
POLAR OCEANS AS A CARBON SINK
Permanent ecosystem and fisheries loss due to polar 

ocean acidification

The Arctic and Southern Oceans have absorbed the lion’s share of excess CO2 in the Earth’s atmosphere. By some estimates, polar waters have absorbed up 
to 60% of the carbon taken up by the world’s oceans thus far. This makes them an important carbon sink, limiting global warming, despite sharp increases in 
human carbon emissions.

This “ecosystem service” however has come at a high cost: increasing rates of acidification of polar waters, because when dissolved into seawater, CO2 forms 
carbonic acid. Acidification levels today are higher than at any point in the past three million years.

In addition to acidification, the polar and many near-polar ocean ecosystems face additional threats due to global warming: marine heatwaves and generally 
warming waters, which also sometimes decreases oxygen levels; freshening of these waters, from increasing amounts of meltwater pouring off the Greenland 
and Antarctic ice sheets, which also can affect ocean currents and mixing between surface and deeper waters; invasion by more southerly species; and 
especially in the Arctic, loss of multi-year sea ice.

Together, these threats are stressing polar and near-polar 
ecosystems already today, with impacts such as marine 
die-off events and apparent difficulty in some regions for 
animals to build shells. Both polar oceans already appear to 
be nearing a critical ocean acidification chemical threshold. 
There is high likelihood that these changes are a harbinger 
of much worse to come; until, and unless, CO2 levels begin 
to fall sharply.

There is currently no practical way for humans to reverse 
ocean acidification, and these more acidic conditions will 
persist for tens of thousands of years. This is because 
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It will take some 50–70,000 years to bring acidification and 
its impacts back to pre-industrial levels...making this one of 
the most permanent impacts of climate change in our polar 
regions. 

This very long lifetime of acidification in the oceans is one 
reason why mitigation efforts focused on “solar-radiation 
management,” as opposed to decreasing atmospheric CO2, 
represent a special threat to the health of the world’s oceans, 
especially those at the poles.

Scenario
CO2 
concentration 
(ppm)

Impacts for marine life and ocean circulation

Low emissions

440–460
Peak assuming 50% 
reductions by 2030, 

depending on the scale 
of permafrost emission 

feedbacks

Temperature peak 1.6-
1.8°C and declining

• In large portions of the Arctic and Southern Oceans, this will lead to prolonged ocean acidification: very long-term (tens of thousands of years) 
corrosive conditions that stress all marine organisms, especially those unable to build or maintain their shells. 

• Isolated marine heat waves and related marine die-off events are likely to occur each year, until temperatures decrease to at least today’s 
levels sometime after 2200. 

• Freshening from polar glacier and ice sheet melt may decrease the availability of needed nutrients in surface waters, causing changes in the 
food web. 

• In the Arctic, food web impacts will be exacerbated by frequent loss of summer sea ice, and complete loss of multi-year ice at these peak 
temperature levels.Once temperatures return to below 1.5°C, these ice-free summers will be more occasional.

• The AMOC (Atlantic Meridional Overturning Circulation) is likely to slow further, but not collapse.

Optimistic 
fulfillment of all 
current pledges 

>500
Temperature peak 

1.9°C 

• With the disappearance of sea ice for several months each summer, Arctic and near-Arctic waters will warm significantly faster, and hold heat 
longer. Marine heatwaves will be more frequent.

• Harmful long-term acidification levels spreading throughout much of the Arctic and Southern Oceans, as well as important fisheries in the 
Barents, Bering, Beaufort and Amundsen Seas.

• Such conditions, which will persist for several thousand years, may also begin to appear seasonally in other “hot spots” further from the poles, 
such as the North Sea and waters off western Canada, Iceland and the Canadian Maritimes. 

• The impact of multiple stressors – increased acidification, marine heat waves, and greater freshening from meltwater off both polar ice sheets – 
on food webs and fisheries in these regions could be significant.

• Impacts on the AMOC and other ocean currents will be greater than at low emissions.

Current 
implemented 
NDCs

>600
Temperature peak 

3.1°C

• Ocean acidification and multiple stressors will spread southward, and persist for longer periods each year. Significant extinctions of cold-water 
polar species will become more likely, as waters both warm and become more corrosive for tens of thousands of years.

• With acceleration of Greenland melt, severe slowing and even shutdown of the AMOC cannot be ruled out. This would lead to severe and 
unpredictable disturbances to global weather patterns, which at this temperature level would already be more extreme from a warmer and 
wetter atmosphere.

Current 
emissions 
growth

>800
by 2100

Temperature peak 
4-5°C and rising

• Few of today’s polar species, especially shell-building species, are likely to survive the radical change in environment caused by such a rapid and 
extreme rise in acidification, which will last 50–70,000 years.

• This low-pH environment would occur in combination with much warmer, and also fresher, waters from extensive and accelerating ice sheet 
melt, including potentially rapid West Antarctic Ice Sheet collapse.

• Mass extinction of many sea ice associated polar and near-polar species will be the result. Fish such as cod, herring and salmon are extremely 
unlikely to survive in the wild, with food webs overall less diverse and resilient. Ocean currents, and related weather impacts from this rapid 
incursion of ice sheet meltwater, will likely be extreme and unpredictable.

For more information, see the 2021 State 
of the Cryosphere Report: 
iccinet.org/statecryo21

Top :Image of healthy pteropods courtesy Dr. Nina Bednarsek. Bottom: Niemi 
et al., 2020, Frontiers in Marine Science

processes that buffer the acidity from the ocean occur very slowly, over nearly geologic time scales. 
CO2 “only” lasts for 800–1000 years in the atmosphere, but ocean processes are much slower. 

Difference between acidification levels in a 1.5° world (RCP2.6) (left map), and a 3–4° world (RCP8.5) (right map) by 2100. Red shows “undersaturated aragonite conditions,” a measure of ocean acidification meaning that shelled 
organisms will have difficulty building or maintaining their shells, leading to potential decline of populations and dietary sources for fish, with loss of biodiversity towards simplified food webs. Image source: IPCC SROCC (2019).

Acidification with Low Emissions (left) and Very High Emissions (right)


