

Industrial Processes and Product Use (IPPU)

Remote Training on the IPCC Inventory Software for National Greenhouse Gas Inventories for the Latin America and Caribbean Region

8 December 2021

Pavel Shermanau

IPCC TFI TSU

IPPU Sector

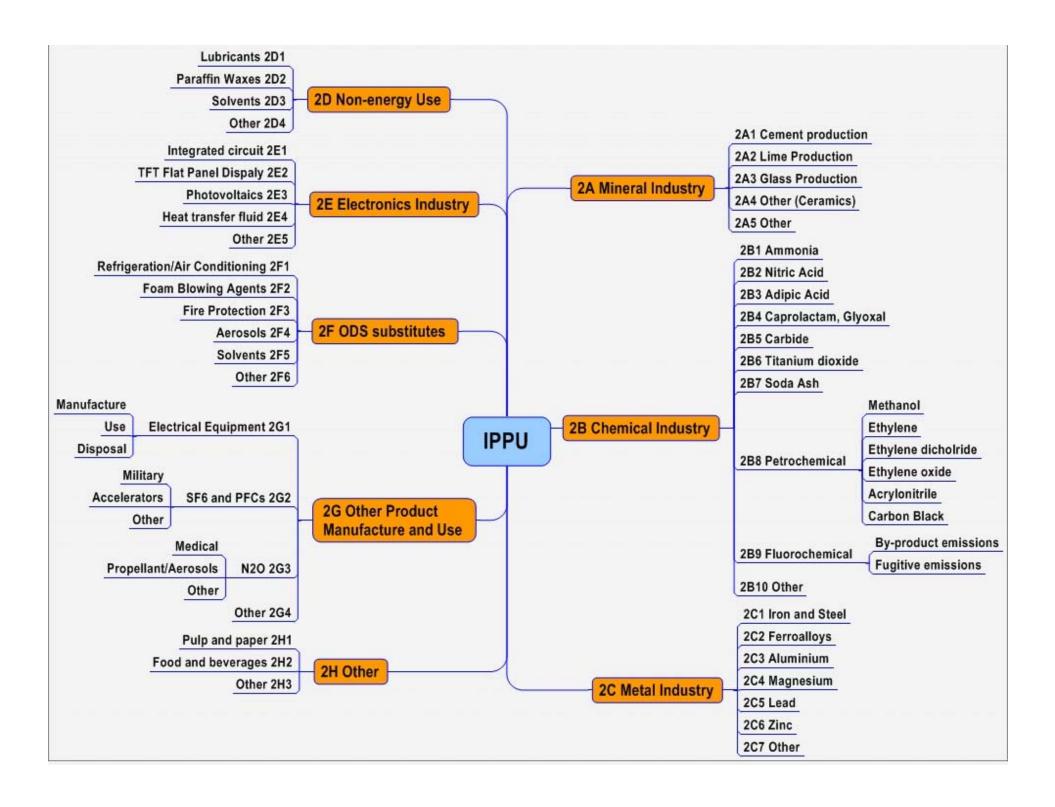
IPPU – GHG emissions:

- 1. Industrial Processes
- 2. Product Use
- 1. Industrial Processes.

Chemical or physical transformation of materials releasing GHGs

- chemically: $NH_3 + O_2 = 0.5 N_2O \uparrow + 1.5 H_2O$ (nitric acid production)
- physically: CaCO₃ + (Heat) = CaO + CO₂↑
- 2. Product Use.

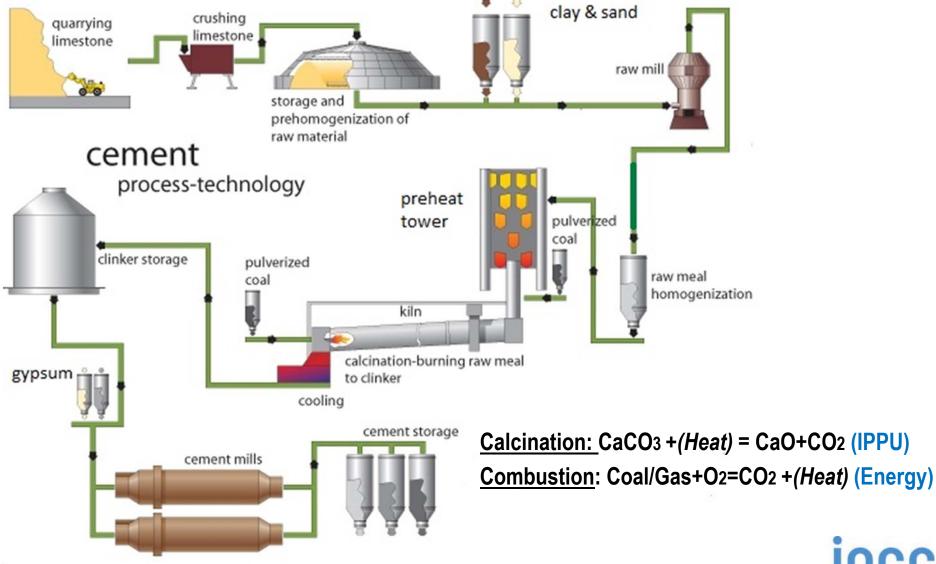
GHGs are used in products such as refrigerators, foams or aerosol cans


IPPU Sector

Not IPPU:

- ➤ Emissions from Fuel combustion in Industrial Sector for energy purposes (e.g., cement production) → Energy Sector
- ➤ Fugitive emissions in Oil/Gas industries → Energy Sector
- ➤ Solvents & other products incineration without energy recovery → Waste Sector

2A: Mineral Industry


- Transformation of carbonate-contained compounds limestone, dolomite, etc. (CaCO3, MgCO3, Na2CO3)
- CO2 Emissions

Code	Category	Default EF
2A1:	Cement Production	0.51 t CO ₂ /t clinker
2A2:	Lime Production	0.75 t CO ₂ /t lime
2A3:	Glass Production	0.10 t CO ₂ /t glass
2A4:	Other Process Uses of Carbonates	
2A4a:	Ceramics	Chapter 2.5
2A4b:	Other Uses of Soda Ash	0.41 t CO ₂ / t soda ash
2A4c:	Non Metallurgical Magnesia Production	0.52 t CO ₂ /t magnesite
2A4d:	Other	
2A5:	Other	

2A1: Cement production

CO₂ from Cement Production (Tier 1)

CO₂ Emissions = AD clinker production x EF clinker

CO₂ Emissions = $[\Sigma(M_{c,i} \times C_{CI,i}) - Im + Ex] \times EF_{CIc}$

 $\mathbf{M}_{\mathbf{c},i}$ - mass of cement produced of type i, tonnes

C_{Cl,i} - clinker fraction of cement type i, fraction

Im - imports for consumption of clinker, tonnes

Ex - exports of clinker, tonnes

EF_{Clc} - emission factor for clinker, tonnes CO₂/tonne clinker

Default $EF_{Clc} = 0.52$ tonnes CO_2 /tonne clinker (corrected for cement kiln dust (CKD))

CO₂ from Cement Production (Tier 1)

To estimate clinker production:

- > National-level data should be collected on:
 - Cement production by type (Portland, masonry, etc.)
 - Clinker fraction by cement type
- ➤ If detailed information on cement type is not available, multiply total cement production by:
 - Default Ccl = 0.75 (if blended/'masonry' is much)
 - Default Ccl = 0.95 (if all is essentially 'Portland')
- > Data should be obtained on the amount of clinker imported and exported

CO₂ from Cement Production (Tier 2)

<u>Tier 2</u> includes a correction addition for emissions associated with <u>Cement Kiln</u> <u>Dust (**CKD**) not recycled to the kiln which is considered to be 'lost' and associated emissions are not accounted for by the clinker:</u>

CO₂ Emissions =
$$M_{cl}$$
 x EF_{cl} x CF_{CKD}
CF_{CKD} = 1 + (M_d / M_{cl}) * C_d * F_d * (EF_c / EF_{cl})

CF_{CKD} - emissions correction factor for CKD, dimensionless

Md - weight of CKD not recycled to the kiln, tonnes

M_{cl} - weight of clinker produced, tonnes

C_d - fraction of original carbonate in the CKD (i.e., before calcination), fraction

F_d - fraction calcination of the original carbonate in the CKD, fraction

EF_c - emission factor for the carbonate, tonnes CO2/tonne carbonate

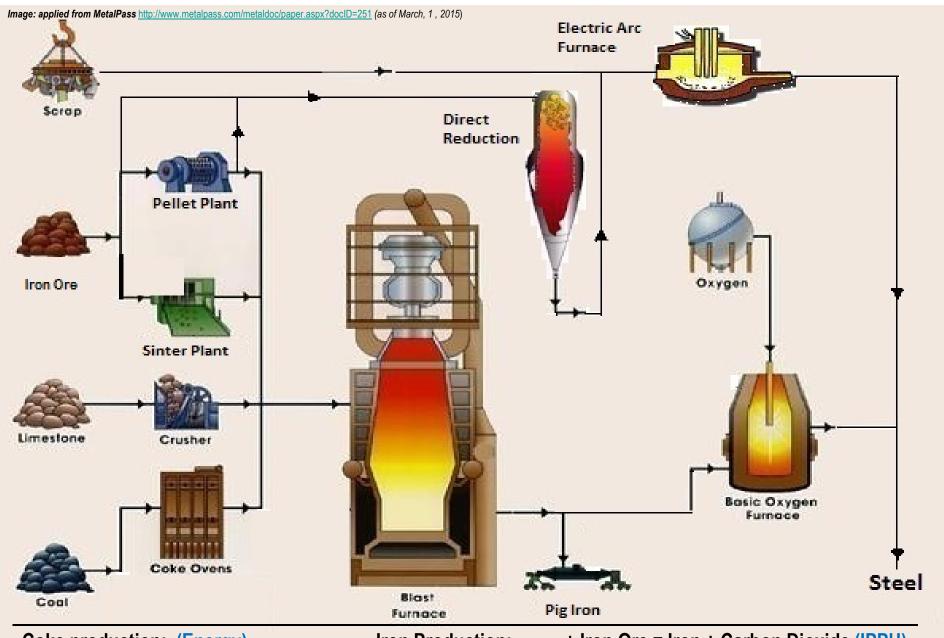
EF_□ - emission factor for clinker uncorrected for CKD, tonnes CO2/ tonne clinker (i.e., 0.51)

2B: Chemical Industry

Code	Category	Default EF		=
		CO ₂	N ₂ O	CH ₄
2B1:	Ammonia Production	Χ		
2B2:	Nitric Acid Production		Χ	
2B3:	Adipic Acid Production		X	
2B4:	Caprolactam, Glyoxal and Glyoxylic Acid Production		X X X	
2B5:	Carbide Production - SiC - CaC ₂	X X		Χ
2B6:	Titanium Dioxide Production	X		
2B7:	Soda Ash Production	Χ		

2B: Chemical Industry

Code	Category	Default EF			
		CO ₂	CH4	F-gases	
2B8:	Petrochemical and Carbon Black Production				
2B8a:	■ Methanol	Χ	Χ		
2B8b:	☐ Ethylene	Χ	X		
2B8c:	Ethylene Dichloride and Vinyl Chloride Monomer	X X	Χ		
2B8d:	☐ Ethylene Oxide	X	Χ		
2B8e:	☐ Acrylonitrile	X	Χ		
2B8f:	☐ Carbon Black	X	X		
2B9:	Fluorochemical Production				
2B9a:	□ By-product Emissions			X	
2B9b:	☐ Fugitive Emissions			X	



2C: Metal Industry

Code	Category	CO ₂	CH4	F-gases
2C1:	Iron and Steel Production	X	X	
2C2:	Ferroalloys Production	Χ	Χ	
2C3:	Aluminium Production	X		X
2C4:	Magnesium Production	X		Χ
2C5:	Lead Production	X		
2C6:	Zinc Production	X		
2C7:	Other			

Coke production: (Energy)

Coal + (*Heat*) = Coke + Carbon Dioxide

Iron Production:

+ Iron Ore = Iron + Carbon Dioxide (IPPU)

Coke

Combustion:

+ Oxygen = Carbon Dioxide + (*Heat*) (<u>IPPU</u>)

2C1: CO₂ from Iron and Steel Production (Tier 1)

CO₂ emissions from Iron & Steel production:

CO₂ Emissions = $\Sigma(AD_i \times EF_i)$

AD_i - quantity of material *i*, tonnes **EF**_i - emission factor for production of material *i*, tonnes CO₂/tonne material *i* produced

Material <i>i</i>	Default EF	Global average default EF for Steel
	tonne C	CO2/tonne material <i>i</i>
 Crude steel from Basic Oxygen Furnace 	1.46	
 Crude steel from Electric Arc Oxygen Furnace 	0.08	1.06
 Crude steel from Open Hearth Furnace 	1.72	
Pig iron not converted to steel	1.35	(If activity data on steel
Direct reduced iron	0.70	production for each process is not available, multiply total
■ Sinter	0.20	steel production by this EF)
■ Pellet	0.03	

2D: Non-Energy Products from Fuels and Solvent Use

- **>** GHG emissions from <u>use</u> of non-energy products (lubricants, waxes, greases, solvents) other than:
 - combustion for energy purposes;
 - use as feedstock or reducing agent;
 - incineration of waste oils/lubricants with/without energy recovery (Energy/Waste Sector).
- > A small proportion of non-energy products oxidises during use
- ► Focus on direct CO₂ emissions and substantial NMVOC/CO emissions which eventually oxidise to CO₂ in the atmosphere

Code	Category	CO ₂	NMVOC, CO
2D1:	Lubricant Use	Χ	
2D2:	Paraffin Wax Use	Χ	
2D3:	Solvent Use		Χ
2D4:	Other (asphalt production and use)		X

2E: Electronics Industry

Code	Category
2E1:	Integrated Circuit or Semiconductor
2E2:	TFT Flat Panel Display
2E3:	Photovoltaics
2E4:	Heat Transfer Fluid
2E5:	Other

Gases: CF4, C2F6, C3F8, c-C4F8, c-C4F8O, C4F6, C5F8, CHF3, CH2F2, nitrogen trifluoride (NF3), sulfur hexafluoride (SF6)

Electronics industry:

several advanced electronics manufacturing processes utilise fluorinated compounds for plasma etching silicon containing materials, cleaning reactor chambers, and temperature control. The specific electronic industries include semiconductor, thin-film-transistor flat panel display (TFT-FPD), and photovoltaic (PV) manufacturing

2F: Fluorinated Substitutes for ODS

Code	Category	HFCs	PFCs
2F1:	Refrigeration and Air Conditioning	X	Χ
2F1a:	Refrigeration and Stationary Air Conditioning	X	Χ
2F1b:	Mobile Air Conditioning	X	Χ
2F2:	Foam Blowing Agents	X	Χ
2F3:	Fire Protection	X	Χ
2F4:	Aerosols	X	Χ
2F5:	Solvents	X	Χ
2F6:	Other Applications	X	Χ

2F: Fluorinated Substitutes for ODS

- Applications or Sub-applications major groupings of current and expected usage of the ODS substitutes
- Actual emissions vs. Potential emissions (2006 vs.1996)
- Prompt emissions (within 2 years) and Delayed emissions
- Bank total amount of substances contained in existing equipment, chemical stockpiles, foams, other products not yet released to the atmosphere (+ExIm)
- Approaches:
 - ✓ Emission Factor (a) and Mass-balance (b)
 - ✓ Tier 1 and Tier 2

2F: Sub-applications

	2F Product Uses as Substitutes for Ozone Depleting Substances					
2F1	Refrigeration and Air Conditioning		- Open foams			
	Domestic (i.e., household) refrigeration		PU Flexible Foam			
	Commercial refrigeration including different types of equipment, from		PU Flexible Moulded Foam			
	vending machines to centralised refrigeration systems in supermarkets					
	Industrial processes including chillers, cold storage, and industrial heat		PU Integral Skin Foam			
	pumps used in the food, petrochemical and other industries					
	Transport refrigeration including equipment and systems used in		PU One Component Foam			
	refrigerated trucks, containers, reefers, and wagons					
	Mobile air-conditioning systems used in passenger cars, truck cabins,	2F3	Fire Protection			
	buses, and trains		Portable (streaming) equipment			
			Fixed (flooding) equipment			
2F2	Foam Blowing Agents	2F4	Aerosols			
	- Closed Foams		Metered Dose Inhalers (MDIs)			
	PU Continuous Panel		Personal Care Products (e.g., hair care, deodorant, shaving cream)			
	PU Discontinuous Panel		Household Products (e.g., air-fresheners, oven and fabric cleaners)			
	PU Appliance Foam		Industrial Products (e.g., special cleaning sprays such as those for			
			operating electrical contact, lubricants, pipe-freezers)			
	PU Injected Foam		Other General Products (e.g., silly string, tyre inflators, klaxons).			
	PU Continuous Block	2F5	Solvents			
	PU Discontinuous Block		Precision Cleaning			
	PU Continuous Laminate		Electronics Cleaning			
	PU Spray Foam		Metal Cleaning			
	PU Pipe-in-Pipe		Deposition applications			
	Extruded Polystyrene	2F6	Other Applications			
	Phenolic Block					
	Phenolic Laminate	TOT	AL: 32 sub-applications			

2F: Chemicals and blends

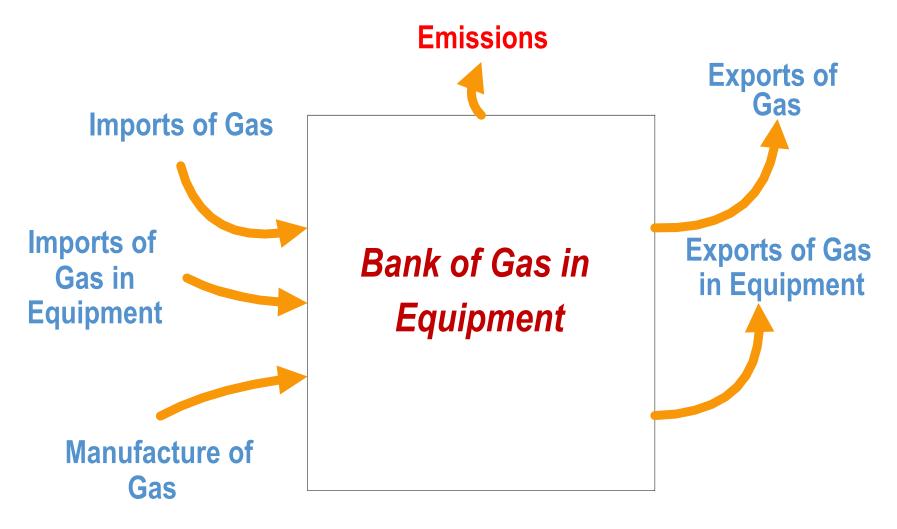
Chemical	Refrigeration	Refrigeration Fire Suppression		Aerosols		Foam	Other
	and Air	and Explosion	Propellants	Solvents	Cleaning	Blowing	Applications
	Conditioning	Protection					
HFC-23	X	X					
HFC-32	X						
HFC-125	X	X					
HFC-134a	X	X	X			X	X
HFC-143a	X						
HFC-152a	X		X			X	
HFC-227ea	X	X	X			X	X
HFC-236fa	X	X					
HFC-245fa				X		X	
HFC-365mfc				X	X	X	
HFC-43-10mee				X	X		
PFC-14 (CF4)		X					
PFC-116 (C2F6)							X
PFC-218 (C3F8)							
PFC-31-10 (C4F10)		X					
PFC-51-14 (C6F14)					X		
BLENDS							

Blend	Constituents	Composition (%)
R-400	CFC-12/CFC-114	Should be specified ¹
R-401A	HCFC-22/HFC-152a/HCFC-124	(53.0/13.0/34.0)
R-401B	HCFC-22/HFC-152a/HCFC-124	(61.0/11.0/28.0)
R-401C	HCFC-22/HFC-152a/HCFC-124	(33.0/15.0/52.0)
R-402A	HFC-125/HC-290/HCFC-22	(60.0/2.0/38.0)
R-402B	HFC-125/HC-290/HCFC-22	(38.0/2.0/60.0)
R-403A	HC-290/HCFC-22/PFC-218	(5.0/75.0/20.0)
R-403B	HC-290/HCFC-22/PFC-218	(5.0/56.0/39.0)
R-404A	HFC-125/HFC-143a/HFC-134a	(44.0/52.0/4.0)
R-405A	HCFC-22/ HFC-152a/ HCFC-142b/PFC-318	(45.0/7.0/5.5/42.5)
R-406A	HCFC-22/HC-600a/HCFC-142b	(55.0/14.0/41.0)
R-407A	HFC-32/HFC-125/HFC-134a	(20.0/40.0/40.0)
R-407B	HFC-32/HFC-125/HFC-134a	(10.0/70.0/20.0)
R-407C		
	HFC-32/HFC-125/HFC-134a	(23.0/25.0/52.0)
R-407D	HFC-32/HFC-125/HFC-134a	(15.0/15.0/70.0)
R-407E	HFC-32/HFC-125/HFC-134a	(25.0/15.0/60.0)
R-408A	HFC-125/HFC-143a/HCFC-22	(7.0/46.0/47.0)
R-409A	HCFC-22/HCFC-124/HCFC-142b	(60.0/25.0/15.0)
R-409B	HCFC-22/HCFC-124/HCFC-142b	(65.0/25.0/10.0)
R-410A	HFC-32/HFC-125	(50.0/50.0)
R-410B	HFC-32/HFC-125	(45.0/55.0)
R-411A	HC-1270/HCFC-22/HFC-152a	(1.5/87.5/11.0)
R-411B	HC-1270/HCFC-22/HFC-152a	(3.0/94.0/3.0)
R-411C	HC-1270/HCFC-22/HFC-152a	(3.0/95.5/1.5)
R-412A	HCFC-22/PFC-218/HCFC-142b	(70.0/5.0/25.0)
R-413A	PFC-218/HFC-134a/HC-600a	(9.0/88.0/3.0)
R-414A	HCFC-22/HCFC-124/HC-600a/HCFC-142b	(51.0/28.5/4.0/16.5)
R-414B	HCFC-22/HCFC-124/HC-600a/HCFC-142b	(50.0/39.0/1.5/9.5)
R-415A	HCFC-22/HFC-152a	(82.0/18.0)
R-415B	HCFC-22/HFC-152a	(25.0/75.0)
R-416A	HFC-134a/HCFC-124/HC-600	(59.0/39.5/1.5)
R-417A	HFC-125/HFC-134a/HC-600	(46.6/50.0/3.4)
R-418A	HC-290/HCFC-22/HFC-152a	(1.5/96.0/2.5)
R-419A	HFC-125/HFC-134a/HE-E170	(77.0/19.0/4.0)
R-420A	HFC-134a/HCFC-142b	(88.0/12.0)
R-421A	HFC-134a/HCFC-1426 HFC-125/HFC-134a	(58.0/42.0)
R-421B	HFC-125/HFC-134a	
		(85.0/15.0)
R-422A	HFC-125/HFC-134a/HC-600a	(85.1/11.5/3.4)
R-422B	HFC-125/HFC-134a/HC-600a	(55.0/42.0/3.0)
R-422C	HFC-125/HFC-134a/HC-600a	(82.0/15.0/3.0)
R-500	CFC-12/HFC-152a	(73.8/26.2)
R-501	HCFC-22/CFC-12	(75.0/25.0)
R-502	HCFC-22/CFC-115	(48.8/51.2)
R-503	HFC-23/CFC-13	(40.1/59.9)
R-504	HFC-32/CFC-115	(48.2/51.8)
R-505	CFC-12/HCFC-31	(78.0/22.0)
R-506	CFC-31/CFC-114	(55.1/44.9)
R-507A	HFC-125/HFC-143a	(50.0/50.0)
R-508A	HFC-23/PFC-116	(39.0/61.0)
R-508B	HFC-23/PFC-116	(46.0/54.0)
R-509A	HCFC-22/PFC-218	(44.0/56.0)

2F: Blends

Actual emissions vs. Potential emissions

- of ODS substitutes in contrast to <u>potential emissions</u> approach (1996 IPCC Guidelines) taking into account the time lag between consumption of ODS substitutes and emissions.
- <u>Potential emissions</u> approach assumes that all emissions from an activity occur in the current year (manufacture + import - export - destruction), ignoring the fact they will occur over many years, thus estimates may become very inaccurate


Example. A household refrigerator emits little or no refrigerant through leakage during its lifetime and most of its charge is not released until its disposal, many years after production. Even then, disposal may not entail significant emissions if the refrigerant and the blowing agent in the refrigerator are both captured for recycling or destruction

- Use of <u>actual emissions</u> allows to:
 - ✓ accurately estimate emissions of ODS substitutes
 - ✓ proper address emission reductions of abatement techniques

Estimating Bank and Emissions

Estimating Emissions (2F1, 2F2, 2F3)

- O Where delays in emission occur, the cumulative difference between the chemical that has been consumed in an application and that which has already been released is known as a <u>bank</u> (refrigeration and air conditioning, closed-cell foams, fire protection).
- Estimating the size of a bank in an application is typically carried out by evaluating the historic consumption of a chemical and applying appropriate emission factors. It is also sometimes possible to estimate the size of bank from a detailed knowledge of the current stock of equipment or products.

Example. In mobile air conditioning - the automobile statistics may be available providing information on car populations by type, age and even the presence of air conditioning. With knowledge of average charges, an estimate of the bank can be derived without a detailed knowledge of the historic chemical consumption, although this is still usually useful as a cross-check.

Estimating Emissions (2F1, 2F2, 2F3)

- The Tier 1 method calculates back the development of a bank of a refrigerant from the current reporting year to the year of its introduction. The 2006 IPCC Guidelines contain the MS Excel spreadsheet for such estimation, and it is implemented in the IPCC Inventory Software
- The IPCC Inventory Software enables you to estimate actual emissions, even if you do not have historic data
- (!) But you need to have the data on:
 - Year of introduction of chemical
 - Domestic production of chemical in current year
 - Imports of chemical in current year
 - Exports of chemical in current year
 - Growth rate of sales of equipment that uses the chemical

Tier 1 Refrigeration Argentina - HFC-143a

Current Year	2005
Use in current year - 2005 (tonnes)	Data Used Here
Production of HFC-143a	800
Imports in current Year	200
Exports in current year	0
Total new agent to domestic market	1000

Year of Introduction of HFC-143a	1998
Growth Rate in New Equipment Sales	3.0%

Tier 1 Defaults	
Assumed Equipment Lifetime (years)	15
Emission Factor from installed base	15%
% of HFC-143a destroyed at End-of-Life	0%

Example. In Country X the production of a specific refrigerant (HFC-143a) is 800 tonnes with an additional 200 tonnes in imported equipment, making a total consumption of 1 000 tonnes in 2005.

Based on the consumption pattern and knowledge of the year of introduction of the refrigerant (1998), it can be estimated that emissions will be 461 tonnes assuming the development of banks over the previous seven years.

The bank in 2005 is estimated at 3 071 tonnes.

Estimated data for earlier years	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Production	0	0	81	167	259	355	458	566	680	800
Agent in Exports	0	0	0	0	0	0	0	0	0	0
Agent in Imports	0	0	20	42	65	89	114	141	170	200
Total New Agent in Domestic Equipment	0	0	102	209	323	444	572	707	850	1000
Agent in Retired Equipment	0	0	0	0	0	0	0	0	0	0
Destruction of agent in retired equipment	0	0	0	0	0	0	0	0	0	0
Release of agent from retired equipment	0	0	0	0	0	0	0	0	0	0
Bank	0	0	102	296	575	933	1365	1867	2437	3071
Emission	0	0	15	44	86	140	205	280	365	461

2G: Other Product Manufacture and Use

Code	Category	Code	Category
2G1	Electrical Equipment	2G2c	Other
2G1a	Manufacture	2G3	N ₂ O from Product Uses
2G1b	Use	2G3a	Medical Applications
2G1c	Disposal	2G3b	Propellant for Pressure
2G2	SF ₆ /PFCs from Other Uses	2G3c	Other
2G2a	Military Applications	2G4	Other
2G2b	Accelerators		

- SF6 and PFCs: electrical equipment: gas insulated switchgear and substations (GIS), gas circuit breakers (GCB), high voltage gas-insulated lines (GIL), gas-insulated power transformers (GIT). Military equipment: ground and airborne radar, avionics, missile guidance systems, ECM (Electronic Counter Measures), sonar, amphibious assault vehicles, other surveillance aircraft, lasers, SDI (Strategic Defense Initiative), stealth aircraft. PFCs for cooling electric motors, e.g., in ships and submarines. Cosmetic and medical applications, research particle accelerators.
- □ N2O: Medical applications, Auto-racing, Propellant in aerosol products

Conclusion

> Diversity of sources and gases in the IPPU Sector

- Difficult to exhaustively include all sources & gases
- At least major sources & gases (key categories) must be included

> Care to Activity Data:

- Difficult to collect activity data (input/output data, plant-specific data)
- Data allocation and Double-counting
- Confidential data from private companies

> Various opportunities for GHG abatement

- Capture and abatement at plants (N₂O destruction at nitric acid production plants)
- Recovery at the end of product's life and subject to either recycled or destroyed (HFCs in refrigerators)

Thank you

https://www.ipcc-nggip.iges.or.jp/index.html

