

Global climate change aspects Key findings from the 2021 IPCC climate report

Valérie Masson-Delmotte Panmao Zhai

14,000 assessed scientific publications 234 authors from 65 countries 78,000+ review comments

Human influence has warmed the climate

Figure SPM.2

Observed warming is driven by emissions from human activities, with greenhouse gas warming partly masked by aerosol cooling

2.0

1.5

1.0

0.5

-0.5

Aviation contrails

Observed warming is driven by emissions from human activities, with greenhouse gas warming partly masked by aerosol cooling

The illustrative set of five SSP scenarios span a broader range of greenhouse gas and air pollutant futures than assessed in earlier WGI reports.

Shared Socioeconomic Pathway (SSP) Scenarios

Assessed future global surface temperature is based on multiple lines of evidence

Global surface temperature will continue to increase until at least the mid-century under all emission scenarios considered

Global warming of 1.5°C and 2°C will be exceeded unless deep reductions in CO₂ and other greenhouse gas emissions occur in the coming decades

With every increment
of global warming,
changes in regional
mean temperature,
precipitation, and soil
moisture and changes
in extremes and
climatic impact-drivers
get larger

Continued global warming is projected to further intensify the global water cycle, including its variability, global monsoon precipitation and the severity of wet and dry events

Many changes in the climate system become larger with increasing global warming

- frequency and intensity
- hot extremes and marine heatwaves
- heavy precipitation (+7% per °C)
- drought in some regions

snow cover, permafrost, Arctic sea ice loss

hot extremes

Figure SPM.5

Projections of global mean sea level are consistent with assessed changes in global surface temperature

Global mean sea level will continue to rise over thousands of years with a rate and magnitude depending on global greenhouse gas emissions

Global mean sea level rise relative to 1900 (m)

Figure SPM.8

1.5

0.5

0

1950

2100

Global mean sea level will continue to rise over thousands of years with a rate and magnitude depending on global greenhouse gas emissions

Global mean sea level rise relative to 1900 (m)

2000

2020

2050

Very high CO₂ emissions likely (66% ranges Low CO₂ emissions

Global mean sea level will continue to rise over thousands of years with a rate and magnitude depending on global greenhouse gas emissions

Global mean sea level rise exceeding 1 m above 1995-2014 level

Box TS.4, Figure 1

Future emissions cause future additional warming, with total warming dominated by past and future CO₂ emissions

Change in global surface temperature in 2081-2100 relative to 1850-1900 (°C)

Figure SPM.4

Every tonne of CO₂ emissions adds to global warming

An updated assessment of the total and remaining carbon budget

Cumulative CO₂ emissions from today (GtCO₂)

Global warming between 1850–1900 and 2010–2019 (°C)	Historical cumulative CO ₂ emissions from 1850 to 2019 (GtCO ₂)
1.07 (0.8–1.3; <i>likely</i> range)	2390 (± 240; <i>likely</i> range)

Approximate global warming relative to 1850–1900 until temperature	Additional global warming relative to 2010–2019 until temperature	fron	n the begi	naining ca nning of 2 limiting g	Variations in reductions in non-CO ₂ emissions*(3)		
$\lim_{C} (C)^*(1)$	limit (°C)	17%	33%	50%	67%	83%	
1.5	0.43	900	650	500	400	300	Higher or lower reductions in
1.7	0.63	1450	1050	850	700	550	accompanying non-CO ₂ emissions can increase or decrease the values on
2.0	0.93	2300	1700	1350	1150	900	the left by 220 GtCO ₂ or more

Contributions of updated terms compensate leading to remaining budgets similar to SR1.5

- Emissions to date: 2390 GtCO₂ over 1850-2019 period
- Human-induced historical warming
- Warming per tonne CO₂ emitted
- Warming evolution after CO₂ emissions reach net zero
- Future warming from non- CO₂ emissions
- Earth system feedback otherwise not captured

The proportion of CO₂ emissions taken up by land and ocean carbon sinks is smaller in scenarios with higher cumulative CO₂ emissions

Working Group I – The Physical Science Basis

Strong, rapid and sustained reductions in CH₄ emissions would limit the warming effect resulting from declining aerosol pollution and improve air quality

Differences in trends in global surface temperature would begin to emerge from natural variability within around the next 20 years

CO₂ emissions (billion tonnes of CO₂ per year)

CO₂ concentration in the atmposphere (ppm)

Global surface temperature (°C)

Limiting global warming reduces consequences of climate change that can impact society and natural systems

Thank you.

More Information:

IPCC: www.ipcc.ch

IPCC Secretariat: ipcc-sec@wmo.int

IPCC Press Office: ipcc-media@wmo.int

Follow Us:

@IPCC

@IPCC_CH

in

linkedin.com/company/ipcc

