SINGAPORE'S FSV PRESENTATION 4 May 2018

OUTLINE

National Circumstances 2 **Emissions Profile** 3 2020 Pledge and Mitigation Measures Experiences and Lessons Learnt Written Questions and Responses

NATIONAL CIRCUMSTANCES

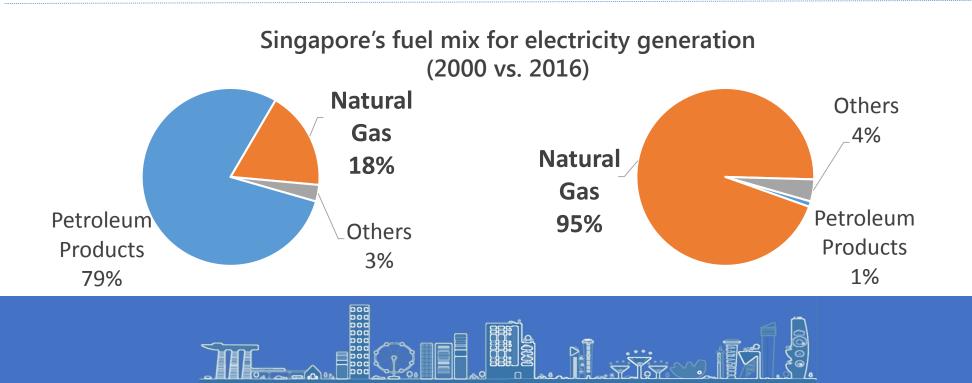
Dense Urban Landscape

- Small, low-lying, island city-state of around 720 km²
- Accommodate housing, commercial centres, air/sea ports, etc.
- Highly urbanised
- High population density of 7,650 per km²

Limited Alternate Energy Options

- Limited land area
- Low wind speeds
- Low tidal range
- Lack geothermal resources
- No large river systems for hydropower

NATIONAL CIRCUMSTANCES

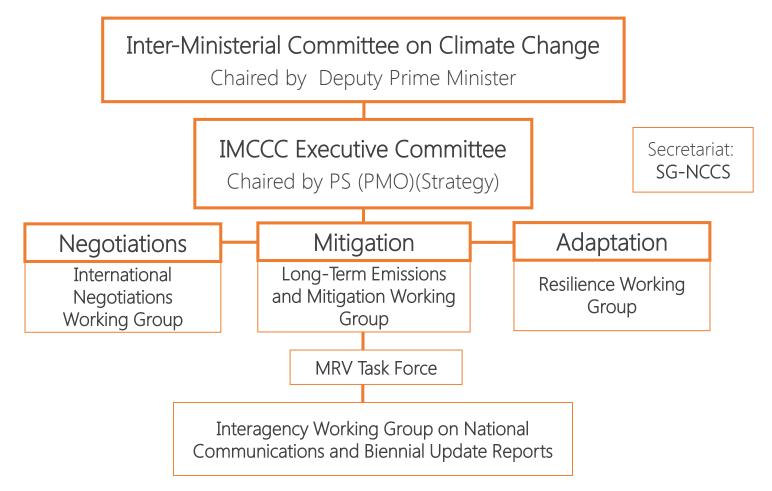

- Lack of natural resources and hinterland
- Export-oriented economic strategy with manufacturing sector as one of our twin engines of growth

Fuel Mix

- Relies heavily on imported fossil fuels
- Undertook early actions to switch from fuel oil to mostly natural gas, the cleanest fossil fuel

ATE ACTION • 2018

• No fossil fuel subsidies

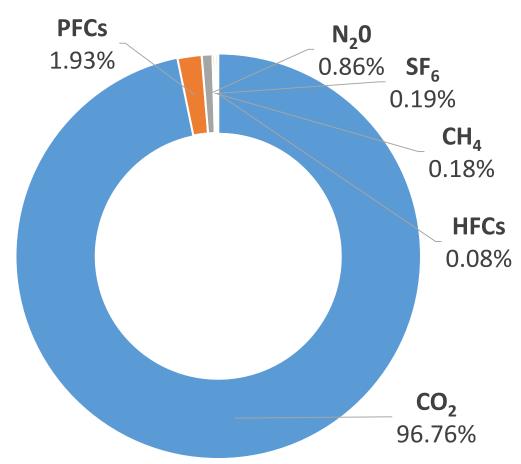


INSTITUTIONAL ARRANGEMENTS

Agencies:

National Climate Change Secretariat, Strategy Group (SG-NCCS) Ministry of the Environment and Water Resources (MEWR) Ministry of Foreign Affairs (MFA) Ministry of National Development (MND) Ministry of Finance (MOF) Ministry of Transport (MOT) Ministry of Trade and Industry (MTI) National Research Foundation (NRF)

EMISSIONS PROFILE

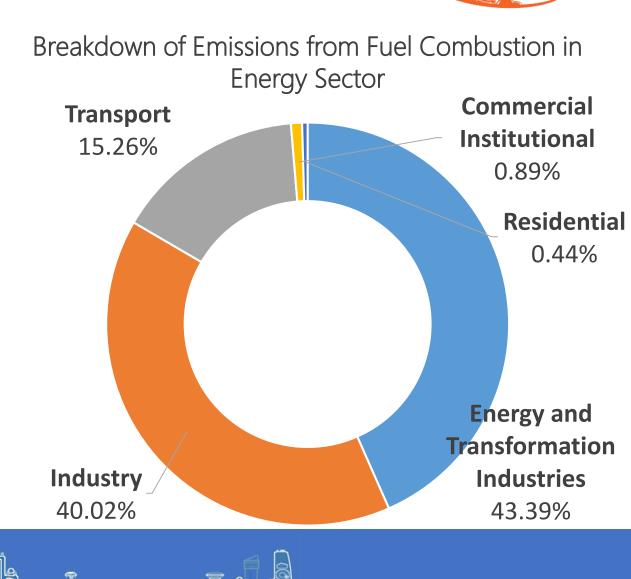


Total emissions in 2012: 48.09MT

- CO₂ emissions: 46.53MT
- Non-CO₂ emissions: 1.56MT

Sustainable Singapore CLIMATE ACTION • 2018

Percentage contribution of each GHG



EMISSIONS PROFILE

Total emissions in 2012: 48.09MT

• Energy sector (fuel combustion): 47.12MT

EMISSIONS PROFILE

Total emissions in 2012: 48.09MT

• LULUCF sector net removal: -0.24MT

Reported LULUCF emissions for the first time in 2nd BUR

Since 2013, Singapore's NParks has been engaging international experts to set up LULUCF removals and emissions data system

Wall to wall assessment of land-use and land-use changes using satellite imagery covering all land-use categories and 5 carbon pools carried out

Permanent sampling plots for tracking carbon in relevant land-use categories established

2020 PLEDGE

Reduce GHG emissions by 16% below Business-As-Usual (BAU)

Parameters	Targets
Gases Covered	Carbon Dioxide (CO ₂), Methane (CH ₄), Nitrous Oxide (N ₂ O), Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Sulphur Hexafluoride (SF ₆)
Coverage	Pledge does not exclude any sectors. Key mitigation measures in following sectors: Energy, industrial processes, transport, commercial, residential, and waste
Funding	Domestic resources

KEY MITIGATION MEASURES

			Reveated	
 Buildings Green Mark Cennew buildings a buildings when Improve energy tenanted space 	nd existing retrofitted refficiency of	 Households Mandatory Energy Labell Scheme (MELS) Minimum Energy Perforn Standards (MEPS) Smart home technologies 	nance	 Power generation Adopt more efficient technologies Increase deployment of solar PVs
		plic transport modal share l efficiency of private vehicles ectric vehicles	Reduce µImprove	d water overall recycling rate plastics incineration efficiency of desalination d water treatment
	000			

INDUSTRY

Industry

- Improve energy efficiency
- Encourage new cogeneration plants

Achieve energy efficiency improvement for manufacturing sector

Regulation

- Energy Conservation Act
- Minimum Energy Performance Standards

Capability Development

- Singapore Certified Energy Manager Programme
- Energy Efficiency National Partnership Incentives
- Energy Efficiency Grants for Manufacturing Companies
- Investment Allowance for Energy Efficiency **Financing**
- Energy Efficiency Financing Pilot-Programme

Encourage new co-generation plants

BUILDINGS

Buildings

- Green Mark Certification for all new buildings and existing buildings when retrofitted
- Improve energy efficiency of tenanted spaces

Achieve Green Mark Standards for 80% of buildings by 2030

Improve energy efficiency of tenanted spaces

Disclosure of annually submitted building information and energy consumption data

TRANSPORT

Transport

- Increase public transport modal share
- Improve fuel efficiency of private vehicles
- Test-bed electric vehicles

Increase public transport modal share to 75% by 2030 Expand rail network to 360km by 2030 Extend bus network Build integrated transport hubs Encourage walking and cycling

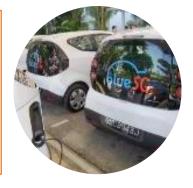
Quadruple sheltered walkway to 200km by end 2018

Manage private car ownership and usage through:

- Certificate of Entitlement (COE)
 - Zero annual growth rate
- Electronic Road Pricing (ERP)

TRANSPORT

Improve fuel efficiency of private vehicles


Vehicle Emissions Scheme

Fuel Economy Labelling Scheme

Fuel Consumption	CO ₂ Emission	s	1 (/100km			23 (/100kg
(ℓ/100km)	(g/km)			5.8		Contraction of the second
5.8	135		20 g/km	CO ₂ Relative	Comparison	600 g/km
Figures from combined test. Te	sted in accordance with UN ECE I	1101.		135		
	d consumption and carbon dioxide (CD)			ty & Fuel Type: "		
		emissions will deper	nd on driving behavi	iours as well as other f	actors such as traffic	and vehicle condit
	consumption and carbon disside (CD)	emissions will deper	nd on driving behavi	iours as well as other f	sctors such as traffic) SCHEME	and vehicle condit
	CARBON EMI	emissions will deper	ad on driving behavi	iours as well as other fo	sctors such as traffic) SCHEME	and vehicle condit
Actual for	CARBON EMI	emissions will deper SSIONS-B/ Emissions (g.	ad on driving behavi ASED VEH /km) C1	ICLE (CEV (applicable fro	octors such as traffic) SCHEME m 1 Jan 2013 s C3	BANDIN to 31 Dec 20
Actual fue	CARBON EMI	emissions will deper SSIONS-B/ Emissions (g.	ad on driving behavi ASED VEH /km)	iours as well as other fo IICLE (CEV (applicable fro) SCHEME m 1 Jan 2013 :	BANDIN to 31 Dec 20
Actual for A1 A2 0-100 101-120	CARBON EMI CO ₂ A3 A4 121-140 141-160	emissions will deper SSIONS-B/ Emissions (g.	ad on driving behavi ASED VEH /km) C1	ICLE (CEV (applicable fro	octors such as traffic) SCHEME m 1 Jan 2013 s C3	BANDIN to 31 Dec 20
A1 A2 0-100 101-120	CARBON EMI CO, A3 A4 121-140 141-160 135 \$10,000 \$5,000	Emissions will deper SSIONS-B/ Emissions (g. B 161-210	ASED VEH /km) 211-230	Seer as well as other fo IICLE (CEV (applicable fro C2 231-250 \$10,000	Notes such as traffic SCHEME m 1 Jan 2013 : C3 251-270	end which condit BANDIN to 31 Dec 20 C4 > 270
Actual for A1 A2 0-100 101-120 \$20,000 \$15,000 Rebate	CARBON EMI CO, A3 A4 121-140 141-160 135 \$10,000 \$5,000	i entistions will depend SSIONS-B/ Emissions (g. B 161-210 \$0	ASED VEH /km) C1 211-230 \$5,000	C2 231-250 Surcharg	Inclore such as braffic SCHEME m 1 Jan 2013 (C3 251-270 S15,000 (o Amount	and vehicle candid BANDIN to 31 Dec 20 C4 > 270 \$20,000

Transport

- Increase public transport modal share
- Improve fuel efficiency of private vehicles
- Test-bed electric vehicles

Test-bed electric vehicles

1000 EVs and 2000 charge kiosks by 2020

Fleet-based trials of e-buses and e-taxis

HOUSEHOLDS

Households

- Mandatory Energy Labelling Scheme (MELS)
- Minimum Energy Performance Standards (MEPS)
- Smart home technologies

Mandatory Energy Labelling Scheme (MELS)

For lighting, televisions, air-conditioners, fridges, clothes dryers

Introduced since 2008, progressively expanded to include more appliances

Minimum Energy Performance Standards (MEPS)

For lighting, air-conditioners, fridges, clothes dryers

Introduced since 2011, progressively expanded to include more appliances

Smart Home Technologies

Pilot programmes to assess feasibility

Redesigned utility bill

Includes energy conservation tips and peer comparison

WASTE AND WATER

Waste and water

- Increase overall recycling rate
- Reduce plastics incineration
- Improve efficiency of desalination and used water treatment

Waste

Increase recycling rate to 70% by 2030

Reduce plastics incineration

Water

New water treatment technologies which use less energy

Pilot on co-digestion of food waste with water sludge which produces more biogas that can be used to generate electricity

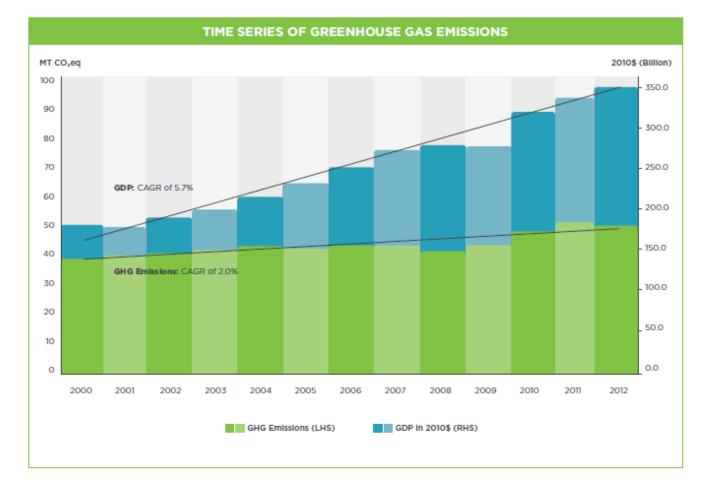
POWER GENERATION

Power generation

- Adopt more efficient technologies
- Increase deployment of solar PVs

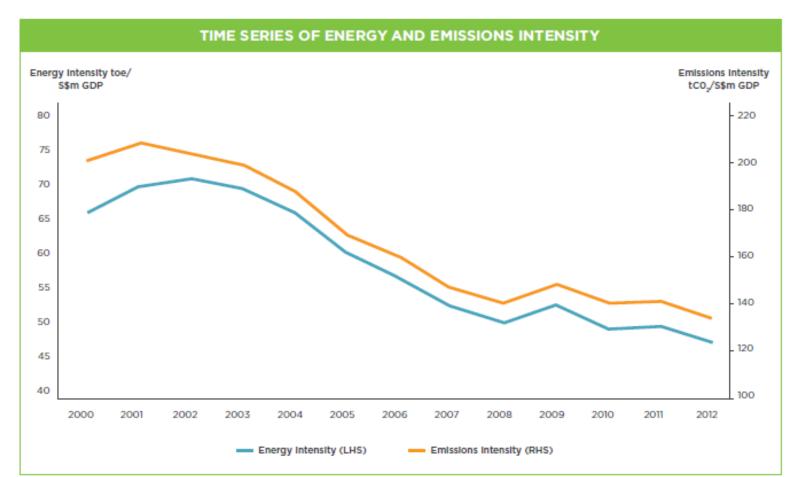
Adopt more efficient technologies

Waste to Energy (WTE) plants which optimise resource and energy recovery


Increase deployment of solar PVs 350MWp by 2020, and 1GWp thereafter SolarNova programme

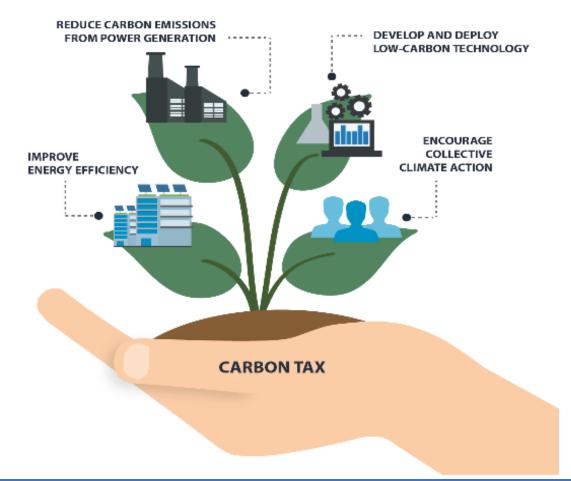
Test-bedding floating solar panels

GDP AND EMISSIONS



Singapore's GDP grew at a CAGR of 5.7% while GHG emissions grew at a slower rate with a CAGR of 2.0%

EMISSIONS INTENSITY


Emissions Intensity decreased by around 4% p.a.

Energy intensity decreased by around 3% p.a.

CARBON TAX

S\$5 per tonne of GHG emissions to be introduced in 2019 for a transition period of 5 years

Intent to increase to S\$10 – S\$15 per tonne of GHG emissions by 2030

No exemptions to maintain a transparent, fair, and consistent price signal across the economy

Covers around 80% of emissions

Price signal on GHG emissions to encourage behavioural changes and incentivise more efficient use of carbon resources

BUR EXPERIENCE

SINGAPORE'S THIRD NATIONAL COMMUNICATION AND FIRST BIENNIAL UPDATE REPORT

Under the United Nations Framework Convention on Climate Change

December 2014

Approach

Convene BUR preparatory meeting Identify agency roles and responsibilities Establish timelines Address TTE's suggestions

Challenges

Familiarity with guidelines Ensuring coherence

ICA EXPERIENCE

Approach

Assemble and brief key agencies

Ensure documentation of data and MRV processes are in order

Identify key contact points

Establish process for quick responses to TTE

Challenge

Ensuring adequate preparations for FSV Q&As

LESSONS LEARNT

Whole of government effort
Clear institutional arrangement
Building capacity takes time
Putting in place sustainable systems
"Learn by doing"
Participation in BUR/ICA process

QUESTION	ANSWER
Data on international bunker fuel emissions	<u>Singapore will provide data on international bunker fuel emissions in our 3rd BUR/4th NC. The data will be provided in line with our position that international bunker fuel emissions should not only be excluded from the national total but should also not be part of the national GHG inventory.</u>
HFC emissions from refrigeration and air conditioning	Singapore is developing an interim Tier 1 estimate of HFCs emissions from the refrigeration and air-conditioning (RAC) sector. The estimate will be based on existing data and will guide the preparation of our 3 rd BUR/4 th NC. Concurrently, we are also in the process of implementing measures to fulfil the relevant reporting obligations under the Kigali Amendment of the Montreal Protocol. When better data becomes available, Singapore will work towards developing a Tier 2 estimate of HFCs emissions from the RAC sector which we will include in our future BUR/NC.

QUESTION

ANSWER

CO₂ emissions from fuel combustion using the reference approach

<u>Singapore will include an explanation in our 3rd BUR/4th NC to clarify our circumstance with regard to CO₂ emissions from fuel combustion using the reference approach. As a global trading hub with a high trade to GDP ratio, Singapore experiences volatility in trade data as a direct result of our large and volatile trade volumes coupled with the presence of a large refining and petrochemical sector. This gives rise to large RE/SE discrepancies which the International Energy Agency (IEA) has also noticed in countries with similar circumstance. As such, emissions calculated using the sectoral approach would be more accurate than using the reference approach in Singapore's context, and we have provided sectoral figures in our previous BUR/NCs. Singapore will include this explanation to enhance the transparency of our BUR.</u>

QUESTION	ANSWER
Usage of higher tier emissions estimates	At present, the data required to use a higher tier methodology is only available for some sectors such as emissions of CH_4 and N_2O from the land transport sector; emissions of fluorinated GHGs from integrated circuit and semiconductor production, and LULUCF.
	The key challenge in moving to higher tier methodologies is the establishment of data collection processes. We are in the process of putting in place a data collection process which will enable us to estimate HFCs emissions from the refrigeration and air-conditioning sector using the Tier 2 methodology.

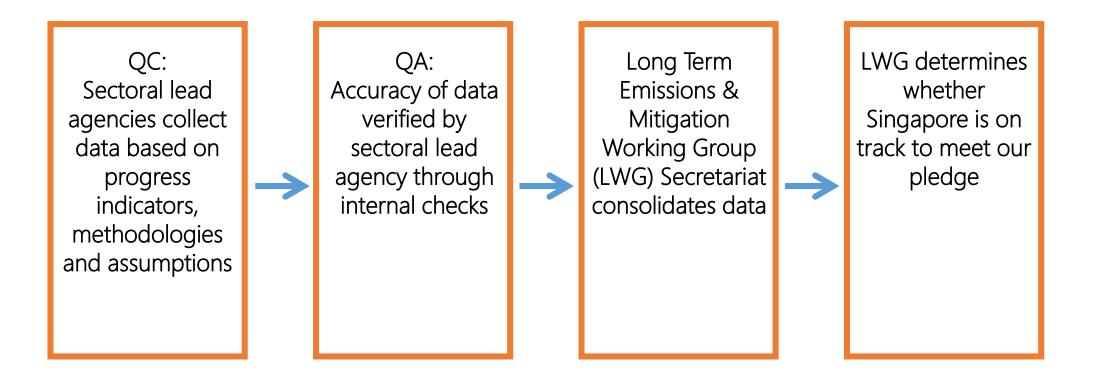
UESTION

ANSWER

Usage of 2006 IPCC Guidelines Singapore aims to use the 2006 IPCC guidelines for all sectors and categories in our GHG inventory in due course. We understand that the "2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories" is in-progress. As the overall aim of the refinement is to provide an updated scientific basis (where gaps or out-of-date science have been identified) for the preparation of national greenhouse gas inventories, we aim to switch completely to 2006 IPCC guidelines after the refinement is completed.

Supplementary slides

GHG INVENTORY PREPARATION


Data collection as well as QC and QA checks conducted by owners QC checks on computation of emissions by NEA QA checks on computation of emissions conducted by an independent team within NEA Endorsement by MRV Taskforce after completion of QC/QA by agencies

³ KEY MITIGATION MEASURES

dMRV

QC – Quality Control QA – Quality Assurance

GHG INVENTORY

Greenhouse Gas Source and Sink Categories	CO2	СН₄	N ₂ O	HFCs	PFCs	SF ₆
Total (Net) National Emissions - (Gg CO ₂ eq)	46,538.16	86.73	411.68	37.92	930.83	89.33
All Energy	46,777.39	41.20	307.04			
Fuel combustion	46,551.87	41.20	307.04			
Energy and transformation industries	20,366.57	9.02	73.03			
Industry	18,610.71	8.65	14.47			
Transport	6,946.58	23.50	219.54			
Commercial-institutional	419.41	0.03	0.01			
Residential	208.61					
Fugitive fuel emission	225.52					
Oil and natural gas system ²	225.52					
Land Use, Land-Use Change and Forestry	-239.23		0.02			
Industrial Processes				37.92	930.83	89.33
Waste		45.53	104.62			
Wastewater Handling		45.53	104.62			

*Blank cell means Not Occurring

KEY CATEGORY ANALYSIS

	Key Category Analysis								
	IPCC Ca	ategory	Type of Greenhouse Gas	Emissions (kt CO₂eq)	Percentage Contribution	Cumulative			
1	Energy and Transformation Industries	Natural Gas	CO ₂	14,955.61	30.79%	30.79%			
2	Industry	Refinery Gas	CO ₂	10,108.63	20.81%	51.60%			
3	Land Transport	Diesel	CO ₂	4,122.95	8.49%	60.09%			
4	Energy and Transformation Industries	Fuel Oil	CO ₂	3,604.13	7.42%	67.51%			
5	Industry	Fuel Oil	CO ₂	3,600.81	7.41%	74.92%			
6	Industry	Natural Gas	CO ₂	3,095.42	6.37%	81.29%			
7	Land Transport	Petrol	CO ₂	2,296.85	4.73%	86.02%			
8	Energy and Transformation Industries	Municipal Solid Waste ⁹	CO ₂	1,368.67	2.82%	88.84%			
9	Industry	Diesel	CO ₂	1,256.48	2.59%	91.43%			
10	Industrial Processes	-	PFCs	930.83	1.92%	93.35%			
11	Transport (Marine Craft)	Diesel	CO ₂	480.91	0.99%	94.34%			
12	Industry	Petroleum Coke	CO ₂	445.40	0.92%	95.26%			

