
‘COUNTRY OF PERMAFROST’
Current and future permafrost emissions 

as large as major emitters

Permafrost and the global climate system
Permafrost is ground that remains frozen through the year, and covers 22% of the Northern Hemisphere land area. It is actually a frozen 
mixture of soil, rocks, ice and organic material, holding about twice as much carbon as currently exists in the Earth’s atmosphere.

Cold temperatures have protected this organic matter from thawing, decomposing and releasing its stored carbon for many thousands of 
years. Observations confirm that it is rapidly warming, and releasing part of that thawed carbon into the atmosphere as both carbon dioxide 
(CO2) and methane. Permafrost thaw is projected to add as much greenhouse gas forcing as a large country, depending on just how much the 
planet warms. Today, at about 1.2°C, we are already committed to losing about 25% of surface permafrost.

As temperatures have risen, especially since about 1950, permafrost has not only declined in area, but thawed to deeper depth and greater 
volume; beginning to release its stored carbon. Most of this released carbon comes as CO2; but if permafrost thaws under wet conditions, 
such as under wetlands or lakes, some of that carbon enters the atmosphere as methane. While not lasting as long in the atmosphere as CO2, 
methane warms far more potently during its lifetime: about 100 times more over 20 years, leading to faster and more intense global warming.

Permafrost thaw occurs gradually over large areas, but these landscapes are also vulnerable to abrupt thaw events. These can result in large-
scale erosion, ground collapse along hillsides and cliffs, and rapid formation of new lakes 
or wetlands. The collapsed ground rapidly exposes ever-deeper carbon pools, and further 
accelerates thaw rates.

The number of these rapid thaw events has increased as the Arctic warms, and might 
increase permafrost carbon emissions by as much as 50% as the planet warms to 1.5°C 
or more. Increasing wildfires in the Arctic due to warmer and drier conditions also cause 
deeper and more rapid thawing, which remains for decades after the fire. Like emissions 
from abrupt thaw events, these fire-related emissions have not been included in past 
estimates of greenhouse gases.
 
Some permafrost is actually located beneath the coastal waters of the Arctic Ocean, on lands flooded at the end of the last Ice Age when sea 
levels rose. Its current and future contribution to carbon emissions remains uncertain, but could be significant. Recent estimates range from an 
additional 150–250 Gt CO2 equivalent by 2100, especially with additional Arctic Ocean warming.
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Permafrost thaw is projected 
to add as much greenhouse 

gas forcing as a large country, 
depending on just how much 

the planet warms.

Scenario Temperature 
peak

Cumulative 
Gt CO2-eq 
(including CO2 
and CH4) by 
2100

Impacts

Low emissions

1.6-
1.8°C

...and declining
Peak reached between 

2060-2080

150-200

Once permafrost thaw is initiated, including by extreme summer heat events, the resulting emissions continue for 
centuries. As a result, permafrost emissions will continue even if temperatures slowly decline.

Future generations will need to deploy and continue CO2 removal strategies equal to these long-term emissions 
until they cease, simply to hold temperatures steady.

Optimistic 
fulfillment of all 
current pledges 

1.9°C

Peak reached between 
2120-40

220-300

These emissions will continue for one-two centuries after peak temperature is reached. Future generations will 
need to deploy and continue carbon dioxide removal strategies equal to these long-term emissions until they cease, 
simply to hold temperatures steady.

Permafrost soils will disappear in extensive regions above the Arctic Circle, as well as below, and nearly all existing 
infrastructure built on permafrost soils will require replacement.

Current 
implemented 
NDCs

3.1°C

Peak reached between 
2150-70

350-400

These emissions will continue for one-two centuries after peak temperature is reached. Future generations will need 
to deploy and continue carbon dioxide removal strategies equal to these long-term emissions until they cease well 
past 2300, simply to hold temperatures steady.

Over 70% of original pre-industrial surface permafrost globally will have disappeared by the time of this peak. 
Extensive erosion, due to permafrost thaw, sea ice-free conditions and more violent storms will require extensive 
replacement of coastal and riverside Arctic infrastructure, especially in Russia and Canada.

Current 
emissions 
growth

4-5°C

...and rising
Peak reached well after 

2200

400-500+

These emissions will continue for one-two centuries after peak temperature is reached. Future generations will need 
to deploy and continue carbon dioxide removal strategies equal to these long-term emissions until they cease well 
past 2400, simply to hold temperatures steady.

Surface permafrost soils will largely disappear globally. Infrastructure damage, especially in Siberia and Alaska, will 
be extreme. Emissions from permafrost thaw are essentially permanent on human timescales, because the long-
term drawdown of carbon to re-build new permafrost soils takes thousands of years.

The only means available to minimize these growing risks is to keep as much permafrost as possible in its current frozen state, holding global 
temperature increases to 1.5°C. This will also minimize the burden of negative emissions on future generations.

Cliff collapse. 

For more information, see the 2021 State of 
the Cryosphere Report: 
iccinet.org/statecryo21

House collapsed in Alaska due to thawing permafrost. Ashley Cooper / Alamy Stock Photo 
Adam Jones Traditional Wooden House Leans in Permafrost - Tomsk - Siberia – Russia.
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