

Social Accounting Matrix (SAM) – A Modelling Tool for Impact Evaluation

Presented at the -

UNFCCC In-forum training workshop on use of economic modelling tools related to economic diversification and just transition of workforce

Venue: UNFCC Bonn, from 30th April to 2nd May 2018 by Pradeep Kumar Dadhich, PhD Director,

Mega Zing Solutions Pvt. LTD, Gurgaon, India

Date: 30-04-2018

About Us

MZSPL began operations in June 2016. We offer research & consulting services in Energy & Water Sector and Climate Change Adaptation and Mitigation. MZSPL's solutions cut across other sectors of the economy like the industrial, agriculture, commercial, residential, transport and municipality

Our Mission: Smart and sustainable

energy solutions for all.

Contents

- Introduction to Input-output model this brings out the inter-dependency of different sectors.
- Impact analysis using input-output model.
- Multi-regional input-output model.
- Introduction to SAM, which is an extension of Input-output model.
- SAM multipliers.

INPUT-OUTPUT MODELS

- An input/output table quantifies the transactions between sectors in an economy.
- It's a "snap-shot" of the economy for a one-year period.
- By understanding these linkages, we are able to predict how a change in one sector will affect the other sectors.
- Multipliers can be estimated Multipliers measure total change throughout the economy from one unit change for a given sector.

Basic Input-Output Logic

From the Tire Producer's Perspective

Tire Factory

<u>INTER-</u> <u>MEDIATE</u> <u>DEMAND</u> FOR TIRES

Regional Input-Output Models

			Fin				
	Industry 1	Industry 2	Consump- tion	Invest- ment	Govt.	Exports	Total Sales
Industry 1							
Industry 2							
Labor Income							
Other Value Added							
Imports							
Total Purchases							

Total Sales = Total Purchases Total Sales = Intermediate Sales + Final Sales Total Purchases = Intermediate Purchases + Value Added + Imports

Impact Analysis Using I/O Models

Employment Impacts calculated from Output Impacts

Input Output Model Impacts

Multiplier models: how they work ...

Secondary effects:

 increase in supply of inputs (standard input-output multipliers)

Secondary effects: spending by households

- Factor income payments for factor services supplied (stemming from primary effects)
- Spending out of income by households

Further secondary (i.e. multiplier) effects:

- Output effects
- Income effects

Multiregional IO models

- For a country made up of several regions, any exogenous change in one region can be expected to have ramifications not only within the region (state, in this example) where the activity takes place, but also in other states.
- The one region of interest was essentially "disconnected" from the rest of the country within which it is located, in the sense that its production recipes are reflected in an intraregional matrix.
- This concept can also be expanded for multiple countries as we shall demonstrate in the subsequent slides.

Multiregional IO Models: Hypothetical example

For purposes of illustration, we consider a two-region economy. Using r and s, as before, for the two regions, let there be three producing sectors (1, 2, 3) in region r and two (1, 2) in region s. Suppose that one has information for region r on both intraregional flows, z_{ij}^{rr} , and interregional flows, z_{ij}^{sr} . There will be nine of the former and six of the latter. Suppose, further, that the same kind of information is available on the use of inputs by firms located in region s, z_{ij}^{rs} and z_{ij}^{ss} . This complete table of intraregional and interregional data can be represented as:

$$\mathbf{Z} = \begin{bmatrix} \mathbf{z}^{\mathrm{rr}} & \mathbf{z}^{\mathrm{rs}} \\ \mathbf{z}^{\mathrm{sr}} & \mathbf{z}^{\mathrm{ss}} \end{bmatrix}$$

Multiregional IO table for hypothetical example in expanded form

		Purchasing Sector										
Selling Se	ector		Region r	Region s								
/		1	2	3	1	2						
Region r	1	z_{11}^{rr}	z_{12}^{rr}	z_{13}^{rr}	z_{11}^{rs}	z_{12}^{rs}						
Region	2	z_{21}^{rr}	z_{22}^{rr}	z ^{rr} ₂₃	z_{21}^{rs}	z_{22}^{rs}						
	3	z_{31}^{rr}	z_{32}^{rr}	z ^{rr} ₃₃	z_{31}^{rs}	z ^{rs} ₃₂						
Region s	1	z_{11}^{sr}	z_{12}^{sr}	z_{13}^{sr}	z_{11}^{ss}	z_{12}^{ss}						
	2	z_{21}^{sr}	z_{22}^{sr}	z_{23}^{sr}	z_{21}^{ss}	z_{22}^{ss}						

Layout of the 2005 Asian International Input-Output Table

			Intermediate Demand (A)							Final Demand (F)							Export (L)											
		code	(S) Indonesia	S Malaysia	(a) Philippines	(S Singapore	(TV)	O China	S Taiwan	(X) Korea	E Japan	G U.S.A.	(H) Indonesia	H) Malaysia	년 Philippines	(54) Singapore	(H) Thaikand	(F) China	(FZ	Korea (X-1)	して、 「」)	G u.s.a.	Export to H.Kong	ලි Export to India	ලි Export to EU	ξ Export to R.O.W.	S Discrepancy	§ Total Outputs
	Indonesia	(AI)	A	A ^{IM}	A [₽]	A ^Б	AT	A [£]	A ™	A ^{IK}	A ²	А ¹⁰	F	F ^{IM}	FP	F 15	۶T	FE	FN	F ^{IK}	F	F ^{ID}	1 "	L ¹⁶⁵	L BD	LW	Q'	x'
	Malaysia	(AM)	AM	А ^{ММ}	\boldsymbol{A}^{MP}	А ^{MS}	А ^{Mr}	А ^{MC}	A ^{MN}	A^{MK}	A	A ^{MU}	FMI	F^{MM}	\boldsymbol{F}^{MP}	F^{MS}	F^{MT}	F^{MC}	F ^{MN}	F^{MK}	F ^{MI}	F ^{MU}	L MH	L MG	L MO	L ^{MW}	Q^M	х ^м
	Philippines	(AP)	API	\boldsymbol{A}^{PM}	A ^{PP}	A ^{P5}	APT	APC	A^{PN}	APK	A "	A ^{PU}	F ^{PI}	F^{PM}	F^{PP}	F^{PS}	F^{PT}	F^{PC}	F^{PN}	FPK	FPI	FPU	L PH	L PG	LPO	LPW	Q^P	X ^P
	Singapore	(AS)	АЯ	А ^{5М}	A ⁵⁹	A ⁵⁵	А ⁵⁷	A ^{5C}	A ^{5№}	А ^{5К}	A ⁵⁷	А ⁵⁰	FI	FSM	FSP	F 55	FST	FSC	FSN	FSK	F 51	FSU	۲ ₂₁₄	L 56	L 50	L SW	Q^{5}	<i>x</i> ⁵
	Thailand	(AT)	АП	А ^{тм}	A ""	A ⁷⁵	A^{TT}	A ^{rc}	A ™	A ⁷⁸	A "	A ⁷⁰	F	F ^m	F	F 75	F	F ^{rc}	F	F ^m	F	F	L TH	L 115	1 10	1 ^{rw}	Q^r	<i>x</i> ^{<i>r</i>}
	China	(AC)	A	А ^{см}	A°	A ⁶⁵	A	ACC	A ^{€№}	Α	A	А ^{сυ}	Fa	F	FCP	F ^{CS}	FCT	F ^{CC}	F	F	F	FCU	L CH	L CG	L co	L ^{CW}	q ^c	xc
	Taiwan	(AN)	A	A^{NM}	ANP	A ^{∿5}	A^{NT}	A ^{NC}	A ^{NN}	А ^{NK}	A [№]	А ND	FNI	F	F^{NP}	F ^{NS}	F ^{NT}	FNC	F	F	FNI	FNU	L	LNG	LNO	LNW	Q ^N	<i>X</i> ^N
	Korea	(AK)	A ^{KI}	А ^{км}	А ^{кр}	A ¹⁵	ART	AKC	A ^{KN}	A **	А	А ^{ко}	FR	F ^{RM}	FRP	F ^{KS}	F ^{KT}	FKC	F ^{RN}	FRK	FKI	FRU	L ⁸⁰⁴	L ^{KG}	LKO	L ^{KW}	Q ^K	<i>х</i> ^к
	Japan	(A)	A"	A ' ^M	A ^P	A' ⁵	A"	A' ^C	A 'N	A' ^K	A"	A [′]	F	F ^{IM}	F ^{IP}	F'5	F'T	F ^K	F	F ^{IK}	F"	F' ^D	£ #	L HG	Ĺ	LW	Q'	X'
	U.S.A.	(AU)	A ¹¹¹	AUM	AUP	A ^{US}	AUT	AUC	AUN	AUK	A ^W	A ⁰⁰	F	F	F	F ^{US}	F	FUC	F	F	F	FUU	L	Lne	L	L	q۳	X ^U
Freight and Ins	urance	(BF)	BA	B A [™]	BAP	BA ⁵	BA T	BAC	BA ^N	BAĸ	BA'	BA ^U	B F ¹	B <i>F</i> [™]	BF P	B F ⁵	BF ^T	BF ^C	BF [№]	BF ^K	BF'	BF ^U						
Import from H	. Kong	(CH)	A ^{HI}	А ^{нм}	AHP	А ^{н5}	AHT	A ^{HC}	A ^{HN}	А^{нк}	A [₩]	А ^{но}	F ^{HI}	F	F	F ^{HS}	FHT	F ^{HC}	F	F	F	FHU						
Import from In	dia	(GH)	A	А	A GP	A ⁶⁵	AGT	A ^{GC}	AGN	AGK	A ^{6/}	А ^{б0}	F .01	F ^{GM}	F	F 65	FGT	F ^{GC}	FGN	FGK	F	F						
Import from E	U	(CO)	A	A ^{ом}	A	A	Aor	Aoc	AON	AOK	A °'	Αου	F	F	F	F	For	Foc	FON	FOR	F	F						
Import from th	ne R.O.W.	(CW)	AWI	A ^{WM}	A	A ^{ws}	AWT	A ^{wc}	AWN	AWK	AW	AWU	FWI	F	F^{WP}	F ^{WS}	F ^{wr}	F^{WC}	F	FWK	F	FWU						
Duties & Impo	rt Taxes	(DT)	DA	DA [™]	DAP	DA ⁵	DA ^T	DAC	DA ^N	DA ^K	DA'	DAU	DF	DF ^M	DFP	DF ⁵	DFT	DF ^C	DF ^N	DF ^K	DF'	DF						
Value Added		(vv)	\mathbf{v}^{\prime}	$\boldsymbol{v}^{\scriptscriptstyle M}$	V^{P}	v^{s}	v	v^{c}	V^N	V ^ĸ	\mathbf{v}'	v°																
Total Inputs		(XX)	X ¹	Х ^м	XP	<i>x</i> ⁵	x ^r	xc	X ^N	Хĸ	<i>x</i> ′	xu																

What is a SAM?

- A Social Accounting Matrix (SAM) is a square matrix that builds on the input-output table - but the SAM goes further
- A SAM considers not only production linkages, but tracks income-expenditure feedbacks (including institutions)
- Each "transactor" (such as factors of production, households, enterprises, the government and the ROW) has a row and a column – double entry national income accounting (row totals therefore equal to corresponding column total)
- A SAM is a consistent data system that provides a snapshot of the economy in a given year
- Note that the SAM reconciles data from different sources and we often talk about the SAM as consisting of two corresponding layers: the Macro-SAM and the Micro-SAM

Why Build SAMs?

- SAM helps to understand the interactions of macro policy and I-O production structure as well as economic interactions between sectors and institutions of the economy and rest of the world (ROW).
- SAM Provides the framework (or accounting device) in which to organize structural and institutional data (households, firms and government).
- SAM can be supplemented with satellite tables to provide flexibility, yet consistent framework for socio-economic analysis.
- It can be used as the basis for simple modelling under certain assumptions.

Economy wide circular flow

Example of Circular Flow of Income and Expenditures

SAM-based multiplier models

- Aim is to capture the circular flow of income: producers to consumers and *vice-versa*.
- We need to distinguish between *endogenous* and *exogenous* accounts
- Exogenous transactions: usually defined as the income and outlays of government, capital investment and rest of the world
- Endogenous transactions: usually the production, factor and institution (households) accounts – capturing the circular flow of income

Unique features of SAM

Description

- Useful snapshot of economic structure

Construction

- Good organizing framework
- Draws together data from disparate sources

Basis for modelling

- Data for calibrating macro and macro-meso models
- Multiplier models capture structural features
- CGE models, microsimulation, etc.

Table 1: A Basic Social Accounting Matrix (SAM)

21

			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	TOTALS
	Products	(1)		Intermediate consumption		Household consumption		Government consumption	Fixed capital formation and change in stocks	Exports	Demand for products
Production	Activities	(2)	Domestic sales								Sales of commodities
Factors of production		(3)		Gross value added payments to factors						<i>Net</i> factor income from RoW	Factor income receipts
	Households	(4)			Labour and mixed income	Inter- household transfers	Distributed profits to households	Current transfers to households		<i>Net</i> current transfers from RoW	Current household receipts
Institutions (Current accounts)	Corporate enterprises	(5)			Operating surplus			Current transfers to enterprises		<i>Net</i> current transfers from RoW	Current enterprise receipts
	Government (&NPISHs) ¹	(6)	<i>Net</i> taxes on products			Direct taxes	Direct taxes			<i>Net</i> current transfers from RoW	Current government receipts
Combined capital accounts		(7)				Household savings	Enterprise savings	Government savings	Capital transfers	<i>Net</i> capital transfers from RoW	Capital receipts
Rest of World (RoW) (combined account)		(8)	Imports						Current external balance		Aggregate receipts from RoW
TOTALS			Supply of products	Costs of production activities	Factor income payments	Current household outlays	Current enterprise outlays	Current government outlays	Capital outlays	Aggregate outlays to RoW	

Mega Zing Solutions Pvt. Ltd.

Table 2. SAM: Endogenous and Exogenous Accounts

ACCO	UNT			Endogenous	Exogenous	TOTAL	
			(1)	(2)	(3)	(4)	
Product	ts	(1)	Intermediate consumption		Household consumption expenditures	Other final demands	Total demands for products
			T_{11}		T ₁₃	x_1	y_I
Factors		(2)	Value added			Factor income from abroad	Total factor income receipts
			T_{21}			x_2	<i>y</i> ₂
Househ	olds	(3)		Factor income to households	Inter-household transfers	Non-factor income receipts	Total household incomes
				T_{32}	T_{33}	x_3	V 3
Other a (exoger	ccounts nous)	(4)	Imports, indirect taxes	Other factor payments	Savings, etc		Total exogenous receipts
			l_1	l_2	l_3		Σl
ΤΟΤΑΙ	-		Total activity outputs	Total factor income payments	Total household outlays	Total exogenous payments	
			<i>Y</i> 2	<i>Y</i> 3	<i>Y</i> 4	Σx	

SAM-based modelling

Multiplier models (fixed price models)

- many examples in development economics
- decomposition analysis is prominent

CGE models (flexible price models)

- many examples in development economics
- trade, income distribution and poverty analysis

Pros and cons between multiplier and CGE models

- former are a special case of the latter
- advantages and disadvantages of both approaches
 - multiplier models offer simple insights and transparency
 - CGE attempt to capture more endogenous behaviour

Multiplier decomposition

Fixed price multipliers $dy = (I - C)^{-1} dx = M dx$ Pyatt-Round (P-R) multiplier decomposition $M = M_3 M_2 M_1$

 M_1 : within-group effects

 M_2 : cross-group effects

 M_3 : between-group effects

Stone additive decomposition

 $M = I + (M_1 - I) + (M_2 - I)M_1 + (M_3 - I)M_2M_1$

Pyatt-Round decomposition: an extension

- aim is to show how the P-R decomposition can achieve the D-T decomposition objectives
- the method shows the contributions to an element of the total multiplier, m_{ii} due to different paths
- consider impact on income of HH *i* of unit increase in output of activity *j*

 $m_{IP.ij} = m'_{3.II.i} M_{2.IP} m_{1.PP.j}$

- instead we form an 'rAs' transform based on $m'_{3.II.i}$ and $m_{1.PP.j}$

$$M_{IP.ij} = \hat{m}'_{3.II.i} M_{2.IP} \hat{m}_{1.PP.j}$$

Defourny-Thorbecke (D-T) decomposition

- argued that P-R has operational limitations: i.e. difficult to identify what are the *important* paths (loops) in the process
- use structural path analysis based on graph theory
- computes every conceivable loop in following through an exogenous injection and its resultant impact on endogenous accounts
- requires software to compute and rank all path multipliers (Direct influence, Total influence, Global influence)
- example based on SAM for Korea (EJ 1984)

Reflecting on fixed price multiplier models

Advantages

- Relatively simple to comprehend
- Simple to compute (Excel, spreadsheet)
- Based on structural features exhibited by base SAM

Disadvantages

- Responses at the margin might differ from those on average
- Bottlenecks will mean multiplier effects are overestimated
- Price effects might also mean effects are overestimated
- Limited endogenous behaviour will mean effects are underestimated

SAMs: current work and in prospect

SAM construction

- mathematical balancing methods have predominated
- more work needed on basic surveys and data assembly

Design of SAMs

- current work on multipliers and the Stone phenomenon
- indicates that there is an 'optimal' design for distributional analysis

Environmental extensions

- environmental and satellite SAMs show much promise

Thank You

Email-pkdadhich@megazingsolutions.com

Website- <u>www.megazingsolutions.com</u>

The Leontief coefficients

Leontief, the innovator of input-output analysis, uses a special production function which depends *linearly* on the total output variables x_i . Using Leontief coefficients a_{ij} , we may manipulate our transactions information into what is known as an input-output table:

$$egin{array}{rcl} x_{11}&=&a_{11}x_1\ x_{12}&=&a_{12}x_2\ x_{13}&=&a_{13}x_3\ x_{14}&=&a_{14}x_4\ dots&=&dots\end{array} \qquad x_{ij}&=&a_{ij}x_j \end{array}$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + c_1 = x_1$$

 $\vdots = = \vdots$
 $a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + c_4 = x_4$

30

Next step

Rewriting finally yields

$$(1 - a_{11})x_1 - a_{12}x_2 - a_{13}x_3 - a_{14}x_4 = c_1$$

$$\vdots \qquad \qquad = \vdots$$

$$-a_{41}x_1 - a_{42}x_2 - a_{43}x_3 + (1 - a_{44})x_4 = c_4$$

One more step

Introducing matrix notation, we can see how a solution may be obtained. Let

$$\begin{aligned} x &= \begin{pmatrix} x_1 \\ \vdots \\ x_4 \end{pmatrix}; \quad c = \begin{pmatrix} c_1 \\ \vdots \\ c_4 \end{pmatrix}; \\ I &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \quad A &= \begin{pmatrix} a_{11} & \cdots & a_{14} \\ \vdots & \ddots & \vdots \\ a_{41} & \cdots & a_{44} \end{pmatrix}; \end{aligned}$$

denote the total output vector, the final demand vector, the unit matrix and the input-output matrix, respectively.

Key result

$$\begin{array}{rcl} Ax+c &=& x\\ (I-A)x &=& c\\ x &=& (I-A)^{-1}c \end{array}$$

33

SAM equations

Production Account: $Q + M + T_1 = U + F + I + X + G$

Consumption Account: $U + V + T_B = Q + D + H$

Capital Accumulation Account: $I + D + L + B = S + S_G + S_F$

"Rest of World" Account: $X + H + S_F = M + O + L$

Government Account: $G + P + S_G = T + B + T_B + T_I$

Household Account: P + W = F + T + S + O

Value Added Account: V = W

More applications of multiplier analysis ...

Ghana

- example of the Pyatt-Round decomposition to examine structure, using Stone additive method
- confirmed the Stone phenomenon

Korea

- Defourny-Thorbecke structural path analysis
- indirect effects may produce significantly larger impacts than direct (elementary) paths

More applications of multiplier analysis ...

Indonesia

- Keuning & Thorbecke used SAM multiplier analysis to trace through effects of government budget retrenchment (i.e. negative effects)
- ten household groups, effects on income distribution more sensitive to exogenous shocks
- also build in loss of imputed benefits due to reduction in health and education