

United Nations Climate Change

Global Climate Action

Sectoral Activity data for Greenhouse gas Emissions calculations (SAGE)

Agriculture sector

by Olia Glade, Director for MRV Systems, Greenhouse Gas Management Institute

SAGE – now four sectors are covered

Agriculture sector coverage

- In the IPCC classification, the agriculture sector and LULUCF sector are presented in the form of one sector – AFOLU. This does not match the sectoral classification under the ETF and the Paris Agreement.
- To match the categories included under the UNFCCC classification (and MPGs under the Paris Agreement) and the CRT tool, the following IPCC categories are covered under the agriculture sector in SAGE:
 - 3.A.1 Enteric Fermentation
 - 3.A.2 Manure Management
 - 3.C.1.b Burning in Cropland
 - 3.C.1.c Burning in Grassland
 - 3.C.2 Liming
 - 3.C.3 Urea Application
 - $3.C.4 Direct N_2O$ Emissions from managed soils
 - $3.C.5 Indirect N_2O$ emissions from managed soils
 - $3.C.6 Indirect N_2O$ emissions from manure management
 - 3.C.7 Rice cultivation
 - $3.C.12 N_2O$ emissions from aquaculture

Energy \rightarrow IPPU \rightarrow Waste \rightarrow Agriculture sectors

- Preserved the philosophy and the key principles of SAGE
- Retained the functional blocks, but reconfigured them substantially to accept and process the Agriculture sector data
- Created a seamless switch between the sectors at the dashboard level
- Included ALL Agriculture sector categories listed in the IPCC GLs and reframed the category table to enable mapping the IPCC and UNFCCC categories
- Created a new sectoral subset of the database to handle the Agriculture sector data and metadata
- Included Agriculture category-specific calculations (e.g., N(T), Cfi adjustment, interim calculators for components of the GE calculation, to cold, corrections for lime water content and purity, etc.)
- Developed an efficient and flexible approach to handling multitude of parameters to enable consistency between the Agriculture categories

Sectors

• 1. Energy

• 3. Agriculture

• 2. IPPU

• 4. Waste

👚 🝷 Switch to 👻 🖉 Configuration 👻 🚔 AD Collections 👻 📶 Analytic 👻 👁 Data Gaps 👻 🍄 Olia 👻 🕒 Logout 🕒 Reset 💉

Global navigation links for a quick switch between components (visible in each screen)

Open

Administration

Configuration - Basic

Configuration - Agriculture sector

AD Collections

Analytic

Data Gaps

Functional components in SAGE

Changes by component - administration

 Administrative: the same look and feel, but there are substantial machinery changes; now permissions cover the Energy, IPPU, Waste, and Agriculture sectors and separate user groups can be created for these sectors

Changes by component - configuration

Changes by component - configuration

- The configuration layer is split into basic, energy, IPPU, waste, and agriculture.
- Generic tables are available in both sectors' forms
- New Agriculture tables are prototyped and implemented
- Because there were significant inconsistencies for IPCC-UNFCCC categories, new attributes were designed and implemented to harmonize and maintain 1:1 mapping between the two category lists.

Distribution of parameters between the AD entry layer and the configuration – key challenges

- Multitude of parameters included in the 2006 IPCC GLs and the IPCC software
- The value of the parameters have different update frequencies
- Many parameters are predefined by the combination of other parameters' values
- The same parameters can be used in several different categories, so crosscategory consistency becomes a real challenge
- In the IPCC tool, the cross-category consistency is partially resolved by "freezing" some portions of tabs, but it is not immediately transparent in which category/manager those frozen parameters are entered the first time
- In the 2006 IPCC GLs, default parameters for the same category sometimes are scattered between different chapters and sections of volume 4

Distribution of parameters between the AD entry layer and the configuration in SAGE – frequency of update

Getting to the configuration - basic tables

Challenge: different frequencies of update

Challenge: a parameter can be used by one or more categories

Using the Structural approach

Separating entries for quantitative and qualitative parameters

Sage Sectoral Activity data for GHG Emissions

🕨 🔹 🏫 👻 Switch to 👻 🖌 Configuration 👻 🚔 AD Collections 👻

✗ Configuration	Calculation parameters - Add							
• • • • • • • • • • • • • • • • • • • •	List	Add	Export	Import	Changes	Info	Record #133	Record #21
+ ⁽²⁾ Dashboard	Year (leave empty for any):							
+ Categories	Any Aggregation: Any Climate zone:							
+ Livestock								
+ Land use								
+ Region	Any			~				
+ Climate zones	Feed	ing clas	s and diet:					
- 3.A parameters	Any	ina situ	ation	~				
+ Feeding class	Any	ing sum		~				
+ MMS types	Show parameter types only for:							
+ MCF for MMS	IP	CC anin	nal type:	Select		~		
+ Parameter types	Tie	er:	21	Select	~			
+ Calculation parameters	No	ame:		Туре р	part of the ty	pe or v	ariable name	
+ 3.C.1 parameters								
+ 3.C.2 parameters	Lives	tock typ	e:					
+ 3.C.4 parameters	Sele	ect					~	
+ 3 C 5 parameters	Para	meter:						
+ S.C.S parameters	Sele	ect						
+ 3.C.6 parameters Parameter value : (empty)								
+ 3.C.12 Aquaculture								
	Pa	aramete	r value un	certainty :	(empty) 🔹			
	A	dd	Cancel					

Example of required configuration parameters for 3.A (tier 1)

For Tier 1					
		Livestock Category			
Configuration table type	Parameter needed	3.A.1 (Enteric fermentation)	3.A.2 (Manure Management)		
Configuration - basic	Aggregation	needed	needed		
Agriculture sector – cross-	Climate zone	needed	needed		
sectoral	Livestock (type, optional – subdivision)	needed	needed		
Agriculture category-specific	Typical animal mass (TAM)	needed	needed		
	Number of days alive (DA)	needed	needed		
	Manure Management system (MMS)	NOT needed	needed		
	Daily N excretion rate per animal weight	NOT needed	needed		

Recommended order of entries

Changes by component – AD Collections

Changes by component – AD Collections

Time-

series

Annual AD

Collection

Individual

AD records

- All agriculture sector categories were included in the waste sectoral module
- In this sector, the amount of sector-specific configuration data used in AD calculations is significantly greater than in other, previously implemented sectors.
- To maintain consistency between categories:
 - some parameters in AD forms can be entered using the button "Set from <...> category"
 - Where applicable, adding new records is possible only by editing the pre-set records from the previously entered category data (e.g., entering 3.C.4> Managed manure available for applications to soils, fuel, or construction uses can be entered only for the relevant records in 3.A.2 category)
- For most forms included specific calculators are developed to calculate the final value of the AD from the parameters in the form and the selected values of the relevant configuration parameters ("Calculated" and "Parameters" sections in the AD form)
- A new function "Validate" introduced to check the consistency of entries between dependent categories

Recommended order of category entries in SAGE

New function in AD collection: Validate

saç	Sectoral Activity data for GHG Emissions	Agriculture		► • † •	Switch to 👻 🗡 C	Configuration 👻	AD Collection	ns ▼ .ıll Analytic	🝷 💿 Data Gaps	🝷 🍄 Olia 🍷 🕒	Logout	💁 Reset
AD Collections		Validate - 3.A Livestock										
		3.A Livestock	3.C.4 Managed	manure 3.C.4 U	Irine and dung 3	.C.4 Organic N	3.C.6 N Excretion	Info				
3	Dashboard	show 30 record	ls startina fron	a # 1 (total 19)	Search Clear <>							
Exp	lore							2 4 2 34073 90		•		
Co	mpare	ADC 1	year	aggregation	livestock type	climate	feed class	feed situation	population	population	valid	state
/ali	date								<u> </u>			
Ά App	ual AD (4)	AG_TEST_202	2022	National	Camels	Tropical Dry	Pasture	Grazing large	100000		×	draft
3 Ann		AG_TEST_202	2020	National	Sheep > Mat	Boreal Dry			1111		×	draft
Man	age all	AG_TEST_202	2020	National	Horses	Boreal Dry			10000	10000	1	draft
Draft	(4)	AG_TEST_202	2020	Middle region	Dairy Cow >	Boreal Moist	Ruminants o	Stall	1000000		×	draft
Revi	ew (0)	AG_TEST_202	2022	Top region	Poultry > Tur	Boreal Moist	Free-range			232	×	draft
App	rove (0)	AG_TEST_202	2020	National	Sheep > Gro	Warm Tempe	Free-range	Housed ewes		2466	×	draft

Using SAGE form, recommended for a single year or for small corrections:

AD entry

Changes by component – Analytic & Gaps

Changes by component – Analytic

- The application-based filters have been designed and added to the category selection process to enable more precise analyses of activity data within each category of the Agriculture sector
- The existing functions were modified to customize search parameters for the Agriculture sector categories and specific types (e.g., livestock types)
- The analytical procedures in the agriculture sector module are operated at the category/subcategory level in addition to specific waste sector parameters like livestock type, climate zone, land use, etc. to reflect the variety of scenarios for the agriculture sector

Find - 3.C.2

Data Gaps

- The key features of the data gaps analysis have been retained in the agriculture sector module.
- The application-based filters have been designed and added to the category selection process to enable more precise analyses of activity data within each category.
- In addition, specific agriculture sector parameters like livestock, climate, zone land use, etc. were introduced to the data gaps interface to reflect the variety of scenarios for the agriculture sector.

3.A - 3.C - Into Modeling log			
Data categories: (all) 👻			
Lime type: (all) 🝷			
Land use type: (all) 👻			
Region: (all) 👻			
Site: (all) 🔻			
Time-series AD collection:			
Select V			
Year(s):			
2010/2020			

And now – let's go to the live tool

Welcome to SAGE Tool site

Sectoral Activity data for Greenhouse gas Emissions calculations (SAGE) is a data collection tool for GHG inventories

Purpose

SAGE is a greenhouse gas inventory data collection tool to support national climate measurement, reporting, and verification (MRV) systems, especially in developing countries, through robust data collection, intelligent processing, and storage.

SAGE is fully compatible with the 2006 IPCC guidelines for national greenhouse gas inventories and was developed to support governments in collecting activity data to ultimately meet the reporting requirements under the Enhanced Transparency Framework of the Paris Agreement.

Features

SAGE provides an intuitive and userfriendly interface for collecting and documenting data to achieve transparent, accurate, consistent, comparable, and complete GHG inventories.

Key features include:

- Conveniently record data in the database with basic data validation
- Collate activity data, keep track of data origins and uncertainties
- Flexible selection options for entering fuels, technologies, etc. - they can be tailored to reflect national circumstances
- Support decision making on selecting optimal strategies for dealing with data gaps
- Enable data comparisons and time series analysis
- Enable data review and

Sign up

Become part of the UNFCCC program of tracking and estimation GHG emissions!

Contact us to open SAGE account

Video tour of SAGE

SAGE helps to save our planet!

https://unfccc.int/process-and-meetings/transparency-andreporting/support-for-developing-countries/ghg-support#eq-4