	2 4	
Iron and Steel Production	CH4 _	1	
	·	TOTAL : 961	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	= [(190/961)*100] + 31%
Road Transport	CO ₂	110	
Enteric Fermentation	CH ₄	100	
Iron and Steel Production	CO ₂	90	
Manure Management	N ₂ O	80	
Rice Cultivation	CH ₄	50	
Cement Production	CO ₂	30	
Croplands Remaining Croplands	CO ₂	6	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	
Iron and Steel Production	CH ₄		
	T	UIAL:961	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO ₂	190	51%
Road Transport	CO ₂	110	62%
Enteric Fermentation	CH ₄	100	73%
Iron and Steel Production	CO ₂	90	82%
Manure Management	N ₂ O	80	91%
Rice Cultivation	CH ₄	50	95%
Cement Production	CO ₂	30	99%
Croplands Remaining Croplands	CO_2	6	99%
Product Uses as ODS Substitutes (Aerosols)	HFC&PF0	4	99.9%
Iron and Steel Production	CH4	1	100%
	· · · · · ·	TOTAL : 961	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %	
Energy Industries (solid fuel)	CO ₂	300	31%	
Forest Land Remaining Forest Land	CO ₂	190	51%	
Road Transport	CO ₂	110	62%	Sum to 95%
Enteric Fermentation	CH ₄	100	73%	
Iron and Steel Production	CO ₂	90	82%	These are key
Manure Management	N ₂ O	80	91%	categories
Rice Cultivation	CH₄	50	95%	identified by
Cement Production	CO ₂	30	99%	the approach 1 level
Croplands Remaining Croplands	CO ₂	6	99%	assessment.
Product Uses as ODS Substitutes	HFC&PFC			assessment.
(Aerosols)	IIFCOFFC	4	99.9%	
Iron and Steel Production	CH ₄	1	100%	

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %	
Energy Industries (solid fuel)	CO ₂	300	31%	
Forest Land Remaining Forest Land	CO ₂	190	51%	
Road Transport	CO ₂	110	62%	Sum to 95%
Enteric Fermentation	CH ₄	100	73%	
Iron and Steel Production	CO ₂	90	82%	
Manure Management	N ₂ O	80	91%	
Rice Cultivation	CH_4	50	95%	
Cement Production	CO ₂	30	99%	
Croplands Remaining Croplands	CO ₂	6	99%	
Product Uses as ODS Substitutes (Aerosols)	HFC&PFC	4	99.9%	
Iron and Steel Production	CH_4	1	100%	

Step 3) Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

Emission Category	Gas	Gg CO ₂ eq.	Cumulative %
Energy Industries (solid fuel)	CO ₂	300	31%
Forest Land Remaining Forest Land	CO_2	190	51%
Road Transport	CO_2	110	62%
Enteric Fermentation	CH_4	100	73%
Iron and Steel Production	CO_2	90	82%
Manure Management	N_2O	80	91%
Rice Cultivation	CH ₄	50	95%
Cement Production	CO_2	30	99%
Croplands Remaining Croplands	CO_2	6	99%
Product Uses as ODS Substitutes	HFC&PFC		
(Aerosols)		4	99.9%
Iron and Steel Production	CH ₄	1	100%

ETF reporting guidelines provide flexibility for developing countries, in light of their capacities, to instead use a threshold of no lower than 85% to allow focus on improving fewer categories

Quantitative Assessment: Trend Assessment

A trend assessment looks at a category's relative changes in emissions over time, instead of the contribution of a category to the total emission estimates for a country in a particular year.

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300			
Forest Land Remaining Forest Land	CO ₂	-210	-190			
Road Transport	CO ₂	60	110			
Enteric Fermentation	CH_4	80	100			
Iron and Steel Production	CO ₂	120	90			
Manure Management	CO ₂	70	80			
Rice Cultivation	HFC&PFC	45	50			
Cement Production	CH_4	35	30			
Croplands Remaining Croplands	N_2O	8	6			
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4			
Iron and Steel Production	CH_4	1.5	1			
	TOTAL: 410.5		TOTAL: 58	1		3

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO ₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.08		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.32		
Road Transport	CO ₂	60	110	0.42		
Enteric Fermentation	CH_4	80	100	0.17		
Iron and Steel Production	CO ₂	120	90	0.67		
Manure Management	CO ₂	70	80	0.27		
Rice Cultivation	HFC&PFC	45	50	0.30		
Cement Production	CH_4	35	30	0.56		
Croplands Remaining Croplands	N ₂ O	8	6	0.67		
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4	2.58		
Iron and Steel Production	CH ₄	1.5	1	0.75		

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO ₂ eq.	Gg CO₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.08		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.32		
Road Transport	CO ₂	60	110	0.42		
Enteric Fermentation	CH_4	80	100	0.17		
Iron and Steel Production	CO ₂	120	90	0.67		
Manure Management	CO ₂	70	80	0.27		
Rice Cultivation	HFC&PFC	45	50	0.30		
Cement Production	CH_4	35	30	0.56		
Croplands Remaining Croplands	N_2O	8	6	0.67		
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4	2.58		
Iron and Steel Production	CH_4	1.5	1	0.75	_	
				TOTAL: 6.79		

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

Emission Category	Gas	1990	2018	Trend Assessment	% Contribution to Trend	Cumulative Total
		Gg CO₂ eq.	Gg CO₂ eq.			
Energy Industries (solid fuel)	CO ₂	200	300	0.08	1.2%	1.2%
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.32	5%	6.0%
Road Transport	CO ₂	60	110	0.42	6%	12.1%
Enteric Fermentation	CH ₄	80	100	0.17	2%	14.6%
Iron and Steel Production	CO ₂	120	90	0.67	10%	24.4%
Manure Management	CO ₂	70	80	0.27	4%	28.4%
Rice Cultivation	HFC&PFC	45	50	0.30	4%	32.9%
Cement Production	CH ₄	35	30	0.56	8%	41.1%
Croplands Remaining Croplands	N ₂ O	8	6	0.67	10%	50.9%
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4	2.58	38%	89.0%
Iron and Steel Production	CH ₄	1.5	1	0.75	11%	100.0%
				TOTAL: 6.79		

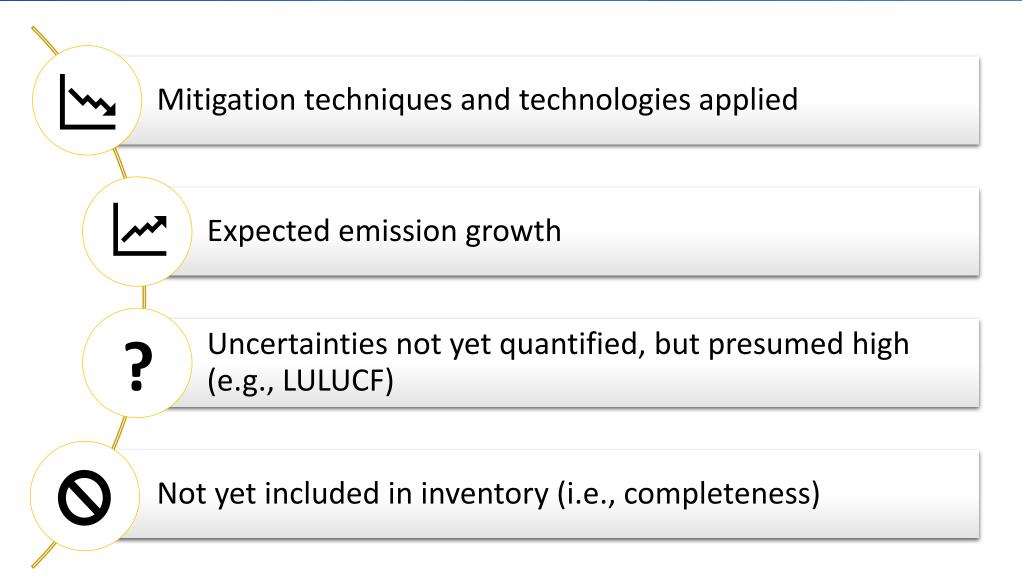
Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

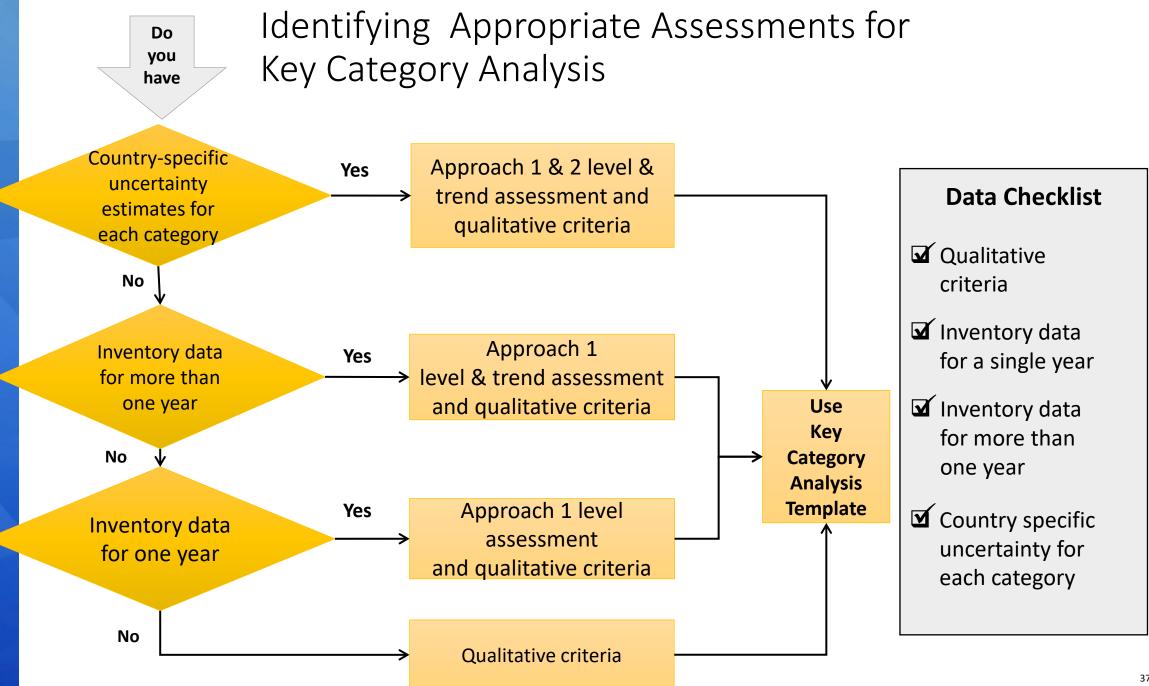
Emission Category	Gas	1990 Gg CO2 eq.	2018 Gg CO2 eq.	Trend Assessment	% Contribution to Trend	Cumulative Total
Energy Industries (solid fuel)	CO ₂	200	300	0.08	1%	1.2%
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.32	5%	6.0%
Road Transport	CO ₂	60	110	0.42	6%	12.1%
Enteric Fermentation	CH ₄	80	100	0.17	2%	14.6%
Iron and Steel Production	CO ₂	120	90	0.67	10%	24.4%
Manure Management	CO ₂	70	80	0.27	4%	28.4%
Rice Cultivation	HFC&PFC	45	50	0.30	4%	32.9%
Cement Production	CH ₄	35	30	0.56	8%	41.1%
Croplands Remaining Croplands	N ₂ O	8	6	0.67	10%	50.9%
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4	2.58	38%	89.0%
Iron and Steel Production	CH ₄	1.5	1	0.75	11%	100.0%
				TUTAL		

6.79

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

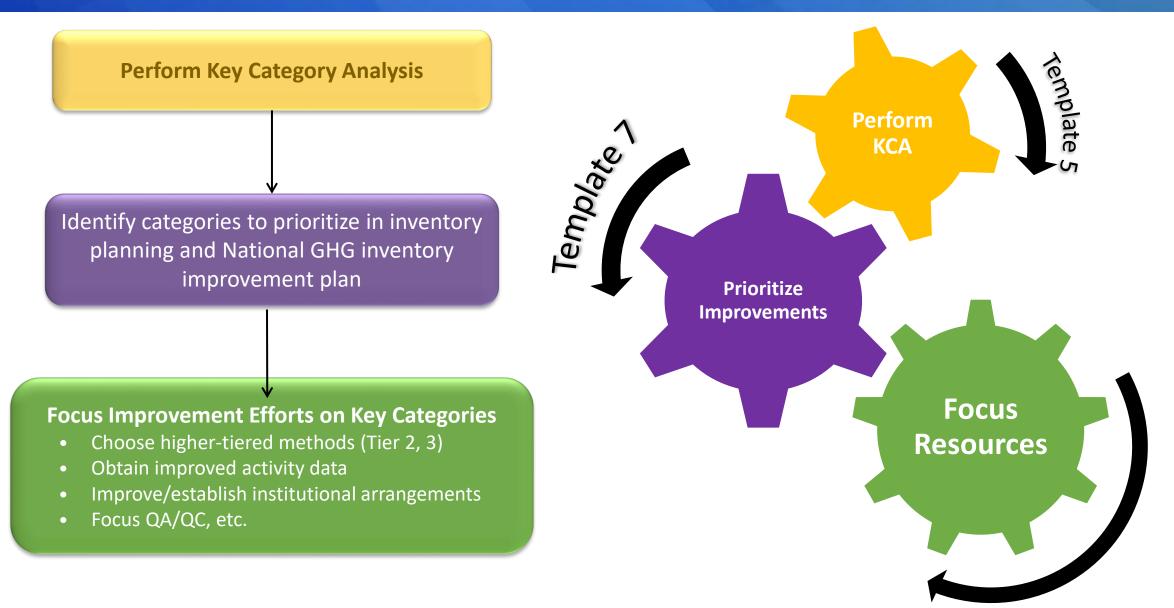
Sum to 95%


Quantitative Assessment: Considering Uncertainty when Conducting an Approach 2 Trend Assessment



Emission Category	Gas	1990 Gg CO2 eq.	2018 Gg CO2 eq.	Trend Assessment	Trend Assessment Including Uncertainty	% Contribution to Trend	Cumulative Total
Energy Industries (solid fuel)	CO ₂	200	300	0.08	=0.08*U _{x,2018}		
Forest Land Remaining Forest Land	CO ₂	-210	-190	0.32		,	
Road Transport	CO ₂	60	110	0.42			
Enteric Fermentation	CH ₄	80	100	0.17			
Iron and Steel Production	CO ₂	120	90	0.67			
Manure Management	CO₂ HFC&PF	70	80	0.27			
Rice Cultivation	C	45	50	0.30			
Cement Production	CH ₄	35	30	0.56			
Croplands Remaining Croplands	N ₂ O	8	6	0.67			
Product Uses as ODS Substitutes (Aerosols)	CO ₂	1	4	2.58			
Iron and Steel Production	CH ₄	1.5	1	0.75	TOTAL:		
					TBD		

Qualitative Assessments to Conducting Key Category Analysis



Recap: Why Do a Key Category Analysis?

Key Categories in the National Inventory Compilation Cycle

- and references
- Write inventory report

Does your latest National GHG Inventory include a key category analysis?

a) Yesb) No

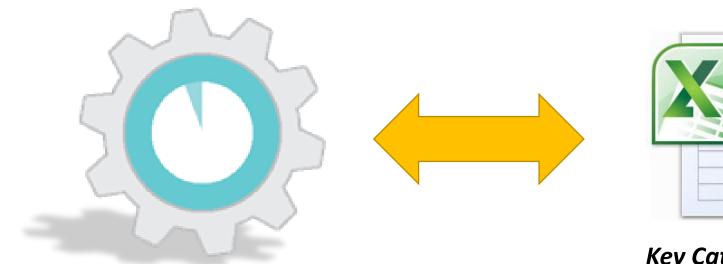
Respond using Mentimeter link in the chat!

Which tools did you use to conduct the key category analysis?

- a) Spreadsheets
- b) IPCC Inventory Software
- c) Other

Describe Other using the chat!

Respond using Mentimeter link in the chat!


IPCC Inventory Software

Automates preparing a quantitative KCA analysis

proach 1: Level Asses	sment Approach 1: Trend Assessment					
A	8	C	D	E	F	G
PCC Category code	IPCC Category	Greenhouse gas	1994 Ex,t (Gg CO2 Eq)	(Gg CO2 Eq)	Lx,t	Cumulative Total of Column F
2.G	Other Product Manufacture and Use	SF6, PFCs	753201.6125	753201.6125	0.7526	0.752
2.F.6	Other Applications (please specify)	HFCs, PFCs	70736	70736	0.07068	0.8232
1.A.1	Energy Industries - Solid Fuels	CARBON DIOXID_	29743.85	29743.85	0.02972	0.853
2.F.5	Solvents	HFCs, PFCs	27420	27420	0.0274	0.880
1.B.2.a	Oil	NITROUS OXIDE_	26988.6	26988.6	0.02697	0.9073
3.D.1	Harvested Wood Products	CARBON DIOXID_	-22505.91952	22505.91952	0.02249	0.9298
2.E	Electronics Industry	SF6, PFCs, HFCs_	20600.3124	20600.3124	0.02058	0.95044
1.A.3.b	Road Transportation	CARBON DIOXID.	13448.0555	13448.0555	0.01344	0.96388
4.C	Incineration and Open Burning of Waste	CARBON DIOXID	7704.54027	7704.54027	0.0077	0.97158
4.A	Solid Waste Disposal	METHANE (CH4)	3705.3582	3705.3582	0.0037	0.97528
1.A2	Manufacturing Industries and Construction.	CARBON DIOXID.	3516.442	3516.442	0.00351	0.97879
1.A1	Energy Industries - Liquid Fuels	CARBON DIOXID.	3387.944	3387.944	0.00339	0.98218
2.G	Other Product Manufacture and Use	NITROUS OXIDE (3349.9096	3349.9095	0.00335	0.98555
2.D	Non-Energy Products from Fuels and Solv.	CARBON DIOXID	3342.603	3342.603	0.00334	0.98886

Key Category Analysis

National System Templates

Template 5: Key Category Analysis

Key Category Tool

Helps implement IPCC methods, and calculate Key Categories using Microsoft Excel or OpenOffice Calc

Where to Obtain the Key Category Analysis Tool

Available Online at

https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems

5. Key Category Analysis (KCA)

This template identifies the sources and sinks that make the greatest contribution to national GHG emissions and removals. With this analysis of key categories, a GHG inventory team can prioritize over time the resources needed to implement the more impactful improvements to a national GHG inventory.

Key Category Analysis (12 pp, 124 K)

Kev Category Analysis Tool

Key Category Analysis (PDF) (12 pp, 486 K)

MB)

Supporting Tool: The **Key Category Analysis Tool** enables a GHG inventory team to determine key categories of GHG emissions and removals from GHG inventory estimates.

The Key Category Analysis Tool

 Click the Sort Key Categories button to the right. 			
	Sor	t Key Categories	
The resulting key categories are those categories shaded in green.			
Key Category Tier 1 Level Assessment for the Current Y	ear		
	Current Year		
	Emission	Level	Cumulativ
CATEGORIES	Estimate		
		assessment	Percentag
	(Gg CO ₂ eq)		
1A1 - Fuel Combustion Activities - Energy Industries (Solid Fuel) - CH4	162,029	0.357	36%
2B9 - Chemical Industry - Fluorochemical Production - PFCs	162,029	0.146	50%
1A1 - Fuel Combustion Activities - Energy Industries (Gaseous Fuel) - CO2	113,945	0.102	60%
2C1 - Metal Industry -Iron and Steel Production - CH4	113,945	0.102	71%
1A1 - Fuel Combustion Activities - Energy Industries (Solid Fuel) - CO2	84,009	0.075	78%
2B8 - Chemical Industry - Petrochemical and Carbon Black Production - CH4	84,009	0.075	86%
1A1 - Fuel Combustion Activities - Energy Industries (Solid Fuel) - N2O	65,128	0.059	92%
2B9 - Chemical Industry - Fluorochemical Production - HFCs	65,128	0.059	98%
1A3d - Fuel Combustion Activities - Transport - Domestic Water-borne Navigation - N2O	16,127	0.014	99%
2F3 - Product Uses as Substitutes for Ozone Depleting Substances -Fire Protection - HFCs, PFCs	16,127	0.014	100%
3B2b - Land Converted to Cropland (Removals) - CO2	16,127	0.014	102%
3B5b - Forest Land Converted to Settlements (Removals) - CO2	16,127	0.014 0.010	103% 104%
2B1 - Chemical Industry - Ammonia Production - CO2	11,076	0.010	104%
1C - Carbon Dioxide Transport and Storage - CO2 2A1 - Mineral industry - Cement Production - CO2	10,921 8,122	0.010	105%
182b - Fugitive Emissions from Fuels - Oil and Natural Gas - Natural gas - CO2		0.007	108%
2A2 - Mineral Industry - Lime Production - CO2	7,371 7,104	0.007	107%
2A2 - Mineral Industry - Lime Production - CO2 1A2 - Fuel Combustion Activities - Manufacturing Industries and Construction - CO2	5,111	0.005	107%
2C3 - Metal Industry -Aluminium Production - PFCss	5,111	0.005	108%
1A3c - Fuel Combustion Activities - Transport - Railways - CH4	5,041	0.005	103%
2F1 - Product Uses as Substitutes for Ozone Depleting Substances - Refrigeration and Air Conditioning - HFCs, PFCs	5.041	0.005	109%
3B2a - Cropland Remaining Cropland (Removals) - CO2	5,041	0.005	110%
3B5b - Land Converted to Settlements (Removals) - CO2	5,041	0.005	110%
1A1 - Fuel Combustion Activities - Energy Industries (Liquid Fuel) - CO2	4,943	0.004	111%
2B9 - Chemical Industry - Fluorochemical Production - SF6	4,943	0.004	111%
1 - Miscellaneous - N2O	3,775	0.003	111%
1A1 - Fuel Combustion Activities - Energy Industries (Liquid Fuel) - CH4	3,768	0.003	112%
2C1 - Metal Industry -Iron and Steel Production - CO2	3,768	0.003	112%

Documenting KCA Results

- Save copies of the file as different versions for draft and final analyses by inserting the date or version number at the end of the file name (e.g., "KCA Tool v2.xls").
- You may also use the 2006 IPCC Guidelines inventory software, which has a KCA module in it, or build your own spreadsheet(s) that follow the methodologies in the 2006 IPCC Guidelines.

STEP 3: Complete the Approach 1 key category current year level assessment

Complete Table 5-1, below, using the results from the KCA you performed in Step 2. This table will be a record of the results of the IPCC Approach 1 key category level assessment for the most recent or current year (e.g., 2019). Add as many rows to the table as necessary to provide detailed information for each category.

If or when the inventory is updated, update the KCA. Table 5-1: Key Categories Based on Contribution to Total National Emissions		Approach 1 Assessment (Current Year)				
I able 5-1: Key Cate	gories Based on Contribution to Total National Emissions	Gas	Current Year Emissions (Gg CO2 Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions	
*Represents results fro	m the "Key Category Approach 1 Assessment for the Current Year" she	et in the EPA	KCA tool.			
STEP 4: Complete the Approach 1 key category base year level assessment and trend assessment						
Complete this step if your country has GHG inventories with a time series of more than one year.						
If your country has a GHG inventory for only one year, proceed to Step 5.						

Key Category Analysis

How this Template Will Help!

The *Key Category Analysis Tool and Template* will help the inventory team:

- Identify, document, and summarize all key categories identified using latest Inventory based on approaches available
 - Approach 1
 - Approach 2 (reflects uncertainty)
 - Qualitative criteria
- Document inventory improvements for the future

Step 1: Key Categories in National Emissions

Table 5.1: Key Categories Based on Contribution to Total National Emissions in Current Year (year e.g., 2019)

IPCC Category Code	IPCC Category	Gas	Current Year Emissions (Gg CO ₂ Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous Fuel)	CO ₂	7,500	30%	30%
1A3e	Fuel Combustion Activities - Transport - Other Transportation	CH ₄	5,000	20%	50%
2C3	Metal Industry -Aluminum Production	PFC	4,800	19%	69%
1A3a	Fuel Combustion Activities - Transport - Domestic Civil Aviation	CO ₂	1,000	3%	72%
3C1	Biomass Burning	N ₂ O	700	3%	75%

Approach 1 Level Assessment (Current Year)

Steps 2-3: Key Categories in National Emissions in Base Year & Key Categories Based on Contribution to Overall Trend

Table 5-2: Key Categories Based on Contribution to Total National Emissions in Base Year [year, e.g., 2000]

IPCC Category Code	IPCC Category	Gas	Base Year Emissions (Gg CO ₂ Eq.)	Contribution to National Emissions	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	7,200	32%	32%
			Approach	<mark>1 Level Assessment (</mark>	Base Year)

Table 5-3: Key Categories Based on Contribution to Overall Trend in Net National Emissions

IPCC Category Code	IPCC Category	Gas	Emissions	Current Year Emissions (Gg CO ₂ Eq.)	Contribution	Cumulative Contribution to Trend
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	7,200	7,500	31%	31%
			Apı	oroach 1 Tr	<mark>end Assess</mark>	ment

Steps 4-5: Key Categories Based on Contribution to National Emissions with Uncertainty; and Based on Contribution to National Emissions with Uncertainty in Base Year

Table 5-4: Key Categories Based on Contribution to Total National Emissions with Uncertainty in [year, e.g., 2019]

IPCC Category Code	IPCC Category	Gas	Level Assessment with Uncertainty	Relative Level Assessment with Uncertainty	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	39%	38%	38%
		Approach 2 Level Assessment (Current Year)			

Table 5-5: Key Categories Based on Contribution to Total National Emissions with Uncertainty in Base Year [year, e.g., 2019]

IPCC Category Code	IPCC Category	Gas	Level Assessment with Uncertainty	Relative Level Assessment with Uncertainty	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	40%	36%	36%
		Approac	h 2 Level Ass	sessment (Ba	ase Year)

Step 6: Key Categories Based on Contribution to Overall Trend with Uncertainty

Table 5-6: Key Categories Based on Contribution to Overall Trend in Net National Emissions with Uncertainty

IPCC Category Code	IPCC Category	Gas	Trend Assessment with Uncertainty	Relative Trend Assessment with Uncertainty	Cumulative Per Cent of National Emissions
1A1	Fuel Combustion Activities - Energy Industries (Gaseous)	CO2	40%	38%	38%
		Approach 2 Trend Assessment			

Step 7: Key Categories Identified Using Qualitative Criteria

Table 5-7: Key Categories identified using Qualitative Criteria

IPCC Category Code	IPCC Category	Gas	Criteria
1A3c	Rail transport	CO2	Completeness
	Qualitative Assessment (Current year)		

Step 8: Key Category Analysis Summary

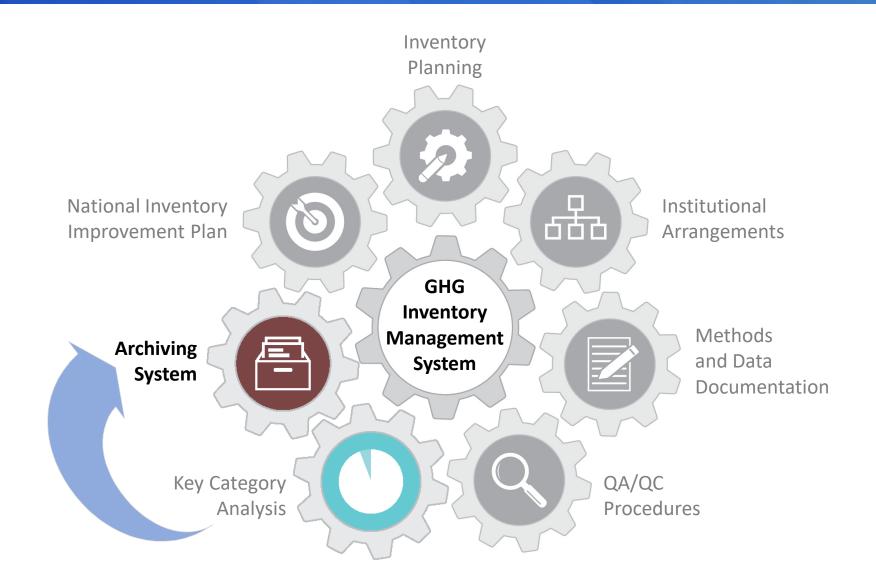
Table 5-8: Summary of Key Categories Identified and Methodology

IPCC Category Code	IPCC Category	Greenhouse Gas (CO ₂ , CH ₄ , etc)	Identification Criteria (L1, T2, Q, etc)	Comments
1A3c	Rail Transport	CO2	Q	None

Step 9: Improvements to GHG Inventory

Table 5-9: Improvements to the GHG inventory

Improvement #	Sector	Source Category and IPCC Tier Used	Potential Improvement	Steps Needed to Implement This Improvement
1	Transport	Rail – TBD	Currently no estimates, need to create	Find source for activity data
2	IPPU		3 <i>i i i</i>	Establish IA with data provider for clinker production data
3				


Action Items from KCA

- 1. Assign specific responsibilities for who will do the KCA
- 2. Collect all emissions estimates and uncertainty analyses
- 3. Ensure analysis is at appropriate level of disaggregation
- 4. Conduct the Key Category Analysis
- 5. Document KCA results in the template
- 6. Identify inventory improvements based on KCA results
- 7. Archive analysis and KCA data for future inventories, review, and staff training

Next template...

Thank You For Your Attention!

John Watterson john.watterson@ricarco.com

Toolkit for Building National GHG Inventory Systems https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems