

CSIRO

Update on Non-CO₂ Emissions and Budgets

William Lamb
Potsdam Institute for Climate Impact Research, Germany

SBSTA, 17th Meeting of the Research Dialogue, 17 June 2025

CH₄ and N₂O emissions account for 22% of global anthropogenic GHG emissions

(a) Global total greenhouse gas emissions

Forster, P. M. et al. Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence. Earth System Science Data Discussions 2025, 1–72 (2025).

Agriculture & Waste CH₄ dominates anthropogenic emissions but Livestock and Fossil Fuels emissions are comparable

Jackson et al, 2024, ERL Saunois et al, 2025, ESSD

Fertilizers & Manure N₂O emissions are 3x bigger than the next anthropogenic source

Tian et al. 2024, ESSD

Global anthropogenic CH₄ and N₂O emissions are continuing to grow

Compared to Fossil CO_2 at 1% /yr since 2019

Forster, P. M. et al. Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence. Earth System Science Data Discussions 2025, 1–72 (2025).

Regional reductions in CH₄ and N₂O emissions are less successful than for CO₂ fossil emissions

Current CH₄ emission trajectory is not consistent with the Paris Agreement

Current CH₄ concentration trajectory is not consistent with the Paris Agreement

Unprecedented Atmospheric Growth Rates

Responses of the Natural Cycles to higher emissions, pollution, and warmer and more variable climate

Why did methane surge in the atmosphere during the early 2020s?

80% due to variations of the chemical capacity of the atmosphere to destroy CH₄ due to reduced pollutants from Covid19 lockdowns (e.g. NOx, Ozone)

Ciais et al. 2025, in review

Global Wetland Methane Emissions have Increased with Warming (decreased with drying)

Key References

- Friedlingstein, P. et al. Global Carbon Budget 2024. Earth System Science Data 17, 965–1039 (2025).
- Saunois, M. et al. Global Methane Budget 2000–2020. Earth System Science Data 17, 1873–1958 (2025).
- Tian, H. et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 16, 2543–2604 (2024).
- Jackson, R. et al. Human activities now fuel two-thirds of global methane emissions. Envir. Res. Let. 19 (2024)
- Forster, P. M. et al. Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence. Earth System Science Data Discussions 2025, 1–72 (2025).
- Lamb, W. et al. Differences in anthropogenic greenhouse gas emissions estimates explained. Earth System Science Data Discussions 2025, 1–28 (2025).
- UNEP. Emissions Gap Report 2024 https://www.unep.org/resources/emissions-gap-report-2024 (2024).
- Lamb, W. F. (2025). Tidy GHG Inventories (1.2) [Data set]. Zenodo. https://zenodo.org/records/15673746
- Deng, Z. et al. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 14, 1639–1675 (2022).
- Zhang et al. Ensemble estimates of global wetland methane emissions over 2000–2020. Biogeosciences 22, 305–321, 2025
- Global Carbon Project. GHG Budgets and data: https://www.globalcarbonproject.org/

Contact

- Pep Canadell: pep.canadell@csiro.au
- William Lamb: william.lamb@pik-potsdam.de