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Plants and soils absorb one third of the CO, emitted by
human activities
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The global net land carbon balance is sensitive to
climate and anthropogenic disturbances
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Emissions from land use change have not been reduced globally
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The RECCAP2 initiative of the Global Carbon Project, ESA RECCAP2, NASA CMS, and CEOS actions for the global stock take will
bring new data on regional GHG budgets for the three greenhouse gases from atmospheric & land observations and models ,



Deforestation rate (km? yr™)

No sign of land use emissions decline
& degradation is a growing source of concern

35000 ___ Reference average (1996-2005) 4+ 15 §
[ PPCDAmM Phase | ,
30,000 [ PPCDAM Phase i AGB gain 10 5
[] PPCDAm Phase Ill n 6 9 c
[ PPCDAmM Phase IV (interrupted) i "
25,000 Oo . 7 5 H
W@ e —— Forest gan N
20,000 85 0 0 56"
H o} 0=
%o 20
15,000 3 - 1-5 <0
Ec -2t e
o 2o Bloss I8
o0 B ]
5,000 ( 8 -4 I g
’ 1 '15 0
Q
° S | | 420 B
3
Year 2010 2020
Strong decline of Brazilian Amazon deforestation rates Net C loss in the Amazon from degradation and climate
after 2004 but recent increase in 2020 impacts exceed those from deforestation

Junior et al. Nature Ecol. Evol. 2020 Qin et al. Nature Climate Change 2020 5



Trends of land use change emissions remain uncertain
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Large difference in land use CO, flux between global models and
National GHG Inventories (-> see poster by G. Grassi et al. )

Main reason: different communities have developed different
Bookkeeping models approaches to identify the anthropogenic forest CO, sink.

It’s mostly a labelling issue: countries consider ‘anthropogenic’ part of

Integrated what models consider ‘natural’.
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Global models consider ‘managed’ only those forest subject to intensive
harvest whereas, consistent with IPCC guidelines, National GHG
inventories (NGHGIs) define managed forest more broadly. On this

larger area, NGHGIs often also consider the natural response of land to
human-induced environmental changes as anthropogenic, while global |
models treat this response as natural L NGHGls (anthropogenic flux)




The atmospheric view : northern land sink increasing
& tropical lands turning into a net source (-> poster by J. Pongratz)
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Long term projections of the land carbon sink by the
latest Earth System Models (CMIP6)
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In all ESM models -> the land CO; sink peaks and decreases in the future

- Because of negative climate feedbacks in high warming scenarios

- Because of a decrease of CO, fertilization and compensatory ocean outgassing in low warming scenarios
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Skill (Correlation)

Can we forecast the growth of atmospheric CO, and the land and
ocean CO, sinks in the coming years for the global stock take ?
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Nature based solutions : potentials

Climate mitigation potential in 2030 (PgCO.e yr)
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NCS can do part of the job but emissions need to peak
and decrease to zero for meeting the Paris goals
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Buying time : If all implemented at scale, rapidly, and at a cost effective rate,
NCS would increase by one third our dwindling “carbon budget” to reach a 2°C goal

NCS basically get us around 1 wedge (we need 7-11 wedges to just stabilize CO,
by 2050) ; from Pacala and Socolow 2004 Climate Wedges paper
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NCS can do part of the job but emissions need to peak
and decrease to zero for meeting the Paris goals
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Further, when removing CO, from the atmosphere, the Earth

System works against us, and the ocean outgases CO,
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Reforesting all the tropics would store 33 PgC but it will only
reduce CO, in the atmosphere by 18 Pg C
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Current forest offset projects vs. NCS potentials
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Current rate -> 80 Mt CO, y?
Potential at 100 € per ton -> 3000 Mt CO, y*
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Guidance & trade-offs for successful tree planting initiatives

deforestation
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Guidance & trade-offs for successful tree planting initiatives

* Protect existing forests first
* Natural regeneration will store more C & maintain diversity compared to plantations

* Tree planting is a means to achieve clearly specified goals and should be considered as part of a
multidisciplinary decision-making process that thoroughly evaluates trade-offs and uncertainties
* Clear decision-making process required to plan, implement, maintain and monitor projects.
o In more arid ecosystems, extensive tree planting may increase risks of massive fires

o Some carbon farming projects have dispossessed local people from land in several developing countries

* Host of decisions must be made about implementation from local to regional, national and global scale

* New indexes to quantify carbon potentials & monitor carbon changes with a low latency
o ESA CCl 100 m biomass maps
o Very high resolution Planet data (5m) made open for tropical regions by the Norwegian government for degradation
o Vegetation Optical depth for biomass change
o NASA GEDI global Lidar tree height products
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NCS and climate risks in forests

Climate stress Biotic agents

Human disturbance Wildfire

Anderegg et al. Science 2020
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Non stationary climate & compound climate /
anthropogenic disturbances must be accounted for in

~provisioning the risk for forest C offsets
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NCS and climate risks -> wetlands & peatlands
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Huang et al. Nature Climate Change, In Press

Climate induced lowering of water table decreases CH, but increases CO,
emissions, turning peatlands into higher net GHG emitters
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Most mid-latitudes wetlands are expected to shrink
from climate-induced decrease of water table

Last 30 years 2100, RCP2.6
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Take Home

People have different concepts of nature-based climate solutions

Large uncertainties and variability in biological systems (including big emission spikes through
fires/pest attacks/drought )

Caution about interpreting global models into national / sectoral-level planning

-> Need to mte%rate adaptation/mitigation/nature protection through coordinated planning from
local to regional and global level

Resilience of land systems needs to be increased — it is an adaptation and mitigation issue
Framing the science in the conversation

-> at local level we cannot not separate out mitigation and adaptation— local context is important
Cannot decouple ecosystems from people

-> Importance of restoring socio- ecologlcal stems — without this managing ecosystems for
mitigation and increasing local income (or adaptation) benefit will not work

-> Importance of sectoral dialogues
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Net GHG emissions are projected to increase in response to
water table reductions in peatlands

RCP2. 6
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Decadal predictions of future atmospheric CO, over the
stocktake period following future climate change scenarios

ESM SSP245 with a COVID two years blip minus baseline
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Difference between the simulations under CovidMIP two-year blip forcings and those under esm-
ssp245 baseline forcings shows consistent changes in atmospheric CO. concentration between EC-
Earth3-CC and MPI-ESM1.2-LR but with discrepancy in the CO:fluxes. 26



Still, huge uncertainties persist across land models
through successive IPCC assessment reports

- Change in Vegetation Carbon

w— SSP 5.8.5
w— SSP 5.3 405 7
250 1 v 55P4.60 | | | T, P
SSP 4.3.4 A&
200 4 === SSP 3-7.0 ! ! { £ = P -
w— SSP 2-4.5 V 7L ,
w— SSP 1-2.6 A ]
1 — SSP 119 ~  —

2020 2030 2040 2050 2060 2070 2080 2090 2100
Year



Reforestation to optimize carbon sequestration,
biodiversity recovery and livelihood benefits

1) Protect existing forest first

- Reforestation doesn’t easily compensate

for the losses of deforestation

- Old- and second-growth, degraded and
restored forests are all valuable

3) Aim to maximize biodiversity
recovery to meet multiple goals
« Restoring biodiversity will maximize

carbon sequestration and help
deliver socio-economic benefits

5) Use natural regeneration
wherever possible

It can be cheaper and more

efficient than tree planting,

if conditions are suitable

Works best on lightly

degraded sites or those

close to existing forest wiy

8) Plan ahead for infrastructure

+ Use the locally available
infrastructure, capacity

and supply chain, or build

it into the project

Refer to seed standards

to ensure maximum seed
quality and process efficiency
Provide training and use
local knowledge

9) Learn by doing

10 golden rules
for reforestation

P

2) Work together

o « Involve local communities
~~O with interactive participation
O in every project phase

~

PHP

4) Select appropriate areas for reforestation New forest

/. - Connect or expand existing forest
((%)) - Do not displace activities that will

6) Plant species to maximize biodiversity

« Only target previously forested lands established!

cause deforestation elsewhere

:g - Promote mutualistic interactions

- Always plant a mix of species
- Use as many natives as possible
+ Include rare, endemic and endangered species

- Avoid invasive species

|
AND

7) Use resilient plant material

« Incorporate appropriate

\; genetic variability
= - Pay attention to provenance

10) Make it pay

- Ensure the project's
economic sustainability

Income can come from

- Research existing data and perform trials carbon credits, NTFPs,
w * Adapt management accordingly watershed and cultural services
- Monitor the results beyond project life - Make sure the economic
- Use appropriate indicators according $ benefits reach rural and
to project goals poor local communities

Di Sacco et al. Global Change Biology, 2021
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Positive CO, feedbacks
-> CO, fertilization and turnover,
limitations by nitrogen availability
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Negative Climate feedbacks
-> Warming and drying reduce
productivity and increase respiration
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Prediction of CO2 in next years

40 Climate-Carbon
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Current Century
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First attempt of predicting atmospheric CO2 concentration and increment
from two Earth System Models show increase of atmospheric CO2
concentration with a lower rate in the next year than normal years because
of emission stabilization in the SSP245
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