ТРЕТЬЕ НАЦИОНАЛЬНОЕ СООБЩЕНИЕ КЫРГЫЗСКОЙ РЕСПУБЛИКИ ПО РАМОЧНОЙ КОНВЕНЦИИ ООН ОБ ИЗМЕНЕНИИ КЛИМАТА

БИШКЕК-2016
Третье национальное сообщение Кыргызской Республики подготовлено в рамках проекта ЮНЕП/ГЭФ Кыргызстан «Помощь в подготовке третьего национального сообщения по Рамочной конвенции Организации Объединенных Наций об изменении климата» Государственным агентством охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики и Программой ООН по окружающей среде при финансовой поддержке Глобального экологического фонда.

Утверждено постановлением Правительства Кыргызской Республики от 13.10.2016 г. № 546

Материалы настоящей публикации могут быть использованы при обязательной ссылке на источник.
Исполнители

Директор проекта
Рустамов А. А.
Директор Государственного агентства охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики, к. с.-х.н.

Представитель Программы ООН по окружающей среде
Джордж Манфул, PhD

Координатор проекта
Абайдарханова З.О.

Общая редакция
Ильясов Ш.А., к.т.н.

Координационный комитет
Толонгутов Б.М.
Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики

Беккулова Дж.Э.
Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики

Сайкымзамбетова Б.Н.
Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики

Байходжав М.
Министерство иностранных дел Кыргызской Республики

Шамшиев Н.Ш.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Архангельская А.В.
Министерство энергетики и промышленности Кыргызской Республики

Шаршенова А.А., д.м.н.
Национальный статистический комитет Кыргызской Республики

Абдылдаева Б.А.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Асанкулова М.С.
Министерство транспорта и коммуникаций Кыргызской Республики

Ташполотов М.А.
Министерство чрезвычайных ситуаций Кыргызской Республики

ЧерниковаТ.Г.
Агентство по гидрометеорологии

Джураев А.М., д.ф.-м.н.
Министерство образования и науки Кыргызской Республики

Жамалов Э.А.
Министерство финансов Кыргызской Республики

Орошаева К. Дж.
Национальный статистический комитет Кыргызской Республики

Абдралиева Г.К.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Абдыкеримов А.А., д.с.-х.н.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Айдакеев А.А.
Министерство чрезвычайных ситуаций Кыргызской Республики

Бейшебаева С.Ж.
Министерство энергетики и промышленности Кыргызской Республики

Бостоналиева Ж.К., PhD
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Веденева Т.А.
Министерство иностранных дел Кыргызской Республики

Гайдамак Н.А.
Министерство иностранных дел Кыргызской Республики

Гареева А.Н.
Министерство иностранных дел Кыргызской Республики

Джумадылова Ч.К., к.г.-м.н.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Забенко О.В.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Исмаилов Ш.Д.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Кадыкова Г.Б.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Карабаев Н.А., д.с.-х.н.
Министерство иностранных дел Кыргызской Республики

Касымова Р.О., к.м.н.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Конов Д.А.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Коротенко В.А., к.б.н.
Министерство иностранных дел Кыргызской Республики

Кретова З.А.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Кузьмиченок В.А., к.т.н.
Министерство сельского хозяйства и мелиорации Кыргызской Республики

Липкин В.И., к.т.н.
Тен Л.И.

Луппинин Э.В.
Токтогулова Н.К.

Макеев Т.М.
Турдубаев К.А.

Маризон Л.
Черникова Т.Г.

Мусабеков Н.Б.
Чойбекова Д.Р., к.э.н.

Мырсалиев Н.
Шабаева Г.Р.

Ожерельев Н.С.
Шамсудинов М.М., д.т.н.

Ороздалиев С.К.
Шаршенов Б.Б.

Павлова О.Я.
Шаршенова А.А., д.м.н.

Пентелев Б.П.
Шевченко В.В.

Пенкина Л.М.
Эламанов О.

Подрезов А.О., к.гн.
Забеденов Б.А., д.с.-х.н.

Родина Е.М., д.тн.
Касымов О.А., к.м.н.

Сатыналиев А.Т.
Саткахимбаев А.М., к.б.н.

Сахваева Е.П.
Темирбеков А.М., МРА

Середа Е.А.
Таранова Е.П.

Сукунов Б.Б.
Талдизов Ж.Б.

Тарканов А.С.
Абубакиров К.М.

Теренов А.А.
Абдурасульова Р.Р.

Туктуев О.И.
Абдыболатова Р.Б.

Турдубаев К.А.
Арабаджян Э.

Усманов Б.А.
Абдурахманов Р.М.

Самарканов Р.А.
Самарканов Р.А.

Исполнители и консультанты

Чистякова И.А.

Редакция и информирование общественности
Содержание

Аббревиатуры и сокращения ... 8

Резюме .. 9

1. Национальные условия .. 29
 1.1. Общее описание .. 30
 1.1.1. Физико-географическое описание ... 30
 1.1.2. Государственное устройство .. 37
 1.1.3. Демография ... 37
 1.2. Природные ресурсы .. 40
 1.2.1. Земельные ресурсы ... 40
 1.2.2. Лесные ресурсы .. 42
 1.2.3. Водные ресурсы ... 42
 1.2.4. Гидроэнергетические ресурсы ... 43
 1.2.5. Топливно-энергетические ресурсы .. 44
 1.3. Современное состояние экономики .. 47
 1.3.1. Общие тенденции .. 47
 1.3.2. Сельское хозяйство ... 49
 1.3.3. Обеспеченность продуктами питания ... 52
 1.3.4. Промышленность ... 53
 1.3.5. Транспорт ... 53

2. Инвентаризация антропогенных эмиссий из источников и абсорбция поглотителями парниковых газов ... 57
 2.1. Общие сведения .. 58
 2.1.1. Методология ... 58
 2.1.2. Правовое и институциональное обеспечение ... 58
 2.1.3. Роль участвующих в проведении инвентаризации организаций .. 58
 2.1.4. Временные рамки .. 59
 2.1.5. Полнота охвата .. 60
 2.1.6. Обеспечение качества и контроль качества .. 61
 2.2. Тенденции эмиссий .. 62
 2.2.1. Общие тенденции .. 62
 2.2.2. Сектор «Энергетика» .. 69
 2.2.2.1. Исходные предпосылки ... 69
 2.2.2.2. Тенденции потребления ископаемого топлива .. 71
 2.2.2.3. Базовый подход ... 74
 2.2.2.4. Подход по категориям источников ... 74
 2.2.2.4.1. Сектор «Энергетика» в целом ... 75
 2.2.2.4.2. Производство энергии ... 77
 2.2.2.4.3. Промышленность и строительство .. 78
 2.2.2.4.4. Транспорт ... 79
 2.2.2.4.5. Другие секторы ... 80
 2.2.2.4.6. Летучие эмиссии от топлива .. 81
 2.2.2.5. Ключевые категории и источники .. 82
 2.2.2.5.1. Ключевые категории по уровню эмиссии ... 82
 2.2.2.5.2. Ключевые категории по тенденциям ... 83
 2.2.2.5.3. Ключевые источники в подкатегории 1A1 «Производство энергии» по уровню эмиссии .. 84
 2.2.2.5.4. Неопределенность ... 85
 2.2.3. Сектор «Промышленные процессы» ... 85
 2.2.3.1. Исходные предпосылки ... 86
3. Адаптация .. 115

3.1. Общие сведения .. 116
3.2. Изменение климата .. 117
3.3. Организация действий по адаптации ... 118
3.4. Секторальные оценки уязвимости .. 120
 3.4.1. Методология ... 120
 3.4.2. Водные ресурсы .. 121
 3.4.3. Сельское хозяйство ... 125
 3.4.4. Климатические чрезвычайные ситуации .. 131
 3.4.5. Здравоохранение .. 136
 3.4.6. Лес и биоразнообразие ... 139
3.5. Необходимые ресурсы и приоритетность секторов ... 140

4. Анализ смягчения последствий изменения климата .. 141

4.1. Методология .. 142
4.2. Исходные предпосылки ... 142
 4.2.1. Исходная информация ... 142
 4.2.2. Определение целей .. 143
 4.2.3. Сценарии развития .. 144
 4.2.3.1. Демографические сценарии .. 144
4.2.3.2. Макроэкономические сценарии ... 145
4.2.3.3. Методология построения базовых сценариев развития 149
4.2.4. Учет особенностей национальной системы учета 149
4.3. Исходные предложения по отраслям деятельности для построения базовых
эмиссионных сценариев .. 152
4.4. Базовые сценарии (сценарии без принятия мер) 165
4.5. Сценарии с мерами ... 169
4.5.1. Анализ возможного сокращения эмиссий ... 169
4.5.1.1. Тепловая энергия ... 169
4.5.1.2. Электрическая энергия ... 171
4.5.1.3. Использование природного газа .. 174
4.5.1.4. Транспорт .. 174
4.5.1.5. Возобновляемые источники энергии ... 177
4.5.1.5.1. Биоэнергетичные ресурсы ... 178
4.5.1.5.2. Энергия солнца .. 180
4.5.1.5.3. Геотермальная энергия ... 181
4.5.1.5.4. Энергия ветра ... 182
4.5.1.5.5. Гидроэлектроэнергия ... 182
4.5.2. Сценарии с мерами по сокращению эмиссий ... 187
4.5.2.1. Результаты расчета .. 187
4.5.2.2. Сравнение с базовыми сценариями по удельным характеристикам 192
4.5.2.3. Общая оценка сценариев с планируемыми мерами 193

5. Другая информация, относящаяся к достижению целей конвенции 195
5.1. Интеграция вопросов изменения климата в программы устойчивого развития 196
5.2. Вопросы гендерного равенства ... 198
5.3. Разработка и передача экологически безопасных технологий 199
5.4. Систематические наблюдения и исследования .. 201
5.5. Повышение потенциала ... 203
5.6. Образование, информация и сети ... 205

6. Трудности и связанные с ними потребности ... 208

Литература .. 213

Приложения ... 215
Аббревиатуры и сокращения

<table>
<thead>
<tr>
<th>Аббревиатура</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВВ</td>
<td>Всемирный банк</td>
</tr>
<tr>
<td>ВНС</td>
<td>Второе национальное сообщение Кыргызской Республики по Рамочной конвенции ООН об изменении климата</td>
</tr>
<tr>
<td>ТНС</td>
<td>Третье Национальное сообщение Кыргызской Республики по Рамочной конвенции ООН об изменении климата</td>
</tr>
<tr>
<td>ВВП</td>
<td>валовой внутренний продукт</td>
</tr>
<tr>
<td>ГАООСЛХ</td>
<td>Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики</td>
</tr>
<tr>
<td>ГЛФ</td>
<td>Государственный лесной фонд</td>
</tr>
<tr>
<td>ГРС</td>
<td>Государственная регистрационная служба при Правительстве Кыргызской Республики</td>
</tr>
<tr>
<td>ГЭС</td>
<td>гидроэлектростанция</td>
</tr>
<tr>
<td>ЗИЗЛХ</td>
<td>землепользование, изменение землепользования и лесное хозяйство</td>
</tr>
<tr>
<td>КК</td>
<td>контроль качества</td>
</tr>
<tr>
<td>ККПИК</td>
<td>Координационная комиссия по проблемам изменения климата Кыргызской Республики</td>
</tr>
<tr>
<td>КП</td>
<td>Киотский протокол к Рамочной Конвенции ООН об изменении климата</td>
</tr>
<tr>
<td>МГЭИК</td>
<td>Межправительственная группа экспертов по изменению климата</td>
</tr>
<tr>
<td>МСХМ</td>
<td>Министерство сельского хозяйства и мелиорации Кыргызской Республики</td>
</tr>
<tr>
<td>МЧС</td>
<td>Министерство чрезвычайных ситуаций Кыргызской Республики</td>
</tr>
<tr>
<td>МЭА</td>
<td>Международное энергетическое агентство</td>
</tr>
<tr>
<td>НАН</td>
<td>Национальная академия наук Кыргызской Республики</td>
</tr>
<tr>
<td>Нацстатком</td>
<td>Национальный статистический комитет Кыргызской Республики</td>
</tr>
<tr>
<td>ООН</td>
<td>Организация Объединенных Наций</td>
</tr>
<tr>
<td>ООПТ</td>
<td>особо охраняемые природные территории</td>
</tr>
<tr>
<td>ОК</td>
<td>обеспечение качества</td>
</tr>
<tr>
<td>ОРВ</td>
<td>озоноразрушающие вещества, регулируемые Монреальским протоколом</td>
</tr>
<tr>
<td>ПГ</td>
<td>парниковые газы (газообразные составляющие атмосферы - как природного, так и антропогенного происхождения, которые поглощают и переизлучают инфракрасное излучение, кроме газов, регулируемых Монреальским протоколом)</td>
</tr>
<tr>
<td>ПГП</td>
<td>потенциал глобального потепления</td>
</tr>
<tr>
<td>РКИК ООН</td>
<td>Рамочная конвенция ООН об изменении климата</td>
</tr>
<tr>
<td>РЭК</td>
<td>распределительные энергетические компании</td>
</tr>
<tr>
<td>СНиП</td>
<td>Строительные нормы и правила</td>
</tr>
<tr>
<td>ТБО</td>
<td>твердые бытовые отходы</td>
</tr>
<tr>
<td>ТЭЦ</td>
<td>теплоэлектроцентрали</td>
</tr>
<tr>
<td>ФАО</td>
<td>Продовольственная и сельскохозяйственная организация ООН</td>
</tr>
<tr>
<td>CO₂</td>
<td>диоксид углерода</td>
</tr>
<tr>
<td>CO</td>
<td>оксид углерода</td>
</tr>
<tr>
<td>CH₄</td>
<td>метан</td>
</tr>
<tr>
<td>N₂O</td>
<td>закись азота</td>
</tr>
<tr>
<td>NOx</td>
<td>оксиды азота</td>
</tr>
<tr>
<td>SO₂</td>
<td>диоксид серы</td>
</tr>
<tr>
<td>ГФУ</td>
<td>гидрофторуглероды</td>
</tr>
<tr>
<td>ПФУ</td>
<td>перфторуглероды</td>
</tr>
<tr>
<td>SF₆</td>
<td>гексафторид серы</td>
</tr>
<tr>
<td>НМЛОС</td>
<td>неметановые летучие органические соединения</td>
</tr>
<tr>
<td>Гг</td>
<td>гигаграмм, 1 Гг = 10⁹ грамм</td>
</tr>
<tr>
<td>тнэ</td>
<td>тонна нефтяного эквивалента</td>
</tr>
<tr>
<td>тут</td>
<td>тонна условного топлива</td>
</tr>
<tr>
<td>CO₂-экв.</td>
<td>эквивалент диоксида углерода</td>
</tr>
</tbody>
</table>
Национальное сообщение, в соответствии с решениями Конференций Сторон РКИК ООН, охватывает следующие основные разделы: Национальные условия; Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов; Уязвимость и адаптация; Анализ смягчения последствий изменения климата; Другая информация, относящаяся к достижению целей конвенции.

Третье национальное сообщение является отчетом страны по действиям в области изменения климата после выпуска первого и второго национальных сообщений.

Климат КР резко континентальный, в основном засушливый. Частично его проявления сглаживает высокогорный рельеф, который дает увеличение облачности и осадков. Особенности климата КР связаны с ее расположением в Северном полушарии, в центре Евроазиатского континента на удалении от значительных водных объектов и с близким соседством пустынь.

Говоря о температурном режиме, следует отметить, что скорость изменения температуры в последние десятилетия существенно увеличилась (рис. Р.1). Если за весь период наблюдений среднегодовая температура росла по всей республике со скоростью 0,0104 °C/год, то за период 1960–2010 гг. скорость возросла более чем вдвое и составила 0,0248 °C/год, а за период 1990–2010 гг. скорость составила уже 0,0701 °C/год.

Практически одинаковое возрастание среднегодовой температуры наблюдается во всех климатических зонах и по всем высотам. Внутри года наибольшее повышение средней годовой температуры наблюдается в холодные месяцы.

Рис. Р.1. Тенденция изменения среднегодовой температуры в целом по КР.
Источник: Климатический профиль Кыргызской Республики
За период наблюдений сумма годовых осадков изменялась незначительно (статистически незначимо), но в отдельных регионах отмечались довольно резкие изменения, как в сторону увеличения, так и в сторону уменьшения (рис. Р.2).

На 1 января 2014 г. в систему административно-территориального устройства КР входило 7 областей, Бишкек и Ош, имеющие статус городов республиканского подчинения, 40 районов (без городских районов в), 31 город, 9 поселков городского типа, 3 поселка, 453 айыльных аймака.

Численность постоянного населения в КР на 1 января 2016 г. составила 6019,5 тыс. человек. Особенностью является то, что из-за горного рельефа население Кыргызстана распределено по территории республики крайне неравномерно. В основном, оно проживает и осуществляет хозяйственную деятельность в пределах низкогорья, межгорных котловин и относительно небольших горных долин. Наибольшая активность населения сосредоточена в пределах самих населенных пунктов и относительно небольшой буферной зоны в 5 км вокруг них. Доля городского населения составляет 33,7 %. Количества сельского населения – 66,3 %.

Земли сельскохозяйственного назначения в 2010 году составляли около 5679,7 тыс. га. Большую часть земель сельскохозяйственного назначения составляют пастбища – 85 %. Пашня занимает около 12 % земель, которая на 80 % орошаемая.

На территории республики представлены 55 типов почв и непочвенных образований, объединяющих в 6 групп. В целом, за период с 1990 г. по настоящее время наблюдается устойчивая тенденция к снижению плодородия почв.

По оценкам на 2010 г. водные ресурсы КР включают ледники (около 390 км3), поверхностный сток (около 50 км3/год) и подземные воды. По данным МСХМ, запасы месторождений подземных вод используются лишь на 20–30 %.

Водные ресурсы являются основой энергетической отрасли. В 2010 г. гидроэнергетика произвела 93,3% всей электроэнергии. В КР функционирует 16 крупных и средних гидроэлектростанций общей установленной мощностью 2949 МВт и годовой выработкой 10,406 млрд кВт·ч. В настоящее время гидроэнергетический потенциал республики используется на 18% (для больших ГЭС на 19,5 %, а для малых на 4 %).

Прогнозы неразведанных запасов нефти и газа в Кыргызстане составляют порядка 289 млн. тут. В настоящее время добыча нефти и природного газа имеет незначительные объемы. Обеспеченность собственными нефтепродуктами составляет 4,5 %, природным газом – около 6,5 %.

Потенциальные энергоресурсы нетрадиционных и возобновляемых источников энергии республики, реальнень доступные при нынешнем уровне развития техники и технологий, представлены солнечной, ветровой и геотермальной энергией, а также биомассой. К нетрадиционным и возобновляемым источникам энергии относятся также и гидроэнергетические ресурсы малых водотоков. К сожалению, ресурсы нетрадиционных и возобновляемых источников энергии в республике используются в незначительных объемах.

Среднее количество населения, занятого в реальном секторе экономики (промышленность, сельское хозяйство, строительство), на протяжении всего периода изменялось незначительно, колебалось в пределах 1–1,2 млн. жителей. До 1999–2001 гг. происходило перераспределение трудовых ресурсов – отток из промышленности и строительного сектора в сельское хозяйство. После 2001 г. наметилась обратная тенденция.

Начиная с 1996 г., наблюдается устойчивое снижение доли сельского хозяйства в ВВП страны. Основу вклада сельского хозяйства составляет продукция растениеводства и животноводства. Но урожайность по отдельным сельскохозяйственным культурам нестабильна и колеблется от года к году, так как сельское хозяйство наиболее зависит от климата, особенно в сфере растениеводства, существенно зависящей от изменения температуры, осадков и неблагоприятных погодных явлений (заморозки, засухи, град, смерчи и т.д.).

В структуре общего объема производства сельскохозяйственной продукции, доминирующий вклад вносят частные производители: крестьянские (фермерские) хозяйства – 61,5 % и личные подсобные хозяйства населения – 36 %.

В промышленном секторе резкое уменьшение объемов отмечается только до 1995 г., затем наблюдаются значительные колебания с общей тенденцией небольшого роста. Эти изменения вызваны перераспределением объемов производства между отдельными отраслями.
Физико-географические (горный рельеф, отсутствие судоходных рек) и экономические (неразвитость и относительно высокая стоимость авiapеревозок) условия КР определили доминирующую роль автомобильного транспорта во внутригосударственных перевозках. Для динамики грузо- и пассажирооборота характерно резкое уменьшение объемов с 1990 по 1995 гг. с последующим ростом, более значительным для пассажирооборота.

Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

В качестве методического обеспечения процесса инвентаризации парниковых газов использовались:
- Пересмотренные руководящие принципы национальных инвентаризаций МГЭИК 1996 г.;
- Руководящие указания по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов МГЭИК 2000 г.;
- Руководящие указания МГЭИК по эффективной практике для землепользования, изменения землепользования и лесного хозяйства 2003 г.

Кроме того, использовались национальные нормативно-методические документы по инвентаризации, расчету удельных эмиссий, а также материалы и результаты предыдущих исследований, полученные в рамках Первого и Второго национальных сообщений Кыргызской Республики по Рамочной конвенции об изменении климата. В качестве рекомендательных документов использовались Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 г. и другие источники, такие как ЕМЕР/ЕЕА руководство по инвентаризации эмиссий загрязнителей воздуха 2013 г.

Правовые рамки проведения инвентаризации определяют постановление Правительства Кыргызской Республики «О мерах по выполнению Рамочной конвенции ООН об изменении климата» и Закон Кыргызской Республики «О государственном регулировании и политике в области эмиссии и поглощения парниковых газов».

В соответствии с постановлением Правительства Кыргызской Республики «О Координационной комиссии по проблемам изменения климата» основным руководящим органом является ККПИК, рабочим органом которой является ГАОСЛХ. Техническое обеспечение деятельности рабочего органа выполнял Центр по изменению климата, который является непосредственным исполнителем проведения инвентаризации.

Основную исходную информацию для проведения инвентаризации представили следующие организации:
- Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики;
- Министерство энергетики и промышленности Кыргызской Республики;
- Национальный статистический комитет Кыргызской Республики;
- Департамент водного хозяйства и мелиорации Министерства сельского хозяйства и мелиорации Кыргызской Республики;
- Кыргызский национальный аграрный университет им. К.И.Скрябина;
- Государственное предприятие «Государственный проектный институт по землеустройству „Кыргызгипрозем“» Министерства сельского хозяйства и мелиорации Кыргызской Республики;
- Республиканская почвоенно-агрохимическая станция при Министерстве сельского хозяйства и мелиорации Кыргызской Республики;
- Государственная регистрационная служба при Правительстве Кыргызской Республики;
- Сельская консультационная служба Кыргызской Республики.

Инвентаризация проведена за период 2006–2010 гг. Дополнительно выполнены перерасчеты за период 1990–2005 гг. Необходимость перерасчетов определялась следующими обстоятельствами:
- уточнение ранее опубликованных исходных статистических данных за предшествующие периоды, что является обычной практикой многих организаций, например, Нацстаткома;
- изменения исходных предпосылок расчета, принятые на обсуждении в ходе начальной встречи в рамках проведения инвентаризации;
- необходимость проверки ранее проведенных расчетов и обеспечение сопоставимости результатов в случаях изменения системы учета и методологии расчетов.
Инвентаризация проводилась для следующих парниковых газов:
- диоксид углерода (CO₂);
- метан (CH₄);
- закись азота (N₂O);
- гидрофторуглероды (ГФУ);
- перфторуглероды (ПФУ);
- гексафторид серы (SF₆).

и газов-предшественников:
- оксид углерода (CO);
- оксиды азота (NOx);
- неметановые летучие органические соединения (НМЛОС);
- диоксид серы (SO₂).

В результате анализа исходной информации было установлено, что эмиссия перфторуглеродов и гексафторида серы в республике практически отсутствуют.

Для пересчета эмиссий парниковых газов в эквивалент диоксида углерода (CO₂-экв.) использовались потенциалы глобального потепления, приведенные во втором оценочном докладе МГЭИК 1995 г. (диоксид углерода – 1; метан – 21; закись азота – 310, ГФУ-134а – 1300).

Инвентаризация проводилась как в целом по КР, так и в разрезе основных административных единиц (для проведения территориально более детальной инвентаризации отсутствуют исходные данные о деятельности):
- Баткенская область (официальная статистика ведется с 1999 г.);
- Джапал-Абадская область;
- Иссык-Кульская область;
- Нарынская область;
- Ошская область;
- Таласская область;
- Чуйская область.
- г. Бишкек;
- г. Ош (официальная статистика ведется с 2000 г.).

Инвентаризация охватывает следующие сектора и категории источников:

1 Энергетика
 1A Сжигание топлива
 1A1 Производство энергии
 1A2 Промышленность и строительство
 1A3 Транспорт
 1A3а Гражданская авиация
 1A3б Дорожный транспорт
 1A3с Железные дороги
 1A3d Водный транспорт
 1A4 Другие секторы
 1A4а Коммерческий/институциональный
 1A4б Жилой
 1A4с Сельское хозяйство
 1B Летучие эмиссии от топлива
 1B1 Твердое топливо
 1B2 Нефть и природный газ
 1B2а Нефть
 1B2б Природный газ

2 Промышленные процессы
 2A Минеральные вещества
 2В Химическая промышленность
 2С Производство металлов
 2D Другое производство (продовольствие и напитки)
 2F Потребление галогеноуглеродов и гексафторида серы
 2G Взрывные работы
Для сокращения неопределенности результатов инвентаризации проводились процедуры по обеспечению качества и контролю качества. Основными элементами проверки являлись:

- контроль временных рядов с анализом любых резких изменений в характере временного ряда;
- сравнение полученных результатов с результатами предыдущих инвентаризаций, результатами международных организаций и результатами инвентаризаций в других странах, особенно региона Центральной Азии.

Изменения эмиссий по секторам приведены на рис. P.4 и P.5. По результатам проведения инвентаризации, общая эмиссия ПГ в 2010 г. с учетом нетто-эмиссии в секторе ЗИЗЛХ, уменьшилась более чем в 2 раза и составила 13046 Гг СО₂-экв. по сравнению с 28712 Гг СО₂-экв. в 1990 г.

Таким образом, суммарная эмиссия ПГ в 2010 г. составляет только 45,4% от эмиссии 1990 г.

По отдельным секторам уменьшение эмиссии составило:

- Энергетика – 66,8%;
- Промышленные процессы – 41,8%;
- Сельское хозяйство – 23,1%;
- Отходы – 14,6%.

Рис. P.4. Изменение общих эмиссий ПГ за период 1990–2010 гг. по основным категориям источников. Не приводятся сектора «Использование растворителей» вследствие отсутствия эмиссий ПГ и ЗИЗЛХ вследствие незначительности нетто-эмиссий ПГ.
Несмотря на то, что доля сектора энергетики в суммарной эмиссии наиболее заметно уменьшилась по сравнению с другими секторами, по-прежнему в 2010 г. наибольшая эмиссия наблюдалась от сектора «Энергетика», далее «Сельское хозяйство», «Отходы» и «Промышленные процессы». Поглощение в секторе ЗИЗЛХ составляет около 800 Гг СО₂-экв., но эмиссия из почв также являлась значительной, что определяет нетто эмиссию от сектора ЗИЗЛХ, в целом, весьма малой.

На фоне общего уменьшения эмиссии ГГ относительно 1990 г., следует отметить существенное изменение структуры эмиссий, которое объясняется тем, что меньше всего сократились эмиссии в сельском хозяйстве и обращении с отходами, что, в свою очередь, привело к значительному увеличению их доли в общем объеме.

На рис. Р.6 приведена динамика эмиссий и стоков по отдельным ГГ с учетом сектора ЗИЗЛХ.

Также по результатам инвентаризации выявлено, что в 2010 г. эмиссии всех ГГ, кроме ГФУ-134а, уменьшились относительно 1990 г. Наибольшее уменьшение (почти в 3 раза) произошло для диоксида углерода, что отразило существенное снижение вклада сектора «Энергетика». Эмиссии ГФУ-134а выросли в результате его активного использования в последнее десятилетие в секторе охлаждение. Ранее в этом секторе использовались, в основном, озоноразрушающие вещества, эмиссия которых учитывается только в рамках Монреальского протокола по веществам, разрушающим озоновый слой.

Также одновременно с общим уменьшением эмиссии, в 2010 г. заметно изменилась и ее структура в сравнении с 1990 г. (рис. Р.7). Доля эмиссии диоксида углерода уменьшилась с, примерно, 2/3, до менее половины общей эмиссии. В результате в общем объеме эмиссии доли других газов выросли, несмотря на их абсолютное сокращение.
Для того, чтобы оценить вклад КР в глобальные эмиссии и сравнить его с вкладом других стран, в ходе инвентаризации был оценен показатель удельных эмиссий ПГ на душу населения. Как видно на рис. Р.8, после 1990 г. удельные эмиссии резко упали и в последние годы можно отметить лишь незначительную тенденцию роста на достаточно низком уровне немного более 2 т/чел. Для сравнения, эмиссии ПГ на душу населения в Казахстане в 2011 г. составили более 16,7 т/чел.

Также для сравнения с другими странами, использованы еще два показателя: эмиссия СО₂-экв. на единицу ВВП (рис. Р.9) и удельные эмиссии ПГ на единицу потребляемых первичных топливных ресурсов (рис. Р.10). Для сопоставимости показателей за различные годы использованы 1000 $2005 ВВП. Для ВВП использованы как абсолютные значения, так и значения с учетом паритета покупательной способности.

Таким образом, тенденции для удельных эмиссий ПГ на душу населения и на единицу ВВП еще можно считать приемлемыми и соответствующими целям устойчивого развития (хотя, конечно, более желательно последовательное уменьшение этих показателей). Однако, следует отметить негативную тенденцию роста для удельных эмиссий на 1 тнэ первичных топливных ресурсов (рис. Р.10). Эта тенденция, скорее всего, объясняется износом оборудования в топливо-энергетическом секторе без своевременного обновления при относительно небольшом росте ВВП. Фактически, на рисунке отражена негативная тенденция, демонстрирующая неэффективное использование топливных ресурсов в период 1990–2010 гг.
Как и следовало ожидать, эмиссии газов-прекурсоров, кроме неметановых летучих соединений (НМЛОС), в основном, происходили в секторе «Энергетика» в процессах сжигания ископаемого топлива (рис. Р.11). Поэтому понятно, что тенденции изменения эмиссий для оксидов азота, оксида углерода и диоксида серы, практически повторяют тенденцию изменения диоксида углерода. Доля сектора «Энергетика» для газов-прекурсоров составляет от 98,25 до 99,0 % (кроме НМЛОС), незначительно изменяясь по годам.

В целом, за период инвентаризации, эмиссия газов-прекурсоров уменьшилась примерно в два раза, что характеризует улучшение экологической ситуации. При этом вклад оксидов азота и диоксида серы уменьшился, а оксида углерода и НМЛОС увеличился. Структурные трансформации эмиссии объясняются изменениями в структуре потребляемого топлива.

На рис. Р.12 приведено распределение общих эмиссий ПГ по регионам без учета стоков по всем секторам, за исключением сектора «Использование растворителей», где эмиссия ПГ отсутствует. Наиболее значительный вклад в общие эмиссии ПГ вносит г. Бишкек (более трети всех эмиссий). Причем этот вклад обеспечивается, практически, двумя секторами – «Энергетика» и «Отходы». Далее по величине вклада идут Чуйская, Джала-Абадская, Ошская, Баткенская, Иссык-Кульская, Нарынская области, г. Ош и Таласская область. Отметим, что для всех областей характерен существенный вклад сектора «Сельское хозяйство», а вклад сектора «Промышленность» значителен только в Чуйской области.
Распределение эмиссий газов-прекурсоров по регионам (рис. Р.13) более неравномерное, чем парниковых газов, так как их эмиссия происходит, в основном, в процессах сжигания ископаемого топлива, наиболее характерного для г. Бишкека.

Таблица Р.1 демонстрирует региональное распределение эмиссий ПГ, которое определяет географические приоритеты действий по сокращению эмиссий ПГ, а также эмиссий газов-прекурсоров.

<table>
<thead>
<tr>
<th>Регион</th>
<th>Сумма ПГ, т СО2-экв./чел.</th>
<th>Газы-прекурсоры, кг/чел.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NOx</td>
<td>CO</td>
<td>НМПЛОС</td>
<td>SO2</td>
<td>сумма</td>
</tr>
<tr>
<td>Иссyk-Кульская область</td>
<td>2,63</td>
<td>7,83</td>
<td>14,44</td>
<td>3,08</td>
<td>3,08</td>
<td>28,44</td>
</tr>
<tr>
<td>Джалал-Абадская область</td>
<td>1,46</td>
<td>1,60</td>
<td>10,93</td>
<td>2,02</td>
<td>0,60</td>
<td>15,15</td>
</tr>
<tr>
<td>Нарынская область</td>
<td>2,89</td>
<td>2,02</td>
<td>13,07</td>
<td>2,05</td>
<td>4,59</td>
<td>21,74</td>
</tr>
<tr>
<td>Баткенская область</td>
<td>3,35</td>
<td>1,77</td>
<td>12,30</td>
<td>2,56</td>
<td>6,84</td>
<td>23,46</td>
</tr>
<tr>
<td>Ошская область</td>
<td>1,32</td>
<td>0,98</td>
<td>7,61</td>
<td>1,60</td>
<td>1,71</td>
<td>11,90</td>
</tr>
<tr>
<td>Таласская область</td>
<td>1,54</td>
<td>1,95</td>
<td>4,66</td>
<td>1,28</td>
<td>0,88</td>
<td>8,78</td>
</tr>
<tr>
<td>Чуйская область</td>
<td>2,20</td>
<td>4,95</td>
<td>18,08</td>
<td>4,21</td>
<td>3,83</td>
<td>31,06</td>
</tr>
<tr>
<td>г. Бишкек</td>
<td>5,84</td>
<td>22,12</td>
<td>176,91</td>
<td>31,81</td>
<td>21,99</td>
<td>252,83</td>
</tr>
<tr>
<td>г. Ош</td>
<td>1,74</td>
<td>3,98</td>
<td>28,42</td>
<td>5,56</td>
<td>1,82</td>
<td>39,78</td>
</tr>
</tbody>
</table>

Таблица Р.2. Изменение средней глобальной приземной температуры по ансамблю климатических моделей в град. Цельсия относительно средних значений за период 1986–2005 гг.

<table>
<thead>
<tr>
<th>Сценарий</th>
<th>2046–2065 гг.</th>
<th>2081–2100 гг.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Среднее</td>
<td>Вероятный диапазон</td>
</tr>
<tr>
<td>RCP2.6</td>
<td>1,0</td>
<td>0,4–1,6</td>
</tr>
<tr>
<td>RCP4.5</td>
<td>1,4</td>
<td>0,9–2,0</td>
</tr>
<tr>
<td>RCP6.0</td>
<td>1,3</td>
<td>0,8–1,8</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>2,0</td>
<td>1,4–2,6</td>
</tr>
</tbody>
</table>

Ожидаемые глобальные изменения температуры, согласно Пятому оценочному докладу МГЭИК, в кратком виде приведены в таблице Р.2. В соответствии с региональными оценками, средние годовые температуры на территории КР значительно вырастут, тогда как сумма годовых осадков практически не изменится.
Необходимо отметить, что для КР ожидаемые изменения климата будут проявляться более резко (как уже проявляются наблюдаемые), так как потепление в северном полушарии региона происходило и будет происходить более быстрыми темпами, чем в среднем на планете, а над сушей, с весьма высокой степенью достоверности, оно было и будет более значительным, чем над океанами.

Для оценки конкретных изменений климата использован новый набор сценариев, а именно «Репрезентативные траектории концентраций (РТК или РСК)» и с использованием ансамбля климатических моделей построены карты распределения средних годовых температур и суммы годовых осадков по территории республики. Ожидаемые изменения климата являются неблагоприятными для экономики республики (в первую очередь для сельского хозяйства), здоровья населения и природных экосистем, что определяет необходимость реализации действий по адаптации.

Процесс подготовки к действиям по адаптации состоял из двух этапов.

На первом этапе подготовлен общий документ для страны в целом – Приоритетные направления по адаптации к изменению климата в КР до 2017 г.

Основная цель Приоритетных направлений – установить национальную политику мобилизации ресурсов, чтобы минимизировать негативные риски для устойчивого развития КР. Также определены наиболее приоритетные секторы экономики, в которых с учетом наблюдаемых и ожидаемых климатических изменений адаптация необходима. Для каждого приоритетного сектора была получена количественная оценка ожидаемых экономических потерь в случае отсутствия своевременной адаптации (таблица Р.3).

В разработке Приоритетных направлений приняли участие специалисты всех ключевых министерств и ведомств КР, науки, образования и неправительственных организаций.

<table>
<thead>
<tr>
<th>Сектор</th>
<th>Ущерб, млн. $2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водные ресурсы</td>
<td>718</td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>70</td>
</tr>
<tr>
<td>Энергетика</td>
<td>200</td>
</tr>
<tr>
<td>Чрезвычайные ситуации</td>
<td>38</td>
</tr>
<tr>
<td>Здравоохранение</td>
<td>110</td>
</tr>
<tr>
<td>Лес и биоразнообразие</td>
<td>94,8</td>
</tr>
<tr>
<td>Итого:</td>
<td>1230,8</td>
</tr>
</tbody>
</table>

На втором этапе ключевые министерства и ведомства на основе Приоритетных направлений подготовили отраслевые программы и планы по адаптации к изменению климата, которые включают оценку текущего состояния сектора, оценку уязвимости и обоснование мероприятий по адаптации к изменению климата и, собственно, планы с оценкой требуемых затрат на их реализацию.

Таблица Р.3. Оценка экономических потерь при изменении климата в случае отсутствия адаптационных действий для сценария A2 в 2100 г. Источник: Приоритетные направления по адаптации к изменению климата в Кыргызской Республике до 2017 г.

<table>
<thead>
<tr>
<th>№</th>
<th>Министерство/ведомство</th>
<th>Сектор</th>
<th>Приказ об утверждении</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Министерство сельского хозяйства и мелиорации</td>
<td>Водные ресурсы и сельское хозяйство</td>
<td>№228 от 31.07.2015</td>
</tr>
<tr>
<td>2</td>
<td>Министерство чрезвычайных ситуаций</td>
<td>Чрезвычайные ситуации</td>
<td>№692 от 7.07.2015</td>
</tr>
<tr>
<td>3</td>
<td>Министерство здравоохранения</td>
<td>Здравоохранение</td>
<td>№351 от 31.10.2011</td>
</tr>
<tr>
<td>4</td>
<td>Государственное агентство охраны окружающей среды и лесного хозяйства</td>
<td>Лес и биоразнообразие</td>
<td>№01-9/110 от 17.04.2015</td>
</tr>
</tbody>
</table>

Водные ресурсы

Для водных ресурсов было произведено моделирование поверхностного стока с учетом ледниковой составляющей для всех основных гидрологических бассейнов КР. Для моделирования поверхностного стока использованы цифровые модели рельефа и условий увлажнения территории суши КР, разработанные Институтом водных проблем и гидроэнергетики НАН.

Результаты расчета возможного изменения поверхностного стока, в целом, по всем гидрологическим бассейнам КР с учетом водоотдачи ледников приведены на рис. Р.14.
Приведенные данные свидетельствуют о существенном уменьшении стока при любых возможных сценариях и вариантах изменения осадков. Однако разброс величины сокращения весьма широкий. При этом уменьшение поверхностного стока будет, естественно, тем большим, чем большим ожидается увеличение приземной температуры и уменьшение атмосферных осадков. Для наиболее неблагоприятного варианта климатических изменений (сценарий RCP 8.5 и сокращение суммы годовых осадков на 5%), сток может уменьшиться примерно на 40%.

Расчеты поверхностного стока для отдельных гидрологических бассейнов показали незначительную разницу изменений между ними, которая определяется конкретными условиями зоны формирования стока.

Кроме объема поверхностного стока, также моделировалась и его обеспеченность, под которой понималась вероятностная оценка минимальных и максимальных значений стока. Затем на основании этих оценок определены необходимые адаптационные мероприятия, детально отраженные в отраслевом плане.

Сельское хозяйство
Агроклиматические условия в республике в целом благоприятны для растениеводства. Однако, климатические изменения существенно влияют на урожайность. В последние годы наблюдаются негативные тенденции баланса импорта и экспорта продовольственных товаров (см. рис. Р.15). Вполне вероятно, что причиной этого является, кроме прочего, и неблагоприятное воздействие изменения климата.

Неблагоприятные погодные условия (поздние весенние и ранние осенние заморозки, высокие температуры и др.), загрязнение окружающей среды и неблагополучная мелиоративная обстановка, в ряде районов являются факторами, ограничивающими полное использование агроклиматических и земельных ресурсов.

По данным Нацстаткома, среди всех неблагоприятных климатических явлений, наибольшее воздействие на сельское хозяйство оказывают засуха и недостаток водных ресурсов. Поэтому проведена количественная оценка увлажнения, для чего использован коэффициент увлажнения, под которым понималось отношение суммы атмосферных осадков к испаряемости (таблица Р.5). Результаты расчетов показали, что для неблагоприятных климатических сценариев, практически вся территория республики, занимаемая пашней, попадает в зону пустынь и полупустынь.
Рис. Р.15. Баланс импорта и экспорта продовольственных товаров КР.
Источник: Нацстатком

Таблица Р.5. Доля площади (%) с увлажнением от 0,13 до 0,30 (полупустыня) областей КР для 2000 г. и различных климатических сценариев на 2100 г.

<table>
<thead>
<tr>
<th>№</th>
<th>Область</th>
<th>Площадь, км²</th>
<th>2000 г.</th>
<th>RCP 2.6</th>
<th>RCP 4.5</th>
<th>RCP 6.0</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Чуйская</td>
<td>20025</td>
<td>15,48</td>
<td>27,91</td>
<td>30,64</td>
<td>32,01</td>
<td>37,19</td>
</tr>
<tr>
<td>2</td>
<td>Иссык-Кульская</td>
<td>36823</td>
<td>8,66</td>
<td>12,19</td>
<td>13,68</td>
<td>14,47</td>
<td>17,78</td>
</tr>
<tr>
<td>3</td>
<td>Нарынская</td>
<td>44958</td>
<td>8,29</td>
<td>13,31</td>
<td>16,41</td>
<td>18,05</td>
<td>24,82</td>
</tr>
<tr>
<td>4</td>
<td>Ошская</td>
<td>29100</td>
<td>14,30</td>
<td>19,98</td>
<td>24,20</td>
<td>26,31</td>
<td>34,23</td>
</tr>
<tr>
<td>5</td>
<td>Таласская</td>
<td>11441</td>
<td>23,94</td>
<td>29,51</td>
<td>32,53</td>
<td>34,03</td>
<td>39,56</td>
</tr>
<tr>
<td>6</td>
<td>Джадал-Абадская</td>
<td>33273</td>
<td>14,07</td>
<td>18,99</td>
<td>21,50</td>
<td>22,80</td>
<td>27,85</td>
</tr>
<tr>
<td>7</td>
<td>Баткенская</td>
<td>16984</td>
<td>27,75</td>
<td>31,64</td>
<td>33,24</td>
<td>34,01</td>
<td>36,70</td>
</tr>
<tr>
<td>8</td>
<td>Кыргызская Республика</td>
<td>192604</td>
<td>13,70</td>
<td>19,18</td>
<td>21,86</td>
<td>23,24</td>
<td>28,63</td>
</tr>
</tbody>
</table>

Оценка непосредственного воздействия изменения климата на урожайность сельскохозяйственных культур произведена с использованием Стандартизированного индекса осадков (Standardized Precipitation Index, SPI). Используя индекс SPI, можно определить потенциальное влияние изменения климата на урожайность, пользуясь стандартизированной классификацией интенсивности засух. Поскольку индекс использует только величину осадков, то он не может оценить воздействие для поливных культур. Поэтому был проведен анализ, который позволил определить культуры, урожайность которых зависит не только от полива, но и от осадков.

Статистически обоснованное изменение урожайности получено для следующих видов сельскохозяйственных культур:

• Зерновые культуры (в весе после доработки);
• Пшеница (в весе после доработки);
• Сахарная свекла (фабричная);
• Ячмень (в весе после доработки).

Величина индекса SPI может служить базовым показателем при внедрении системы страхования урожая для перечисленных выше культур.

На сектор животноводства приходится более половины общей стоимости товарной продукции сельского хозяйства, поэтому эффективность сектора животноводства имеет большое значение для КР. Воздействие изменения климата на животноводство разнообразно. К сожалению, далеко не по всем его аспектам имеются достоверные национальные исследования. На основании данных, представленных Кыргызским государственным проектным институтом по землеустройству «Кыргызгипрозем» произведена оценка уже наблюдаемой уязвимости к изменению климата для пастибь.

Анализ проведен по данным наблюдений за урожайностью сухой поедаемой массы и урожайностью зеленой массы за период наблюдений 1950 – 2012 гг. для:

• сенокосов;
• весенне-осенних пастибь;
• летних пастибь;
• зимних пастибь.
Детализация данных по урожайности ограничивалась уровнем областей и районов. Кроме урожайности использованы данные по наблюдениям климатических факторов (температура и уровень осадков) и количество животных (крупный рогатый скот (КРС), овцы и козы, лошади).

По результатам статистического анализа получены следующие выводы:

1. В целом по КР урожайность сенокосов и пастбищ невысокая. Средние урожайности за весь рассматриваемый период времени приведены в таблице Р.6, максимальная урожайность зеленой массы наблюдалась в Джалал-Абадской области – 25 ц/га для летних пастбищ в 2012 г., что значительно ниже урожайности достигнутой в развитых странах. Например, в Нидерландах урожайность сенокосно-пастбищных угодий составляет 120 ц/га, во Франции – 45-50, в ФРГ – 60, Бельгии – 80, Дании – 90 ц/га сухой массы. Естественно, что во многом такое разно разница определяется различием природно-климатических условий, значительно менее благоприятными для КР. Но свой существенный вклад вносит и эффективная организация управления пастбищами в развитых странах.

2. Изменения урожайности за рассматриваемый период по областям значительно различаются (см. таблицу Р.6). Но в целом по республике наблюдается небольшой рост урожайности по сенокосам и всем видам пастбищ (0,007 – 0,4 ц/га в год). Наибольший рост наблюдается в Баткенской и Чуйской областях, а наибольшее снижение урожайности в Нарынской области. По абсолютной величине изменения урожайности не очень велики, максимальный рост урожайности составляет менее 0,1 ц/га в год (Баткенская область), а максимальное уменьшение менее 0,09 ц/га в год (Нарынская область).

<table>
<thead>
<tr>
<th>Область</th>
<th>Урожайность сухой поедаемой массы</th>
<th>Урожайность зеленой массы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Сенокосы</td>
<td>Весенне-осенние пастбища</td>
</tr>
<tr>
<td>Баткенская</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Джалал-Абадская</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Иссык-Кульская</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Нарынская</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ошская</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Таласская</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Чуйская</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Среднее по республике</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Средняя урожайность, ц/га</td>
<td>14,40</td>
<td>3,15</td>
</tr>
</tbody>
</table>

3. Для всех типов пастбищ и для всех областей наблюдается четкая тенденция роста отношения поедаемой массы к зеленой массе. На рис. Р.16 приведена тенденция отношения в целом по КР. Возможными причинами являются снижение, в целом, нагрузки на пастбища после начала 80-х годов и климатические изменения.

4. Негативно на урожайность воздействуют два фактора – нагрузка на пастбища, выраженная в количестве условных овцеголов, и температура. Причем нагрузка на пастбища воздействует более значительно, чем температура. Для зимних пастбищ повышение температуры для всех областей не является негативным воздействием.

5. Если рассмотреть нагрузку на пастбища детальнее, то из всех сельскохозяйственных животных наибольшее воздействие оказывает количество овец.
Анализ содержания гумуса в почвах показал, что уже наблюдаемые изменения климата и используемые технологии обработки почв снижают содержание гумуса в почвах во всех областях, кроме Чуйской. Эта ситуация является серьезной проблемой, угрожающей продовольственной безопасности. Для ее решения необходимы коренные преобразования методов ведения сельского хозяйства и землепользования. Многочисленные выводы в этом смысле обеспечивают усовершенствованные технологии сельскохозяйственного производства и использования почвенных ресурсов, способствующие повышению содержания в почве органического углерода. Эти методы обеспечивают повышение плодородия почв, увеличивая содержание в них органического вещества, способствует сохранению растительного покрова на поверхности почвы, требуют меньше химических удобрений и содействуют самоорганизации.

Климатические чрезвычайные ситуации
Как горная страна КР особо подвержена многочисленным стихийным бедствиям природного характера. Из 70 видов распространенных в мире опасных природных процессов и явлений, наносящих значительный ущерб населению и хозяйственной деятельности и инфраструктуре, более 20 проявляются на территории республики. Превентивные адаптационные меры в этом секторе могут принести заметную экономическую выигрушу и свести к минимуму угрозы в отношении экосистем, здоровья человека, экономического развития, собственности и инфраструктуры.

Проявление климатических чрезвычайных ситуаций тесно связано с экстремальными погодными явлениями. Анализ наблюдаемых явлений показывает заметный рост количества жарких дней в году и числа дней в году с экстремальными осадками. В соответствии с глобальными оценками изменения экстремальных погодных явлений ожидается дальнейшее повышение их частоты в будущем. В соответствии с ожидаемыми изменениями климата определены риски проявления основных чрезвычайных ситуаций, на основании оценок вероятности проявления.

Из результатов расчета следует, что распределение ураганных ветров практически не изменяется, а для оползней наблюдается и прогнозируется уменьшение количества чрезвычайных ситуаций. Для остальных чрезвычайных ситуаций наблюдается и ожидается рост, отражающийся смещением максимальной вероятности проявления чрезвычайных ситуаций в сторону больших значений. Этот рост сопровождается одновременным увеличением дисперсии, т.е. разбросом между максимальной и минимальной возможной частотой проявления. Полученные зависимости позволяют оценить вероятность любого количества чрезвычайных ситуаций для каждого года, т.е. оценить риск его проявления.

Здравоохранение
Уязвимость сектора оценивалась с использованием статистических моделей, связывающих изменение смертности и заболеваемости с климатическими факторами. По понятным причинам такой подход не может обеспечить корректность оценок на длительный период, что определяет необходимость регулярного уточнения полученных оценок на будущее.

Прогнозируемые воздействия изменения климата на здоровье:
• Ожидается повышение сердечно-сосудистых заболеваний. К 2100 г. по сравнению с 2010 г. число случаев сердечно-сосудистых болезней увеличится на 10,5 % в связи с повышением температуры по наиболее неблагоприятным климатическим сценариям.
• Ожидается повышение уровня кишечных заболеваний. По оценочным данным к 2100 г., по сравнению с 2010 г., инфекционная заболеваемость, в частности острыми кишечными инфекциями, среди детей до 1 года повысится на 18,2 % (среди мальчиков) и 17,8 % (среди девочек).
• Районы высокого потенциала возобновления малярии. При повышении среднегодовой температуры воздуха определены районы высокого риска возникновения малярии на территории республики, особенно на юге (Ошская, Джалал-Абадская и Баткенская области).
• Прогнозируется распространение и увеличение инфекций, передаваемых клещами. Расширение ареала и повышение периода активности клещей значительно повысит риск заболеваемости среди населения болезнями, передаваемыми клещами, особенно энцефалитом.
• Потенциальные выгоды для здоровья от изменения климата. В зимний период ожидается снижение показателей смертности и случаев респираторных заболеваний в связи с уменьшением количества осадков. Однако изменение климата в связи с увеличением изменчивости погоды может уменьшить эти потенциальные выгоды.
Лес и биоразнообразие
Анализ уязвимости леса и биоразнообразия производился с учетом адаптационного потенциала, который в значительной степени определяется скоростью возможного перемещения в сторону оптимальных климатических условий.
Оценка уязвимости производилась на основании анализа смещения оптимальных зон существования экосистем при ожидаемом изменении климата. В рамках подготовки Национальных приоритетов по адаптации был проведен анализ эволюции оптимальных зон существования растительности для ожидаемых изменений климата. Анализ произведен для основных лесообразующих пород КР, мониторинг которых достаточно удовлетворителен по сравнению с другими видами растительносью. Это арча зеравшанская, арча полушаровидная, арча туркестанская, ель и пихта, орех грецкий.
Результаты моделирования для различных климатических сценариев (RCP 2.6, RCP 6.0 и RCP 8.5) показали значительные смещения зон климатического оптимума, естественно зависящего от используемого климатического сценария. Причем существенное смещение наблюдалось даже при наиболее благоприятном климатическом сценарии. Полученная информация является основанием для повышения эффективности действий по сохранению и расширению существующих площадей, занимаемых основными лесообразующими породами.
Меры по адаптации
Основные меры по адаптации приведены в Приоритетных направлениях по адаптации. Более подробно они описаны в отраслевых планах МСХМ, МЧС, Министерства здравоохранения и ГАООСЛХ.
Анализ смягчения последствий изменения климата
Основной вклад в разработку мер по сокращению эмиссий ПГ внесли следующие министерства и ведомства КР: Министерство энергетики и промышленности, Министерство транспорта и связей, Министерство экономики, МСХМ, ГАООСЛХ и Государственное агентство архитектуры, строительства и жилищно-коммунального хозяйства.
Для получения энергетических и эмиссионных сценариев при различных вариантах развития применялся комплекс LEAP (Long-range Energy Alternatives Planning system), версия 2014.0.1.9 и разработанная в КР модель SHAKYR.
Основной целью сокращения эмиссий ПГ на краткосрочный период является выполнение официальных добровольных обязательств КР по сокращению эмиссий ПГ.
В 2010 г. вклад республики в общемировые эмиссии ПГ от сжигания ископаемого топлива составляет 0,023 %, тогда как население составляет 0,079 % всего населения мира. Таким образом, объем эмиссий ПГ на душу населения в Кыргызстане в настоящее время более чем в три раза ниже, чем средние мировые показатели. Несмотря на это, КР считает необходимым внести свой вклад в решение глобальной проблемы изменения климата и добровольно обязалась сократить свои эмиссии ПГ на 20 % к 2020 г., по отношению к сценарию «бизнес как обычно», при соответствующей адекватной поддержке со стороны международного сообщества.
Последние оценки последствий изменений климата при повышении глобальной температуры более 2 °C, приведенные в Пятом Оценочном докладе МГЭИК и отчете Потсдамского института исследования воздействия изменения климата, показывают катастрофические последствия подобного повышения. Поэтому для более долгосрочной перспективы, рассмотрены пути достижения эмиссий, обеспечивающих предотвращение роста глобальной температуры более чем на 2 °C. В качестве целевого показателя принято достижение к 2050 году удельной оценки эмиссий не превышающей 1,23 т СО2/чел. или, как предел, не превышающей 1,58 т СО2/чел. Эти уровни являются среднемировыми значениями эмиссий СО2/чел., при которых вероятность не превысить глобальную температуру 2°С составит 66 % и 50 % соответственно.
Вследствие отсутствия долгосрочных национальных демографических исследований в качестве основы приняты демографические сценарии ООН. Специалисты Министерства экономики КР разработали три макроэкономических сценария на основе циклического представления развития с чередующимися подъемами и спадами экономического роста (рис. Р.17).
Демографические и макроэкономические сценарии объединены:
• сценарий 1 – низкий рост населения/высокий рост экономики;
• сценарий 2 – средний рост населения/средний рост экономики;
• сценарий 3 – высокий рост населения/низкий рост экономики.
С целью облегчения дальнейшего анализа, расчет для всех сценариев производился с разделением на следующие расчетные категории:

- Тепловая энергия. Отопление. «Коммерческий/институционный» сектор;
- Тепловая энергия. Отопление. «Жилой» сектор;
- Тепловая энергия. Горячая вода. «Коммерческий/институционный» сектор;
- Тепловая энергия. Горячая вода. «Жилой» сектор;
- Тепловая энергия. Пар;
- Тепловая энергия. Потери;
- Электрическая энергия. Все потребители, кроме «Коммерческого/институционного» и «Жилого» секторов;
- Электрическая энергия. Потери;
- Отопление «Коммерческий/институционный» сектор (сжигание топлива);
- Отопление «Коммерческий/институционный» сектор (использование электричества);
- Горячая вода и др. «Коммерческий/институционный» сектор (сжигание топлива);
- Горячая вода и др. «Коммерческий/институционный» сектор (использование электричества);
- Отопление. «Жилой» сектор (сжигание топлива);
- Отопление. «Жилой» сектор (использование электричества);
- Горячая вода и др. «Жилой» сектор (сжигание топлива);
- Горячая вода и др. «Жилой» сектор (использование электричества);
- «Транспорт»;
- «Промышленность и строительство» (сжигание топлива);
- «Сельское хозяйство» (сжигание топлива);
- «Летучие эмиссии от топлива»;
- «Промышленные процессы» (собственные эмиссии);
- «Сельское хозяйство», кроме 4А, 4С, 4D (собственные эмиссии);
- 4В Системы хранения навоза;
- 4F Сжигание с/х остатков;
- 6А Захоронение ТБО;
- 6В2 Очистка бытовых сточных вод;
- 6В1 Очистка промышленных сточных вод;
- ЗИЗЛХ.

Для каждой расчетной категории определялся следующий набор показателей:

- эмиссия CO₂;
- эмиссия CH₄;
- эмиссия N₂O;
- эмиссия суммы ПГ;
- эмиссия NOx;
- эмиссия CO;
- эмиссия НМЛОС;
- эмиссия SO₂;
- потребление энергии (размерность – тут, тнэ, и в необходимых случаях, кВтч).

Для сектора «Промышленные процессы» также рассчитывалась эмиссия ГФУ-134а, которая далее суммировалась в общей эмиссии ПГ.

В соответствии с исходной информацией, для всех отдельных категорий источников были построены базовые сценарии эмиссий, которые детализировались для каждого из показателей.

В соответствии с предложениями ключевых министерств и ведомств был сформирован перечень первоочередных мер по сокращению эмиссий ПГ.
• Уменьшение потерь тепловой энергии;
• Выполнение СНиП по энергоэффективности зданий;
• Повышение энергоэффективности существующего фонда зданий;
• Сокращение потерь электроэнергии;
• Сокращение потерь газа;
• Транспорт;
• Биомасса;
• Солнечная энергия – электричество;
• Солнечная энергия – тепло;
• Геотермальная энергия;
• Гидроэнергия (малые ГЭС).

Для каждой меры был определен объем сокращаемой эмиссии, а также необходимые затраты, с разбивкой на имеющиеся (запланированные) в стране ресурсы и на дополнительно требуемые. Результаты расчета приведены на рис. П.18.

Результаты расчета эмиссии ПГ для различных сценариев развития

Результаты расчетов показывают, что при любых сценариях развития, поставленная цель по удельной эмиссии диоксида углерода выполняется (рис. П.19).
Экономическая ситуация в республике не обеспечивает возможность реализации планируемых мер по сокращению эмиссий ПГ полностью за счет собственных ресурсов. По предварительной оценке, за счет собственных ресурсов республика может сократить эмиссии ПГ к 2020 г. на 51,5–52,7 %, а к 2050 г. на 44,9–48,2 %, в зависимости от сценария демографического и экономического развития. Рост эмиссий ПГ к концу столетия для сценария 1 показывает необходимость регулярного пересмотра и обновления стратегии по сокращению эмиссий в зависимости от доступности новой информации.

Другая информация, относящаяся к достижению целей конвенции

Анализ основных стратегических документов показал, что в КР вопросы изменения климата в большинстве случаев интегрированы в процесс устойчивого развития. Однако следует отметить, что эффективность принимаемых документов зачастую не имеет положительной динамики развития и устойчивости. В частности, отсутствует четко прописанная схема организационно-финансового и нормативно-правового обеспечения этой деятельности, нет вертикально-интегрированной системы оценки результатов предпринимаемых усилий. Также, недостаточно разработаны подзаконные акты, определяющие механизм реализации действий в области изменения климата, недостаточно выделяются финансовые и прочие ресурсы, необходимые для решения проблем в области изменения климата, особенно на уровне министерств и ведомств.

Учитывая, что последствия изменения климата наиболее сильно проявляются для беднейшей части населения, а около 70 процентов бедных в мире составляют женщины, выявлены основные проблемы, требующие решения в рамках гендерно ориентированных мер, способствующих движению к устойчивому развитию.

Проведен анализ ситуации с разработкой и передачей экологически безопасных технологий. Можно выделить положительный опыт передачи технологий в МСХМ по внедрению современных прогрессивных ресурсосберегающих технологий в сельском хозяйстве (капельное орошение, тепличное хозяйство и другие).

Кроме того, среди приоритетов Программы энергосбережения Кыргызской Республики до 2015 года по вопросу создания экономических и организационных условий для активизации научно-технической и инновационной деятельности в сфере энергосбережения было предусмотрено:

- создать в республике Центры трансфера технологий и управления интеллектуальной собственностью в области энергоэффективности;
- развивать на базе ведущих технических университетов республики технопарки и инновационно-технологические центры, позволяющие более эффективно развивать инновационную и инвестиционную активность через привлечение инвесторов;
- создать систему экспертизы и поддержки баз данных инноваций, организации конкурсов, учреждения специальных премий и грантов, проведения научно-технических и инновационных выставок и конференций в области энергоэффективности;
- осуществлять сотрудничество отечественных ученых и изобретателей с зарубежными партнерами;
- разработать проекты по непрерывной и многоуровневой системе образования в области энергосбережения.
Систематические наблюдения в области климата в КР проводятся с 1883 г., когда была открыта метеостанция в г. Каракол. Далее количество метеорологических станций последовательно росло до середины 80х годов (более 70), затем значительно уменьшилось. В настоящее время их количество составляет 33, из которых 4 автоматические, 3 снеголавинные и озерная обсерватория Чолпон-Ата с научно-исследовательскими судами. 15 из них являются реперными, т.e. предназначены для получения однородных непрерывных наблюдений, данные которых необходимы для установления долговременных тенденций изменения климата.

Аналогичная ситуация с гидрологическими наблюдениями. Систематические гидрологические наблюдения в республике были начаты в 1911 г. Гидрологические посты «Аламедин» и «Сох» функционировали в течение 1911-1915 гг. Затем наблюдения были восстановлены и с 1925 г. стали интенсивно развиваться. В изданных в советское время справочниках приводятся измерения гидрологических характеристик на 427 гидрологических постах. В 60 годы наблюдательная сеть насчитывала до 470 гидрологических постов, а в 70 годы насчитывалось 155 гидропостов по бассейнам рек Чу, Талас, Тарим и оз. Иссык-Куль, а по бассейну р. Сыр-Дарья (в пределах Кыргызстана) — 151, т.e. всего 306 гидрологических постов. В 1985 г. одновременно функционировало 149 гидрологических постов. В настоящее время действует 77 гидрологических постов, 5 озерных и 22 гидрохимических поста на реках, озерах и водохранилищах.

В глобальную сеть наблюдений за климатом входит две метеостанции – Нарын и Бишкек. КР также входит в систему глобального мониторинга состава атмосферы (Global Atmosphere Watch, GAW), в которую включена станция Иссык-Куль.

Большая работа в КР проведена по усилению институционального потенциала. В 2012 г. создана ККПИК с целью осуществления руководства и координации действий по выполнению международных обязательств КР по РКИК ООН. Возглавляет ККПИК Первый вице-премьер министр, а членами являются руководители ключевых министерств и ведомств, представители науки, образования, бизнеса и неправительственных организаций. ГАООСЛХ определено рабочим органом ККПИК на постоянной основе для организационно-технического, информационно-аналитического обеспечения деятельности комиссии и осуществления контроля выполнения ее решений.

Принимаемые ККПИК в соответствии с ее компетенцией решения являются обязательными для всех государственных органов исполнительной власти, а также предприятий, учреждений и организаций, действующих в сфере их ведения.

Уже первым решением ККПИК обязала назначить в ключевых министерствах и ведомствах ответственных лиц за решение вопросов, связанных с адаптацией и смягчением последствий изменения климата.

Начиная с момента создания, ККПИК координирует практически всю деятельность в стране в области изменения климата. Опыт работы ККПИК показал заметное повышение координации и эффективности национальной деятельности на всех уровнях.

Для повышения потенциала и информированности необходим регулярный диалог между всеми участниками климатических действий. Поэтому в 2014 г. по инициативе ГАООСЛХ была создана Климатическая диалоговая платформа Кыргызстана. Уникальность этой Платформы в том, что заложенные в ее основу механизмы позволяют обеспечить на национальном уровне многопрофильный и всесторонний регулярный обмен информацией, знаниями и опытом между всеми заинтересованными сторонами.

Участники диалога — представители правительственных органов, с одной стороны, с другой – общественность, представленная в широком диапазоне организациями гражданского общества, представителями научно-образовательных кругов, частного сектора, и, с третьей стороны – активные партнеры по развитию в КР из числа международных организаций и проектов.
1 Национальные условия
1.1. Общее описание

1.1.1. Физико-географическое описание

Кыргызская Республика расположена в центре Евразийского континента, на северо-востоке региона Центральной Азии (рис. 1.1). Площадь территории\(^1\) составляет 199,95 тыс. км\(^2\). Протяженность с запада на восток – 900 км, с севера на юг – 450 км. КР граничит с четырьмя государствами: Республикой Казахстан, Китайской Народной Республикой, Республикой Таджикистан и Республикой Узбекистан.

КР расположена в пределах систем горных хребтов Тянь-Шань и Памиро-Алая. Самой низко расположенной точкой (488 м над уровнем моря\(^2\)) является точка пересечения рекой Нарын границы с Республикой Узбекистан, а наивысшей – пик Победы (7439 м). Средняя высота территории над уровнем моря 2630 м.

Все разнообразие ландшафтов и природно-климатических условий КР может быть объединено в четыре природно-климатических пояса: долинно-предгорный – до 1200 м, среднегорный – от 1200 до 2200 м, высокогорный – от 2200 до 3500 м и нивальный – выше 3500 м (рис.1.2, рис. 1.3).

Рис. 1.1. Местоположение в Евразии и административная карта КР

KR расположена в пределах систем горных хребтов Тянь-Шань и Памиро-Алая. Самой низко расположенной точкой (488 м над уровнем моря\(^2\)) является точка пересечения рекой Нарын границы с Республикой Узбекистан, а наивысшей – пик Победы (7439 м). Средняя высота территории над уровнем моря 2630 м.

Все разнообразие ландшафтов и природно-климатических условий КР может быть объединено в четыре природно-климатических пояса: долинно-предгорный – до 1200 м, среднегорный – от 1200 до 2200 м, высокогорный – от 2200 до 3500 м и нивальный – выше 3500 м (рис.1.2, рис. 1.3).

\(^1\) Площадь приведена согласно данным учета земельных ресурсов Государственной регистрационной службы при Правительстве Кыргызской Республики по состоянию на 1 января 2012 г.

\(^2\) Данные радарной топографической съемки Земли SRTM, произведенной в феврале 2000 г. радиолокационными сенсорами SIR-C и X-SAR. Точность данных: разрешение по широте и долготе – 90 м (3 угловые секунды), разрешение по высоте – 1 м. (http://srtm.csi.cgiar.org/)
Глава 1. Национальные условия

Рис. 1.2. Природно-климатическое зонирование по высоте над уровнем моря

Рис. 1.3. Распределение площади территории Кыргызстана по высотам. Источник: Данные дистанционного зондирования земли SRTM

Как видно из рис. 1.3, менее 20 % территории КР относятся к районам с комфортными условиями для проживания.

Крупные системы горных хребтов, ориентированные в разных направлениях, обусловили создание нескольких регионов, климат в которых достаточно однороден и различен.

Всего на территории Кыргызской республики можно выделить четыре климатических региона: Внутренний Тянь-Шань, Северо-Восточный, Северо-Западный, Юго-Западный (рис. 1.4).

Климат

Климат КР резко континентальный, в основном засушливый, несколько слаживаемый от увеличения облачности и осадков за счет высокогорного рельефа. Особенности климата определяются расположением республики в Северном полушарии в центре Евроазиатского континента, а также удалённостью от значительных водных объектов и близким соседством пустынь.

Рост температуры на суше и в Северном полушарии несколько выше, чем на водной поверхности и Южном полушарии [1.1]. Эта особенность определяет несколько большую скорость роста температуры в КР по сравнению с ее глобальным ростом. Поэтому воздействие изменения климата на КР значительно выше, чем для стран, имеющих выход к морю и/или расположенных в Южном полушарии.
Первая метеорологическая станция на территории КР была открыта в 1856 г. Систематические инструментальные климатические наблюдения проводятся с 1883 г. (метеостанция в г. Каракол). Изменение количества метеостанций за весь период наблюдений приведено на диаграмме-врезке (рис. 1.4). Резкое сокращение количества метеостанций в конце 90-х годов прошлого столетия связано со снижением финансирования, выделяемого на содержание наблюдательной сети.

Для обработки результатов изменений наблюдаемого климата при подготовке ТНС использован подход, позволяющий получить оценки трендов среднегодовых температур за период 1885–2010 гг. (тогда как наиболее длинные ряды наблюдений имеют продолжительность непрерывных наблюдений менее 100 лет), а также значительно увеличить длину трендовых оценок для отдельных выделенных территорий [1.2]. Этот подход позволяет устранить проблемы, возникающие вследствие недостаточного количества наблюдений, к тому же с малым количеством длиннорядных метеостанций и наличием пропусков в наблюдениях.

Рис. 1.5. Тенденция изменения среднегодовой температуры в целом по КР. Источник: Климатический профиль Кыргызской Республики
Анализ показал значительность уже наблюдаемых климатических изменений на территории КР. Среднегодовая температура за период с 1885–2010 гг. в КР значительно возросла (рис. 1.5). Следует отметить, что скорость изменения температуры имеет нелинейный характер и в последние десятилетия существенно увеличилась. Если за весь период наблюдений скорость роста среднегодовой температуры составляла по республике 0,0104 °С/год, то за период 1960–2010 гг. скорость возросла более чем вдвое и составила 0,0248 °С/год, а за период 1990–2010 гг. скорость уже составила 0,0701 °С/год.

Возрастание среднегодовой температуры наблюдается во всех климатических зонах и регионах республики. Практически одинаковое возрастание среднегодовой температуры наблюдается также и на всех высотах. На рис. 1.6 приведены высотные тренды для всех четырех климатических регионов.

На рис. 1.7 приведено распределение среднегодовой температуры за базовый период (1961–1990 гг.) и изменения относительно базового периода.
На рис. 1.8 приведены изменения скорости роста максимальной и минимальной месячных температур для трех городов: Бишкек, Нарын и Джалааб-Абад. Аналогичная картина наблюдается на других метеостанциях.

Можно отметить схожесть изменений во всех регионах КР. При этом наибольшая скорость потепления отмечается в зимние месяцы. Причем минимальные месячные температуры «теплеют» значительно быстрее максимальных.

Глава 1. Национальные условия

На рис. 1.9 представлен температурный градиент для различных климатических регионов. Эта информация может быть использована для оценки смещения различных экосистем или используемых сельскохозяйственных земель по высоте для известного изменения температуры. Температурный градиент отражает изменение температуры с высотой. Следует отметить, что изменения для всех регионов практически одинаковые, если не учитывать параллельное смещение по оси ординат за счет широты местности.

В целом количество осадков изменилось незначительно, но за последние годы произошли довольно резкие изменения в отдельных регионах, как в сторону увеличения, так и в сторону уменьшения. Причем общая тенденция в последние годы направлена именно в сторону уменьшения (рис. 1.10).

Так, за весь период наблюдений суммы годовых осадков по республике незначительно росли (0,847 мм/год), но в последние 50 лет рост существенно снизился (0,363 мм/год), а за последние 20 лет наблюдается даже некоторая тенденция к уменьшению (-1,868 мм/год).
На рис. 1.11 приведены распределение суммы годовых осадков по территории страны за базовый период и изменения относительно базового периода.
1.1.2. Государственное устройство

Согласно Конституции, Кыргызская Республика является суверенным, демократическим, правовым, светским, унитарным, социальным государством.

Первая Конституция была принята 5 мая 1993 г. на двенадцатой сессии Верховного Совета КР. По результатам референдума 27 июня 2010 г. принята новая редакция Конституции КР.

Государственное управление в Кыргызстане имеет три уровня административно-территориального деления. На 1 января 2015 г. в систему административно-территориального устройства КР входит 7 областей (карта-врезка на рис. 1.1), города Бишкек и Ош, имеющие статус городов республиканского подчинения, 40 районов, включающих 453 айылных аймака.

В Кыргызстане имеется 1906 населенных пунктов, из которых 31 имеют статус города и 9 – поселков городского типа областного и районного подчинения.

1.1.3. Демография

Численность постоянного населения в Кыргызской Республике на 1 января 2016 г. составила 6019,5 тыс. человек. Из-за горного рельефа население Кыргызстана распределено по территории республики крайне неравномерно. В основном население проживает и осуществляет большую часть хозяйственной деятельности в пределах низкогорья, межгорных котловин (озеро Иссык-Куль, долина Суусамыр) и относительно небольших горных долин. Наибольшая активность населения сосредоточена в пределах самих населенных пунктов и относительно небольшой буферной зоны в 5 км вокруг населенных пунктов (рис. 1.12). Доля городского населения составляет 33,7 %. Доля сельского населения составляет 66,3 %.

За период 2005-2014 гг. годовой прирост постоянного населения республики изменился с 1,0 % до 2,1 % и в среднем за десять лет составил 1,4 %.

Численность постоянного населения в Кыргызской Республике на начало 2014 г. приведена в таблице 1.1.

<table>
<thead>
<tr>
<th>Области и города республиканского подчинения</th>
<th>Все население</th>
<th>Городское население</th>
<th>Сельское население</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>Муж.</td>
<td>Жен.</td>
</tr>
<tr>
<td>Баткенская обл.</td>
<td>469,7</td>
<td>238,7</td>
<td>231,0</td>
</tr>
<tr>
<td>Джалал-Абадская обл.</td>
<td>1099,2</td>
<td>551,1</td>
<td>548,1</td>
</tr>
<tr>
<td>Иссык-Кульская обл.</td>
<td>458,5</td>
<td>227,6</td>
<td>230,9</td>
</tr>
<tr>
<td>Нарынская обл.</td>
<td>271,3</td>
<td>137,7</td>
<td>133,6</td>
</tr>
<tr>
<td>Ошская обл.</td>
<td>1199,9</td>
<td>604,7</td>
<td>595,2</td>
</tr>
<tr>
<td>Таласская обл.</td>
<td>243,4</td>
<td>122,6</td>
<td>120,8</td>
</tr>
<tr>
<td>Чуйская обл.</td>
<td>853,7</td>
<td>420,3</td>
<td>433,4</td>
</tr>
<tr>
<td>г. Бишкек</td>
<td>915,7</td>
<td>426,3</td>
<td>489,4</td>
</tr>
<tr>
<td>г. Ош</td>
<td>265,2</td>
<td>127,6</td>
<td>137,6</td>
</tr>
</tbody>
</table>

Уровень обеспечения населения жилищно-коммунальными услугами в КР остается недостаточным. При этом уровень благоустройства городских и сельских жилых помещений значительно различается. Динамика обеспечения жилищного фонда коммунальными услугами для города и сельской местности за период с 2005 г. по 2010 г. приведена на рис.1.14. Как видно из рисунка, за истекший с момента выхода ВНС период ситуация почти не изменилась. При этом по ряду параметров наблюдается ухудшение ситуации.
Доступ населения к питьевой воде по источникам показан в таблице 1.2.

Таблица 1.2. Обеспечение населения водой в 2005 и 2013 г. Источник: Нацстатком

<table>
<thead>
<tr>
<th></th>
<th>От общего количества, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2005 г.</td>
</tr>
<tr>
<td>Доля населения, имеющая доступ к чистой питьевой воде, в том числе:</td>
<td></td>
</tr>
<tr>
<td>пользующихся водопроводом</td>
<td>84,4</td>
</tr>
<tr>
<td>пользующихся колонкой</td>
<td>28,5</td>
</tr>
<tr>
<td>пользующихся колодцем</td>
<td>52,3</td>
</tr>
<tr>
<td>Доля населения, пользующегося родником</td>
<td>3,7</td>
</tr>
<tr>
<td>Доля населения, пользующегося арыком</td>
<td>0,8</td>
</tr>
<tr>
<td>Доля населения, пользующегося родником</td>
<td>14,8</td>
</tr>
</tbody>
</table>

Доля использования воды из открытых водных объектов для хозяйственно-бытовых нужд остаётся достаточно большой и представляет значительные риски для здоровья населения. С момента подготовки ВНС, ситуация изменилась незначительно. Данный сектор требует больших капиталовложений, связанных с реконструкцией большинства инженерных сетей в населенных пунктах и на прилегающей территории.
1.2. Природные ресурсы

1.2.1. Земельные ресурсы

Общее распределение земель показано в табл. 1.3.

<table>
<thead>
<tr>
<th>Категории земель</th>
<th>1995</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Всего земель, в том числе по категориям землепользования:</td>
<td>19994,9</td>
<td>19994,9</td>
<td>19994,9</td>
<td>19994,9</td>
</tr>
<tr>
<td>– земли сельскохозяйственного назначения</td>
<td>11647,1</td>
<td>5788,2</td>
<td>5698,4</td>
<td>5679,7</td>
</tr>
<tr>
<td>– земли населенных пунктов</td>
<td>137,4</td>
<td>231,7</td>
<td>250</td>
<td>266,4</td>
</tr>
<tr>
<td>– земли промышленности, транспорта, обороны, связи и иного назначения</td>
<td>888,8</td>
<td>227,5</td>
<td>221,8</td>
<td>222,7</td>
</tr>
<tr>
<td>– земли особо охраняемых природных территорий</td>
<td>145,4</td>
<td>349,3</td>
<td>447,8</td>
<td>707,4</td>
</tr>
<tr>
<td>– земли лесного фонда</td>
<td>1107,1</td>
<td>2634,3</td>
<td>2684,9</td>
<td>2617,2</td>
</tr>
<tr>
<td>– земли водного фонда</td>
<td>93,7</td>
<td>767</td>
<td>767,3</td>
<td>767,3</td>
</tr>
<tr>
<td>– земли запаса</td>
<td>5975,4</td>
<td>9996,9</td>
<td>9924,7</td>
<td>9734,2</td>
</tr>
<tr>
<td>2. Сельскохозяйственные угодья, в том числе по типам:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– пашня</td>
<td>1417,4</td>
<td>1367,5</td>
<td>1284,4</td>
<td>1276,3</td>
</tr>
<tr>
<td>в том числе орошающаяся</td>
<td>939,9</td>
<td>930,9</td>
<td>866,7</td>
<td>1020,9</td>
</tr>
<tr>
<td>– многолетние насаждения</td>
<td>70,6</td>
<td>67,1</td>
<td>72,1</td>
<td>74,3</td>
</tr>
<tr>
<td>– залежи</td>
<td>20,1</td>
<td>21,5</td>
<td>35,4</td>
<td>38,9</td>
</tr>
<tr>
<td>– сенокосы</td>
<td>170,6</td>
<td>177,0</td>
<td>199,5</td>
<td>197,5</td>
</tr>
<tr>
<td>– пастбища</td>
<td>9111,1</td>
<td>9165,2</td>
<td>9189,1</td>
<td>9064,0</td>
</tr>
<tr>
<td>3. Лесные площади, в том числе:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– леса государственного лесного фонда и ООПТ</td>
<td>845,6</td>
<td>855,7</td>
<td>875,6</td>
<td>839,6</td>
</tr>
<tr>
<td>– леса вне государственного лесного фонда и ООПТ</td>
<td>277,0</td>
<td>277,0</td>
<td>277,0</td>
<td>277,0</td>
</tr>
<tr>
<td>– в населенных пунктах</td>
<td>10,8</td>
<td>12,0</td>
<td>13,0</td>
<td>13,0</td>
</tr>
<tr>
<td>– защитные насаждения</td>
<td>215,3</td>
<td>210,3</td>
<td>197,0</td>
<td>197,0</td>
</tr>
<tr>
<td>– многолетние насаждения</td>
<td>69,9</td>
<td>67,9</td>
<td>71,5</td>
<td>71,5</td>
</tr>
</tbody>
</table>

Таблица 1.3: Изменение площади различных категорий земельных ресурсов КР, тыс. га.
Источник: ГРС, ГАООСЛХ

Площадь орошаемых земель в 2010 г. составила 79,99 % от общей площади пашни. На протяжении всего периода существует устойчивая тенденция к снижению пахотных площадей. Вместе с тем, доля орошаемых земель и общая их площадь выросла. Возросла площадь залежных земель и сенокосов. Площадь многолетних насаждений изменилась незначительно.

На территории КР представлены 55 типов почв и непочвенных образований, объединяемых в 6 групп. Карта распространения групп почв представлена на рис. 1.15.
Глава 1. Национальные условия

В целом за период с 1990 г. по настоящее время имеется устойчивая тенденция к снижению плодородия почв. Оценка изменения плодородия по основным типам почв дана на рис. 1.16.

Рис. 1.15. Группы почв, распространенных на территории КР

Горно-долинные светло-каштановые
Горные светло-каштановые
Горные черноземы
Комплекс аллювиальных, аллювиально-луговых почв тугайных лесов и кустарников
Комплекс сазоватых лугово-сероземных и сероземно-луговых (СлПсСнСк, ЛсЛгБлСН, ЛсЛгБлСНСК)
Светло-бурые
Светло-каштановые
Сероземы северные светлые (группа почв)
Сероземы темные

Рис. 1.16. Изменение плодородия (содержания гумуса в % от массы почвы) по основным типам почв сельскохозяйственных угодий. Источники: Республиканская агрохимическая станция, Чуй-Бишкекская сельская консультационная служба
1.2.2. Лесные ресурсы

В КР в естественных условиях встречается 30 пород древесной растительности всех групп пород деревьев, типичных для средних широт: хвойных, твердолиственных, мягколиственных орехоплодовых, плодовых, семечковых, плодовых косточковых и более 17 видов кустарников. Сочетание различных видов предопределяет широкое разнообразие лесных экосистем: от арчовых (можжевельниковых) и еловых в высокогорье, орехоплодовых в среднегорье и до тугайных (пойменных) в низкогорье (рис. 1.17).

Наиболее широко распространены арчовые и еловые леса (около половины площади земель, покрытых лесом). Орехоплодовые занимают около 10 % площади земель, покрытых лесом.

Вертикальная поясность и разнообразие климатических зон с одной стороны обусловили большое разнообразие лесообразующих пород в лесных резервуарах, а с другой – низкую лесистость территории страны.

По данным первой национальной инвентаризации лесов (2008-2010 гг.), покрытая лесом площадь республики составила 1398,1 тыс. га. Из них на территории государственного лесного фонда и особо охраняемых природных территорий (ГЛФ и ООПТ) – 839,6 тыс. га и вне территории ГЛФ и ООПТ – 277,0 тыс. га.

Рис. 1.17. Карта-схема лесов. Источник: ГАОСиЛХ

1.2.3. Водные ресурсы

Водные ресурсы используются для производства энергии, ирригационного, промышленного и бытового водоснабжения. Водные ресурсы республики сосредоточены в ледниках, озерах, реках и в подземных водах.

По состоянию на 2010 г., объем ледников оценивается в 390 км³. По результатам математико-картографического моделирования с середины 70-х годов прошлого столетия к 2000 г. объем ледников уменьшился примерно на 15 %.

В КР насчитывается 1923 озера. Самые крупные озера: Иссык-Куль, Сон-Куль, Чатыр-Куль. Запасы воды в озерах республики оцениваются в 1745 км³. Из них 1731 км³ (или 99,2 % от объема всех озер) сосредоточено в озеро Иссык-Куль, вода которого является солоноватой и для водоснабжения непригодна.

Горный рельеф республики обусловил формирование разветвленной речной сети. На территории республики насчитывается около 5 тыс. рек и 2 бессточных озера – Иссык-Куль и Чатыр-Куль. Два озера являются внутренними бассейнами, величина их речного стока составляет около 3,5 % от речного стока на территории республики. Суммарный многолетний средний годовой речной сток на территории республики по состоянию на 2010 г. оценивается в 47,8 км³ (рис. 1.18).
Потенциальные эксплуатационные запасы пресных подземных вод КР оцениваются в 13 км³. В основном они сосредоточены в межгорных впадинах, территории которых наиболее освоены в экономическом отношении. Эксплуатационные запасы подземных вод по промышленным категориям составляют более 16 млн м³/сутки или более 5 км³ в год. Изменение баланса использования водных ресурсов за последние 20 лет показано на рис. 1.19.

Рис. 1.19. Использование водных ресурсов КР за период 1990-2010 гг. Источник: Нацистатком

Общий забор воды из водных источников на одного жителя республики в 2014 г. составил 1327 м³.

1.2.4. Гидроэнергетические ресурсы

Общий гидроэнергетический потенциал республики по линейному учету 268 рек, 97 наиболее крупных каналов и 19 водохранилищ, по состоянию на 2010 г. (для года средней водности), оценивается в 28,83 млн кВт по мощности и 245,52 млрд кВт·ч по валовой выработке электроэнергии (рис. 1.20), включая производственный потенциал до 60 млрд кВт·ч электроэнергии.
В КР функционирует 16 крупных и средних гидроэлектростанций общей установленной мощностью 2949 МВт и годовой выработкой - 10,406 млрд кВт-ч. В настоящее время гидроэнергетический потенциал республики уже используется на 18 % (для больших ГЭС на 19,5 %, а для малых - на 4 %).

В республике ведется строительство двух станций средненарынского каскада ГЭС: Камбаратинские ГЭС-1 и ГЭС-2. После ввода этих станций в эксплуатацию в общую сумму генерирующих мощностей добавится 2260 МВт (77 % от существующих), что позволит увеличить годовую выработку электроэнергии на 6,312 млрд кВт·ч (61 % от вырабатываемой).

С XX века существует 39 разработанных проектов крупных и средних ГЭС общей генерирующей мощностью 7,155 МВт при годовой выработке электроэнергии до 23,625 млрд кВт·ч (рис. 1.21). Возведение всех планируемых ГЭС, увеличит использование потенциала до 46 % (для больших ГЭС до 48,8 %, для малых - до 21,3 %).

1.2.5. Топливно-энергетические ресурсы

В КР прогнозные запасы 70 основных угольных месторождений оцениваются более чем в 2,2 млрд тонн при балансовых запасах на 1 января 2006 г. – 1316,9 млн тонн (750,7 млн тут). За все время разработки месторождений максимальный уровень добычи был достигнут в 1979 г. – 4508 тыс. тонн, который, начиная с 1980 г., начал постепенно снижаться до 3473 тыс. т в 1991 г. С 1992 г. происходило...
резкое снижение добычи до 321,3 тыс. тонн в 2006 г. С 2008 г. наметился рост. Основными причинами, повлиявшими на снижение объемов добычи угля, являются экономические и организационные.

До настоящего времени в КР ощущается постоянный дефицит угля в народном хозяйстве. Существенно ограничивают рынки сбыта недостаточно развитая сеть железных дорог (основной канал перевозки) и возросшие транспортные расходы на доставку угля конечным потребителям.

Прогнозы неразведанных запасов нефти и газа составляют порядка 289 млн тут. В настоящее время добыча нефти и природного газа имеет незначительна. Так, на территории республики разрабатываются 15 нефтегазовых месторождений с извлекаемыми промышленными запасами нефти – 11,6 млн т (16,6 млн тут) и природного газа – 4,9 млрд м³ (5,6 млн тут). Обеспеченность собственными нефтьпродуктами составляет 4,5 %, природным газом – около 6,5 %.

В целом обеспеченность топливно-энергетическими ресурсами КР на 2010 год составляла 69,12 % (без учета топливной древесины). Обеспеченность по отдельным топливно-энергетическим ресурсам приведена в таблице 1.4.

Таблица 1.4: Обеспеченность топливно-энергетическими ресурсами в 2010 г. (тыс. тут). Источник: Нацстатком

<table>
<thead>
<tr>
<th>Наименование топливно-энергетических ресурсов</th>
<th>Остат. на начало года</th>
<th>Остат. на конец года</th>
<th>Добыто (изведено)</th>
<th>Импорт</th>
<th>Экспорт</th>
<th>Обеспеч. собств. ресурс.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уголь</td>
<td>349,48</td>
<td>388,24</td>
<td>327,73</td>
<td>786,38</td>
<td>11,32</td>
<td>28,71</td>
</tr>
<tr>
<td>Дрова для отопления</td>
<td>0,36</td>
<td>0,38</td>
<td>3,95</td>
<td>0,00</td>
<td>0,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Природный газ</td>
<td>0,00</td>
<td>0,00</td>
<td>26,30</td>
<td>313,54</td>
<td>0,00</td>
<td>7,74</td>
</tr>
<tr>
<td>Кокс металлургический</td>
<td>1,02</td>
<td>1,01</td>
<td>0,00</td>
<td>0,63</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Мазут топочный</td>
<td>40,53</td>
<td>68,20</td>
<td>59,97</td>
<td>176,00</td>
<td>30,11</td>
<td>25,68</td>
</tr>
<tr>
<td>Топливо дизельное</td>
<td>128,61</td>
<td>49,69</td>
<td>55,33</td>
<td>359,44</td>
<td>33,87</td>
<td>18,32</td>
</tr>
<tr>
<td>Бензин автомобильный</td>
<td>89,73</td>
<td>93,43</td>
<td>22,77</td>
<td>631,50</td>
<td>2,69</td>
<td>3,47</td>
</tr>
<tr>
<td>Газ сжиженный</td>
<td>0,99</td>
<td>0,92</td>
<td>0,00</td>
<td>16,25</td>
<td>0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>Керосин авиационный</td>
<td>5,32</td>
<td>27,90</td>
<td>0,00</td>
<td>471,72</td>
<td>77,08</td>
<td>0,00</td>
</tr>
<tr>
<td>Нефтебитум</td>
<td>7,68</td>
<td>1,25</td>
<td>0,00</td>
<td>46,19</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Смазочные и нефтяные масла</td>
<td>2,89</td>
<td>2,51</td>
<td>0,00</td>
<td>16,22</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Электроэнергия</td>
<td>0,00</td>
<td>0,00</td>
<td>4159,45</td>
<td>39,91</td>
<td>629,62</td>
<td>116,52</td>
</tr>
<tr>
<td>Всего</td>
<td>626,60</td>
<td>633,53</td>
<td>4655,49</td>
<td>2857,79</td>
<td>784,75</td>
<td>69,12</td>
</tr>
</tbody>
</table>

В период с 1990 г. по 2010 г., наблюдалось устойчивое снижение доли выработки электроэнергии на тепловых станциях (рис. 1.22). Если в 1990 г. тепловые станции выработали 4,40 млрд кВт·ч (или 33 %), то к 2000 году 1,25 млрд кВт·ч (или 8,4 %), а к 2010 году 0,808 млрд кВт·ч (6,7 % от общей выработки).

Высока доля потерь выработанной электроэнергии в структуре потребления электроэнергии. Так, если в 1990-1992 гг. уровень потерь не превышал 13 %, то в 1995-2008 гг. потери составляли более 30 %, достигая 41,5 % в 2001 г. и 40,7 % в 2005 г.

С 2009 г. наметилось некоторое снижение потерь электроэнергии (ниже 30 %), хотя общие объемы токовых превышают потребление электроэнергии социальной сферой или суммарное потребление таких секторов экономики, как сельское хозяйство, транспорт и строительство (рис. 1.23).
Нетрадиционные и возобновляемые источники энергии

Потенциальные энергоресурсы нетрадиционных и возобновляемых источников энергии республики, реальном доступные при текущем уровне развития техники и технологий, представлены солнечной, ветровой и геотермальной энергией, биогазом. К нетрадиционным и возобновляемым источникам энергии относятся и гидроэнергетические ресурсы.

В республике имеются объективные климатические предпосылки для широкого использования солнечной энергии.

Перспектива использования энергии ветра оценивается как незначительная, так как в большинстве случаев на территориях, где осуществляется хозяйственно-экономическая деятельность и проживает основная часть населения, нет условий для использования крупных промышленных ветровых установок. Среди территорий, где постоянно проживает население и ведется экономическая деятельность, наиболее богата ветровым ресурсом западная часть Иссык-Кульской котловины (г. Балыкчы). Но даже на этой местности отсутствуют благоприятные условия для экономически оправданного использования энергии ветра (рис.1.24).

Необходимые условия для использования ветроэнергетических установок в ощутимых для общего энергетического баланса страны объемах наблюдаются в зоне высокогорья, примером, на водо-разделах. Однако удаленность и труднодоступность таких мест от основных потребителей электроэнергии делает развитие ветроэнергетики экономически неоправданным.

Потенциал использования геотермальной энергии (кроме тепловых насосов) в ТНС не рассматривается ввиду недостаточности информации об его величине.

Общий потенциал использования биомассы в энергетическом секторе достаточно высок (таблица 1.5). При этом основным препятствием для широкого использования биомассы в производстве

3 С 2007 года учет распределения электроэнергии на ЖКХ включен в сектор промышленности
энергии является отсутствие системы сбора, транспортировки и аккумулирования необходимого сырья (например, отходы сельского хозяйства) от множества мелких хозяйств. Широкому внедрению биогазовых установок в коммунальной сфере, препятствует общая неразвитость сферы переработки ТБО.

Таблица 1.5. Сравнение энергетического потенциала от использования биомассы с потреблением энергетических ресурсов в 2010 г. Источник: Нацстатком

<table>
<thead>
<tr>
<th>Наименование топливно-энергетических ресурсов</th>
<th>Единица измерения</th>
<th>Добыча (произв.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Автомобильный бензин</td>
<td>т.</td>
<td>23</td>
</tr>
<tr>
<td>Дизельное топливо</td>
<td>т.</td>
<td>55</td>
</tr>
<tr>
<td>Мазут</td>
<td>т. т.</td>
<td>60</td>
</tr>
<tr>
<td>Электроэнергия</td>
<td>т.</td>
<td>4159</td>
</tr>
<tr>
<td>Уголь</td>
<td>т. т.</td>
<td>328</td>
</tr>
<tr>
<td>Природный газ</td>
<td>т. т.</td>
<td>26</td>
</tr>
<tr>
<td>Производственный потенциал биомассы, в том числе:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>животноводство</td>
<td>т.</td>
<td>121,3</td>
</tr>
<tr>
<td>растениеводство</td>
<td>т.</td>
<td>24,5</td>
</tr>
<tr>
<td>пищевая промышленность</td>
<td>т.</td>
<td>50,8</td>
</tr>
<tr>
<td>твердые бытовые отходы</td>
<td>т.</td>
<td>12,5</td>
</tr>
<tr>
<td>ТБО</td>
<td>т.</td>
<td>29,0</td>
</tr>
</tbody>
</table>

1.3. Современное состояние экономики

1.3.1. Общие тенденции

Таблица 1.6. Индекс потребительских цен (к предыдущему году) за период 1993-2010 гг. Источник: Нацстатком

<table>
<thead>
<tr>
<th>Годы</th>
<th>Индекс потребительских цен</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>11,862</td>
</tr>
<tr>
<td>1994</td>
<td>2,807</td>
</tr>
<tr>
<td>1995</td>
<td>1,435</td>
</tr>
<tr>
<td>1996</td>
<td>1,320</td>
</tr>
<tr>
<td>1997</td>
<td>1,234</td>
</tr>
<tr>
<td>1998</td>
<td>1,105</td>
</tr>
</tbody>
</table>

Аналisis вкладов различных отраслей хозяйственной деятельности в ВВП республики показывает, что в последние годы в структуре ВВП республики устойчиво снижается доля сельского хозяйства. В то же время значительно выросла доля сферы услуг.
Основные показатели уровня жизни населения Кыргызской Республики в 2010 г. приведены в таблице 1.7.

Таблица 1.7. Показатели уровня жизни населения КР на конец 2010 г. в сравнении с 2005 г. Источники: Нацстатком, Всемирный банк

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Единица измерения</th>
<th>2005 г.</th>
<th>2010 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общехозяйственные</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ВВП номинальный*, в том числе:</td>
<td>млн. $2005</td>
<td>2459,9</td>
<td>3055,8</td>
</tr>
<tr>
<td>промышленность</td>
<td>% к ВВП</td>
<td>17,3</td>
<td>20,7</td>
</tr>
<tr>
<td>сельское хозяйство</td>
<td>% к ВВП</td>
<td>28,5</td>
<td>17,5</td>
</tr>
<tr>
<td>строительство</td>
<td>% к ВВП</td>
<td>2,7</td>
<td>5,5</td>
</tr>
<tr>
<td>торговля и общепит</td>
<td>% к ВВП</td>
<td>19,2</td>
<td>17,3</td>
</tr>
<tr>
<td>транспорт и связь</td>
<td>% к ВВП</td>
<td>6,6</td>
<td>8,6</td>
</tr>
<tr>
<td>прочие отрасли</td>
<td>% к ВВП</td>
<td>25,7</td>
<td>30,4</td>
</tr>
<tr>
<td>ВВП на душу населения</td>
<td>тыс. сом</td>
<td>20,2</td>
<td>42,4</td>
</tr>
<tr>
<td>Курс сома к доллару США (на конец года)</td>
<td>сом/US$</td>
<td>41,1</td>
<td>45,96</td>
</tr>
<tr>
<td>Импорт</td>
<td>млн. сом</td>
<td>45167,2</td>
<td>148597,9</td>
</tr>
<tr>
<td>Экспорт</td>
<td>млн. сом</td>
<td>27559,1</td>
<td>80632,1</td>
</tr>
</tbody>
</table>

Занятость населения

Численность занятого населения	тыс. человек	2077,1	2243,7
Уровень занятости трудоспособного населения	%	59,5	58,6
Уровень безработицы	%	8,1	8,4

Уровень жизни населения

Фактическое конечное потребление домашних хозяйств на душу населения	тыс. сом	18,8	39,5
Денежные доходы населения на душу населения	тыс. сом в год	11,5	29,9
Среднемесячная начисленная заработная плата одного работника	сом	2613	7189
Среднемесячный размер назначенной пенсии одного пенсионера с учетом компенсационных выплат	сом	775	2886
Глава 1. Национальные условия

Показатель

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Единица измерен.</th>
<th>2005 г.</th>
<th>2010 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина прожиточного минимума в среднем на душу населения, в том числе:</td>
<td>сот в месяц</td>
<td>1836,6</td>
<td>3502,7</td>
</tr>
<tr>
<td>Население трудоспособного возраста</td>
<td>сот в месяц</td>
<td>2127,8</td>
<td>3905,4</td>
</tr>
<tr>
<td>Население старше трудоспособного возраста</td>
<td>сот в месяц</td>
<td>1492,9</td>
<td>3146,9</td>
</tr>
<tr>
<td>Стоимость продовольственной корзины МПБ</td>
<td>сот в месяц</td>
<td>1336,9</td>
<td>2276,7</td>
</tr>
<tr>
<td>Коэффициент Джини (по доходам)</td>
<td></td>
<td>0,433</td>
<td>0,371</td>
</tr>
</tbody>
</table>

Наличие предметов длительного пользования в домашнем хозяйстве

<table>
<thead>
<tr>
<th>Наличие на 100 домохозяйств:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>телевизоров</td>
<td>штук</td>
<td>102</td>
</tr>
<tr>
<td>фотоаппаратов</td>
<td>штук</td>
<td>8</td>
</tr>
<tr>
<td>стиральных машин</td>
<td>штук</td>
<td>50</td>
</tr>
<tr>
<td>холодильников</td>
<td>штук</td>
<td>70</td>
</tr>
<tr>
<td>электропылесосов</td>
<td>штук</td>
<td>15</td>
</tr>
<tr>
<td>легковых автомобилей</td>
<td>штук</td>
<td>10</td>
</tr>
<tr>
<td>персональных компьютеров</td>
<td>штук</td>
<td>2</td>
</tr>
<tr>
<td>сотовых телефонов</td>
<td>штук</td>
<td>10</td>
</tr>
</tbody>
</table>

* - данные Всемирного банка

1.3.2. Сельское хозяйство

Основной вклад составляет продукция растениеводства и животноводства. Вклад в ВВП услуг в сельском хозяйстве наряду с вкладами услуг лесного хозяйства и охоты незначителен (рис. 1.26).

Сельское хозяйство является наиболее климатозависимой отраслью, и его продуктивность, особенно в сфере растениеводства, напрямую зависит от изменения климатических показателей года – суммы годовых осадков, их распределения по сезонам и увлажненности в вегетационный период. Значительное влияние на эффективность сельского хозяйства оказывают заморозки, засухи, град, смерчи и иные погодные явления (рис. 1.27).

![Рис. 1.26. Валовой выпуск продукции сельского хозяйства по отраслям за 1991-2010 гг. Источник: Нацстатком](image)
Вместе с тем динамика валовой продуктивности в целом отражает развитие отрасли: растениеводство и животноводство проявляют устойчивую тенденцию к росту.
Достаточно полное представление о сельскохозяйственной деятельности в республике дают данные о производстве основных видов продукции растениеводства (рис. 1.28) и животноводства (рис. 1.29).

В структуре общего объема производства сельхозпродукции доминирующий вклад вносят частные производители: крестьянские (фермерские) хозяйства – 61,5 % и личные подсобные хозяйства населения – 36 %. При этом в растениеводстве преобладает вклад крестьянских (фермерских) хозяйств, а в животноводстве - вклад личных подсобных хозяйств населения (рис. 1.30).
1.3.3. Обеспеченность продуктами питания

Среднее потребление продуктов питания на человека в КР за 1990-2010 гг. приведено на рис. 1.31.

Среднее суточное потребление продуктов питания населения по республике по энергетической ценности в 2010 г. (рис. 1.32) превышало норму ВОЗ по минимальной суточной потребности (2100 ккал в сутки). Однако, в таких областях, как Джала-Абадская (2225,8 ккал в сутки) и Ошская (2210,8 ккал в сутки), фактическое суточное потребление было ниже официально принятой нормы, а в Нарынской области (2051,7 ккал в сутки) – ниже нормы ВОЗ минимальной суточной потребности.

В целом обеспеченность республики продовольствием оценивается как достаточно благополучная. Дефицит собственных ресурсов зерновых может быть восполнен повышением урожайности (данные об урожайности, достигнутой в коллективных хозяйствах в недалеком прошлом, а также в развитых странах, показывают реальность этого пути) и коррекцией структуры посевов и потребления. Принятая в республике норма суточной энергетической потребности составляет 75 % от рекомендуемой нормы ВОЗ (3000 ккал в сутки).
1.3.4. Промышленность

С 2005 г. общий объем промышленного производства (в постоянных долларах США 2005 г.) увеличился с 2459,9 млн. до 3055,8 млн. в 2010 г. При этом доля промышленности в ВВП страны выросла с 17,3 % до 20,7 %. Наблюдается некоторое перераспределение объемов производства между отдельными отраслями.

Структура промышленного производства на 2010 г. приведена на рис.1.33.

Доля металлургии, в первую очередь за счет продукции золоторудного горно-обогатительного комбината «Кумтор оперейтинг компании», выросла с 38,4 % до 51,1 %. Доля энергетического сектора и пищевой промышленности незначительно снизилась. Доля высокотехнологичных производств: машин, электрического и электронного оборудования значительно упала с 4,8 % до 1,9 % и составляет менее 5 % от объема валового промышленного производства.

1.3.5. Транспорт

Физико-географические (горный рельеф, отсутствие судоходных рек) и экономические (неразвитость и относительно высокая стоимость авиаперевозок) условия Кыргызской Республики определяют доминирующую роль автомобильного транспорта во внутригосударственных перевозках. Объем перевозок, осуществляемых водным транспортом на озере Иссык-Куль, незначителен. В структуре внешних перевозок с 2005 г. ситуация не изменилась: основные объемы перевозок в северном направлении (Евразийский экономический союз, Европа) производятся железнодорожным транспортом, в юго-восточном направлении (Китай) – автомобильным. Воздушный транспорт играет заметную роль только в перевозке пассажиров.

Протяженность железных дорог составляет 423,9 км. Большая их часть проходит по Чуйской области и соединяет с Казахстаном. Отдельные короткие ветки проходят по территории Ошской, Джала-Абадской и Баткенской областей.
Динамика грузооборота и пассажирооборота приведена на рис. 1.34 и 1.35. Здесь не учитывается личный автотранSPORT, статистика по которому отсутствует.

В 2010 г. по сравнению с 2005 г. из всего грузооборота республики на автотранспорте доля Чуйской области и г.Бишкек возросла с 46 % до 56 %, а пассажирооборот за это время изменился незначительно (рис. 1.36).
Глава 1. Национальные условия

Рис. 1.36. Распределение внутренних перевозок грузов и пассажиров автотранспортом по административным территориям в 2010 г. Источник: Нацстатком
Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов
2.1. Общие сведения

2.1.1. Методология

Для выбора метода оценки эмиссий и абсорбции, процедур обеспечения качества и контроля качества, а также количественной оценки неопределенностей полученных результатов инвентаризации антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов (далее инвентаризация) использованы следующие руководства:

- Пересмотренные руководящие принципы национальных инвентаризаций МГЭИК 1996 г.;
- Руководящие указания по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов МГЭИК 2000 г.;
- Руководящие указания МГЭИК по эффективной практике для землепользования, изменения землепользования и лесного хозяйства 2003 г.

Кроме того, использовались национальные нормативные, методические документы по инвентаризации, расчету удельных эмиссий, материалы и результаты предыдущих исследований, полученные в рамках Первого и Второго Национальных сообщений Кыргызской Республики по Рамочной конвенции об изменении климата. В качестве рекомендательных документов использовались «Руководящие принципы национальных инвентаризаций парниковых газов, МГЭИК, 2006 г.» и другие источники, такие как «EMEP/EEA руководство по инвентаризации эмиссий загрязнителей воздуха, 2013 г.»

2.1.2. Правовое и институциональное обеспечение

Правовые рамки проведения инвентаризации определяют постановление Правительства Кыргызской Республики «О мерах по выполнению Рамочной конвенции ООН об изменении климата» и Закон Кыргызской Республики «О государственном регулировании и политике в области эмиссии и поглощения парниковых газов».

В соответствии с постановлением Правительства Кыргызской Республики «О Координационной комиссии по проблемам изменения климата» основным руководящим органом является ККПИК, на которую возложено выполнение всех обязательств по РКИК ООН, в том числе и проведение инвентаризации. Рабочим органом ККПИК на постоянной основе является ГАООСЛХ, в задачи которого входят организационно-техническое, информационно-аналитическое обеспечение деятельности ККПИК и осуществление контроля выполнения ее решений.

2.1.3. Роль участвующих в проведении инвентаризации организаций

Общее руководство проведением инвентаризации осуществляло ГАООСЛХ, которое является рабочим органом ККПИК. Для целей технического обеспечения деятельности рабочего органа ККПИК привлечен Центр по изменению климата, который является непосредственным исполнителем проведения инвентаризации. Основную исходную информацию для проведения инвентаризации представили следующие организации:

- Государственное агентство охраны окружающей среды и лесного хозяйства при Правительстве Кыргызской Республики;
- Министерство энергетики и промышленности Кыргызской Республики;
- Национальный статистический комитет Кыргызской Республики;
- Департамент водного хозяйства и мелиорации Министерства сельского хозяйства и мелиорации Кыргызской Республики;
- Кыргызский национальный аграрный университет им. К.И.Скрябина;
- Государственное предприятие «Государственный проектный институт по землеустройству «Кыргызгипрозем» Министерства сельского хозяйства и мелиорации Кыргызской Республики;
- Республиканская почвенно-агрохимическая станция при Министерстве сельского хозяйства и мелиорации Кыргызской Республики;
- Государственная регистрационная служба при Правительстве Кыргызской Республики;
- Сельская консультационная служба Кыргызской Республики.
При отсутствии или недоступности национальной информации использовались международные базы данных (Продовольственной и сельскохозяйственной организаций ООН, Всемирного банка и др.). Использованная методология, предпосылки, источники информации и результаты инвентаризации обсуждались на регулярных встречах с участием представителей заинтересованных министерств и ведомств, образовательных и научных учреждений, неправительственных организаций и бизнес сектора. В случае невосполнимых пропусков в исходных данных использовалась интерполяция. Алгоритмы интерполяции описаны в соответствующих разделах.

Использованная информация состоит из трех основных групп:

- данные о деятельности – в основном это объемы потребления топлива и объемы выпускаемой продукции;
- коэффициенты эмиссий и стоков для ПГ и газов-прекурсоров;
- показатели, специфичные для каждого источника или стока, такие как морфологический состав отходов и т.д.

Данные о деятельности основаны на государственной и/или ведомственной статистике, а также отчетности предприятий. Показатели этой группы содержатся в официально опубликованных источниках или собирались по запросам из министерств, ведомств и организаций. В качестве коэффициентов эмиссии использованы:

- значения, приведенные в Руководствах МГЭИК;
- значения, приведенные в прочих международных руководствах, например, «EMEP/EEA руководство по инвентаризации эмиссий загрязнителей воздуха 2013 г.» (в секторе «Промышленные процессы»);
- значения, используемые в национальной системе инвентаризации и нормирования эмиссий загрязняющих веществ в окружающую среду или полученные в результате ранее проведенных исследований (в секторах – «Промышленные процессы» и «Землепользование, изменение землепользования и лесное хозяйство»).

Специфические показатели принимались, согласно Руководствам МГЭИК, по имеющимся национальным данным или определялись расчетным путем через косвенные показатели с использованием результатов научно-исследовательских работ. При отсутствии других возможности показатели определялись методом экспертных оценок.

2.1.4. Временные рамки

Инвентаризация проведена за период 2006–2010 гг. Дополнительно проведены перерасчеты за период 1990–2005 гг. Необходимость перерасчетов вытекала из следующего:

- уточнение ранее опубликованных исходных данных за предшествующие периоды, что является обычной практикой многих организаций, например, Нацстаткома;
- изменения исходных предпосылок расчета, принятые на обсуждении в ходе начальной встречи в рамках проведения инвентаризации, такие как:
 - для угля использовать укрупненные коэффициенты эмиссии с двумя градациями (каменный и лигнит). Фактически в республике используется также антрацит, но его использование незначительно (например, в 2010 г. менее 1 %) и официально статистическими органами не учитывается;
 - для представления результатов инвентаризации использовать категорию источников из рекомендуемых руководствами МГЭИК, для которых в стране имеется информация, что повлекло за собой увеличение категорий в секторе «Энергетика» по сравнению с предыдущей инвентаризацией;
 - для расчетов эмиссий использовать преимущественно официально опубликованные исходные данные, даже в слуцк значительного расходования с неофициальными оценками, например, для автотранспортного топлива;
 - использовать для расчета эмиссий и стоков в секторе «Землепользование, изменение землепользования и лесное хозяйство» результаты Национальной инвентаризации лесов 2010 г.;
- необходимость проверки ранее проведенных расчетов и обеспечение сопоставимости результатов в случае изменения системы учета и методологии расчетов.
2.1.5. Полнота охвата

Инвентаризация проводилась для следующих парниковых газов:
- диоксид углерода (CO₂);
- метан (CH₄);
- закись азота (N₂O);
- гидрофторуглероды (ГФУ);
- перфторуглероды (ПФУ);
- гексафторид серы (SF₆).

и следующих газов-предшественников:
- оксид углерода (CO);
- оксиды азота (NOₓ);
- неметановые летучие органические соединения (НМЛОС);
- диоксид серы (SO₂).

В результате анализа исходной информации было установлено, что эмиссия перфторуглеродов и гексафторида серы в республике практически отсутствует и далее эти газы не рассматриваются.

Для пересчета эмиссий парниковых газов в эквивалент диоксида углерода (CO₂-экв.) использовались потенциалы глобального потепления, приведенные во Втором оценочном докладе МГЭИК 1995 г.

<table>
<thead>
<tr>
<th>Наименование ПГ</th>
<th>Формула</th>
<th>ПГП для периода 100 лет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода</td>
<td>CO₂</td>
<td>1</td>
</tr>
<tr>
<td>Метан</td>
<td>CH₄</td>
<td>21</td>
</tr>
<tr>
<td>Закись азота</td>
<td>N₂O</td>
<td>310</td>
</tr>
<tr>
<td>Гидрофторуглерод ГФУ-134а</td>
<td>CH₂FCF₃</td>
<td>1300</td>
</tr>
</tbody>
</table>

| Таблица 2.1. Потенциалы глобального потепления ПГ, использованные в настоящей инвентаризации |

Инвентаризация проводилась как в целом по КР, так и в разрезе всех следующих основных административных единиц:
- Баткенская область (после образования 12 октября 1999 г., официальная статистика ведется с 1999 г.);
- Джалал-Абадская область;
- Иссык-Кульская область;
- Нарынская область;
- Ошская область;
- Таласская область;
- Чуйская область.
- г. Бишкек;
- г. Ош (официальная статистика ведется с 2000 г.).

Инвентаризация охватывает следующие сектора и категории источников:

1 Энергетика
1A Сжигание топлива
1A1 Производство энергии
1A2 Промышленность и строительство
1A3 Транспорт
1A3a Гражданская авиация
1A3b Дорожный транспорт
1A3c Железные дороги
1A3d Водный транспорт
1A4 Другие секторы
1A4a Коммерческий/институциональный
1A4b Жилой
1A4c Сельское хозяйство
1B Летучие эмиссии от топлива
1B1 Твердое топливо
1B2 Нефть и природный газ
1B2a Нефть
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

2 Промышленные процессы
2A Минеральные вещества
2B Химическая промышленность
2C Производство металлов
2D Другое производство (продовольствие и напитки)
2F Потребление галогеноуглеродов и гексафторида серы
2G Взрывные работы

3 Использование растворителей

4 Сельское хозяйство
4A Внутренняя ферmentation
4B Системы хранения навоза
4C Выращивание риса
4D Сельскохозяйственные почвы
4F Сжигание сельскохозяйственных остатков

5 Землепользование, изменение землепользования и лесное хозяйство («ЗИЗЛХ»)
5A Запасы древесной биомассы
5B Эмиссия и сток из почв

6 Отходы
6A Захоронение ТБО
6B Очистка сточных вод
6B1 Промышленные воды
6B2 Бытовые и коммерческие воды

7 К сведению
7A Международный бункер (авиация)
7B Эмиссия CO₂ от биомассы

2.1.6. Обеспечение качества и контроль качества

Обеспечение качества и контроль качества осуществлялись в несколько стадий.
На первой стадии проверялась полнота, сопоставимость и согласованность исходных данных. Проверка осуществлялась непосредственно исполнителями, затем результаты проверки представлялись руководителю группы инвентаризации для повторной проверки.
На второй стадии руководителем группы инвентаризации проводился контроль правильности применения коэффициентов эмиссии и стоков, а также выбранных методологий расчета.
На третьей стадии выполнялась проверка результатов расчета, которая вначале выполнялась непосредственно исполнителем, затем руководителем группы.
На последней стадии исходные данные и полученные результаты рассматривались на семинарах с участием независимых (не участвующих в проведении инвентаризации) специалистов из конкретных секторов. Дополнительно проводился анализ исходных данных и полученных результатов на регулярных рабочих встречах с исполнителями всех разделов инвентаризации.
Основными элементами проверки являлись:
• контроль временных рядов с анализом любых резких изменений в характере временного ряда;
• сравнение полученных результатов с результатами предыдущих инвентаризаций, результатами международных организаций (в первую очередь, Международного энергетического агентства) и результатами инвентаризаций в других странах, особенно Центрально-Азиатского региона.
2.2. Тенденции эмиссий

2.2.1. Общие тенденции

С учетом временных рамок проведения настоящей инвентаризации рассматриваются результаты за период 1990–2010 гг. Результаты в соответствии с принятым охватом категорий источников в табличном виде приведены в метрических единицах (Гг) в приложении 1 и в Гг СО\textsubscript{2}-экв. в приложении 2.

По результатам проведения инвентаризации общая эмиссия ПГ в 2010 г. с учетом нетто-эмиссии в секторе «Землепользование, изменение землепользования и лесное хозяйство» составила 13046 Гг СО\textsubscript{2}-экв. по сравнению с 28712 Гг СО\textsubscript{2}-экв. в 1990 г., т.е. уменьшилась более чем в 2 раза (рис. 2.1).

После резкого падения с 1990 до 1995 г. далее суммарная эмиссия ПГ для КР медленно увеличивалась, но даже в 2008 – 2010 гг. была значительно меньше уровня значений 1990 г., что в некоторой степени отражает тенденции изменения макроэкономических показателей, а также изменение структуры экономики республики. Суммарная эмиссия ПГ в 2010 г. составляет только 45,4 % от эмиссии 1990 г. Уменьшение эмиссии в 2010 г. в сравнении с уровнем 1990 г. по отдельным секторам составило:

- «Энергетика» – 66,8 %;
- «Промышленные процессы» – 41,8 %;
- «Сельское хозяйство» – 23,1 %;
- «Отходы» – 14,6 %.

Несмотря на то, что доля сектора энергетики в суммарной эмиссии наиболее заметно уменьшилась по сравнению с другими секторами (с 73 % в 1990 г. до 54 % в 2010 г.), по-прежнему наибольшая эмиссия в 2010 г. наблюдалась в секторе «Энергетика» – 6981 Гг СО\textsubscript{2}-экв. (53,5 %), далее – «Сельское хозяйство» – 4376 Гг СО\textsubscript{2}-экв. (33,5 %), «Отходы» – 1034 Гг СО\textsubscript{2}-экв. (7,9 %), «Промышленные процессы» – 411 Гг СО\textsubscript{2}-экв. (3,2 %). Сравнительное распределение эмиссии ПГ по секторам в 1990 и 2010 гг.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

приведено на рис. 2.2. Поглощение в секторе «ЗИЗЛХ» составляет около 800 Гг СО2-экв., но эмиссия из почв также являлась значительной, что определяет небольшую нетто-эмиссию в секторе «ЗИЗЛХ».

В целом по результатам настоящей инвентаризации следует отметить существенное снижение общих эмиссий ПГ по сравнению с предыдущей инвентаризацией, в основном за счет сектора «Транспорт». Особенно это касается периода 1990–2000 гг. Снижение объясняется ориентацией в настоящей инвентаризации на предпочтительное использование официальных сведений. Ранее для оценки данных о деятельности в секторе «Транспорт» использовались экспертные оценки объемов неофициально ввозимого и произведенного на территории республики автотранспортного топлива. Однако эти оценки имеют значительную неопределенность вследствие естественного субъективизма. Поэтому было принято решение: в случае расхождения официальных и экспертных оценок использовать официальные данные и произвести пересчет общих эмиссий.

На фоне общего уменьшения эмиссии ПГ относительно 1990 г. следует отметить существенное изменение структуры эмиссий, которое объясняется наименьшим снижением эмиссий в сельском хозяйстве и обращении с отходами, что привело к значительному повышению доли эмиссий этих секторов.

Из общей эмиссии в 2010 г. эмиссия диоксида углерода составила 6922 Гг СО2-экв. (51,8 %), метана – 4713 Гг СО2-экв. (35,3 %), закиси азота – 16991 Гг СО2-экв. (12,7 %), ГФУ-134а – 28 Гг СО2-экв. (0,2 %). Поглощение диоксида углерода в 2010 г. составило – 804 Гг, а эмиссия из почв – 558 Гг СО2-экв. Эмиссия перфторуглеродов и гексафторида серы отсутствует.

Эмиссии всех ПГ, кроме ГФУ-134а, в 2010 г. уменьшились относительно 1990 г. Наибольшее уменьшение эмиссии (почти в 3 раза) произошло для диоксида углерода, что отразило существенное уменьшение вклада сектора «Энергетика». Использование ГФУ-134а получило развитие в охлаждающем оборудовании только в последнее десятилетие. Ранее в этом секторе использовались в основном озоноразрушающие вещества, эмиссия которых учитывается в рамках Монреальского протокола по веществам, разрушающим озоновый слой.
Одновременно с общим уменьшением эмиссии, заметно изменилась и структура эмиссии в 2010 г. сравнительно с 1990 г. Доля эмиссии диоксида углерода уменьшилась с, примерно, 2/3 до менее половины общей эмиссии. В результате доли эмиссии других газов выросли, несмотря на их абсолютное сокращение.

Для целей оценки вклада КР и сравнения с вкладом других стран в глобальные эмиссии оценен показатель удельных эмиссий ПГ на душу населения. Как видно из рис. 2.5, удельные эмиссии резко упали после 1990 г. и в последние годы можно отметить лишь незначительную тенденцию роста на достаточно низком уровне немногим более 2 т/чел. Для сравнения, эмиссии ПГ на душу населения в Казахстане в 2011 г. составили более 16,7 т/чел.

Также для целей сравнения с другими странами используются еще два показателя – эмиссия в кг СО₂-экв. на 1000 долларов ВВП и удельные эмиссии ПГ на единицу потребляемых первичных топливных ресурсов. Для обеспечения сопоставимости показателей за различные годы использованы 1000 долларов ВВП, приведенных к 2005 г. (постоянные доллары). Для ВВП использованы как абсолютные значения, так и значения с учетом паритета покупательной способности, который для развивающихся стран значительно изменяет удельную оценку за счет учета разницы ценовых уровней в различных странах и позволяет провести корректное сравнение показателей для стран с различным уровнем экономического развития. Аналогичные показатели для других стран регулярно публикуются Международным энергетическим агентством (по эмиссиям от сжигания ископаемого топлива).

Если тенденции для удельных эмиссий ПГ на душу населения и на единицу ВВП еще можно считать приемлемыми в соответствии с целями устойчивого развития, то для удельных эмиссий на 1 тнэ первичных топливных ресурсов следует отметить негативную тенденцию роста. Эта тенденция объясняется износом используемого оборудования в топливно-энергетическом секторе без своевременного обновления при относительно небольшом росте ВВП. Фактически, рис. 2.7 отражает негативную тенденцию эффективности использования топливных ресурсов за период 1990–2010 гг.
На рис. 2.8–2.18 приведены тенденции изменения структуры эмиссии по секторам и сравнительное распределение эмиссий в 1990 и 2010 гг. для ПГ и газов-прекурсоров. Для каждого вещества представлены только те секторы, в которых наблюдается эмиссия рассматриваемых газов.

Рис. 2.8. Тенденции изменения структуры эмиссии диоксида углерода (в других секторах эмиссия отсутствует)

Рис. 2.10. Тенденции изменения структуры эмиссии метана (в других секторах эмиссия отсутствует)

го уменьшения эмиссии в секторе «Энергетика» при значительном сокращении деятельности будут рассмотрены далее при анализе сектора. В результате, как видно из рис. 2.11, распределение эмиссий метана между секторами в 2010 г. относительно 1990 г. практически не изменилось.

Рис. 2.11. Сравнительное распределение эмиссий метана в 1990 и 2010 гг.

Эмиссия закиси азота происходит в четырех секторах – «Энергетика», «Сельское хозяйство», «ЗИЗЛХ» и «Отходы». В целом эмиссия закиси азота уменьшилась с 9,0 Гг в 1990 г. до 5,5 Гг в 2010 г. В секторе «Энергетика» эмиссия уменьшилась наиболее значительно с 0,2 Гг в 1990 г. до 0,07 Гг в 2010 г., а в секторах «ЗИЗЛХ» и «Отходы» даже несколько увеличилась в 2010 г. по сравнению с 1990 г. («ЗИЗЛХ» с 0,0004 Гг в 1990 г. до 0,0005 Гг в 2010 г., а «Отходы» с 0,296 Гг в 1990 г. до 0,305 Гг в 2010 г.). Однако вклад этих секторов незначителен в общие эмиссии закиси азота. Учитывая, что основной вклад в эмиссии закиси азота вносят сектор «Сельское хозяйство» (более 90 %, как показано на рис. 2.13), общее сокращение эмиссий закиси азота относительно 1990 г. оказалось меньшим, чем, например, для диоксида углерода. Эта ситуация является следствием того, что экономический спад после 1990 г. затронул сектор «Сельское хозяйство» в наименьшей степени. Распределение эмиссий по секторам в 1990 и 2010 гг. практически не изменилось.

Рис. 2.12. Тенденции изменения структуры эмиссий закиси азота (в других секторах эмиссия отсутствует)

Рис. 2.13. Сравнительное распределение эмиссии закиси азота в 1990 и 2010 гг.
Эмиссия оксидов азота наблюдается в четырех секторах – «Энергетика», «Промышленные процессы», «Сельское хозяйство» и «ЗИЗЛХ». Однако на протяжении всего периода инвентаризации 1990 – 2010 гг. более 99 % эмиссия закиси азота определяет сектор «Энергетика». Поэтому тенденции уменьшения общей эмиссии оксидов азота (с 78,7 Гг в 1990 г. до 31,7 Гг в 2010 г.) в значительной степени определяются тенденциями сектора «Энергетика». Несколько меньшее сокращение эмиссии оксидов азота в 2010 г. по сравнению с 1990 г. (на 60 %) относительно аналогичного уменьшения эмиссии диоксида углерода (на 70 %) объясняется структурными изменениями в секторе «Энергетика».

Эмиссия оксида углерода наблюдается в трех секторах – «Энергетика», «Промышленные процессы» и «Сельское хозяйство». Однако, аналогично оксидам азота, за весь период 1990–2010 гг. около 97% эмиссия оксида углерода определяет сектор «Энергетика». Поэтому тенденции уменьшения общей эмиссии оксида углерода (с 386,3 Гг в 1990 г. до 211,2 Гг в 2010 г.) практически полностью определяются тенденциями сектора «Энергетика». Меньшее сокращение эмиссии оксида углерода в 2010 г. по сравнению с 1990 г. (на 46 %) относительно аналогичного уменьшения эмиссии диоксида углерода также объясняется структурными изменениями в секторе «Энергетика».

Эмиссия диоксида серы происходит в двух секторах — «Энергетика» и «Промышленные процессы», но основной вклад вносит сектор «Энергетика» от 97,8 % в 1990 г. до 98,3 % в 2010 г. По очевидным причинам, тенденции изменения эмиссии диоксида серы практически полностью повторяют тенденции изменения эмиссии диоксида углерода. Общие эмиссии диоксида серы сократились практически в три раза с 92,6 Гг в 1990 г. до 30,6 Гг в 2010 г. Сокращение эмиссии в секторе «Промышленные процессы» было даже более значительным — с 2,02 Гг в 1990 г. до 0,52 Гг в 2010 г., т.е. почти в 4 раз.
В основном эмиссии газов-прекурсоров (кроме НМЛОС) происходили в секторе «Энергетика» в процессах сжигания ископаемого топлива. Поэтому понятно, что тенденции изменения эмиссии для оксидов азота, оксида углерода и диоксида серы практически повторяют тенденцию изменения эмиссии диоксида углерода. Доля сектора «Энергетика» для газов-прекурсоров составляет от 98,25 до 99,0 % (кроме НМЛОС), незначительно изменяясь по годам, поэтому графическая иллюстрация распределения для них не приводится.

В целом, за период инвентаризации, эмиссия газов-прекурсоров уменьшилась примерно в два раза, с 637,4 Гг в 1990 г. до 314,8 Гг в 2010 г. При этом вклад оксидов азота уменьшился с 12,3 % в 1990 г. до 10,06 % в 2010 г., оксида углерода увеличился с 60,6% в 1990 г. до 67,2% в 2010 г., НМЛОС немного увеличился с 12,5 % в 1990 г. до 13,0 % в 2010 г., диоксида серы уменьшился с 14,5 % в 1990 г. до 9,7 % в 2010 г. Структурные изменения эмиссии объясняются изменениями в структуре потребляющего топлива.

2.2.2. Сектор «Энергетика»

Сектор «Энергетика» учитывает эмиссии всех парниковых газов и газов-прекурсоров, возникающих при сжигании на стационарных и мобильных источниках, а также летучие эмиссии от всех видов топлива, независимо от характера использования (энергетическое и неэнергетическое).

Сектор включает в себя следующие категории источников:
1A «Сжигание топлива»;
1A1 «Производство энергии»;
1A2 «Промышленность и строительство»;
1A3 «Транспорт»;
1A3a «Гражданская авиация»; 1A3b «Дорожный транспорт»;
1A3c «Железные дороги»;
1A3d «Водный транспорт»;
1A4 «Другие секторы»;
1A4a «Коммерческий/институциональный»;
1A4b «Жилой»;
1A4c «Сельское хозяйство»;
1B «Летучие эмиссии от топлива»;
1B1 «Твердое топливо»;
1B2 «Нефть и природный газ»;
1B2a «Нефть»;
1B2b «Природный газ».

2.2.2.1. Исходные предпосылки

КР потребляет угли собственной добычи, а также импортирует из Республики Казахстан и Российской Федерации. В соответствии с характеристиками и объемом углей различных типов, добываемых в Республике Казахстан, по данным, приведенным в публикации [2.2], угли, импортируемые из Казахстана, отнесены к суббитуминозным каменным углам. Согласно информации Министерства энергетики и промышленности КР угли, импортируемые из Российской Федерации, также относятся к суббитуминозным каменным углам.

В соответствии со средней теплотворной способностью углей основных месторождений КР, определенной по справочнику [2.3], они относятся к каменным или бурым углам (лигниту). Для расчета эмиссий, как по базовому, так и по секторальному подходам использовались данные по ежегодному распределению местных углей на каменные и бурые. Каменные местные угли в последующем, по своим эмиссионным характеристикам, классифицируются как суббитуминозные угли, а бурые местные угли классифицируются как лигнит.

Для природного газа, который измеряется традиционно в м³, применен переводной коэффициент 1 млн. м³ = 33,70374 ТДж, с учетом переводных коэффициентов, используемых Нацстатком.

Из всех видов сжигаемых сельскохозяйственных остатков в наибольших объемах в качестве топлива используются остатки биомассы хлопка. В соответствии с информацией, приведенной в работе [2.4], для хлопка соотношение остатков сухой биомассы к продукции составляет 1,2–3. Для расчетов принимается среднее значение 2,1. Согласно имеющейся оценке (Заключение № ТНС 002-2013 от 31.01.2013), доля сжигаемых остатков хлопка составляет в среднем около 62 %.

Коэффициенты эмиссии для метана, закиси азота, оксидов азота, оксида углерода и неметановых летучих органических соединений приняты по таблицам 1-7 – 1-11 раздела 1.4.2 Справочного руководства МГЭИК, 1996.

Коэффициенты эмиссии для диоксида серы определялись по формуле:

$$EF = 2000 \cdot s \cdot (100 - r) \cdot (100 - n), \text{ кг SO}_2/т$$

где

- s – содержание серы в топливе. Расчет содержания серы в местных углях основан на оценке среднего взвешенного для содержания серы по действующим добывающим предприятиям (Источник: Перечень действующих лицензий по углю. Государственное агентство по геологии и минеральным ресурсам при Правительстве Кыргызской Республики, 12.04.2013) на основании сведений по отдельным месторождениям в справочнике [2.3];
- r – содержание серы в золе. Принято по «Пересмотренным руководящим принципам национальных инвентаризаций Межправительственной группы экспертов по изменению климата парниковых газов, т.3, МГЭИК, 1996», для каменного угля – 5 %, для бурого угля – 30 %;
- n – эффективность системы очистки.

Статьи официального статистического учета не полностью совпадают с делением секторов по Руководствам МГЭИК, поэтому для расчета эмиссий принято условное соответствие отдельных статей Топливно-энергетического баланса, выпускаемого Нацстатком и секторов инвентаризации по Руководствам МГЭИК, приведенное в таблице 2.2.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Таблица 2.2. Соответствие секторов по Руководствам МГЭИК и статьям Топливно-энергетического баланса Кыргызской Республики

<table>
<thead>
<tr>
<th>Сектор по Руководству МГЭИК</th>
<th>Статьи Топливно-энергетического баланса Кыргызской Республики</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А</td>
<td>«Сжигание топлива»</td>
</tr>
<tr>
<td>1А1</td>
<td>«Производство энергии»</td>
</tr>
<tr>
<td>1А2</td>
<td>«Промышленность и строительство»</td>
</tr>
<tr>
<td>1А3</td>
<td>«Транспорт»</td>
</tr>
<tr>
<td>1A3a</td>
<td>«Авиатранспорт»</td>
</tr>
<tr>
<td>1A3b</td>
<td>«Дорожный транспорт»</td>
</tr>
<tr>
<td>1A3c</td>
<td>«Железные дороги»</td>
</tr>
<tr>
<td>1A3d</td>
<td>«Водный транспорт»</td>
</tr>
<tr>
<td>1A4</td>
<td>«Другие секторы»</td>
</tr>
<tr>
<td>1A4a</td>
<td>«Коммерческий и институциональный сектор»</td>
</tr>
<tr>
<td>1A4b</td>
<td>«Жилой сектор»</td>
</tr>
<tr>
<td>1A5</td>
<td>«Другое»</td>
</tr>
</tbody>
</table>

Статьи в Топливно-энергетическом балансе даны по состоянию на выпуск баланса после 2004 года. До 2005 года баланс составлялся в другом формате.

Более детальное разбienie секторов согласно Руководствам МГЭИК невозможно в связи с несоответствием статей баланса международным требованиям и вытекающим из этого отсутствием необходимых данных.

Для некоторых видов топлива использован перенос в другие статьи распределения, так как принятый в национальном балансе отраслевой принцип отнесения расходов топлива не совпадает с принятыми Руководствами МГЭИК принципами разбиения по виду использования.

2.2.2.2. Тенденции потребления ископаемого топлива

В целом, тенденции изменения потребления топливно-энергетических ресурсов (кроме производства электроэнергии на ГЭС, которая не рассматривается как источник эмиссии ПГ) в КР, за период, начиная с 1990 г., во многом совпадают с тенденциями основных макроэкономических показателей. После резкого падения потребления с 20000 ТДж в 1990 г. до 5000 ТДж в 1995 г., далее наблюдается некоторая стабилизация на этом уровне (рис. 2.22).

Для различных видов топлива тенденции потребления несколько различаются. Потребление природного газа последовательно уменьшается на всем рассматриваемом периоде времени (1990–2010гг.), тогда как потребление твердых и жидких видов топлива, после резкого падения к 1995 г., затем медленно, но последовательно возрастает. Если в 1990 г. доли жидкого, твердого топлива и
природного газа составляли 37,8 %, 43,0 % и 19,2 %, соответственно, то в 2010 г. доли составляли 45,3 %, 46,9 % и 7,8 %, соответственно.
Если потребление жидкого и твердого топлива в 2010 г. по сравнению с 1990 г. уменьшилось при мерно в 3 раза, то потребление природного газа уменьшилось за этот же период более чем в 8 раз. По оценкам национальных экспертов, существует значительная вероятность того, что фактическое потребление жидкых видов топлива после 1990 года было несколько выше, чем официальное, за счет неофициального ввоза и производства на территории КР. В наибольшей степени расхождение вероятно в период 1990 – 2000 гг.

За период инвентаризации произошли существенные изменения в наличии топливно-энергетических ресурсов (рис. 2.23), которые, с точки зрения обеспечения энергетической безопасности, являются положительными. На фоне общего снижения объема используемых ресурсов произошло значительное снижение импорта за счет увеличения собственной добычи (производства). Доля импорта ресурсов уменьшилась с 59 % в 1990 г. до 31 % в 2010 г. Замещение импорта произошло за счет увеличения собственной добычи (производства) ресурсов с 16 % до 42 % и производства электроэнергии, ее доля возросла с 18 % в 1990 г. до 31 % в 2010 г.

Распределение топливно-энергетических ресурсов также существенно изменилось (рис. 2.24). Произошло уменьшение экспорта с 21 % в 1990 г. до 9 % в 2010 г. и увеличение затрат на транспорт, на коммунальные и культурно-бытовые нужды и отпуск населению. Значительно увеличились потери с 3 % в 1990 г. до 16 % в 2010 г. На рис. 2.25 представлены тенденции изменения объемов импорта и собственной добычи (производства) основных топливно-энергетических ресурсов, которые фактически отражают изменения в обеспечении энергетической безопасности страны.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Рис. 2.25. Тенденции импорта и собственной добычи (производства) основных топливо-энергетических ресурсов (для авиационного керосина приведен только импорт, так как собственное производство отсутствует). Источник: Нацстатком
2.2.2.3. Базовый подход
Оценка эмиссий CO₂ по базовому подходу за период 1990–2010 гг. проведена в соответствии с Руководящими принципами МГЭИК. Основные источники эмиссии ПГ по базовому подходу (Reference) – сжигание каменного (полубитуминозного) угля, лигнита, кокса, природного газа, сжиженного природного газа, нефти и нефтепродуктов, биомассы. Определение потребления по видам топлива для базового подхода производилась на основании следующих данных:

- объемы добычи первичных видов топлива (производство вторичных видов топлива не учитывается);
- объемы импортированных первичных и вторичных видов топлива;
- объемы экспортированных первичных и вторичных видов топлива;
- объемы топлива международного транспорта (бункер);
- нетто изменение топливных запасов (разница между остатками топлива на конец и начало года).

Нацстатком учитывает все эти показатели в регулярной отчетности. Однако, для угля раздельный учет показателей по типам (каменный и лигнит) не ведется. С 2005 г. ведется раздельный учет только для местных и импортированных углей, без деления на каменный и лигнит. По типам углей раздельно ведется только фрагментарный ведомственный учет.

Расчет по базовому подходу не является необходимым элементом инвентаризации, так как его результаты не входят в суммарные таблицы эмиссий и стоков парниковых газов. Базовый подход необходим для проверки результатов и выявления допущенных неточностей на последующих уровнях.

Во-первых, результаты расчетов по базовому подходу являются основанием для проверки при сравнении с оценками Международного энергетического агентства для КР (рис. 2.26), которые выполняются для сектора сжигания ископаемого топлива, что позволяет выявить ключевые расхождения в методологии расчетов. Так как сектор сжигания ископаемого топлива составляет обычно большую часть всех эмиссий ПГ в стране, то эта проверка позволяет выявить основные отклонения в проведении инвентаризации, в целом. Отклонения невелики, за исключением периода 1990–1995 гг. Причиной является отсутствие топливно-энергетического баланса за эти годы, что вынудило использовать линейную интерполяцию для пропущенных значений.

Во-вторых, результаты расчетов эмиссии по базовому подходу являются основанием для проверки при сравнении с подходом по категориям источников (Source category), что позволяет устранить неточности, связанные с двойным учетом или недоучетом для отдельных видов сжигаемого топлива в секторе «Энергетика».

Сравнение оценок эмиссии базового подхода с расчетами по категориям источников, позволило устранить некоторые неточности и, в итоге, привело к вполне удовлетворительному результату – средняя ошибка составила около 4 %.

2.2.2.4. Подход по категориям источников

Для оценки эмиссии ПГ с использованием подхода по категориям источников, в основном, использовался метод МГЭИК «Ряд 1» с коэффициентами эмиссии по умолчанию. В расчетах использованы коэффициенты эмиссии, аналогичные использованным коэффициентам в базовом подходе.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Эмиссии прочих, кроме СО₂, газов при сжигании топлива рассчитаны также по категориям источников с использованием «Ряда 1» и коэффициентов по умолчанию, определенных Руководствами МГЭИК.

Данные расчетов эмиссии ПГ для подхода по категориям источников представляют собой данные о количестве и виде сожженного топлива по видам экономической деятельности в КР.

2.2.2.4.1. Сектор «Энергетика» в целом

Тенденции эмиссий ПГ по отдельным категориям источников в секторе «Энергетика» приведены на рис. 2.27.

Доля эмиссии ПГ категории «Производство энергии» составляла в 1990 г. 39 %, затем к 1997 г. поднялась до 51 %, далее последовательно уменьшилась и к 2010 г. составила 21 %. Доля эмиссий категории «Промышленность и строительство» составляла в 1990 г. 8 %, к 2000 г. увеличилась до 9 %, затем уменьшилась к 2010 г. до 6 %.

Доля эмиссий категории «Транспорт» последовательно росла за весь рассматриваемый период с 15 % в 1990 г. до 38 % к 2010 г. Доля эмиссий категории «Другие секторы» составляла в 1990 г. 33,5 %, затем уменьшилась к 1997 г. до 16 %, с последующим ростом к 2010 г. до 23 %. Эмиссии категории «Летучие эмиссии от топлива» в 1990 г. составляли 4,5 % от общих эмиссий и довольно долгое время существенно не изменились, но после 2000 г. наблюдался резкий рост и в 2005 г. эмиссии достигли своего максимума – 24,5 %, затем уменьшившись к 2010 г. до 11 %. В итоге категория «Транспорт» в 2010 г. является категорией с наибольшими эмиссиями, тогда как в 1990 г. наибольшие эмиссии приходились на категорию «Производство энергии».

Рис. 2.27. Общие тенденции эмиссий ПГ сектора «Энергетика»

Рис. 2.28. Изменение распределения эмиссии ПГ в секторе «Энергетика»
В секторе «Энергетика» происходила эмиссия трех ПГ (рис. 2.29), но основной вклад вносит эмиссия диоксида углерода. При уменьшении абсолютного объема эмиссий по всем ПГ, произошло некоторое изменение распределения по отдельным газам. Несколько уменьшилась доля эмиссии диоксида углерода в общей эмиссии сектора «Энергетика» с 94,1 % в 1990 г. до 85,7 % в 2010 г. Доля эмиссии метана увеличилась с 5,6 % в 1990 г. до 25,5 % в 2005 г., затем снизилась до 14,0 % в 2010 г. Доля эмиссии закиси азота увеличилась с 0,29 % в 1990 г. до 0,32 % в 2010 г.

Тенденции эмиссий газов-прекурсоров сектора «Энергетика», представленные на рис. 2.30, по понятной причине, во многом совпадают с тенденциями эмиссий ПГ, но общее сокращение суммарной эмиссии было не таким значительным как для ПГ. Суммарная эмиссия газов-прекурсоров в 2010 г. составила 55,1 % от эмиссии в 1990 г. При существенном общем уменьшении эмиссий, их распределение по отдельным категориям источников изменилось незначительно.

Доля эмиссий газов-прекурсоров категории «Производство энергии» составляла в 1990 г. 9,6 %, а к 2001 г. поднялась до 12,5 %, далее последовательно уменьшалась и в 2010 г. составила 6,2 %. Доля эмиссий категории «Промышленность и строительство» составляла в 1990 г. 3,3 %, затем уменьшилась...
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

...лась к 2010 г. до 2,4 %. Доля эмиссий категории «Транспорт» последовательно росла за весь рассматриваемый период с 54,0 % в 1990 г. до 72,5 % к 2010 г. Доля эмиссий категории «Другие секторы» составляла в 1990 г. 36,4 %, затем уменьшилась к 2010 г. до 21,3 %.

Тенденции изменения эмиссии по отдельным газам-прекурсорам представлены на рис. 2.32 и 2.33.

При уменьшении абсолютного объема эмиссий по всем газам, произошло некоторое изменение распределения эмиссий по отдельным газам. Незначительно уменьшилась доля эмиссий оксидов азота с 12,7 % в 1990 г. до 11,2 % в 2010 г. Доля эмиссий оксида углерода немного увеличилась – с 61,3 % в 1990 г. до 66,5 % в 2010 г. Эмиссия НМЛОС практически не изменилась – в 1990 г. она составляла 11,2 %, а в 2010 г. – 12,5 %. Доля эмиссий оксидов серы уменьшилась с 14,7 % в 1990 г. до 9,8 % в 2010 г.

2.2.2.4.2. Производство энергии

Из всех источников, которые обычно включает в себя категория «Производство энергии», в КР имеются только предприятия по производству тепловой и электрической энергии. В категории «Производство энергии» происходит эмиссия трех ПГ – диоксида углерода, метана и закиси азота. Тенденции эмиссии ПГ и газов-прекурсоров представлены на рис. 2.34 и рис. 2.35.

Основную массу эмиссий ПГ составляют диоксид углерода – около 99,6 %, метана - 0,035 % и закиси азота - 0,36 %. Распределение эмиссий по отдельным ПГ изменяется незначительно. Наблюдается некоторое снижение доли эмиссий метана и аналогичное увеличение доли закиси азота, происходящее за счет изменения состава сжигаемого топлива.
Для эмиссий газов-прекурсоров характерно преобладание эмиссий оксидов азота и диоксида серы, тогда как эмиссии оксида углерода и НМЛОС относительно невелики. За период 1990 – 2010 гг. на фоне общего сокращения эмиссий категории «Производство энергии» произошли некоторые изменения вкладов отдельных газов. Так доля эмиссии оксидов азота уменьшилась с 39,7 % в 1990 г. до 27,1 % в 2010 г., оксида углерода – с 3,57 % в 1990 г. до 2,00 % в 2010 г. и НМЛОС – с 0,96 % в 1990 г. до 0,52 % в 2010 г., а доля диоксида серы выросла с 55,7 % в 1990 г. до 70,4 % в 2010 г. Эти изменения объясняются увеличением использования в категории «Производство энергии» лигнита вместо каменного угля.

2.2.2.4.3. Промышленность и строительство
Категория «Промышленность и строительство» включает в себя источники выплавки чугуна и стали, производства цветных металлов, химическую промышленность, целлюлозно-бумажные и типографские производства, пищевую и табачную промышленность, минеральные производства, машиностроительные предприятия, горно-добывающие и текстильные предприятия и строительство. В связи с отсутствием официального учета, разбиение на указанные подкатегории не производилось. В категории «Промышленность и строительство» происходит эмиссия трех ПГ – диоксида углерода, метана и закиси азота. Тенденции эмиссии ПГ и газов-прекурсоров представлены на рис. 2.36 и 2.37.
Основную массу эмиссий ПГ составляет диоксид углерода – около 99,6%, вклады метана и закиси азота, как и их изменения незначительны (на 1990 г. около 0,16% и 0,21%, а на 2010 г. около 0,12% и 0,26%, соответственно).

Эмиссии газов-прекурсоров распределены по отдельным газам более равномерно, чем ПГ. За период 1990–2010 гг. на фоне общего сокращения (почти в три раза) эмиссии категории «Промышленность и строительство» произошли некоторые изменения вкладов отдельных газов. Доля эмиссии оксидов азота уменьшилась с 24,4% в 1990 г. до 22,0% в 2010 г., оксида углерода – с 6,23% в 1990 г. до 4,22% в 2010 г. и НМЛОС – с 40,7% в 1990 г. до 35,0% в 2010 г., а доля диоксида серы выросла с 28,6% в 1990 г. до 38,7% в 2010 г. за счет большего использования в категории лигнита вместо каменного угля.

2.2.2.4.4. Транспорт

В соответствии с Руководствами МГЭИК в категорию «Транспорт» входят все виды пассажирского и грузового транспорта, а также мотоциклы (при возможности) с дальнейшим разбиением на виды используемых катализаторов и по грузоподъемности для дорожного транспорта на легкий и тяжелый. Международный транспорт (для Кыргызской Республики это только гражданская авиация) выделяется отдельно в статью «7А Международный бункер». Полеты военной авиации в категорию «Транспорт» не входят и не учитывались.

В соответствии с национальными условиями (имеющейся системой учета топлива в топливно-энергетическом балансе) категория разбита на подкатегории:

- «Гражданская авиация»;
- «Дорожный транспорт»;
- «Железные дороги»;
- «Водный транспорт».

Более детальное разбиение согласно рекомендациям МГЭИК невозможно в связи с отсутствием исходных данных. Для категории «Транспорт» учтены как эмиссии основных парниковых газов, так и эмиссии газов-прекурсоров.

Категория «Транспорт» является основным источником эмиссий ПГ в секторе «Энергетика».
Эмиссии ПГ категории «Транспорт» после уменьшения более чем в три раза за период 1990–1995 гг., в последующем до 2006 г. колебались на уровне около 1000 Гг СО₂-экв., затем, начиная с 2006 г., наблюдался рост до уровня выше 2000 Гг СО₂-экв. Из рис. 2.38 очевидно, что в основном тенденция эмиссий ПГ определяются подкатегорией «Дорожный транспорт», вклад которой составлял в 1990 г. 92,5 %, а к 2010 г. даже увеличился до 99,0 %. Вклад других подкатегорий в общие эмиссии незначителен. Доля эмиссий подкатегории «Гражданская авиация» уменьшилась до 0,88 % в 2010 г. по сравнению с 1,5 % в 1990 г. Доля эмиссий подкатегории «Железные дороги» в 1990 г. составляла 5,78 %, а в 1990 г. – 0,08 %. Доля эмиссий подкатегории «Водный транспорт» была невелика в 1990 г. – 0,2 %, а к 2010 г. еще более уменьшилась – 0,01 %.

В основном, в категории «Транспорт» происходит эмиссия диоксида углерода около 99,3 % в течение всего рассматриваемого периода 1990 – 2010 гг. Вклад прочих ПГ незначителен. Доля эмиссии метана составляет около 0,43 %, а закиси азота около 0,27 %. Причем это распределение, практически, не изменилось, так как структура использованного топлива сохранилась, практически, без изменений.

2.2.2.4.5. Другие секторы

Категория «Другие секторы» в соответствии с национальными условиями разбита на подкатегории:
• «Коммерческий/институциональный»;
• «Жилой»;
• «Сельское хозяйство».

Подкатегория «Сельское хозяйство» включает в себя мобильные источники (например, транспортные средства и сельскохозяйственная техника), а также стационарные источники (например, насосы, сушильное оборудование и т.д.), используемые для сельскохозяйственных целей.

Для категории «Другие секторы» учтены эмиссии, как основных парниковых газов, так и газов-прекурсоров (рис. 2.39).

В результате произошедших изменений распределения ПГ по подкатегориям (рис. 2.40) доля эмиссии ПГ подкатегорией «Жилой» выросла до 76,5 % в 2010 г. по сравнению с 45,9 % в 1990 г. при уменьшении доли эмиссии подкатегорией «Коммерческий/институциональный» с 37,5 % в 1990 г. до 11,9 % в 2010 г. и «Сельское хозяйство» с 16,6 % в 1990 г. до 11,6 % в 2010 г.

Из парниковых газов в категории «Другие секторы» превалируют эмиссии диоксида углерода, доля которого составила в 1990 г. 96,7 % и несколько уменьшилась к 2010 г. до 94,6 % при увеличении доли метана с 2,9 % в 1990 г. до 4,9 % в 2010 г. и закиси азота с 0,42 % в 1990 г. до 0,52 % в 2010 г.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

2.2.2.4.6. Летучие эмиссии от топлива

Категория «Летучие эмиссии от топлива» включает все преднамеренные и непреднамеренные эмиссии ПГ от добычи, обращения и переработки, хранения и транспортировки топлива к месту конечного использования. Категория источников «Летучие эмиссии от топлива», в соответствии с национальными условиями, разбита на подкатегории:

- Твердое топливо;
- Нефть и природный газ.

Последняя подкатегория, в свою очередь, также разбита на две:

- Нефть;
- Природный газ.

Для категории «Летучие эмиссии от топлива», в соответствии с Руководствами МГЭИК, учитывается только эмиссия метана. Эмиссия газов-прекурсоров отсутствует (рис. 2.41).

Изменения эмиссии для категории «Летучие эмиссии от топлива» до 1999 г. коррелируют с объемами собственной добычи (для твердого топлива и нефти) и объемами потребления (для природного газа). Для подкатегорий «Твердое топливо» и «Нефть» подобная корреляция прослеживается и в последующие годы, тогда как эмиссия для подкатегории «Природный газ» резко возрастает после 1999 г. и достигает своего максимума в 2005 г. (1561 Гг СО₂-экв.), далее несколько снижается. В результате в 2010 г. доля подкатегории «Природный газ» является наибольшей в категории – 95 % (рис. 2.42).

Рост эмиссий подкатегории «Природный газ» объясняется значительным увеличением потерь природного газа при транспортировке и распределении, существенно превышающих значения в предыдущие годы для Кыргызской Республики и аналогичные показатели для других стран. Тенденции потерь природного газа приведены на рис. 2.43. Возможно, что не все потери природного газа относятся к категории технических, а часть из них является коммерческими потерями. К сожалению, объективная информация отсутствует. Необходимо в последующем при проведении инвентаризации ПГ уточнить распределение потерь по видам и их отнесение к конкретным секторам распределения.
2.2.2.5 Ключевые категории и источники
2.2.2.5.1 Ключевые категории по уровню эмиссии
В таблицах 2.3–2.5 приведены результаты определения ключевых категорий в категории «1А Сжигание топлива» по уровню эмиссии на основании Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов МГЭИК 2000 г. Из результатов, приведенных в таблицах 2.3–2.5, следует, что ключевыми категориями для диоксида углерода и закиси азота являются все подкатегории:
- «Транспорт»;
- «Другие секторы»;
- «Промышленность и строительство»;
- «Производство энергии».

Для метана:
- «Транспорт»;
- «Другие секторы».

Таблица 2.3. Определение ключевых категорий в категории «1А Сжигание топлива» для диоксида углерода

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гт</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3 Транспорт</td>
<td>2914,7</td>
<td>0,431</td>
<td>0,431</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1682,7</td>
<td>0,249</td>
<td>0,679</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1659,1</td>
<td>0,245</td>
<td>0,924</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>512,5</td>
<td>0,076</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>6768,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.4. Определение ключевых категорий в категории «1А Сжигание топлива» для метана

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гт</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А4 Другие секторы</td>
<td>3,462</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>0,439</td>
<td>0,111</td>
<td>0,986</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>0,029</td>
<td>0,007</td>
<td>0,994</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>0,024</td>
<td>0,006</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>3,954</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Таблица 2.5. Определение ключевых категорий в категории «1А Сжигание топлива» для закиси азота

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3 Транспорт</td>
<td>0,040</td>
<td>0,468</td>
<td>0,468</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>0,021</td>
<td>0,240</td>
<td>0,708</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>0,020</td>
<td>0,237</td>
<td>0,945</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>0,005</td>
<td>0,055</td>
<td>1,000</td>
</tr>
<tr>
<td>1А3 Другие секторы</td>
<td>0,086</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

В таблицах 2.6–2.8 приведены результаты определения ключевых подкатегорий по уровню эмиссий для категории «1А3 Транспорт».

Из результатов расчета следует, что для всех ПГ в ключевой подкатегории является «1А3в Дорожный транспорт», вносящий наиболее существенный вклад в общую эмиссию сектора.

Таблица 2.6. Определение ключевых подкатегорий в категории «1А3 Транспорт» для диоксида углерода

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>2112,3</td>
<td>0,990</td>
<td>0,990</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>18,4</td>
<td>0,009</td>
<td>0,999</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>1,7</td>
<td>0,001</td>
<td>1,000</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,2</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>2132,7</td>
<td>0,315</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.7. Определение ключевых подкатегорий в категории «1А3 Транспорт» для метана

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>0,43309</td>
<td>0,999</td>
<td>0,999</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>0,00014</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>0,00011</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,00002</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>0,43337</td>
<td>0,110</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.8. Определение ключевых подкатегорий в категории «1А3 Транспорт» для закиси азота

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>0,01772</td>
<td>0,968</td>
<td>0,968</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>0,00057</td>
<td>0,031</td>
<td>0,999</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>0,00001</td>
<td>0,001</td>
<td>1,000</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,00000</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>0,01830</td>
<td>0,212</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2.5.2. Ключевые категории по тенденциям

В таблицах 2.9–2.11 приведен расчет определения ключевых категорий в категории «1А Сжигание топлива» по тенденциям на основании Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов МГЭИК 2000 г. Из результатов расчета следует, что:

- для диоксида углерода ключевыми категориями являются «1А4 Другие секторы», «1А2 Промышленность и строительство» и «1А3 Транспорт»;
- для метана ключевыми категориями являются «1А4 Другие секторы», «1А1 Производство энергии» и «1А2 Промышленность и строительство»;
- для закиси азота ключевыми категориями являются все.

Таблица 2.9. Определение ключевых категорий в категории «1А Сжигание топлива» для диоксида углерода

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А4 Другие секторы</td>
<td>6866,3</td>
<td>512,5</td>
<td>0,792</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>1712,8</td>
<td>1682,7</td>
<td>0,477</td>
<td>30,090</td>
<td>80,090</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>3154,9</td>
<td>1659,1</td>
<td>0,253</td>
<td>15,997</td>
<td>96,087</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>8136,7</td>
<td>2914,7</td>
<td>0,062</td>
<td>3,913</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>19870,8</td>
<td>6768,9</td>
<td>1,584</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 2.10. Определение ключевых категорий в категории «1А Сжигание топлива» для метана

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А4 Другие секторы</td>
<td>8,928</td>
<td>0,024</td>
<td>2,242</td>
<td>46,108</td>
<td>46,108</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>0,177</td>
<td>3,462</td>
<td>2,222</td>
<td>45,707</td>
<td>91,815</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>0,132</td>
<td>0,439</td>
<td>0,254</td>
<td>5,228</td>
<td>97,043</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>0,645</td>
<td>0,029</td>
<td>0,144</td>
<td>2,957</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>9,882</td>
<td>3,954</td>
<td>4,862</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.11. Определение ключевых категорий в категории «1А Сжигание топлива» для закиси азота

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А4 Другие секторы</td>
<td>0,085</td>
<td>0,005</td>
<td>0,866</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>0,012</td>
<td>0,021</td>
<td>0,395</td>
<td>22,783</td>
<td>72,783</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>0,067</td>
<td>0,040</td>
<td>0,255</td>
<td>14,739</td>
<td>87,522</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>0,027</td>
<td>0,020</td>
<td>0,216</td>
<td>12,478</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>0,190</td>
<td>0,086</td>
<td>1,733</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

В таблицах 2.12–2.14 приведен расчет определения ключевых подкатегорий по тенденциям в категории «1А3 Транспорт». Из результатов расчета следует, что для всех газов ключевыми категориями являются «1А3а Гражданская авиация» и «1А3б Дорожный транспорт».

Таблица 2.12. Определение ключевых подкатегорий в категории 1А3 «Транспорт» для диоксида углерода

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3а Гражданская авиация</td>
<td>46,81</td>
<td>2112,33</td>
<td>1,443</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>2918,79</td>
<td>18,41</td>
<td>1,356</td>
<td>46,971</td>
<td>96,971</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>182,93</td>
<td>1,69</td>
<td>0,085</td>
<td>2,931</td>
<td>99,902</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>6,42</td>
<td>0,25</td>
<td>0,003</td>
<td>0,098</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>3154,94</td>
<td>2132,68</td>
<td>2,887</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.13. Определение ключевых подкатегорий в категории 1А3 «Транспорт» для метана

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3а Гражданская авиация</td>
<td>0,0003</td>
<td>0,4331</td>
<td>1,486</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>0,6314</td>
<td>0,0001</td>
<td>1,457</td>
<td>49,022</td>
<td>99,022</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>0,0123</td>
<td>0,0001</td>
<td>0,028</td>
<td>0,946</td>
<td>99,968</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,0004</td>
<td>0,0000</td>
<td>0,001</td>
<td>0,032</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>0,6445</td>
<td>0,4334</td>
<td>2,971</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.14. Определение ключевых подкатегорий в категории 1А3 «Транспорт» для закиси азота

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>1А3а Гражданская авиация</td>
<td>0,00132</td>
<td>0,01772</td>
<td>1,332</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>0,02368</td>
<td>0,00057</td>
<td>1,249</td>
<td>46,899</td>
<td>96,899</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>0,00148</td>
<td>0,00001</td>
<td>0,080</td>
<td>3,000</td>
<td>99,999</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,00005</td>
<td>0,00000</td>
<td>0,003</td>
<td>0,101</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td>0,02654</td>
<td>0,01830</td>
<td>2,663</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2.5.3. Ключевые источники в подкатегории «1А1 Производство энергии» по уровню эмиссии

В соответствии с критериями выбора ключевых источников согласно «Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов», МГЭИК, 2000 г. в качестве ключевого источника в секторе «Производство энергии» по всем газам определена ТЭЦ г. Бишкек, вклад которой в общие эмиссии по г. Бишкек и республике в целом по подкатегории «1А1 Производство энергии» приведен в таблице 2.15. Эмиссия ТЭЦ в 1990 г. составляла примерно половину общих эмиссий подкатегории по республике, тогда как в 2010 г. вклад ТЭЦ увеличился до 60 – 80 %. Увеличение вклада могло произойти как от сокращения эмиссии прочих
источников, так и от реорганизации источников, т.е. передачи в другие отраслевые министерства и ведомства. Практика Нацстаткома, ориентирующаяся на ведомственное распределение источников, а не на фактически выполняемые действия не позволяет уяснить ситуацию. При проведении следующей инвентаризации необходимо принять меры к прояснению ситуации.

Таблица 2.15. Определение параметров ключевого источника

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>NOₓ</th>
<th>CO</th>
<th>НМЛОС</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эмиссия ТЭЦ</td>
<td>4193,7</td>
<td>0,0777</td>
<td>0,0329</td>
<td>11,889</td>
<td>1,133</td>
<td>0,295</td>
<td>18,5</td>
</tr>
<tr>
<td>Эмиссия КР</td>
<td>8136,7</td>
<td>0,177</td>
<td>0,067</td>
<td>22,84</td>
<td>2,052</td>
<td>0,554</td>
<td>32,02</td>
</tr>
<tr>
<td>Доля в КР, %</td>
<td>51,54</td>
<td>43,89</td>
<td>48,95</td>
<td>52,04</td>
<td>55,22</td>
<td>53,21</td>
<td>57,78</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эмиссия ТЭЦ</td>
<td>1293,1</td>
<td>0,015</td>
<td>0,017</td>
<td>3,98</td>
<td>0,282</td>
<td>0,071</td>
<td>10,63</td>
</tr>
<tr>
<td>Эмиссия КР</td>
<td>1659,1</td>
<td>0,0242</td>
<td>0,02</td>
<td>4,97</td>
<td>0,3669</td>
<td>0,0949</td>
<td>12,93</td>
</tr>
<tr>
<td>Эмиссия Бишкека</td>
<td>1326,5</td>
<td>0,0159</td>
<td>0,017</td>
<td>4,05</td>
<td>0,2932</td>
<td>0,074</td>
<td>10,83</td>
</tr>
<tr>
<td>Доля в КР, %</td>
<td>77,9</td>
<td>62,36</td>
<td>83,11</td>
<td>80,089</td>
<td>76,915</td>
<td>74,859</td>
<td>82,19</td>
</tr>
<tr>
<td>Доля в Бишкеке, %</td>
<td>97,5</td>
<td>94,9</td>
<td>97,88</td>
<td>98,31</td>
<td>96,24</td>
<td>96,08</td>
<td>98,13</td>
</tr>
</tbody>
</table>

2.2.2.5.4. Неопределенность

Согласно таблице A1-1 Руководящих материалов МГЭИК, т. 1, в 1996 г. неопределенность для данных о деятельности и по эмиссионным коэффициентам по сектору «Энергетика» для диоксида углерода составляет 7 %. Суммарная неопределенность в этом случае составляет 9,9 %.

Для метана при сжигании ископаемых видов топлива (нефтепродукты, природной газ и уголь) неопределенности для данных о деятельности и по эмиссионным коэффициентам соответственно составят 55 % и 20 %. Суммарная неопределенность составит 58,5 %.

Для закиси азота при сжигании ископаемых видов топлива неопределенности для данных о деятельности и по эмиссионным коэффициентам составит около 50 %, согласно Второму Национальному сообщению Кыргызской Республики по Рамочной конвенции ООН об изменении климата.

Различия в величине неопределенности по различным категориям источников незначительны.

2.2.3. Сектор «Промышленные процессы»

В секторе «Промышленные процессы» учитываются эмиссии от промышленных процессов и использования продукции, исключая связанные со сжиганием с целью производства энергии, добычей, переработкой и транспортировкой топлива, которые уже учтены в секторе «Энергетика».

Сектор, в соответствии с руководствами МГЭИК и национальными условиями включает следующие категории источников:

- 2A «Минеральные вещества»;
- 2A1 «Производство цемента»;
- 2A2 «Производство известкового битума»;
- 2A6 «Производство асфальта для дорог»;
- 2A7 «Производство стекла листового»;
- 2A8 «Производство стекла не листового»;
- 2B «Химическая промышленность»;
- 2B5 «Производство пластических масс»;
- 2C «Производство металлов»;
- 2C1 «Производство чугуна и стали»;
- 2C2 «Производство ферросплавов»;
- 2C3 «Производство алюминия»;
- 2C4 «Производство сурымы»;
- 2C5 «Производство ртути»;
- 2C6 «Производство свинца»;
- 2C7 «Производство меди»;
- 2D «Другое производство» (продовольствие и напитки);
- 2F «Потребление галогеноуглеродов и гексафторида серы»;
- 2G «Взрывные работы».
Фактически, из всех ПГ в секторе «Промышленные процессы», учитываются только эмиссии диоксида углерода и гидрофторуглеродов, а именно ГФУ-134а (CH₂FCF₃). Эмиссии прочих парниковых газов незначительны и поэтому в результатах не представлены. Из газов-прекурсоров учитываются эмиссии оксида углерода, оксидов азота, НМЛОС и диоксида серы.

2.2.3.1. Исходные предпосылки
Основными источниками исходной информации, используемой для расчета эмиссий ПГ и газов-прекурсоров, являлись:
• данные Нацстата по произведению промышленной продукции в натуральных показателях, экспорту и импорту продукции и материалов в натуральных показателях и данные топливо-энергетического баланса Кыргызской Республики;
• действующие справочные, инструктивно-методические и нормативно-технические материалы;
• данные экологических паспортов отдельных промышленных предприятий КР.

В основном использованы рекомендованные руководствами МГЭИК коэффициенты эмиссии. Случаи использования национальных коэффициентов оговариваются отдельно для каждой категории источников.

Для расчета эмиссии при производстве цемента использованы следующие предположения:
• принято допущение о том, что клинкер содержит 65 % CaO и что 100 % CaO происходит от карбонатного материала;
• эмиссии от цементного производства составляют 2 % эмиссии от процесса при производстве клинкера;
• из всех типов производимых цементов, большую часть составляет производство портланд-цемента;
• клинкер составляет 95 % от общего объема цемента.

Для расчета эмиссии при производстве извести использованы следующие предположения:
• при отсутствии официальных национальных данных о применяемой технологии и составе используемого сырья, принято, что производится 85 % извести с высоким содержанием кальция и 15 % – дополнительной извести;
• для получения 1 т CaO необходимо кальцинирование 1,785 т CaCO₃, при этом выделяется 0,785 т CO₂ при условии полного кальцинирования;
• коэффициент эмиссии для кальцитовой извести принят – 0,75 т СО₂/т извести; для доломитовой извести – 0,77 т СО₂/т извести, согласно ВНС.

Для расчета эмиссии от использования нефтебитума, в качестве исходных данных использовались данные Топливо-энергетического баланса КР. Использованы данные объема нефтебитума, израсходованного в качестве материала на производство промышленной продукции (строительные, монтажные и буровые работы), нетопливные нужды, на работу транспорта, на коммунальные и культурно-бытовые нужды и отпущенного населению.

Объем нефтебитума был условно разделен на кровельный битум и битум, используемый в качестве асфальта для дорог, в пропорции 5 % к 95 %. Это же условное разделение нефтебитума было использовано при проведении инвентаризации в рамках ВНС.

Производство рубероида, битумных кровельных материалов включает в себя пропитывание или нанесение защитного слоя на строительный картон. Основные этапы процесса состоят из хранения битума, его окисления, пропитывания материала, нанесения покровного слоя с минеральной посыпкой. На основании информации в «EMEP/EEA руководству по инвентаризации эмиссий загрязнителей воздуха, 2013 г.» принято допущение, что все битумные смеси, используемые для производства кровельных материалов, являются окисленными. Коэффициенты эмиссий от использования нефтебитума приняты по Руководствам МГЭИК.

За последние годы существенно изменилась номенклатура изделий из стекла. Согласно официальным данным Нацстата, в настоящее время производится следующая продукция из стекла:
• стекло листовое, тыс. кв. метров;
• стекло термополировонное и стекло с матовой или полированной поверхностью (жидкое стекло), кг;
• стекло листовое формованное и обработанное, тыс. кв. метров;
• емкости для напитков из стекла, тыс. шт.;
• емкости из стекла для транспортирования и упаковывания фармацевтических товаров, тыс. шт.;
• изделия из стекла прочие, включая, изделия стеклянные технические, тыс. шт.

Учитывая изменяющуюся номенклатуру изделий из стекла, использованы следующие предположения:
• Данные по стеклу листовому и стеклу листовому формированному и обработанному объединены, при этом с целью перевода данных из квадратных метров в тонны применен метод, принятый в ВНС – один квадратный метр стекла толщиной 4 миллиметра весят 10 килограммов. Аналогично учитываются данные по стеклу термополированному и стеклу с матовой или полированной поверхностью;
• Данные по емкостям для напитков, для транспортирования и упаковывания товаров, изделия из стекла прочие, включая, изделия стеклянные технические, объединены и отнесены к стеклу тарному (доля изделий из стекла для транспортировки и прочие изделия составляют долю до 5%). Средний вес одного изделия, отнесенного к тарному стеклу, принят равным 0,4 кг (на основании взвешивания стандартных бутылок и банок);
• Перед проведением оценки эмиссий был выполнен пересчет производства листового стекла из квадратных метров в тонны. Средняя доля стеклобоя принята: по стеклу листовому – 0,175, по стеклу тарному – 0,45;
• По всем типам стекла коэффициент эмиссии CO₂ принят равным 0,21 кг CO₂/кг стекла.

Для категории химической промышленности учтено, что источниками эмиссии являются небольшие предприятия по обработке пластических масс, осуществляющие, в основном, операции по нагреву и формированию, что приводит к эмиссии только НМЛОС.

Металлургическая промышленность Республики представлена предприятиями по производству серы, ртути и золота. Также к этому сектору отнесены производства по вторичной плавке стального, чугунного и цветного лома. Предприятия по производству золота используют гидрометаллургические процессы, не приводящие к эмиссии парниковых газов и газов-прекурсоров, поэтому далее не рассматриваются.

Для расчета эмиссий от источников по производству серы, ртути, вторичной плавки металлов и взрывных работ использованы национальные коэффициенты эмиссии, определенные в ВНС на основании экологических паспортов по отдельным предприятиям.

В соответствии с номенклатурой продовольственной продукции Нацстатком исходные данные для расчета эмиссии в категории «Другое производство (продовольствие и напитки)» сгруппированы по одинаковым коэффициентам эмиссий НМУ:
• Хлеб свежий;
• Торты, изделия кондитерские и пирожные, сухари и печенье, изделия кондитерские и пирожные длительного хранения;
• Масло сливочное всех видов, сахар;
• Мясо и пищевые субпродукты крупного рогатого скота и домашней птицы;
• Крепкие напитки;
• Пиво, вино.

Для расчета эмиссий от категории «Другое производство (продовольствие и напитки)» использованы коэффициенты эмиссии из Руководств МГЭИК.

В КР отсутствует собственное производство галогеноуглеродов и гексафторида серы, они поставляются в страну только в оборудовании и эмиссии возможны при выходе оборудования из строя с последующей перезагрузкой. Гидрофторуглероды, а именно ГФУ-134а в КР используется в основном в качестве хладагента в охлаждающем оборудовании (стационарные и мобильные кондиционеры и холодильники). Перезагрузка хладагента осуществляется большим количеством (несколько сотен) мелких обслуживающих организаций и частных лиц. Учет ввоза ГФУ, необходимого для перезагрузки таможенными органами и прочими организациями практически не контролируется, также не учитывается количество ГФУ, попадающего в атмосферу при утилизации оборудования, вышедшего из строя. Поэтому для оценки эмиссии ГФУ использованы проекции, приведенные на сайте Агентства защиты окружающей среды США.

Гексафторид серы в КР используется в последние годы в основном в элегазовых выключателях типа F1 245 F3, S1 145, SF1, ВГП-110 и др. По информации пользователей, за период инвентаризации выхода выключателей из строя и перезагрузки гексафторида серы не зафиксировано, соответственно, национальное потребление и эмиссия отсутствуют.
Объемы использования и эмиссия перфторуглеродов в республике официально не контролируются и, по экспертным оценкам, незначительны, поэтому при проведении инвентаризации эмиссии ПФУ не учитывались.

2.2.3.2. Тенденции развития промышленности
Тенденция развития промышленности в КР за период проведения инвентаризации представлена на рис. 2.44.

Выделить тенденции развития сектора «Промышленные процессы» в понимании классификации, принятой для инвентаризации, сложно, так как национальная статистическая система построена несколько иначе. В объем промышленной продукции, представленной на рис. 2.44, включены также вклады от горнодобывающей промышленности, которые не учитываются в инвентаризации в связи с практическим отсутствием эмиссии ПГ, от производства и распределения электроэнергии, газа и воды, эмиссия которых учитывается в секторе «Энергетика», а также строительства. Прослеживается характерная для республики тенденция резкого падения с 1990 г. до 1995 г. с последующим ростом, который более значителен по сравнению с другими секторами и общей для республики тенденцией.

Несмотря на существенные структурные изменения в экономике республики, следует отметить сохраняющийся значительный вклад в нее промышленного сектора (рис. 2.44), а также незначительную тенденцию сокращения собственных эмиссий в промышленном секторе на единицу продукции (рис. 2.45). Для сравнения, в Казахстане на 2009 г. удельные эмиссии сектора составили 3,436 кг СО₂-экв./$2005, тогда как эмиссии от сжигания топлива существенно сократились в период 1990–1995 гг., а затем росли, хотя и с небольшой скоростью. В соответствии с происходящими структурными изменениями в экономике республики, а именно сокращение более энергоемкой машиностроительной промышленности при одновременном росте легкой промышленности, следовало бы ожидать более резкого уменьшения удельных эмиссий ПГ, а также продолжения сокращения удельных эмиссий от сжигания топлива после 1995 г. Следовательно, в секторе «Промышленные процессы» имеется значительный потенциал сокращения эмиссий ПГ за счет использования современных технологий и энергоэффективного оборудования.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

2.2.3.3. Сектор «Промышленные процессы» в целом

Тенденции эмиссий ПГ по отдельным категориям источников в секторе «Промышленные процессы» приведены на рис. 2.46.

Эмиссии ПГ сектора «Промышленные процессы» по сравнению с другими секторами уменьшились незначительно. После сокращения в период 1990 – 1995 гг., в последующие годы наблюдался резкий колебания эмиссии, достигающие значений 1990 г. Суммарную эмиссию сектора определяет в основном категория «Минеральные вещества», эмиссию которой в свою очередь определяет категория «Производство цемента». Фактически именно колебания объема производства цемента и приводят к изменениям эмиссии сектора. Несмотря на увеличение количества предприятий по выпуску цемента в республике с 2 в 1990 г. (из которых Кантский цементный завод производил более 90%), до 4 в 2010 г., по прежнему основной объем цемента производится на одном предприятии. Изменения распределения эмиссии ПГ по категориям источников не очень значительные:

- Минеральные вещества: 1990 г. – 98,3 %, 2010 г. – 92,7 %;
- Производство металлов: 1990 г. – 0,68 %, 2010 г. – 0,50 %;
- Потребление галогеноуглеродов и гексафторида серы: 1990 г. – 0 %, 2010 г. – 6,84 %;
- Взрывные работы: 1990 г. –1,00 %, 2010 г. – 0 %.

Тенденции эмиссий ПГ по отдельным газам в секторе «Промышленные процессы» по понятным причинам аналогичны тенденциям эмиссий ПГ по категориям источников (рис.2.47).
На рис. 2.48 и 2.49 представлены тенденции и распределение эмиссий газов-прекурсоров по отдельным категориям источников в секторе «Промышленные процессы». Наиболее резкие изменения наблюдаются для категории «Минеральные вещества», определяемые изменениями в объемах производства цемента. В категории «Химическая промышленность» эмиссия практически отсутствует. Для категории «Производство металлов» наблюдается последовательное снижение эмиссий в результате сокращения объемов производства и вторичной плавки металлов. Категория «Другое производство» имеет наибольшие эмиссии в 2010 г., но не за счет роста собственных эмиссий, а за счет снижения эмиссии в прочих категориях.

На рис. 2.50 и 2.51 представлены тенденции эмиссий газов-прекурсоров по отдельным газам в секторе «Промышленные процессы». Суммарная эмиссия газов-прекурсоров сектора сократилась с 12,18 Гг в 1990 г. до 2,00 Гг в 2010 г. Следует отметить, что после характерного резкого падения эмиссий в период с 1990 по 1995 гг. в последующие годы в отличие от других секторов, прослеживается тенденция дальнейшего сокращения эмиссий. При абсолютном сокращении объемов эмиссии всех газов-прекурсоров наиболее резко сократились эмиссии оксида углерода (в 51 раз) и оксидов азота (в 18 раз). Резкие изменения эмиссии НМЛОС также, как и для парниковых газов, происходили за...
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

счет категории “Минеральные вещества”, но уже не за счет изменений в производстве цемента, а за счет изменения объемов использования нефтебитума.

Рис. 2.51. Распределение эмиссий газов-прекурсоров по отдельным газам

2.2.3.4. Ключевые категории и источники
2.2.3.4.1. Ключевые категории по уровню эмиссии
В таблице 2.16 приведены результаты определения ключевых категорий в секторе “Промышленные процессы” по уровню эмиссии на основании Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов, МГЭИК, 2000. Из результатов, приведенных в таблице 2.16 следует, что ключевой категорией для диоксида углерода является категория “Минеральные вещества”.

<table>
<thead>
<tr>
<th>Категория источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A «Минеральные вещества»</td>
<td>381,042</td>
<td>0,994604</td>
<td>0,9946035</td>
</tr>
<tr>
<td>2C «Производство металлов»</td>
<td>2,067</td>
<td>0,005396</td>
<td>1</td>
</tr>
<tr>
<td>2B «Химическая промышленность»</td>
<td>0,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2D «Другое производство (продовольствие и напитки)»</td>
<td>0,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2G «Взрывные работы»</td>
<td>0,000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Для другого парникового газа ГФУ-134а ключевой категорией является категория “2F Потребление галогеноуглеродов и гексафторида серы”, так как эмиссия ГФУ происходит только в ней.
В таблицах 2.17 и 2.18 приведены результаты расчетов ключевых подкатегорий для категорий “Минеральные вещества” и “Производство металлов” для диоксида углерода. Из результатов расчета видно, что для категории “Минеральные вещества” вполне ожидаемой ключевой подкатегорией является “Производство цемента”, а для категории “Производство металлов” - подкатегории “Производство ртути” и “Производство сурымы”.

Таблица 2.17. Определение ключевых подкатегорий в категории “Минеральные вещества” для диоксида углерода

<table>
<thead>
<tr>
<th>Категория источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Производство цемента</td>
<td>375,292</td>
<td>0,9849</td>
<td>0,9849</td>
</tr>
<tr>
<td>Производство извести</td>
<td>4,650</td>
<td>0,0122</td>
<td>0,9971</td>
</tr>
<tr>
<td>Производство стекла неплистового</td>
<td>1,093</td>
<td>0,0029</td>
<td>0,99998</td>
</tr>
<tr>
<td>Производство стекла листового</td>
<td>0,007</td>
<td>0,00001</td>
<td>1,0000</td>
</tr>
<tr>
<td>Производство кровельного битума</td>
<td>0,000</td>
<td>0</td>
<td>1,0000</td>
</tr>
<tr>
<td>Производство асфальта для дорог</td>
<td>0,000</td>
<td>0</td>
<td>1,0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 2.16. Определение ключевых категорий в секторе “Промышленные процессы” для диоксида углерода</th>
</tr>
</thead>
</table>

Для другого парникового газа ГФУ-134а ключевой категорией является категория “2F Потребление галогеноуглеродов и гексафторида серы”, так как эмиссия ГФУ происходит только в ней.
В таблицах 2.17 и 2.18 приведены результаты расчетов ключевых подкатегорий для категорий “Минеральные вещества” и “Производство металлов” для диоксида углерода. Из результатов расчета видно, что для категории “Минеральные вещества” вполне ожидаемой ключевой подкатегорией является “Производство цемента”, а для категории “Производство металлов” - подкатегории “Производство ртути” и “Производство сурымы”.

Таблица 2.17. Определение ключевых подкатегорий в категории “Минеральные вещества” для диоксида углерода

<table>
<thead>
<tr>
<th>Категория источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Производство цемента</td>
<td>375,292</td>
<td>0,9849</td>
<td>0,9849</td>
</tr>
<tr>
<td>Производство извести</td>
<td>4,650</td>
<td>0,0122</td>
<td>0,9971</td>
</tr>
<tr>
<td>Производство стекла неплистового</td>
<td>1,093</td>
<td>0,0029</td>
<td>0,99998</td>
</tr>
<tr>
<td>Производство стекла листового</td>
<td>0,007</td>
<td>0,00001</td>
<td>1,0000</td>
</tr>
<tr>
<td>Производство кровельного битума</td>
<td>0,000</td>
<td>0</td>
<td>1,0000</td>
</tr>
<tr>
<td>Производство асфальта для дорог</td>
<td>0,000</td>
<td>0</td>
<td>1,0000</td>
</tr>
</tbody>
</table>
2.2.3.4.2. Ключевые категории по тенденциям

В таблицах 2.19–2.21 приведены результаты расчета определения ключевых категорий в секторе «Промышленные процессы» по тенденциям на основании Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов, МГЭИК, 2000. Из результатов расчета следует, что, учитывая имеющиеся данные для диоксида углерода, ключевыми категориями являются «Минеральные вещества» и «Производство металлов».

Для категорий «Минеральные вещества» и «Производство металлов» все категории источников, для которых имеются исходные данные для расчета, являются ключевыми по тенденциям.

2.2.3.4.3. Неопределенность

Согласно таблице А1-1 Руководящих материалов МГЭИК, т.1, 1996 неопределенность для данных о деятельности и эмиссионным коэффициентам сектора «Промышленные процессы» для диоксида углерода составляет 7 %. Суммарная неопределенность в этом случае составит 9,9 %.

2.2.4. Сектор «Использование растворителей»

Использование растворителей может сопровождаться испарением различных неметановых летучих органических соединений, которые впоследствии окисляются в атмосфере. Использование растворителей выделено в отдельную категорию, потому что характер этого источника требует несколько иного подхода к оценке эмиссий по сравнению с другими категориями источников, так как методология расчета эмиссий НМЛОС в секторе «Использование растворителей» не приводится в Руководствах МГЭИК.

Используемая методология оценки эмиссий неметановых летучих органических соединений представлена в Руководстве EMEP/EEA. В этом Руководстве подкатегория «Использование растворите-
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

телей и других продуктов» объединяет 6 позиций выборочной номенклатуры источников загрязнения воздуха (SNAP) и подразделяется на 5 подкатегорий. За исключением пятой подкатегории - «Использование других продуктов», которая относится к фторированным газам, закиси азота и аммиаку, подлежащим учету вне сектора «Использование растворителей», эти подкатегории следующие:

- SNAP 0601: использование красок;
- SNAP 0602: обезжиривание, химическая чистка и электроника;
- SNAP 0603: производство и переработка химических продуктов, включая переработку полиэфира, ПВХ, пен и каучука, производство красок, типографских красок, клеев и адгезивов, а также аппретировку тканей;
- SNAP 0604: другое использование растворителей и смежная деятельность, включая такие виды деятельности, как нанесение покрытий на стекловату и минеральную вату, полиграфическая промышленность, экстракция масел и жиров, использование клеев и адгезивов, защита древесины, бытовое использование растворителей (помимо красок) и антикоррозионные покрытия автомобилей и обеспарфумированное (в автомобилях).

2.2.4.1. Исходные предпосылки

К видам веществ, используемых в качестве растворителя, в первую очередь, относятся уайт-спирит и керосин (жидкий парафин). Уайт-спирит используется как растворитель для экстракции, чистки, обезжиривания, а также в аэрозолях, красках, антисептиках, полимерах, лаках и битумных продуктах. Обычно около 60% общего потребления уайт-спирита приходится на лаки и краски. Уайт-спирит – это наиболее широко распространенный растворитель в лакокрасочной промышленности.

Использование краски является главным источником эмиссии неметановых летучих органических соединений.

Можно выделить две основных категории эмиссий растворителей от использования красок:
1. Нанесение декоративного покрытия:
 - Применение красок в строительстве;
 - Использование красок для архитектурного применения строительными предприятиями и при изготовлении мебели;
 - Использование растворителей в быту для других целей.

2. Нанесение промышленного покрытия:
 - Применение красок в автомобилестроении;
 - Применение красок при ремонте автомашин;
 - Применение красок для рулонных покрытий;
 - Применение красок для судостроения;
 - Применение красок для древесины (использование морилки, креозота);
 - Другое промышленное применение краски (маркировка дорог и др.).

Нацистком не разделяет применение красок по направлениям.

Большая часть красок, используемых в промышленности и в быту содержит органические растворители, которые, для того чтобы краска высокошла или отвердела, необходимо удалить посредством испарения после нанесения краски на поверхность. Пока эти растворители не собраны, не восстановлены или не уничтожены, они считаются выделенными в атмосферу. Перед нанесением в краску могут быть добавлены некоторые органические растворители, которые также будут источниками выделения. Кроме того, растворитель используется при очистке оборудования для нанесения покрытий и также будет источниками выделения.

Пропорциональное содержание органических растворителей в краске может значительно различаться. Обычно краски на основе растворителя содержат примерно 50 % органических растворителей и 50 % твердых веществ. Кроме того, для большего разбавления краски, перед нанесением добавляется дополнительно растворитель. Краски с высоким содержанием твердых частиц и краски на водной основе содержат меньше органического растворителя (обычно менее 30 %), тогда как пошошные покрытия и жидкые покрытия без растворителя не содержат растворителя вообще.

Категория источников не является ключевой, поэтому для оценки эмиссий выбран Уровень 1 с использованием национальных коэффициентов, определенных ВНС.

Для расчета эмиссии НМЛОС, при использовании растворителей при покраске (в промышленности, повторной окраске транспортных средств, в бытовом использовании) принят средний коэффициент эмиссии от коэффициентов по видам использования из «EMEP/EEA руководства по инвентаризации эмиссий загрязнителей воздуха 2013 г.»
Таблица 2.22. Определение среднего коэффициента эмиссии для различных видов использования красок

<table>
<thead>
<tr>
<th>Источник эмиссий</th>
<th>Процент использования в КР</th>
<th>Коэффициент эмиссии, кг/тонну краски</th>
</tr>
</thead>
<tbody>
<tr>
<td>Другие виды промышленного применения красок</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>Повторное покрытие транспортных средств</td>
<td>10</td>
<td>280</td>
</tr>
<tr>
<td>Повторное покрытие транспортных средств</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>Применение красок: строительство и отделка зданий</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>Применение красок: бытовое использование</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>Средний взвешенный коэффициент</td>
<td></td>
<td>354,4</td>
</tr>
</tbody>
</table>

При использовании растворителей и красок в атмосферу выбрасывается 100 % растворителей, содержащихся в красках. Часть растворителя от 50 % до 80 % испаряется в первый час покраски, затем 20 % в течение следующего часа и далее 10 % в течение каждого часа из последующих трех часов. Эмиссии НМЛОС при испарении паров растворителей в КР происходят в основном при процессе покраски.

Согласно данным, приведенным в «EMEP/EEA руководство по инвентаризации эмиссий загрязнителей воздуха, 2013 г.», содержание растворителя в краске с обычным содержанием растворителя составляет от 40 % до 70 %.

2.2.4.2. Эмиссии сектора

Тенденция эмиссии НМЛОС от сектора «Использование растворителей» приведена на рис. 2.52. Изменение эмиссий НМЛОС выглядит несколько отличающимся от изменений эмиссий в других секторах и от общих макроэкономических тенденций в КР. После резкого падения эмиссии в период 1990–1995 гг. процесс сокращения продолжился до 2001 г. После 2001 г. до 2007 г. наблюдался резкий рост эмиссий и затем начался период относительной стабилизации на уровне, примерно, в два раза меньшем, чем в 1990 г. Причем рост наблюдался как при производстве лакокрасочных материалов, так и при использовании растворителей лакокрасочных материалов. Территориально рост относится в основном к г. Бишкек и Чуйской области.

2.2.4.3. Ключевые категории источников и неопределенность

Ключевые категории источников эмиссий в секторе не выделяются, так как отсутствует деление по категориям.

Доля ископаемого углерода в эмиссии НМЛОС, принятая по умолчанию на основании ограниченных публикаций о национальном анализе состава НМЛОС, равна 60 % по массе (Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК, 2006, Том 3. Промышленные процессы и использование продуктов). Доля ископаемого углерода может меняться в пределах 50–70 % по массе. Поэтому неопределенность составляет около 10 %. Национальные данные о доле ископаемого углерода должны иметь более низкую неопределенность, примерно около 5 %, однако исследований по определению доли ископаемого углерода в КР не проводилось.

Результирующая неопределенность эмиссий НМЛОС составляет около 50 %. Снизить неопределенность можно за счет разработки детального кадастра для основных источников эмиссий. В странах, где кадастр разработан, неопределенность снижается до 25 %.
2.2.5. Сельское хозяйство

Кыргызская Республика как высокогорная страна, имеет относительно невысокую долю пригодных к пахоте земель, что определяет развитие сельского хозяйства с существенной долей животноводства.

В секторе «Сельское хозяйство» наблюдаются эмиссии парниковых газов – метана и закиси азота, а также газов-прекурсоров – оксида углерода и неметановых летучих органических соединений.

В соответствии с Руководствами МГЭИК и национальными условиями сектор включает следующие категории источников:

4A Внутренняя ферментация;
 4A1 Крупный рогатый скот;
 4A1а Молочный крупный рогатый скот;
 4A1б Немолочный крупный рогатый скот;
 4A2 Яки;
 4A3 Овцы;
 4A4 Козы;
 4A5 Верблюды;
 4A6 Лошади;
 4A7 Ослы;
 4A8 Свиньи;
 4A9 Домашняя птица.

4B Системы хранения навоза
 4B1 Крупный рогатый скот;
 4B1а Молочный крупный рогатый скот;
 4B1б Немолочный крупный рогатый скот;
 4B2 Яки;
 4B3 Овцы;
 4B4 Козы;
 4B5 Верблюды;
 4B6 Лошади;
 4B7 Ослы;
 4B8 Свиньи;
 4B9 Домашняя птица.

4C Выращивание риса;

4D Сельскохозяйственные почвы;
 4D1 Прямая эмиссия от сельскохозяйственных почв (включая парниковые хозяйства и исключая выпас скота);
 4D2 Прямая эмиссия, связанная с использованием продуктов животноводства;
 4D3 Косвенная эмиссия от сельскохозяйственных почв, которая может быть связана с использованием различных азотосодержащих веществ в сельском хозяйстве;
 4F Сжигание сельскохозяйственных остатков.

В КР нет саванн и очень незначительны площади торфяных почв, поэтому эмиссии от сжигания саванн и обрабатываемых торфяных почв не рассматривались.

2.2.5.1. Исходные предпосылки

Расчеты эмиссии парниковых газов в секторе «Сельское хозяйство» проведены с использованием исходных данных, представленных Нацстатком и Департаментом химизации, карантина и защиты растений МСХМ. Полученные исходные данные были сравнены и сопоставлены с данными Продовольственной и сельскохозяйственной организации ООН.

В качестве методологической основы использовались Руководящие принципы национальных инвентаризаций парниковых газов, МГЭИК, 1996. В стране отсутствуют исследования по определению национальных коэффициентов эмиссии, поэтому при расчетах использован метод 1-го уровня и коэффициенты эмиссии по умолчанию из Руководящих принципов национальных инвентаризаций парниковых газов.

Особенности национальной системы учета определяют некоторые исходные допущения.

В национальной статистике нет разделения крупного рогатого скота на молочный и немолочный, поэтому принято условное деление по половым признакам.

В республике нет кадастра систем хранения навоза и не ведется учет использования навоза. При определении систем хранения навоза в связи с тем, что в республике практикуется как стойловое со-
держание скота, так и выпас на пастбищах, доли были определены в соответствии с рекомендациями экспертов. Доля навоза по системам хранения (стойловое содержание скота и выпас на пастбищах) была определена как 60 % и 40 % соответственно для категорий «молочный крупный рогатый скот», «немолочный крупный рогатый скот», «яки», «овцы», «козы», «лошади», «ослы», «верблюды». Для категорий «свиньи» и «домашняя птица» – 100 % в загонах при фермах.

В качестве основных культур, остатки которых сжигаются на полях, были определены следующие: пшеница, ячмень, рожь, овес, рис, овощи, табак, масличные культуры. Процентная доля биомассы, сжигаемой на полях по выбранным культурам, была определена по рекомендациям национальных консультантов Кыргызского национального аграрного университета им. К.И. Скрябина.

2.2.5.2. Тенденции развития сельского хозяйства

На рис. 2.53 представлено изменение доли сектора сельского хозяйства в ВВП страны, а на рис. 2.54 – объем сельскохозяйственной продукции в сопоставимых ценах. Как видно из представленных тенденций, увеличение доли сельского хозяйства в период с 1990 по 1996 гг. связано с меньшим падением производства в сельском хозяйстве по сравнению с другими отраслями экономики Республики. В целом, тенденция последовательного уменьшения доли сельского хозяйства при одновременной некоторой стабилизации объема производства после 1996 г. характеризует отсутствие развития сектора, несмотря на то, что в нем занята основная масса трудоспособного населения Республики.

Достаточно резкие изменения объема производства в сельском хозяйстве в основном определяются изменениями объемов производства в растениеводстве. Эти изменения обусловлены скорее всего климатическими факторами, от которых объем производства сельского хозяйства зависит в значительной степени уже при существующих климатических изменениях.

На рис. 2.55 представлены тенденции удельных эмиссий ПГ на единицу продукции в секторе «Сельское хозяйство», которые являются одним из индикаторов эффективности. По сравнению с Казахстаном, где удельные эмиссии сектора «Сельское хозяйство» в 2009 г. (без учета эмиссий от сжигания топлива) составляли 26,979 кг СО₂-экв./1 пост. $2005, ситуация в КР выглядит вполне благополучной. Но следует отметить отсутствие очевидных тенденций к снижению удельных эмиссий в сельском хозяйстве, более того, в последние годы наблюдается заметный рост.

2.2.5.3. Тенденции эмиссий сектора «Сельское хозяйство»

Тенденции эмиссий ПГ по отдельным категориям источников в секторе «Сельское хозяйство» приведены на рис. 2.56, а оценка вклада различных категорий в суммарную эмиссию сектора приведена на рис. 2.57.

Изменения распределения эмиссии ПГ по категориям источников в секторе «Сельское хозяйство» не очень значительные.
Объемы эмиссии метана от категорий «Внутренняя ферментация» и «Системы хранения навоза» прямо зависят от количества животных, вклад которых в эмиссию различен. Распределение эмиссии для отдельных видов животных приведено в табл. 2.23–24. В 2010 г. по сравнению с 1990 г. значительно увеличилась эмиссия от молочного крупного рогатого скота и уменьшилась от овец и коз.

Таблица 2.23. Распределение эмиссий метана в категориях «Внутренняя ферментация» и «Системы хранения навоза» по видам животных в 1990 г.

<table>
<thead>
<tr>
<th>Виды животных</th>
<th>Число животных, тыс.</th>
<th>Внутренняя ферментация, %</th>
<th>Системы хранения навоза, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>КРС молочный</td>
<td>506,159</td>
<td>29,441</td>
<td>58,542</td>
</tr>
<tr>
<td>КРС немолочный + яки</td>
<td>754,252</td>
<td>30,331</td>
<td>12,462</td>
</tr>
<tr>
<td>Овцы и козы</td>
<td>9969,374</td>
<td>35,795</td>
<td>16,472</td>
</tr>
<tr>
<td>Свиньи</td>
<td>393,447</td>
<td>0,2825</td>
<td>6,5008</td>
</tr>
<tr>
<td>Лошади</td>
<td>312,676</td>
<td>4,0416</td>
<td>5,6312</td>
</tr>
<tr>
<td>Олени</td>
<td>14,1</td>
<td>0,1012</td>
<td>0,1398</td>
</tr>
<tr>
<td>Верблюды</td>
<td>0,2</td>
<td>0,0066</td>
<td>0,0042</td>
</tr>
<tr>
<td>Домашняя птица</td>
<td>1251,668</td>
<td>0,0000</td>
<td>0,2482</td>
</tr>
</tbody>
</table>

Таблица 2.24. Распределение эмиссий метана в категориях «Внутренняя ферментация» и «Системы хранения навоза» по видам животных в 2010 г.

<table>
<thead>
<tr>
<th>Виды животных</th>
<th>Число животных, тыс.</th>
<th>Внутренняя ферментация, %</th>
<th>Системы хранения навоза, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>КРС молочный</td>
<td>666,129</td>
<td>43,610</td>
<td>72,880</td>
</tr>
<tr>
<td>КРС немолочный + яки</td>
<td>661,03</td>
<td>29,920</td>
<td>10,332</td>
</tr>
<tr>
<td>Овцы и козы</td>
<td>5036,089</td>
<td>20,352</td>
<td>6,4435</td>
</tr>
<tr>
<td>Свиньи</td>
<td>59,713</td>
<td>0,0483</td>
<td>0,9333</td>
</tr>
<tr>
<td>Лошади</td>
<td>378,223</td>
<td>5,5026</td>
<td>6,6430</td>
</tr>
<tr>
<td>Олени</td>
<td>68,57</td>
<td>0,5542</td>
<td>0,6430</td>
</tr>
<tr>
<td>Верблюды</td>
<td>0,337</td>
<td>0,0125</td>
<td>0,0067</td>
</tr>
<tr>
<td>Домашняя птица</td>
<td>4749,815</td>
<td>0,0000</td>
<td>0,8908</td>
</tr>
</tbody>
</table>

Рис. 2.57. Распределение эмиссий ПГ по отдельным категориям, %

Рис. 2.58. Тенденции эмиссии ПГ по отдельным газам сектора «Сельское хозяйство»
Тенденции изменения эмиссии ПГ по отдельным газам приведены на рис. 2.58. Изменения достаточно тривиальные – эмиссия метана выросла с 56,6 % в 1990 г до 63,8 % в 2010 г, а эмиссия закиси азота также последовательно уменьшалась с 43,4 % в 1990 г до 36,2 % в 2010 г. Некоторые колебания эмиссии закиси азота определялись в основном изменениями эмиссии в категории «Сельскохозяйственные почвы» вследствие изменений в объемах использования минеральных азотных удобрений.

На рис. 2.59 приведены тенденции эмиссии газов-предшественников с разбивкой по отдельным газам в секторе «Сельское хозяйство». Характер тенденции полностью отличается от тенденций всех других газов, рассматриваемых в настоящей инвентаризации. Наблюдается небольшая тенденция роста. Однако, если учесть, что эмиссия происходит только в одном секторе «Сжигание сельскохозяйственных остатков», активность в котором мало зависит от экономической ситуации, то характер изменений становится понятным. Основной вклад в общую эмиссию газов-предшественников на протяжении всего периода инвентаризации вносит оксид углерода (более 96 %).

2.2.5.4. Ключевые категории и источники

2.2.5.4.1. Ключевые категории по уровню эмиссии

В таблицах 2.25–2.26 приведены результаты определения ключевых категорий в секторе «Сельское хозяйство» по уровню эмиссии на основании Руководящих указаний по эффективной практике и учет факторов неопределенности в национальных данных парниковых газов МГЭИК 2000 г. Из результатов, приведенных в таблицах 2.25–2.26 следует, что ключевыми категориями для метана являются категории:

- «4A Внутренняя ферментация»;
- «4B Системы хранения навоза».

Для закиси азота очевидно, что категория «4D Сельскохозяйственные почвы» с эмиссией 5,0965 Гг из общей эмиссии сектора 5,1041 Гг является ключевой.

Для категории источников «4D Сельскохозяйственные почвы» для закиси азота ключевыми являются все три подкатегории (таблица 2.26).

Таблица 2.25. Определение ключевых категорий в секторе «Сельское хозяйство» для метана

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A «Внутренняя ферментация»</td>
<td>123,7240</td>
<td>0,930067</td>
<td>93,0067</td>
</tr>
<tr>
<td>4B «Системы хранения навоза»</td>
<td>6,3981</td>
<td>0,048096</td>
<td>97,8163</td>
</tr>
<tr>
<td>4C «Выращивание риса»</td>
<td>2,6344</td>
<td>0,019803</td>
<td>99,7967</td>
</tr>
<tr>
<td>4F «Сжигание сельскохозяйственных остатков»</td>
<td>0,2705</td>
<td>0,002033</td>
<td>100,0</td>
</tr>
<tr>
<td>133,026</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.26. Определение ключевых подкатегорий в категории «4D Сельскохозяйственные почвы» для закиси азота

<table>
<thead>
<tr>
<th>Подкатегории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D3 «Косвенная эмиссия от сельскохозяйственных почв»</td>
<td>2,56085</td>
<td>0,502469</td>
<td>50,2469</td>
</tr>
<tr>
<td>4D1 «Прямая эмиссия от сельскохозяйственных почв»</td>
<td>1,8534</td>
<td>0,363659</td>
<td>86,6129</td>
</tr>
<tr>
<td>4D2 «Прямая эмиссия от животноводства»</td>
<td>0,68228</td>
<td>0,133871</td>
<td>100</td>
</tr>
<tr>
<td>5,09653</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2.59. Тенденции эмиссии газов-предшественников с разбивкой по отдельным газам в секторе «Сельское хозяйство»
2.2.5.4.2. Ключевые категории по тенденциям
В таблицах 2.27–2.28 приведен расчет определения ключевых категорий в секторе «Сельское хозяйство» по тенденциям на основании Руководящих указаний по эффективной практике и учету факторов неопределенности в национальных кадастрах парниковых газов МГЭИК 2000 г. Из результатов расчета следует, что для метана ключевыми категориями являются «4А Внутренняя ферментация», «4B Системы хранения навоза» и «4C Выращивание риса».

Для категории источников «4D Сельскохозяйственные почвы» ключевыми подкатегориями по закиси азота являются «4D3 Косвенная эмиссия от сельскохозяйственных почв» и «4D1 Прямая эмиссия от сельскохозяйственных почв».

Таблица 2.27. Определение ключевых категорий в секторе «Сельское хозяйство» для метана

<table>
<thead>
<tr>
<th>Категория источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>4А «Внутренняя ферментация»</td>
<td>139,256</td>
<td>123,724</td>
<td>0,025557</td>
<td>49,99241</td>
<td>49,99241</td>
</tr>
<tr>
<td>4В «Системы хранения навоза»</td>
<td>6,0523</td>
<td>6,39809</td>
<td>0,007316</td>
<td>14,31061</td>
<td>64,30302</td>
</tr>
<tr>
<td>4С «Выращивание риса»</td>
<td>0,498</td>
<td>2,6344</td>
<td>0,018002</td>
<td>35,21436</td>
<td>99,51738</td>
</tr>
<tr>
<td>4Г «Сжигание сельскохозяйственных остатков»</td>
<td>0,26415</td>
<td>0,27045</td>
<td>0,000247</td>
<td>0,482619</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>146,0705</td>
<td>133,026</td>
<td>0,051121</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.28. Определение ключевых подкатегорий в категории «4D Сельскохозяйственные почвы» для закиси азота

<table>
<thead>
<tr>
<th>Подкатегория источников</th>
<th>Эмиссия в 1990 г., Гг</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Тенденция</th>
<th>Вклад в тенденцию</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D3 «Косвенная эмиссия от сельскохозяйственных почв»</td>
<td>3,312027</td>
<td>1,853404</td>
<td>0,0453167</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4D1 «Прямая эмиссия от сельскохозяйственных почв»</td>
<td>0,911041</td>
<td>0,682285</td>
<td>0,0437904</td>
<td>48,31589</td>
<td>98,31589</td>
</tr>
<tr>
<td>4D2 «Прямая эмиссия от животноводства»</td>
<td>4,24933</td>
<td>2,560846</td>
<td>0,0015264</td>
<td>1,684111</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8,472399</td>
<td>5,096536</td>
<td>0,0906334</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.5.4.3. Неопределенность

Таблица 2.29. Неопределенности, связанные с коэффициентами эмиссии и данными о деятельности, %

<table>
<thead>
<tr>
<th>ПГ</th>
<th>Категория источника</th>
<th>Неопределенность</th>
<th>Основной источник</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>коэффициенты эмиссии</td>
<td>данных о деятельности</td>
</tr>
<tr>
<td>CH₄</td>
<td>«Внутренняя ферментация»</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>CH₄</td>
<td>«Система хранения навоза»</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>CH₄</td>
<td>«Выращивание риса»</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>CH₄</td>
<td>«Сжигание с/х остатков»</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>N₂O</td>
<td>«Системы хранения навоза»</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>N₂O</td>
<td>«С/х почвы»</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>N₂O</td>
<td>«Сжигание с/х остатков»</td>
<td>20</td>
<td>45</td>
</tr>
</tbody>
</table>

2.2.6. Сектор «Землепользование, изменение землепользования и лесное хозяйство»

В секторе «Землепользование, изменение землепользования и лесное хозяйство» учитываются эмиссии парниковых газов – диоксида углерода, метана и закиси азота, а также газов-прекурсоров – оксидов азота и оксида углерода. Кроме того, сектор является единственным, который рассматривает разнонаправленные процессы движения диоксида углерода – как эмиссия диоксида углерода из почвы в атмосферу, так и сток диоксида углерода обратно в почву.

Сектор, в соответствии с Руководствами МГЭИК и национальными условиями, включает следующие категории источников:

• «5А Запасы древесной биомассы»;
• «5В Эмиссия и сток из почв».

2.2.6.1. Исходные предпосылки

Национальная система классификации земель включает в себя сельскохозяйственные и несельскохозяйственные земельные угодья и в соответствии с целевым назначением подразделяется на 7 категорий землепользования:
• земли сельскохозяйственного назначения (сельскохозяйственные угодья);
• земли населенных пунктов (городов, поселков городского типа и сельских населенных пунктов);
• земли промышленности, транспорта, связи, обороны и иного назначения;
• земли особо охраняемых природных территорий;
• земли лесного фонда;
• земли водного фонда;
• земли запаса.

Согласно Руководствам МГЭИК, информация об эмиссиях/стоках диоксида углерода представляются только для управляемых земель. Поэтому принято лесные площади разделить на управляемые и неуправляемые леса.

Под управляемыми лесами понимаются леса, в которых происходит вмешательство и деятельность человека для выполнения производительных, экологических и социальных функций. В управляемые включены леса расположенные, на высотной зоне до 2500 м над уровнем моря, а именно:
• леса ГЛФ и ООПТ;
• леса вне ГЛФ и ООПТ;
• древесно-кустарниковая растительность населенных пунктов;
• лесозащитные насаждения;
• многолетние насаждения.

Неуправляемые леса – леса, расположенные на высотной зоне свыше 2500 м над уровнем моря и включают:
• леса ГЛФ и ООПТ;
• леса вне ГЛФ и ООПТ.

На рис. 2.60 представлены тенденции изменения площади управляемых и неуправляемых лесов за период инвентаризации в КР. Доля площади неуправляемых лесов несколько увеличилась с 13,8 % в 1990 г. до 18,6 % в 2010 г., тогда как управляемых соответственно уменьшилась, что в некоторой степени может характеризовать эффективность системы управления лесами.

Лесоучетные работы состоят из следующих отдельных, независимых и дополняющих друг друга мероприятий – лесоустройство и национальная инвентаризация лесов.
ГАООСЛХ проводило оценку лесных ресурсов статистическим методом, с помощью закладки сети пробных площадей или трактов (групп пробных площадей), расположенных в виде регулярной сетки с шагом в 10x10 минут по широте и долготе, в соответствии с мировыми стандартами, ориентированными на Глобальную оценку лесных ресурсов по методике ФАО. Оценка проведена по всей территории республики не зависимо от форм собственности и ведомственной принадлежности лесных ресурсов.
Лесоустройство проводится выборочно-статистическим методом, с помощью закладки круговых пробных площадей на территории государственного лесного фонда и особо охраняемых природных территорий по координатной сетке 500x500 метров. При сборе информации в полевых условиях используется инструментальное измерение таксационных параметров дерева.
В настоящее время существуют две сети постоянных пробных площадей по учету лесных ресурсов – пробные площади лесоустройства в лесах ГЛФ и ООПТ и пробные площади национальной инвентаризации лесов, на всей территории КР.
Согласно Руководящим указаниям МГЭИК по эффективной практике для землепользования, изменения землепользования и лесного хозяйства 2003 г. лесные площади стратифицированы по климатическим зонам.

Схема классификации по умолчанию основана на данных высоты поверхности земли, среднегодовой температуры, среднегодового количества осадков, соотношения среднегодового количества осадков и потенциального суммарного испарения, а также возможности заморозков.

Таблица 2.30. Стратификация лесных площадей республики по климатическим зонам

<table>
<thead>
<tr>
<th>№</th>
<th>Климатические зоны согласно Руководящим указаниям МГЭИК</th>
<th>Области</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Бореальные горные системы</td>
<td>Иссык-Кульская, Нарынская</td>
</tr>
<tr>
<td>2</td>
<td>Умеренные горные системы</td>
<td>Джалаал-Абадская, Таласская, Чуйская</td>
</tr>
<tr>
<td>3</td>
<td>Тропические горные системы</td>
<td>Баткенская, Ошская</td>
</tr>
</tbody>
</table>

Тенденции изменения площадей управляемых лесов по климатическим зонам приведены на рис. 2.61.

Источником данных по изъятию древесины (рубки топливной, деловой древесины и пр.) являлись как данные учета ГАООСЛХ (по ГЛФ), так и данные ФАО.

В расчетах использованы национальные коэффициенты прироста биомассы на основании оценок, полученных Институтом леса и ореховодства НАН для проведения инвентаризации в рамках Первого и Второго Национальных сообщений.

Расчеты эмиссий, обусловленные изменениями в землепользовании, включают в себя оценку эмиссий и стоков, связанных с тремя процессами:

- изменениями в запасах углерода в почве и подстилке эксплуатируемых (минерализованных) почв, вызванными изменениями практики землепользования;
- эмиссией CO₂ из целинных (органических) почв, на землях, где началось ведение сельского хозяйства;
- эмиссией CO₂ от известкования почв, используемых в сельскохозяйственных целях.

Оценка земель сельскохозяйственного назначения на основании ежегодных сводных отчетов о наличии земель и распределении их по категориям, собственникам, землепользователям и угодьям приведена на рис. 2.62.

По данным государственного предприятия «Государственный проектный институт по землеустройству «Кыргызгипрозем» МСХМ в стране не происходит конверсии лесных и луговых угодий в ощутимых масштабах (т.е. в стране не происходит вовлечения целинных земель в сельское хозяйство).
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

(Продолжение)

Основными источниками исходной информации для расчета эмиссий/стоков из почв являлись государственное предприятие «Государственный проектный институт по землеустройству «Кыргызгипрозем» МСХМ, ГРС и Республиканская почвенно-агрохимическая станция.

Следует отметить, что данные по содержанию гумуса в почвах имеют значительные временные пробелы и неудовлетворительный географический охват даже в рамках отдельно взятого доминирующего в той или иной области типа почв. Тем не менее, без учета временной нерегулярности исходные данные позволили получить достаточно широкий охват по типам почв. Общая площадь, охватываемая данными по гумусу – 91,08 % от площади эксплуатируемых почв КР. Наличие временной и пространственной фрагментарности исходных данных определило необходимость использования интерполяции для пропущенных наблюдений. В качестве метода интерполяции использован непараметрический подход с использованием ядерных оценок, позволяющий обрабатывать зависимости с произвольной и заранее не заданной нелинейностью.

Таблица 2.31. Охват площади пашни данными по содержанию гумуса в почвах по областям

<table>
<thead>
<tr>
<th>Область</th>
<th>Количество типов почв</th>
<th>% охвата площади пашни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Баткенская область</td>
<td>3 из 7</td>
<td>88,92</td>
</tr>
<tr>
<td>Джалал-Абадская область</td>
<td>5 из 20</td>
<td>69,99</td>
</tr>
<tr>
<td>Иссык-Кульская область</td>
<td>5 из 9</td>
<td>93,50</td>
</tr>
<tr>
<td>Нарынская область</td>
<td>6 из 16</td>
<td>93,74</td>
</tr>
<tr>
<td>Ошская область</td>
<td>4 из 16</td>
<td>90,34</td>
</tr>
<tr>
<td>Таласская область</td>
<td>5 из 6</td>
<td>99,99</td>
</tr>
<tr>
<td>Чуйская область</td>
<td>10 из 16</td>
<td>95,95</td>
</tr>
</tbody>
</table>

2.2.6.2. Тенденции эмиссий сектора «Землепользование, изменение землепользования и лесное хозяйство»

Тенденции эмиссий ПГ по отдельным категориям источникам (5А «Запасы древесной биомассы», 5В «Эмиссия и сток из почв») в секторе «ЗИЗЛХ» приведены на рис. 2.65, а также нетто эмиссии с учетом стоков на рис. 2.64.

Эмиссия ПГ сектора «ЗИЗЛХ» по сравнению с другими секторами имеет некоторую особенность в том, что она не связана непосредственно с изменением экономической ситуации в республике, а зависит только от методов и качества хозяйственной деятельности в лесном и сельском хозяйстве.
Эмиссия из почв диоксида углерода несколько уменьшилась в период 1990–2000 гг., затем стабилизировалась на уровне чуть меньшем 600 Гг СО₂-экв. Возможно, что после 2000 г. несколько улучшились технологии обработки почв, но также возможно, что сокращение дошло до некоторого физического предела истощения почв при существующих технологиях возделывания. Поглощение диоксида углерода в целом, оставалось на одном уровне в продолжение всего периода инвентаризации. Нетто эмиссии после 1993 г. отрицательные, что говорит о положительном влиянии сектора на общие эмиссии KP.

Тенденции эмиссий ПГ по отдельным газам (диоксид углерода, метан и закись азота) в секторе ЗИЗЛХ приведены на рис. 2.65.

В основном в секторе наблюдается эмиссия диоксида углерода, вклад которой в 1990 г. составлял 96,11%, а к 2010 увеличился до 99,15 % за счет роста нетто эмиссий диоксида углерода. Эмиссии метана и закиси азота незначительны – в 1990 г. они составляли 3,58 % и 0,785 %, а в 2010 г. 0,308 % и 0,0675 %, соответственно. Вследствие незначительности величин эмиссии закиси азота, на рис. 2.65 показать их невозможно.

Эмиссии метана и закиси азота в секторе обусловлены сжиганием лесной биомассы на месте ее произрастания, а также вывезенной топливной древесины. Эмиссии диоксида углерода от сжигания на месте и вывозимой топливной древесины учтены в разделе «7 К сведению».

На рис. 2.66 показаны тенденции эмиссии газов-прекурсоров в секторе «ЗИЗЛХ». Следует отметить последовательный рост эмиссии, хотя и на очень низком уровне по сравнению с общими эмиссиями сектора. Резкие изменения эмиссий (как для оксида углерода, так и для оксидов азота), вероятно, связаны со сложностью учета объема сжигаемой биомассы на месте произрастания и вывозимой топливной древесины, так как объемы древесины достаточно хорошо учитываются только в государственном лесном фонде.

В основном, на протяжении всего периода инвентаризации, наблюдаются эмиссии оксида углерода (около 98 %) и только незначительную часть общих эмиссий газов-прекурсоров составляют эмиссии оксидов азота (около 2 %).
2.2.6.3. Ключевые категории источников и неопределенность

Ключевые категории источников не определялись, так как в секторе имеется две примерно равнозначные категории. Кроме того, ключевые источники в категориях не определялись в силу их большого количества и отсутствия соответствующего учета.

Неопределенность по стокам основана на результатах первой Национальной инвентаризации лесов КР, проведенной в период с 2008–2010 гг. Согласно полученным оценкам, неопределенность оценок лесной площади составляет 10 %.

Согласно экспертной оценке, неопределенности национальных коэффициентов разрастания биомассы составляют 30 %, а изменения в запасах углерода 20 %. Таким образом, суммарная оценка неопределенности по стоку составляет 37,4 %.

Для почв основные неопределенности, влияющие на результаты инвентаризации следующие:

• Картографические преобразования при работе с картами «Землепользование», «Почвы» и слоями административных границ – 5 %. Основные ошибки определения площадей по карте являются от искажений при выборе географических проекций при сшивке отдельных листов, при наложении карт для выборки типов почв по категориям землепользования, а также от пределов точности заложенных как в сами карты, так и в цифровую модель рельефа местности.
• Перекрестная оценка картографического и отчетных данных – 5 %. При сравнении результатов картографического анализа с отчетными данными неизбежно возникают небольшие ошибки.
• Ошибка округления данных по содержанию гумуса в почвах – 15 %. Данные по содержанию гумуса за ряд лет представлена не одним значением, а интервалом, например 2–3 %. Выбор среднего значения корректировался при наличии данных по тому же типу почв за тот же год по областям со сходными природно-климатическими условиями.
• Охват данными по содержанию гумуса всех типов почв из выборки – 10 %. При сборе и обработке данных по содержанию гумуса в почвах можно значительное число охватить по картам. Однако в 2-х областях он составил менее 90 %, в 3-х от 90 % до 95 % и в 2-х более 95 % площади эксплуатируемых почв.
• Ошибки интерполяции – 30 %. Ошибки возникают не только из-за погрешности используемого алгоритма интерполяции, сколько из-за чрезмерной нерегулярности имеющихся наблюдений за содержанием гумуса в почвах.

Общая оценка неопределенности для оценки эмиссий/стоков из почв составляет 35,5 %.

2.2.7. Сектор «Отходы»

В секторе «Отходы» учитываются эмиссии двух парниковых газов – метана и закиси азота. Эмиссия газов-прекурсоров в секторе отсутствует.

Сектор, в соответствии с руководствами МГЭИК и национальными условиями, включает следующие категории источников:
• 6A «Захоронение ТБО»;
• 6B «Очистка сточных вод»;
• 6B1 «Промышленные воды»;
• 6B2 «Бытовые и коммерческие воды».

2.2.7.1. Исходные предпосылки

Исходной информацией для категории источников «Захоронение ТБО» являются официальные данные Нацстаткома об объемах размещения твердых бытовых отходов (рис. 2.67). Следует отметить, что с 2010 г. количество размещаемой на полигонах Европейского Союза твердых бытовых отходов (ТБО) не учитывается в соответствии с экспертной оценкой принятого, что только половина этой категории относится по морфологическому составу к твердым бытовым отходам.

Учитывая, что в республике отсутствуют свалки и полигоны для размещения промышленных отходов (кроме хвостохранилищ, шламонакопителей и т.п.), можно предположить, что некоторое количество промышленных отходов все-таки размещается на полигонах бытовых отходов, но оно не учитывается, и по экспертным оценкам предполагается, что оно не является значительным.

Так как годовой объем размещения ТБО Нацстаткомом учитывается в кубических метрах и только с 2010 г., количество размещаемых отходов предоставляется в тоннах, для пересчета используется...
плотность отходов. За рассматриваемый период (1990–2010 гг.) имеются только фрагментарные данные плотности ТБО, что привело к необходимости интерполяции. Для интерполяции использован непараметрический подход с использованием ядерных оценок.

Аналогичная ситуация и с учетом морфологического состава. Регулярные наблюдения морфологического состава в республике не проводятся, и для восстановления пропущенных значений также использована непараметрическая интерполяция.

По оценке экспертов, все полигоны отнесены к неуправляемым. Из них к полиgam с глубиной размещения более 5 м были отнесены полигоны городов Бишкек и Ош, все остальные – к неуправляемым полиганам (свалкам) с глубиной менее 5 м.

Учитывая, что в КР не проводились исследовательские работы по определению констант скорости образования метана, необходимых для использования «метода затухания первого порядка», а также учитывая отсутствие исторических данных о количестве размещаемых отходов и морфологическом составе до 1990 г., расчет эмиссии метана согласно рекомендациям Руководств МГЭИК производился с использованием «метода недостатка».

На полигонах не используется сжигание ТБО, кроме случаев случайного самовозгорания. Образующийся при хранении органической фракции метан не улавливается и не используется.

Сброс сточных вод как коммунально-бытовых, так и промышленных в основном осуществляется в централизованную систему канализации (рис. 2.68). Как правило, промышленные стоки проходят очистку совместно с коммунально-бытовыми сточными водами населенных пунктов. Основными способами очистки сточных вод на очистных сооружениях КР являются механическая и биологическая очистка. Сильно загрязненные стоки отдельных промышленных предприятий перед поступлением в коммунальные системы подвергаются предварительной очистке на очистных сооружениях предприятий. Эмиссии ПГ от очистных сооружений не улавливаются и не используются. Вследствие отсутствия национальных данных, коэффициенты эмиссии приняты по рекомендациям МГЭИК.

Для расчета эмиссии в категории источников «Очистка сточных вод» в качестве исходной информации используются официальные данные Нацистата.

Наблюдаемое на рис. 2.68 сокращение объема пропущенных через канализацию сточных вод, объясняется значительным снижением потребления водных ресурсов основными потребителями, стоки которых направляются в канализацию (рис. 2.69). В результате, если в начале 90-х годов доля вод, пропущенных через канализацию составляла менее трети от объема потребления, то к концу периода инвентаризации она увеличилась почти в два раза, что с экологической точки зрения представляется положительной тенденцией.
2.2.7.2. Тенденции эмиссий сектора «Отходы»

Тенденции эмиссии ПГ по отдельным категориям источников в секторе «Отходы» приведены на рис. 2.70.

Эмиссии ПГ сектора «Отходы» резко уменьшились в начальный период 1990–1994 гг. с 1210 до 613,1 Гг СО2-экв., затем медленно уменьшалась до 2007 г. (504,5 Гг СО2-экв.), а в последние годы существенно выросла (более 1000 Гг СО2-экв.).

Вклад категории «Захоронение ТБО» увеличился с 76,1% в 1990 г. до 84,5% в 2000 г., при соответствующем уменьшении вклада категории «Очистка сточных вод».

Тенденции изменения эмиссии ПГ по отдельным газам приведены на рис. 2.71. Эмиссия метана последовательно сокращалась с 91,8 % в 1990 г. до 82,9 % в 2007 г., затем наблюдается некоторое увеличение к 90,9 % к 2010 г., а для эмиссии закиси азота наблюдается обратная картина. Изменения в соотношении эмиссий ПГ определяются значительным ростом объема захоронения ТБО.

Рис. 2.69. Объемы потребления водных ресурсов на хозяйственно-питьевые и производственные нужды. Источник: Нацстатком

Рис. 2.70. Тенденции эмиссии ПГ по категориям источников сектора «Отходы»

Рис. 2.71. Тенденции эмиссии ПГ по отдельным ПГ сектора «Отходы»

Рис. 2.72. Тенденции эмиссии ПГ по отдельным подкатегориям в категории «Очистка сточных вод»
Для категории «Очистка сточных вод» изменение эмиссии ПГ (рис. 2.72) практически полностью совпадает с изменениями суммарной эмиссии ПГ для КР. Наблюдается резкое сокращение эмиссии в первые годы (с 289,2 Гг СО₂-экв. в 1990 г. до 150 Гг СО₂-экв. в 1995 г.), с последующим медленным ростом на уровне, примерно, в два раза ниже уровня эмиссии в 1990 г. (в 2010 г. эмиссия составила 160,5 Гг СО₂-экв.). Наиболее резко сократились эмиссии подкатегории «Промышленные воды» с 137,2 Гг СО₂-экв. в 1990 г. до 12,6 Гг СО₂-экв. в 1995 г. В результате, если вклад подкатегории «Промышленные воды», в 1990 г. был 47,4 % в общие эмиссии категории, то в 2010 г. он составил только 12,4 %, что отражает структурные изменения в экономике.

Соотношение эмиссий по отдельным ПГ в категории «Очистка сточных вод» изменилось не так значительно, как соотношение эмиссий между отдельными подкатегориями. В 1990 г. эмиссии метана и закиси азота составляли 68,3 % и 31,7 %, а в 2010 г. 41,1 % и 58,9 % соответственно.

2.2.7.3. Неопределенность
Национальные оценки неопределенности для сектора «Отходы» отсутствуют, поэтому использованы оценки по умолчанию.
Согласно руководящим указаниям МГЭИК неопределенность по умолчанию эмиссии метана составляет для коэффициента эмиссии 67 %, а для данных о деятельности – 33 %. Следовательно, суммарная неопределенность будет 75 %. Для закиси азота использованы оценки для индустриальных процессов в силу сходности исходных данных и характера процессов, вызывающих эмиссию. Для коэффициентов эмиссии неопределенность принята равной 35 %, для данных о деятельности – также 35 %. Суммарная неопределенность для закиси азота составит 49,5 %.

Таблица 2.32. Результаты расчета неопределенности, %

<table>
<thead>
<tr>
<th>ПГ</th>
<th>Категория</th>
<th>Коэффициент эмиссии</th>
<th>Данные о деятельности</th>
<th>Суммарная неопределенность</th>
</tr>
</thead>
<tbody>
<tr>
<td>СН₄</td>
<td>«Захоронение ТБО»</td>
<td>67%</td>
<td>33%</td>
<td>75%</td>
</tr>
<tr>
<td>СН₄</td>
<td>«Очистка сточных вод»</td>
<td>67%</td>
<td>33%</td>
<td>75%</td>
</tr>
<tr>
<td>N₂O</td>
<td>«Очистка сточных вод»</td>
<td>35%</td>
<td>35%</td>
<td>49,5%</td>
</tr>
</tbody>
</table>

2.2.7.4. Ключевые категории источников
Из результатов, приведенных в таблице 2.33, следует, что ключевыми категориями для диоксида углерода и закиси азота являются подкатегории:
- «Захоронение ТБО»;
- 4«Бытовые сточные воды».

Таблица 2.33. Определение ключевых категорий в секторе «Промышленные процессы» для диоксида углерода

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>Эмиссия в 2010 г., Гг</th>
<th>Уровень</th>
<th>Суммарный уровень</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Захоронение ТБО»</td>
<td>41,61</td>
<td>0,9298</td>
<td>0,9298</td>
</tr>
<tr>
<td>«Бытовые сточные воды»</td>
<td>2,199</td>
<td>0,0491</td>
<td>0,9789</td>
</tr>
<tr>
<td>«Промышленные сточные воды»</td>
<td>0,9438</td>
<td>0,02109</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>44,753</td>
<td>11,3173</td>
<td></td>
</tr>
</tbody>
</table>

2.2.8. Эмиссия по регионам
Оценка регионального распределения эмиссий произведена в соответствии с имеющимися официальными статистическими данными. Основной источник исходных данных – Топливно-энергетический баланс КР, который выпускается только с 2005 г. с разбивкой по областям и городам республиканского значения, согласно таблице 2.34.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбция поглотителями парниковых газов

Таблица 2.34. Административно-territorialные единицы.

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Код</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Иссык-Кульская область</td>
<td>41702</td>
</tr>
<tr>
<td>2</td>
<td>Джала-Абадская область</td>
<td>41703</td>
</tr>
<tr>
<td>3</td>
<td>Нарынская область</td>
<td>41704</td>
</tr>
<tr>
<td>4</td>
<td>Баткенская область</td>
<td>41705</td>
</tr>
<tr>
<td>5</td>
<td>Ошская область</td>
<td>41706</td>
</tr>
<tr>
<td>6</td>
<td>Таласская область</td>
<td>41707</td>
</tr>
<tr>
<td>7</td>
<td>Чуйская область</td>
<td>41708</td>
</tr>
<tr>
<td>8</td>
<td>г. Бишкек</td>
<td>41711</td>
</tr>
<tr>
<td>9</td>
<td>г. Ош</td>
<td>41721</td>
</tr>
</tbody>
</table>

Более детальные данные по районам и городам областного значения отсутствуют. Поэтому далее в настоящем разделе региональная разбивка эмиссий/стоков ПГ и газов-прекурсоров произведена только для 2010 г., так как по всем секторам (например, «Энергетика») и годам невозможно получить требуемую информацию, которая в полном объеме имеется только по республике в целом.

2.2.8.1. Общая эмиссия по регионам

Распределение общих эмиссий ПГ без учета стоков по всем секторам, за исключением сектора «Использование растворителей», где эмиссия ПГ отсутствует, приведено на рис. 2.74 и 2.75. Наиболее значительный вклад в общие эмиссии ПГ вносит г. Бишкек, более трети всех эмиссий (4940 Гг СО2-экв. или 35,6 %). Причем этот вклад обеспечивается практически двумя секторами – «Энергетика» (4259 Гг СО2-экв.) и «Отходы» (682 Гг СО2-экв.). Далее по величине вклада идут Чуйская область – 12,8%, Джалал-Абадская область – 10,8 %, Ошская область – 10,6 %, Баткенская область – 9,2 %, Иссык-Кульская область – 8,4 %, Нарынская область – 5,4 %, г. Ош – 3,3 % и Таласская область – 2,5 %. Для всех областей характерен существенный вклад сектора «Сельское хозяйство», а вклад сектора «Промышленность» значителен только в Чуйской области.

Распределение эмиссии по отдельным ПГ во многом определяется распределением по секторам. Эмиссии диоксида углерода практически полностью определяются энергетическим сектором, а метана – сектором «Отходы».

Распределение эмиссий газов-прекурсоров по регионам более неравномерное, чем парниковых газов (рис. 2.76). Их эмиссия происходит, в основном, в процессах сжигания ископаемого топлива, наиболее характерных для г. Бишкека. Доля г. Бишкек в общей эмиссии газов-прекурсоров составляет более 214 Гг или 69,4 %, затем Чуйская – 8,1 %, Джала-Абадская – 5 %, Ошская – 4,3 %, Иссык-Кульская – 4,1 %, г. Ош – 3,3 %, Баткенская – 3,3 %, Нарынская – 1,8 % и Таласская области – 0,6 %.
Оксиды азота
Оксид углерода
НМЛОС
Диоксид серы

г. Ош
г. Бишкек
Чуйская область
Таласская область
Ошская область
Баткенская область
Нарынская область
Джалал-Абадская область
Иссык-Кульская область

Рис. 2.76. Региональное распределение общих эмиссий газов-прекурсоров

Таблица 2.35. Региональные эмиссии на душу населения

<table>
<thead>
<tr>
<th>Регион</th>
<th>Сумма ПГ, т СО2-экв./чел.</th>
<th>Газы-прекурсоры, кг/чел.</th>
<th>NOx</th>
<th>CO</th>
<th>НМЛОС</th>
<th>SO2</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иссык-Кульская область</td>
<td>2,63</td>
<td>7,83</td>
<td>14,44</td>
<td>3,08</td>
<td>3,08</td>
<td>28,44</td>
<td></td>
</tr>
<tr>
<td>Джалал-Абадская область</td>
<td>1,46</td>
<td>1,60</td>
<td>10,93</td>
<td>2,02</td>
<td>0,60</td>
<td>15,15</td>
<td></td>
</tr>
<tr>
<td>Нарынская область</td>
<td>2,89</td>
<td>2,02</td>
<td>13,07</td>
<td>2,05</td>
<td>4,59</td>
<td>21,74</td>
<td></td>
</tr>
<tr>
<td>Баткенская область</td>
<td>3,35</td>
<td>1,77</td>
<td>12,30</td>
<td>2,56</td>
<td>6,84</td>
<td>23,46</td>
<td></td>
</tr>
<tr>
<td>Ошская область</td>
<td>1,32</td>
<td>0,98</td>
<td>7,61</td>
<td>1,60</td>
<td>1,71</td>
<td>11,90</td>
<td></td>
</tr>
<tr>
<td>Таласская область</td>
<td>1,54</td>
<td>1,95</td>
<td>4,66</td>
<td>1,28</td>
<td>0,88</td>
<td>7,87</td>
<td></td>
</tr>
<tr>
<td>Чуйская область</td>
<td>2,20</td>
<td>4,95</td>
<td>18,08</td>
<td>4,21</td>
<td>3,83</td>
<td>31,06</td>
<td></td>
</tr>
<tr>
<td>г. Бишкек</td>
<td>5,84</td>
<td>22,12</td>
<td>176,91</td>
<td>31,81</td>
<td>21,99</td>
<td>252,83</td>
<td></td>
</tr>
<tr>
<td>г. Ош</td>
<td>1,74</td>
<td>3,98</td>
<td>28,42</td>
<td>5,56</td>
<td>1,82</td>
<td>39,78</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.36. Региональные эмиссии на 1 км² территории

<table>
<thead>
<tr>
<th>Регион</th>
<th>Сумма ПГ, т СО2-экв./1 км²</th>
<th>Газы-прекурсоры, кг/1 км²</th>
<th>NOx</th>
<th>CO</th>
<th>НМЛОС</th>
<th>SO2</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иссык-Кульская область</td>
<td>26,95</td>
<td>80,18</td>
<td>147,85</td>
<td>31,54</td>
<td>31,59</td>
<td>291,16</td>
<td></td>
</tr>
<tr>
<td>Джалал-Абадская область</td>
<td>44,33</td>
<td>48,55</td>
<td>331,91</td>
<td>61,21</td>
<td>18,30</td>
<td>459,97</td>
<td></td>
</tr>
<tr>
<td>Нарынская область</td>
<td>16,58</td>
<td>11,61</td>
<td>74,98</td>
<td>11,78</td>
<td>26,35</td>
<td>124,72</td>
<td></td>
</tr>
<tr>
<td>Баткенская область</td>
<td>85,39</td>
<td>45,08</td>
<td>313,83</td>
<td>65,33</td>
<td>174,46</td>
<td>598,71</td>
<td></td>
</tr>
<tr>
<td>Ошская область</td>
<td>50,58</td>
<td>37,36</td>
<td>291,17</td>
<td>61,37</td>
<td>65,64</td>
<td>455,54</td>
<td></td>
</tr>
<tr>
<td>Таласская область</td>
<td>30,93</td>
<td>39,08</td>
<td>93,67</td>
<td>25,79</td>
<td>17,74</td>
<td>176,28</td>
<td></td>
</tr>
<tr>
<td>Чуйская область</td>
<td>87,97</td>
<td>197,89</td>
<td>723,19</td>
<td>168,50</td>
<td>153,05</td>
<td>1242,63</td>
<td></td>
</tr>
<tr>
<td>г. Бишкек, кт/1 км²</td>
<td>29,06</td>
<td>110,13</td>
<td>880,91</td>
<td>158,40</td>
<td>109,48</td>
<td>1258,93</td>
<td></td>
</tr>
<tr>
<td>г. Ош, кт/1 км²</td>
<td>24,43</td>
<td>55,69</td>
<td>398,09</td>
<td>77,92</td>
<td>25,43</td>
<td>55,71</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.35 демонстрирует региональное распределение эмиссий ПГ, которое определяет географические приоритеты действий по сокращению эмиссий ПГ, а также эмиссий газов-прекурсоров. В таблице 2.36 приведено региональное распределение эмиссий в расчете на 1 км², характеризующее экологическую ситуацию, так как газы-прекурсоры являются основными загрязняющими веществами.

2.2.8.2. Эмиссия по регионам в секторе «Энергетика»

Наибольшие эмиссии ПГ сектора «Энергетика» и соответственно наибольший потенциал сокращения эмиссий приходятся на г. Бишкек (4249,7 Гг СО₂-экв. или 60,9 % общих эмиссий), далее идет Чуйская область, на которую приходится 868,8 Гг СО₂-экв. или 12,4 % общих эмиссий, вклад других регионов незначителен и не превышает 5,5 % (рис. 2.77). Для г. Бишкек основной вклад в эмиссии вносит категории источников «Производство энергии», «Транспорт» и «Жилой». Следует отметить, что для большинства регионов характерны значительные эмиссии категории источников «Летучие эмиссии от топлива», основную часть которых составляют вероятно устранимые потери природного газа (см. раздел 2.2.2.4.6).
Для определения источников с наибольшим потенциалом сокращения эмиссий ПГ, на рис. 2.78 приведено региональное распределение эмиссий по отдельным ПГ. Для всех регионов среди ПГ наибольший вклад вносят эмиссии диоксида углерода – 85,8 %, далее метан – 13,9 % и закись азота – 0,3 %, что характерно для источников с процессами сжигания ископаемого топлива.

На рис. 2.79 представлено региональное распределение эмиссий по отдельным газам-прекурсорам, которое еще более неравномерное, по сравнению с распределением ПГ. По сумме газов доля г. Бишкек составляет 213,7 Гг или 71,4 %, далее идет Чуйская область – 21,5 Гг или 7,2 %, Иссык-Кульская область – 4,8 %, доли остальных регионов не превышают 4 %.

2.2.8.3. Эмиссия по регионам в секторе «Промышленные процессы»

Наибольшие эмиссии ПГ сектора «Промышленные процессы» и, соответственно, наибольший потенциал сокращения эмиссии, приходится на Чуйскую область (266 Гг СО₂-экв. или 60,9 % общих эмиссий). Далее идет Ошская и Баткенская области, на которые приходится 63,3 Гг СО₂-экв. или 15,5 % и 60,0 Гг СО₂-экв. или 14,6 % соответственно. Вклад других регионов не превышает 1,5 % (рис. 2.80). Это распределение эмиссий отражает, в основном, размещение предприятий по производству цемента, вносящих существенный вклад в эмиссии диоксида углерода. Вклад диоксида углерода ПГ в секторе «Промышленные процессы» является преобладающим (93,1 %). Распределение эмиссии другого ПГ – ГФУ-134а более равномерно по регионам, но его вклад в общую эмиссию сектора незначителен – 6,9 %.

На рис. 2.81 представлено региональное распределение эмиссий по отдельным газам-прекурсорам, которое относительно равномерное по регионам, за исключением сравнительно небольших эмиссий в г. Ош. По сумме газов доля Чуйской области составляет 0,48 Гг или 24,0 %, далее идут Баткенская область – 0,42 Гг или 20,7 %, г. Бишкек – 0,30 Гг или 14,7 %, Джала-Абадская область – 0,22 Гг или 11,1 %, Иссык-Кульская область – 0,19 Гг или 9,4 %, Таласская область – 0,16 Гг или 7,8 %, Ошская область – 0,16 Гг или 7,5 %, Нарынская область – 0,09 Гг или 4,6 %, г. Ош – 0,01 Гг или 0,25 %.

Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

111
2.2.8.4. Эмиссия по регионам в секторе «Сельское хозяйство»

На рис. 2.82 приведено региональное распределение эмиссий ПГ по категориям источников сектора «Сельское хозяйство». Наибольшие эмиссии ПГ в секторе приходятся на Ошскую область – 932,4 Гг СО₂-экв. или 19,6 % общих эмиссий, далее идет Баткенская область – 917,5 Гг СО₂-экв. или 19,6 %, Джала-Абадская область – 893,7 Гг СО₂-экв. или 18,8 %, Иссык-Кульская область – 595,0 Гг СО₂-экв. или 12,5 %, Чуйская область – 574,5 Гг СО₂-экв. или 12,1 %, Нарынская область – 522,6 Гг СО₂-экв. или 11,0 % и Таласская область – 288,1 Гг СО₂-экв. или 6,1 %.

Основной вклад в эмиссию вносят категории источников «Внутренняя ферментация» и «Сельскохозяйственные почвы», на долю которых приходится 2597,8 Гг СО₂-экв. и 1952,8 Гг СО₂-экв. или 54,7 % и 41,1 % соответственно. Эмиссии категорий источников «Внутренняя ферментация» и «Системы хранения навоза» пропорциональны распределению домашних животных (см. таблицу 2.37).

На категории источников, для которых реально существует возможность значительного сокращение эмиссий – «Системы хранения навоза» и «Сжигание сельскохозяйственных остатков» – приходится всего только 134,4 Гг СО₂-экв. и 8,0 СО₂-экв или 2,83 % и 0,17 % соответственно, т.е. всего 3 % от общих эмиссий ПГ сектора «Сельское хозяйство».

Таблица 2.37. Поголовье скота и птицы по регионам на 2010 г., тыс. голов.

<table>
<thead>
<tr>
<th>Источник: Нацстатком</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Крупный рогатый скот</th>
<th>Баткенская область</th>
<th>Джал-Абадская область</th>
<th>Иссык-Кульская область</th>
<th>Нарынская область</th>
<th>Ошская область</th>
<th>Таласская область</th>
<th>Чуйская область</th>
<th>г. Бишкек</th>
<th>г. Ош</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коровы 93,7</td>
<td>142,7</td>
<td>70,9</td>
<td>59,6</td>
<td>157,3</td>
<td>33,1</td>
<td>119,9</td>
<td>0,3</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>Свиньи 9,0</td>
<td>0,4</td>
<td>0,0</td>
<td>0,1</td>
<td>0,3</td>
<td>0,8</td>
<td>48,2</td>
<td>0,3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Овцы и козы 771,5</td>
<td>1090,1</td>
<td>916,0</td>
<td>454,2</td>
<td>972,6</td>
<td>483,1</td>
<td>559,3</td>
<td>4,3</td>
<td>16,0</td>
<td></td>
</tr>
<tr>
<td>Лошади 81,1</td>
<td>53,9</td>
<td>93,2</td>
<td>6,5</td>
<td>82,4</td>
<td>23,3</td>
<td>47,7</td>
<td>0,3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Домашняя птица 790,5</td>
<td>848,3</td>
<td>171,8</td>
<td>251,3</td>
<td>766,1</td>
<td>242,5</td>
<td>1680,4</td>
<td>28,8</td>
<td>29,6</td>
<td></td>
</tr>
</tbody>
</table>

На рис. 2.83 представлено региональное распределение эмиссий по отдельным ПГ. Если эмиссии метана определяются в основном, поголовьем скота и птицы, то эмиссия азота зависит от внесения минеральных удобрений. Эмиссия метана составляет 58,8 % от общих эмиссий сектора, а эмиссия закиси азота – 41,2 %.
Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Эмиссия газов-прекурсоров в секторе «Сельское хозяйство» происходит только в категории источников «Сжигание сельскохозяйственных остатков». Объем сжигаемых на полях сельскохозяйственных остатков невелик и может быть полностью прекращен без ущерба для хозяйственной деятельности (рис. 2.84).

По понятным причинам вклады гг. Бишкек и Ош в общие эмиссии газов-прекурсоров сектора отсутствуют.

Рис. 2.83. Региональное распределение эмиссий по отдельным ПГ в секторе «Сельское хозяйство»

Рис. 2.84. Региональное распределение эмиссий газов-прекурсоров для сектора «Сельское хозяйство»

Рис. 2.85. Региональное распределение эмиссий и стоков диоксида углерода для сектора «ЗИЗЛХ»

2.2.8.5. Эмиссия/сток по регионам в секторе «Землепользование, изменение землепользования и лесное хозяйство»

По ПГ в этом секторе происходит только эмиссия и сток диоксида (рис. 2.85). Только в Чуйской области наблюдается сток диоксида углерода. В других регионах в период 1990–2010 гг. наблюдается эмиссия диоксида углерода из почв. В целом нетто-эмиссии за 2010 г. отрицательны, т.е. сток превышает эмиссию на 284,8 Гг.

2.2.8.6. Эмиссия по регионам в секторе «Отходы»

На рис. 2.86 приведено региональное распределение эмиссии ПГ по категориям источников сектора «Отходы». Наибольшие эмиссии ПГ в секторе приходятся на г. Бишкек – 682,4 Гг CO₂-экв. или
65,7 % общих эмиссий, далее с большим отрывом идет г. Ош – 87,5 Гг СО₂-экв. или 8,4 %, Иссык-Кульская область – 78,3 Гг СО₂-экв. или 7,5 %, Чуйская область – 67,8 Гг СО₂-экв. или 6,5 %, Джалаал-Абадская область – 54,2 Гг СО₂-экв. или 5,2 %, эмиссии из других областей незначительны и не превышают 3,3 %. Основной вклад в эмиссию вносит категория источников «Захоронение ТБО», на долю которой приходится 873,7 Гг СО₂-экв. или 84,1 %. Основной потенциал сокращения эмиссии также приходится на эту категорию источников.

На рис. 2.87 представлено региональное распределение эмиссий по отдельным ПГ. Если эмиссии метана определяются в категориях источников «Захоронение ТБО» и в меньшей степени – «Очистка сточных вод», то эмиссия закиси азота определяется только категорией источников «Очистка сточных вод». Эмиссия метана составляет 939,7 Гг СО₂-экв. или 90,5 % от общих эмиссий сектора, а эмиссия закиси азота 99,0 Гг СО₂-экв. или 9,5 %. Распределение эмиссии метана по регионам совпадает с общим распределением ПГ. Наибольшая эмиссия закиси азота в секторе «Отходы» наблюдается в Ошской области – 24 Гг СО₂-экв., далее Джалаал-Абадская область – 17,8 Гг СО₂-экв., г. Бишкек – 14,8 Гг СО₂-экв. и Чуйская область – 14,1 Гг СО₂-экв. В остальных областях эмиссии закиси азота не превышают 8 Гг СО₂-экв.

Эмиссия газов-прекурсоров в секторе «Отходы» практически отсутствует.
3 Адаптация
Климат меняется со скоростью беспрецедентной в новейшей истории человечества, и будет продолжать изменяться в ближайшие десятилетия. Согласно Пятому оценочному докладу Межправительственной группы экспертов по изменению климата (МГЭИК) [3.1], в результате прошлых, настоящих и будущих антропогенных эмиссий ПГ климат будет продолжать изменяться, и последствия будут сохраняться в течение многих веков, даже если антропогенные эмиссии ПГ полностью прекратятся. Поэтому адаптационные действия представляются необходимыми при любых сценариях экономического развития и уровнях митигационных действий.

Процесс адаптации состоит из следующих этапов:

1. Оценка воздействий, уязвимости и рисков с учетом взаимосвязанности объектов.
Первоначальная оценка необходима для понимания степени, с которой изменение климата оказывает воздействие на природные объекты, например, на обеспеченность водными ресурсами, что, в свою очередь, воздействует на сельское хозяйство и продовольственную безопасность. Также оценивается степень воздействия изменения климата на население и секторы хозяйственной деятельности. Кроме этого, необходимо определить способность объектов адаптироваться к воздействиям климата.

2. Планирование адаптации.
Определение адаптационных мероприятий с параллельной оценкой затрат и выгод для выбора первоочередных действий. Планирование должно осуществляться с учетом комплексности действий для устранения дублирования деятельности и обеспечения устойчивого развития.

3. Реализация адаптационных мер.
Реализация должна осуществляться на всех возможных уровнях, т.е. национальном, региональном и местном, и с помощью различных средств, в том числе - проектов, программ, политик или стратегий. Реализация может быть как самостоятельным процессом, так и интегрированной в планы устойчивого развития.

4. Мониторинг и оценка действий по адаптации.
Мониторинг и оценка должны осуществляться в течение всего процесса адаптации. Полученные в процессе знания и информация должны служить для поддержки повышения эффективности будущих действий.

Ранее рассматривалась достаточно простая схема оценки воздействия климата на различные системы (население, средства к существованию, виды или экосистемы, экологические функции, услуги и ресурсы, инфраструктура или экономические, социальные и культурные активы), которая заключалась в непосредственной оценке реакции системы на климатические изменения. В последнее время МГЭИК расширил понимание механизма воздействия климатических изменений.

В соответствии с приведенной структурой, система, на которую воздействуют климатические изменения, обладает определенными свойствами:
• Подверженность – нахождение системы в местах и условиях, которые могли бы подвергаться неблагоприятному воздействию.
• Чувствительность – степень, с которой изменение или изменчивость климата отрицательно или положительно воздействует на систему. Эффект может быть прямым (например, изменение урожайности при изменении климатических факторов) или косвенным (например, ущерб, нанесенный увеличением частоты прибрежных наводнений из-за повышения уровня моря).

3.1. Общие сведения
Адаптационный потенциал – способность систем, институтов, людей и пр. к приспособлению воздействия климатических изменений, т.е. способность воспользоваться собственными возможностями или реагировать на последствия с целью сокращения потенциального ущерба.

Различия в механизмах оценки воздействия возникают вследствие необходимости учета неклиматических факторов и неравномерности процессов развития.

Эти различия формируют дифференцированную уязвимость, возникающую из-за изменения климата. Обычно уязвимость редко бывает вызвана одной единственной причиной. Она является скорее продуктом пересекающихся различных процессов, порождающих неравенство в социально-экономическом статусе и уровне дохода, а также в степени подверженности. Поэтому далее оценка уязвимости будет там, где возможно, проводиться с учетом дополнительных неклиматических факторов.

3.2. Изменение климата

Наблюдаемые изменения климата в КР приведены в разделе 1. Достоверная оценка ожидаемых изменений является более трудной задачей в силу значительной неопределенности, возникающей, в основном, вследствие сильной зависимости от уровня эффективности глобальных действий по сокращению эмиссий, тогда как климатические модели в настоящее время более точно воспроизводят ряд важных климатических явлений. Поэтому оценка ожидаемых изменений обычно представляется в виде набора сценариев антропогенных воздействий. Для КР ожидаемые изменения климата будут проявляться более резко (как уже наблюдаются), так как потепление в северном полушарии происходит и будет происходить более быстрыми темпами, чем в среднем на планете, а над сушей оно было и будет более значительным, чем над океанами, с весьма высокой степенью достоверности.

В Пятом оценочном докладе МГЭИК использовался новый набор сценариев, а именно Репрезентативные траектории концентраций (РТК или RCP). Они соответствуют различным будущим антропогенным эмиссиям парниковых газов в течение XXI века. Различия в эмиссиях связаны с многообразными возможными путями социально-экономического развития мира. Основное отличие сценариев RТК от ранее используемых заключается в различиях в предполагаемых природных климатических явлениях. С точки зрения пользователей, легче выбирать из 4 новых сценариев, чем из 40 прежних, тем более с очень нечетким множеством социально-экономических предпосылок. Однако, фактически в новые сценарии уже в неявном виде включены элементы вариантов развития (или точнее результаты развития).

В кратком виде результаты расчетов, выполненные в рамках 5-й фазы Проекта сравнения совместных моделей (ПССМ5) Всемирной программы исследований климата, приведены в таблице 3.1.

<table>
<thead>
<tr>
<th>Сценарий</th>
<th>2046–2065 гг.</th>
<th>2081–2100 гг.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Среднее</td>
<td>Вероятный диапазон</td>
</tr>
<tr>
<td>RCP2.6</td>
<td>1,0</td>
<td>0,4–1,6</td>
</tr>
<tr>
<td>RCP4.5</td>
<td>1,4</td>
<td>0,9–2,0</td>
</tr>
<tr>
<td>RCP6.0</td>
<td>1,3</td>
<td>0,8–1,8</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>2,0</td>
<td>1,4–2,6</td>
</tr>
</tbody>
</table>

Приведенные в таблице 3.1 показатели являются глобальными. Фактически ожидается значительная дифференциация ожидаемых климатических показателей для различных регионов.

Тренды изменения приземной температуры относительно уровня 1986–2005 гг. и суммы осадков для региона Центральной Азии, рассчитанные также с использованием ансамбля климатических моделей ПССМ5, приведены на рис. 3.1. Рисунки иллюстрируют повышение температуры при любых сценариях с различной скоростью при практической стабилизации осадков для всех сценариев.
В Приложении 3 приведены карты распределения приземной температуры атмосферы и суммы годовых осадков для сценария RCP4.5 (как среднего по скорости роста температуры) и сценария RCP8.5 (как наиболее неблагоприятного) на территории КР для 2030 и 2070 гг.

Карты построены по данным, размещённым на порталах Калифорнийского университета в Беркли (http://www.worldclim.org) и Исследовательской программы по изменению климата, сельскому хозяйству и продовольственной безопасности (http://www.ccafs-climate.org/). Для построения использован полный ансамбль моделей с последующим расчетом средних значений по ансамблю. Зона покрытия охватывает весь среднеазиатский регион, включающий территорию Кыргызстана плюс один градус по широте и долготе с севера, юга, запада и востока. Разрешение выбрано в 2,5 угловые минуты, как сохраняющее баланс между подробностью, с одной стороны, и трудоемкостью обработки данных, с другой стороны.

Как видно из представленных карт, существенных изменений в количестве и распределении суммы годовых осадков не ожидается. Значительная часть территории республики, в соответствии с определением МГЭИК по количеству суммы годовых осадков, по-прежнему относится к аридной зоне, а основная территория относится к полуаридной зоне.

Сохранение уровня осадков ожидается при одновременном существенном росте приземной температуры, особенно для сценария RCP8.5. Ожидаемые изменения климата являются неблагоприятными для экономики республики (в первую очередь, для сельского хозяйства), здоровья населения и природных систем, что определяет необходимость реализации действий по адаптации.

3.3. Организация действий по адаптации

Процесс подготовки адаптационной политики был разбит на две стадии. На первой стадии был подготовлен общий документ, определяющий основные уязвимые секторы и направления действий для страны в целом, — Приоритетные направления по адаптации к изменению климата в Кыргызской Республике до 2017 г. (далее — Приоритетные направления), утвержденный постановлением Правительства Кыргызской Республики от 2 октября 2013 года № 549 [3.5].

Основная миссия Приоритетных направлений заключается в установлении национальной политики мобилизации ресурсов в целях минимизации рисков и использовании потенциальных возможностей

![Рис. 3.1. Сезонные тренды приземной температуры (°С) и суммы годовых осадков (мм) относительно уровня 1986–2005 гг. для региона Центральной Азии. Источник: Изменение климата, 2013 г. Физическая научная основа. МГЭИК [3.1]](image)
Глава 3. Адаптация

nosti изменений климата для устойчивого развития страны через реализацию адаптационных мер в секторах экономики, наиболее уязвимых к изменению климата.

В последующих стратегиях развития секторов экономики планируемая деятельность должна быть гармонизирована с направлениями адаптации к изменению климата. Адаптационные мероприятия должны разрабатываться на основе анализа рисков, обусловленных изменением климата, оценки уязвимости секторов экономики, природных объектов и населения. Приоритетные направления являются первым шагом на пути выработки комплексной системы планирования и осуществления адаптационных мероприятий в рамках межведомственного и межсекторального подхода и участия всех заинтересованных сторон в разработке проектов по адаптации к изменению климата.

Как основные элементы деятельности по адаптации в Приоритетных направлениях выделены следующие:

- совершенствование нормативных правовых основ адаптации к изменению климата;
- совершенствование институциональной основы и обеспечение межведомственной интеграции в вопросах адаптации к изменению климата;
- совершенствование финансово-экономических механизмов, включая мобилизацию внешнего финансирования на приоритетные адаптационные меры;
- совершенствование информационных инструментов, обеспечивающих мониторинг процессов изменения климата и оценка климатических рисков;
- вовлечение гражданского общества в процесс адаптации к изменению климата;
- повышение научного потенциала в области адаптации к изменению климата;
- организация и продвижение трансграничного сотрудничества по вопросам адаптации к изменению климата.

Анализ, проведенный в процессе подготовки Приоритетных направлений, позволил выделить наиболее приоритетные секторы, в которых адаптация необходима с учетом уже наблюдаемых и ожидаемых климатических изменений. Оценка климатических изменений по сценариям [3.2] взята из Климатического профиля Кыргызской Республики [3.6]. Для каждого приоритетного сектора была получена количественная оценка уязвимости, доведенная до конкретной величины ущерба, т.е. ожидаемых экономических потерь в случае отсутствия своевременных адаптационных действий (таблица 3.2).

<table>
<thead>
<tr>
<th>Сектор</th>
<th>Ущерб, млн. $2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водные ресурсы</td>
<td>718</td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>70</td>
</tr>
<tr>
<td>Энергетика</td>
<td>200</td>
</tr>
<tr>
<td>Чрезвычайные ситуации</td>
<td>38</td>
</tr>
<tr>
<td>Здравоохранение</td>
<td>110</td>
</tr>
<tr>
<td>Лес и биоразнообразие</td>
<td>94,8</td>
</tr>
<tr>
<td>Итого:</td>
<td>1230,8</td>
</tr>
</tbody>
</table>

В разработке Приоритетных направлений приняли участие специалисты всех ключевых министерств и ведомств, науки, образования и неправительственных организаций.

После завершения Приоритетных направлений началась вторая стадия. На заседании ККПИК, в феврале 2013 года, было принято решение, обязывающее все ключевые министерства и ведомства начать работу по подготовке отраслевых программ и планов по адаптации к изменению климата на основе Приоритетных направлений. Также в реализацию решения комиссии министерства и ведомства назначили ответственных за вопросы, связанные с адаптацией и смягчением последствий изменения климата.

Подготовленные отраслевые программы и планы (таблица 3.3) включают в себя оценку текущего состояния сектора, оценку уязвимости и обоснование мероприятий по адаптации к изменению климата и собственно планы с оценкой требуемых затрат на их реализацию.

<table>
<thead>
<tr>
<th>№</th>
<th>Министерство/ведомство</th>
<th>Сектор</th>
<th>Приказ об утверждении</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Министерство сельского хозяйства и мелиорации</td>
<td>Водные ресурсы и сельское хозяйство</td>
<td>№ 228 от 31.07.2015 года</td>
</tr>
<tr>
<td>2.</td>
<td>Министерство чрезвычайных ситуаций</td>
<td>Чрезвычайные ситуации</td>
<td>№ 692 от 7.07.2015 года</td>
</tr>
<tr>
<td>3.</td>
<td>Министерство здравоохранения</td>
<td>Здравоохранение</td>
<td>№ 531 от 31.10.2011 года</td>
</tr>
<tr>
<td>4.</td>
<td>Государственное агентство охраны окружающей среды и лесного хозяйства</td>
<td>Лес и биоразнообразие</td>
<td>№ 01-9/110 от 17.04.2015 года</td>
</tr>
</tbody>
</table>
После завершения подготовки отраслевых стратегий для каждой меры, кроме обычных комментариев, дополнительно определен ряд количественных показателей (таблица 3.4), наличие которых облегчает многие последующие действия, например, определение приоритетных мер, проведение мониторинга за выполнением и т.д. Определение показателей по сокращению потерь иногда невозможно даже теоретически для каждой отдельной меры. Например, меры по информированию, повышению потенциала и т.д. в отрыве от прочих мер не приводят к сокращению потерь. Подобные действия обычно оказывают мультипликативное воздействие на многие прочие меры. Поэтому в некоторых случаях величины сокращения экономических потерь определялись только для группы отдельных мер, имеющих некоторую общность в смысле сокращения экономических потерь.

Таблица 3.4. Шаблон оформления отраслевых стратегий по адаптации после дополнительной доработки

<table>
<thead>
<tr>
<th>Мера</th>
<th>Затраты</th>
<th>Сокращение потерь</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Собственные ресурсы</td>
<td>Внешняя поддержка</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Каждая из отраслевых стратегий содержит полный перечень мер, который позволит сократить экономические потери. Так как значения экономических потерь приведены для 2100 года, то фактическая стратегия рассчитана до 2100 года. Естественно, что полное сокращение потерь невозможно и сокращается только часть. Прочные экономические потери, не сокращаемые адаптационными действиями, относятся к категории, которая должна регулироваться в рамках предполагаемого механизма «потерь и ущерба».

Сроки выполнения отдельных мер в отраслевых стратегиях не оговариваются, так как выполнение большей части из них зависит не только от собственных действий республики, но и от сроков получения внешней поддержки. Определены только сроки действия отраслевых стратегий (3-5 лет). Предполагается, что стратегии будут регулярно пересматриваться с учетом появления новой информации, в первую очередь, по климатическим, макроэкономическим и демографическим сценариям, а также накопленному в стране опыту по оценке уязвимости, экономических потерь и реализации адаптационных мер.

3.4. Секторальные оценки уязвимости

3.4.1. Методология

Для получения четких результатов и повышения эффективности мониторинга была поставлена задача получения только количественных оценок уязвимости. Для возможности сравнительного анализа различных секторов специфические индикаторы уязвимости каждого сектора доводились до оценки экономических потерь. Аналогичный подход применялся и к оценкам климатических рисков, которые по своей сути во многом основаны на оценках уязвимости.

Согласно определению МГЭИК [3.3], риск можно представить как вероятность возникновения опасных событий, умноженную на последствия. Под последствиями обычно понимается одна из характеристик уязвимости.

Доведение оценок уязвимости до экономической оценки потерь в сочетании с затратами на выполнение адаптационных мер, позволяет определить приоритетность различных мер. Это является важным этапом для формирования планов действий. Очевидно, что только количественная оценка приоритетов позволит корректно устранить неизбежные межведомственные противоречия и принимать действия, действительно важные для страны.

Основным показателем приоритетности адаптационной меры принято отношение затрат на реализацию конкретной меры (группы мер) к величине сокращаемых этой мерой (группой мер) потерь, т.е.:

\[K_{ij} = \frac{Z_{ij}^i}{\Pi_{ij}} \]

где

- \(j \) – индекс сектора;
- \(i \) – индекс меры в секторе.
Пользуясь этим подходом к определению приоритетов, можно сравнить между собой также различные подсекторы и секторы.

\[K_j = \frac{\sum_1^i 3_{ji}}{\sum_1^i 2_{ji}} \]

При анализе различных секторов выделены два направления исследований:
- связанное с оценкой влияния медленных изменений средних значений климатических параметров, т.е. собственно изменение климата;
- связанное с оценкой влияния изменений повторяемости климатических экстремумов (оценка климатических рисков), т.е. изменение изменчивости климата.

Далее, при анализе секторов, при наличии возможности, рассматривался уровень воздействия, как от изменения климата, так и от его изменчивости.

Для оценки уязвимости и рисков использованы различные методологические подходы:
- применение физических моделей, отражающих связь индикаторов уязвимости с климатическими факторами в соответствии с известными физическими, химическими и т.д. законами (чаще всего применяется для моделирования состояния ледников и поверхностного стока с использованием уравнений водного баланса);
- применение известных специализированных моделей, например, модель GLAM [3.4], для оценки урожайности сельскохозяйственных культур при изменении климатических факторов;
- оценка с использованием статистической оценки связи между климатическими факторами и индикаторами уязвимости, чаще всего этот метод применяется при отсутствии других разумных альтернатив;
- оценка с использованием статистической оценки связи с индикаторами уязвимости, но вместо самих климатических факторов применение некоторых их обобщений (например, для сельского хозяйства, это могут быть индексы засухи и увлажненности);
- оценка на основании анализа выделения и отслеживания трендов территорий с оптимальными условиями существования (для экологических систем и биоразнообразия).

Полученные оценки уязвимости и рисков во многих случаях имеют значительную неопределенность. Это связано как с собственно недостатками используемых моделей, так и с неопределенностью принятых исходных данных и предпосылок (например, климатические, макроэкономические и демографические сценарии развития), что требует регулярного уточнения полученных оценок по мере уточнения моделей и исходных данных.

В настоящем разделе не рассматриваются вопросы уязвимости и адаптации сектора энергетики.

Предполагается, что снизить уязвимость энергетики к изменению климата можно, в основном, за счет диверсификации источников энергии, т.е. митигационных мер.

3.4.2. Водные ресурсы

Моделирование осуществлялось для 11 гидрологических бассейнов Кыргызской Республики:
- оз. Иссык-Куль;
- р. Чу;
- р. Талас;
- р. Сырдарья, в том числе:
 - реки северного обрамления Ферганской долины (р. Сырдарья);
 - оз. Чатыр-Куль;
- р. Кара-Дарья (р. Сырдарья);
- реки южного обрамления Ферганской долины (р. Сырдарья);
- р. Амударья;
- р. Тарим;
- оз. Балхаш.

В качестве исходных данных использовано четыре климатических сценария (RCP 2.6, RCP 4.5, RCP 6.0 и RCP 8.5). Несмотря на то, что во всех используемых сценариях не ожидается существенного изменения уровня осадков, в целях более широкого охвата возможных вариантов для каждого сцена-
рия рассматривались дополнительно три варианта изменения уровня осадков:
1. Сохранение осадков на существующем уровне;
2. Увеличение уровня осадков на 5 %;
3. Уменьшение уровня осадков на 5 %.

Для моделирования возможной эволюции стока использовано адаптированное к высокогорной территории уравнение водного баланса

\[W = P - E - Bg \pm \varepsilon \]

где:
\(W \) – суммарный поверхностный сток;
\(P \) – годовой объем атмосферных осадков;
\(E \) – годовой объем испарения;
\(Bg \) – полный баланс массы ледников в водном эквиваленте (водоотдача ледников);
\(\varepsilon \) – прочие составляющие водного баланса территории, которые принимаются незначительными.

Вследствие практического отсутствия мониторинга, баланс запасов подземных вод и баланс воды в многолетнемерзлых горных породах не учитывались. Было принято предположение, что годовой объем инфильтрации в подземные воды примерно равен объему выхода их на поверхность, а верхняя граница многолетнемерзлых горных пород изменяется пренебрежимо мало.

Водоотдача ледников
Моделирование оледенения выполнено отдельно для каждого из 6771 ледника КР (площадью 0,1 км² и более), с суммированием результатов по заданным гидрологическим бассейнам. Не учитывались 1437 ледников, площадь которых менее 0,1 км² и для которых отсутствуют исходные данные (известно лишь их общее количество и суммарная площадь). Эти малые ледники, для которых практически невозможно выполнить моделирование в связи с отсутствием необходимых исходных данных, составляют 17,51 % от общего числа ледников КР с суммарной площадью – 0,84 % и оценочным объемом – 0,26 %. Их вклад в речной сток мал и поэтому они не рассматривались при моделировании.

Математическая модель эволюции ледников при потеплении климата, разработанная В.А. Кузьмиченком [3.7], позволила рассчитать ледниковую составляющую стока, которая представляет собой значение объема воды, поступившей в сток дополнительно к разности атмосферных осадков и испарения. Расчеты выполнены для всех 11 гидрологических бассейнов КР. Суммарные результаты моделирования для всей территории республики представлены в таблице 3.5.

<table>
<thead>
<tr>
<th>Сценарий</th>
<th>RCP 2.6</th>
<th>RCP 6.0</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Осадки (-5 %</td>
<td>0</td>
<td>5 %</td>
<td>-5 %</td>
</tr>
<tr>
<td>2020</td>
<td>4,4</td>
<td>3,4</td>
<td>2,4</td>
</tr>
<tr>
<td>2030</td>
<td>4,7</td>
<td>3,4</td>
<td>1,9</td>
</tr>
<tr>
<td>2040</td>
<td>4,9</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>2050</td>
<td>5</td>
<td>3,2</td>
<td>1</td>
</tr>
<tr>
<td>2060</td>
<td>5</td>
<td>3,2</td>
<td>0,6</td>
</tr>
<tr>
<td>2070</td>
<td>5</td>
<td>3,1</td>
<td>0,4</td>
</tr>
<tr>
<td>2080</td>
<td>4,8</td>
<td>3</td>
<td>0,3</td>
</tr>
<tr>
<td>2090</td>
<td>4,7</td>
<td>2,9</td>
<td>0,2</td>
</tr>
<tr>
<td>2100</td>
<td>4,5</td>
<td>2,8</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Поверхностный сток
Для моделирования поверхностного стока использованы цифровые модели рельефа и условий увлажнения территории суши КР (DMR и DMHum соответственно), разработанные В.А. Кузьмиченком [3.8]. Каждая из этих цифровых моделей описывает территорию республики набором соответствующих характеристик в узлах регулярной (квадратной) сети с шагом 500 м на местности. Эти узлы совпадают с сеткой прямоугольных координат прямой конической эквивалентной проекции, наилучшей для территории КР. Поэтому каждый из узлов «представляет» равные территориальные единицы, площадь которых составляет 0,25 км², и при расчетах не требуется какого-либо дополнительного учета геодезической широты. Территорию суши республики полностью покрывают 770418 узлов этих цифровых моделей.

Цифровая модель рельефа содержит следующие значения для каждого из узлов регулярной сет-
kiye: высоты, угла наклона, экспозиции, показателя ориентации и средней кривизны макросклона топографической поверхности. Под показателем ориентации поверхности понимается косинус угла между нормальным к поверхности вектором и направлением на солнце в полдень летнего солнцестояния. Под средней кривизной поверхности здесь понимается среднее арифметическое из величин, обратных главным радиусам кривизны. Очевидно, что поверхности с положительной кривизной склонны к накоплению (в широком смысле этого слова), а с отрицательной – к сносу.

Цифровая модель условий увлажнения территории суши КР содержит для каждого из узлов следующие значения: среднегодовая температура воздуха, годовая сумма атмосферных осадков, годовой слой испаряемости, годовой слой испарения, модуль стока и увлажнение.

Результаты расчета возможного изменения поверхностного стока в целом по всем гидрологическим бассейнам КР с учетом водоотдачи ледников приведены на рис. 3.2.

Приведенные данные свидетельствуют о существенном уменьшении стока при любых возможных сценариях и вариантах изменения осадков. Однако разброс величины сокращения весьма широкий. Для наиболее неблагоприятного варианта климатических изменений (сценарий RCP 8.5 и сокращение суммы годовых осадков на 5 %) сток может уменьшиться примерно на 40 %.

Расчеты поверхностного стока для отдельных гидрологических бассейнов показали незначительную разницу изменений между бассейнами, которая определяется конкретными условиями зоны формирования стока.

Как видно из результатов, представленных на рис. 3.2 и в таблице 3.5, величину поверхностного стока, в основном, определяет температура атмосферы и величина осадков, тогда как вклад ледников в общий сток меньше.

Обеспеченность стока

Кроме объема поверхностного стока, также моделировалась и его обеспеченность, под которой понималась вероятностная оценка минимальных значений стока. Для оценок использовался метод статистического имитационного моделирования. Оценки распределения вероятности климатических (приземная температура и сумма осадков) факторов были получены по имеющимся наблюдениям. В качестве исходного допущения принималось, что статистическое распределение климатических факторов будет аналогичным наблюдаемому распределению, кроме оценок математического ожидания. Оценки математического ожидания для климатических факторов использовались согласно климатическим сценариям. Имитационное моделирование производилось отдельно для оцен-
ки водоотдачи ледников и поверхностного стока, затем полученные результаты объединялись для оценки стока с учетом водоотдачи ледников.

Обеспеченность стока необходима для оценки достаточности имеющихся водных ресурсов и определения объемов водохранилищ для обеспечения бесперебойного снабжения водными ресурсами. Расчеты произведены для всех вариантов обеспеченности от 0,01 до 0,99 и для всех водных бассейнов. Небольшие величины (например, 0,01) можно использовать для оценки наводнений. На рис. 3.3 приведены результаты расчета для всей республики в целом для двух сценариев.

По сравнению с известными оценками обеспеченности для других стран [3.9] полученное отношение стока обеспеченности 0,01 к стоку обеспеченности 0,99 варьирует примерно от 3 до 2,5, т.е. значительно ниже.

Вероятно, указанное отношение является относительно небольшим в силу компенсационного влияния ледников, выравнивающего экстремальные значения моделируемого стока. Так, в экстремально жаркие и сухие годы, когда сток от осадков уменьшается за счет уменьшения атмосферных осадков и увеличения испарения, водоотдача ледников увеличивается. В прохладные и влажные годы имеет место обратная картина.

Полученные оценки обеспеченности фактически являются оценками климатических рисков для водных ресурсов.

Эволюция внутригодового распределения поверхностного стока при изменении климата

Внутригодовое распределение стока определялось с использованием метода имитационного моделирования. Суммарный сток разбивался на три составляющих от переменных в году жидким атмосферным осадкам, твердым атмосферным осадкам и абляции ледников. Грунтовое питание, с допустимой погрешностью, предполагалось постоянным в течение года.

Для обеспечения наглядности и упрощения решения было выделено 4 типичных гидрологических района для КР:

- Район A – наименее высокогорный гидрологический бассейн с большой площадью оленения (сток от таяния ледников превышает сток от таяния сезонного снежного покрова). Доля грунтового питания составляет примерно 2% от максимального расхода (например, бассейны рек Сарыджаз и Большой Нарын).
- Район B – высокогорный гидрологический бассейн (сток от таяния ледников примерно равен стоку от таяния сезонного покрова). Доля грунтового питания составляет примерно 5% от максимального расхода (например, бассейн реки Нарын).
- Район C – среднегорный гидрологический бассейн с меньшим количеством ледников и максимумом атмосферных осадков в июне (в основном восточная часть КР). Доля грунтового питания составляет до 10% от максимального расхода.
- Район D – среднегорный гидрологический бассейн с меньшим количеством ледников и максимумом атмосферных осадков в мае (в основном западная часть КР). Доля грунтового питания составляет до 10% от максимального расхода.

Изменение климата учитывалось для 5 возможных вариантов изменения от 1 (нет изменений) до
5 (максимальное изменение, под которым понималось значение температуры в 2100 году по сценарию RCP 8.5).

Результаты моделирования для высокогорных районов показали некоторое увеличение максимальных расходов в первоначальный период потепления, с последующим уменьшением и сдвигом максимума стока на более ранние сроки, примерно на 50 дней (приходящийся в настоящее время примерно на конец июля).

Для среднегорных районов в первоначальный период потепления увеличение расходов практически не происходит. После стабилизации уровня наблюдается последовательное снижение максимальных расходов, естественно, менее резко выраженное, как для высокогорий. Для района С сдвиг максимума стока на более ранние сроки составляет около 15 дней, а для района D еще меньше.

Меры по адаптации водных ресурсов
Основные меры (более подробно меры приведены в отраслевом плане МСХМ):
• совершенствование рационального использования водных ресурсов, внедрение экономических стимулов рационального водопользования;
• реабилитация существующих и строительство новых водохозяйственных сооружений и водохозяйственных объектов;
• сохранение зоны формирования стока рек – восстановление и посадка лесонасаждений, соблюдение режима водоохранных зон и полос водных объектов;
• придание ключевым зонам формирования стока статуса особо охраняемых территорий;
• восстановление и поддержка системы мониторинга природно-климатических параметров;
• повышение информированности о качественном и количественном состоянии водных ресурсов;
• укрепление международного сотрудничества в сфере адаптации трансграничных водных объектов;
• повышение осведомленности населения о социально-экономических последствиях изменения климата, в том числе по проблеме нарастающего водного дефицита.

3.4.3. Сельское хозяйство
Общие сведения
Сельское хозяйство КР традиционно является ведущей отраслью экономики, как по размеру созданной добавленной стоимости, так и по численности людей, занятых в отрасли. В этом секторе экономики производится около 1/5 ВВП республики, что позволяет обеспечить перерабатывающие предприятия сырьевыми ресурсами, а население – продуктами питания. Наличие обширных горных территорий предопределило направление развития отраслей сельского хозяйства в нашей республике, в которых занято более 60 % населения, проживающего в сельской местности. Однако лишь небольшая часть территории республики (около 7 %) может быть использована под возделывание культурных растений, и это преимущественно равнинные и предгорные части.

Более половины земельного фонда республики приходится на сельскохозяйственные угодья. Из них более 85 % занимают пастбища, 13,9 % – пашня и сенокосы. В КР земля передана в частную собственность. В настоящее время в республике создано 382 тыс. крестьянских и фермерских хозяйств и 357 сельскохозяйственных кооперативов.

Агроклиматические условия в республике благоприятны для возделывания пшеницы, кукурузы, ячменя, картофеля, хлопчатника и некоторых других культур. В последнее время наблюдается тенденция неполного обеспечения продовольственной безопасности (см. рис. 3.4.). Причиной этого, кроме прочего, является и неблагоприятное воздействие изменения климата.
Неблагоприятные погодные условия (поздние весенние и ранние осенние заморозки, высокие температуры и др.), загрязнение окружающей среды и неблагополучная мелиоративная обстановка в ряде районов являются факторами, ограничивающими полное использование агроклиматических и земельных ресурсов.

Изменение климата приведет к различным воздействиям на сельское хозяйство (количественные оценки воздействия взяты из отчета Всемирного комитета по продовольственную безопасности [3.10]):

- Изменение средних значений температуры при сохранении уровня осадков. В целом, более высокие средние температуры могут ускорить рост и развитие растений. Однако рост температуры в сочетании с сохранением осадков на прежнем уровне снизит увлажненность. Более высокие температуры также определяют более высокие концентрации приземного озона. Озон является вредным для всех растений, но особенно восприимчивыми являются соевые, пшеница, овес, фасоль, перец и некоторые виды хлопка. Для животноводства воздействие существенно зависит от климатических условий региона. Большинство видов скота имеют зоны комфорта 10-30 °C, а при более высокой температуре у животных снижается потребление корма на 3-5 % на каждый градус повышения температуры. В дополнение к снижению продуктивности животных более высокие температуры отрицательно влияют на фертильность. Дополнительно изменение климата сказывается на животных косвенно через воздействие на кормовую базу.

- Изменения экстремальных значений температуры. Повышение температуры в ночное время может снизить урожайность риса до 10 % для каждого 1 °C повышения минимальной температуры в сухой сезон. Увеличение максимальных температур может привести к существенному снижению урожайности и репродуктивной функции для многих культур. У кукурузы, например, каждый день при температуре выше 30 °C может уменьшить урожайность на 1,7 % в условиях ограниченности водных ресурсов.

- Изменение концентрации диоксида углерода в атмосфере. Многие исследования показывают некоторое увеличение урожайности при увеличении концентрации диоксида углерода в атмосфере. Однако этот эффект наблюдается не для всех культур. Для таких растений, как кукуруза, сахарный тростник и цукат, эффект роста урожайности ограничен. Также остается значительная неопределенность в отношении воздействия повышенных концентраций CO₂ на рост растений в типичных полевых условиях. Необходимо учитывать и отрицательное воздействие увеличения концентрации диоксида углерода на состав питательных веществ в отдельных продовольственных культурах. Исследованиями установлено, что содержание белка в пшенице уменьшается при высоких уровнях диоксида углерода, также существенно снижается содержание минералов, таких как железо и цинк.

По данным об ущербах от различного рода экстремальных климатических явлений наибольшее воздействие на сельское хозяйство оказывают засуха и недостаток водных ресурсов (таблица 3.6).
Стоимость экономического ущерба, приведенная в таблице 3.6, определялась с учетом различной стоимости единицы продукции и различной урожайности сельскохозяйственных культур. Поэтому при одинаковых физических объемах потерь урожая (списанные посевные площади), величина ущерба выше для тех культур, у которых стоимость единицы продукции выше.

Оценка увлажнения при изменении климата

В качестве количественной оценки увлажнения использован коэффициент увлажнения, под которым понимается отношение суммы атмосферных осадков к испаряемости. По Н.Н. Иванову [3.2] соответствие увлажнения местности и характеристик ландшафта следующее:

• Аридная зона пустынь – увлажнение 0–0,13;
• Полуаридная зона полупустынь – 0,13–0,30;
• Степи и сухие саванны (зона недостаточного увлажнения) – 0,30–0,60;
• Зона умеренного увлажнения (лесостепь, саванны) – 0,60–1,0;
• Зона достаточного увлажнения (леса) – 1,0–1,50.

Оценка увлажненности выполнена аналогично оценке состояния водных ресурсов с использованием расширенных цифровых моделей рельефа DMR и характеристик увлажнения DMHum. Результаты расчетов приведены в таблицах 3.7–3.9. Уровень суммы годовых осадков предполагался неизменным относительно 2010 года.

Карты с ареалами территорий с увлажненностью менее 0,13 (пустыня) и от 0,13 до 0,30 (полупустыня) при различных климатических сценариях приведены в приложении 4. На этих картах выделены территории, занимаемые орошаемой и богарной пашней.

Из результатов расчета следует, что для неблагоприятных климатических сценариев практически вся территория республики, занимаемая пашней, попадает в зону пустынь и полупустынь.
Таблица 3.9. Доля площади (%) с увлажнением от 0,13 до 0,30 (полупустыня) областей КР для 2000 г. и различных климатических сценариев на 2100 г.

<table>
<thead>
<tr>
<th>№</th>
<th>Область</th>
<th>Площадь, км²</th>
<th>2000 г.</th>
<th>RCP 2.6</th>
<th>RCP 4.5</th>
<th>RCP 6.0</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Чуйская</td>
<td>20025</td>
<td>15,48</td>
<td>27,91</td>
<td>30,64</td>
<td>32,01</td>
<td>37,19</td>
</tr>
<tr>
<td>2</td>
<td>Иссык-Кульская</td>
<td>36823</td>
<td>8,86</td>
<td>12,19</td>
<td>13,68</td>
<td>14,47</td>
<td>17,78</td>
</tr>
<tr>
<td>3</td>
<td>Нарынская</td>
<td>44958</td>
<td>8,29</td>
<td>13,31</td>
<td>16,41</td>
<td>18,05</td>
<td>24,82</td>
</tr>
<tr>
<td>4</td>
<td>Ошская</td>
<td>29100</td>
<td>14,30</td>
<td>19,98</td>
<td>24,20</td>
<td>26,31</td>
<td>34,23</td>
</tr>
<tr>
<td>5</td>
<td>Таласская</td>
<td>11441</td>
<td>23,94</td>
<td>29,51</td>
<td>32,53</td>
<td>34,03</td>
<td>39,56</td>
</tr>
<tr>
<td>6</td>
<td>Джамал-Абадская</td>
<td>33273</td>
<td>14,07</td>
<td>18,99</td>
<td>21,50</td>
<td>22,80</td>
<td>27,85</td>
</tr>
<tr>
<td>7</td>
<td>Баткенская</td>
<td>16984</td>
<td>27,75</td>
<td>31,64</td>
<td>33,24</td>
<td>34,01</td>
<td>36,70</td>
</tr>
<tr>
<td>8</td>
<td>Кыргызская Республика</td>
<td>192604</td>
<td>13,70</td>
<td>19,18</td>
<td>21,86</td>
<td>23,24</td>
<td>28,63</td>
</tr>
</tbody>
</table>

Оценка непосредственного воздействия изменения климата на урожайность сельскохозяйственных культур

Оценка произведена с использованием Стандартизированного индекса осадков (Standardized Precipitation Index, SPI). Используя индекс SPI, можно определить потенциальное влияние изменения климата на урожайность, пользуясь стандартизированной классификацией интенсивности засухи [3.13].

Таблица 3.10. Классификация интенсивности засухи на основе индекса SPI

<table>
<thead>
<tr>
<th>Категория</th>
<th>Значение SPI</th>
<th>Потенциальное влияние</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0, аномальная</td>
<td>–0,5; –0,7</td>
<td>Кратковременная засуха – незначительное влияние, замедляющее развитие вегетации</td>
</tr>
<tr>
<td>D1, умеренная</td>
<td>–0,8; –1,2</td>
<td>Незначительные повреждения вегетации, но без существенных потерь урожая</td>
</tr>
<tr>
<td>D2, значительная</td>
<td>–1,3; –1,5</td>
<td>Высокая вероятность потерь урожая</td>
</tr>
<tr>
<td>D3, экстремальная</td>
<td>–1,6; –1,9</td>
<td>Значительные потери урожая</td>
</tr>
<tr>
<td>D4, чрезвычайная</td>
<td>–2,0 или меньше</td>
<td>Значительные или полные потери урожая</td>
</tr>
</tbody>
</table>

Оценка непосредственного воздействия изменения климата на урожайность сельскохозяйственных культур основана на том, что индекс SPI оценивает засушливость, только на основании данных об осадках. Поэтому значимым коэффициент корреляции может быть только для тех культур, которые в большей степени зависят от осадков, а не от наличия водных ресурсов для орошения. Рассматривалась урожайность следующих культур:

- зерновые культуры (в весе после доработки);
- пшеница (в весе после доработки);
- ячмень (в весе после доработки);
- кукуруза на зерно;
- рис (в весе после доработки);
- сахарная свекла (фабричная);
- табак (в зачетном весе);
- масличные культуры;
- картофель;
- овощи;
- бахчи продовольственные;
- плодово-ягодные культуры;
- виноград.

Период рассмотрения охватывал 1991-2010 гг. согласно наличию официальных данных Нацистата по урожайности. Для этого же периода времени рассчитывались значения индекса SPI. Варьировался конечный срок вычисления индекса (в месяцах) и глубина учета условий увлажнения (также в месяцах). Эти параметры изменялись для уточнения методологии расчета.

Основные выводы по результатам расчета:

1. Используя индекс SPI, удается достаточно статистически обоснованно оценить изменение урожайности для следующих видов сельскохозяйственных культур:
 - зерновые культуры (в весе после доработки);
 - пшеница (в весе после доработки);
 - ячмень (в весе после доработки);
 - кукуруза на зерно;
 - рис (в весе после доработки);
 - сахарная свекла (фабричная);

2. Для прочих проверенных культур отсутствует статистически значимая связь между индексом SPI и урожайностью. Возможно наличие связи и для других культур, по которым отсутствуют официальные сведения по урожайности, например, овес и гречиха.

3. Оптимальным временем для оценки индекса является октябрь.

4. Наибольший уровень связи наблюдается при использовании глубины расчета индекса в 9–10 месяцев.

5. Величина индекса SPI может служить базовым показателем при внедрении системы страхования урожая для перечисленных выше культур.
6. С методологической точки зрения в будущем логичнее использовать вместо SPI Стандартизованный индекс осадков и эвапотранспирации (SPEI), который основан на двухмерном распределении и учитывает, наряду с количеством осадков, значение эвапотранспирации. Эта особенность индекса может оказаться полезной при анализе происходящих изменений засуховости в условиях глобального потепления. Расчеты по имеющимся наблюдениям не показали существенной разницы между SPI и SPEI, возможно в силу небольших изменений климатических факторов на расчетном интервале времени.

Животноводство

Агроэкологические условия КР определяют в значительной степени использование земель под пастбища, а не для земледелия. На сектор животноводства приходится более половины общей стоимости товарной продукции сельского хозяйства, поэтому эффективность сектора животноводства имеет очень большое значение для республики.

Воздействия изменения климата на животноводство разнообразны, часть из них уже приведена в начале настоящего раздела. К сожалению, далеко не по всем аспектам воздействия изменения климата имеются достоверные местные исследования.

Поэтому анализ оценки уже наблюдаемой уязвимости проведен только по урожайности пастбищ. Данные по урожайности сухой поедаемой массы и зеленой массы для сенокосов, весенне-осенних пастбищ, летних и зимних пастбищ представлены Кыргызским государственным проектным институтом по землеустройству «Кыргызгипрозем».

Детализация данных по урожайности ограничивалась уровнем областей и районов. Кроме урожайности использованы данные по наблюдениям климатических факторов (температура и уровень осадков) и количеству животных - крупный рогатый скот (КРС), овцы и козы, лошади.

Следует отметить, что за рассматриваемый период наблюдений (1950-2012 гг.) среди всех факторов, влияющих на урожайность пастбищ, численность животных изменилась наиболее значительно (рис. 3.5).

Детализация данных по урожайности ограничивалась уровнем областей и районов. Кроме урожайности использованы данные по наблюдениям климатических факторов (температура и уровень осадков) и количеству животных - крупный рогатый скот (КРС), овцы и козы, лошади.

Рис. 3.5. Тренды численности основных сельскохозяйственных животных в целом по КР

Для всех областей и республики наблюдаются в целом аналогичные тенденции роста численности основных сельскохозяйственных животных до начала 80-х годов (для некоторых областей – до 1990 г.), затем резкое сокращение численности до 2003 г. и далее опять рост. Наиболее ярко эта тенденция выражена для овец и коз. Далее, при расчетах нагрузки на пастбища, количество различных животных учитывалось с коэффициентом перевода в условные головы (одна голова КРС равна пяти условным овцеголовам, а одна голова лошади равна шести условным овцеголовам). По результатам статистического анализа получены следующие выводы:

1. В целом по КР урожайность сенокосов и пастбищ невысокая. Средние значения урожайности за весь рассматриваемый период времени приведены в таблице 3.11. Максимальная урожайность зеленой массы наблюдалась в Джала-Абадской области – 25 ц/га для летних пастбищ в 2012 году, что значительно ниже урожайности, достигнутой в развитых странах. Например, в Нидерландах урожайность сенокосно-пастбищных угодий составляет 120 ц/га, во Франции – 45-50, в ФРГ – 60, Бельгии – 80, Дании – 90 ц/га сухой массы. Естественно, что во многом такое различие определяется различием природно-климатических условий, которые значительно менее благоприятны для КР. Но существенный вклад в повышение урожайности вносит и эффективная организация управления пастбищами в развитых странах.

2. Изменения урожайности за рассматриваемый период по областям значительно различаются (таблица 3.11), но в целом по республике наблюдается небольшой рост урожайности по сенокосам и всем видам пастбищ (0,007–0,4 ц/га в год). Наибольший рост наблюдается в Баткенской и Чуйской областях, а наибольшее уменьшение урожайности - в Нарынской области. По абсолютной величине из-
менения урожайности не очень велики: максимальный рост урожайности составляет менее 0,1 ц/га в год (Баткенская область), а максимальное уменьшение – менее 0,09 ц/га в год (Нарынская область).

Таблица 3.11. Изменение урожайности по различным видам пастбищ и сенокосам для различных областей. Обозначения: + рост, - уменьшение

<table>
<thead>
<tr>
<th>Область</th>
<th>Сенокосы</th>
<th>Весенне-осенние пастбища</th>
<th>Летние пастбища</th>
<th>Зимние пастбища</th>
<th>Сенокосы</th>
<th>Весенне-осенние пастбища</th>
<th>Летние пастбища</th>
<th>Зимние пастбища</th>
</tr>
</thead>
<tbody>
<tr>
<td>Баткенская</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Джалаал-Абадская</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Иссык-Кульская</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Нарынская</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ошская</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Таласская</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Чуйская</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Среднее по республике</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Средняя урожайность, ц/га</td>
<td>14,40</td>
<td>3,15</td>
<td>5,32</td>
<td>2,36</td>
<td>9,18</td>
<td>18,32</td>
<td>3,43</td>
<td></td>
</tr>
</tbody>
</table>

3. Для всех типов пастбищ и для всех областей наблюдается четкая тенденция роста отношения поедаемой массы к зеленой массе. На рис. 3.6 приведена тенденция отношения в целом по КР. Возможной причиной является снижение в целом нагрузки на пастбища после начала 80-х годов и климатические изменения.

4. Негативно на урожайность воздействуют два фактора – нагрузка на пастбища, выраженная в количестве условных овцеголов, и температура. Причем, нагрузка на пастбища воздействует более значительно по сравнению с температурой. Для зимних пастбищ повышение температуры для всех областей не является негативным воздействием.

5. Если рассмотреть нагрузку на пастбища детальнее, то из всех сельскохозяйственных животных наиболее воздействие оказывает количество овец. Это вполне ожидаемый результат, так как во время выпаса копыта овец давят на почву с силой 5,4 кг/см², тогда как для КРС этот показатель составляет 5,1 кг/см², а для лошадей - 2,6 кг/см² [3.11].

Почвы

Нет необходимости обосновывать важность состояния почв для сельского хозяйства. Обычно в связи с изменением климата выделяют роль почв в смягчении последствий изменения климата за счет накопления (связывания) углерода и уменьшения выбросов парниковых газов в атмосферу. Нерациональные методы использования или сельскохозяйственной обработки почв могут повлечь выбросы почвенного углерода в атмосферу в виде диоксида углерода и быть фактором, воздействующим на изменение климата. В свою очередь, климат является одним из важнейших факторов почвообразования и географического распространения почв.

Изменения температуры и характера распределения количества осадков могут оказывать огромное влияние на органическое вещество и процессы, происходящие в почвах, а также на растения и сельскохозяйственные культуры, произрастающие на них. На почвообразование климата влияет как прямо (определяя энергетический уровень и гидротермический режим почвы), так и косвенно, воздействуя на изменение почв через растительность, жизнедеятельность животных и микроорганизмов.
Анализ содержания гумуса в почвах показал, что, вследствие наблюдаемого изменения климата и используемых технологий для обработки почв, содержание гумуса в почвах уменьшается во всех областях, кроме Чуйской (рис. 3.7).

Наблюдаемая ситуация является серьезной проблемой, угрожающей продовольственной безопасностью. Для ее решения необходимы коренные преобразования методов ведения сельского хозяйства и землепользования. Многочисленные выгоды в этом смысле обеспечивают усовершенствованные технологии сельскохозяйственного производства и использования почвенных ресурсов, способствующие повышению содержания в почве органического углерода: например, агроэкология, органическое земледелие, ресурсосберегающее сельское хозяйство и агролесоводство. Эти методы обеспечивают плодородие почв, повышая содержание в них органического вещества, способствуют сохранению растительного покрова на поверхности почвы, требуют меньше химических удобрений и содействуют севооборотам и биоразнообразию.

Меры по адаптации в сельском хозяйстве

В соответствии с Приоритетными направлениями по адаптации [3.5] в качестве основных адаптивных мер в секторе сельского хозяйства определены следующие:

- оптимизация размещения и специализация сельскохозяйственного производства;
- проведение селекционной работы по выращиванию засухоустойчивых и солеустойчивых культур;
- проведение фитомелиоративных работ;
- интегрированное управление пастбищами и развитие пастбищного животноводства с учетом адаптации к изменению климата;
- улучшение соответствующей сельскохозяйственной инфраструктуры для лучшей адаптации к негативным последствиям изменения климата;
- совершенствование системы мониторинга продовольственной безопасности и создания системы прогнозирования урожайности.

Более подробно действия по адаптации приведены в отраслевом плане МСХМ.

3.4.4. Климатические чрезвычайные ситуации

Раздел подготовлен на основании материала, полученного в рамках Программы по адаптации к изменению климата сектора «Чрезвычайные ситуации» на 2015–2017 гг. [3.12]. КР как горная страна особо подвержена многочисленным стихийным бедствиям природного характера. Из 70 видов распространенных в мире опасных природных процессов и явлений, наносящих значительный ущерб населению, хозяйственной деятельности и инфраструктуре, более 20 проявляются на территории республики. Превентивные адаптивные меры в этом секторе могут принести заметную экономическую выгоду и свести к минимуму угрозы в отношении экосистем, здоровья человека, экономического развития, собственности и инфраструктуры.

Большую часть чрезвычайных ситуаций в стране составляют такие, формирование которых зависит от экстремальных климатических явлений: сели, паводки, оползни, лавины, ливневые дожди, ураганный ветер, град, снегопад.

Природные процессы носят сезонный характер. Например, в зимне-весенний период превалируют лавины; весной начинаются сели и паводки; ближе к лету активизируются оползни. Интуригодовой ход, в целом, для чрезвычайных ситуаций, во многом определяется режимом осадков. Причем,
в большей степени он определяется не изменением средних значений, которые меняются сравнительно медленно, а изменением количества экстремальных значений.

Сели и паводки, ввиду своей исключительной распространенности и частоты, а также по наносному суммарному ущербу находятся на первом месте среди других опасных природных процессов. Почти вся территория республики находится под воздействием селевых потоков. В КР насчитывается 3103 селевых реки. Из общего числа известных случаев селей около 80 % приходится на ливневые. Повторяемость таких селей может быть в отдельных районах ежегодной. Снеготаяние, особенно в сочетании с дождями, как фактор занимает значительное место при формировании селей. Их доля оценивается в 15 % от общего числа. Повторяемость таких селей оценивается от 1 раза в 3-5 лет до 1 раза в 6-10 лет. Доля селей от таяния ледников и сезонных снегов в гляциальной области достигает около 13 % случаев. Менее 1 % приходится на сели прорывного типа от озер и внутриледниковых полостей.

Снежным лавинам подвержены 105 тыс. км², что составляет 53 % всей территории республики. В пределах 779 районов лавинообразования выделено более 30 тыс. лавинных очагов. Лавиноопасный период длится в Кыргызской Республике от 3-4 месяцев (Западный Тянь-Шань) до 11-12 месяцев (Центральный Тянь-Шань). Наиболее часто лавины на Тянь-Шане поражают автодороги в феврале и марте (63 % от общего зарегистрированного количества лавин, причиныющих ущерб автотрассам). На январь приходится 16 % всего количества лавин. В апреле, как правило, регистрируется 13 % общего числа лавин. В декабре сходит порядка 4 % лавин. В ноябре и мае сходят соответственно 1,5 % и 2,5 % лавин. Максимальное количество перемещенного лавинами снега приходится на март (52,6 %). Основная часть лавин сходит с северных и северо-западных склонов.

Обвалы и оползни тяготеют в основном к югу республики, где на отдельных участках территории приходится до 30-40 оползней на 1 кв. км. Всего на юге республики зарегистрировано более 3000 оползней, основной ущерб от которых, а также от обвалов, испытывают автодороги и горняцкие города Майлуу-Суу, Сулюкта, Мин-Куш. В целом в стране существуют 5000 оползневых зон, 3500 из которых развиваются в южном регионе страны.

Анализ наблюдаемых экстремальных погодных явлений

Наблюдения показывают заметный рост экстремальных погодных явлений. На рис. 3.8–3.9 приведены наблюдения на метеостанции в городе Бишкек.

Число дней в году с экстремальными осадками для метеостанции в городе Бишкек также растет. Скорость роста для осадков различного объема составляет:

- осадки более 2,54 мм в день на 0,1357 дня/год;
- осадки более 12,7 мм в день на 0,0302 дня/год;
- осадки более 25,4 мм в день на 0,0018 дня/год.
Наблюдаемый рост экстремальных погодных явлений определяется изменением климатической системы в целом.
Следует предполагать, что ожидаемые изменения климата также приведут к продолжению роста экстремальных погодных явлений в будущем. В последнем оценочном докладе МГЭИК [3.1] приведены глобальные оценки изменения экстремальных погодных явлений (рис. 3.10).

Для оценки прогноза частоты чрезвычайных ситуаций можно использовать математический аппарат, основанный на рассмотрении их распределения во времени [3.14, 3.15 и 3.16]. Чрезвычайная ситуация представляется в виде потока случайных событий, обладающего следующими свойствами:
• ординарность - за достаточно малый промежуток времени происходит не более одной чрезвычайной ситуации;
• отсутствие последействия – после очередной чрезвычайной ситуации их частота не изменяется, хотя, разумеется, меры по предупреждению чрезвычайных ситуаций и снижению их последствий принимаются после каждой чрезвычайной ситуации. Однако, это является составной частью условий их реализации (своегообразными «правилами игры»);
• стационарность – частота чрезвычайной ситуации является постоянной на некотором интервале (хотя бы один год).
При выполнении этих условий поток чрезвычайных ситуаций является простейшим пуссоновским, для которого случайное число чрезвычайных ситуаций, происходящих в течение времени ∆t, распределено по закону Пуассона:

\[P(k) = \frac{m^k e^{-m}}{k!} \]

где,
\(m \) – частота (среднее число чрезвычайных ситуаций за единичный и достаточно малый интервал времени);
\(k \) – конкретное количество чрезвычайных ситуаций.
Естественно, что в условиях изменяющегося климата величина \(m \) будет зависеть от времени, т.е. \(m = f(t) \). Для экстраполяции предполагается, что в течение года величина \(m \) будет постоянной, а для больших интервалов использовано линейное приближение зависимости от времени.

Рис. 3.10. Глобальные прогнозы об изменении частоты экстремальных погодных явлений. Сплошные линии показывают медиану, а затенение определяет зону между 25 и 75 процентами вероятности. Источник: МГЭИК [3.1]

Рис. 3.11. Изменение распределения вероятности селей и паводков
Рис. 3.12. Изменение распределения вероятности оползней

Рис. 3.13. Изменение распределения вероятности лавин

Рис. 3.14. Изменение распределения вероятности ливневых дождей

Рис. 3.15. Изменение распределения вероятности ураганных ветров

Рис. 3.16. Изменение распределения вероятности града
Результаты прогнозирования для основных чрезвычайных ситуаций приведены на рис. 3.11–3.17. Из результатов расчета следует, что распределение ураганных ветров практически не изменяется, а для оползней наблюдается и прогнозируется уменьшение количества чрезвычайных ситуаций. Для остальных чрезвычайных ситуаций увеличивается частота проявления с максимальной вероятностью. Этот рост сопровождается одновременным увеличением разброса между максимальным и минимальным возможным проявлением. Полученные зависимости позволяют оценить вероятность любого количества чрезвычайных ситуаций для каждого года, т.е. оценить риск его проявления.

Используя имеющиеся оценки экономического ущерба от чрезвычайных ситуаций, можно оценить также и вероятность различных значений экономических потерь. Величина экономических потерь в настоящее время определяется по комиссионной оценке прямого ущерба, приходящегося на конкретный вид климатических чрезвычайных ситуаций, по данным Министерства чрезвычайных ситуаций КР (не включая оценки Нацстаткома по ущербу сельского хозяйства). По экспертной оценке специалистов Международного банка реконструкции и развития, полный ущерб от климатических чрезвычайных ситуаций может превышать прямой ущерб в несколько раз. Поэтому следует ожидать, что планируемое изменение методологии оценки ущерба приведет к существенному возрастанию как наблюдаемого, так и ожидаемого ущерба от чрезвычайных ситуаций.

Для оценки ожидаемых изменений количества климатических чрезвычайных ситуаций, в Климатическом профиле [3.6] оценка изменений частоты представлена в виде количественной оценки изменений, приходящихся на 1 °C. В зависимости от выбранного климатического сценария по этой таблице можно оценить количество климатических чрезвычайных ситуаций для любого конкретного временного периода. Естественно, что подобное представление, как и любое другое, использующее статистические оценки, не может быть распространено на значительные периоды в будущем, так как оно не учитывает изменения в физическом характере условий формирования климатических чрезвычайных ситуаций при значительных изменениях внешних условий.

Таблица 3.12. Рост количества климатических чрезвычайных ситуаций в процентах по областям при повышении температуры на 1 °C. Источник: Климатический профиль КР [3.6]

<table>
<thead>
<tr>
<th>Вид ЧС</th>
<th>Чуйская область</th>
<th>Ошская область</th>
<th>Джалал-Абадская область</th>
<th>Баткенская область</th>
<th>Иссык-Кульская область</th>
<th>Нарынская область</th>
<th>Таласская область</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оползни</td>
<td>–4,31</td>
<td>1,28</td>
<td>5,23</td>
<td>0,90</td>
<td>0,41</td>
<td>3,12</td>
<td>nd</td>
</tr>
<tr>
<td>Лавины</td>
<td>7,14</td>
<td>12,96</td>
<td>21,57</td>
<td>nd</td>
<td>12,58</td>
<td>5,67</td>
<td>nd</td>
</tr>
<tr>
<td>Сели и паводки</td>
<td>9,23</td>
<td>50,24</td>
<td>24,25</td>
<td>20,79</td>
<td>12,58</td>
<td>5,67</td>
<td>3,40</td>
</tr>
<tr>
<td>Подтопления</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Ливневые дожди</td>
<td>–0,45</td>
<td>–2,72</td>
<td>–3,45</td>
<td>–1,24</td>
<td>–0,83</td>
<td>–0,58</td>
<td>0,91</td>
</tr>
<tr>
<td>Ураганные ветры</td>
<td>4,91</td>
<td>5,60</td>
<td>–0,51</td>
<td>0,79</td>
<td>22,68</td>
<td>–0,92</td>
<td>2,48</td>
</tr>
<tr>
<td>Град</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Снегопады</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Сумма</td>
<td>10,42</td>
<td>66,72</td>
<td>44,68</td>
<td>21,24</td>
<td>49,07</td>
<td>13,76</td>
<td>7,84</td>
</tr>
</tbody>
</table>

нд – означает отсутствие или недостаточность данных для корректной оценки

Меры по адаптации в секторе чрезвычайных ситуаций

В соответствии с Приоритетными направлениями [3.5] в качестве основных адаптивных мер в секторе чрезвычайных ситуаций определены следующие:

- совершенствование системы мониторинга и прогнозирования опасных погодных явлений;
- совершенствование системы раннего оповещения населения и организаций в целях предотвращения человеческих жертв и минимизации экономического ущерба;
- совершенствование строительных норм для обеспечения устойчивости инфраструктуры к опасным климатическим проявлениям;
развитие системы страхования погодно-климатических рисков;
разработка превентивных мероприятий по подготовке общественных, медицинских и социальных учреждений к работе в экстренном и чрезвычайном режиме с целью оказания помощи населению, оказавшемуся в бедственном положении из-за возникновения паводков, наводнений, природных пожаров, сильных морозов или тепловых волн, а также в других чрезвычайных ситуациях, связанных с изменением климата.

Более подробно действия по адаптации приведены в отраслевом плане МЧС.

3.4.5. Здравоохранение

Уязвимость сектора оценивалась с использованием статистических моделей, связывающих изменение показателей смертности и заболеваемости с климатическими факторами. Как уже было отмечено выше, такой подход не может обеспечить корректность оценок на длительный период, что определяет необходимость регулярного уточнения полученных оценок на будущее.

Наблюдаемое воздействие изменения климата на здоровье:
- повышение смертности и травматизма от стихийных бедствий. Количество смертей за 2002-2007 годы в среднем составляло 61 случай в год. В 2008 году был зарегистрирован 281 случай смерти. Большинство случаев причин смерти связано с наводнениями и селями;
- годы потенциально потерянной жизни вследствие изменения климата. Количество потерь здоровых лет жизни увеличивается в связи с изменением температуры, осадков и атмосферного давления. При этом, зависимость от температуры является наиболее сильной;
- смертность среди женщин от болезней органов дыхания в связи с атмосферным давлением была выше, чем у мужчин. Женщины в возрасте 15-44 лет более чувствительны к изменению атмосферного давления, при этом установлена прямая зависимость влияния изменения атмосферного давления на смертность по причине болезней органов дыхания;
- уязвимые группы населения в отношении статуса здоровья. Дети младшего возраста, особенно с пониженным весом и недостаточным питанием, а также лица, страдающие сердечно-сосудистыми и респираторными заболеваниями, лица с плохим здоровьем и пожилые люди наиболее чувствительны к воздействию тепловых волн;
- инфекционные болезни и изменение климата. Наблюдается рост желудочно-кишечных инфекций, в частности, сальмонеллеза, в связи с увеличением температуры и загрязнением воды в результате наводнений. Высокая распространенность гельминтов снижает всасываемость питательных веществ, потенциально увеличивая риск развития недостаточности питания у уязвимых детей во время неурожая. Такая инфекция, как малярия, в настоящее время регистрируется меньше, однако, более теплые температуры повышают риск повторного возникновения и распространения малярии.

Прогнозируемые воздействия изменения климата на здоровье:
- ожидается повышение сердечно-сосудистых заболеваний. К 2100 г. по сравнению с 2010 г. число случаев сердечно-сосудистых болезней увеличится на 10,5 % в связи с повышением температуры по наиболее неблагоприятному климатическому сценарию;
- ожидается повышение уровня кишечных заболеваний. По оценочным данным, к 2100 г., по сравнению с 2010 г., инфекционная заболеваемость, в частности острыми кишечными инфекциями, среди детей до 1 года повысится на 18,2 % (среди мальчиков) и 17,8 % (среди девочек);
- районы высокого потенциала возобновления малярии. При повышении среднегодовой температуры воздуха определены районы высокого риска возникновения малярии на территории республики, особенно на юге (Ошская, Джала-Абадская и Баткенская области);
- прогнозируются распространение и увеличение инфекций, передаваемых клещом. Расширение ареала и повышение периода активности клещей значительно повысит риск заболеваемости среди населения болезнями, передаваемыми клещами, особенно энцефалитом;
- потенциальные выгоды для здоровья от изменения климата. В зимний период ожидается снижение показателей смертности и случаев респираторных заболеваний в связи с уменьшением количества осадков. Однако изменение климата в связи с увеличением изменчивости погоды может уменьшить эти потенциальные выгоды.
В результате проведенной оценки влияния изменения климата на здоровье населения установле-
но наличие количественной зависимости болезней системы кровообращения, органов дыхания от
климато-метеорологических факторов.

- **сердечно-сосудистые заболевания.** Лица пожилого возраста более чувствительны к измене-
нию температуры и количеству осадков. Установлено, что показатели заболеваемости мужчин
болезнями системы кровообращения (I00-I99) на 100 тысяч населения в 1,4–2,1 раза выше, чем
у женщин. При этом, наиболее уязвимыми являются лица в возрасте 64–75 лет, затем – 75 лет
и более, и далее 45–64 года. Ожидается, что к 2100 году показатели заболеваемости населения
сердечно-сосудистыми заболеваниями (I00-I99) возрастут на 1,6 %–2,4 %, в зависимости от кли-
матических сценариев, также ожидается увеличение на 10,5 % случаев болезней сосудов – ар-
терий, артериол и др. (I70-I79), по сравнению с 2010 годом;

- **болезни органов дыхания.** Установлено, что к температуре воздуха наиболее уязвимы три воз-
растные категории – дети в возрасте 0–1 года, затем лица в возрасте 75 лет и старше, далее в
возрасте 64–75 лет (рис. 3.18-3.20). Мужчины более уязвимы к низким температурным климати-
ческим изменениям в части болезней органов дыхания (J00-J99). Так, у лиц в возрасте 75 лет и
старше ожидается увеличение в 1,9 раза этих показателей, по сравнению с таковыми у женщин
(917,7 случаев против 459,9 случаев на 100 тысяч населения соответственно);

- **инфекционные болезни и изменение климата;** к 2100 году ожидается увеличение случаев острых
кишечных инфекций на 15,9 % и 10,6 %, по сравнению с базовым 2005 годом, в зависимости от
климатических сценариев;
Данные результатов прогнозируемой инфекционной заболеваемости населения г. Бишкек показывают, что максимальное количество обращений в станцию скорой медицинской помощи будет в возрастной группе до 1 года (летом, в июле – 790-890 случаев и минимальное – зимой, в январе – 300-370 случаев на 100000 населения). При наиболее неблагоприятном климатическом сценарии к 2100 году ожидается увеличение показателей заболеваемости острыми кишечными инфекциями у детей в возрасте до 1 года, на 18,2 % – у мальчиков (м) и 17,8 % – у девочек (ф), по отношению к 2010 году (рис. 3.21-3.22).

Меры по адаптации в секторе здравоохранения
В Программе сектора здравоохранения КР по адаптации к изменению климата на период 2011-2015 гг. предусмотрены следующие направления адаптации:
• совершенствование нормативной правовой базы в части предупреждения негативного влияния климатических факторов на состояние здоровья населения, в том числе, в части строительства зданий для лечебно-диагностических и профилактических целей;
• отслеживание соблюдения стандартов температурного режима в медицинских учреждениях при подготовке проектов генеральных планов городов и типовых зданий;
• пересмотр учебных программ медицинских вузов и колледжей по вопросам медицинской климатологии;
• разработка методических рекомендаций по сезонной и текущей вторичной профилактике коронарной болезни сердца, мозгового инсульта;
• мониторинг инфекционной заболеваемости населения в сезонном аспекте;
• выявление уязвимых групп людей, их учет, диспансеризация, информирование о неблагоприятных климато-метеорологических условиях (использование для раннего оповещения мобильной сети – SMS);
• мониторинг безопасности питьевой воды и продуктов питания;
• разработка планов действия в целях обеспечения готовности лечебно-профилактических учреждений на случай длительной жары и длительного холода;
• использование энергоэффективных и энергосберегающих технологий в секторе здравоохранения;
• использование возобновляемых источников энергии для обеспечения горячей водой и электричеством учреждений здравоохранения;
• проведение просветительской работы центрами укрепления здоровья с местными сообществами.
3.4.6. Лес и биоразнообразие

Анализ уязвимости леса и биоразнообразия производился с учетом адаптационного потенциала, который в значительной степени определяется скоростью возможного перемещения в сторону оптимальных климатических условий. Естественно, что отдельные виды в экосистемах имеют различные максимальные скорости перемещения по ландшафтом (рис. 3.23).

В соответствии с информацией, содержащейся на рис. 3.23, создается впечатление, что горные экосистемы наименее уязвимы к изменению климата в силу наименьшей скорости «перемещения» температуры по горизонтали. Но необходимо учитывать, что в горных экосистемах это перемещение происходит также по вертикали, естественно, приводит к уменьшению площади ареала с оптимальными лимитирующими параметрами для конкретной экосистемы. А в некоторых случаях возможны существенные изменения в вертикальном распределении видов.

Кроме того, очевидно, что в целом экосистема может перемещаться с максимальной скоростью наименьше медленного вида. Обычно таким видом является растительность, которая находится в основании пищевой цепи каждой экосистемы. Отсюда, при угнетении растительности угнетается и вся экосистема в целом.

Оценка уязвимости производилась на основании анализа смещения оптимальных зон существования экосистем при ожидаемом изменении климата. В рамках подготовки Национальных приоритетов по адаптации был проведен анализ эволюции оптимальных зон существования растительности для ожидаемых изменений климата. Анализ сделан для основных лесообразующих пород деревьев Кыргызской Республики – арча зеравшанская, арча полушаровидная, арча туркестанская, ель и пихта, орех грецкий. Мониторинг этих деревьев достаточно удовлетворителен по сравнению с другими видами растительности.

На первом этапе было сформировано распределение площадей этих пород деревьев по средней годовой температуре и годовой сумме атмосферных осадков и выделены интервалы низкой, средней и высокой вероятности произрастания. Результаты дополнительных исследований показали необходимость учета также угла наклона местности для ореха грецкого и экспозиции местности - для ели и пихты, которые являлись дополнительной информацией для определения оптимальных условий произрастания.

На втором этапе были определены зоны адаптации для основных лесообразующих пород деревьев по различным климатическим сценариям (RCP 2.6, RCP 6.0 и RCP 8.5).

Результаты моделирования показали значительные смещения зон адаптации, естественно, зависящего от используемого климатического сценария. Причем адаптивное смещение наблюдалось даже при наиболее благоприятном климатическом сценарии. В приложении 5 приведены результаты расчета возможных смещений ареалов основных лесообразующих пород деревьев для различных климатических сценариев (RCP 2.6, RCP 6.0 и RCP 8.5).

Полученная информация является основанием для повышения эффективности действий по сохранению и расширению существующих площадей, занимаемых основными лесообразующими породами.
Аналогичный подход можно использовать и для оценки территориальной эволюции отдельных видов биоразнообразия и экосистем для ожидаемых изменений климата.

Меры по адаптации в секторе лес и биоразнообразие
В соответствии с Приоритетными направлениями по адаптации [3.5] в качестве основных адаптационных мер в секторе «лес и биоразнообразие» определены следующие:
• повышение эффективности управления системой особо охраняемых природных территорий;
• сохранение и восстановление водно-болотных угодий, как мест обитания представителей естественного биоразнообразия и важнейшего компонента природной среды, играющего решающую роль в процессах при адаптациях к изменению климата;
• учет рекреационной емкости территорий при планировании туристической деятельности и т.д.;
• продвижение принципов социального лесоразведения и совместного управления лесами;
• проведение лесоустроительных и лесовосстановительных мероприятий и т.д.

Более подробно действия по адаптации приведены в отраслевом плане ГАООСЛХ.

3.5. Необходимые ресурсы и приоритетность секторов

На основании суммирования отраслевых планов рассчитаны общие затраты, необходимые для реализации адаптационных мер в КР (рис. 3.24). Затраты определены с делением на собственные ресурсы (в пределах средств, выделяемых министерствам и ведомствам на соответствующий год), а также ресурсы, получение которых предполагается за счет международной поддержки.

В соответствии с принятым критерием приоритетности адаптационных действий (раздел 3.4.1) произведена оценка эффективности затрачиваемых средств по различным секторам (исключая сектор энергетики). Сектор сельского хозяйства разбит дополнительно на два основных подсектора – водные ресурсы и собственно сельское хозяйство, которое включает в себя растениеводство и животноводство. Исходя из полученных оценок, наиболее приоритетным по эффективности является сектор сельского хозяйства (рис. 3.25).

Рис. 3.24. Объем ресурсов, необходимых для адаптации

Рис. 3.25. Приоритетность секторов
Анализ смягчения последствий изменения климата
4.1. Методология

При разработке раздела в качестве основного руководящего документа использовано решение 17/CP8 Конференции Сторон РКИК ООН.

В качестве рекомендательных материалов использованы следующие:
• UNFCCC. Resource Guide. Module 4: Measures to Mitigation Climate Change for Preparing the National Communications of Non-Annex I Parties. 2008;
• Handbook for Conducting. Technology Needs Assessment for Climate Change. UNDP. 2010;
• Training Handbook on Mitigation Assessment for Non-Annex I Parties. UNFCCC’s Consultative Group of Experts on national communications from Parties not included in Annex I to the Convention. May 2006;
• IPCC Fifth Assessment Report: Climate Change 2013 (AR5). Working Group III "Mitigation of Climate Change";

Для анализа использованы долгосрочные демографические и макроэкономические сценарии для КР до 2100 г., разработанные в рамках подготовки настоящего Национального сообщения. Необходимость в долгосрочных сценариях объясняется требованиями учета весьма длительных сроков реализации основных планируемых мер по смягчению и еще более длительными последствиями, например, в использовании водных ресурсов, особенно в гидроэнергетике.

Для получения энергетических и эмиссионных сценариев при различных вариантах развития применялся комплекс LEAP (Long-range Energy Alternatives Planning system), версия 2014.0.1.9 и разработанная в Кыргызской Республике модель SHAKYR.

4.2. Исходные предпосылки

4.2.1. Исходная информация

Основанием и исходной информацией для действий по анализу смягчения является следующее:
1) Результаты инвентаризации эмиссий и стоков парниковых газов, а также газов-предшественников, проведенной в рамках настоящего Национального сообщения об изменении климата (раздел 2).

2) Национальные и местные планы, программы, стратегии и т.д., в которые включены действия по сокращению эмиссий и повышению стоков ПГ, а также сокращению эмиссий газов-предшественников:
• Национальная стратегия устойчивого развития Кыргызской Республики на период 2013-2017 годы. Утверждена Указом Президента КР от 21 января 2013 года № 11;
• Программа по переходу Кыргызской Республики к устойчивому развитию на 2013-2017 годы. Утверждена постановлением Жогорку Кенеша КР от 18 декабря 2013 года № 3694-V;
• Концепция экологической безопасности Кыргызской Республики. Утверждена Указом Президента КР от 23 ноября 2007 года № 506 (до 2020 года);
• Национальная энергетическая программа Кыргызской Республики на 2008-2010 годы и Стратегия развития топливно-энергетического комплекса до 2025 года. Одобрена постановлением Жогорку Кенеша КР от 24 апреля 2008 года № 346-IV;
• Программа развития малой и средней энергетики в Кыргызской Республике до 2012 года. Утверждена Указом Президента КР от 14 октября 2008 года № 365;
• Среднесрочная стратегия развития электроэнергетики Кыргызской Республики на 2012-2017 годы. Приложение 1 к постановлению Правительства КР от 28 мая 2012 года № 330;
• Стратегия развития автомобильного транспорта Кыргызской Республики на 2012-2015 годы. Утверждена постановлением Правительства Кыргызской Республики от 4 октября 2012 года № 677;
• Национальная лесная программа на 2005-2015 годы. Утверждена постановлением Правительства КР от 25 ноября 2004 года № 858;
• Государственная программа использования отходов производства и потребления. Утверждена постановлением Правительства КР от 19 августа 2005 года № 389 (2005-2011 годы);
• Программа сектора здравоохранения Кыргызской Республики по адаптации к изменению климата на период 2011-2015 годы. Утверждена приказом Министерства здравоохранения КР от 31 октября 2011 года № 531;
• Долгосрочная стратегия по теплоснабжению Кыргызской Республики. Одобрена постановлением Правительства КР от 27 апреля 2004 года № 300 (2004 – 2015 гг.);
• Концепция развития жилищно-коммунального хозяйства и системы жизнеобеспечения города Бишкек на 2008-2010 годы. Одобрена постановлением Бишкекского городского кенеша от 18 февраля 2008 года № 419. Действие продлено до 31 декабря 2012 года в соответствии с постановлением Бишкекского городского кенеша от 20 декабря 2011 года № 297;
• Концепция Муниципальной программы по энергоэффективности для зданий г. Бишкек. Приложение к постановлению Мэрии города Бишкек от 23 ноября 2005 года № 1063 (2005-2016 годы);
• Концепция устойчивого развития эколого-экономической системы «Иссык-Куль» на период до 2020 года. Утверждена Указом Президента КР от 10 февраля 2009 года № 98.

4.2.2. Определение целей

Основной целью сокращения эмиссий ПГ на краткосрочный период является выполнение официальных добровольных обязательств КР по сокращению эмиссий ПГ [4.17]. За 2010 г. вклад республики в общемировые эмиссии ПГ от сжигания ископаемого топлива составляет 0,023 %, тогда как население составляет 0,079 % всего населения мира, т.е. объем эмиссий ПГ на душу населения в КР в настоящее время более чем в три раза ниже средних мировых показателей [4.14]. Несмотря на это, Кыргызская Республика считает необходимым внести свой вклад в решение глобальной проблемы изменения климата и добровольно обязалась сократить свои эмиссии ПГ на 20 % к 2020 г., по отношению к сценарию «бизнес как обычно», при соответствующей адекватной поддержке со стороны международного сообщества. Очевидно, что планируемые меры по сокращению эмиссий должны обеспечивать выполнение принятых обязательств.

Последние оценки последствий изменений климата при повышении глобальной температуры более чем на 2°С, приведенные в Пятом Оценочном докладе МГЭИК и отчете Потсдамского института исследования воздействия изменения климата [4.21], показывают катастрофические последствия подобного повышения. Поэтому для более долгосрочной перспективы рассмотрены пути достижения эмиссий, обеспечивающих предотвращение роста глобальной температуры более чем на 2 °C.

В отчете Сети ООН по устойчивому развитию [4.20] рассмотрены два возможных сценария. С учетом предположения о нулевом балансе до 2100 г. прочих источников СО2, кроме энергетики и промышленности, весь кумулятивный объем эмиссий до 2100 г. по сценарию МГЭИК RCP 2.6 составляет 950 Гт [4.12]. Исходя из разделения для сценария RCP 2.6 этого объема эмиссий между периодами 2011-2050 и 2051-2100 гг. на 825 и 125 Гт соответственно, можно определить цель по объему эмиссий на 2050 г. По оценке, приведенной в отчете [4.13], эмиссии в 2050 г. должны быть менее 11,7 Гт СО2, что с учетом предполагаемой численности населения мира определяет удельные эмиссии, которые составят 1,23 т СО2/чел. Это обеспечивает предотвращение роста глобальной температуры более чем на 2 °C.

Международным энергетическим агентством рассмотрен сценарий 2DS – 2°C scenario, который является более мягким в плане сокращения эмиссий СО2, но и менее вероятно обеспечивающим недопущение превышения предельной температуры в 2 °C. Сценарий 2DS определяет, что глобальные эмиссии СО2 должны составлять в 2050 г. 15 Гт СО2. Используя предполагаемую численность населения мира можно определить уровень удельных эмиссий, которые составят 1,58 т СО2/чел. В соответствии с этим сценарием, предотвращение роста глобальной температуры более чем на 2 °C обеспечивается с вероятностью 50 %.

Удельные оценки эмиссий 1,23 и 1,58 т СО2/чел., умноженные на оценку ожидаемой численности населения, определяют желательные величины эмиссий СО2 на 2050 г., которые должны обеспечить национальные меры по сокращению эмиссий парниковых газов, так как эмиссии прочих ПГ для основных источников нетрудно определить исходя из эмиссий СО2.

Учитывая достигнутый в настоящее время уровень глобальных эмиссий СО2 и наблюдаемые тенденции роста (см. рис. 4.1), достижение целей с 15 и тем более 11,7 Гт СО2, является исключительно трудной задачей, требующей совместных усилий всего мирового сообщества.
4.2.3. Сценарии развития

4.2.3.1. Демографические сценарии

Вследствие отсутствия долгосрочных национальных демографических исследований в качестве основы приняты демографические сценарии ООН, разрабатываемые на регулярной основе для всех стран и доступные в публикации ООН «Перспективы всемирного населения» [4.28]. Прогнозы ООН производятся с использованием общепринятого стандартного когортно-компонентного проекционного метода или матричного метода Лесли.

Основные демографические характеристики для КР с использованием сценариев ООН в последней имеющейся версии расчета (2012 г.) представлены на рис. 4.2–4.4.

Фактически рассчитывается только средний вариант, низкий и высокий варианты выводятся из среднего с изменением (+ / –) скользящего во времени суммарного коэффициента возрастной рождаемости на половину ребенка, т.е. по эмпирическому правилу. В результате демографические прогнозы охватывают достаточно широкий спектр возможных изменений без вероятностной интерпретации, необходимость которой уже признана самими разработчиками. Поэтому далее основное внимание следует относить к среднему варианту прогноза численности населения как наиболее обоснованному, а низкий и высокий варианты прогноза численности населения КР, понимать как гипотетически возможные, но менее вероятные в будущем.

Изменения в возрастной структуре населения (рис. 4.3) служат исходной информацией для определения численности трудоспособного населения страны.

Прогноз доли городского населения ООН рассчитан только до 2050 г. Как видно из рис. 4.4, процесс обретения независимости республиками Центральной Азии внес существенные изменения в демографические процессы. Ранее рост доли городского населения практически совпадал с общемировыми тенденциями, затем он замедлился, но характер изменений позволяет без особых затруднений проведение экстраполяции до 2100 г.
Глава 4. Анализ смягчения последствий изменения климата

Рис. 4.3. Изменения в возрастной структуре населения для среднего варианта прогноза численности населения

Рис. 4.4. Фактическая и прогнозная доля городского населения

Кроме приведенных основных демографических характеристик, также были определены ожидаемые тенденции для изменения плотности населения, продолжительности жизни и предполагаемой миграции. Следует отметить, что миграционные сценарии выглядят схематично и недостаточно обоснованными, поэтому далее во внимание не принимаются.

4.2.3.2. Макроэкономические сценарии

Экономика КР в силу ряда обстоятельств в значительной степени зависит от мировых тенденций развития стран – основных торговых партнеров и развивается в условиях влияния множества рисков и угроз, включая климатический фактор. Надо признать, что мировой опыт оценки долгосрочных макроэкономических сценариев крайне ограничен, включая долгосрочный прогноз мировых цен на сырьевых и продовольственных рынках. Кроме того, горизонт прогнозирования по различным источникам не превышает отметки 2050 г. Также следует отметить, что данные прогноза в отдельных источниках часто имеют противоречивые оценки.
Тренды экономического роста по макроэкономическим сценариям построены с использованием модели расчета ВВП по методу производства с учетом ретроспективных оценок экономического развития КР и важнейших предпосылок и условий долгосрочного развития экономики страны.

При разработке долгосрочных сценариев экономического развития были учтены как внешние, так и внутренние условия и предпосылки. В число наиболее значимых внешних факторов воздействия на национальную экономику в долгосрочной перспективе рассматривались такие факторы, как:

- долгосрочные темпы роста мировой экономики;
- глобальные демографические прогнозы;
- долгосрочные прогнозы мировых цен на нефть, газ, драгоценные металлы и продовольствие;
- прогнозируемые темпы деградации земель;
- потребление первичной энергии;
- глобальное изменение климата.

Из числа внутренних предпосылок и условий при формировании сценариев долгосрочного экономического развития во внимание в качестве основных приняты:

- политический курс страны на устойчивое развитие на период до 2017 года;
- демографические сценарии для КР;
- рост национального потребления энергии;
- ограничения для диверсификации национальной экономики;
- уровень износа основных фондов;
- национальные планы, стратегии и программы развития.

Исходя из данных расчета прогноза секторов производства ВВП, предполагается, что в долгосрочной перспективе сохранится сервисно-аграрная модель экономического развития КР. Суммарно, удельный вес сферы услуг и сельского хозяйства, вероятно, будет составлять около 2/3 ВВП республики. Но некоторые структурные сдвиги в экономике при различных сценарных условиях неизбежны, поскольку являются естественным отражением воздействия на экономику страны государственной регуляторной политики.

В случае усиления мер государственного регулирования, удельный вес как рыночных, так и нерыночных услуг существенно расширяется, тогда как при минимизации мер государственного регулирования их доля существенно сокращается.

Следствием структурных сдвигов (сокращение удельного веса секторов услуг и строительства) становится расширение доли аграрного сектора при усилииении государственного регулирования. В обратном случае, за счет ускоренного, по сравнению с предыдущим, роста сектора услуг и строительства, структура производства ВВП изменяется в сторону уменьшения доли сельского хозяйства.

Для обоснования «угла наклона» кумулятивных долгосрочных трендов был проведен факторный анализ и определена суммарная оценка коэффициентов вклада основных факторов, влияющих на показатели экономического роста в долгосрочной перспективе до 2100 года. Факторный анализ проводился с целью обоснования степени достоверности кумулятивных долгосрочных трендов, полученных расчетным путем на основе экстраполяции с 2002 г. ретроспективных динамических рядов по секторам производства ВВП, с учетом основных внешних и внутренних предпосылок и условий экономического развития национальной экономики на период до 2100 года. Основные ключевые влияющие факторы были сгруппированы по традиционным макроэкономическим критериям:

- факторы предложения/производства;
- факторы спроса;
- прочие факторы.

Строка «прочие факторы» использовалась вариативно на экспертном уровне для получения результатов, удовлетворяющих наилучшим вариантам достоверности. Без учета прочих факторов, уровень достоверности долгосрочных трендов экономического развития составил от 81 до 85 %. Ниже приведена расчетная формула по коэффициентам вклада каждого фактора в кумулятивный прирост ВВП по каждому из сценариев:
\[C = d_1 \times r_1 + d_2 \times r_2 + ... + d_n \times r_n \]

где
- \(C \) – коэффициент вклада;
- \(d_1, d_2, ..., d_n \) – удельные веса факторов, влияющих на темп роста ВВП;
- \(r_1, r_2, ..., r_n \) – кумулятивные темпы прироста / изменения влияющих факторов в 2100 году.

Подавляющая часть прогнозов мировой экономики демонстрирует колебания экономического роста в тесной взаимосвязи с демографическими процессами. Поэтому при разработке долгосрочных макроэкономических сценариев был интегрирован демографический компонент.

Анализ ретроспективных данных и прогнозов в целом соответствует наиболее распространенной в мировой практике концепции «экономии масштаба». В ней признано, что влияние роста населения на экономический рост является взаимным и комплексным. Такие проблемы, как безработица, недоразумение, вызываются многими факторами, и сосредоточение внимания только на снижении роста населения без последовательного учета других основных причин таких явлений может вести к неправильным результатам.

С другой стороны, демографические факторы выступают функцией социального и экономического развития. Богатство может вести к увеличению числа детей, но использование их труда может перекрывать расходы на их содержание и воспитание. Вместе с тем состоятельные люди склонны иметь меньше детей, в то время как бедность часто сопровождается не только высокой смертностью, но и высокой рождаемостью.

Анализ ретроспективных данных и динамических рядов прогнозируемых параметров развития национальной экономики до 2100 года позволяет отчетливо выявить наличие явных временных отрезков, чередующихся с некоторыми подъемами и спадами экономического роста, что позволяет на каждом из этих отрезков/циклов сделать конкретные предположения и обоснования.

1 цикл: 2010-2025 гг. (15 лет) – переход к устойчивому развитию.

В январе 2013 года главой государства объявлен курс на устойчивое развитие в рамках Национальной стратегии до 2017 года. На этот период заявлен оптимистичный макроэкономический прогноз с реальным приростом экономики на 7,5 % в среднем за год.

Поэтому, наиболее вероятно, что после 2017 г. этот цикл будет характеризоваться замедлением экономического роста, при условии, что в период 2013–2017 гг. экономический рост достигнет 6,5 %–7,5 % в среднем за год.

Прогноз ускоренной капитализации экономики в этот период через запуск планируемых крупнейших инвестиционных проектов может спровоцировать риск «перегрева» экономики, поскольку валовые накопления основного капитала прогнозируются в этот период до 35 % к ВВП в среднем за год или порядка 2 млрд долларов США. Воспроизводство вложенных инвестиций можно ожидать на следующем этапе/цикле развития.

Поэтому, наиболее вероятным является предположение о том, что далее, в период 2017–2025 гг. будет замедление роста экономики. Это может быть еще связано с влиянием внутриполитических событий: со сменой высшего руководства, изменением политической платформы и, как следствие, возможно, со сменой стратегического курса развития.

Помимо этого, наиболее вероятными причинами замедления роста экономики в этот период могут быть ограниченные возможности для диверсификации национальной экономики. После 2020 г. компенсационный потенциал национальной экономики еще не сможет покрыть потери, связанные с постепенным уменьшением существующей добычи полезных ископаемых.

2 цикл: 2025-2060 гг. (35 лет) – инвестиционный прорыв.

Расчетные данные по данному экономическому циклу развития национальной экономики демонстрируют следующие периоды роста и спада, с которыми наиболее вероятно могут быть связаны следующие события и факторы:

1) Нарастание позитивных тенденций в экономике в период 2025–2040 гг. Внутренние влияющие факторы:
- экологическая направленность экономики;
- повышение качества государственного управления через реформы, включая снижение уровня коррупции в стране;
- благоприятные условия для развития бизнеса в стране;
– получение социально-экономических выгод от инвестиционных проектов, запущенных до 2025 г.:
– повышение экономических возможностей за счет улучшения транспортной инфраструктуры;
– сокращение дефицита электроэнергии за счет ввода дополнительных генерирующих мощностей по производству электроэнергии;
– внедрение энергосберегающих и энергоэффективных технологий;
– положительная динамика в сельском хозяйстве за счет реализации ирригационных проектов и расширения органического сельского хозяйства.

2) Замедление роста экономики, предполагаемое в период 2040–2060 гг. на этом этапе будет связано, в основном:
– с завершением, в основном, реализации крупных инвестиционных проектов;
– с завершением эксплуатации крупных действующих месторождений (золото, уголь, нефть, газ), с учетом того, что разведка новых месторождений в настоящее время ведется недостаточно активно;
– с инерционным развитием сельского хозяйства и ростом проблемы обеспечения продовольственной безопасности из-за постепенного сокращения посевных площадей и пастбищ в результате деградации земель (по прогнозам, годовые темпы деградации земель будут расти в пределах 4,5–12 % в среднем за год), из-за чего появляется безотлагательная потребность рекультивации земель и технологической модернизации агропромышленного сектора экономики;
– с истощением запасов водных ресурсов (при негативной тенденции изменения климата, в сторону стабилизации или снижения осадков).

В этот период наиболее вероятен технологический прорыв и модернизация экономики с повсеместным внедрением ресурсосберегающих технологий. При условии сохранения стратегического курса на устойчивое развитие, этот процесс может идти при поддержке международных организаций и финансовых институтов.

Высокая стоимость энергии будет подталкивать к широкому внедрению энергосберегающих технологий и энергоэффективности во всех секторах и, в первую очередь, в жилом секторе. Прогнозируется, что показатели энергосбережения улучшатся в среднем на 60 %, а к 2100 году, возможно, и на 90 %.

В этот период в аграрном секторе надо ожидать активных мер по рекультивации земель и внедрению ресурсосберегающих зеленых технологий. Все больше ресурсов будет тратиться на внедрение достижений научно-технического прогресса в сельское хозяйство, что позволит увеличить эффективность использования ресурсов, прежде всего земли и воды. Внедрение энергосберегающей техники и технологий позволит добиться сокращения потребления энергии в расчете на единицу продукции.

В горнодобывающей отрасли начнется новый этап освоения месторождений полезных ископаемых с использованием новых технологий и инновационных методов, которые позволят минимизировать их негативное воздействие на окружающую среду.

Обрабатывающие отрасли промышленного производства получат новый импульс в развитии, а сфера услуг значительно расширится за счет новых видов услуг, включая формирование современного рынка IT-услуг и технологий. Процесс модернизации национальной экономики позволит повысить конкурентоспособность страны в целом.

На этом этапе национальной экономики человеческие ресурсы могут реально трансформироваться в человеческий капитал.

4 цикл: 2090–2100 гг. (10 лет) инновационная модель национальной экономики.
Предполагаемое в 2070–2080 гг. технологическое насыщение (из-за малых размеров национальной экономики) сменится в 2090–2100 гг. новым циклом перехода национальной экономики к инновационной модели. Будут ликвидированы современные технопарки по разработке и внедрению инноваций в традиционные и новые отрасли национальной экономики.

Результаты оценки макроэкономических сценариев представлены на рис. 4.5. Заметные искажения последовательного экономического роста являются следствием описанной выше цикличности развития экономики республики в различные периоды ускоренного и замедленного роста.
4.2.3.3. Методология построения базовых сценариев развития

Результаты прогноза основных демографических и макроэкономических показателей представлены в суммарной таблице 4.1 для различных сценариев развития. Прочие показатели, используемые для расчетов базовых сценариев, являются производными от приведенных в таблице.

На основании известных тенденций, для высокого уровня экономического роста принят низкий уровень роста населения. Хотя, вполне вероятно, что в действительности возможны и другие сочетания вариантов экономического и демографического роста, но перебор всех возможных сочетаний представляется излишним усложнением. С другой стороны, принятие крайних сочетаний обеспечивает значительную вероятность того, что действительное развитие находится между ними. Уровень экономического развития страны принят пропорциональным величине ВВП на душу населения. Естественно предположить, что более точно уровень жизни характеризуется не величиной ВВП на душу населения в постоянных долларах США, как это приведено в таблице 4.1, а величиной ВВП по паритету покупательной способности (ППС) в постоянных долларах США.

Однако существуют значительные проблемы прогнозирования величины ВВП по паритету покупательной способности на будущее. Кроме того, к сожалению не найдено достаточно полных и надежных источников информации о величине ВВП по ППС для различных стран и временных периодов в ретроспективе, что требуется далее для сравнительного анализа. Например, в базе данных Всемирного банка содержатся данные только с постоянным для всего временного периода (начиная с 1961 г.) коэффициентом соответствия ВВП и ВВП по ППС, не учитывающим существенное изменение во времени для развивающихся стран. Тогда как очевидно, что коэффициент соответствия существенно и статистически значимо зависит от величины ВВП (рис. 4.6).

4.2.4. Учет особенностей национальной системы учета

Несоответствие структуры национальной системы учета топливно-энергетических показателей и структуры секторов, принятой при инвентаризации ПГ и газов-прекурсоров, создает определенные трудности в проведении расчетов и неизбежно вносит дополнительные неопределенностя в итоговые результаты. Построение эмиссионных сценариев добавляет дополнительные проблемы, так как внутри отдельных секторов/подсекторов или статей баланса необходимо детальное раздельное в связи с различными источниками, влияющими на их тенденции изменения в будущем. Наиболее характерным примером является подсектор 1А1 «Производство энергии». На рис. 4.7 в качестве при...
<table>
<thead>
<tr>
<th>Показатель</th>
<th>Единица измерения</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
<th>2070</th>
<th>2080</th>
<th>2090</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td></td>
</tr>
<tr>
<td>Население</td>
<td>тыс. чел.</td>
<td>5418,3</td>
<td>6005,4</td>
<td>6475,2</td>
<td>6747,7</td>
<td>6739,2</td>
<td>6460,6</td>
<td>6107,5</td>
<td>5699,5</td>
<td>5264,1</td>
<td></td>
</tr>
<tr>
<td>в т.ч. городское</td>
<td>%</td>
<td>34,1</td>
<td>36,7</td>
<td>40,4</td>
<td>45,9</td>
<td>51,6</td>
<td>53,0</td>
<td>55,0</td>
<td>57,0</td>
<td>59,0</td>
<td>61,0</td>
</tr>
<tr>
<td>ВВП/душе</td>
<td>$ 2005</td>
<td>572,9</td>
<td>826,2</td>
<td>1175,8</td>
<td>2013,4</td>
<td>3203,9</td>
<td>4761,7</td>
<td>8284,1</td>
<td>15393,2</td>
<td>24850,3</td>
<td>45011,0</td>
</tr>
<tr>
<td>Доля в ВВП, %</td>
<td></td>
</tr>
<tr>
<td>Энергетика</td>
<td>2,9</td>
<td>2,41</td>
<td>3,39</td>
<td>2,83</td>
<td>2,34</td>
<td>2,13</td>
<td>1,84</td>
<td>1,16</td>
<td>0,99</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>Промышленность</td>
<td>17,8</td>
<td>21,19</td>
<td>19,20</td>
<td>15,64</td>
<td>12,81</td>
<td>9,59</td>
<td>5,37</td>
<td>2,56</td>
<td>1,45</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>17,5</td>
<td>20,94</td>
<td>22,19</td>
<td>19,78</td>
<td>21,65</td>
<td>24,85</td>
<td>27,23</td>
<td>27,73</td>
<td>28,34</td>
<td>33,74</td>
<td></td>
</tr>
<tr>
<td>Строительство</td>
<td>5,5</td>
<td>13,35</td>
<td>15,15</td>
<td>19,85</td>
<td>18,59</td>
<td>25,23</td>
<td>25,99</td>
<td>19,85</td>
<td>16,66</td>
<td>12,14</td>
<td></td>
</tr>
<tr>
<td>Услуги</td>
<td>46,1</td>
<td>42,11</td>
<td>40,07</td>
<td>41,89</td>
<td>44,61</td>
<td>38,20</td>
<td>39,57</td>
<td>48,71</td>
<td>52,55</td>
<td>52,82</td>
<td></td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td></td>
</tr>
<tr>
<td>Население</td>
<td>тыс. чел.</td>
<td>5418,3</td>
<td>6162,4</td>
<td>6871,1</td>
<td>7428,9</td>
<td>7975,9</td>
<td>8304,1</td>
<td>8523,0</td>
<td>8726,1</td>
<td>8855,7</td>
<td>8924,1</td>
</tr>
<tr>
<td>в т.ч. городское</td>
<td>%</td>
<td>34,1</td>
<td>36,7</td>
<td>40,4</td>
<td>45,9</td>
<td>51,6</td>
<td>53,0</td>
<td>55,0</td>
<td>57,0</td>
<td>59,0</td>
<td>61,0</td>
</tr>
<tr>
<td>ВВП/душе</td>
<td>$ 2005</td>
<td>572,9</td>
<td>731,4</td>
<td>847,2</td>
<td>1193,1</td>
<td>1535,0</td>
<td>1731,0</td>
<td>2323,2</td>
<td>3285,2</td>
<td>3991,9</td>
<td>5434,8</td>
</tr>
<tr>
<td>Доля в ВВП, %</td>
<td></td>
</tr>
<tr>
<td>Энергетика</td>
<td>2,9</td>
<td>2,39</td>
<td>3,72</td>
<td>3,09</td>
<td>2,56</td>
<td>2,40</td>
<td>2,20</td>
<td>1,75</td>
<td>1,78</td>
<td>1,47</td>
<td></td>
</tr>
<tr>
<td>Промышленность</td>
<td>17,8</td>
<td>21,75</td>
<td>20,74</td>
<td>18,17</td>
<td>15,69</td>
<td>12,49</td>
<td>7,34</td>
<td>3,60</td>
<td>1,99</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>17,5</td>
<td>21,76</td>
<td>25,44</td>
<td>24,86</td>
<td>29,25</td>
<td>37,56</td>
<td>44,05</td>
<td>47,14</td>
<td>51,05</td>
<td>59,37</td>
<td></td>
</tr>
<tr>
<td>Строительство</td>
<td>5,5</td>
<td>12,52</td>
<td>12,53</td>
<td>14,69</td>
<td>11,96</td>
<td>14,88</td>
<td>13,32</td>
<td>8,64</td>
<td>6,20</td>
<td>3,56</td>
<td></td>
</tr>
<tr>
<td>Услуги</td>
<td>46,1</td>
<td>41,58</td>
<td>37,56</td>
<td>39,19</td>
<td>40,55</td>
<td>32,67</td>
<td>33,10</td>
<td>38,87</td>
<td>38,98</td>
<td>34,82</td>
<td></td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td></td>
</tr>
<tr>
<td>Население</td>
<td>тыс. чел.</td>
<td>5418,3</td>
<td>6319,3</td>
<td>7267,3</td>
<td>8128,1</td>
<td>9170,6</td>
<td>10078,5</td>
<td>10978,4</td>
<td>12027,8</td>
<td>13068,6</td>
<td>14120,1</td>
</tr>
<tr>
<td>в т.ч. городское</td>
<td>%</td>
<td>34,1</td>
<td>36,7</td>
<td>40,4</td>
<td>45,9</td>
<td>51,6</td>
<td>53,0</td>
<td>55,0</td>
<td>57,0</td>
<td>59,0</td>
<td>61,0</td>
</tr>
<tr>
<td>ВВП/душе</td>
<td>$ 2005</td>
<td>572,9</td>
<td>601,8</td>
<td>574,3</td>
<td>665,9</td>
<td>694,7</td>
<td>630,7</td>
<td>666,5</td>
<td>716,6</td>
<td>693,9</td>
<td>735,8</td>
</tr>
<tr>
<td>Доля в ВВП, %</td>
<td></td>
</tr>
<tr>
<td>Энергетика</td>
<td>2,9</td>
<td>2,68</td>
<td>4,39</td>
<td>4,17</td>
<td>3,71</td>
<td>3,76</td>
<td>3,35</td>
<td>2,18</td>
<td>1,91</td>
<td>1,17</td>
<td></td>
</tr>
<tr>
<td>Промышленность</td>
<td>17,8</td>
<td>20,96</td>
<td>20,49</td>
<td>18,79</td>
<td>16,38</td>
<td>12,66</td>
<td>7,26</td>
<td>3,55</td>
<td>1,80</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>17,5</td>
<td>26,51</td>
<td>33,36</td>
<td>34,76</td>
<td>42,14</td>
<td>55,27</td>
<td>64,67</td>
<td>70,29</td>
<td>76,06</td>
<td>83,24</td>
<td></td>
</tr>
<tr>
<td>Строительство</td>
<td>5,5</td>
<td>11,38</td>
<td>9,72</td>
<td>9,85</td>
<td>6,64</td>
<td>6,86</td>
<td>4,95</td>
<td>2,62</td>
<td>1,50</td>
<td>0,65</td>
<td></td>
</tr>
<tr>
<td>Услуги</td>
<td>46,1</td>
<td>38,47</td>
<td>32,04</td>
<td>32,42</td>
<td>31,14</td>
<td>21,45</td>
<td>19,77</td>
<td>21,37</td>
<td>18,73</td>
<td>14,29</td>
<td></td>
</tr>
</tbody>
</table>
ма приведено необходимое разбиение подсектора 1А1 «Производство энергии» для целей дальнейшего анализа изменений. Для прочих подсекторов построены аналогичные структуры, разделяющие различные источники и различные категории потребителей.

Структура расчетов, элемент которой приведен на рис. 4.7, в некотором роде является универсальной, так как в качестве исходных данных можно использовать эмиссии отдельных ПГ или газов-предшественников или суммарные эмиссии ПГ в СО2-экв., а также общее потребление энергии или отдельных видов энергетических ресурсов. Разделение общего исходного показателя на отдельные составляющие происходит за счет последовательного умножения пересчетных мультипликативных коэффициентов, заложенных в каждом отдельном боксе (рис. 4.7), на общий исходный показатель. В результате можно получить отдельную эмиссию каждого газа или потребление энергетических ресурсов в соответствии с конечным перечнем под общим наименованием «Потребитель» или на любой промежуточной стадии потребления, обозначенной как «Назначение». Перечень конечных потребителей (раздел 4.3) сформирован согласно требованиям по возможностям корректной количественной оценки тенденций изменения в будущем при соответствующих сценариях развития.

Коэффициенты в боксах 1 и 2 определены на основании нормативов по затратам энергии на выработку тепловой и электрической энергии. Коэффициенты в боксах 11, 12 и 13 определены по фактическому распределению тепловой энергии за последние годы по данным ТЭЦ, «Бишкектеплоэнерго» и «Кыргызжилкоммунсоюза». Коэффициент в боксе 14 определен по данным ТЭБ. Затраты электроэнергии на отопление (бокс 15) определены на основании сведений по поступлениям электрической энергии в сети РЭК с 2009 по 2013 гг. (рис. 4.8). Выделяя месяцы без отопления (летние месяцы), можно определить долю электроэнергии, используемую для отопления. В годовом исчислении эта доля в среднем за последние 5 лет, в целом, для Кыргызской Республики составляет 41,06 %.

Доля потерь (бокс 17) определена по топливно-энергетическому балансу как отношение потерь к общему объему произведенной электроэнергии, а доля категории «Прочее» – как оставшаяся доля:

$$ B_{16} = 1 - B_{15} - B_{17} $$

Распределение потребления тепловой и электрической энергии (боксы 21-22, 23-24 и 27-28) между «Коммерческим/институциональным» и «Жилым» подсекторами принято пропорциональным площади для этих категорий зданий.
4.3. Исходные предпосылки по отраслям деятельности для построения базовых эмиссионных сценариев

Основные структурные характеристики экономики, например, структура используемых энергетических ресурсов, эффективность их использования и т.д., приняты по 2010 г., как базовому году для расчетов.

Основываясь на опыте аналогичных исследований, например, проведенных Всемирным банком [4.11], методология оценки изменения различных показателей основана на их связи с уровнем жизни. Для расчета использовались следующие основные показатели:

- удельная жилая площадь;
- количество автомобилей на 1000 человек;
- количество образующихся бытовых отходов на человека;
- удельное потребление электрической энергии и газа.

Следует отметить, что при определении различных удельных показателей в зависимости от уровня жизни (например, ВВП на душу населения в постоянных долларах США), существенные проблемы вносит наличие неофициальных источников дохода, что изменяет фактический уровень жизни населения по сравнению с официальным. При построении базовых сценариев, неофициальные источники дохода не учитывались, так как затруднительно точно определить настоящую ситуацию и тенденции их изменения в будущем. Предполагается, что в процессе экономического и социального развития различие между официальными и неофициальными оценками уровня жизни будет постепенно уменьшаться. В случае, если при переходе от базового года к прогнозному для некоторого удельного показателя из перечисленных выше наблюдается резкое изменение, то выполнялось сглаживание полученных прогнозных тенденций, отражающее процесс последовательного сближения официальных и неофициальных оценок уровня жизни.

С целью облегчения дальнейшего анализа, расчет для всех сценариев производился с разделением на следующие расчетные категории:

- Тепловая энергия. Отопление. «Коммерческий/институциональный» сектор;
- Типовая энергия. Отопление. «Жилой» сектор;
- Тепловая энергия. Горячая вода. «Коммерческий/институциональный» сектор;
- Типовая энергия. Горячая вода. «Жилой» сектор;
- Тепловая энергия. Потери;
- Электрическая энергия. Все потребители, кроме «Коммерческого/институционального» и «Жилого» секторов;
- Электрическая энергия. Потери;
- Отопление «Коммерческий/институциональный» сектор (сжигание топлива);
- Отопление «Коммерческий/институциональный» сектор (использование электричества);
- Горячая вода и др. «Коммерческий/институциональный» сектор (сжигание топлива);
- Горячая вода и др. «Коммерческий/институциональный» сектор (использование электричества);
- Отопление. «Жилой» сектор (сжигание топлива);
- Отопление. «Жилой» сектор (использование электричества);
- Горячая вода и др. «Жилой» сектор (сжигание топлива);
- Горячая вода и др. «Жилой» сектор (использование электричества);
- «Транспорт»;
- «Промышленность и строительство» (сжигание топлива);
- «Сельское хозяйство» (сжигание топлива);
- «Летучие эмиссии от топлива»;
- «Промышленные процессы» (собственные эмиссии);
- «Сельское хозяйство», кроме 4А, 4С, 4D (собственные эмиссии);
- 4В Системы хранения навоза;
- 4F Сжигание с/х остатков;
- 6А Захоронение ТБО;
- 6В2 Очистка бытовых сточных вод;
• 6В1 Очистка промышленных сточных вод.
• ЗИЗЛХ.

Для каждой расчетной категории определялся следующий набор показателей:
• эмиссия CO₂;
• эмиссия CH₄;
• эмиссия N₂O;
• эмиссия суммы ПГ;
• эмиссия NOx;
• эмиссия CO;
• эмиссия НМЛОС;
• эмиссия SO₂;
• потребление энергии (размерность – тут, тнэ и в необходимых случаях кВт•ч).

Для сектора «Промышленные процессы» также рассчитывалась эмиссия ГФУ-134а, которая далее суммировалась в общей эмиссии ПГ.

Далее приведены результаты расчета эмиссий для всех расчетных категорий, перечисленных выше. Расчеты произведены для всех парниковых газов, газов-прекурсоров и энергетических показателей в тут, тнэ и кВт•ч, но результаты, в основном, приведены только для суммарных показателей, так как остальные, в большинстве случаев, пропорциональны суммарным показателям вследствие начального предположения о неизменности структуры потребляемых энергетических ресурсов для базовых вариантов.

1А1 Производство энергии. Тепловая энергия

Несмотря на то, что рассматривается подсектор «Производство энергии», фактически он охватывает как потребителей население, бизнес, институциональные структуры и др., в соответствии со структурой, представленной на рис. 4.7. Изменение потребления тепловой энергии в базовом сценарии для отопления «Коммерческого/институционального» и «Жилого» подсекторов принято пропорциональным удельной площади на душу населения. Прогнозная удельная жилая площадь на период до 2100 г. определялась интерполяцией в соответствии с известной статистикой по обеспеченности жилой площадью на человека, в зависимости от экономического уровня жизни страны, размещенной на сайте Международного союза квартирсъемщиков (International Union of Tenants, www.iut.nu).

Для подсектора «Коммерческого/институционального» изменение площадей предполагалось аналогичным ретроспективным тенденциям последних десятилетий в КР (по данным Нацстаткома) и в странах Восточной Европы [4.10].

При пошаговых расчетах от года к году по естественным причинам предполагалось, что уменьшение уже существующих площадей (например, вследствие сокращения численности населения) не должно происходить.

Объем использования тепловой энергии для получения горячей воды для подсектора «Жилой» принят пропорциональным численности населения, т.е. предполагается, что в будущем сохранится существующее удельное потребление горячей воды. А изменение объема использования тепловой энергии в виде пара принято пропорциональным развитию промышленного сектора в соответствии с используемыми макроэкономическими сценариями, с учетом доли промышленных объектов, требующих пар.

Объем потерь тепловой энергии определяется для каждого конкретного года и сценария по формуле:

\[Q_{26} = k(Q_{21} + Q_{22} + Q_{23} + Q_{24} + Q_{25})/(1-k) \]

где
- \(k \) – коэффициент потерь;
- \(Q_{21}, Q_{22}, Q_{23}, Q_{24} \) и \(Q_{25} \) – соответствующие объемы использования показателей, относящихся к тепловой энергии, всеми остальными категориями потребителей.

Структура используемых энергетических ресурсов предполагается постоянной на всем интервале прогнозирования и соответствующей 2100 г.

Размерности всех объемов зависят от размерности используемых исходных данных (эмиссии отдельных ПГ, газов-прекурсоров или количество энергии).

На рис. 4.9 приведены результаты расчета изменения суммарных эмиссий ПГ при производстве тепловой энергии для различных потребителей на период до 2100 г. и различных сценариев.
Из представленных расчетов очевидно следующее:
1. Эмиссия ПГ, газов-прекурсоров и потребление тепловой энергии будут расти для всех сценариев развития страны.
2. Наибольший рост потребления будет при сценарии 3, что объясняется наибольшим ростом населения, так как предполагалось, что будущие условия обеспечения удельной (на единицу площади) тепловой энергией будут, как минимум, сохранены относительно существующих в 2010 году.
3. Наименьший рост потребления будет при сценарии 2.
4. Снижение темпов роста для сценария 1 и, в меньшей степени, для сценария 2, объясняется снижением темпов ожидаемого роста населения страны.
5. Основное потребление тепловой энергии в категории приходится на отопление, значительно меньше расходуется на горячую воду, затем на пар.
6. Потребление тепловой энергии «Жилым» (Ж) подсектором значительно превышает потребление «Коммерческим/институциональным» (КИИ) подсектором.
7. Потери тепловой энергии значительно превышают среднемировые показатели.

Тенденции эмиссии газов-прекурсоров и потребления тепловой энергии в энергетических единицах совпадают с тенденциями эмиссий ПГ.

На рис. 4.10 показаны суммарные изменения общего объема потребления энергетических ресурсов при различных сценариях для категории «1А1 Производство энергии. Тепловая энергия» приходится без разбивки на отдельных потребителей, так как разбивка полностью совпадает с аналогичными эмиссионными показателями. Наиболее резкий рост потребления для сценария 1 далее снижается, и объем потребления становится меньшим по сравнению со сценариями 2 и 3. В итоге наибольшее потребление энергетических ресурсов ожидается для сценария 3, так как рост численности населения для этого сценария перевешивает увеличение удельного потребления для прочих сценариев.
Глава 4. Анализ смягчения последствий изменения климата

1A1 Производство энергии. Электрическая энергия

В целом потребление электрической энергии определено в соответствии с известными общемировыми тенденциями, связывающими зависимость потребления электрической энергии от уровня жизни. На рис. 4.11 приведена зависимость потребления электрической энергии для различных стран по имеющимся ретроспективным данным Всемирного банка.

Исходя из полученной зависимости, определялось потребление электрической энергии в целом для КР для известных значений уровня жизни по различным сценариям развития. Потребление электрической энергии для отопления и получения горячей воды, а также прочих нужд для «Коммерческого/институционального» и «Жилого» подсекторов, определялось аналогично оценке потребления тепловой энергии, т.е. в зависимости от жилой площади и численности населения для подсектора «Жилой» и в зависимости от ожидаемого уровня жизни в «Коммерческом/институциональном» подсекторе.

Прочее потребление электрической энергии в республике определяется вычитанием из потребления в целом, потребления в двух подсекторах и потерь. При этом учитывалось, что уровень ожидаемого потребления в «Коммерческом/институциональном» и «Жилом» подсекторах не может быть ниже уже достигнутого уровня.

Потери электрической энергии определялись по формуле:

\[E_l = k \frac{\sum E_i}{1 - k} \]

\(k \) – коэффициент потерь;
\(\sum E_i \) – сумма потребления электрической энергии по всем секторам.

Для электрической энергии, также как и для тепловой, определяется эмиссия ПГ и газов-прекурсоров. Однако для электрической энергии учитывается, что часть производится на ГЭС, а часть – на ТЭЦ, использующих ископаемое топливо. Соотношение производства между ними несколько изменяется по годам, что отражается на экологических показателях. В среднем, за последние годы, показатели производства электрической энергии в стране приведены в таблице 4.2.
<table>
<thead>
<tr>
<th>№</th>
<th>Показатель</th>
<th>Размерность</th>
<th>Величина</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Эмиссия CO₂</td>
<td>г CO₂/кВтч</td>
<td>59,26</td>
</tr>
<tr>
<td>2</td>
<td>Эмиссия CH₄</td>
<td>г СH₄/кВтч</td>
<td>0,00077</td>
</tr>
<tr>
<td>3</td>
<td>Эмиссия N₂O</td>
<td>г N₂O/кВтч</td>
<td>0,00074</td>
</tr>
<tr>
<td>4</td>
<td>Эмиссия ПГ</td>
<td>г ПГ/кВтч</td>
<td>59,51</td>
</tr>
<tr>
<td>5</td>
<td>Эмиссия NOₓ</td>
<td>г NOₓ/кВтч</td>
<td>0,1796</td>
</tr>
<tr>
<td>6</td>
<td>Эмиссия CO</td>
<td>г СО/кВтч</td>
<td>0,0135</td>
</tr>
<tr>
<td>7</td>
<td>Эмиссия НМЛОС</td>
<td>г НМЛОС/кВтч</td>
<td>0,00343</td>
</tr>
<tr>
<td>8</td>
<td>Эмиссия SO₂</td>
<td>г SO₂/кВтч</td>
<td>0,4441</td>
</tr>
<tr>
<td>9</td>
<td>Потребление ископаемого топлива</td>
<td>г условного топлива/кВтч</td>
<td>27,39</td>
</tr>
</tbody>
</table>

На основании известной статистики по потреблению электрической энергии и уровню жизни (Источник: Всемирный банк) построены зависимости изменения потребления электрической энергии для КР в целом (рис. 4.12). Ожидается, что потребление электрической энергии в республике будет расти для всех сценариев, но наиболее быстро – для сценария 1.
Для удобства дальнейшего анализа выделены следующие основные направления распределения электрической энергии:

- отопление – «Коммерческий/институциональный» подсектор;
- горячая вода и прочее потребление – «Коммерческий/институциональный» подсектор;
- отопление – «Жилой» подсектор;
- горячая вода и прочее потребление – «Жилой» подсектор;
- прочие потребители, кроме перечисленных выше (промышлённость и строительство, транспорт, сельское хозяйство и т.д.);
- потери.

На рис. 4.13 показаны тенденции эмиссии ПГ для различных сценариев и различных потребителей.

Очевидно, что при экономическом развитии увеличится и потребление электрической энергии, которое в определенное время превысит существующие генерирующие мощности. В этом случае предполагается, что недостающие объемы будут генерироваться с сохранением структуры используемого ископаемого топлива, а, следовательно, и структуры эмиссий. Баланс будет сохраняться за счет параллельного ввода в эксплуатацию возобновляемых источников энергии, например, при строительстве планируемых ГЭС и источников энергии на ископаемом топливе (Бишкекской ТЭЦ-2 - с планируемой мощностью 400 МВт на природном газе и Кара-Кечинской тепловой электростанции - с планируемой мощностью 1200 МВт, на угольном месторождении Кара-Кече).

Из представленных расчетов очевидно следующее:

- эмиссия ПГ, газов-прекурсоров и потребление электрической энергии будут расти для всех сценариев развития страны;
- наиболее резкий рост характерен для сценария 1, за счет увеличения доли электрической энергии для прочего потребления, обеспечивающего планируемый рост экономики страны;
- потери электрической энергии значительно превышают среднемировые показатели;
- тенденции эмиссии газов-прекурсоров и потребления электрической энергии совпадают с тенденциями эмиссий ПГ.

1A2 Промышленность и строительство

Структура потребляемого ископаемого топлива для всего периода прогноза для подсектора «1A2 Промышленность и строительство» предполагается постоянной. На всем временном периоде базового сценария изменения объемов эмиссии и потребления энергоресурсов предполагаются пропорциональными абсолютным объемам вкладов промышленности и строительства в общий ВВП страны. При расчете прогноза учитывается последовательное сокращение эмиссий и энергетических затрат на единицу производимой продукции по следующей формуле:

\[Q(x) = \frac{\left(\frac{d_i(x) \cdot GDP(x)}{d_i(x-1) \cdot GDP(x-1)} \right) - 1}{k \cdot +1}, \]

где

- \(d_i(x), d_i(x-1)\) – доли вклада секторов промышленности и строительства в ВВП республики в году \(x\);
- \(GDP(x), GDP(x-1)\) – валовый внутренний продукт республики в году \(x\);
- \(k\) – коэффициент уменьшения эмиссий и потребления энергоресурсов в подсекторе «1A2 Промышленность и строительство» относительно роста ВВП;
- \(x\) – расчетный год.

Результаты расчета эмиссий ПГ для различных сценариев приведены на рис. 4.14. Разделения на отдельные категории не производились, так как эмиссии этой категории невелики в целом.

1A3 Транспорт

Для подсектора «Транспорт» характерно абсолютное преобладание эмиссий ПГ категории «Дорожный транспорт». В соответствии с результатами инвентаризации эмиссий и стоков ПГ, приведенными в разделе 2, доля эмиссий ПГ в 2010 г. категории «Дорожный транспорт» составляет более 99 %, тогда как доля категории «Гражданская авиация» – 0,87 %, а вклады категорий «Железные дороги» и «Водный транспорт» еще меньше – 0,079 и 0,012 % соответственно. Поэтому при анализе эмиссионных сценариев рассматривается только категория «Дорожный транспорт», так как, основываясь на наблюдаемых тенденциях, в будущем трудно ожидать существенного роста относительного вклада прочих категорий.
В качестве исходной информации для построения базового сценария использован не традиционный подход, основанный на возможных изменениях количества автотранспорта, а информация об объемах потребляемого топлива. Во-первых, сведения о количестве дорожного автотранспорта не являются доступной информацией, а во-вторых, поскольку целью является построение эмиссионного сценария, то переход от объема топлива к эмиссиям по очевидным причинам значительно упрощается, а также снижается неопределенность полученных результатов.

Для оценки базового сценария в качестве аналога использована представленная на рис. 4.15 зависимость удельного потребления автотранспортного топлива для стран с различным уровнем жизни.

Интересно отметить, что зависимость потребляемой дорожным транспортом энергии от уровня жизни явно нелинейная и снижается по мере повышения уровня жизни. Характерно, что, как и по многим другим показателям, очевидно зависящим от уровня жизни, существующее потребление энергии дорожным транспортом в КР значительно превышает общемировые показатели при аналогичном уровне жизни по официальным данным, что потребовало внесения соответствующих корректировок в расчет прогнозируемых сценариев потребления энергии.

Структура потребляемого автотранспортного топлива для всех сценариев принята неизменной по данным 2010 г. Результаты расчета ожидаемых эмиссий для категории «Дорожный транспорт» приведены на рис. 4.16.
Уменьшение эмиссии ПГ для сценария 3 в конце столетия отражает существующую закономерность снижения удельного потребления автотранспортного топлива при высоком уровне жизни для развитых стран.

1А4а Коммерческий/институциональный
Методология построения эмиссионных сценариев для этого подсектора аналогична методологии подсекторов «1А1 Производство энергии. Тепловая энергия» и «1А1 Производство энергии. Электрическая энергия». Рассматриваются эмиссионные сценарии только от сжигания ископаемого топлива, так как эмиссии от использования электрической энергии уже учтены при анализе подсектора «1А1 Производство энергии».
Результаты расчета эмиссии ПГ приведены на рис. 4.17. Эмиссии разбиты на две категории потребления – нужды отопления и прочее потребление (горячая вода, приготовление пищи и т.д.).

1А4б Жилой
Методология построения эмиссионных сценариев и форма представления результатов (см. рис. 4.18, стр. 160) для этого подсектора идентична подсектору «1А4а Коммерческий/институциональный».

1А4с Сельское хозяйство
Структура потребляемого ископаемого топлива для всего периода прогноза в подсекторе «1А4с Сельское хозяйство» предполагается постоянной. На всем временном периоде базового сценария изменения объемов эмиссии и потребления энергоресурсов предполагаются пропорциональными абсолютным объемам вкладов сельского хозяйства в общий ВВП страны. При расчете прогноза учитывается последовательное сокращение эмиссий и энергетических затрат на единицу производимой продукции по следующей формуле:
где
\(d_a(x) \) – доля вклада сектора сельского хозяйства в ВВП республики в году \(x \);
\(GDP(x) \) – валовый внутренний продукт республики в году \(x \);
\(k_a \) – коэффициент уменьшения эмиссий и потребления энергоресурсов для подсектора «1A4c Сельское хозяйство» относительно роста ВВП;
\(x \) – расчетный год.

Рис. 4.18. Тенденции эмиссий ПГ для различных сценариев подсектора «1A4b Жилой»

Результаты расчета эмиссии ПГ без разделения на отдельные категории приведены на рис. 4.19.

Рис. 4.19. Тенденции эмиссий ПГ для различных сценариев подсектора «1A4c Сельское хозяйство»
Глава 4. Анализ смягчения последствий изменения климата

Летучие эмиссии от топлива

По результатам проведенной инвентаризации эмиссий и стоков ПГ (см. раздел 2) выявлено, что основной вклад в эмиссии подсектора вносят эмиссии от категории источников «1B2b Природный газ» – 94,65 %, далее идут эмиссии от категорий источников «1B1 Твердое топливо» – 3,16 % и «1B2a Нефть» – 2,18 %. Причем эмиссии от категории «1B2b Природный газ» достаточно сильно изменились в течение периода 1990–2010 гг., тогда как эмиссии от других категорий практически монотонно снижались. При построении эмиссионных сценариев предполагается, что и в будущем ситуация сохранится, т.е. относительно небольшие эмиссии от твердого топлива и нефти (на уровне 2010 г.) при одновременно значительных изменениях летучих эмиссий от природного газа.

Исходя из этого, в эмиссионных сценариях учтены изменения только от летучих эмиссий природного газа. Эмиссии от твердого топлива и нефти приняты постоянными на уровне 2010 г. Для оценки изменений летучих эмиссий от природного газа определены возможные объемы его потребления. С учетом того, что природный газ потребляется во многих секторах экономики страны, произведена оценка возможного потребления природного газа в целом для страны. Аналогично, как и для потребления энергии дорожным транспортом, построена зависимость потребления природного газа от уровня жизни по статистическим данным Всемирного банка, с исключением из перечня стран, являющихся крупными производителями природного газа, потребление в которых аномально высокое.

Используя полученную интерполярованную зависимость, определены общие объемы потребления природного газа и, используя коэффициент потерь, определены объемы летучих эмиссий для двух базовых сценариев (рис. 4.20). Так как для третьего сценария потребление газа уже в настоящее время (2010 г.) превышает соответствующее среднее мировое потребление даже к 2100 г., поэтому эмиссии от подсектора приняты постоянными на уровне 2010 г.

Промышленные процессы

В этом секторе учитываются собственные эмиссии промышленности в отличие от подсектора «1А2 Промышленность и строительство». Для определения точных оценок необходимо иметь оценки внутри секторных изменений, что является достаточно сложной задачей при прогнозе на достаточно долгий период. Поэтому для упрощения использовано предположение, что общие тенденции эмиссии сектора будут в будущем совпадать как для сжигания ископаемого топлива, так и для собственных эмиссий. Исходя из этого предположения, для построения эмиссионных сценариев использована методология расчета, аналогичная методологии расчета эмиссий от сжигания ископаемого топлива в промышленности. Эмиссии, показанные на рис. 4.21, представлены в сумме для всех парниковых газов, но для возможности дальнейшего анализа рассчитаны раздельно для диоксида углерода и ГФУ-134а. Колебания эмиссий отражают циклический характер развития экономики страны, описанный в разделе 4.2.2.2.
3 Использование растворителей

По результатам инвентаризации установлено, что в этом секторе отсутствуют эмиссии ПГ, тем не менее, поскольку поставлена задача расчета эмиссии всех газов, учитываемых в инвентаризации, для сектора «3 Использование растворителей» произведен расчет эмиссии НМЛОС. Методология расчета принята единой с сектором «2 Промышленные процессы». Сокращение эмиссии для сценариев 2 и 3 отражает прогнозируемую тенденцию снижения вклада промышленного сектора.

4 Сельское хозяйство

В этом секторе рассмотрены только собственные эмиссии сектора «4 Сельское хозяйство». Эмиссии от сжигания ископаемого топлива учтены в подсекторе «1А4c Сельское хозяйство». Методология расчета эмиссионных сценариев в целом совпадает с методологией, использованной в подсекторе «1А4c Сельское хозяйство», за исключением того, что использованы различные коэффициенты уменьшения эмиссий. Расчет осуществляется по следующей формуле:

\[
Q(x) = \left(\frac{d_a(x) \cdot GDP(x) \cdot GDP(x-1)}{a_s(x-1)} - 1 \right) + 1,
\]

где
- \(d_a(x) \) – доля вклада сектора сельского хозяйства в ВВП республики в году \(x \);
- \(GDP(x) \) – валовый внутренний продукт республики в году \(x \);
- \(k_{as} \) – коэффициент уменьшения эмиссий для сектора относительно роста ВВП, который определяется с учетом прогноза эмиссий ФАО;
- \(x \) – расчетный год.

Для удобства дальнейшего учета изменения эмиссий при реализации различных мер, общие эмиссии сектора разбиты на три составляющие:
- «4А Внутренняя ферментация», «4С Выращивание риса» и «4D Сельскохозяйственные почвы»;
- «4В Системы хранения навоза»;
- «4F Сжигание сельскохозяйственных остатков».

Результаты расчета суммарной эмиссий ПГ представлены на рис. 4.23.

Доля подсектора 4F составляет для различных сценариев от 0,23 до 0,29 %, поэтому трудноразличима. Абсолютные объемы эмиссии изменяются для различных сценариев незначительно. При уменьшении общего объема ВВП для сценариев 2 и 3, доля сельского хозяйства для них возрастает.

5 Землепользование, изменение землепользования и лесное хозяйство

В соответствии с результатами инвентаризации эмиссий и стоков ПГ за период 1990–2010 гг. в этом секторе не наблюдается отчетливых тенденций по изменению эмиссий и стоков.

Для подсектора «5А Запасы древесной биомассы» наблюдается небольшой рост стоков для неуправляемых лесов и аналогичное уменьшение для управляемых лесов, которые компенсируют друг друга. В результате суммарный сток практически не изменяется.
Глава 4. Анализ смягчения последствий изменения климата

Сценарий 1. Низкий рост населения - высокий рост экономики

Сценарий 2. Средний рост населения - средний рост экономики

Сценарий 3. Высокий рост населения - низкий рост экономики

Для подсектора «5В Эмиссия и сток из почв» наблюдается устойчивая эмиссия, с незначительным уменьшением, соответствующим выбытию пахотных земель. Эта эмиссия вполне естественна вследствие использования распашки [4.15]. С учетом этого, а также принимая во внимание значительную неопределенность в идентификации источников, приводящих к существенным изменениям в состоянии сектора в будущем, эмиссии от сектора «5 Землепользование, изменение землепользования и лесное хозяйство» предполагаются постоянными на уровне 2010 г. для всего периода прогнозирования.

-802,02 – для подсектора «5А Запасы древесной биомассы»;
558,30 – для подсектора «5В Эмиссия и сток из почв»;
-243,72 – Гг для всего сектора.

6 Отходы

Эмиссии от сектора отходы для целей прогноза и учета мер по митигации разбиты на три составляющие:

- 6А Захоронение ТБО;
- 6В1 Очистка промышленных сточных вод;
- 6В2 Очистка бытовых и коммерческих сточных вод.

Для подсектора «6А Захоронение ТБО» использован подход, аналогичный ранее примененному выше для оценки потребления электроэнергии и автотранспортного топлива, основанный на зави-
смеси от уровня жизни. Аналогичный подход описан в публикации Всемирного банка [4.11]. Используя данные по объемам образования ТБО в различных странах, восстановлена зависимость количества ТБО на городского жителя в день от величины удельной ВВП (см. рис. 4.24). Не использованы сведения по странам с туристической направленностью национальной экономики, так как для них характерны завышенные объемы образования ТБО. Кроме собственно объемов образования ТБО, важную роль играет уровень их собираемости. В соответствии с результатами исследований, проведенных Всемирным банком, определено, что уровень собираемости также зависит от уровня жизни. Однако, эта зависимость не столь велика как для объема образования ТБО. Согласно публикации Всемирного банка, эффективность сбора изменяется от 43 % – для наименее развитых стран до 97 % – для стран с высоким уровнем дохода. Но для региона Восточной Европы и Центральной Азии, учитывая специфические пути развития экономики, эффективность сбора достаточно высокая и составляет около 80 %. Поэтому для Кыргызской Республики с достаточно эффективной системой сбора ТБО до 1990 г. можно говорить только о некоторых колебаниях эффективности системы сбора, но не о существенных монотонных изменениях.

По полученной зависимости для различных сценариев определены удельные количества образующихся ТБО и затем оценена эмиссия ПГ.

Для подсектора «6B1 Очистка промышленных сточных вод» прогнозные эмиссии предполагаются пропорциональными величине вклада в ВВП сектора промышленности. Для подсектора «6B2 Очистка бытовых и коммерческих сточных вод» прогноз эмиссий осуществлен на предположении об их пропорциональности численности городского населения.

Результаты расчета суммарной эмиссии ПГ представлены на рис. 4.25.

Эмиссии для различных сценариев отличаются незначительно, так как имеется два основных определяющих разнонаправленных фактора – уровень жизни и количество населения. Можно отметить только заметное снижение эмиссий для подсектора «6B1 Очистка промышленных сточных вод» в сценариях 2 и 3, связанное со значительным сокращением доли промышленного сектора.
Глава 4. Анализ смягчения последствий изменения климата

4.4. Базовые сценарии (сценарии без принятия мер)

Суммирование отдельных расчетных категорий позволяет оценить как ожидаемые эмиссии для отдельных парниковых газов и газов-прекурсоров, так и для энергетических показателей.

На рис. 4.26 показаны эмиссии ПГ по отдельным секторам, кроме сектора «Использование растворителей», в котором отсутствует эмиссия ПГ, а также сектора «Землепользование, изменение землепользования и лесное хозяйство», для которого нетто эмиссия/стоки предполагается постоянной. Для всех сценариев наибольшие эмиссии наблюдаются в секторе «Энергетика», но его доля уменьшается для сценариев с меньшим уровнем экономического роста.

Фактически приведенные на рис. 4.26 базовые сценарии не являются в полной мере сценариями «без принятия мер», так как действия по сохранению существующего баланса между производством электроэнергии на ГЭС и от сжигания ископаемого топлива уже являются действиями по сокращению эмиссии. Понимание этих сценариев, как базовых, основано на существующих планах развития энергетической отрасли, не предусматривающих введение дополнительных мощностей по генерации электроэнергии с использованием ископаемого топлива, за исключением Бишкекской ТЭЦ-2 и Карачаевской тепловой электростанции.

Для всех сценариев вклад сектора «Энергетика» в общем распределении эмиссий по секторам растет относительно доли в 2010 г., причем, в наибольшей степени, для сценария с высоким уровнем роста экономики (рис. 4.27). Вклад сектора «Сельское хозяйство» уменьшается относительно 2010 г. для всех сценариев, но в обратной зависимости от уровня экономического роста. Доля сектора «Промышленные процессы» растет только для сценария 1, для сценария 2 она практически сохраняется, а для сценария 3 уменьшается относительно 2010 г. Вклад сектора «Отходы» изменяется менее значительно.

Следует отметить, что национальное распределение эмиссий ПГ по секторам значительно отличается от существующего общемирового распределения. В первую очередь, за счет низкой доли...
сектора «Промышленные процессы», которая, в среднем, в мире составляет около 20 %, тогда как в 2010 г. в КР она составляла 3,2 %, а наибольшее значение к 2100 г. для сценария 1 ожидается около 7,5 %.

На рис. 4.28 показаны тенденции эмиссии ПГ для подсекторов, использующих сжигание ископаемого топлива.

Тенденции для отдельных ПГ и газов-прекурсоров, в основном, пропорциональны суммарной тенденции ПГ.
Наибольшие эмиссии для сценария 1 происходят за счет категорий «Производства энергии» и «Транспорта». Эмиссии для сценария 3 отличаются постоянными эмиссиями категории «Летучие эмиссии от топлива», объясняемыми постоянством потребления (раздел 4.3) и небольшим ростом эмиссий для категории «Другие секторы», за счет значительного роста населения и соответствующего потребления энергии для отопления и прочих нужд.
На рис. 4.29 приведено распределение эмиссий для сектора «Энергетика». Для всех сценариев растет в общем распределении только вклад категории «Транспорт». Эмиссии от газа должны были бы быть для сценария 1 наибольшими, но принято предположение о сокращении потерь до величи-
Глава 4. Анализ смягчения последствий изменения климата

ны, соответствующей уровню экономического развития, т.е. потерям в развитых странах. Эмиссии ка-
терий «Другие секторы» по естественным причинам практически пропорциональны численности
населения, эмиссии от «Промышленности и строительства» не увеличиваются вследствие выбора
аграрно-сервисного направления развития экономики республики.

Для оценки необходимых энергетических ресурсов на рис. 4.30 показаны тенденции полного по-
требления первичных энергетических ресурсов, включая и электроэнергию от ГЭС.

Наибольшее ускорение роста потребления энергетических ресурсов наблюдается в сценарии 1 и, в
меньшей степени, в сценарии 2. Тогда как для сценария 3 рост потребления практически линейный во
времени. Рост происходит, в основном, за счет потребления для производства энергии, тогда как в сце-
нарии 3 доли потребления всех основных потребителей (производство энергии, транспорт и Другие
секторы) практически одинаковые. Для сценария 3 потребление энергетических ресурсов подсектора
«Другие секторы» к 2100 г. даже больше, чем в сценариях 1 и 2 – за счет большего роста населения.

На рис. 4.31 показано изменение распределения потребления энергетических ресурсов для раз-
личных сценариев в 2100 г. по сравнению с распределением в 2010 г. Очевидна связь потребления
в подсекторе «Другие секторы» с численностью населения и сохранение незначительного вклада в
подсекторе «Промышленность и строительство», обусловленного предполагаемым сервисно-аграр-
ным развитием экономики.
На рис. 4.32 показаны тенденции эмиссий ПГ и газов-прекурсоров с разбивкой по отдельным газам для различных базовых сценариев. Чем ниже скорость роста экономики, тем меньший вклад в общую эмиссию обеспечивается ГФУ-134а и тем больший вклад закисью азота. Для прочих ПГ тенденции не связаны однозначно с величиной роста экономики.

Для газов-прекурсоров – чем ниже скорость роста экономики, тем ниже вклад эмиссий НМЛОС и тем выше вклад диоксида серы.

Рис. 4.32. Эмиссии ПГ и газов-прекурсоров для различных сценариев
Из результатов расчета следует, что для всех сценариев развития без принятия мер, особенно для сценариев с высоким экономическим ростом, значительно вырастут эмиссии газов-предшественников, которые являются вредными веществами. Это приведет к существенному ухудшению экологической ситуации, так как в силу географических особенностей КР основные источники эмиссий расположены в местах высокой плотности населения.

На рис. 4.33 показаны тенденции удельных эмиссий диоксида углерода и ПГ.

Результаты расчета показывают, что если в качестве среднесрочной цели рассматривать уровень эмиссий диоксида углерода, обеспечивающий с вероятностью более 66 % предотвращение роста глобальной температуры более чем на 2°C, то в допустимых пределах (1,23 т СО₂/чел.) к 2050 г. находится только базовый сценарий 3, при котором предполагается фактическая стагнация экономики.

4.5. Сценарии с мерами

4.5.1. Анализ возможного сокращения эмиссий

Анализ основных направлений сокращения эмиссий произведен по основным секторам в соответстии с Руководящими указаниями МГЭИК по инвентаризации и рекомендациями [4.18], а также с использованием расчетных категорий, приведенных в разделе 4.3.

Для упрощения предполагаются одинаковые меры для всех сценариев экономического и демографического развития, но результаты сокращения для диоксида углерода и суммы ПГ рассчитывались раздельно.

4.5.1.1. Тепловая энергия

Сократить эмиссию ПГ при производстве и использовании тепловой энергии можно двумя основными путями [4.10, 4.16]:

• повысить эффективность производства и распределения, в том числе за счет использования возобновляемых источников энергии;
• сократить удельное потребление.

Повышение эффективности производства и распределения

Одним из показателей эффективности сектора тепловой энергии можно считать уровень потерь. Как показано на рис. 4.34, потери за последние годы значительно возросли. Если в Казахстане после 2000 года можно наблюдать некоторое снижение потерь, то в КР ситуация продолжает ухудшаться.
На основании информации от ОАО «Бишкектеплосеть» и ГП «Кыргызжилкоммунсоюз», а также известной статистики стран СНГ и Восточной Европы предполагается, что потери тепловой энергии возможно снизить до 17 % к 2020 г. и до 11 % к 2050 г. (рис. 4.35) в результате последовательных действий по улучшению организации деятельности и своевременному обновлению технической базы сектора производства и распределения тепловой энергии (установка счетчиков, реконструкция тепловых сетей, замена котлов и пр.). Суммарная стоимость мер составляет 242 млн. $ 2005.

Результаты снижения эмиссий суммы ПГ от снижения потерь тепловой энергии для индикаторных годов приведены в таблице 4.3. Снижение эмиссий отдельных ПГ, газов-предшественников и загрязнителей по газу, практически пропорционально снижению суммарной эмиссии ПГ. Сокращение эмиссий при уменьшении потерь наименьшее для сценария 1 и наибольшее – для сценария 3, что связано с тенденциями изменения численности населения, так как основным потребителем тепловой энергии является население (около 80 % в 2010 г.).

Повышение эффективности производства и распределения реализуется за счет мер, приведенных в Долгосрочной стратегии по теплоснабжению Кыргызской Республики.

Возможные объемы сокращения эмиссий ПГ при производстве тепловой энергии за счет использования возобновляемых источников энергии будут рассмотрены далее в разделе 4.5.1.5.

Таблица 4.3. Сокращение эмиссии диоксида углерода и суммы ПГ при уменьшении потерь тепловой энергии

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения - высокий рост экономики</td>
<td>82,04</td>
<td>250,18</td>
<td>338,68</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения - средний рост экономики</td>
<td>80,22</td>
<td>215,90</td>
<td>274,76</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения - низкий рост экономики</td>
<td>80,69</td>
<td>229,12</td>
<td>346,71</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гт СО2-экв.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения - высокий рост экономики</td>
<td>82,37</td>
<td>251,17</td>
<td>340,02</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения - средний рост экономики</td>
<td>80,54</td>
<td>216,76</td>
<td>275,85</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения - низкий рост экономики</td>
<td>81,01</td>
<td>230,03</td>
<td>348,09</td>
</tr>
</tbody>
</table>
Сокращение потребления тепловой энергии можно определять для двух направлений действий:
• повышение энергоэффективности вновь вводимых зданий согласно обязательному требованию СНиП;
• повышение энергоэффективности до уровня требований СНиП уже существующих зданий.

Результаты расчетов по снижению эмиссий от повышения энергоэффективности вновь вводимых зданий согласно обязательному требованию СНиП для индикаторных годов приводятся в таблице 4.4. Следует отметить, что для сценария 1 и 2 рост эмиссий после реализации СНиП значительно снижается во второй половине столетия, тогда как для сценария 3 рост эмиссий практически постоянный, что определяется тенденциями изменения численности населения.

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>87,38</td>
<td>532,43</td>
<td>1101,22</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>71,26</td>
<td>270,74</td>
<td>505,23</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>73,00</td>
<td>318,86</td>
<td>820,88</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гг СО2-экв.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>90,91</td>
<td>554,25</td>
<td>1145,73</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>74,16</td>
<td>281,65</td>
<td>525,07</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>75,99</td>
<td>331,90</td>
<td>854,41</td>
</tr>
</tbody>
</table>

Очевидно, что кроме мер по повышению энергоэффективности при строительстве новых зданий, существует определенный потенциал по повышению энергоэффективности уже существующих зданий. Выполнение этих мер потребует значительных затрат (около 3,5 млрд долл. согласно оценке, полученной в рамках проекта ГЭФ/ПРООН PIMS 3910 «Улучшение энергоэффективности в зданиях»). Однако приведенная оценка является, вероятно, завышенной, так как часть зданий и сооружений, в связи с предельными сроками эксплуатации уже в настоящее время, будет заменена новыми, а часть реконструирована. С учетом того, что реконструкция будет также производиться согласно требованиям по повышению энергоэффективности, необходимые затраты будут минимальными и также относятся к мониторингу процесса (около 50 тыс. $2005 собственных средств).

Результаты расчетов сокращения эмиссий, с учетом действий по повышению энергоэффективности уже существующих зданий, приведены в таблице 4.5. В таблице учтено и снижение эмиссий от обязательного выполнения СНиП по энергоэффективности, а также снижение эмиссии от сокращения потерь, так как потери естественно изменяются при изменении объемов потребления. При расчетах предполагается, что энергоэффективность будет повышена для всех существующих зданий в период до 2050 г.

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>288,60</td>
<td>1178,04</td>
<td>1660,38</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>271,01</td>
<td>941,02</td>
<td>1193,24</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>272,87</td>
<td>987,16</td>
<td>1477,42</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гг СО2-экв.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>296,51</td>
<td>1214,21</td>
<td>1712,64</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>278,27</td>
<td>968,34</td>
<td>1227,74</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>280,23</td>
<td>1016,26</td>
<td>1522,01</td>
</tr>
</tbody>
</table>

4.5.1.2. Электрическая энергия
В настоящее время одной из особенностей энергетического сектора КР по сравнению с другими странами является использование в значительных объемах электрической энергии в качестве первичных энергетических ресурсов. Если в среднем в мире доля ископаемого топлива в потреблении энергетических ресурсов составляла в 2010 г. 80,9 % (в прочие 19,1 % включены все источники...
энергии, не производящие эмиссии ПГ, в том числе и атомная энергетика), то для КР – почти в два раза меньше (рис. 4.36). Более того, в соответствии с расчетами развития экономики республики для сценариев 1 и 2, после некоторого падения к середине века, в последующем ожидается рост доли электрической энергии.

Второй существенной особенностью энергетического сектора республики является преимущественное использование ГЭС в качестве источника электрической энергии, что с точки зрения воздействия на изменение климата является положительным фактором. Однако дальнейшее развитие сектора должно учитывать естественную ограниченность гидроэнергетических ресурсов страны и их зависимость от климатических изменений.

В соответствии с макроэкономическими прогнозами ожидается, что потребление электрической энергии в республике будет расти для всех сценариев, но наиболее быстро для сценария 1 (рис. 4.12), а в результате пропорционально будут расти и эмиссии ПГ. Естественно, что этот рост, с учетом принятой ориентации развития энергетического сектора, будет не таким значительным, как в случае преимущественного использования ископаемого топлива. Однако естественные ограничения для гидроэнергетических ресурсов вынуждают рассмотреть меры по повышению эффективности энергетического сектора. Известными мерами в секторе электрической энергии являются следующие:

• сохранение и увеличение доли электрической энергии в общей сумме потребляемых первичных энергетических ресурсов за счет ГЭС и других возобновляемых источников энергии;
• повышение эффективности при производстве и распределении;
• повышение энергоэффективности при потреблении.

Сохранение и увеличение доли электрической энергии в общей сумме потребляемых первичных энергетических ресурсов за счет ГЭС и других возобновляемых источников энергии

Как уже отмечено в разделе 4.4, исходные базовые сценарии не являются в чистом виде базовыми, т.е. сценариями без принятия мер. Фактически, в базовые сценарии уже заложены меры по сокращению эмиссий, за счет предположения о сохранении структуры потребления первичных энергетических ресурсов и источников генерации электрической энергии, т.e. сохранения удельных эмиссий ПГ и газов-прекурсоров на 1 кВтч. Эти уже принимаемые меры и приводят к росту доли электрической энергии в общем балансе использования первичных энергетических ресурсов (рис. 4.36).

Потенциал дальнейших возможных путей развития гидроэнергетики рассмотрен в разделе 4.5.1.5.5.

Возможное сокращение эмиссий ПГ от внедрения возобновляемых источников энергии рассмотрено в разделе 4.5.1.5.

Повышение эффективности при производстве и распределении

Наиболее очевидной и актуальной мерой в данном направлении является сокращение потерь. Анализ статистики потерь в различных странах показывает, что потери электрической энергии, вероятно, в большей степени зависят от уровня организации энергетического сектора, чем от его технического состояния. Потери устойчиво сокращаются в странах с высоким уровнем доходов, тогда как в странах с низким, ниже среднего и выше среднего уровнями доходов наблюдаются значительные колебания, в том числе и рост потерь. На рис. 4.37 показаны уровни потерь электрической энергии для стран региона Центральной Азии в 2010 г. Следует отметить, что на существенную разницу уровня потерь между странами оказывает влияние методика учета потерь.
Учитывая, что в КР большая часть электрической энергии производится на ГЭС (последние годы около 93 %) и только небольшая часть на ТЭЦ, использующих ископаемое топливо, сокращение потерь не приведет к значительному сокращению эмиссий ПГ. Но эта задача очень важна с точки зрения обеспечения энергетической и экономической безопасности республики.

Структура энергетического сектора подразделяется на генерацию, передачу и распределение.

Генерация

В соответствии с экспертным заключением КНТЦ «Энергия», основанном на расчетах потерь, согласно методике среднемесячной плановой загрузки трансформаторов с использованием «метода наибольших потерь», рекомендованный норматив потерь электроэнергии составляет 0,4 %. Следовательно, с учетом также незначительной величины потерь, существенного сокращения потерь в секторе генерации достичь нереально. Следует рассматривать только меры, направленные на модернизацию существующего оборудования генерации, которые, к сожалению, находятся вне направленности настоящей работы.

Передача

В секторе передачи электрической энергии дальнейшее снижение потерь возможно. В соответствии с представленными обоснованиями необходимо выполнить более 12 мероприятий, в результате чего потери можно будет снизить на 230 млн кВт•ч, т.е. довести до 4,5 %. Капитальные вложения для реализации плана мероприятий составляют, по укрупненным оценкам в ценах 2014 года, - 0,946 млрд сом.

Распределение

В секторе распределения электрической энергии дальнейшее снижение потерь вполне возможно и требует выполнения в полном объеме мероприятий, указанных в Плане мероприятий по снижению потерь электроэнергии в сетях РЭК. В соответствии с Планом необходимо выполнить мероприятия по всем РЭК, в результате чего потери можно будет снизить до уровня 10 % в год.

Капитальные вложения для реализации вышеуказанного плана составляют, по укрупненным оценкам в ценах 2014 года, – 27,45 млрд сом.

Реализация намеченных мер предполагается в ближайшие 10 лет. Однако учитывая, что внутренних ресурсов не имеется, точный срок определяется в зависимости от сроков выделения ресурсов со стороны международных организаций.

| Таблица 4.6. Сокращение эмиссии диоксида углерода и суммы ПГ при уменьшении потерь электрической энергии |
|---|---|---|---|
| Годы | 2020 | 2050 | 2100 |
| **Диоксид углерода, Гг** |
Сценарий 1. Низкий рост населения – высокий рост экономики	113,49	198,71	748,36
Сценарий 2. Средний рост населения – средний рост экономики	109,43	156,56	258,90
Сценарий 3. Высокий рост населения – низкий рост экономики	103,53	135,58	170,89
Суммарная эмиссия ПГ, Гг CO₂-экв.			
Сценарий 1. Низкий рост населения – высокий рост экономики	113,98	199,58	751,64
Сценарий 2. Средний рост населения – средний рост экономики	109,91	157,25	260,04
Сценарий 3. Высокий рост населения – низкий рост экономики	103,98	136,17	171,64

Повышение энергоэффективности при потреблении

Известно достаточно много методов повышения энергоэффективности организационного и технического характера при потреблении, а также методов с использованием экономического стимулирования. Применение этих методов может позволить существенно сократить потребление
электрической энергии. Однако одновременно идущие процессы более широкого использования различного оборудования, особенно в малом бизнесе и в быту, обусловленные ростом уровня жизни, естественно, приводят к повышению потребления. Поэтому, несмотря на необходимость реализации программ по энергосбережению, в результате трудно оценить конкретные количественные показатели и предполагаемые изменения для структуры потребления в будущем. Известны оценки экспертов, согласно которым неиспользованный потенциал энергосбережения по уровню 2006 г. в КР составляет 0,5–1 млн тнэ [4.7]. Однако данные оценки не сопровождаются описанием методологии, поэтому неясно, какие направления включены, возможно они уже учитываются в настоящей работе в других разделах, например, меры по сокращению потерь электрической энергии или использование возобновляемых источников энергии.

Учитывая эти барьеры, а также то, что в неявном виде повышение энергоэффективности уже учтено при прогнозе удельного потребления, предполагается отсутствие сокращения эмиссии от повышения энергоэффективности при потреблении. Энергоэффективность потребления уже входит в ожидаемое удельное потребление, так как прогноз потребления электрической энергии основан на общемировых тенденциях. Отсюда большие значения удельного потребления электроэнергии, которые, естественно, соответствуют развитым странам и уже включают некоторое снижение за счет реализованных к настоящему времени мер по повышению энергоэффективности.

4.5.1.3. Использование природного газа
Очевидной мерой сокращения эмиссий ПГ является уменьшение потерь, сравнение которых с показателями других стран показывает возможность существенного улучшения ситуации, в основном, за счет организационных мер. Основываясь на показателях других стран, а также уровне потерь в КР до 2000 г., предполагается, что сокращение потерь вполне достижимо. Согласно обоснованию, подготовленному ОсОО «Газпром Кыргызстана», для снижения потерь природного газа в газораспределительных сетях и объектах газоснабжения планируется провести ряд мероприятий с целью доведения потерь до величины 7 %.

Результаты расчета сокращения эмиссии, основанные на вышеприведенном предположении, приведены в таблице 4.7. По понятным причинам сокращение эмиссии диоксида углерода отсутствует. Напротив, при этом его эмиссии несколько вырастут.

<table>
<thead>
<tr>
<th>Сценарий</th>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Низкий рост населения – высокий рост экономики</td>
<td>860,06</td>
<td>1195,01</td>
<td>4228,89</td>
<td></td>
</tr>
<tr>
<td>2. Средний рост населения – средний рост экономики</td>
<td>860,06</td>
<td>1434,98</td>
<td>3692,24</td>
<td></td>
</tr>
<tr>
<td>3. Высокий рост населения – низкий рост экономики</td>
<td>791,53</td>
<td>812,70</td>
<td>812,70</td>
<td></td>
</tr>
</tbody>
</table>

4.5.1.4. Транспорт
Эмиссия ПГ от транспорта является в 2010 г. наиболее значительной среди всех категорий источников. Причем, для этой категории источников имеется значительный потенциал энергосбережения, так как исходные энергетические ресурсы используются в настоящее время весьма неэффективно, особенно в нашей стране.

Как отмечено, в Пятом оценочном докладе МГЭИК, более 67,7 % используемых энергетических ресурсов на транспорте не преобразуется в механическую энергию, т.е. теряется. Эмиссии этой категории в КР растут наиболее быстро по сравнению с другими категориями, аналогично общемировым тенденциям [4.19]. За период 1995–2010 гг. на фоне незначительного роста эмиссий ПГ в целом, эмиссии от транспорта выросли более чем в два раза. Поэтому для транспорта необходимо первоочередная реализация мер по сокращению эмиссий.

Как уже было отмечено в разделе 4.3, более 99 % всех эмиссий сектора составляют эмиссии категории «Дорожный транспорт». Поэтому в настоящем разделе будут рассмотрены меры по сокращению эмиссий только этой категории источников.

Меры по сокращению эмиссий можно условно разбить на несколько основных направлений:

- правовые и экономические меры;
- развитие общественного транспорта;
- управление движением и планирование дорожной инфраструктуры;
- развитие велосипедной инфраструктуры;
- создание пешеходных зон;
- реализация программ экологического вождения.
Глава 4. Анализ смягчения последствий изменения климата

Правовые и экономические меры

Очевидными мерами являются меры по стимулированию ввоза новых автомобилей с небольшими эмиссиями. Для всех категорий автотранспорта четко прослеживаются тенденции сокращения потребляемого топлива и соответственно эмиссий ПГ. Прогнозируется и дальнейшее усиление подобных тенденций. Например, для пассажирских автомобилей на бензине, согласно оценкам, приведенным в Пятом оценочном докладе МГЭИК, к 2030 г. ожидается сокращение эмиссий ПГ почти в два раза по сравнению с 2010 г. С учетом постоянного ужесточения требований к эмиссиям автомобилей в странах - основных производителях, КР желательно основное внимание уделять ограничению ввоза экологически неэффективных автотранспортных средств и стимулировать ввоз эффективных.

Это можно сделать за счет:

- ограничения ввоза автотранспортных средств, не соответствующих определенным экологическим требованиям;
- соответствующего изменения тарифов при таможенном оформлении автотранспортных средств для физических и юридических лиц, с целью установления больших таможенных ставок на автотранспортные средства со старыми годами выпуска;
- изменения ставки налога на автотранспортные средства для физических и юридических лиц, с целью установления высоких коэффициентов на автотранспортные средства со старыми годами выпуска;
- установления благоприятных условий для ввоза и уплаты налога на гибридные и электрические автотранспортные средства.

За счет реализации этих мер можно в краткосрочной перспективе достичь экономии топлива до 20–30 %. (Источник: Japan Automobile Research Institute data). Ожидается, что к 2020 г. реализация правовых мер в КР позволит сократить эмиссии на 20 %.

В последующие годы снижения эмиссии за счет правовых мер не ожидается.

Система контроля характеристик шин

Около 20 % потребляемого автомобилем топлива используется для преодоления сопротивления качению шин. Меры, направленные на улучшение этого показателя, должны учитывать тот факт, что контроль эффективности шин только на автомобиле недостаточен ввиду того, что после изнашивания шин на новом автомобиле потребители далеко не всегда заменяют их подобающими аналогами, предпочитая более дешевые, но менее эффективные покрышки. Вследствие этого теряется эффект экономии топлива в долгосрочной перспективе.

Так, например, в 2009 году департамент транспорта США представил программу «Tire Efficiency Consumer Information Program», в рамках которой предложена схема маркировки покрышек, учитывающая эффективность использования топлива.

ЕС также предпринимает существенные шаги в этом направлении. Принятая в 2009 г. Стратегия снижения выбросов CO₂ на дорожном транспорте включает в себя требования к давлению в шинах, сопротивлению качению и другим показателям.

В Японии с января 2010 г. действует система добровольной маркировки шин с целью информирования автовладельцев о расходе топлива и надежности сцепления с мокрым асфальтом. Таким образом, три основных региона-производителя автомобильного транспорта запустили систему контроля характеристик шин, напрямую влияющих на объемы использования топлива. Использовать эффект снижения эмиссий за счет повышения эффективности шин можно путем соответствующего ограничительного или стимулирующего таможенного регулирования.

За счет обеспечения использования шин, отвечающих требованиям стандарта эффективности, можно достичь в краткосрочной перспективе снижения потребления топлива на 4–5 %. (Источник: Japan Automobile Research Institute data). Для КР вероятно и вполне достижимо к 2020 г. снижение потребления топлива и, соответственно, эмиссий – на 2,25 %. В последующем существенного снижения не ожидается.

Развитие общественного транспорта

Применительно к городскому транспорту это означает приоритетное, опережающее развитие общественного транспорта, обеспечивающее изменение соотношения пассажиропотоков личного и общественного транспорта. В расчете на одного пассажира расход энергии при передвижении автобусом/троллейбусом приблизительно в 5–20 раз меньше, чем при передвижении легковым автомобилям (в зависимости от загрузки). К тому же, пассажиру в общественном транспорте требуется в 10–20 раз меньше площади проезжей части. Для обеспечения переориентации пассажиропотоков
необходимо:

• увеличение числа подвижного состава и частоты движения общественного транспорта;
• увеличение числа маршрутов для полного охвата основных направлений движения населения;
• повышение комфортности проезда;
• увеличение скорости (например, за счет выделения отдельных полос для движения общественного транспорта);
• применение тарифной политики, стимулирующей пользование общественным транспортом и энергоэффективным пригородным и междугородным транспортом;
• повышение осведомленности людей о проблемах, связанных с транспортом и о путях их решения.

По оценкам Международного энергетического агентства, в результате этих мер перевод каждых 10 % пассажирооборота с легковых автомобилей на автобусы (без изменения коэффициента загрузки) обеспечивает экономию 5 % потребления энергии транспортными средствами. Сокращение эмиссий определено на основании предположения, что к 2020 году будет осуществлен перевод 10 %, а к 2100 году - 20 % пассажирооборота на общественный транспорт, что сократит эмиссии ПГ на 5 % к 2020 г. и на 10 % - к 2100 г.

Планирование дорожной инфраструктуры

Меры по планированию дорожной инфраструктуры направлены на повышение средней скорости движения автотранспорта, лежащей в пределах 50–90 км/час, так как при этом достигается значительное снижение потребляемого топлива (рис. 4.38). Для различных автотранспортных средств зависимость расхода от скорости несколько отличается, но в целом они имеют аналогичный характер.

Основные меры по сокращению эмиссий:

• организация оптимальной работы светофоров («зеленая волна») и применение автоматизированных систем управления светофорами;
• организация пересечения дорог на разных уровнях на основных магистралях;
• ограничение въезда в центры городов (кроме общественного транспорта и велосипеда);
• ограничение движения большегрузных автотранспортных средств по центральным улицам городов в дневные часы;
• расширение и улучшение состояния существующих второстепенных автодорог (дорог-дублеров), объездных дорог, с целью снижения концентрации автотранспортных средств на основных магистралях;
• запрет на строительство новых сооружений, не имеющих парковочных мест и озелененных территорий;
• строительство перехватывающих парковок;
• внедрение оплаты въезда в центры городов;
• организация платных парковок в центрах городов;
• ограничение и частичный запрет парковок в центрах городов;
• эвакуация неправильно припаркованного транспорта.
Учитывая значительную стоимость реализации большинства мер по планированию дорожной инфраструктуры, предполагается, что за счет реализации отдельных, наименее затратных мер к 2020 г. сокращение эмиссии может составить около 10 %. Полная реализация всех перечисленных выше мер ожидается к 2100 г., что может обеспечить сокращение эмиссии около 20 %.

Развитие велосипедной инфраструктуры
Основные меры:
- строительство велодорожек;
- установка специальных дорожных знаков и светофоров;
- устройство велостоянок;
- обеспечение специально отведенных мест для перевозки велосипедов в общественном транспорте.

В настоящее время велосипедом в республике пользуются, по экспертным оценкам, до 1 % населения. При увеличении доли населения, регулярно пользующегося велосипедом до 10–15 % к 2020 г., сокращение эмиссии составит около 5 %. В последующем к 2100 г. ожидается достижение доли населения, пользующегося велосипедом, до 30 %. При этом сокращение эмиссии составит около 10 %.

Экологичное вождение
Экологичное вождение – это набор мер, выполняемый которые каждый водитель способен сократить потребление топлива автомобиля.

В целом при использовании экологичного вождения сокращение эмиссии ПГ может составить: 5-20 % в краткосрочной перспективе и еще 5–10 % – в долгосрочной. (Источник: Japan Automobile Research Institute data). Для КР вполне реально сокращение эмиссии к 2020 г. на 5 %.

Полная стоимость реализации всех перечисленных выше мер в секторе дорожного транспорта, по предварительным оценкам, составляет более 1000 млн долл. Наиболее затратной мерой является планирование дорожной инфраструктуры, затем - развитие общественного транспорта.

Результаты расчета сокращения эмиссии, основанные на вышеприведенных предположениях, приведены в таблице 4.8.

Таблица 4.8. Сокращение эмиссии диоксида углерода и суммы ПГ при реализации комплекса мер в автотранспортном секторе

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сцена 1. Низкий рост населения – высокий рост экономики</td>
<td>1640,44</td>
<td>3315,48</td>
<td>4150,17</td>
</tr>
<tr>
<td>Сцена 2. Средний рост населения – средний рост экономики</td>
<td>1386,26</td>
<td>1868,93</td>
<td>2209,65</td>
</tr>
<tr>
<td>Сцена 3. Высокий рост населения – низкий рост экономики</td>
<td>1320,03</td>
<td>1643,27</td>
<td>1831,22</td>
</tr>
</tbody>
</table>

4.5.1.5. Возобновляемые источники энергии
Установленная мощность и выработка энергии по различным видам ВИЭ в настоящее время в республике незначительна, что, естественно, в условиях достаточно дешевой электроэнергии от ГЭС, сравнительно низкого уровня жизни населения и недостаточного уровня государственной и международной поддержки.

Потенциал использования отдельных видов ВИЭ в республике официально не определялся, и имеются только экспертные оценки, которые значительно отличаются между собой вследствие использования различных подходов к оценке. Задача оценки потенциала возобновляемых источников энергии для КР определена как одна из наиболее приоритетных в среднесрочной перспективе.

Согласно рекомендациям МГЭИК и МЭА [4.9, 4.12, 4.22–27], рассмотрена оценка потенциала и возможное сокращение эмиссий ПГ от следующих имеющихся в стране возобновляемых источников энергии:
- биомасса;
- энергия солнца;
- энергия ветра;
- геотермальная энергия;
- гидроэнергия.
Методология оценки потенциала возобновляемых источников энергии построена на методологии справочника [4.1] и результатах проекта TASIS [4.6].

Процесс внедрения возобновляемых источников энергии предполагается реализовывать по схеме стимуляции конечных пользователей. Отсюда необходимые затраты составляют половину стоимости всех требуемых затрат. Соответственно, половина достигаемого сокращения эмиссий ПГ также будет получена за счет собственных ресурсов.

4.5.1.5.1. Биоэнергетические ресурсы

Любое использование биомассы в качестве энергетического ресурса, даже непосредственное сжигание, не приводит к увеличению эмиссии диоксида углерода, так как он был поглощен растениями ранее в процессе фотосинтеза.

Основными барьерами для использования биомассы являются более высокая стоимость и невысокая эффективность преобразования по сравнению с ископаемым топливом, неразвитая логистика поставок и риски, связанные с интенсификацией сельского хозяйства.

Далее будет рассмотрен потенциал биомассы по сокращению эмиссии ПГ для отходов:

• сельского хозяйства (животноводство и растениеводство);
• пищевой промышленности;
• твердых бытовых отходов.

Не рассматриваются отходы лесной промышленности, отходы систем очистки сточных вод, отходы деревообработки и бумажной промышленности в силу незначительности их объемов для условий КР.

Оценка потенциала произведена на 2010 год, с использованием данных Нацстаткома и на основании зоотехнических норм и теплофизических свойств отходов по данным Справочника [4.1].

Для отходов животноводства валовый потенциал рассчитан на все поголовье скота и птицы (крупный рогатый скот, овцы и козы, лошади, свиньи и домашняя птица). Технический потенциал определен с исключением доли поголовья, выпасаемого на пастбищах, согласно оценкам, приведенным в разделе 3. Экономический потенциал определен только для части поголовья, содержание которого в крупных хозяйствах. Под крупными хозяйствами понимались такие хозяйства, отходы животноводства которых способны обеспечить все потребности среднего домохозяйства в энергетических ресурсах.

Для отходов растениеводства валовый потенциал рассчитан на весь объем сельскохозяйственных остатков (зерно-бобовые культуры, хлопок, картофель и овощи). Технический потенциал определен по доле остатков, приходящихся на крупные хозяйства, под которыми понимались хозяйства, имеющие более 1 га земель, занятых конкретной культурой. Экономический потенциал определялся из технического потенциала, с учетом реального объема собираемости остатков растениеводства.

Для отходов пищевой промышленности валовый потенциал определен по всему объему образующихся отходов (мукомольно-крупяная промышленность, производство сахара и этилового спирта, мясообрабатывающая промышленность). Технический потенциал принят равным валовому потенциалу, так как предполагается, что все рассмотренные производства являются крупными. Экономический потенциал определялся из технического, с учетом реального объема собираемости отходов пищевой промышленности.

Для твердых бытовых отходов валовый потенциал определен с использованием всего объема собираемой органической фракции для жителей городов республики. Технический потенциал принят равным валовому потенциалу, так как предполагается, что все рассмотренные производства являются крупными. Экономический потенциал определялся из технического, с учетом реального объема собираемости отходов пищевой промышленности.

Производственный потенциал во всех случаях определялся из экономического, с учетом реального коэффициента преобразования в полезную энергию.

<table>
<thead>
<tr>
<th>Источник биомассы</th>
<th>Потенциал, тут</th>
<th>Животноводство*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>валовый</td>
<td>технический</td>
</tr>
<tr>
<td>КРС</td>
<td>406380,18</td>
<td>162552,07</td>
</tr>
<tr>
<td>овцы и козы</td>
<td>609996,28</td>
<td>157665,56</td>
</tr>
<tr>
<td>лошади</td>
<td>157881,09</td>
<td>63152,43</td>
</tr>
<tr>
<td>свиньи</td>
<td>3738,89</td>
<td>3738,89</td>
</tr>
<tr>
<td>птица</td>
<td>19827,08</td>
<td>19827,08</td>
</tr>
</tbody>
</table>
Глава 4. Анализ смягчения последствий изменения климата

Источник биомассы | Потенциал, тут |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>валовый</td>
</tr>
<tr>
<td>Растениеводство</td>
<td></td>
</tr>
<tr>
<td>зернобобовые</td>
<td>237300,00</td>
</tr>
<tr>
<td>хлопок</td>
<td>44400,00</td>
</tr>
<tr>
<td>картофель</td>
<td>44646,67</td>
</tr>
<tr>
<td>овощи</td>
<td>27070,00</td>
</tr>
<tr>
<td>Пищевая промышленность</td>
<td></td>
</tr>
<tr>
<td>мукомольно-крупяная</td>
<td>65732,57</td>
</tr>
<tr>
<td>сахарная</td>
<td>1948,80</td>
</tr>
<tr>
<td>спиртовая</td>
<td>1397,15</td>
</tr>
<tr>
<td>миссообрабатывающая</td>
<td>111,30</td>
</tr>
<tr>
<td>Твердые бытовые отходы</td>
<td>161188,21</td>
</tr>
<tr>
<td>Всего</td>
<td>1781618,22</td>
</tr>
</tbody>
</table>

Экономический и производственный потенциал для биомассы от животноводства, растениеводства и пищевой промышленности существенно зависит от принятой производительности перерабатывающих установок и распределения хозяйств по объемам. Например, оценки минимального потенциала для КРС составляют:

- экономический – 8402,01 тут;
- производственный – 3042,72 тут,

что значительно ниже принятых значений, тогда как максимальный потенциал почти в два раза выше:

- экономический – 56701,99 тут;
- производственный – 20412,72 тут.

Распределение хозяйств по объему взято по последним имеющимся статистическим данным и предполагалось, что оно не изменится и в будущем. Возможно, что это предположение несколько занижает оценку потенциала в будущем исходя из наблюдаемых тенденций к укрупнению.

Основываясь на оценках потенциала биоэнергетических ресурсов (таблица 4.9) на 2010 год и сценариях развития, определены изменения величины потенциала для всего рассматриваемого периода.

В соответствии с опытом реализации других стран предполагается, что весь производственный потенциал биоэнергетических ресурсов секторов животноводства, растениеводства и пищевой промышленности будет реализован не ранее 2050 г., а твердых бытовых отходов – в 2040 г.

Результаты расчета сокращения эмиссий ПГ приведены в таблице 4.10 с учетом предположения, что биоэнергетические ресурсы заменят ископаемое топливо, используемое населением для отопления и прочих целей. При этом учтено, что сокращение эмиссии диоксида углерода несколько условное, фактически эти эмиссии все равно остаются, только они не учитываются в выбросах страны, а переходят в раздел «7 К сведению». Полностью сокращаются только эмиссии диоксида серы на величину замещения ископаемого топлива. Для расчета использован вариант минимального сокращения эмиссий – сжигание биомассы. Для других вариантов использования, например, разложения органической фракции без доступа кислорода, показатели будут, естественно, выше. Значительный интерес представляет биотехнологическая переработка органических отходов с получением биогаза, особенно в сельской местности, когда могут решаться энергетические, экономические, экологические, эпидемиологические и социально-экономические вопросы, важные для жизни и здоровья человека.

Простота технологии обусловлена одновременным обеспечением двух факторов: получение биогаза и высококачественного органического удобрения. При расчете показателей для сценариях с мерами по использованию потенциала биоэнергетических ресурсов учитывается также сокращение эмиссий метана от сектора «Отходы» за счет изъятия органической фракции.

Таблица 4.10. Потенциал сокращения эмиссии диоксида углерода и суммарная ПГ при использовании биомассы

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>52,14</td>
<td>213,09</td>
<td>290,25</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>51,68</td>
<td>205,66</td>
<td>262,84</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>51,67</td>
<td>114,46</td>
<td>128,98</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гг СО2-экв.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>352,69</td>
<td>1302,90</td>
<td>2148,07</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>347,00</td>
<td>1224,91</td>
<td>1885,75</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>357,70</td>
<td>1135,91</td>
<td>1614,05</td>
</tr>
</tbody>
</table>
4.5.1.5.2. Энергия солнца

В КР имеются объективные предпосылки (климатические и технические) для широкого развития использования солнечной энергии. Климатические предпосылки состоят в достаточно высоких удельных характеристиках солнечных установок при производстве электроэнергии и тепла (годовая удельная выработка электроэнергии фотоэлектрическими установками - до 300 кВт•ч/м²; годовая удельная производительность установок солнечного горячего водоснабжения - до 750 кВт•ч (тепловых)/м²). В целом, географическое положение и климатические условия КР являются весьма благоприятными для использования солнечной энергии, о чем наглядно свидетельствуют карты солнечной радиации. Технические предпосылки состоят в наличии все более дешевых фотоэлектрических преобразователей, модулей на их основе и плоских солнечных коллекторов, а также в еще сохраняющемся, хотя и существенно ослабленном, научно-техническом потенциале в данной области.

В настоящем разделе рассматривается использование прямой солнечной энергии, основанной на непосредственном использовании энергии Солнца. Существуют различные технологии, позволяющие получать тепловую или электрическую энергию пассивными или активными способами [4.12]. В настоящее время использование солнечной энергии чаще всего сводится, в основном, к производству низкопотенциального солнечного тепла с помощью простейших плоских солнечных коллекторов, как наиболее низкозатратному варианту. В стране необходимо развивать и другие направления, например, использование фотоэлементов для получения электрической энергии. Это направление широко развивается во многих странах: во всех странах - членах ЕС – «100 000 солнечных крыш», «70 000 солнечных крыш» - в Японии, «1 000 000 солнечных крыш» - в США и даже в развивающейся стране Монголии – «100 тысяч солнечных юрт».

Оценка валового потенциала солнечной энергии для КР, естественно, является огромной величиной, но определение технического, экономического и производственного потенциала обычно осуществляется с использованием эмпирических приемов, приводящих к результатам, зависящим от предпочтений конкретного исследования, см., например, справочник [4.1]. Поэтому ниже использован подход, основанный на уже известном опыте.

Для получения электрической энергии предполагается реализация в КР аналогичной программы, предусматривающей использование фотоэлементов 100000 крыш к 2030 г., такое же количество дополнительно к 2060 г. и всего 400000 крыш - к 2100 г. Результаты расчета сокращения эмиссии приведены в таблице 4.11. Предполагается, что программа будет реализовываться одинаково при любых сценариях развития. Сокращение эмиссий несколько условно отнесено к использованию электрической энергии в категории «Отопление. «Жилой» сектор (использование электричества)», как основной категории реализации меры.

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td>12,90</td>
<td>50,64</td>
<td>113,55</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гг СО₂-экв.</td>
<td>12,95</td>
<td>50,85</td>
<td>114,02</td>
</tr>
</tbody>
</table>

Для получения тепловой энергии предполагается реализация программы, аналогичной программе для электрической энергии, т.е. – охват 10 % домохозяйств - к 2030 г., дополнительно еще 10 % к 2060 г. и всего охват 35 % к 2100 г. Объемы охвата, в целом, согласуются с общемировыми тенденциями роста данного вида возобновляемых источников энергии [4.13]. Результаты расчета сокращения эмиссий приведены в таблице 4.12, сокращения относятся к категориям:

- отопление «Коммерческий/институциональный» сектор (сжигание топлива);
- горячая вода и др. «Коммерческий/институциональный» сектор (сжигание топлива);
- отопление «Жилой» сектор (сжигание топлива);
- горячая вода и др. «Жилой» сектор (сжигание топлива).

Небольшое сокращение эмиссии возможно и в других секторах, связанных с потреблением электрической энергии для нужд отопления и горячей воды, но оно значительно ниже и поэтому не учтено.

<table>
<thead>
<tr>
<th>Сценарий</th>
<th>Название</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>73,09</td>
<td>264,68</td>
<td>598,89</td>
<td></td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>73,49</td>
<td>261,87</td>
<td>657,80</td>
<td></td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>74,53</td>
<td>308,11</td>
<td>1019,59</td>
<td></td>
</tr>
</tbody>
</table>
Глава 4. Анализ смягчения последствий изменения климата

<table>
<thead>
<tr>
<th>Годы</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>78,02</td>
<td>284,46</td>
<td>643,85</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>78,44</td>
<td>281,46</td>
<td>707,14</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>79,06</td>
<td>323,48</td>
<td>1052,95</td>
</tr>
</tbody>
</table>

4.5.1.5.3. Геотермальная энергия

Достоинствами геотермальной энергии можно считать практическую неисчерпаемость этих ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоснабжения и медицины. Недостатками ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы, а также недостаток исследований по оценке потенциала источников геотермальной энергии в КР.

В КР более 30 геотермальных источников, но лишь некоторые из них используются в санаторно-курортном хозяйстве (например, Иссык-Ата, Теплые ключи) исключительно для удовлетворения собственных нужд этих учреждений, т.к. мощность их невелика.

Одним из методов использования геотермальной энергии является полезное использование рассеянного низкотемпературного (5÷10 °C) природного тепла или сбросного промышленного тепла для теплоснабжения с помощью тепловых насосов.

Тепловые насосы, в силу того, что они избавлены от большинства недостатков централизованных теплоснабжений, уже нашли широкое применение во многих странах.

Нагрев от дополнительного источника, кроме тепловой насосной установки, требуется, когда температура окружающего воздуха упадет ниже нуля, при этом тепловые потери здания превосходят тепловую мощность насоса. Для повышения экономической эффективности системы включение дополнительного нагревателя, в данном случае электрического, рекомендуется только тогда, когда тепловой насос не может покрыть полную нагрузку.

Массовое производство тепловых насосов налажено практически во всех развитых странах. По прогнозам к 2020 г., в развитых странах доля отопления и горячего водоснабжения с помощью тепловых насосов составит 75 %.

Следует отметить, что применение тепловых насосов пока не находит широкого применения в силу ряда различных объективных и субъективных причин:

- относительно дешевые тарифы на электроэнергию;
- отсутствие знаний у потребителей о преимуществах и недостатках при внедрении современных технологий теплоснабжения бытовых потребителей;
- отсутствие системы льготного кредитования на установку геотермальной системы теплоснабжения;
- отсутствие специализированных монтажных организаций;
- отсутствие сервисных центров по обслуживанию, эксплуатации и ремонту;
- отсутствие инвесторов, желающих вложить свой капитал в эту отрасль энергетики из-за политической нестабильности.

Учитывая перечисленные барьеры, можно предположить, что в КР доля использования тепловых насосов отопления и горячего водоснабжения достигнет 75 % только к 2100 г. На основании этого предположения рассчитаны объемы сокращения эмиссий, приведенные в таблице 4.13.

Основное сокращение эмиссий ожидается для следующих категорий:
- отопление. «Жилой» сектор (сжигание топлива);
- отопление. «Жилой» сектор (использование электричества);
- горячая вода и др. «Жилой» сектор (сжигание топлива);
- горячая вода и др. «Жилой» сектор (использование электричества).

Также небольшое снижение эмиссий возможно в коммерческом/институциональном секторе, однако предполагается, что это снижение будет значительно меньшим по сравнению с жилым сектором.
Таблица 4.13. Потенциал сокращения эмиссии диоксида углерода и суммы ПГ при использовании геотермальной энергии

<table>
<thead>
<tr>
<th>Декады</th>
<th>2020</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диоксид углерода, Гг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>128,01</td>
<td>492,35</td>
<td>868,04</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>128,98</td>
<td>489,24</td>
<td>992,12</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>131,28</td>
<td>585,07</td>
<td>1650,26</td>
</tr>
<tr>
<td>Суммарная эмиссия ПГ, Гг CO₂-экв.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сценарий 1. Низкий рост населения – высокий рост экономики</td>
<td>136,20</td>
<td>526,51</td>
<td>930,49</td>
</tr>
<tr>
<td>Сценарий 2. Средний рост населения – средний рост экономики</td>
<td>137,22</td>
<td>523,10</td>
<td>1060,87</td>
</tr>
<tr>
<td>Сценарий 3. Высокий рост населения – низкий рост экономики</td>
<td>138,81</td>
<td>611,72</td>
<td>1697,45</td>
</tr>
</tbody>
</table>

4.5.1.5.4. Энергия ветра

В настоящее время ветроэнергетические установки достигли уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения [4.12].

При сильном ветре, от 10 до 12 м/с, ветроэнергетические установки вырабатывают достаточное количество электроэнергии, которую можно даже передавать в централизованную систему электроснабжения. Трудности возникают в периоды длительного затишья или слабого ветра. Поэтому принято считать районы со средней скоростью ветра менее 5 м/с малопригодными для размещения ветроэнергетических установок, а со скоростью 8 м/с – благоприятными. Т.е. строительство ветроэнергетической установки оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики. В условиях горного рельефа, характерного для страны, ветры постоянного направления и достаточной силы могут встретиться только в труднодоступной и малонаселенной местности.

Анализ инструментальных наблюдений на метеостанциях республики показывает, что фактические среднегодовые скорости ветра значительно ниже 5 м/с (только по одной метеостанции за два месяца в году наблюдается превышение), более того, практически по всем метеостанциям наблюдается устойчивая тенденция к снижению среднемесячной скорости ветра. Можно сделать вывод, что потенциал ветровой энергии в республике в зоне основного проживания населения незначителен. Вероятно, для условий Кыргызской Республики использование ветровой энергии экономически оправдано лишь в отдельных местах, малоудобных для сооружения ветроэнергетических установок ввиду трудной доступности и удаленности от основных потребителей.

Исходя из изложенного, в республике не предполагается использование энергии ветра в значительных объемах и возможное снижение эмиссии не рассчитывается.

4.5.1.5.5. Гидроэлектроэнергия

Гидроэнергетика считается одним из приоритетных направлений развития экономики КР. Именно гидроэлектростанции составляют основу энергосистемы, именно на ГЭС вырабатывается более 90 % электроэнергии (см. таблицу 4.13). Эта особенность является положительной с точки зрения воздействия Кыргызской Республики на изменение климата. Основная трудность состоит в сохранении существующей ситуации, так как возобновляемые энергетические ресурсы, особенно гидроэнергетические, существенно зависят от климатических изменений.

Деление на малые ГЭС (в таблице 4.14 и далее) - условное, так как в КР отсутствует официально принятая система классификации.

Обращает внимание небольшое количество малых ГЭС в настоящее время. Ранее в КР действовало значительное количество малых ГЭС, хотя часть из них можно даже отнести к микро ГЭС (см. рис. 4.39).

Всего эксплуатировалась 161 малая ГЭС с суммарной установленной мощностью 44 МВт. После ввода в эксплуатацию крупных ГЭС и тепловых электростанций большинство малых ГЭС были выведены из эксплуатации, а затем демонтированы и разрушены. В последние годы вопрос восстановления и сооружения новых малых ГЭС приобрел большую актуальность, в связи с появившимся дефицитом электроэнергии и удороожанием ископаемого топлива.
Глава 4. Анализ смягчения последствий изменения климата

Таблица 4.14. Характеристики существующих электрических станций. Источник: Министерство энергетики и промышленности КР

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Установленная мощность, МВт</th>
<th>Годовая выработка, млн кВт·ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГЭС</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Токтогульская</td>
<td>1200</td>
<td>4100</td>
</tr>
<tr>
<td>1.2</td>
<td>Курпсайская</td>
<td>800</td>
<td>2630</td>
</tr>
<tr>
<td>1.3</td>
<td>Таш-Кумырская</td>
<td>450</td>
<td>1555</td>
</tr>
<tr>
<td>1.4</td>
<td>Шамалдысайская</td>
<td>240</td>
<td>902</td>
</tr>
<tr>
<td>1.5</td>
<td>Уч-Курганская</td>
<td>180</td>
<td>820</td>
</tr>
<tr>
<td>1.6</td>
<td>Ат-Башинская</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>1.7</td>
<td>Камбарата-2</td>
<td>120</td>
<td>383</td>
</tr>
<tr>
<td>Итого по ГЭС</td>
<td></td>
<td>3030</td>
<td>10540</td>
</tr>
<tr>
<td>ТЭЦ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>г. Бишкек*</td>
<td>666</td>
<td>1400,58</td>
</tr>
<tr>
<td>1.9</td>
<td>г. Ош*</td>
<td>50</td>
<td>68,17</td>
</tr>
<tr>
<td>1.10</td>
<td>г. Каинда**</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1.11</td>
<td>г. Кара-Балта**</td>
<td>10</td>
<td>128,61</td>
</tr>
<tr>
<td>Итого по ТЭЦ</td>
<td></td>
<td>736</td>
<td>1597,36</td>
</tr>
<tr>
<td>Малые ГЭС</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>Аламединская ГЭС № 1</td>
<td>2,2</td>
<td>18</td>
</tr>
<tr>
<td>1.13</td>
<td>Аламединская ГЭС № 2</td>
<td>2,5</td>
<td>20</td>
</tr>
<tr>
<td>1.14</td>
<td>Аламединская ГЭС № 3</td>
<td>2,14</td>
<td>20</td>
</tr>
<tr>
<td>1.15</td>
<td>Аламединская ГЭС № 4</td>
<td>2,14</td>
<td>17</td>
</tr>
<tr>
<td>1.16</td>
<td>Аламединская ГЭС № 5</td>
<td>6,42</td>
<td>23</td>
</tr>
<tr>
<td>1.17</td>
<td>Аламединская ГЭС № 6</td>
<td>6,42</td>
<td>23</td>
</tr>
<tr>
<td>1.18</td>
<td>Малая Аламединская ГЭС</td>
<td>0,41</td>
<td>2,0</td>
</tr>
<tr>
<td>1.19</td>
<td>Быстровская ГЭС</td>
<td>8,7</td>
<td>46,4</td>
</tr>
<tr>
<td>1.20</td>
<td>Лебединовская ГЭС</td>
<td>7,6</td>
<td>65</td>
</tr>
<tr>
<td>1.21</td>
<td>Калининская ГЭС</td>
<td>1,48</td>
<td>6</td>
</tr>
<tr>
<td>1.22</td>
<td>Иссык-Атинская Малая ГЭС</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>1.23</td>
<td>Найман ГЭС</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Итого по малым ГЭС</td>
<td></td>
<td>42,11</td>
<td>240,4</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>3808,11</td>
<td>12377,76</td>
</tr>
</tbody>
</table>

*По данным за 1990–2012 гг.
**По данным за 2005–2012 гг.

Рис. 4.39. Распределение ранее эксплуатировавшихся малых ГЭС по установленной мощности. Источник: Результаты инвентаризации объектов малой гидроэнергетики, утвержденные постановлением Правительства КР № 62 от 11 февраля 2002 года

Таблица 4.15. Характеристики планируемых электрических станций. Для малых ГЭС в скобках приведено количество. Источник: Министерство энергетики и промышленности КР

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Установленная мощность, МВт</th>
<th>Годовая выработка, млн кВт·ч</th>
<th>Капитальные вложения, млн $US</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГЭС</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Камбарата-1</td>
<td>1900/1600</td>
<td>5164/3400</td>
<td>2900/1600</td>
</tr>
<tr>
<td>1.2</td>
<td>Камбарата-2*</td>
<td>240</td>
<td>766</td>
<td>280</td>
</tr>
<tr>
<td>1.3</td>
<td>Нарынская 1</td>
<td>39</td>
<td>207,7</td>
<td>83,345</td>
</tr>
<tr>
<td>1.4</td>
<td>Нарынская 2</td>
<td>38</td>
<td>227,5</td>
<td>82,964</td>
</tr>
<tr>
<td>1.5</td>
<td>Нарынская 3</td>
<td>47</td>
<td>259,5</td>
<td>124,627</td>
</tr>
<tr>
<td>1.6</td>
<td>Акбулунская</td>
<td>67</td>
<td>361,2</td>
<td>220</td>
</tr>
</tbody>
</table>

Глава 4. Анализ смягчения последствий изменения климата
<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Установленная мощность, МВт</th>
<th>Годовая выработка, млн кВт·ч</th>
<th>Капитальные вложения, млн $US</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Сары-Джаз</td>
<td>1200</td>
<td>5400</td>
<td>1200</td>
</tr>
<tr>
<td>1.8</td>
<td>Кара-Кольская</td>
<td>33</td>
<td>95</td>
<td>~</td>
</tr>
<tr>
<td>1.9</td>
<td>Кокомеренская 1</td>
<td>360</td>
<td>958</td>
<td>-</td>
</tr>
<tr>
<td>1.10</td>
<td>Кокомеренская 2</td>
<td>912</td>
<td>2375</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Итого по ГЭС</td>
<td>4836</td>
<td>15813,9</td>
<td>4972,936</td>
</tr>
<tr>
<td></td>
<td>На ископаемом топливе</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>г. Бишкек ТЭЦ 1**</td>
<td>125</td>
<td>500</td>
<td>380</td>
</tr>
<tr>
<td>1.12</td>
<td>г. Бишкек ТЭЦ 2</td>
<td>360</td>
<td>1500</td>
<td>137,9</td>
</tr>
<tr>
<td>1.13</td>
<td>Кара-Кечинская ТЭС</td>
<td>1200</td>
<td>9500</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td>Итого</td>
<td>1685</td>
<td>11500</td>
<td>1667,9</td>
</tr>
<tr>
<td></td>
<td>Малые ГЭС</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>Восстанавливающие (39)</td>
<td>23,08</td>
<td>106,16</td>
<td>16,62</td>
</tr>
<tr>
<td>1.13</td>
<td>Вновь строящие (62)</td>
<td>180,77</td>
<td>930,29</td>
<td>210,35</td>
</tr>
<tr>
<td>1.14</td>
<td>На водохозяйственных объектах (7)</td>
<td>72,2</td>
<td>204,5</td>
<td>86,2</td>
</tr>
<tr>
<td></td>
<td>Итого по малым ГЭС</td>
<td>276,05</td>
<td>1240,95</td>
<td>313,17</td>
</tr>
<tr>
<td></td>
<td>Всего</td>
<td>6797,05</td>
<td>28554,85</td>
<td>6954,006</td>
</tr>
</tbody>
</table>

* - Увеличение установленной мощности за счет ввода новых агрегатов.
** - Увеличение установленной мощности в результате реконструкции.

Как видно из таблицы 4.15, в планах развития энергетики предполагается увеличение объемов генерации всеми видами источников, но основное внимание уделяется гидроэнергетике. В таблице отсутствуют даты ввода отдельных объектов, так как существует значительная зависимость сроков начала и завершения строительства от возможности финансирования. Для дальнейшего анализа предполагается, что к 2100 г. все объекты по генерации электроэнергии будут реализованы.

Ожидаемое потребление электроэнергии приведено на рис. 4.40, определенное из прогноза в базовом варианте, с вычитанием величины сокращения при реализации ранее рассмотренных мер.

Гидроэнергетический потенциал был определен на основании подхода, разработанного специалистами Института водных проблем и гидроэнергетики НАН в процессе подготовки Приоритетных направлений адаптации к изменению климата в Кыргызской Республике до 2017 года. Для 2010 г. оценка потенциала приведена в таблице 4.15.

Под валовым гидроэнергетическим потенциалом понимается энергетический эквивалент запасов гидравлической энергии, сосредоточенный в поверхностных стоках, без учета потерь. Технический гидроэнергетический потенциал является частью валового. Это та часть валового потенциала, которая технически может быть использована с учетом неизбежных потерь, связанных с производством электроэнергии, включая невозможность полного использования стока. Это вызвано недостаточной емкостью водохранилищ и ограничением мощности ГЭС, в связи с ограниченным использованием верховых и низовых участков рек с малой потенциальной мощностью, потерями на испарение и фильтрацию из водохранилищ, потерями напора и мощности в проточном тракте и энергетическим оборудовании ГЭС и т.д. Технический потенциал достаточно постоянен и может зависеть только от существенных изменений способов производства электроэнергии на ГЭС. Технический гидроэнергетический потенциал, согласно известным оценкам института [4.4], в процентах от валового гидроэнергетического потенциала составляет: для бассейна реки Нарын – 62 %; реки Чу – 40 %; реки Ак-Сай – 40 %; реки Сары-Джаз – 70 %; рек бассейна озера Иссык-Куль –
55 %. Для рек других бассейнов Кыргызской Республики принято среднее значение по республике, равное 54 %.

Экономический гидроэнергетический потенциал представляет собой часть технического гидроэнергетического потенциала, использование которой является экономически эффективным. Поэтому экономический потенциал может изменяться во времени и зависеть от энергетических и экономических условий места строительства ГЭС. Согласно известным оценкам [4.5], экономический гидроэнергетический потенциал составляет менее 25 % от валового гидроэнергетического потенциала. Производственный потенциал в настоящем расчете принят равным экономическому, но на стадии проектирования ГЭС он может быть уменьшен, так как необходимо учесть ограничения, связанные с исключением некоторых территорий, на которых предполагается строительство ГЭС. Например, особо охраняемые природные территории и территории, выявленные как неблагоприятные для строительства ГЭС, с точки зрения инженерно-геологических условий. Также некоторое уменьшение потенциала определяет учет обеспеченности поверхностного стока.

В соответствии с оценками, приведенными в таблице 4.16, в настоящее время гидроэнергетический потенциал республики уже используется на 18 % (для больших ГЭС - на 19,5 %, а для малых - на 4 %). При строительстве всех планируемых ГЭС, согласно таблице 4.14, использование потенциала возрастает до 46,0 % (для больших ГЭС - до 48,8 %, а для малых - до 21,3 %).

Если считать гидроэнергетический потенциал постоянным, то сравнение величин гидроэнергетического потенциала республики (таблица 4.15) с оценкой ожидаемого потребления (рис. 4.40) показывает, что реализация мер по сокращению эмиссий ПГ, перечисленных выше, обеспечивает значительное сокращение потребления электроэнергии. При этом для сценария развития 2 «Средний рост населения - средний рост экономики» и 3 «Высокий рост населения - низкий рост экономики» потребности в электроэнергии полностью покрываются за счет существующих источников энергии. Для сценария развития 1 «Низкий рост населения - высокий рост экономики» введение в эксплуатацию всех планируемых гидроэнергетических источников энергии, согласно таблице 4.14, не обеспечит потребности страны к 2100 г. Существуют два варианта решения этой проблемы:

- строительство новых ГЭС для полного использования всего гидроэнергетического потенциала республики (таблица 4.15);
- строительство планируемых источников на ископаемом топливе (ТЭЦ 2 г. Бишкек и Кара-Кечинская ТЭС).

С точки зрения уменьшения воздействия на изменение климата, естественно, более предпочтительным является первый вариант. Но решение проблемы обеспечения электрической энергий вполне реально и основывается на существующем потенциале и планируемых национальных действиях.

Ситуация менее благоприятная при учете воздействия климата на поверхностные водные ресурсы. На рис. 4.41 и 4.42 приведены оценки гидроэнергетического потенциала для двух климатических сценариев:

- RCP2.6 – наиболее экологически мягкий сценарий, основанный на достижении соглашения по совместным активным действиям всего мирового сообщества в сфере сокращения эмиссий ПГ;
- RCP8.5 – наиболее неблагоприятный сценарий, основанный на продолжении существующих тенденций.

<table>
<thead>
<tr>
<th>Бассейн</th>
<th>Валовый</th>
<th>Технический</th>
<th>Экономический</th>
<th>Производственный</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иссык-Куль</td>
<td>17.29</td>
<td>9.51</td>
<td>3.99</td>
<td>3.99</td>
</tr>
<tr>
<td>Чу</td>
<td>21.11</td>
<td>8.44</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>Талас</td>
<td>11.98</td>
<td>6.47</td>
<td>2.72</td>
<td>2.72</td>
</tr>
<tr>
<td>Чатыр-Куль</td>
<td>0.14</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Кызылсу</td>
<td>8.67</td>
<td>4.68</td>
<td>1.97</td>
<td>1.97</td>
</tr>
<tr>
<td>Тарим</td>
<td>45.29</td>
<td>31.70</td>
<td>13.32</td>
<td>13.32</td>
</tr>
<tr>
<td>Балхаш</td>
<td>0.28</td>
<td>0.15</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Нарын</td>
<td>73.18</td>
<td>45.37</td>
<td>19.06</td>
<td>19.06</td>
</tr>
<tr>
<td>Фергана – север</td>
<td>15.20</td>
<td>8.21</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Фергана – юг</td>
<td>19.65</td>
<td>10.61</td>
<td>4.46</td>
<td>4.46</td>
</tr>
<tr>
<td>Карадарь</td>
<td>32.74</td>
<td>17.68</td>
<td>7.43</td>
<td>7.43</td>
</tr>
<tr>
<td>Всего</td>
<td>245.52</td>
<td>142.90</td>
<td>60.02</td>
<td>60.02</td>
</tr>
</tbody>
</table>
Сравнение величин гидроэнергетического потенциала республики для климатического сценария RCP2.6 (рис. 4.41) с оценкой ожидаемого потребления (рис. 4.40) показывает, что ситуация, в целом, совпадает с описанным выше для случая отсутствия воздействия изменения климата, т.е. постоянного гидроэнергетического потенциала. В этом случае потенциал к 2100 г. уменьшается с 60,02 ТВтч до 50,94 ТВтч, но по-прежнему достаточен для обеспечения потребностей республики в электроэнергии до 2100 г. Для сценариев развития 2 и 3 потребности в электроэнергии полностью покрываются за счет существующих источников энергии при реализации планируемых мер. Для сценария развития 1, аналогично рассмотренному выше случаю, также реально осуществимы два варианта решения по обеспечению страны электроэнергией.

Наиболее неблагоприятный случай - это возможная реализация климатического сценария RCP8.5 (рис. 4.42), которая приводит к значительному сокращению гидроэнергетического потенциала, с 60,02 ТВтч до 35,87 ТВтч. Для сценариев развития 2 и 3 проблем не возникает в силу небольшого ожидаемого потребления электрической энергии. Для сценария развития 1 «Низкий рост населения - высокий рост экономики» обеспечение республики электрической энергией до 2100 г. возможно только при строительстве новых ГЭС для полного использования гидроэнергетического потенциала республики и одновременном строительстве планируемых источников электрической энергии на ископаемом топливе (ТЭЦ 2 г. Бишкек и Кара-Кечинская ТЭС).

Существует вариант использования дополнительных мер по сокращению эмиссии ПГ (кроме приведенных выше), следовательно, и сокращению энергопотребления.

Учитывая неопределенность в сроках выполнения планируемых мер по вводу новых источников энергии и ограниченность намеченных целей по сокращению эмиссии ПГ 2050 г. в разделе 4.2.2, для расчета эмиссионных сценариев с мерами предполагается, что до 2050 г. из всех планируемых (таблица 4.14) будут введены в действие только две ГЭС – Камбарата-1 и Камбарата-2. Причем, оценка сокращения целиком основана на использовании Камбарата-2.

Фактически, при вводе новых ГЭС, электроэнергии для внутреннего использования в соответствии с ожидаемым потреблением (рис. 4.40) будет достаточно до середины столетия, даже при полном исключении источников генерации на ископаемом топливе. Но источники генерации на ископаемом топливе сохранены в расчете для обеспечения возможного импорта электрической энергии.

С учетом этого предложения рассчитано ожидаемое сокращение эмиссии, которое относится к категории «Электрическая энергия. Все потребители, кроме Коммерческого/институционального и Жилого секторов». Сокращение достигается за счет изменения соотношения источников генерации электрической энергии на ископаемом топливе и ГЭС, которое приводит к уменьшению удельных эмиссий диоксида углерода и ПГ на 1 кВтч.

Сокращение эмиссии диоксида углерода составляет 48,8 Гг.
Сокращение суммарной эмиссии ПГ составляет 49 Гг СО₂-экв.
В соответствии с принятыми предположениями сокращение является одинаковым для всех сценариев развития и для 2020, и 2050 гг. Оценку для 2100 г. дать затруднительно. Предположительно, она удвоится.

4.5.2. Сценарии с мерами по сокращению эмиссий

4.5.2.1. Результаты расчета
Объединение сокращений для отдельных категорий источников позволяет получить оценку сокращения от всех рассмотренных выше планируемых мер. На рис. 4.43 приведены суммарные эмиссии ПГ по отдельным секторам, кроме сектора «Использование растворителей», в котором отсутствует эмиссия ПГ, а также сектора «Землепользование, изменение землепользования и лесное хозяйство», для которых нетто эмиссии/стоки предполагается постоянной.

Можно отметить значительную зависимость эмиссий от темпов экономического развития. Для сценария 3 даже к 2100 г. ожидается, что уровень эмиссий не превысит уровня 2010 г., а для сценария 2 уровень эмиссий 2100 г. превысит уровень эмиссий 2010 г. на 12 %, тогда как для сценария 1 эмиссии почти удвоятся.

Резкое снижение эмиссий за счет мер к 2020 г. для всех сценариев развития объясняется тем, что начальный период действий (2015–2020 гг.) является первым периодом для республики, когда начинают реализовываться меры по сокращению эмиссий ПГ, так как ранее задача снижения эмиссий перед КР не ставилась и не решалась. Естественно, что в начальный период снижение достигается за счет очевидных и легко реализуемых мер с наибольшим эффектом. В последующем реализация мер будет обеспечивать менее наглядный эффект и достигаться за счет больших усилий.

Характерной особенностью сценариев, приведенных на рис. 4.43, является практически постоянный абсолютный вклад сектора «Сельское хозяйство» на уровне 4000–5000 Гг. Только для сценария 1 наблюдается рост эмиссий от секторов «Промышленные процессы». Для сектора «Энергетика» рост эмиссий наблюдается для всех сценариев, но наиболее значительный для сценария 1. Относительные вклады секторов приведены на рис. 4.44.
Результаты расчета сценариев с планируемыми мерами (таблица 4.17) показывают, что цель на ближайший период, определенная в официальных добровольных обязательствах КР по сокращению эмиссий ПГ на 2020 г. (сократить свои эмиссии ПГ на 20 % к 2020 г., по отношению к сценарию «бизнес как обычно», при соответствующей адекватной поддержке со стороны международного сообщества), достижима за счет планируемых мер для всех сценариев развития.

Таблица 4.17. Оценка возможности выполнения добровольных обязательств КР на 2020 г. по эмиссиям ПГ

<table>
<thead>
<tr>
<th>Сценарии развития</th>
<th>Эмиссия ПГ в Гг</th>
<th>Сокращение в процентах</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сценарий 1</td>
<td>Базовые сценарии</td>
<td>Сценарии с мерами</td>
</tr>
<tr>
<td></td>
<td>14641,25</td>
<td>11089,11</td>
</tr>
<tr>
<td></td>
<td>14065,54</td>
<td>10795,81</td>
</tr>
<tr>
<td></td>
<td>13783,34</td>
<td>10641,25</td>
</tr>
</tbody>
</table>

На рис. 4.44 показан график распределения эмиссий ПГ по секторам в 2100 гг., а на рис. 4.45 — тенденции эмиссий ПГ для категорий источников, использующих сжигание ископаемого топлива.
Анализ тенденций эмиссий ПГ в секторе «Энергетика» показывает эффективность планируемых мер для большинства категорий источников. Устойчивый рост эмиссий сохраняется только для категории «Транспорт». Менее значительный рост, существенно зависящий от сценария (чем выше экономический рост, тем больше рост эмиссий), сохраняется также и для категории «Производство энергии». Следовательно, можно сделать вывод, что дополнительные меры следует рассматривать в основном для категорий «Транспорт» и «Производство энергии». Для прочих категорий сектора «Энергетика» планируемые меры вполне эффективны.

На рис. 4.46 приведено распределение эмиссий для сектора Энергетика. Для всех сценариев основой вклад в эмиссии ПГ вносит категория «Транспорт», далее идет категория «Производство энергии». Вклад прочих категорий в сумме не превышает 20%.

На рис. 4.47 приведены тенденции эмиссий газов-прекурсоров с разбивкой по отдельным газам. Сокращение потребления ископаемого топлива в основном определяет и объемы сокращения эмиссий газов-прекурсоров.

Эмиссии газов-прекурсоров для сценариев с планируемыми мерами значительно уменьшились относительно базовых сценариев:
- сценарий 1 с 1502,0 до 970,0 Гг;
- сценарий 2 с 845,5 до 526,5 Гг;
- сценарий 3 с 773,9 до 443,9 Гг.
Тем не менее, во всех сценариях наблюдается рост суммарной эмиссии газов-прекурсоров, что может негативно влиять на экологическую ситуацию и требует принятия мер по сокращению эмиссий. Интересно отметить, что относительные вклады отдельных газов сохраняются, за исключением вклада диоксида серы, который уменьшается, практически, в два раза, в основном за счет замены ископаемого топлива на биомассу. Для сценариев 2 и 3 относительно базовых сценариев уменьшаются даже абсолютные величины эмиссий диоксида серы.

На рис. 4.48 приведено распределение потребления энергетических ресурсов по основным категориям сектора «Энергетика» при реализации планируемых мер по сокращению эмиссий ПГ. Рассматривается только сектор «Энергетика», так как в остальных секторах отсутствует потребление энергетических ресурсов. На рис. 4.46 не представлена только категория «Летучие эмиссии от топлива», так как потребления энергетических ресурсов в этой категории фактически не происходит. Отдельно приведено распределение (в общем потреблении энергетических ресурсов) доли потребления электрической энергии и ископаемого топлива, которое в значительной степени определяет остающийся потенциал сокращения эмиссий ПГ.

Рис. 4.48. Тенденции потребления энергетических ресурсов для сценариев с планируемыми мерами в секторе «Энергетика» (левый столбец) и распределения потребления между электроэнергией и ископаемым топливом (правый столбец)
Для сценариев 2 и 3 рост потребления в категории «Производство энергии» практически отсутствует. Для сценария 1 в этой категории характерен резкий рост потребления энергетических ресурсов. Однако, если сопоставить его с ростом потребления электроэнергии, то становится понятным, что этот рост не должен приводить к аналогичному росту эмиссий ПГ.

К сожалению, отсутствие точных данных о сроках ввода мощностей по генерации электрической энергии приводит фактически к некоторому завышению эмиссий ПГ и потребления ископаемого топлива. В основном, это относится к сценарию развития 1, как к сценарию с наибольшим ростом потребления первичных энергоресурсов. Невозможность текущего перерасчета удельного потребления ископаемого топлива и удельных эмиссий ПГ на 1 кВтч вынуждает использовать начальное предположение о сохранении удельных показателей на уровне 2010 г.

Основной категорией, для которой потребление энергетических ресурсов растет во всех сценариях, является категория «Транспорт». Именно за счет этой категории наблюдается рост потребления ископаемого топлива, и именно эта категория является основным потенциальным направлением реализации дополнительных мер для последующих сокращений эмиссий ПГ. Этот вывод основан на использовании в расчетах предположения о сохранении существующей структуры транспорта. Возможные изменения, связанные с широким использованием экологически чистых видов транспорта (например, электрических), позволят облегчить задачу сокращения эмиссий ПГ.

Основной вклад в эмиссии категории «Другие секторы» вносят подкатегории, потребляющие энергетические ресурсы для нужд населения и коммерчески/институциональных организаций для нужд отопления, горячей воды и пр., и именно для них планируемые меры рассмотрены наиболее полно. Для всех сценариев наблюдается устойчивое сокращение потребления энергетических ресурсов в категории «Другие секторы», особенно резкое для сценариев 1 и 2 (почти в 2,5 раза), для сценария 3 - несколько меньше, почти в 2 раза. Это сокращение характеризует достаточную эффективность мер, планируемых для этой категории, даже несмотря на то, что в сельском хозяйстве (также входящем в категорию «Другие секторы») меры по сокращению эмиссий в настоящем расчете рассматривались в силу их незначительности. В последующем необходимо рассмотреть меры по сокращению эмиссий ПГ от потребления энергетических ресурсов для подкатегории «Сельское хозяйство».

Для оценки достижимости долговременных целей на рис. 4.49 приведены тенденции удельных эмиссий диоксида углерода и ПГ для сценариев с планируемыми мерами. Приведенные тенденции показывают, что если рассматривать как цель уровень эмиссий диоксида углерода, обеспечивающий с вероятностью более 50 % предотвращение роста глобальной температуры более чем на 2 °С, то в допустимых пределах (1,58 т СО2/чел.) находятся эмиссии для всех сценариев развития. Если целью рассмотреть уровень эмиссий диоксида углерода, обеспечивающий с вероятностью 66 % предотвращение роста глобальной температуры более чем на 2 °С, то в допустимых пределах (1,23 т СО2/чел.) к 2050 г. находятся только базовые сценарии 2 и 3, тогда как удельные эмиссии диоксида углерода для сценария 1 несколько выше требуемых (1,300 т СО2/чел.). Последующий рост удельных эмиссий для сценария 1 естественно предполагает реализацию дополнительных мер по сокращению.

Рис. 4.49. Удельные эмиссии для сценариев с планируемыми мерами: а) – диоксида углерода; б) – ПГ
4.5.2. Сравнение с базовыми сценариями по удельным характеристикам

Для возможности проведения детального анализа эффективности планируемых мер далее рассмотрены основные удельные характеристики, используемые Международным энергетическим агентством.

На рис. 4.50 приведены тенденции изменения общего потребления энергетических ресурсов (ископаемое топливо и электроэнергия) на душу населения. Реализация планируемых мер позволяет для всех сценариев сократить потребление энергетических ресурсов почти в 1,5 раза, но для сценария 1 рост потребления продолжается, что характеризует необходимость реализации дополнительных мер.

На рис. 4.51 приведены тенденции изменения общего потребления энергетических ресурсов (ископаемое топливо и электроэнергия) на ВВП в $1000. Целью для КР является достижение показателя, уже достигнутого в экономически развитых странах. В 2010 г. для стран ОЭСР этот показатель в среднем составляет 0,2 тут/000$, наименьший показатель - 0,1 тут/000$, а в среднем в мире - 0,357 тут/000$ (Источник: Международное энергетическое агентство). Реализация планируемых мер позволяет для сценариев 1 и 2 достичь цели (0,083 и 0,134 тут/000$ соответственно), для сценария 3, в связи с ожидаемым медленным ростом экономики показатель к 2100 г. значительно выше – 0,482 тут/000$. Эти показатели значительно ниже по сравнению с базовыми сценариями (0,126, 0,265 и 1,150 тут/000$ для сценариев 1, 2, 3 соответственно).

На рис. 4.52 приведены тенденции изменения суммарных эмиссий ПГ при сжигании ископаемого топлива на ВВП в долларах США. В 2010 г. для стран ОЭСР этот показатель в среднем составляет 0,33 кг СО₂-экв./$, наименьший показатель - 0,11 кг СО₂-экв./$, а в среднем в мире - 0,60 кг СО₂-экв./$ (Источник: Международное энергетическое агентство). Реализация планируемых мер позволяет для
Глава 4. Анализ смягчения последствий изменения климата

Сценарии 1, 2 и 3 достичь 2100 г. 0,062, 0,163 и 0,683 кг CO₂-экв./$ соответственно. Для базовых сценариев 1, 2 и 3 эти показатели значительно выше - 0,117, 0,362 и 1,406 кг CO₂-экв./$ соответственно. Начальные низкие значения показателей объясняются значительной долей использования ГЭС в КР для генерации электрической энергии.

Базовые сценарии

Сценарий 1	Сценарий 2	Сценарий 3
2010 | 2,5 | 2,0 | 1,5 |
2020 | 2,0 | 1,5 | 1,0 |
2030 | 1,5 | 1,0 | 0,5 |
2040 | 1,0 | 0,5 | 0,0 |
2050 | 0,5 | 0,0 | 0,0 |
2060 | 0,0 | 0,0 | 0,0 |
2070 | 0,0 | 0,0 | 0,0 |
2080 | 0,0 | 0,0 | 0,0 |
2090 | 0,0 | 0,0 | 0,0 |
2100 | 0,0 | 0,0 | 0,0 |

С планируемыми мерами

Рис. 4.52. Тенденции изменения потребления энергетических ресурсов на душу населения для базовых сценариев и сценариев с планируемыми мерами

4.5.2.3. Общая оценка сценариев с планируемыми мерами

Перечень планируемых мер и общая оценка сокращения эмиссий ПГ для различных сценариев сведены в таблицу 4.18.

Экономическая ситуация в республике не обеспечивает возможность реализации планируемых мер по сокращению эмиссий ПГ за счет собственных ресурсов. По предварительной оценке, за счет собственных ресурсов республика может сократить эмиссии ПГ к 2020 г. на 46,5–48,2% от полного сокращения, в зависимости от сценария демографического и экономического развития.

Рост эмиссии ПГ к концу столетия для сценария 1 показывает необходимость регулярного переосмотра и обновления стратегии по сокращению эмиссий в зависимости от доступности новой информации.

Предполагаемое определение необходимых затрат вызвало затруднения и будет выполняться при конкретизации действий в выбранном направлении. Приближенно затраты для отдельных мер можно оценить из информации, приведенной в Специальном докладе МГЭИК (рис. 4.53).
Таблица 4.18. Сокращение эмиссий ПГ по планируемым мерам для различных сценариев, Гг CO₂-экв.

<table>
<thead>
<tr>
<th>№</th>
<th>Планируемая мера</th>
<th>Сценарий 1</th>
<th>Сценарий 2</th>
<th>Сценарий 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020</td>
<td>2050</td>
<td>2100</td>
</tr>
<tr>
<td>1</td>
<td>Уменьшение потерь тепловой энергии</td>
<td>82,0</td>
<td>251,2</td>
<td>340,0</td>
</tr>
<tr>
<td>2</td>
<td>Выполнение СНиП по энергоэффективности зданий</td>
<td>90,9</td>
<td>554,3</td>
<td>1145,7</td>
</tr>
<tr>
<td>3</td>
<td>Повышение энергоэффективности существующего фонда зданий</td>
<td>123,2</td>
<td>408,8</td>
<td>226,9</td>
</tr>
<tr>
<td>4</td>
<td>Сокращение потерь электроэнергии</td>
<td>114,0</td>
<td>199,6</td>
<td>751,6</td>
</tr>
<tr>
<td>5</td>
<td>Сокращение потерь газа</td>
<td>860,1</td>
<td>1195,0</td>
<td>4228,9</td>
</tr>
<tr>
<td>6</td>
<td>Транспорт</td>
<td>1651,8</td>
<td>3338,4</td>
<td>4178,8</td>
</tr>
<tr>
<td>7</td>
<td>Биомасса</td>
<td>352,7</td>
<td>1302,9</td>
<td>2148,1</td>
</tr>
<tr>
<td>8</td>
<td>Солнечная энергия – электричество</td>
<td>13,0</td>
<td>50,8</td>
<td>114,0</td>
</tr>
<tr>
<td>9</td>
<td>Солнечная энергия – тепло</td>
<td>78,0</td>
<td>284,5</td>
<td>643,9</td>
</tr>
<tr>
<td>10</td>
<td>Геотермальная энергия</td>
<td>136,2</td>
<td>526,5</td>
<td>930,5</td>
</tr>
<tr>
<td>11</td>
<td>Гидроэнергия</td>
<td>49,0</td>
<td>49,0</td>
<td>98,0</td>
</tr>
<tr>
<td>12</td>
<td>Всего</td>
<td>3550,9</td>
<td>8161,0</td>
<td>14806,4</td>
</tr>
</tbody>
</table>
Другая информация, относящаяся к достижению целей конвенции
5.1. Интеграция вопросов изменения климата в программы устойчивого развития

КР подписала и ратифицировала 13 международных природоохранных конвенций. Страна является членом Комиссии ООН по устойчивому развитию и ее региональных институтов. Деятельность КР по выполнению РКИК ООН рассматривается в качестве неотъемлемой части выполнения основных стратегий ООН, прежде всего «Целей развития тысячелетия» (ЦРТ). Она связана с целями и задачами этой стратегии путем внесения вклада в искоренение бедности, обеспечения экологической устойчивости и содействия глобальному партнерству в целях развития.

Деятельность в рамках РКИК ООН, направленная на сокращение выбросов парниковых газов, внедрение энергосберегающих технологий, экономию топливо-энергетических ресурсов, использование экологически чистых источников энергии, проводится в ходе реализации национальных, региональных и отраслевых стратегий, программ социально-экономического развития.

Со времени подготовки и представления Второго национального сообщения, в сфере формирования государственной политики в области изменения климата и организации ее осуществления произошли значительные позитивные изменения. Процесс подготовки национальных сообщений помог внести вклад в работу межведомственных рабочих групп по разработке ряда стратегических документов:

• Концепция развития лесной отрасли Кыргызской Республики (постановление Правительства КР от 14.04.2004 г. № 256), в основе которой лежат институциональная и правовая реформа, развитие лесной науки и образования, а также повышение информированности населения;

• Национальная лесная Программа на 2005–2015 годы (постановление Правительства КР от 25.11.2004 г. № 858), нацеленная на обеспечение устойчивого развития лесов через привлечение населения и местных сообществ к совместному управлению лесами и определение роли государства в лесном секторе в новых условиях;

• Концепция Муниципальной программы по энергоэффективности для зданий г. Бишкек (постановление мэрии города Бишкек от 23.11.2005 г. № 1063);

• Концепция экологической безопасности Кыргызской Республики (Указ Президента КР от 23.11.2007 г. № 506) определяет основные направления государственной политики в области охраны окружающей среды и рационального природопользования в контексте устойчивого развития;

• Концепция устойчивого развития экономо-экологической системы «Иссык-Куль» на период до 2020 года (Указ Президента КР от 10.02.2009 года № 98). Крупнейшее горное озеро Азии Иссык-Куль, благодаря своему объему (1738 км³) и площади зеркала (6236 км²), является мощным климатообразующим фактором для всей котловины озера, создавая относительно стабильную и умеренную климатическую ситуацию, благоприятную для сельского хозяйства и развития туризма. Основной приоритетной задачей на ближайший период является обеспечение энергетической безопасности Иссык-Кульской области;

• Среднесрочная стратегия развития электроэнергетики Кыргызской Республики на 2012–2017 годы (постановление Правительства КР от 28.05.2012 г. № 330) имеет основной целью проведение политики энергосбережения;

• Стратегия комплексной безопасности населения и территорий Кыргызской Республики в чрезвычайных и кризисных ситуациях до 2020 года (постановление Правительства КР от 2.06.2012 г. № 357);

• Стратегия развития автомобильного транспорта Кыргызской Республики на 2012–2015 годы (постановление Правительства КР от 4.10.2012 г. № 677);

• Национальная стратегия устойчивого развития Кыргызской Республики на период 2013–2017 годы (Указ Президента КР от 21.01.2013 г. УП № 11). В данном документе Президент
Кыргызской Республики обозначил стратегические ориентиры новой модели устойчивого развития, главные приоритеты и выступил с инициативой запуска 78 крупнейших инвестиционных проектов в этот период. Вопросы охраны окружающей среды для обеспечения устойчивого развития включены в Главу 5 Стратегии;

- Программа по переходу Кыргызской Республики к устойчивому развитию на 2013–2017 годы (постановление Жогорку Кенеша КР от 18 декабря 2013 года № 3694-V) принята для реализации Национальной стратегии на ближайшие пять лет. Программа обеспечивает интеграцию аспектов экологической устойчивости и изменения климата в секторальные и региональные программы развития с учетом международных обязательств;

- В соответствии с Копенгагенскими договоренностями в 2013 году Кыргызской Республикой взяты добровольные обязательства о сокращении выбросов парниковых газов на 20 % к 2020 году при соответствующей международной поддержке;

- Программа перестройки Кыргызской Республики к устойчивому развитию на 2013–2017 годы (постановление Жогорку Кенеша КР от 18 декабря 2013 года № 3694-V) принята для реализации Национальной стратегии на ближайшие пять лет. Программа обеспечивает интеграцию аспектов экологической устойчивости и изменения климата в секторальные и региональные программы развития с учетом международных обязательств;

- В соответствии с Копенгагенскими договоренностями в 2013 году Кыргызской Республикой взяты добровольные обязательства о сокращении выбросов парниковых газов на 20 % к 2020 году при соответствующей международной поддержке;

- Программа сектора здравоохранения Кыргызской Республики по адаптации к изменению климата на период 2011–2015 годы (приказ министра здравоохранения КР от 31.10.2011 г. № 531);

- Приоритетные направления адаптации к изменению климата в Кыргызской Республике до 2017 года (постановление Правительства КР от 02.10.2013 года № 549) охватывают наиболее уязвимые к изменению климата секторы;

- Программа по адаптации к изменению климата и План действий на 2015–2017 гг. для сектора «Лес и биоразнообразие» (приказ директора ГАООСЛХ от 17.04.2015 года № 01-9/110);

- Программа о план мер по адаптации к изменению климата сектора «чрезвычайные ситуации» на 2015–2017 годы (приказ министра чрезвычайных ситуаций от 07.07.2015 г. № 692);

- Программа сектора сельского и водного хозяйства по адаптации к изменению климата на период 2016–2020 годы (приказ министра сельского хозяйства и мелиорации от 31.07.2015 г. № 228);

- Программа Правительства Кыргызской Республики по энергосбережению и планированию политики по энергоэффективности в Кыргызской Республике на 2015–2017 годы (постановление Правительства КР от 25.08.2015 г. № 601);

- Предполагаемый национально-определяемый вклад в Соглашение 2015 представлен в РКИК ООН 29 сентября 2015 г. (утвержден Протокольным решением ККПИК от 22.09.2015 г. № 19-87). Вклад подготовлен в контексте национальных приоритетов, обстоятельств и возможностей. Документ определяет действия страны по адаптации и сокращению эмиссий ПГ, а также по финансированию этих действий. Финансирование рассматривается в двух аспектах – определение необходимых объемов, как за счет собственных ресурсов КР, так и со стороны международного сообщества.

- Программа Правительства Кыргызской Республики по внедрению ВИЭ.

Также следует отметить работу по интегрированию вопросов изменения климата в Методологию по стратегическому планированию устойчивого развития страны, начатую в 2015 году ГАООСЛХ совместно с Министерством экономики КР.

Приведенные стратегические решения охватывают практически все направления деятельности по изменению климата. Однако следует отметить, что эффективность принимаемых документов не всегда имеет положительную динамику развития и устойчивость. В частности, отсутствует четко прописанная схема организационно-финансового и нормативно-правового обеспечения этой деятельности, нет вертикально интегрированной системы оценки результатов предпринимаемых усилий. Не в полной мере разработаны законодательные акты, определяющие механизм реализации действий в области изменения климата. Недостаточно выделяются финансовые и прочие ресурсы, необходимые для решения проблем в области изменения климата, особенно на уровне министерств и ведомств.
5.2. Вопросы гендерного равенства

Правительство, гражданское общество и международные институты приняли на себя выполнение целого спектра задач — от сокращения показателей крайней бедности до обеспечения экологической устойчивости и всеобщего образования, сокращения детской смертности и обеспечения гендерного равенства.

Последствия изменения климата наиболее сильно влияют на беднейшую часть населения, а около 70 процентов бедных в мире составляют женщины. Поэтому вовлечение женщин, наравне с мужчинами, во все процессы принятия решений по борьбе с изменением климата является существенным фактором в достижении долгосрочных целей РКИК ООН.

Важность интеграции гендерного подхода в процессы анализа и принятия решений в сфере устойчивого развития, изменения климата обоснована тем, что женщины и мужчины по-разному реагируют на изменения состояния окружающей среды и по-разному могут быть затронуты последствиями климатических изменений.

Реагируя на различные импульсы, они предпочтут различные решения. Различия основываются на том, что мужчины и женщины в большинстве обществ имеют разные гендерные роли и ответственность, а также неодинаковый доступ к ресурсам и принятию решений. Это может показать гендерно разграниченную статистику. Женщины преимущественно отвечают за производство продуктов питания, бытовое водоснабжение и энергию для отопления и приготовление пищи. При росте климатических изменений эти задачи становятся сложнее. Тем не менее, женщины имеют свои стратегии применения знаний и преодоления трудностей, которые помогают им практически использовать инновации и навыки для адаптации к изменяющимся реалиям, способствуя внесению своего вклада в решение проблем.

Но эти стратегии борьбы с изменчивостью климата, по-прежнему, в значительной степени являются недоиспользованным ресурсом. Кроме того, женщины часто сталкиваются с трудностями, когда дело доходит до общего доступа к финансовым ресурсам, деятельности по повышению потенциала и передачи технологий. Это часто является препятствием на пути расширения прав и возможностей женщин в целом и их роли в процессе адаптации к изменению климата и смягчения последствий, в частности. Очень часто женщины недооцениваются в процессе принятия решений по вопросам изменения климата на всех уровнях. Это серьезно ограничивает их возможность внести свой вклад в реализацию решений и применить свои знания.

Вместе с тем, существующие статистические данные и исследования не выявляют полностью гендерные аспекты в всех областях. Необходимо учитывать роль женщин при разработке политик не только как объектов политики, но и как важных агентов ее разработки и реализации. На уровне институтов проводится деятельность для достижения гендерного равенства, в том числе, гендерный анализ и разработка гендерно ориентированных мер в рамках движения к устойчивому развитию. Анализ выявил следующие проблемы, требующие решения:

- показатели эффективности государственных политик являются гендерно и экологически недостаточными и, в конечном счете, приводят к асимметрии в концентрации богатства и усилиению неравенства, в том числе гендерного;
- существует разрыв в жизненных условиях между городом и селом, а также стойкие тенденции в обветшании инфраструктура в регионах. Увеличение социального неравенства вследствие этих проблем приведет к несправедливому распределению рисков, связанных с изменением климата, и увеличению бремени для наиболее уязвимых слоев населения, в том числе женщин;
- женщины часто являются ключевой составляющей общины, семей и местной экономики. В результате, именно женщины в первую очередь ощущают на себе разрушительные последствия изменения окружающей среды и в значительной степени определяют способность сообщества по адаптации к ним;
- женщины играют решающую роль в сохранении биологического разнообразия и управлении водными, земельными и иными природными ресурсами на местном уровне. В то время как экологическая деградация имеет тяжелые последствия для всех людей, она, прежде всего, влияет на самых уязвимых, в основном на женщин и детей;
- на уровне структур местного самоуправления наблюдается вытеснение женщин из системы принятия решений по вопросам доступа к природным ресурсам, таким как вода, земля и т.п.;
- институциональные механизмы трансляции знаний и обеспечения безопасности в местных со-обществах (фельдшерско акушерские пункты, больницы, школы и т.д.) финансируются по ост-точному принципу и не готовы к вызовам, связанным с климатическими изменениями;
Глава 5. Другая информация, относящаяся к достижению целей конвенции

• недостаток гендерного анализа последствий изменения климата и других аспектов экологического кризиса приводит к отсутствию ясной картины распределения рисков для различных социальных групп населения;
• недостаток конструктивных механизмов справедливого доступа к природным и социальным ресурсам, в контексте вызовов климатических изменений, приведет к резкому скачку социальных конфликтов. На основе исследований национальных сообщений на период с 2050 по 2100 год прогнозируется пик снижения водности в регионе. Таким образом, необходимо уже сегодня видеть женщин как важных участников в системе распределения ресурсов и снижения конфликтов, что поможет смягчить тяжелые последствия климатических изменений.

Для достижения устойчивого развития и «зеленого роста» необходимо разрабатывать долгосрочные программы развития страны на основе межведомственного взаимодействия, с учетом минимизации экологических рисков, сохранения естественных экосистем и гендерной составляющей.

5.3. Разработка и передача экологически безопасных технологий

Концепция экологической безопасности КР определяет необходимость особого внимания к внедрению альтернативных экологически безопасных технологий (ЭБТ), способствующих уходу от углеводородной зависимости. К основным участникам процесса передачи технологий относятся поставщики или разработчики технологий, включая научные и проектные институты, частных новаторов, неправительственные организации, и пользователи технологий, такие как государственные предприятия и частные фирмы, местные общины и остальные организации.

На государственном уровне предпринимаются действия, призванные обеспечить процесс передачи и внедрения ЭБТ. Так, при МСХМ создан Центр по внедрению современных прогрессивных ресурсосберегающих технологий в сельском хозяйстве (канальное орошение, тепличное хозяйство и другие). Основная цель созданного Центра - смягчение последствий природных стихийных бедствий в виде засухи, маловодья и других неблагоприятных факторов путем повышения эффективности орошаемого земледелия с помощью внедрения современных прогрессивных ресурсосберегающих технологий в сельском хозяйстве.

Среди приоритетов Программы энергосбережения КР до 2015 года по вопросу создания экономических и организационных условий для активизации научно-технической и инновационной деятельности в сфере энергосбережения было предусмотрено:

• создание в республике центров трансфера технологий и управления интеллектуальной собственностью в области энергоэффективности;
• развитие на базе ведущих технических университетов республики технопарков и инновационно-технологические центры, позволяющих реализовать наиболее эффективное развитие инновационной и инвестиционной активности в регионе через привлечение инвесторов;
• создание систем экспертизы и поддержки баз данных инноваций, организации конкурсов, учреждение специальных премий и грантов, проведение научно-технических и инновационных выставок и конференций в области энергоэффективности;
• осуществление сотрудничества отечественных ученых и изобретателей с зарубежными партнерами;
• разработка проектов по непрерывной и многоуровневой системе образования в области энергосбережения.

Однако, в следствии экономических проблем, финансирование деятельности правительственных органов является недостаточным. За последние десятилетия потенциал научных и проектных институтов республики значительно сократился и держится, за редким исключением, на старой базе и возможностях, предоставляемых донорскими проектами. В результате этого практические навыки и знания специалистов в сфере ЭБТ, в основном, дополняются семинарами, тренингами и курсами в рамках международных программ и проектов. А лидерами по адаптации и тестированию небольших

4 Программа энергосбережения Кыргызской Республики до 2015 года, Постановление Жогорку Кенеша Кыргызской Республики от 24 апреля 2008 года №346-IV.
и некапиталлоемких технологий, в основном, являются неправительственные организации, особенно в сфере сельского хозяйства, энергетики, лесного хозяйства и чрезвычайных ситуаций.

В то же время, есть ряд примеров, демонстрирующих реализацию подходов, с использованием экологически безопасных технологий. Например, опыт программы выращивания органического хлопка на юге республики, инициированной проектом «Хельветас» при поддержке Швейцарии, показывает, что органическое сельское хозяйство на основе ЭБТ имеет большой потенциал для развития. Европейское Региональное Бюро ВОЗ при поддержке BMU в 2008-2012 гг. реализовывало проект «Защита здоровья от изменения климата». Задачи проекта включали проведение информационной кампании среди населения, укрепление кадрового потенциала и применение ВИЭ.

Одним из удачных решений в энергетическом секторе является поддержка микрокредитования внедрения энергосберегающих технологий на местном уровне в сельских регионах. Сами же технологии разрабатываются, адаптируются и распространяются для местных условий рядом НПО, среди которых активно работают ОФ ЮНИСОН, ОФ САМР Алатоо, ЭД Биом и другие. Технологии затрагивают вопросы альтернативной энергии, включая солнечные коллекторы, биогазовые установки, методы теплоизоляции зданий, строительство энергосберегающих печей. Для распространения таких технологий обучаются местные мастера, объединенные в ассоциации, ведется мониторинг эффективности.

Общинное ведение лесного хозяйства – подход, внедренный в Кыргызстане Швейцарией и объединяющий различные технологии, в настоящее время адаптируется к новым условиям программой GiZ. Региональная программа «Сохранение биоразнообразия и сокращения бедности посредством управления орехоплодовыми лесами и пастищами местными сообществами» предусматривает привлечение общин к управлению лесами, расширение лесных территорий новыми адаптированными сортами, а также введение инновационных методов по придаче значимости биологическому разнообразию и по повышению эффективности использования ресурсов. Активно в этом секторе работает Ассоциация лесопользователей и землепользователей Кыргызстана.

Также, Климатическим Инвестиционным Фондом в 2015 году поддержана заявка по включению Кыргызской Республики в Пилотную Программу по повышению устойчивости к изменению климата. Предполагается следующая последовательность действий в рамках программы: первый этап – подготовка Стратегической программы и инвестиционного плана; второй этап – выполнение проектов, запланированных в программе и плане. Более подробная информация о поддержке международными организациями деятельности в сфере изменения климата дана в Приложении.

В КР работают бизнес структуры, являющиеся членами Международного Делового Совета. Такие компании, как СИС (Кыргызстан), Grundfos (Дания), Itron (Франция) и другие предоставляют консультации и осуществляют поставки современного оборудования в области водоснабжения и теплоснабжения, а также в области внедрения новейших технологий и ВИЭ.

Активно в секторе энергосберегающих технологий действует Европейский банк реконструкции и развития через Программу финансирования устойчивой энергии в Кыргызстане (KyrSEFF) в сотрудничестве с четырьмя кыргызскими финансовыми институтами. Программа дополняется технической помощью и стимулирующими грантами в размере 6.8 миллионов евро через Инвестиционный Фонд ЕС. Примерами деятельности программы являются такие направления, как: повышение энергоэффективности зданий, технологии ВИЭ, замена производственного оборудования, замена систем распределения электроэнергии, тепла и пара.

Однако стране необходимо широкое внедрение государственно-частных климатических инициатив для реализации обязательств через привлечение инвестиций со стороны бизнес структурно развитых стран. Стране необходимо усиление энергоэффективных программ с участием передовых компаний развитых стран.

Тремя основными элементами, которые делают передачу технологии более эффективной, являются наращивание потенциала, благоприятные условия и механизмы для передачи технологии. Пере- дача многих видов ЭБТ требует широкого спектра технических, предпринимательских, управленческих и правовых навыков. Сохранение этих навыков на месте может увеличить поток международного капитала, содействуя, таким образом, передаче технологий. Стране необходимо усиление наращивания потенциала для получения и распространения технологий и для широкого распространения адаптированных и протестированных технологий требуется еще более активное партнерство всех сторон – консультативного сектора, бизнес структур и правительства.
Глава 5. Другая информация, относящаяся к достижению целей конвенции

5.4. Систематические наблюдения и исследования

Кыргызская Республика является членом Всемирной метеорологической организации (ВМО) с 19 августа 1994 года. Рабочим органом Кыргызской Республики по реализации сотрудничества с ВМО является Агентство по гидрометеорологии (Кыргызгидромет) при МЧС. Кыргызгидромет осуществляет мероприятия в области гидрометеорологии и наблюдений за уровнем загрязнения природной среды для защиты населения от стихийных гидрометеорологических явлений, предотвращения или снижения ущерба, который может быть ими нанесен, удовлетворения потребностей населения, органов исполнительной власти в гидрометеорологической информации и информации о загрязнении природной среды.

Основой системных наблюдений в республике являются:
- проведение систематических гидрометеорологических наблюдений и мониторинга природной среды;
- предупреждение о возможности возникновения стихийных гидрометеорологических явлений;
- осуществление метеорологического обеспечения энергетики, сельского хозяйства и других отраслей экономики;
- удовлетворение потребностей государственных органов, отраслей экономики и населения в информации о погоде, климате, фактических и ожидаемых изменениях гидрометеоусловий и состояния загрязнения природной среды и причинах этих изменений.

Вся гидрометеорологическая система страны и ее основные наблюдательные сети, а также главные принципы функционирования были разработаны еще до середины 1970-х годов.

Первая метеорологическая станция на территории КР была открыта в 1856 г. на побережье оз. Иссык-Куль. Проводились наблюдения за осадками, температурой воздуха и атмосферными явлениями. Началом систематических инструментальных климатических наблюдений считается 1883 год, когда была открыта метеостанция в г. Каракол.

Систематические гидрологические наблюдения в республике были начаты в 1911 г. Гидрологические посты «Аламедин» и «Сох» функционировали в течение 1911–1915 гг. С 1925 года наблюдения стали интенсивно развиваться. В изданных в советское время справочниках приводятся измерения гидрологических характеристик на 427 гидрологических постах. В 60-е годы наблюдательная сеть насчитывала до 470 гидрологических постов, а в 70-е годы насчитывалось 155 гидропостов по бассейнам рек Чу, Талас, Тарим и оз. Исык-Куль и 151 – по бассейну р. Сыр-Дарья (в пределах КР), т.е. всего 306 гидрологических постов. В 1985 году одновременно функционировало 149 гидрологических постов. Динамика дальнейшего изменения количества гидрологических постов приведена на рис. 5.1.

Расцвет системы мониторинга пришелся на 70-е – начало 80-х годов 20 века. В составе Кыргызгидромета действовало 77 гидрометеорологических и 7 снеголавинных станций, 3 аэрологические станции и 149 гидрологических и агрометеорологических постов. Из-за нехватки финансирования к началу 21 века наблюдательная сеть метеорологических станций сократилась на 42%. Снеголавинная сеть сократилась на 57%. Расположенная в Бишкеке аэрологическая станция законсервирована из-за отсутствия радиозондов.

Рис. 5.1. Динамика сокращения наблюдений гидрологической сети
В настоящее время наблюдательная сеть Кыргызгидромета включает:
• 33 метеорологических станции, в том числе 4 – автоматические, 3 – снеголавинные, озерная обсерватория Чолпон-Ата с научно-исследовательскими судами;
• 77 гидрологических постов, 5 озерных и 22 гидрохимических поста на реках, озерах и водохранилищах;
• 31 агрометеорологический наблюдательный пункт;
• 20 метеостанций, отслеживающих радиационную обстановку;
• 14 постов наблюдений за загрязнением атмосферного воздуха.

КР входит в программу «Глобальная система наблюдений за климатом», созданную ВМО, ЮНЕСКО, ЮНЕП и др. Основная задача программы заключается в организации долговременной системы наблюдений за климатом, опираясь на уже существующие системы наблюдений за атмосферой, океаном и поверхностью суши. В соответствии с принятыми принципами климатического мониторинга система наблюдений позволит создать базу данных о глобальных и региональных изменениях климата за длительный период времени с целью информирования правительств о происходящих изменениях климата.

В глобальную сеть наблюдений за климатом входят две метеостанции (таблица 5.1).

<table>
<thead>
<tr>
<th>Индекс</th>
<th>Наименование</th>
<th>Широта</th>
<th>Долгота</th>
<th>Высота, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>36974</td>
<td>Нарын</td>
<td>41 26N</td>
<td>76 00E</td>
<td>2,041</td>
</tr>
<tr>
<td>38353</td>
<td>Бишкек</td>
<td>42 51N</td>
<td>74 32E</td>
<td>760</td>
</tr>
</tbody>
</table>

Информация с 7 метеостанций (Токмок, Нарын, Тянь-Шань (Кумтор), Талас, Бишкек, Джала-Абад, Кар-Суу) передается в ВМО и Росгидромет. В то же время, для выпуска различной прогностической продукции по территории страны Кыргызгидромет имеет право использовать информацию и продукцию гидрометеорологических служб соседних Центральноазиатских стран, стран СНГ и других стран мира, данные прогностических моделей циркуляции атмосферы Европейского центра среднесрочных прогнозов и Национального метеорологического центра США, информацию с метеорологических спутников. Для мониторинга трансграничного загрязнения атмосферы важное значение имеет международное сотрудничество, позволяющее в короткий промежуток времени получать информацию из всемирных центров данных о траекториях переноса загрязняющих веществ.

КР входит в систему глобального мониторинга состава атмосферы (Global Atmosphere Watch, GAW). В эту систему включена станция Иссык-Куль (широта - 42 62N, долгота - 76 98E, высота -1640 м).

Недостаточное покрытие метеорологическими наблюдениями высокогорной зоны является самым главным пробелом. В самой горной Нарынской области нет ни одной высокогорной метеостанции, также их нет на юге – в Таласской и Баткенской областях. В Иссык-Кульской и Джала-Абадской областях их по две, в Ошской области – одна, три – в Чуйской области (рис. 5.2).

Отсутствие информации об осадках в высокогорной зоне существенно влияет на качество прогнозов водности рек и притока воды в водохранилища на период вегетации на национальном и региональном уровнях, а также на качество прогнозов погоды. Самыми уязвимыми в этой ситуации оказались сельское и водное хозяйство, энергетика. Практически не ведутся агрометеорологические наблюдения на высокогорных пастбищах.

Снегомерные наблюдения на территории Кыргызстана осуществляют 3 снеголавинные станции (СЛС), охватывающие не более 10% лавиноопасных участков:
1. СЛС Тёо-Ашуу - проводит наблюдения со 120 по 138 км автодороги Бишкек-Ош;
2. СЛС Чон-Ашуу - проводит наблюдения с 45 по 90 км автодороги Каракол-Сарыджаз;
3. СЛС Ит-Агар - проводит наблюдения со 198 по 265 км автодороги Бишкек-Ош

Гидрологическая сеть, в основном, расположена таким образом, чтобы освещать естественный сток в зоне его формирования - на выходе из ущельев гор, на границе с областью его рассеивания и забора воды для водохозяйственных нужд (главным образом, на орошаемое земледелие). После 1980 года гидрологическая сеть развивалась с целью изучения руслового баланса рек Чу и Талас, для определения приточности и составления водных балансов Токтогульского, Кировского водохранилищ и озера Иссык Куль.

Наблюдательная сеть включает 31 наблюдательный пункт.
Глава 5. Другая информация, относящаяся к достижению целей конвенции

Научные исследования в области изменения климата в республике ведутся в ограниченных объёмах. Как наиболее практически ценные исследования следует отметить оценку воздействия изменения климата на поверхностный сток, проведенную в Институте водных проблем и гидроэнергетики НАН.

В плановую научную работу по изучению влияния климата на здоровье человека вовлечены сотрудники Научно-производственного объединения «Профилактическая медицина» Министерства здравоохранения КР и Национального научного центра кардиологии и терапии имени академика М. Миррахимова, а также специалисты Кыргызской государственной медицинской академии и других высших учебных заведений. В структуре НАН функционирует НИИ горной медицины, в котором проводились исследования по биоклиматическому районированию территории страны.

5.5. Повышение потенциала

Процесс подготовки национальных сообщений явился катализатором усилий страны по наращиванию технического и институционального потенциала, внедрению результатов исследований в национальные и отраслевые планы и программы развития. Процесс способствовал углубленному пониманию общественностью вопросов изменения климата, усилению информационного обмена и сотрудничества среди всех заинтересованных сторон, включая правительственные, неправительственные, академические организации, общественность и частный сектор.

Институциональный потенциал

Для укрепления институционального потенциала постановлением Правительства КР образована ККПИК. Комиссия создана для осуществления руководства и координации действий по выполнению международных обязательств КР по РКИК ООН.

Основные функции ККПИК:
• руководство разработкой, периодическим обновлением и предоставлением требуемой отчетности исполнительным органам РКИК;
• координация и содействие министерствам и ведомствам в организации разработок и выполнении национальных и региональных программ по смягчению последствий изменения климата, а также организации публикаций и регулярного обновления отчетов о ходе их выполнения;
• координация и содействие министерствам и ведомствам в организации разработок и выполнении национальных и региональных программ по адаптации к изменению климата, а также организации публикаций и регулярного обновления отчетов о ходе их выполнения;
• содействие разработке и передаче технологий, методов и процессов по снижению или прекра-
щению выбросов парниковых газов, адаптации к изменению климата, повышению потенциала страны в этой сфере;
• координация деятельности министерств и ведомств для обеспечения учета вопросов изменения климата при проведении национальной, социальной, экономической и экологической политики;
• содействие организации проведения научных, технологических, технических, социально-экономических и других исследований, систематических наблюдений и созданию банков данных, связанных с изменением климата;
• обеспечение координации в полном, открытом и оперативном обмене научной, технологической, технической, социально-экономической и юридической информацией, связанной с изменением климата;
• содействие организации мероприятий в области образования, подготовки кадров и просвещения населения по вопросам изменения климата и поддержки широкого участия заинтересованных сторон в этом процессе, в том числе НПО;
• координация деятельности по подготовке и реализации проектов по адаптации и предотвращению изменения климата, включая Национально приемлемые планы по сокращению выбросов парниковых газов; взаимодействие с потенциальными инвесторами по стратегическим вопросам;
• координация и содействие в разработке нормативной правовой и инструктивно-методической документации в области изменения климата.

Структура ККПИК:
• председатель – первый вице-премьер-министр Кыргызской Республики;
• заместитель председателя – руководитель уполномоченного государственного органа в области охраны окружающей среды;
• членами ККПИК являются руководители ключевых министерств и ведомств, представители бизнеса, науки, образования и неправительственных организаций;
• рабочим органом ККПИК на постоянной основе является ГАООСЛХ, в задачи которого входят организационно-техническое, информационно-аналитическое обеспечение деятельности комиссии и осуществление контроля выполнения решений комиссии;
• ответственным секретарем ККПИК является руководитель Центра по изменению климата.

Решения, принимаемые ККПИК, в соответствии с ее компетенцией, решения являются обязательными для всех государственных органов исполнительной власти, а также предприятий, учреждений и организаций, действующих в сфере их ведения.

Первым решением ККПИК обязала назначить в ключевых министерствах и ведомствах ответственных лиц за решение вопросов, связанных с адаптацией и смягчением последствий изменения климата.

Начиная с момента создания, ККПИК координирует практически всю деятельность в стране в области изменения климата. Опыт ее работы показал заметное повышение координации и эффективности национальной деятельности на всех уровнях. Под руководством комиссии были подготовлены и приняты Приоритетные направления адаптации к изменению климата в Кыргызской Республике до 2017 года, а также отраслевые адаптационные программы и планы действий во всех ключевых министерствах и ведомствах.

Правовые аспекты
В целях совершенствования национального законодательства, затрагивающего вопросы изменения климата, внесены изменения в законы Кыргызской Республики «О транспорте», «Об охране окружающей среды», «Об охране атмосферного воздуха», «Об общественном здравоохранении», Лесной и Водный кодексы Кыргызской Республики.

Кадровый потенциал
Повышение кадрового национального потенциала ранее осуществлялось, в основном, за счет деятельности специалистов в рамках различных проектов. В некоторой степени достижению этой цели способствуют семинары и встречи специалистов, посвященные, как правило, определенной теме. Основным недостатком существующих подходов к повышению потенциала является их нерегулярность и неполный тематический охват существующих потребностей.

По решению ККПИК в феврале 2013 года в министерствах и ведомствах сформированы рабочие группы ответственных лиц по вопросам, связанным с адаптацией и смягчением последствий изме-
Глава 5. Другая информация, относящаяся к достижению целей конвенции

5.6. Образование, информация и сети

Ратифицировав РКИК ООН, Кыргызская Республика перешла к практическим действиям, в том числе, к исполнению Статей 4 конвенции, которая призывает все стороны активно участвовать в пропагандировании и информировании общественности, чтобы помочь людям понять ценность и в полной мере участвовать в выработке решений правительств, общественных и неправительственных организаций, а также, Статьи 6 конвенции, которая более широко охватывает данный вопрос и призывает все Стороны пропагандировать эту деятельность и способствовать ей на национальном, региональном и субрегиональном уровнях.

Разработка политики, управление в области образования и государственный контроль над его доступностью и качеством осуществляет Министерство образования и науки КР. Помимо формального образовательного сектора, в стране также действуют многочисленные институты и организации, дающие дополнительное образование и осуществляющие повышение квалификации и переподготовку кадров в соответствии с потребностями рынка труда.

В марте 2005 года КР официально приняла на себя обязательства по выполнению Стратегии ЕЭК ООН по образованию для устойчивого развития (ОУР), а также Глобальной Декады ООН по ОУР. Приоритетность вопросов образования для устойчивого развития получила отражение в таких нормативных документах, как Национальный рамочный стандарт5 (куррикулум) общего школьного образования, Концепция экологической безопасности, Концепция образования для устойчивого развития. Переход к новым стандартам должен обеспечить постепенный переход включения вопросов устойчивого развития, энергоэффективности и изменения климата в содержание образования.

Разработаны национальные пособия по включению вопросов устойчивого развития, «зеленой экономики» и изменения климата в политику и программы школ и вузов. Созданы общественные сети и ассоциации по ОУР, которые охватывают школы, вузы и дошкольные учреждения, помогая им развивать идеи устойчивого развития, сохранения биоразнообразия, экологической безопасности и др.

Во всех школах вопросы изменения климата отдельно рассматриваются в курсе географии. В программе по географии, разработанной Кыргызской Академией образования в 2014 году, вопросы изменения климата рассматриваются в следующих темах: характерные черты глобального изменения климата на материках, глобальные закономерности развития Земли, географический взгляд на проблемы охраны природы. Вопросы атмосферы образования осадков, энергоэффективности, парниковых газов, значения биоразнообразия и другие сопредельные темы рассматриваются в курсах других естественных наук: физика, химия, биология. Более расширенно эта работа ведется в рамках специализированных экологических школ.

В медицинских колледжах преподаванию вопросов изменения климата отводится достаточное количество часов в рамках дисциплины «Основы экологии», выделено отдельное занятие «Парниковый эффект и глобальное потепление климата. Сохранение естественного озона в атмосфере».

Вопросы изменения климата введены в учебную общеобразовательную дисциплину «Экология» в раздел «Глобальные экологические проблемы» для всех специальностей вузов. В учебные планы строительных ВУЗов (КГУСТА, КРСУ и Бишкекский строительный колледж) с 2013 года введена учебная дисциплина «Энергосбережение в зданиях» для специальностей: Промышленное и гражданское строительство, Городское строительство и хозяйство, Теплогазоснабжение и вентиляция. Для этой дисциплины издано учебное пособие «Улучшение энергоэффективности зданий»6.

В стране функционирует ряд источников, которые на регулярной основе предоставляют официальную, новостную и аналитическую информацию по проблеме изменения климата в стране. Так, на сайте ГАООСЛХ (www.nature.gov.kg) имеется страница «Изменение климата», на которой размещена

5 Принят на коллегии Министерства образования и науки KR в 2009 г.
6 Учебное пособие. Б.: 2014 г., стр. 123
официальная информация. Также на официальной странице Национального доклада о состоянии окружающей среды КР имеется раздел «Изменение климата» (www.nd.nature.gov.kg). Национальный доклад основан на экологических показателях и разработан с целью обеспечения доступа широкого круга лиц – представителей правительственных органов и широкой общественности к объективной и достоверной аналитической информации о состоянии окружающей среды, в том числе, о влиянии изменения климата.

Регулярно обновляется информация на сайте Кыргызгидромета (www.meteo.kg), где представлены текущие сведения о погоде, состоянии воздуха и воды, радиационной обстановке. Также на сайте размещены нормативные правовые акты в сфере гидрометеорологической деятельности. В 2015 году Кыргызгидромет выпустил первый «Ежегодный бюллетень текущего изменения климата в Кыргызстане: 2014 г.». В Бюллетене представлены результаты мониторинга климата КР за 2014 год. В нем приведены данные о наблюдавшихся в 2014 году аномалиях температуры воздуха и атмосферных осадков, синоптических условиях формирования погодных условий, экстремальных явлениях погоды, а также о современных тенденциях изменения климата на территории КР. Доклад является официальным изданием Кыргызгидромета.

В КР действует ряд Интернет-ресурсов общественных организаций по данной теме. Больше информации о проблеме изменения климата можно получить на сайте Центра по изменению климата в КР (www.climatechange.kg). Центр был основан в 2005 году для поддержки государственного органа – ГАОСЛХ, ответственного за выполнение международных обязательств и национальных действий по РКИК ООН. Центр оказывает экспертно-информационную поддержку в подготовке регулярной отчетности, совершенствовании климатической политики и правового обеспечения потенциала и усиления синергизма совместных действий всех заинтересованных сторон. На сайте Центра есть новостная лента, раздел «Кыргызстан и изменение климата», в котором представлена информация о деятельности Координационной комиссии по проблемам изменения климата; обновляемая информация в подразделах «Межсекторальное партнерство» и «Международное сотрудничество»; большой раздел о законодательстве в сфере изменения климата, а также информация «География и климат Кыргызской Республики».

Кроме того, на сайте в открытом доступе находятся Первое и Второе Национальные сообщения по изменению климата, а также раздел «Публикации», где можно скачать тексты Национального профиля по изменению климата, Приоритетные направления адаптации к изменению климата в Кыргызской Республике до 2017 г. и другие значимые в данной сфере публикации. В открытом доступе на сайте размещены отраслевые стратегии по адаптации к изменению климата.

С 2009 года функционирует информационная рассылка Климатической сети Кыргызстана – ИНФОИК (www.infoik.net.kg). В рассылке публикуется информация по самым актуальным вопросам в области климатической политики КР, Центрально-Азиатского региона, международной политики, а также практические вопросы по адаптации и сокращению выбросов парниковых газов.

На старейшем ресурсе «Экологический информационный сервис ЭКОИС-Бишкек» (www.ekois.net) есть тематический раздел «Изменение климата», где публикуется новостная и аналитическая информация по проблемам изменения климата. На сайте можно подписаться на электронную рассылку.

Информацию о проблемах изменения климата в КР и в регионе можно получить на сайте экологического движения «БИОМ» (www.biom.kg) – общественной некоммерческой организации, созданной в 1993 году. Организация объединяет на добровольной основе молодых специалистов, ученых и лидеров, участвующих в решении экологических проблем КР и Центральной Азии. На сайте публикуется подборка материалов – новостная информация, презентации, видео. Здесь же можно скачать публикации «Изменение климата», «Энергоэффективность и энергосбережение», «Гендер, окружающая среда и изменение климата», «Изменение климата и здоровье» и информацию о деятельности организации.

Большая подборка материалов по изменению климата представлена на сайте региональной информационной сети CARNet (www.caresd.net). Помимо новостной ленты здесь представлены аналитика, публикации, интервью. Сайт существует с 2004 года и за это время стал большим архивом, иллюстрирующим всю деятельность по изменению климата, которая проводилась как в КР, так и в регионе Центральной Азии.

Необходимо отметить, что особенностю процесса информирования общественности о проблемах изменения климата в Кыргызской Республике является то, что большая часть информации по теме имеется в официальных источниках (сайты государственных ведомств) и ресурсах неправительственных экологических организаций. В то же время СМИ недостаточно активно и планомерно освещают вопрос изменения климата, обращаясь к этой теме лишь в случае появления информационного повода, которым может послужить событие, спор интересов, чрезвычайная ситуация и др. В
основном СМИ публикуют информационные материалы. Для повышения потенциала журналистов, модуль по изменению климата был включен в программу тренинга по экологической журналистике, организованного ПРООН в Кыргызстане (2011 г.). Номинация, связанная с проблемами изменения климата, была представлена в Конкурсе по экологической журналистике (2012 г.). Регулярно темы изменения климата, такие как «Таяние ледников и изменение климата», «Управление климатическими рисками» и др. выносятся на повестку встреч в Клубе экологической журналистики.

В Кыргызской Республике при поддержке ОБСЕ работают два Орхусских центра – в г. Бишкек (образован в апреле 2015 года) и г. Ош (2004 г.). В сферу деятельности центров входит обеспечение доступа к информации и участие общественности в решении вопросов охраны окружающей среды, включая вопросы адаптации к изменению климата.

Как показала практика, вопросы информирования эффективнее решаются сообща и уже есть примеры такого взаимодействия: сегодня в КР существуют сети, объединяющие участников, деятельность которых связана с изменением климата.

Первый Форум экологических НПО состоялся в ноябре 1997 года, участие в котором приняли представители 78 организаций. Данный Форум проводил работу по вовлечению новых инициативных групп на уровне местных сообществ в природоохранные деятельности. Второй Форум экологических НПО КР состоялся накануне глобальной конференции в Рио-де-Жанейро в июне 2012 года. В работе Форума приняли участие более 90 НПО из всех областей Кыргызстана. Основной задачей второго Форума ЭконПО стала выработка позиции гражданского общества к Рио+20. На Форуме были выдвинуты инициативы по широкому кругу вопросов, среди которых были особо обозначены вопросы доступа к чистой воде, развития неистощимого землепользования, внедрение безопасных и экологических технологий, смягчения изменения климата и адаптации местного населения и секторов экономики к последствиям изменения климата.

С 2003 года в КР работает Международная образовательная программа SPARE, ориентированная на учителей и ученников общеобразовательных школ страны. Проект направлен на привлечение молодежи к практической реализации принципов устойчивой энергетики. Сеть ШПАРЕ (SPARE) – Школьный проект по сохранению ресурсов и энергии – крупнейший в мире международный образовательный проект об изменении климата, энергетике и окружающей среде для школьников. В SPARE участвуют более 6000 школ и 300000 учащихся из 17 стран Европы, Кавказа и Центральной Азии. В проект вовлечены все регионы КР, сегодня это более 200 школ, активно участвующих в проекте.

В 2009 году начала работать Климатическая сеть КР – добровольная, самоуправляемая, некоммерческая сеть общественных организаций, созданная с целью защиты окружающей среды и борьбы с изменением климата. Цели сети: поддержка и содействие развитию национальной политики по изменению климата и разработка совместных рекомендаций и инициатив по ее улучшению; представление общественных интересов в области изменения климата; налаживание общения между экспертами и обмен опытом по вопросам изменения климата. Также планируется подготовка аналитических материалов по вопросам изменения климата.

По инициативе рабочего органа ККПИК, ГАООСЛХ, в 2014 году была создана Климатическая диалоговая платформа Кыргызской Республики (КДП-КР) (www.nature.gov.kg, www.climatechange.kg). Уникальность данной Платформы в том, что заложенные в ее основу механизмы позволяют обеспечить теперь уже на национальном уровне многопрофильный и всесторонний регулярный обмен информацией, знаниями и опытом. КДП-КР действует на основе межсекторального и межуровневого подхода и объединяет группы участников, заинтересованных в снижении риска изменения климата и смягчении его последствий. Участники диалога – Правительство КР и его учреждения, с одной стороны, общественность, представленная в широком диапазоне организациями гражданского общества, представителями научно-образовательных кругов, частного сектора - с другой и, с третьей стороны, активные партнеры по развитию в Кыргызской Республике из числа международных организаций и проектов.

С 2014 года в странах Центральной Азии начала работу сеть «Климатическая коалиция организаций гражданского общества Центральной Азии». Это – неформальное, добровольное объединение общественных организаций и гражданских активистов, созданное для свободного обмена информацией, диалога и дискуссий по вопросам экологической и климатической политики, адаптации к изменению климата, энергосбережения и энергоэффективности, развития альтернативных источников энергии. В данное время сеть насчитывает более 10 организаций из всех стран ЦА, в том числе и Кыргызстана.
Трудности и связанные с ними потребности
В процессе подготовки национальных сообщений и других действий в рамках РКИК ООН выявлен ряд препятствий и пробелов, снижающих эффективность результатов (табл. 6.1).

Таблица 6.1. Препятствия и пробы, а также действия по их преодолению, относящиеся к деятельности по изменению климата

<table>
<thead>
<tr>
<th>№</th>
<th>Препятствия и пробы</th>
<th>Комментарии</th>
<th>Действия по преодолению</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Инвентаризация парниковых газов</td>
<td>Отсутствие институциональных механизмов для регулярного проведения инвентаризации.</td>
<td>Инвентаризация выполняется только в рамках подготовки национальных сообщений. Требуется повышение регулярности, учитывая усиление требований к периодичности. Также необходимо включение климатических индикаторов во многие программы и планы развития.</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>Несоответствие форм официального статистического учета требованиям инвентаризации.</td>
<td>Несоответствие осложняет проведение инвентаризации и вносит дополнительную неопределенность в результаты.</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Часть необходимой информации не учитывается статистическими органами, а имеется только в организациях</td>
<td>Для инвентаризации необходима специфическая информация.</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>Часть необходимой информации отсутствует или имеет большую неопределенность.</td>
<td>В первую очередь, это – морфологический состав отходов, коэффициенты прироста биомассы, содержание гумуса в почвах</td>
</tr>
<tr>
<td>2</td>
<td>Уязвимость и адаптация</td>
<td>Недостаточный уровень регионального сотрудничества по адаптации к изменению климата.</td>
<td>Многие проблемы уязвимости и адаптации природных ресурсов, таких как водные ресурсы или биоразнообразие, носят трансграничный характер. Решение таких проблем также должно учитывать трансграничные аспекты.</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>Большие потери при распределении и использовании водных ресурсов.</td>
<td>Система тарифов недостаточно обеспечивает экономию водных ресурсов.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>Недостаточная стимуляция деятельности по внедрению водосберегающих технологий.</td>
<td>Внедрение водосберегающих технологий во многих случаях не является экономически оправданным в краткосрочной перспективе.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Модели типа «климат – урожай».</td>
<td>Модели типа «климат – урожай» широко используются во многих странах для оценки урожайности основных культур при изменении климатических условий.</td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td>Недостаточно исследований по оценке влияния климатических изменений на урожайность основных сельскохозяйственных культур и пастбищ.</td>
<td>Практически отсутствуют исследования влияния климатических изменений для условий Кыргызской Республики.</td>
</tr>
<tr>
<td>№</td>
<td>Препятствия и пробелы</td>
<td>Комментарии</td>
<td>Действия по преодолению</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2.6</td>
<td>Вопросы изменения климата недостаточно интегрированы в стратегические документы по обеспечению продовольственной безопасности.</td>
<td>Изменение климата оказывает значительное воздействие на сельское хозяйство и продовольственную безопасность.</td>
<td>Процесс обновления стратегических документов должен включать обязательный дополнительный анализ уровня воздействия климатических изменений и соответствующие меры.</td>
</tr>
<tr>
<td>2.7</td>
<td>Отсутствует национальная система страхования сельскохозяйственной деятельности.</td>
<td>Отсутствие системы страхования увеличивает климатические риски для сельскохозяйственных производителей.</td>
<td>Необходимо провести анализ возможности внедрения системы страхования сельскохозяйственной деятельности.</td>
</tr>
<tr>
<td>2.8</td>
<td>Отсутствуют исследования по оценке смещения ареалов оптимального существования основных экологических систем при изменении климата.</td>
<td>Оценки смещения ареалов оптимального существования экологических систем являются основной информацией для деятельности по сохранению лесов и биоразнообразия.</td>
<td>Необходимо провести исследования по оценке смещения ареалов оптимального существования основных экологических систем.</td>
</tr>
<tr>
<td>2.9</td>
<td>Недостаточное использование экологически дружественных мероприятий борьбы с вредителями лесных экосистем.</td>
<td>В настоящее время используются в основном химические методы борьбы с вредителями, которые наносят значительный ущерб экологическим системам.</td>
<td>Необходимо использовать биологические методы борьбы с вредителями лесных экосистем.</td>
</tr>
<tr>
<td>2.10</td>
<td>Недостаточно выполняются действия по сохранению плодородия почв.</td>
<td>Содержание гумуса в сельскохозяйственных почвах устойчиво сокращается, что приводит к снижению урожайности.</td>
<td>Необходимо внедрять современные технологии обработки почв.</td>
</tr>
<tr>
<td>2.11</td>
<td>Отсутствуют научно обоснованные рекомендации по сохранению и расширению особых охраняемых природных территорий с учетом изменения климата.</td>
<td>Изменение климата оказывает существенное воздействие на деятельность особо охраняемых природных территорий, как существующих, так и планируемых. Действия по их сохранению и расширению должны быть направлены на учет климатических аспектов.</td>
<td>Необходимо ввести в практику управления особо охраняемыми природными территориями учет воздействия изменения климата.</td>
</tr>
<tr>
<td>2.12</td>
<td>Недостаточно развиты методики оценки экономического ущерба от воздействия изменения климата на лес и биоразнообразие.</td>
<td>Действия по адаптации обязательно должны предвзятматься экономической оценкой.</td>
<td>Необходимо провести исследования по адаптации методики оценки экономического ущерба от воздействия изменения климата.</td>
</tr>
<tr>
<td>2.13</td>
<td>Недостаточно изучены влияние изменения климата на здоровье населения и оценка экономических последствий.</td>
<td>В республике недостаточно исследованы влияние изменения климата на здоровье населения.</td>
<td>Необходимо: 1. Изучить влияние климатических изменений, экстремальных температурных волн на состояние здоровья населения (на примере уязвимых категорий). 2. Разработать методы оценки влияния климата на здоровье населения и экономических последствий.</td>
</tr>
<tr>
<td>2.14</td>
<td>Недостаточное изучение и оценка применения современных технологий в диагностике, лечении и профилактике.</td>
<td>Недостаточно исследований.</td>
<td>Организация исследований (в т.ч. развитие нанотехнологий).</td>
</tr>
<tr>
<td>3</td>
<td>Mitigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Недостаточный потенциал по прогнозированию эмиссий.</td>
<td>Требуется долгосрочный прогноз, включающий в себя макроэкономические, демографические и прочие прогнозы как исходные данные, тогда как в практике работы правительства обычно используются краткосрочные прогнозы.</td>
<td>Необходимо повышение потенциала государственных органов, занимающихся вопросами долгосрочного прогнозирования.</td>
</tr>
<tr>
<td>№</td>
<td>Препятствия и пробелы</td>
<td>Комментарии</td>
<td>Действия по преодолению</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>3.2</td>
<td>Отсутствие национальной стратегии по сокращению эмиссий парниковых газов.</td>
<td>Отсутствие стратегии осложняет мониторинг процесса сокращения выбросов и уменьшает возможности по привлечению международной поддержки для действий по смягчению изменения климата.</td>
<td>Необходимо разработать национальную стратегию, основанную на национально-определяемом вкладе Кыргызской Республики.</td>
</tr>
<tr>
<td>3.3</td>
<td>Недостаточное правовое обеспечение стимулирования внедрения чистых технологий.</td>
<td>Внедрение чистых технологий во многих случаях не является экономически оправданным в краткосрочной перспективе. С другой стороны, понятно, что действия по внедрению должны быть превентивными. В стране уже принят ряд стимулирующих мер, но их недостаточно.</td>
<td>Необходимо дальнейшее совершенствование правового обеспечения.</td>
</tr>
<tr>
<td>3.4</td>
<td>Недостаточный потенциал по использованию моделей прогнозирования, связывающих эмиссии с исходными данными (типа Марка) или по разработке собственных моделей.</td>
<td>Прогнозирование эмиссий на долгосрочный период требует использования корректных и понятных для пользователей моделей.</td>
<td>Необходимо организовать обучение группы специалистов для поддержания процесса регулярного прогноза.</td>
</tr>
</tbody>
</table>

В целом, по всем направлениям деятельности основными препятствиями являются недостаток финансовых ресурсов и доступной информации.

Основными причинами недостатка доступной информации являются недостаточность системы мониторинга, не полный перевод ведомственных архивов на цифровые носители и ограничение доступа к информации со стороны части ведомств.
Глава 1. Национальные условия

Глава 2. Инвентаризация антропогенных эмиссий из источников и абсорбции поглотителями парниковых газов

Глава 3. Адаптация

3.4. http://www.see.leeds.ac.uk/see-research/icas/climate_change/glam/glam.html

Глава 4. Анализ смягчения последствий изменения климата

4.2. Дорожные карты для энергетических технологий. Руководство по разработке и реализации. ОЭСР/МЭА, 2011, 30 с.

4.3. Инструкция по снижению технологического расхода электрической энергии на передачу по электрическим сетям энергосистем и энергообъединений. И 34-70-028-86. РД 34.09.254.

4.5. Маматканов Д.М., Липкин В.И. О запасах гидроэнергетических ресурсов Кыргызстана и прогноз до 2100 г. – Известия КГТУ им. И. Раззакова – 29/2013.

4.8. Осипов М.А., Майборода О.В. О совершенствовании характеристик погодных условий и смягчении воздействий на изменение климата. Межправительственная группа экспертов по изменению климата, 2011 г., 1076 с.

7 Приложения
Приложение 1. Результаты инвентаризации в метрических Гг

<table>
<thead>
<tr>
<th>Категории источников парниковых газов</th>
<th>(\text{CO}_2), эмиссия</th>
<th>(\text{CO}_2), сток</th>
<th>(\text{CH}_4)</th>
<th>(\text{N}_2\text{O})</th>
<th>(\text{HFC}_1)</th>
<th>(\text{NO}_x)</th>
<th>(\text{CO})</th>
<th>(\text{НМЛОС})</th>
<th>(\text{SO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальные эмиссии и стоки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>21368,610</td>
<td>798,096</td>
<td>255,167</td>
<td>8,0774</td>
<td>0,00000</td>
<td>78,6670</td>
<td>386,610</td>
<td>79,4813</td>
<td>92,6496</td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>19825,363</td>
<td>55,7395</td>
<td>0,2002</td>
<td>77,9213</td>
<td>377,3260</td>
<td>69,0797</td>
<td>90,6239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>8136,733</td>
<td>0,1770</td>
<td>0,0672</td>
<td>22,8441</td>
<td>2,0520</td>
<td>0,5543</td>
<td>32,0225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>1712,750</td>
<td>0,1320</td>
<td>0,0116</td>
<td>4,7583</td>
<td>1,2157</td>
<td>7,9377</td>
<td>5,5801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>3154,945</td>
<td>0,6445</td>
<td>0,0265</td>
<td>29,0595</td>
<td>244,6727</td>
<td>46,0737</td>
<td>1,4797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>46,805</td>
<td>0,0003</td>
<td>0,0013</td>
<td>0,1986</td>
<td>0,0662</td>
<td>0,0331</td>
<td>0,0148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>2918,790</td>
<td>0,6314</td>
<td>0,0237</td>
<td>25,7672</td>
<td>242,0500</td>
<td>45,5159</td>
<td>1,4521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>6,419</td>
<td>0,0004</td>
<td>0,0001</td>
<td>0,1300</td>
<td>0,0867</td>
<td>0,0173</td>
<td>0,0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>6820,935</td>
<td>9,6613</td>
<td>0,0949</td>
<td>21,2594</td>
<td>129,3856</td>
<td>14,5140</td>
<td>51,5417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>2626,079</td>
<td>0,3524</td>
<td>0,0358</td>
<td>2,8503</td>
<td>46,2750</td>
<td>4,6675</td>
<td>22,4002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4в Жилищное жилье</td>
<td>3042,753</td>
<td>8,6179</td>
<td>0,0486</td>
<td>3,3123</td>
<td>66,5168</td>
<td>6,9488</td>
<td>25,6523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>1152,103</td>
<td>0,6911</td>
<td>0,0104</td>
<td>15,0969</td>
<td>16,5938</td>
<td>2,8978</td>
<td>3,4892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td></td>
<td></td>
<td>45,1246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>12,8052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>32,3194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>1,2357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td></td>
<td></td>
<td>31,0837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>706,207</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>7,6976</td>
<td>2,0256</td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>694,329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>4,832</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие, напитки)</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>7,046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,6201</td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td></td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>146,0705</td>
<td>7,5807</td>
<td>0,2833</td>
<td>6,9341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>139,2560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B Системы хранения навоз</td>
<td>6,523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>0,4980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2642</td>
<td>0,0078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>837,040</td>
<td>798,096</td>
<td>0,0691</td>
<td>0,0004</td>
<td>0,0070</td>
<td>0,3455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>798,096</td>
<td>0,0691</td>
<td>0,0004</td>
<td>0,0070</td>
<td>0,3455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>837,040</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>53,2886</td>
<td>0,2960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Заочформление ТБО</td>
<td>43,8874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>9,4012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В Промышленные воды</td>
<td>6,5311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,8701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведения</td>
<td>548,641</td>
<td>0,0025</td>
<td>0,0101</td>
<td>1,5099</td>
<td>0,5033</td>
<td>0,2517</td>
<td>0,0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>359,863</td>
<td>0,0025</td>
<td>0,0101</td>
<td>1,5099</td>
<td>0,5033</td>
<td>0,2517</td>
<td>0,0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия (\text{CO}_2) от биомассы</td>
<td>188,779</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Приложение 1. Результаты инвентаризации в метрических Гг

1990
<table>
<thead>
<tr>
<th>Категории источников парниковых газов</th>
<th>CO₂ эмиссия</th>
<th>CO₂ сток</th>
<th>CH₄</th>
<th>N₂O</th>
<th>HFCs</th>
<th>NOₓ</th>
<th>CO</th>
<th>HMЛОС</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>1843,492</td>
<td>803,823</td>
<td>254,1445</td>
<td>8,4225</td>
<td>0,0000</td>
<td>67,7619</td>
<td>329,0620</td>
<td>70,9343</td>
<td>84,7100</td>
</tr>
<tr>
<td>Энергетика</td>
<td>16930,476</td>
<td>50,2162</td>
<td>0,1705</td>
<td>66,8840</td>
<td>320,6220</td>
<td>58,9277</td>
<td>82,8050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А Сжигание топлива</td>
<td>16930,476</td>
<td>8,8353</td>
<td>0,1705</td>
<td>66,8840</td>
<td>320,6220</td>
<td>58,9277</td>
<td>82,8050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А1 Производство энергии</td>
<td>7068,163</td>
<td>0,1508</td>
<td>0,0594</td>
<td>19,9098</td>
<td>1,7793</td>
<td>0,4792</td>
<td>34,8606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А2 Промышленность и строительство</td>
<td>1449,300</td>
<td>0,1119</td>
<td>0,0097</td>
<td>4,0234</td>
<td>1,0248</td>
<td>0,0296</td>
<td>4,6725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А3 Транспорт</td>
<td>2706,403</td>
<td>0,5552</td>
<td>0,0228</td>
<td>24,9362</td>
<td>210,8986</td>
<td>39,7125</td>
<td>1,2696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А3а Гражданская авиация</td>
<td>41,881</td>
<td>0,0003</td>
<td>0,0012</td>
<td>0,1777</td>
<td>0,0592</td>
<td>0,0296</td>
<td>0,0133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А3в Дорожный транспорт</td>
<td>2504,200</td>
<td>0,5442</td>
<td>0,0204</td>
<td>22,1455</td>
<td>208,6807</td>
<td>39,2399</td>
<td>1,2456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А3с Железные дороги</td>
<td>154,304</td>
<td>0,0104</td>
<td>0,0013</td>
<td>2,5000</td>
<td>2,0833</td>
<td>0,4279</td>
<td>0,0104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А3д Водный транспорт</td>
<td>6,019</td>
<td>0,0004</td>
<td>0,0000</td>
<td>0,1131</td>
<td>0,0754</td>
<td>0,0151</td>
<td>0,0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А4 Другие секторы</td>
<td>5706,610</td>
<td>8,0174</td>
<td>0,0785</td>
<td>18,0146</td>
<td>106,9192</td>
<td>12,0426</td>
<td>42,0023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А4а Коммерческий/институциональный</td>
<td>2126,305</td>
<td>0,2878</td>
<td>0,0288</td>
<td>2,3081</td>
<td>37,1886</td>
<td>3,7523</td>
<td>18,0190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А4б Жилой</td>
<td>2594,580</td>
<td>7,1250</td>
<td>0,0407</td>
<td>2,8221</td>
<td>55,4734</td>
<td>5,8080</td>
<td>20,9800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>А4с Сельское хозяйство</td>
<td>985,724</td>
<td>0,6046</td>
<td>0,0090</td>
<td>12,8844</td>
<td>14,2572</td>
<td>2,4823</td>
<td>3,0033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>В Летучие эмиссии от топлива</td>
<td>41,3808</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В1 Твердое топливо</td>
<td>12,3045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В2 Нефть и природный газ</td>
<td>29,0763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В2а Нефть</td>
<td>1,1895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В2б Природный газ</td>
<td>27,8868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>668,516</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,5931</td>
<td>1,3280</td>
<td>9,9566</td>
<td>1,9049</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>659,698</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,1916</td>
<td>0,3961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>4,485</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0180</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,7470</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,7470</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>4,333</td>
<td>0,9960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>2,0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>143,7240</td>
<td>7,9832</td>
<td>0,2784</td>
<td>6,7919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферmentation</td>
<td>136,7260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоз</td>
<td>6,0379</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>0,7012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>7,9755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2587</td>
<td>0,0077</td>
<td>0,2784</td>
<td>6,7919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>835,500</td>
<td>803,823</td>
<td>0,0640</td>
<td>0,0004</td>
<td>0,0065</td>
<td>0,3201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>803,823</td>
<td>0,0640</td>
<td>0,0004</td>
<td>0,0065</td>
<td>0,3201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>835,500</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>60,1403</td>
<td>0,2685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>51,6406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>8,4997</td>
<td>0,2685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>5,6210</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,8787</td>
<td>0,2685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>263,680</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4611</td>
<td>0,1537</td>
<td>0,0768</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviация)</td>
<td>109,893</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4611</td>
<td>0,1537</td>
<td>0,0768</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>153,788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Категории источников парниковых газов

<table>
<thead>
<tr>
<th>Национальные эмиссии и стоки</th>
<th>CO₂ эмиссия</th>
<th>CO₂ сток</th>
<th>CH₄</th>
<th>N₂O</th>
<th>HFC</th>
<th>NOₓ</th>
<th>CO</th>
<th>НМЛОС</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>15412569</td>
<td>798788</td>
<td>2322034</td>
<td>84579</td>
<td>00000</td>
<td>564866</td>
<td>2736252</td>
<td>594516</td>
<td>692121</td>
</tr>
<tr>
<td>Энергетика</td>
<td>14035340</td>
<td>423671</td>
<td>01412</td>
<td>558521</td>
<td>2644089</td>
<td>488347</td>
<td>676215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сжигание топлива</td>
<td>14035340</td>
<td>70853</td>
<td>01412</td>
<td>558521</td>
<td>2644089</td>
<td>488347</td>
<td>676215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Производство энергии</td>
<td>5999364</td>
<td>01246</td>
<td>00516</td>
<td>169704</td>
<td>15067</td>
<td>04041</td>
<td>303341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Промышленность и строительство</td>
<td>1185840</td>
<td>00919</td>
<td>00078</td>
<td>32885</td>
<td>08339</td>
<td>54492</td>
<td>37649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Транспорт</td>
<td>2257852</td>
<td>04659</td>
<td>00192</td>
<td>208130</td>
<td>1771246</td>
<td>333513</td>
<td>10596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гражданская авиация</td>
<td>36956</td>
<td>00003</td>
<td>00010</td>
<td>01568</td>
<td>00523</td>
<td>00261</td>
<td>00117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дорожный транспорт</td>
<td>2089600</td>
<td>04569</td>
<td>00171</td>
<td>185238</td>
<td>1753114</td>
<td>329638</td>
<td>10390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Железные дороги</td>
<td>125677</td>
<td>00085</td>
<td>00010</td>
<td>20362</td>
<td>16968</td>
<td>03485</td>
<td>00085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Водный транспорт</td>
<td>5619</td>
<td>00003</td>
<td>00000</td>
<td>00962</td>
<td>00641</td>
<td>00128</td>
<td>00003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Другие секторы</td>
<td>4592284</td>
<td>64028</td>
<td>00626</td>
<td>147803</td>
<td>849438</td>
<td>96300</td>
<td>324629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Коммерческий/институциональный</td>
<td>1626532</td>
<td>02232</td>
<td>00219</td>
<td>17659</td>
<td>281023</td>
<td>28370</td>
<td>136377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Жилой</td>
<td>2146408</td>
<td>56615</td>
<td>00332</td>
<td>23425</td>
<td>449209</td>
<td>47261</td>
<td>163077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>819345</td>
<td>05181</td>
<td>00075</td>
<td>106719</td>
<td>119206</td>
<td>20669</td>
<td>25175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Топливо</td>
<td>352818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Твердое топливо</td>
<td>82687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нефть и природный газ</td>
<td>270131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нефть</td>
<td>10823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Природный газ</td>
<td>259308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Промышленные процессы</td>
<td>565949</td>
<td>00000</td>
<td>00000</td>
<td>000000</td>
<td>03115</td>
<td>08941</td>
<td>99359</td>
<td>15906</td>
<td></td>
</tr>
<tr>
<td>Минеральные вещества</td>
<td>558935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Химическая промышленность</td>
<td>3421</td>
<td>00000</td>
<td>00000</td>
<td>03115</td>
<td>00681</td>
<td>00000</td>
<td>12619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Производство металлов</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>47350</td>
<td>00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Другое производство</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>47350</td>
<td>00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Потребление галогеноуглеродов и гексафторида серы</td>
<td></td>
<td></td>
<td>00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Взрывные работы</td>
<td>3592</td>
<td></td>
<td>08260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>1353520</td>
<td>80475</td>
<td>03158</td>
<td>79675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Внутренняя ферментация</td>
<td>1285540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Системы хранения навоза</td>
<td>57434</td>
<td>00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Выращивание риса</td>
<td>07508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сельскохозяйственные почвы</td>
<td>00000</td>
<td>80388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сжигание сельскохозяйственных остатков</td>
<td>03035</td>
<td>00873</td>
<td>03158</td>
<td>79675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эмиссия и сток из почв</td>
<td>811280</td>
<td>798788</td>
<td>00709</td>
<td>00004</td>
<td>00072</td>
<td>03546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Запасы древесной биомассы</td>
<td>0000</td>
<td>798788</td>
<td>00709</td>
<td>00004</td>
<td>00072</td>
<td>03546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эмиссия и сток из почв</td>
<td>811280</td>
<td>00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Отходы</td>
<td>544133</td>
<td>02687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Захоронение ТБО</td>
<td>474280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Очистка сточных вод</td>
<td>69853</td>
<td>02687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Промышленные воды</td>
<td>40994</td>
<td>00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бытовые и коммерческие воды</td>
<td>28859</td>
<td>02687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>К сведению</td>
<td>308375</td>
<td>00012</td>
<td>00049</td>
<td>07388</td>
<td>02463</td>
<td>01231</td>
<td>00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Международный бункер (авиация)</td>
<td>176085</td>
<td>00012</td>
<td>00049</td>
<td>07388</td>
<td>02463</td>
<td>01231</td>
<td>00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эмиссия CO₂ от биомассы</td>
<td>132290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМПОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>12493,529</td>
<td>797,073</td>
<td>202,1240</td>
<td>5,4868</td>
<td>0,0000</td>
<td>45,1897</td>
<td>217,6477</td>
<td>43,9551</td>
<td>55,1513</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>11093,043</td>
<td>36,3722</td>
<td>0,1114</td>
<td>44,6477</td>
<td>208,7726</td>
<td>38,8092</td>
<td>52,6102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>11093,043</td>
<td>5,3700</td>
<td>0,1114</td>
<td>44,6477</td>
<td>208,7726</td>
<td>38,8092</td>
<td>52,6102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>4883,382</td>
<td>0,0979</td>
<td>0,0429</td>
<td>13,8469</td>
<td>1,2219</td>
<td>0,3259</td>
<td>25,9799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>922,392</td>
<td>0,0718</td>
<td>0,0059</td>
<td>2,5537</td>
<td>0,6429</td>
<td>4,2050</td>
<td>2,8573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1809,310</td>
<td>0,3766</td>
<td>0,0155</td>
<td>16,6897</td>
<td>143,3505</td>
<td>26,9902</td>
<td>0,8495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>32,032</td>
<td>0,0002</td>
<td>0,0009</td>
<td>0,1359</td>
<td>0,0453</td>
<td>0,0226</td>
<td>0,0102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>1675,010</td>
<td>0,3696</td>
<td>0,0137</td>
<td>14,9021</td>
<td>141,9420</td>
<td>26,6878</td>
<td>0,8325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>97,050</td>
<td>0,0066</td>
<td>0,0008</td>
<td>1,5724</td>
<td>1,3103</td>
<td>0,2691</td>
<td>0,0066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>5,219</td>
<td>0,0003</td>
<td>0,0000</td>
<td>0,0793</td>
<td>0,0529</td>
<td>0,0106</td>
<td>0,0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>3477,958</td>
<td>4,8237</td>
<td>0,0472</td>
<td>11,5574</td>
<td>63,5573</td>
<td>7,2882</td>
<td>22,9235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>1126,758</td>
<td>0,1586</td>
<td>0,0149</td>
<td>1,2237</td>
<td>19,0159</td>
<td>1,9218</td>
<td>9,2564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1698,235</td>
<td>4,2334</td>
<td>0,0262</td>
<td>1,8743</td>
<td>34,9574</td>
<td>3,7149</td>
<td>11,6354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>652,965</td>
<td>0,4317</td>
<td>0,0060</td>
<td>8,4594</td>
<td>9,5840</td>
<td>1,6515</td>
<td>2,0316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>31,022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>6,4282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>24,5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>23,9700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>626,216</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,8808</td>
<td>2,5412</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>611,159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>13,086</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,2332</td>
<td>0,1110</td>
<td>0,0000</td>
<td>2,1779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,3590</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>1,971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>124,7710</td>
<td>5,1081</td>
<td>0,3007</td>
<td>7,9160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>118,0310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>5,4586</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>5,0998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3016</td>
<td>0,0083</td>
<td>0,3007</td>
<td>7,9160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 "ЗИЗЛХ"</td>
<td>774,270</td>
<td>797,073</td>
<td>0,0790</td>
<td>0,0005</td>
<td>0,0080</td>
<td>0,3951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>797,073</td>
<td>0,0790</td>
<td>0,0005</td>
<td>0,0080</td>
<td>0,3951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>774,270</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>40,9018</td>
<td>0,2668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>35,9301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>4,9717</td>
<td>0,2668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>2,1212</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,8505</td>
<td>0,2668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>165,516</td>
<td>0,0003</td>
<td>0,0012</td>
<td>0,1786</td>
<td>0,0595</td>
<td>0,0298</td>
<td>0,0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>42,565</td>
<td>0,0003</td>
<td>0,0012</td>
<td>0,1786</td>
<td>0,0595</td>
<td>0,0298</td>
<td>0,0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>122,951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМОЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>9401,836</td>
<td>845,476</td>
<td>158,5543</td>
<td>4,2856</td>
<td>0,0000</td>
<td>34,2732</td>
<td>159,6275</td>
<td>32,1975</td>
<td>39,1859</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>8254,185</td>
<td>29,1331</td>
<td>0,0840</td>
<td>33,8578</td>
<td>153,7295</td>
<td>28,8585</td>
<td>37,2213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>8254,185</td>
<td>3,6900</td>
<td>0,0840</td>
<td>33,8578</td>
<td>153,7295</td>
<td>28,8585</td>
<td>37,2213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>3870,813</td>
<td>0,0724</td>
<td>0,0361</td>
<td>11,1268</td>
<td>0,9639</td>
<td>0,2544</td>
<td>21,2481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>658,941</td>
<td>0,0518</td>
<td>0,0040</td>
<td>1,8188</td>
<td>0,4520</td>
<td>2,9608</td>
<td>1,9497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>1360,769</td>
<td>0,2873</td>
<td>0,0118</td>
<td>12,5664</td>
<td>109,5764</td>
<td>20,6290</td>
<td>0,6394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>27,107</td>
<td>0,0002</td>
<td>0,0008</td>
<td>0,1150</td>
<td>0,0383</td>
<td>0,0192</td>
<td>0,0086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>1260,420</td>
<td>0,2823</td>
<td>0,0104</td>
<td>11,2805</td>
<td>108,5727</td>
<td>20,4118</td>
<td>0,6260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3с Железные дороги</td>
<td>68,422</td>
<td>0,0046</td>
<td>0,0006</td>
<td>1,1086</td>
<td>0,9238</td>
<td>0,1897</td>
<td>0,0046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3д Водный транспорт</td>
<td>4,820</td>
<td>0,0002</td>
<td>0,0000</td>
<td>0,0624</td>
<td>0,0416</td>
<td>0,0083</td>
<td>0,0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>2363,662</td>
<td>3,2785</td>
<td>0,0321</td>
<td>8,3458</td>
<td>42,7372</td>
<td>5,0143</td>
<td>13,3841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4а Коммерческий/институциональный</td>
<td>627,014</td>
<td>0,0940</td>
<td>0,0080</td>
<td>0,6815</td>
<td>9,9295</td>
<td>1,0066</td>
<td>4,8751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4б Жилой</td>
<td>1250,062</td>
<td>2,8392</td>
<td>0,0196</td>
<td>1,4175</td>
<td>25,5603</td>
<td>2,7717</td>
<td>6,9631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>486,586</td>
<td>0,3452</td>
<td>0,0046</td>
<td>6,2469</td>
<td>7,2474</td>
<td>1,2360</td>
<td>1,5458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>414,641</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,2149</td>
<td>0,5090</td>
<td>3,2420</td>
<td>1,9646</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>403,301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>9,306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>2,034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>103,6930</td>
<td>3,9637</td>
<td>0,1965</td>
<td>5,1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>97,4525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,8293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>1,2136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,1979</td>
<td>0,0054</td>
<td></td>
<td>0,1965</td>
<td>5,1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>733,010</td>
<td>845,476</td>
<td>0,0389</td>
<td>0,0002</td>
<td>0,0039</td>
<td>0,1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>845,476</td>
<td>0,0389</td>
<td>0,0002</td>
<td>0,0039</td>
<td>0,1945</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>733,010</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>22,0180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,6713</td>
<td></td>
<td>0,2376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,8712</td>
<td></td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,8001</td>
<td></td>
<td>0,2376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>143,107</td>
<td>0,0002</td>
<td>0,0009</td>
<td>0,1380</td>
<td>0,0460</td>
<td>0,0230</td>
<td>0,0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиации)</td>
<td>32,894</td>
<td>0,0002</td>
<td>0,0009</td>
<td>0,1380</td>
<td>0,0460</td>
<td>0,0230</td>
<td>0,0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>110,213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6250,083</td>
<td>841,700</td>
<td>148,3138</td>
<td>3,7742</td>
<td>0,0028</td>
<td>22,7472</td>
<td>105,6377</td>
<td>20,7536</td>
<td>24,1307</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5239,945</td>
<td>24,5395</td>
<td>0,0544</td>
<td>22,4052</td>
<td>99,9094</td>
<td>19,0486</td>
<td>22,4982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5239,945</td>
<td>2,0840</td>
<td>0,0544</td>
<td>22,4052</td>
<td>99,9094</td>
<td>19,0486</td>
<td>22,4982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2682,900</td>
<td>0,0448</td>
<td>0,0261</td>
<td>7,7185</td>
<td>0,6601</td>
<td>0,1716</td>
<td>17,1820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>395,489</td>
<td>0,0317</td>
<td>0,0021</td>
<td>1,0839</td>
<td>0,2610</td>
<td>1,7166</td>
<td>1,0422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>912,220</td>
<td>0,1980</td>
<td>0,0081</td>
<td>8,4431</td>
<td>75,8024</td>
<td>14,2678</td>
<td>0,4294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>22,182</td>
<td>0,0002</td>
<td>0,0006</td>
<td>0,0941</td>
<td>0,0314</td>
<td>0,0157</td>
<td>0,0070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>845,822</td>
<td>0,1950</td>
<td>0,0071</td>
<td>7,6588</td>
<td>75,2034</td>
<td>14,1357</td>
<td>0,4195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>39,795</td>
<td>0,0027</td>
<td>0,0003</td>
<td>0,6448</td>
<td>0,5373</td>
<td>0,1104</td>
<td>0,0027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>4,420</td>
<td>0,0002</td>
<td>0,0000</td>
<td>0,0455</td>
<td>0,0303</td>
<td>0,0061</td>
<td>0,0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1249,337</td>
<td>1,8094</td>
<td>0,0182</td>
<td>5,1596</td>
<td>23,1858</td>
<td>2,8926</td>
<td>3,8447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>127,241</td>
<td>0,0295</td>
<td>0,0010</td>
<td>0,1393</td>
<td>0,8432</td>
<td>0,0914</td>
<td>0,4939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>801,890</td>
<td>1,5212</td>
<td>0,0140</td>
<td>0,9860</td>
<td>17,4319</td>
<td>1,9807</td>
<td>2,2909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>320,207</td>
<td>0,2587</td>
<td>0,0031</td>
<td>4,0343</td>
<td>4,9108</td>
<td>0,8206</td>
<td>1,0599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>22,4555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>1,5575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>20,8980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,8300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>20,0680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>316,818</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00280</td>
<td>0,1560</td>
<td>0,5000</td>
<td>1,6480</td>
<td>1,6325</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>306,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,014</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>8,319</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,1560</td>
<td>0,0170</td>
<td>0,0000</td>
<td>1,4489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,4440</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00280</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г1 Взрывные работы</td>
<td>2,099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>96,5784</td>
<td>3,4617</td>
<td>0,1782</td>
<td>4,8451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>89,9706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,6340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>1,7892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>3,4568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,1846</td>
<td>0,0049</td>
<td>0,1782</td>
<td>4,8451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>693,320</td>
<td>841,700</td>
<td>0,0767</td>
<td>0,0004</td>
<td>0,0077</td>
<td>0,3833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>841,700</td>
<td>0,0767</td>
<td>0,0004</td>
<td>0,0077</td>
<td>0,3833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>693,320</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>27,1193</td>
<td>0,2576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>23,7321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,3872</td>
<td>0,2576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,6018</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,7853</td>
<td>0,2576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>317,539</td>
<td>0,0012</td>
<td>0,0048</td>
<td>0,7169</td>
<td>0,2390</td>
<td>0,1195</td>
<td>0,0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>170,868</td>
<td>0,0012</td>
<td>0,0048</td>
<td>0,7169</td>
<td>0,2390</td>
<td>0,1195</td>
<td>0,0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>146,671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6397,237</td>
<td>828,167</td>
<td>137,5045</td>
<td>3,7557</td>
<td>0,0031</td>
<td>23,8364</td>
<td>122,1120</td>
<td>25,2100</td>
<td>22,1685</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5417,723</td>
<td>19,5344</td>
<td>0,0543</td>
<td>23,4367</td>
<td>114,1601</td>
<td>21,8549</td>
<td>20,0106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5417,723</td>
<td>2,0749</td>
<td>0,0543</td>
<td>23,4367</td>
<td>114,1601</td>
<td>21,8549</td>
<td>20,0106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2783,301</td>
<td>0,0476</td>
<td>0,0251</td>
<td>8,0307</td>
<td>0,7223</td>
<td>0,1870</td>
<td>14,4579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>432,234</td>
<td>0,0328</td>
<td>0,0025</td>
<td>1,1835</td>
<td>0,2737</td>
<td>1,7999</td>
<td>1,2701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1078,152</td>
<td>0,2385</td>
<td>0,0095</td>
<td>9,9929</td>
<td>91,4267</td>
<td>17,2028</td>
<td>0,5178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>18,479</td>
<td>0,0001</td>
<td>0,0005</td>
<td>0,0784</td>
<td>0,0261</td>
<td>0,0131</td>
<td>0,0059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1022,000</td>
<td>0,2359</td>
<td>0,0086</td>
<td>9,3172</td>
<td>90,9066</td>
<td>17,0884</td>
<td>0,5094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>35,463</td>
<td>0,0024</td>
<td>0,0003</td>
<td>0,5746</td>
<td>0,4788</td>
<td>0,0983</td>
<td>0,0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>2,210</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0227</td>
<td>0,0152</td>
<td>0,0030</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1124,036</td>
<td>1,7560</td>
<td>0,0172</td>
<td>4,2296</td>
<td>21,7374</td>
<td>2,6652</td>
<td>3,7648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/ институционный</td>
<td>113,801</td>
<td>0,0277</td>
<td>0,0009</td>
<td>0,1219</td>
<td>0,8338</td>
<td>0,0899</td>
<td>0,3935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>687,601</td>
<td>1,4349</td>
<td>0,0132</td>
<td>0,8703</td>
<td>16,4788</td>
<td>1,8738</td>
<td>2,1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>322,634</td>
<td>0,2933</td>
<td>0,0031</td>
<td>3,2374</td>
<td>4,4248</td>
<td>0,7015</td>
<td>1,2613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>17,4595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>1,0765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>16,3830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>0,8310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>15,5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>321,164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>307,234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0015</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>12,158</td>
<td></td>
<td>0,0000</td>
<td>0,1333</td>
<td>0,0190</td>
<td>0,0000</td>
<td>1,8459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,2550</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>1,772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>92,2602</td>
<td>3,4493</td>
<td>0,2568</td>
<td>7,0467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>85,3798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,4656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,1464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>3,4422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2685</td>
<td>0,0071</td>
<td>0,2568</td>
<td>7,0467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>658,350</td>
<td>828,167</td>
<td>0,0958</td>
<td>0,0006</td>
<td>0,0097</td>
<td>0,4792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>828,167</td>
<td>0,0958</td>
<td>0,0006</td>
<td>0,0097</td>
<td>0,4792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>658,350</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>25,6140</td>
<td>0,2516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>22,0384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,5757</td>
<td>0,2516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,7062</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,8695</td>
<td>0,2516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>356,206</td>
<td>0,0014</td>
<td>0,0058</td>
<td>0,8644</td>
<td>0,2881</td>
<td>0,1441</td>
<td>0,0029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>206,027</td>
<td>0,0014</td>
<td>0,0058</td>
<td>0,8644</td>
<td>0,2881</td>
<td>0,1441</td>
<td>0,0029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>150,179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМПОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7172,305</td>
<td>764,051</td>
<td>137,2018</td>
<td>4,4151</td>
<td>0,0036</td>
<td>25,6863</td>
<td>137,6741</td>
<td>27,8412</td>
<td>24,7803</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5901,914</td>
<td>14,9409</td>
<td>0,0573</td>
<td>25,2612</td>
<td>127,7788</td>
<td>24,5924</td>
<td>22,6492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>5901,914</td>
<td>2,0272</td>
<td>0,0573</td>
<td>25,2612</td>
<td>127,7788</td>
<td>24,5924</td>
<td>22,6492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>3190,093</td>
<td>0,0531</td>
<td>0,0278</td>
<td>9,1498</td>
<td>0,8384</td>
<td>0,2158</td>
<td>16,8601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>468,980</td>
<td>0,0338</td>
<td>0,0029</td>
<td>1,2831</td>
<td>0,2863</td>
<td>1,8833</td>
<td>1,4981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>1244,096</td>
<td>0,0279</td>
<td>0,0108</td>
<td>11,5426</td>
<td>107,0510</td>
<td>20,1378</td>
<td>0,6061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>14,776</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0627</td>
<td>0,0209</td>
<td>0,0104</td>
<td>0,0047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>1198,190</td>
<td>0,2769</td>
<td>0,0102</td>
<td>10,9755</td>
<td>106,6098</td>
<td>20,0410</td>
<td>0,5994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3в Железные дороги</td>
<td>31,130</td>
<td>0,0021</td>
<td>0,0003</td>
<td>0,5044</td>
<td>0,4203</td>
<td>0,0863</td>
<td>0,0021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3г Водный транспорт</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>998,745</td>
<td>1,6612</td>
<td>0,0158</td>
<td>3,2858</td>
<td>19,6031</td>
<td>2,3555</td>
<td>3,6849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4а Коммерческий/институциональный</td>
<td>100,371</td>
<td>0,0260</td>
<td>0,0008</td>
<td>0,1045</td>
<td>0,8243</td>
<td>0,0884</td>
<td>0,2932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4б Жилой</td>
<td>573,313</td>
<td>1,3073</td>
<td>0,0118</td>
<td>0,7408</td>
<td>14,8399</td>
<td>1,6846</td>
<td>1,9291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>325,061</td>
<td>0,3280</td>
<td>0,0032</td>
<td>2,4404</td>
<td>3,9389</td>
<td>0,5824</td>
<td>1,4626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>12,9136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,9466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>11,9670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,8930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>11,0740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>641,081</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00363</td>
<td>0,0988</td>
<td>0,5480</td>
<td>3,2058</td>
<td>2,1310</td>
<td></td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>626,528</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,7288</td>
<td>0,3719</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0010</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>12,270</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0988</td>
<td>0,0230</td>
<td>0,0000</td>
<td>1,7591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,4760</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>2,283</td>
<td>0,5250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>95,2168</td>
<td>4,1231</td>
<td>0,3151</td>
<td>8,7919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>87,8451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,5987</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,4380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,1144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3349</td>
<td>0,0087</td>
<td>0,3151</td>
<td>8,7919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>629,310</td>
<td>764,051</td>
<td>0,1111</td>
<td>0,0060</td>
<td>0,0112</td>
<td>0,5554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A Запасы древесной биомассы</td>
<td>0,000</td>
<td>764,051</td>
<td>0,1111</td>
<td>0,0060</td>
<td>0,0112</td>
<td>0,5554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>629,310</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>26,9331</td>
<td>0,2340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>24,2142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>2,7189</td>
<td>0,2340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,4931</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,2258</td>
<td>0,2340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>252,180</td>
<td>0,0008</td>
<td>0,0032</td>
<td>0,4759</td>
<td>0,1586</td>
<td>0,0793</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный bunker (aviation)</td>
<td>113,433</td>
<td>0,0008</td>
<td>0,0032</td>
<td>0,4759</td>
<td>0,1586</td>
<td>0,0793</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>138,747</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6125,879</td>
<td>793,783</td>
<td>131,7242</td>
<td>4,3843</td>
<td>0,0042</td>
<td>23,2075</td>
<td>131,3063</td>
<td>27,1538</td>
<td>21,3755</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5144,456</td>
<td>11,8639</td>
<td>0,0535</td>
<td>22,8583</td>
<td>121,3212</td>
<td>22,8582</td>
<td>19,6275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5144,456</td>
<td>2,4973</td>
<td>0,0535</td>
<td>22,8583</td>
<td>121,3212</td>
<td>22,8582</td>
<td>19,6275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2373,275</td>
<td>0,0413</td>
<td>0,0208</td>
<td>6,8230</td>
<td>0,6208</td>
<td>0,1609</td>
<td>11,9574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>468,151</td>
<td>0,0321</td>
<td>0,0029</td>
<td>1,2779</td>
<td>0,2654</td>
<td>1,7929</td>
<td>1,3885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1144,913</td>
<td>0,2489</td>
<td>0,0100</td>
<td>10,6643</td>
<td>94,9003</td>
<td>17,8605</td>
<td>0,6445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>14,923</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0633</td>
<td>0,0211</td>
<td>0,0106</td>
<td>0,0047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1102,230</td>
<td>0,2469</td>
<td>0,0093</td>
<td>10,1512</td>
<td>94,5044</td>
<td>17,7730</td>
<td>0,6379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>27,761</td>
<td>0,0019</td>
<td>0,0002</td>
<td>0,4498</td>
<td>0,3748</td>
<td>0,0770</td>
<td>0,0019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1158,117</td>
<td>2,1749</td>
<td>0,0198</td>
<td>4,0932</td>
<td>25,5347</td>
<td>3,0439</td>
<td>5,6371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>123,751</td>
<td>0,0285</td>
<td>0,0013</td>
<td>0,1293</td>
<td>1,5445</td>
<td>0,1604</td>
<td>0,6688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>654,969</td>
<td>1,6646</td>
<td>0,0146</td>
<td>0,8620</td>
<td>18,4756</td>
<td>2,0900</td>
<td>2,9438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>379,397</td>
<td>0,4819</td>
<td>0,0040</td>
<td>3,1019</td>
<td>5,5147</td>
<td>0,7936</td>
<td>2,0246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>9,3666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,5946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>8,7720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,8920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>7,8800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>375,094</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00424</td>
<td>0,0300</td>
<td>0,9810</td>
<td>4,2766</td>
<td>1,7480</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>358,876</td>
<td>0,0000</td>
<td>0,0000</td>
<td>3,3046</td>
<td>0,2128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0010</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>11,996</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0300</td>
<td>0,0100</td>
<td>0,0000</td>
<td>1,5352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,9710</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>97,0809</td>
<td>4,0853</td>
<td>0,3100</td>
<td>8,5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>89,7835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,7837</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,1880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,0767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3257</td>
<td>0,0086</td>
<td>0,3100</td>
<td>8,5498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>606,330</td>
<td>793,783</td>
<td>0,0909</td>
<td>0,0005</td>
<td>0,0092</td>
<td>0,4543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>793,783</td>
<td>0,0909</td>
<td>0,0005</td>
<td>0,0092</td>
<td>0,4543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>606,330</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>22,6886</td>
<td>0,2450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>19,6295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,0591</td>
<td>0,2450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,2164</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,8427</td>
<td>0,2450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>312,986</td>
<td>0,0011</td>
<td>0,0044</td>
<td>0,6593</td>
<td>0,2198</td>
<td>0,1099</td>
<td>0,0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>157,133</td>
<td>0,0011</td>
<td>0,0044</td>
<td>0,6593</td>
<td>0,2198</td>
<td>0,1099</td>
<td>0,0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>155,852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₁₅</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5641,263</td>
<td>827,822</td>
<td>133,3288</td>
<td>4,4307</td>
<td>0,0050</td>
<td>22,1371</td>
<td>124,2375</td>
<td>24,9646</td>
<td>23,0796</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4837,568</td>
<td>9,2791</td>
<td>0,0555</td>
<td>21,7936</td>
<td>114,4781</td>
<td>21,0899</td>
<td>21,4101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4837,568</td>
<td>2,9440</td>
<td>0,0555</td>
<td>21,7936</td>
<td>114,4781</td>
<td>21,0899</td>
<td>21,4101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2007,018</td>
<td>0,0347</td>
<td>0,0200</td>
<td>5,8437</td>
<td>0,4936</td>
<td>0,1289</td>
<td>11,8590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>467,322</td>
<td>0,0305</td>
<td>0,0029</td>
<td>1,2727</td>
<td>0,2445</td>
<td>1,7024</td>
<td>1,2790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1045,740</td>
<td>0,2188</td>
<td>0,0091</td>
<td>9,7859</td>
<td>82,7496</td>
<td>15,5832</td>
<td>0,6828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>15,069</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0639</td>
<td>0,0213</td>
<td>0,0107</td>
<td>0,0048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1006,280</td>
<td>0,2170</td>
<td>0,0085</td>
<td>9,3268</td>
<td>82,3989</td>
<td>15,5049</td>
<td>0,6764</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>24,391</td>
<td>0,0016</td>
<td>0,0002</td>
<td>0,3952</td>
<td>0,3293</td>
<td>0,0676</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1317,488</td>
<td>2,6601</td>
<td>0,0234</td>
<td>4,8913</td>
<td>30,9906</td>
<td>3,6753</td>
<td>7,5892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>147,131</td>
<td>0,0309</td>
<td>0,0018</td>
<td>0,1540</td>
<td>2,2646</td>
<td>0,2323</td>
<td>1,0443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>736,624</td>
<td>1,9934</td>
<td>0,0169</td>
<td>0,9739</td>
<td>21,6355</td>
<td>2,4382</td>
<td>3,9584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>433,734</td>
<td>0,6358</td>
<td>0,0047</td>
<td>3,7634</td>
<td>7,0905</td>
<td>1,0048</td>
<td>2,5866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>6,3352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,5412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>5,7940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,9080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>4,8860</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>214,655</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00498</td>
<td>0,0300</td>
<td>1,0990</td>
<td>3,8637</td>
<td>1,6695</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>197,775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2А1 Химическая промышленность</td>
<td>12,149</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,5536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2А2 Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>4,731</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>99,3264</td>
<td>4,1229</td>
<td>0,3059</td>
<td>8,2849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>91,6450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>4,9369</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,4288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,1144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3156</td>
<td>0,0085</td>
<td>0,3059</td>
<td>8,2849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>589,040</td>
<td>827,822</td>
<td>0,0751</td>
<td>0,0004</td>
<td>0,0076</td>
<td>0,3755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>827,822</td>
<td>0,0751</td>
<td>0,0004</td>
<td>0,0076</td>
<td>0,3755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>589,040</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>24,6481</td>
<td>0,2519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>21,7244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>2,9237</td>
<td>0,2519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,0711</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,8526</td>
<td>0,2519</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>275,770</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4656</td>
<td>0,1552</td>
<td>0,0776</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>110,979</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4656</td>
<td>0,1552</td>
<td>0,0776</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Б Эмиссия CO₂ от биомассы</td>
<td>164,791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5534,042</td>
<td>808,808</td>
<td>140,8255</td>
<td>4,4113</td>
<td>0,0058</td>
<td>20,8201</td>
<td>117,7244</td>
<td>26,7958</td>
<td>22,5349</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4710,341</td>
<td>15,6455</td>
<td>0,0545</td>
<td>20,4846</td>
<td>107,8486</td>
<td>19,8592</td>
<td>21,0319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4710,341</td>
<td>2,8117</td>
<td>0,0545</td>
<td>20,4846</td>
<td>107,8486</td>
<td>19,8592</td>
<td>21,0319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2144,894</td>
<td>0,0353</td>
<td>0,0205</td>
<td>6,2427</td>
<td>0,5459</td>
<td>0,1409</td>
<td>11,9813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>460,976</td>
<td>0,0302</td>
<td>0,0029</td>
<td>1,2559</td>
<td>0,2406</td>
<td>1,6932</td>
<td>1,2154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>949,520</td>
<td>0,2025</td>
<td>0,0083</td>
<td>8,8749</td>
<td>76,9046</td>
<td>14,4779</td>
<td>0,5659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,737</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0540</td>
<td>0,0180</td>
<td>0,0090</td>
<td>0,0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>912,713</td>
<td>0,2008</td>
<td>0,0077</td>
<td>8,4302</td>
<td>76,5616</td>
<td>14,4022</td>
<td>0,5602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>23,909</td>
<td>0,0016</td>
<td>0,0002</td>
<td>0,3874</td>
<td>0,3228</td>
<td>0,0663</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,160</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0033</td>
<td>0,0022</td>
<td>0,0004</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1154,951</td>
<td>2,5438</td>
<td>0,0229</td>
<td>4,1112</td>
<td>30,1576</td>
<td>3,5471</td>
<td>7,2693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>148,455</td>
<td>0,0324</td>
<td>0,0019</td>
<td>0,1560</td>
<td>2,4526</td>
<td>0,2516</td>
<td>1,1883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>703,237</td>
<td>2,1427</td>
<td>0,0178</td>
<td>0,9584</td>
<td>22,9408</td>
<td>2,5798</td>
<td>4,5047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>303,259</td>
<td>0,3686</td>
<td>0,0032</td>
<td>2,9969</td>
<td>4,7643</td>
<td>0,7157</td>
<td>1,5763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Летучие эмиссии от топлива</td>
<td>12,8338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181 Твердое топливо</td>
<td>0,9888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182 Нефть и природный газ</td>
<td>11,8450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182а Нефть</td>
<td>0,9200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182б Природный газ</td>
<td>10,9250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>246,801</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00585</td>
<td>0,0343</td>
<td>1,4990</td>
<td>6,9326</td>
<td>1,5030</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>229,818</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,3256</td>
<td>0,1359</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>10,508</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0343</td>
<td>0,0100</td>
<td>0,0000</td>
<td>1,3671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,6070</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>6,475</td>
<td>0,0000</td>
<td>0,0040</td>
<td>1,4890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>100,7510</td>
<td>4,1129</td>
<td>0,2893</td>
<td>7,7906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>92,8576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Б Системы хранения навоза</td>
<td>5,0291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Г Выращивание риса</td>
<td>2,5676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,1049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2968</td>
<td>0,0080</td>
<td>0,2893</td>
<td>7,7906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>576,900</td>
<td>808,808</td>
<td>0,1172</td>
<td>0,0007</td>
<td>0,0118</td>
<td>0,5861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>808,808</td>
<td>0,1172</td>
<td>0,0007</td>
<td>0,0118</td>
<td>0,5861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>576,900</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>24,3118</td>
<td>0,2432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>20,8818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,4300</td>
<td>0,2432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,3132</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>3,1168</td>
<td>0,2432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>290,954</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4656</td>
<td>0,1552</td>
<td>0,0776</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>110,979</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4656</td>
<td>0,1552</td>
<td>0,0776</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>179,975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>СО</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5298,153</td>
<td>813,996</td>
<td>147,7814</td>
<td>4,5524</td>
<td>0,0068</td>
<td>19,1453</td>
<td>112,7209</td>
<td>26,3379</td>
<td>22,7720</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4471,014</td>
<td>21,7094</td>
<td>0,0520</td>
<td>18,7492</td>
<td>101,8918</td>
<td>18,7055</td>
<td>21,0985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4471,014</td>
<td>2,7202</td>
<td>0,0520</td>
<td>18,7492</td>
<td>101,8918</td>
<td>18,7055</td>
<td>21,0985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2170,808</td>
<td>0,0345</td>
<td>0,0190</td>
<td>6,2010</td>
<td>0,5689</td>
<td>0,1456</td>
<td>12,5484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>454,630</td>
<td>0,0298</td>
<td>0,0028</td>
<td>1,2391</td>
<td>0,2366</td>
<td>1,6841</td>
<td>1,1519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>853,302</td>
<td>0,1862</td>
<td>0,0074</td>
<td>7,9638</td>
<td>71,0596</td>
<td>13,3727</td>
<td>0,4490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>10,405</td>
<td>0,0001</td>
<td>0,0003</td>
<td>0,0441</td>
<td>0,0147</td>
<td>0,0074</td>
<td>0,0033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>819,148</td>
<td>0,1845</td>
<td>0,0069</td>
<td>7,5336</td>
<td>70,7242</td>
<td>13,2995</td>
<td>0,4441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>23,428</td>
<td>0,0016</td>
<td>0,0002</td>
<td>0,3796</td>
<td>0,3163</td>
<td>0,0650</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,321</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0065</td>
<td>0,0043</td>
<td>0,0009</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>992,274</td>
<td>2,4696</td>
<td>0,0228</td>
<td>3,3453</td>
<td>30,0267</td>
<td>3,5031</td>
<td>6,9493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>149,789</td>
<td>0,0339</td>
<td>0,0020</td>
<td>0,1579</td>
<td>2,6406</td>
<td>0,2708</td>
<td>1,3324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>669,851</td>
<td>2,3343</td>
<td>0,0193</td>
<td>0,9571</td>
<td>24,9481</td>
<td>2,8056</td>
<td>5,0509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>172,635</td>
<td>0,1015</td>
<td>0,0016</td>
<td>2,2303</td>
<td>2,4381</td>
<td>0,4267</td>
<td>0,5660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>18,9892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>1,0542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>17,9350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>1,1180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>16,8170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>257,789</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00684</td>
<td>0,0557</td>
<td>1,4660</td>
<td>7,6324</td>
<td>1,6735</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>240,071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>11,424</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0557</td>
<td>0,0190</td>
<td>0,0000</td>
<td>1,5325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,2650</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>6,294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>101,8430</td>
<td>4,2526</td>
<td>0,3300</td>
<td>8,8525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>94,1466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>5,1098</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,2496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,2435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,3372</td>
<td>0,0091</td>
<td>0,3300</td>
<td>8,8525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>569,350</td>
<td>813,996</td>
<td>0,1021</td>
<td>0,0006</td>
<td>0,0103</td>
<td>0,5106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>813,996</td>
<td>0,1021</td>
<td>0,0006</td>
<td>0,0103</td>
<td>0,5106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>569,350</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>24,1268</td>
<td>0,2471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захранение ТБО</td>
<td>20,8320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,2948</td>
<td>0,2471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,2831</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>3,0118</td>
<td>0,2471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>303,330</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4676</td>
<td>0,1559</td>
<td>0,0779</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>111,454</td>
<td>0,0008</td>
<td>0,0031</td>
<td>0,4676</td>
<td>0,1559</td>
<td>0,0779</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>191,876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5510,236</td>
<td>822,758</td>
<td>164,1507</td>
<td>4,6441</td>
<td>0,0080</td>
<td>20,1100</td>
<td>120,8954</td>
<td>23,2934</td>
<td>22,4456</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4642,274</td>
<td>36,0047</td>
<td>0,0559</td>
<td>19,7443</td>
<td>110,0339</td>
<td>20,3780</td>
<td>20,9173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4642,274</td>
<td>2,8273</td>
<td>0,0559</td>
<td>19,7443</td>
<td>110,0339</td>
<td>20,3780</td>
<td>20,9173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2217,832</td>
<td>0,0336</td>
<td>0,0214</td>
<td>6,4907</td>
<td>0,5724</td>
<td>0,1459</td>
<td>12,3651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>493,231</td>
<td>0,0352</td>
<td>0,0029</td>
<td>1,3477</td>
<td>0,2808</td>
<td>1,9129</td>
<td>1,2115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>926,550</td>
<td>0,2045</td>
<td>0,0081</td>
<td>8,6174</td>
<td>78,1906</td>
<td>14,7122</td>
<td>0,4989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>10,924</td>
<td>0,0001</td>
<td>0,0003</td>
<td>0,0463</td>
<td>0,0154</td>
<td>0,0077</td>
<td>0,0035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>892,291</td>
<td>0,2029</td>
<td>0,0076</td>
<td>8,1918</td>
<td>77,8601</td>
<td>14,6398</td>
<td>0,4938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>23,044</td>
<td>0,0016</td>
<td>0,0002</td>
<td>0,3733</td>
<td>0,3111</td>
<td>0,0639</td>
<td>0,0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,292</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0059</td>
<td>0,0039</td>
<td>0,0008</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1004,660</td>
<td>2,5540</td>
<td>0,0236</td>
<td>3,2885</td>
<td>30,9901</td>
<td>3,6071</td>
<td>6,8148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>143,351</td>
<td>0,0291</td>
<td>0,0019</td>
<td>0,1501</td>
<td>2,5748</td>
<td>0,2628</td>
<td>1,3212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>693,585</td>
<td>2,4166</td>
<td>0,0201</td>
<td>0,9992</td>
<td>26,0046</td>
<td>2,9280</td>
<td>4,9445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>167,724</td>
<td>0,1083</td>
<td>0,0016</td>
<td>2,1392</td>
<td>2,4108</td>
<td>0,4162</td>
<td>0,5761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>33,1774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>1,1604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>32,0170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,9190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>31,0980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>302,242</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00797</td>
<td>0,0353</td>
<td>1,6900</td>
<td>2,0854</td>
<td>1,5283</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>284,460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>10,508</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0353</td>
<td>0,0170</td>
<td>0,0000</td>
<td>1,3658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>7,274</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,6730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,8300</td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>104,0270</td>
<td>4,3250</td>
<td>0,3193</td>
<td>8,6178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>95,7711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Б Системы хранения навоза</td>
<td>5,2132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,7144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,3162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,3283</td>
<td>0,0088</td>
<td>0,3193</td>
<td>8,6178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>565,720</td>
<td>822,758</td>
<td>0,1107</td>
<td>0,0006</td>
<td>0,0112</td>
<td>0,5537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>822,758</td>
<td>0,1107</td>
<td>0,0006</td>
<td>0,0112</td>
<td>0,5537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>565,720</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>24,0083</td>
<td>0,2626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>20,7927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,2157</td>
<td>0,2626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,2082</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>3,0075</td>
<td>0,2626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>593,477</td>
<td>0,0027</td>
<td>0,0109</td>
<td>1,6333</td>
<td>0,5444</td>
<td>0,2722</td>
<td>0,0054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>389,269</td>
<td>0,0027</td>
<td>0,0109</td>
<td>1,6333</td>
<td>0,5444</td>
<td>0,2722</td>
<td>0,0054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>204,208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5659,880</td>
<td>821,911</td>
<td>177,2349</td>
<td>4,6938</td>
<td>0,0092</td>
<td>20,5254</td>
<td>128,8619</td>
<td>26,0284</td>
<td>22,0265</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4670,135</td>
<td>50,4154</td>
<td>0,0566</td>
<td>20,1799</td>
<td>117,4831</td>
<td>21,9632</td>
<td>20,8593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>4670,135</td>
<td>2,8939</td>
<td>0,0566</td>
<td>20,1799</td>
<td>117,4831</td>
<td>21,9632</td>
<td>20,8593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2121,457</td>
<td>0,0317</td>
<td>0,0211</td>
<td>6,2341</td>
<td>0,5399</td>
<td>0,1376</td>
<td>12,3050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>531,833</td>
<td>0,0405</td>
<td>0,0029</td>
<td>1,4564</td>
<td>0,3250</td>
<td>2,1417</td>
<td>1,2710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>999,798</td>
<td>0,2228</td>
<td>0,0087</td>
<td>9,2710</td>
<td>85,3216</td>
<td>16,0517</td>
<td>0,5489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>11,443</td>
<td>0,0001</td>
<td>0,0003</td>
<td>0,0485</td>
<td>0,0162</td>
<td>0,0081</td>
<td>0,0037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>965,434</td>
<td>0,2212</td>
<td>0,0082</td>
<td>8,8500</td>
<td>84,9959</td>
<td>15,9801</td>
<td>0,5436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3с Железные дороги</td>
<td>22,659</td>
<td>0,0151</td>
<td>0,0002</td>
<td>0,3671</td>
<td>0,3059</td>
<td>0,0628</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3д Водный транспорт</td>
<td>0,262</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0053</td>
<td>0,0035</td>
<td>0,0007</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1017,046</td>
<td>2,5989</td>
<td>0,0238</td>
<td>3,2185</td>
<td>31,2966</td>
<td>3,6322</td>
<td>6,7344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>136,914</td>
<td>0,0243</td>
<td>0,0019</td>
<td>0,1423</td>
<td>2,5091</td>
<td>0,2548</td>
<td>1,3100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>717,319</td>
<td>2,4594</td>
<td>0,0204</td>
<td>1,0281</td>
<td>26,4041</td>
<td>2,9716</td>
<td>4,8382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>162,814</td>
<td>0,1152</td>
<td>0,0015</td>
<td>2,0480</td>
<td>2,3835</td>
<td>0,4058</td>
<td>0,5862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>47,5215</td>
<td>47,5215</td>
<td>47,5215</td>
<td>47,5215</td>
<td>47,5215</td>
<td>47,5215</td>
<td>47,5215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,9985</td>
<td>0,9985</td>
<td>0,9985</td>
<td>0,9985</td>
<td>0,9985</td>
<td>0,9985</td>
<td>0,9985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>46,5230</td>
<td>46,5230</td>
<td>46,5230</td>
<td>46,5230</td>
<td>46,5230</td>
<td>46,5230</td>
<td>46,5230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,9180</td>
<td>0,9180</td>
<td>0,9180</td>
<td>0,9180</td>
<td>0,9180</td>
<td>0,9180</td>
<td>0,9180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>45,6050</td>
<td>45,6050</td>
<td>45,6050</td>
<td>45,6050</td>
<td>45,6050</td>
<td>45,6050</td>
<td>45,6050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>424,495</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,00923</td>
<td>0,0313</td>
<td>2,7626</td>
<td>3,0763</td>
<td>1,1672</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>405,456</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,8423</td>
<td>0,2272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>7,100</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0313</td>
<td>0,0176</td>
<td>0,0000</td>
<td>0,9400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,2340</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,00923</td>
<td>0,00923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>11,939</td>
<td>2,7450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,9890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>103,5510</td>
<td>4,3675</td>
<td>0,3021</td>
<td>8,0191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>95,6302</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>5,1235</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,4916</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,3591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,3055</td>
<td>0,0084</td>
<td>0,3021</td>
<td>8,0191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>565,250</td>
<td>821,911</td>
<td>0,1194</td>
<td>0,0007</td>
<td>0,0120</td>
<td>0,5971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>821,911</td>
<td>0,1194</td>
<td>0,0007</td>
<td>0,0120</td>
<td>0,5971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>565,250</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Отходы</td>
<td>23,1491</td>
<td>0,2691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>20,1616</td>
<td>0,2691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>2,9875</td>
<td>0,2691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,3874</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,6001</td>
<td>0,2691</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>716,547</td>
<td>0,0036</td>
<td>0,0144</td>
<td>2,1530</td>
<td>0,7177</td>
<td>0,3588</td>
<td>0,0072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>513,139</td>
<td>0,0036</td>
<td>0,0144</td>
<td>2,1530</td>
<td>0,7177</td>
<td>0,3588</td>
<td>0,0072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>203,408</td>
<td>203,408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5886,323</td>
<td>838,879</td>
<td>200,957</td>
<td>4,6867</td>
<td>0,0105</td>
<td>21,3682</td>
<td>137,3926</td>
<td>27,6591</td>
<td>23,2666</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4826,880</td>
<td>65,2868</td>
<td>0,0599</td>
<td>21,0314</td>
<td>126,1899</td>
<td>23,7032</td>
<td>21,8924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>4826,880</td>
<td>3,0366</td>
<td>0,0599</td>
<td>21,0314</td>
<td>126,1899</td>
<td>23,7032</td>
<td>21,8924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2153,974</td>
<td>0,0319</td>
<td>0,0226</td>
<td>6,3687</td>
<td>0,5342</td>
<td>0,1364</td>
<td>13,3360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>570,434</td>
<td>0,0458</td>
<td>0,0030</td>
<td>1,5650</td>
<td>0,3691</td>
<td>2,3705</td>
<td>1,3306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>1073,050</td>
<td>0,2411</td>
<td>0,0093</td>
<td>9,9246</td>
<td>92,4525</td>
<td>17,3912</td>
<td>0,5988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>11,962</td>
<td>0,0001</td>
<td>0,0003</td>
<td>0,0507</td>
<td>0,0169</td>
<td>0,0085</td>
<td>0,0039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>1038,580</td>
<td>0,2395</td>
<td>0,0088</td>
<td>9,5082</td>
<td>92,1317</td>
<td>17,3203</td>
<td>0,5934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3с Железные дороги</td>
<td>22,275</td>
<td>0,0015</td>
<td>0,0002</td>
<td>0,3609</td>
<td>0,3007</td>
<td>0,0618</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3д Водный транспорт</td>
<td>0,233</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0047</td>
<td>0,0031</td>
<td>0,0006</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>1029,423</td>
<td>2,7177</td>
<td>0,0250</td>
<td>3,1731</td>
<td>32,8340</td>
<td>3,8050</td>
<td>6,6269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4а Коммерческий/ институциональный</td>
<td>130,466</td>
<td>0,0196</td>
<td>0,0018</td>
<td>0,1346</td>
<td>2,4433</td>
<td>0,2467</td>
<td>1,2989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4б Жилой</td>
<td>741,052</td>
<td>2,5762</td>
<td>0,0217</td>
<td>1,0816</td>
<td>28,0345</td>
<td>3,1629</td>
<td>4,7318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>157,904</td>
<td>0,1220</td>
<td>0,0015</td>
<td>1,9569</td>
<td>2,3562</td>
<td>0,3954</td>
<td>0,5963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>62,2503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>1,1493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>61,1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,9160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>60,1850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>492,493</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01051</td>
<td>0,0134</td>
<td>2,4820</td>
<td>2,6680</td>
<td>1,3742</td>
<td></td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>472,755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>9,046</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0134</td>
<td>0,0240</td>
<td>0,0000</td>
<td>1,1133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,3300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеводов и гексафторида серы</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>10,692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,4580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>106,3650</td>
<td>4,3520</td>
<td>0,3136</td>
<td>8,2324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>98,3188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>5,2634</td>
<td></td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,4688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,3433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3136</td>
<td>0,0087</td>
<td>0,3136</td>
<td>8,2324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>566,950</td>
<td>838,879</td>
<td>0,0977</td>
<td>0,0006</td>
<td>0,0098</td>
<td>0,4884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>838,879</td>
<td>0,0977</td>
<td>0,0006</td>
<td>0,0098</td>
<td>0,4884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>566,950</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>29,2078</td>
<td>0,2742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>26,4065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>2,8013</td>
<td>0,2742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,2406</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,5607</td>
<td>0,2742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>800,877</td>
<td>0,0041</td>
<td>0,0163</td>
<td>2,4459</td>
<td>0,8153</td>
<td>0,4076</td>
<td>0,0082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>582,929</td>
<td>0,0041</td>
<td>0,0163</td>
<td>2,4459</td>
<td>0,8153</td>
<td>0,4076</td>
<td>0,0082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>217,948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Драйберк и источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5961,846</td>
<td>840,367</td>
<td>213,3589</td>
<td>4,8355</td>
<td>0,0121</td>
<td>21,7588</td>
<td>143,6739</td>
<td>28,9163</td>
<td>23,1295</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4851,768</td>
<td>79,3807</td>
<td>0,0605</td>
<td>21,4475</td>
<td>133,4032</td>
<td>25,2593</td>
<td>22,1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4851,768</td>
<td>3,0882</td>
<td>0,0605</td>
<td>21,4475</td>
<td>133,4032</td>
<td>25,2593</td>
<td>22,1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2054,630</td>
<td>0,0290</td>
<td>0,0224</td>
<td>6,0973</td>
<td>0,5000</td>
<td>0,1272</td>
<td>13,6015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>609,035</td>
<td>0,0511</td>
<td>0,0030</td>
<td>1,6737</td>
<td>0,4133</td>
<td>2,5993</td>
<td>1,3902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1146,295</td>
<td>0,2593</td>
<td>0,0100</td>
<td>10,5781</td>
<td>99,5835</td>
<td>18,7307</td>
<td>0,6488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,480</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0529</td>
<td>0,0176</td>
<td>0,0088</td>
<td>0,0042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>1111,720</td>
<td>0,2578</td>
<td>0,0095</td>
<td>10,1664</td>
<td>99,2676</td>
<td>18,6606</td>
<td>0,6431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>21,891</td>
<td>0,0015</td>
<td>0,0002</td>
<td>0,3547</td>
<td>0,2956</td>
<td>0,0607</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,204</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0041</td>
<td>0,0028</td>
<td>0,0006</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1041,809</td>
<td>2,7487</td>
<td>0,0250</td>
<td>3,0984</td>
<td>32,9064</td>
<td>3,8020</td>
<td>6,5195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>124,029</td>
<td>0,0148</td>
<td>0,0017</td>
<td>0,1268</td>
<td>2,3776</td>
<td>0,2387</td>
<td>1,2877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>764,786</td>
<td>2,6051</td>
<td>0,0219</td>
<td>1,1059</td>
<td>28,2000</td>
<td>3,1784</td>
<td>4,6254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>152,994</td>
<td>0,1289</td>
<td>0,0015</td>
<td>1,8657</td>
<td>2,3289</td>
<td>0,3850</td>
<td>0,6064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>76,2925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>1,0575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>75,2350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,9170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>74,3180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>540,388</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01212</td>
<td>0,0058</td>
<td>2,0470</td>
<td>2,2050</td>
<td>0,9696</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>525,991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>5,602</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0058</td>
<td>0,0250</td>
<td>0,0000</td>
<td>0,6778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,8750</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,01212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>8,795</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td>2,0220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>109,603</td>
<td>4,4903</td>
<td>0,2968</td>
<td>7,7909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>101,5530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>5,4054</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,3472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,4821</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,2968</td>
<td>0,0082</td>
<td>0,2968</td>
<td>7,7909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>569,690</td>
<td>840,367</td>
<td>0,0866</td>
<td>0,0005</td>
<td>0,0087</td>
<td>0,4328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>840,367</td>
<td>0,0866</td>
<td>0,0005</td>
<td>0,0087</td>
<td>0,4328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>569,690</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>24,2886</td>
<td>0,2842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>21,7098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>2,5788</td>
<td>0,2842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,2086</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,3702</td>
<td>0,2842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>599,867</td>
<td>0,0028</td>
<td>0,0110</td>
<td>1,6509</td>
<td>0,5503</td>
<td>0,2751</td>
<td>0,0055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>393,458</td>
<td>0,0028</td>
<td>0,0110</td>
<td>1,6509</td>
<td>0,5503</td>
<td>0,2751</td>
<td>0,0055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Б Эмиссия CO₂ от биомассы</td>
<td>206,409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>СО₂ эмиссия</td>
<td>СО₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6099,765</td>
<td>804,864</td>
<td>209,4650</td>
<td>4,8766</td>
<td>0,0138</td>
<td>23,2647</td>
<td>155,1059</td>
<td>31,2625</td>
<td>22,8259</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4961,463</td>
<td>72,6951</td>
<td>0,0681</td>
<td>22,9712</td>
<td>147,3896</td>
<td>27,2779</td>
<td>22,1169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4961,463</td>
<td>3,3375</td>
<td>0,0681</td>
<td>22,9712</td>
<td>147,3896</td>
<td>27,2779</td>
<td>22,1169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1938,508</td>
<td>0,0268</td>
<td>0,0216</td>
<td>5,7746</td>
<td>0,4686</td>
<td>0,1190</td>
<td>13,0220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>735,532</td>
<td>0,0618</td>
<td>0,0033</td>
<td>2,5986</td>
<td>0,4787</td>
<td>2,9813</td>
<td>1,5090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1199,439</td>
<td>0,2679</td>
<td>0,0104</td>
<td>11,1324</td>
<td>102,5714</td>
<td>19,2964</td>
<td>0,6699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,564</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0533</td>
<td>0,0178</td>
<td>0,0089</td>
<td>0,0054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>1164,560</td>
<td>0,2663</td>
<td>0,0099</td>
<td>10,7176</td>
<td>102,2524</td>
<td>19,2256</td>
<td>0,6630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>22,316</td>
<td>0,0015</td>
<td>0,0002</td>
<td>0,3615</td>
<td>0,3013</td>
<td>0,0619</td>
<td>0,0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1087,983</td>
<td>2,9810</td>
<td>0,0327</td>
<td>1,6362</td>
<td>1,4041</td>
<td>0,2764</td>
<td>0,1802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>120,456</td>
<td>0,0643</td>
<td>0,0087</td>
<td>0,6205</td>
<td>12,3166</td>
<td>1,2326</td>
<td>1,2908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>861,407</td>
<td>2,9029</td>
<td>0,0232</td>
<td>1,2090</td>
<td>30,1501</td>
<td>3,3721</td>
<td>5,4451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>106,120</td>
<td>0,0137</td>
<td>0,0009</td>
<td>1,6362</td>
<td>1,4041</td>
<td>0,2764</td>
<td>0,1802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>69,3576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>1,1436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>68,2140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В3 Нефть</td>
<td>0,9160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>67,2980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>566,092</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01377</td>
<td>0,0087</td>
<td>0,0230</td>
<td>2,4416</td>
<td>0,7090</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>562,917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>3,175</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0087</td>
<td>0,0230</td>
<td>0,0000</td>
<td>0,3937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,8960</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,01377</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ИЗИЛХ</td>
<td>572,210</td>
<td>0,1194</td>
<td>0,0007</td>
<td>0,0120</td>
<td>0,5969</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Запасы древесной биомассы</td>
<td>0,000</td>
<td>0,1194</td>
<td>0,0007</td>
<td>0,0120</td>
<td>0,5969</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>572,210</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>22,7665</td>
<td>0,2852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>19,6023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,1642</td>
<td>0,2852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,6682</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>2,4959</td>
<td>0,2852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>1057,032</td>
<td>0,0059</td>
<td>0,0235</td>
<td>3,5292</td>
<td>1,1764</td>
<td>0,5882</td>
<td>0,0118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>841,133</td>
<td>0,0059</td>
<td>0,0235</td>
<td>3,5292</td>
<td>1,1764</td>
<td>0,5882</td>
<td>0,0118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>215,899</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7077,821</td>
<td>804,167</td>
<td>210,7755</td>
<td>5,0007</td>
<td>0,0155</td>
<td>31,9537</td>
<td>205,6680</td>
<td>43,2292</td>
<td>24,7550</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5840,425</td>
<td>72,0952</td>
<td>0,0743</td>
<td>31,6447</td>
<td>198,5823</td>
<td>37,4123</td>
<td>23,4941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5840,425</td>
<td>3,4295</td>
<td>0,0743</td>
<td>31,6447</td>
<td>198,5823</td>
<td>37,4123</td>
<td>23,4941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1915,799</td>
<td>0,0263</td>
<td>0,0214</td>
<td>5,7103</td>
<td>0,4622</td>
<td>0,1173</td>
<td>12,9830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>775,336</td>
<td>0,0668</td>
<td>0,0038</td>
<td>2,5628</td>
<td>0,5457</td>
<td>3,4725</td>
<td>1,8469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1800,369</td>
<td>0,3977</td>
<td>0,0155</td>
<td>16,7596</td>
<td>151,8032</td>
<td>28,5611</td>
<td>1,0464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>13,302</td>
<td>0,0002</td>
<td>0,0004</td>
<td>0,0563</td>
<td>0,0188</td>
<td>0,0094</td>
<td>0,0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1760,030</td>
<td>0,3957</td>
<td>0,0150</td>
<td>16,2646</td>
<td>151,4194</td>
<td>28,4768</td>
<td>1,0334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>26,861</td>
<td>0,0018</td>
<td>0,0002</td>
<td>0,4352</td>
<td>0,3627</td>
<td>0,0745</td>
<td>0,0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,177</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0036</td>
<td>0,0024</td>
<td>0,0005</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1348,921</td>
<td>2,9388</td>
<td>0,0335</td>
<td>6,6199</td>
<td>45,7713</td>
<td>5,2614</td>
<td>7,6179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>151,683</td>
<td>0,0803</td>
<td>0,0100</td>
<td>0,7239</td>
<td>14,1557</td>
<td>1,4184</td>
<td>1,4150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>876,731</td>
<td>2,7913</td>
<td>0,0209</td>
<td>1,1577</td>
<td>27,3755</td>
<td>3,0272</td>
<td>5,6088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>320,507</td>
<td>0,0672</td>
<td>0,0026</td>
<td>4,7303</td>
<td>4,2401</td>
<td>0,8158</td>
<td>0,5940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>68,6657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>1,0157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>67,6500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,9170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>66,7330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>664,116</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01554</td>
<td>0,0437</td>
<td>0,0350</td>
<td>4,0038</td>
<td>1,2609</td>
<td></td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>657,586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>6,530</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0437</td>
<td>0,0350</td>
<td>0,0000</td>
<td>0,8920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,01554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td>1,8130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>118,6570</td>
<td>4,6470</td>
<td></td>
<td>0,2538</td>
<td>6,4792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>110,1340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B Системы хранения навоза</td>
<td>5,8093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>2,4668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td></td>
<td></td>
<td>4,6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2468</td>
<td>0,0070</td>
<td></td>
<td>0,2538</td>
<td>6,4792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>573,280</td>
<td>804,167</td>
<td>0,1143</td>
<td>0,0007</td>
<td>0,0115</td>
<td>0,5715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A Запасы древесной биомассы</td>
<td>0,000</td>
<td>804,167</td>
<td>0,1143</td>
<td>0,0007</td>
<td>0,0115</td>
<td>0,5715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5B Эмиссия и сток из почв</td>
<td>573,280</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>19,9091</td>
<td>3,788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A Захоронение ТБО</td>
<td>16,5706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B Очистка сточных вод</td>
<td>3,3384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>0,7338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>2,6046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>919,114</td>
<td>0,0052</td>
<td>0,0206</td>
<td>3,0938</td>
<td>1,0313</td>
<td>0,5156</td>
<td>0,0103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7A Международный бункер (авиация)</td>
<td>737,347</td>
<td>0,0052</td>
<td>0,0206</td>
<td>3,0938</td>
<td>1,0313</td>
<td>0,5156</td>
<td>0,0103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7B Эмиссия CO₂ от биомассы</td>
<td>181,768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>HМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7929,445</td>
<td>804,080</td>
<td>229,6137</td>
<td>5,0618</td>
<td>0,0174</td>
<td>33,8355</td>
<td>220,8305</td>
<td>43,2202</td>
<td>31,5068</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>6675,641</td>
<td>79,147</td>
<td>0,0788</td>
<td>33,5573</td>
<td>213,6622</td>
<td>39,7777</td>
<td>30,5020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>6675,641</td>
<td>4,5641</td>
<td>0,0788</td>
<td>33,5573</td>
<td>213,6622</td>
<td>39,7777</td>
<td>30,5020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2286,267</td>
<td>0,0299</td>
<td>0,0271</td>
<td>6,8842</td>
<td>0,5377</td>
<td>0,1361</td>
<td>16,3367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>697,610</td>
<td>0,0591</td>
<td>0,0030</td>
<td>2,1250</td>
<td>0,4662</td>
<td>2,7357</td>
<td>1,2064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2036,646</td>
<td>0,4471</td>
<td>0,0175</td>
<td>18,9755</td>
<td>170,4393</td>
<td>32,0696</td>
<td>12,322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,673</td>
<td>0,0001</td>
<td>0,0004</td>
<td>0,0537</td>
<td>0,0179</td>
<td>0,0089</td>
<td>0,0075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1996,640</td>
<td>0,4452</td>
<td>0,0170</td>
<td>18,4785</td>
<td>170,0536</td>
<td>31,9851</td>
<td>12,228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>26,800</td>
<td>0,0018</td>
<td>0,0002</td>
<td>0,4328</td>
<td>0,3606</td>
<td>0,7041</td>
<td>0,018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,534</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0106</td>
<td>0,0072</td>
<td>0,0014</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1655,118</td>
<td>4,0280</td>
<td>0,0312</td>
<td>5,5726</td>
<td>42,2390</td>
<td>4,8364</td>
<td>11,7267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>215,506</td>
<td>0,0290</td>
<td>0,0028</td>
<td>0,2234</td>
<td>3,6697</td>
<td>0,3702</td>
<td>2,0430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1195,987</td>
<td>3,9697</td>
<td>0,0265</td>
<td>1,5381</td>
<td>35,3022</td>
<td>3,8223</td>
<td>9,2772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>243,625</td>
<td>0,0292</td>
<td>0,0020</td>
<td>3,8112</td>
<td>3,2671</td>
<td>0,6438</td>
<td>0,4066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>74,5831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>1,2291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>73,3540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>0,9170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>72,4370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>682,013</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01744</td>
<td>0,0095</td>
<td>0,0190</td>
<td>1,8175</td>
<td>1,0048</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>676,983</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,3855</td>
<td>0,3828</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлоп</td>
<td>5,030</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0095</td>
<td>0,0190</td>
<td>0,0000</td>
<td>0,6220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,4320</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,01744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Г Взрывные работы</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>1,6250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>124,1880</td>
<td>4,6916</td>
<td>0,2581</td>
<td>6,6217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>115,4670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>6,0589</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,4104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>4,6845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2523</td>
<td>0,0071</td>
<td>0,2581</td>
<td>6,6217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>571,790</td>
<td>804,080</td>
<td>0,1055</td>
<td>0,0006</td>
<td>0,0106</td>
<td>0,5276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>804,080</td>
<td>0,1055</td>
<td>0,0006</td>
<td>0,0106</td>
<td>0,5276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>571,790</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>26,1731</td>
<td>0,2907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>22,9545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>3,2186</td>
<td>0,2907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,6461</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,5725</td>
<td>0,2907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>1047,969</td>
<td>0,0061</td>
<td>0,0243</td>
<td>3,6397</td>
<td>1,2132</td>
<td>0,6066</td>
<td>0,0121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>867,467</td>
<td>0,0061</td>
<td>0,0243</td>
<td>3,6397</td>
<td>1,2132</td>
<td>0,6066</td>
<td>0,0121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>180,503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂</td>
<td>CO₂</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>НМЛОС</td>
<td>SO₂</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7501,451</td>
<td>803,662</td>
<td>239,2284</td>
<td>5,4206</td>
<td>0,0195</td>
<td>35,8588</td>
<td>238,0823</td>
<td>46,6373</td>
<td>32,9691</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>6612,306</td>
<td>53,5732</td>
<td>0,0763</td>
<td>35,4754</td>
<td>228,6057</td>
<td>42,5351</td>
<td>32,3816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>6612,306</td>
<td>4,2167</td>
<td>0,0763</td>
<td>35,4754</td>
<td>228,6057</td>
<td>42,5351</td>
<td>32,3816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2126,409</td>
<td>0,0339</td>
<td>0,0264</td>
<td>6,3508</td>
<td>0,4592</td>
<td>0,1209</td>
<td>16,4950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>395,020</td>
<td>0,0257</td>
<td>0,0035</td>
<td>1,3531</td>
<td>0,2762</td>
<td>2,1769</td>
<td>2,1446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>2427,504</td>
<td>0,5109</td>
<td>0,0209</td>
<td>23,0117</td>
<td>192,1245</td>
<td>36,1570</td>
<td>1,5459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>14,149</td>
<td>0,0002</td>
<td>0,0004</td>
<td>0,0597</td>
<td>0,0199</td>
<td>0,0100</td>
<td>0,0183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>2358,330</td>
<td>0,5070</td>
<td>0,0200</td>
<td>22,0800</td>
<td>192,1245</td>
<td>36,1570</td>
<td>1,5459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>54,670</td>
<td>0,0036</td>
<td>0,0004</td>
<td>0,8619</td>
<td>0,7208</td>
<td>0,1480</td>
<td>0,0036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,356</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0071</td>
<td>0,0048</td>
<td>0,0010</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>1663,373</td>
<td>3,6462</td>
<td>0,0255</td>
<td>4,7599</td>
<td>35,0003</td>
<td>3,9214</td>
<td>12,1743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>231,056</td>
<td>0,0325</td>
<td>0,0028</td>
<td>0,2368</td>
<td>3,6192</td>
<td>0,3659</td>
<td>2,0112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1235,317</td>
<td>3,5884</td>
<td>0,0211</td>
<td>1,3907</td>
<td>28,6871</td>
<td>3,0253</td>
<td>9,8216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>196,999</td>
<td>0,0253</td>
<td>0,0016</td>
<td>3,1324</td>
<td>2,6939</td>
<td>0,5303</td>
<td>0,3415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>49,3565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>1,1095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>48,2470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,9160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>47,3310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>322,205</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,01948</td>
<td>0,0318</td>
<td>0,0610</td>
<td>2,8001</td>
<td>0,5875</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>319,317</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,4401</td>
<td>0,1914</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>2,888</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0318</td>
<td>0,0610</td>
<td>0,0000</td>
<td>0,3961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,3600</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,01948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td>1,3020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>130,1940</td>
<td>5,0401</td>
<td>0,3421</td>
<td>8,9473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>121,0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>6,3287</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,5136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>5,0306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,3409</td>
<td>0,0095</td>
<td>0,3421</td>
<td>8,9473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>566,940</td>
<td>803,662</td>
<td>0,0937</td>
<td>0,0005</td>
<td>0,0094</td>
<td>0,4684</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>803,662</td>
<td>0,0937</td>
<td>0,0005</td>
<td>0,0094</td>
<td>0,4684</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>566,940</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>55,3676</td>
<td>0,3038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>51,9526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>3,4150</td>
<td>0,3038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,7396</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,6754</td>
<td>0,3038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>1119,651</td>
<td>0,0071</td>
<td>0,0283</td>
<td>4,2377</td>
<td>1,4126</td>
<td>0,7063</td>
<td>0,0141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (авиация)</td>
<td>1009,979</td>
<td>0,0071</td>
<td>0,0283</td>
<td>4,2377</td>
<td>1,4126</td>
<td>0,7063</td>
<td>0,0141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия СО₂ от биомассы</td>
<td>109,672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>NOₓ</td>
<td>CO</td>
<td>HMLOС</td>
<td>SO₂</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6921,677</td>
<td>804,097</td>
<td>224,4363</td>
<td>5,4821</td>
<td>0,0216</td>
<td>31,6654</td>
<td>211,6888</td>
<td>40,9147</td>
<td>30,5638</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5980,268</td>
<td>46,5708</td>
<td>0,0727</td>
<td>31,3567</td>
<td>204,0951</td>
<td>37,7878</td>
<td>30,0396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5980,268</td>
<td>4,6194</td>
<td>0,0727</td>
<td>31,3567</td>
<td>204,0951</td>
<td>37,7878</td>
<td>30,0396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1659,081</td>
<td>0,0242</td>
<td>0,0205</td>
<td>4,9695</td>
<td>0,3669</td>
<td>0,0949</td>
<td>12,9341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>512,467</td>
<td>0,0293</td>
<td>0,0044</td>
<td>1,5462</td>
<td>0,2964</td>
<td>2,4586</td>
<td>2,7192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2132,909</td>
<td>0,4335</td>
<td>0,0183</td>
<td>19,8473</td>
<td>162,7841</td>
<td>30,6620</td>
<td>1,5373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>18,641</td>
<td>0,0003</td>
<td>0,0005</td>
<td>0,0786</td>
<td>0,0262</td>
<td>0,0131</td>
<td>0,0260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>2112,330</td>
<td>0,4331</td>
<td>0,0177</td>
<td>19,7364</td>
<td>162,7317</td>
<td>30,6435</td>
<td>1,5112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>1,690</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0274</td>
<td>0,0228</td>
<td>0,0047</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,248</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0050</td>
<td>0,0033</td>
<td>0,0007</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1675,811</td>
<td>4,1332</td>
<td>0,0296</td>
<td>4,9936</td>
<td>40,6479</td>
<td>4,5722</td>
<td>12,8490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>210,211</td>
<td>0,0286</td>
<td>0,0026</td>
<td>0,2088</td>
<td>3,6336</td>
<td>0,3661</td>
<td>1,9333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1262,056</td>
<td>4,0853</td>
<td>0,0253</td>
<td>1,5142</td>
<td>34,2544</td>
<td>3,6577</td>
<td>10,5871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>203,544</td>
<td>0,0185</td>
<td>0,0017</td>
<td>3,2706</td>
<td>2,7599</td>
<td>0,5485</td>
<td>0,3286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>41,9514</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>1,3264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>40,6250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>0,9170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>39,7080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>383,109</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,02164</td>
<td>0,0252</td>
<td>0,0390</td>
<td>1,4210</td>
<td>0,5242</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>381,042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0130</td>
<td>0,2279</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>2,067</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0252</td>
<td>0,0390</td>
<td>0,0000</td>
<td>0,2963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,4080</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td></td>
<td></td>
<td></td>
<td>0,02164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,7060</td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>133,0260</td>
<td>5,1041</td>
<td></td>
<td>0,2743</td>
<td>7,0993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>123,7240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>6,3981</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>2,6344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>5,0965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,2705</td>
<td>0,0076</td>
<td></td>
<td>0,2743</td>
<td>7,0993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>558,300</td>
<td>804,097</td>
<td>0,0911</td>
<td>0,0005</td>
<td>0,0092</td>
<td>0,4554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>804,097</td>
<td>0,0911</td>
<td>0,0005</td>
<td>0,0092</td>
<td>0,4554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>558,300</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Отходы</td>
<td>44,7485</td>
<td>0,3047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>41,6059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>3,1426</td>
<td>0,3047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,9439</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>2,1986</td>
<td>0,3047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 К сведению</td>
<td>914,869</td>
<td>0,0054</td>
<td>0,0215</td>
<td>3,2238</td>
<td>1,0746</td>
<td>0,5373</td>
<td>0,0107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7А Международный бункер (aviation)</td>
<td>768,328</td>
<td>0,0054</td>
<td>0,0215</td>
<td>3,2238</td>
<td>1,0746</td>
<td>0,5373</td>
<td>0,0107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7В Эмиссия CO₂ от биомассы</td>
<td>146,542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Приложение 2. Результаты инвентаризации в гг CO₂-экв.

<table>
<thead>
<tr>
<th>Категории источников</th>
<th>парниковые газы</th>
<th>CO₂ эмиссия</th>
<th>CH₄ сток</th>
<th>N₂O</th>
<th>HFC₅</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальные эмиссии и стоки</td>
<td></td>
<td>21368,610</td>
<td>-798,096</td>
<td>5358,5194</td>
<td>2503,9858</td>
<td>0,0000</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td></td>
<td>19825,363</td>
<td>222,9114</td>
<td>62,0581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>8136,733</td>
<td>3,7162</td>
<td>20,8168</td>
<td></td>
<td></td>
<td>8161,266</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>1712,750</td>
<td>2,7719</td>
<td>3,6072</td>
<td></td>
<td></td>
<td>1719,129</td>
</tr>
<tr>
<td>1АЗ Транспорт</td>
<td>3154,945</td>
<td>13,5355</td>
<td>8,2265</td>
<td></td>
<td></td>
<td>3176,707</td>
</tr>
<tr>
<td>1АЗа Гражданская авиация</td>
<td>46,805</td>
<td>0,0070</td>
<td>0,4104</td>
<td></td>
<td></td>
<td>47,223</td>
</tr>
<tr>
<td>1АЗб Дорожный транспорт</td>
<td>2918,790</td>
<td>13,2601</td>
<td>7,3405</td>
<td></td>
<td></td>
<td>2939,391</td>
</tr>
<tr>
<td>1АЗс Железные дороги</td>
<td>182,931</td>
<td>0,2593</td>
<td>0,4594</td>
<td></td>
<td></td>
<td>183,649</td>
</tr>
<tr>
<td>1АЗд Водный транспорт</td>
<td>6,419</td>
<td>0,0091</td>
<td>0,0161</td>
<td></td>
<td></td>
<td>6,444</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>6820,935</td>
<td>202,8879</td>
<td>29,4077</td>
<td></td>
<td></td>
<td>7053,231</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>2626,079</td>
<td>7,3996</td>
<td>11,1002</td>
<td></td>
<td></td>
<td>2644,579</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>3042,753</td>
<td>180,9751</td>
<td>15,0779</td>
<td></td>
<td></td>
<td>3238,806</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>1152,103</td>
<td>14,5132</td>
<td>3,2296</td>
<td></td>
<td></td>
<td>1169,846</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td></td>
<td>947,6172</td>
<td></td>
<td></td>
<td></td>
<td>947,617</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td></td>
<td>678,7074</td>
<td></td>
<td></td>
<td></td>
<td>678,707</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td></td>
<td>25,9497</td>
<td></td>
<td></td>
<td></td>
<td>25,950</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>652,7577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>652,758</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>706,207</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>706,207</td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>694,329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>694,329</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>4,832</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>4,832</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>2E Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>0,0000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>7,046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,046</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>3067,4795</td>
<td>2350,0310</td>
<td></td>
<td></td>
<td>5417,510</td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>2924,3760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2924,376</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>127,0983</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td>127,098</td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>10,4580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,458</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,0000</td>
<td>2347,6006</td>
<td></td>
<td></td>
<td></td>
<td>2347,601</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>5,5472</td>
<td>2,4304</td>
<td></td>
<td></td>
<td></td>
<td>7,978</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>837,040</td>
<td>-798,096</td>
<td>1,4513</td>
<td>0,1249</td>
<td>40,520</td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,0000</td>
<td>-798,096</td>
<td>1,4513</td>
<td>0,1249</td>
<td>-796,520</td>
<td></td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>837,040</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
<td>837,040</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>1119,0600</td>
<td>91,7718</td>
<td></td>
<td></td>
<td>1210,832</td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>921,6353</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>921,635</td>
<td></td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>197,4248</td>
<td>91,7718</td>
<td></td>
<td></td>
<td>289,197</td>
<td></td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>137,1526</td>
<td>0,0000</td>
<td></td>
<td></td>
<td>137,153</td>
<td></td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>60,2722</td>
<td>91,7718</td>
<td></td>
<td></td>
<td>152,044</td>
<td></td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>Сумма</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>18434492</td>
<td>-803823</td>
<td>53370343</td>
<td>26109718</td>
<td>0,0000</td>
<td>25578675</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>16930476</td>
<td>0,000</td>
<td>10545398</td>
<td>528564</td>
<td>0,0000</td>
<td>18037872</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>16930476</td>
<td>0,000</td>
<td>1855422</td>
<td>528564</td>
<td>0,0000</td>
<td>17168874</td>
</tr>
<tr>
<td>1А1 Промышленность энергии</td>
<td>7068163</td>
<td>0,000</td>
<td>31667</td>
<td>184081</td>
<td>0,0000</td>
<td>7089738</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>1449300</td>
<td>0,000</td>
<td>23508</td>
<td>30179</td>
<td>0,0000</td>
<td>1454669</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2706403</td>
<td>0,000</td>
<td>116601</td>
<td>70823</td>
<td>0,0000</td>
<td>2725146</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>41881</td>
<td>0,000</td>
<td>0062</td>
<td>03674</td>
<td>0,0000</td>
<td>42254</td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>2504200</td>
<td>0,000</td>
<td>114272</td>
<td>63135</td>
<td>0,0000</td>
<td>2521941</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>154304</td>
<td>0,000</td>
<td>02188</td>
<td>03875</td>
<td>0,0000</td>
<td>154910</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>6019</td>
<td>0,000</td>
<td>0079</td>
<td>0140</td>
<td>0,0000</td>
<td>6041</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>5706610</td>
<td>0,000</td>
<td>1683646</td>
<td>243481</td>
<td>0,0000</td>
<td>5899322</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>2126305</td>
<td>0,000</td>
<td>60434</td>
<td>89432</td>
<td>0,0000</td>
<td>2141292</td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>2594580</td>
<td>0,000</td>
<td>1496240</td>
<td>126282</td>
<td>0,0000</td>
<td>2756833</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>985724</td>
<td>0,000</td>
<td>126971</td>
<td>27767</td>
<td>0,0000</td>
<td>1001198</td>
</tr>
<tr>
<td>18 Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>8689976</td>
<td>0,0000</td>
<td>0,0000</td>
<td>868998</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>2583953</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2583953</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>6106023</td>
<td>0,0000</td>
<td>0,0000</td>
<td>610602</td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>249795</td>
<td>0,0000</td>
<td>0,0000</td>
<td>24980</td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>5856228</td>
<td>0,0000</td>
<td>0,0000</td>
<td>585623</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>668516</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>668516</td>
</tr>
<tr>
<td>2 А Минеральные вещества</td>
<td>659698</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>659698</td>
</tr>
<tr>
<td>2 В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2 С Производство металлов</td>
<td>4485</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4485</td>
</tr>
<tr>
<td>2 Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2 Г Взрывные работы</td>
<td>4333</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4333</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>30182040</td>
<td>24747780</td>
<td>0,0000</td>
<td>5492982</td>
</tr>
<tr>
<td>4 А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>28712460</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2871246</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>1267951</td>
<td>0,0000</td>
<td>0,0000</td>
<td>126795</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>147252</td>
<td>0,0000</td>
<td>0,0000</td>
<td>14725</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>54335</td>
<td>23870</td>
<td>0,0000</td>
<td>7821</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>54335</td>
<td>23870</td>
<td>0,0000</td>
<td>7821</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>835500</td>
<td>-803823</td>
<td>13443</td>
<td>01156</td>
<td>0,0000</td>
<td>33137</td>
</tr>
<tr>
<td>5 А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-803823</td>
<td>13443</td>
<td>01156</td>
<td>0,0000</td>
<td>-802363</td>
</tr>
<tr>
<td>5 Б Эмиссия и сток из почв</td>
<td>835500</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>835500</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>12629462</td>
<td>832218</td>
<td>0,0000</td>
<td>1346168</td>
</tr>
<tr>
<td>6 А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>10844519</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1084452</td>
</tr>
<tr>
<td>6 Б Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>1784943</td>
<td>832218</td>
<td>0,0000</td>
<td>261716</td>
</tr>
<tr>
<td>6 В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>1180408</td>
<td>0,0000</td>
<td>0,0000</td>
<td>118041</td>
</tr>
<tr>
<td>6 В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>604535</td>
<td>832218</td>
<td>0,0000</td>
<td>143675</td>
</tr>
<tr>
<td>Категории источников/ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>15412,340</td>
<td>0,000</td>
<td>4876,2712</td>
<td>2621,9358</td>
<td>0,0000</td>
<td>22111,987</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>14035,340</td>
<td>0,000</td>
<td>889,7099</td>
<td>43,7593</td>
<td>0,0000</td>
<td>14968,809</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>14035,340</td>
<td>0,000</td>
<td>148,7915</td>
<td>43,7593</td>
<td>0,0000</td>
<td>14227,891</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>5999,364</td>
<td>0,000</td>
<td>2,6174</td>
<td>15,9836</td>
<td>0,0000</td>
<td>6017,965</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>1185,840</td>
<td>0,000</td>
<td>1,9297</td>
<td>2,4282</td>
<td>0,0000</td>
<td>1190,198</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2257,852</td>
<td>0,000</td>
<td>9,7847</td>
<td>5,9379</td>
<td>0,0000</td>
<td>2273,574</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>36,956</td>
<td>0,000</td>
<td>0,0055</td>
<td>0,3240</td>
<td>0,0000</td>
<td>37,286</td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>2089,600</td>
<td>0,000</td>
<td>9,5943</td>
<td>5,2864</td>
<td>0,0000</td>
<td>2104,481</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>125,677</td>
<td>0,000</td>
<td>0,1782</td>
<td>0,3156</td>
<td>0,0000</td>
<td>126,170</td>
</tr>
<tr>
<td>1А3d Водный транспорт</td>
<td>5,619</td>
<td>0,000</td>
<td>0,0067</td>
<td>0,0119</td>
<td>0,0000</td>
<td>5,638</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>4592,284</td>
<td>0,000</td>
<td>134,4598</td>
<td>19,4096</td>
<td>0,0000</td>
<td>4746,153</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>1626,532</td>
<td>0,000</td>
<td>4,6873</td>
<td>6,7859</td>
<td>0,0000</td>
<td>1638,005</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>2146,408</td>
<td>0,000</td>
<td>118,8914</td>
<td>10,3003</td>
<td>0,0000</td>
<td>2275,599</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>819,345</td>
<td>0,000</td>
<td>10,8810</td>
<td>2,3235</td>
<td>0,0000</td>
<td>832,549</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>740,9183</td>
<td>0,0000</td>
<td>0,0000</td>
<td>740,918</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>173,6432</td>
<td>0,0000</td>
<td>0,0000</td>
<td>173,643</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>567,2751</td>
<td>0,0000</td>
<td>0,0000</td>
<td>567,275</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>22,7283</td>
<td>0,0000</td>
<td>0,0000</td>
<td>22,728</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>544,5468</td>
<td>0,0000</td>
<td>0,0000</td>
<td>544,547</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>565,949</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>565,949</td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>558,935</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>558,935</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>3,421</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>3,421</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>3,592</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>3,592</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2842,3920</td>
<td>2494,7374</td>
<td>0,0000</td>
<td>5337,129</td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2699,6340</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2699,634</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>120,6104</td>
<td>0,0000</td>
<td>0,0000</td>
<td>120,610</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>15,7668</td>
<td>0,0000</td>
<td>0,0000</td>
<td>15,767</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>2492,0280</td>
<td>0,0000</td>
<td>2492,028</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,3741</td>
<td>2,7094</td>
<td>0,0000</td>
<td>9,084</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>811,280</td>
<td>-798,788</td>
<td>1,4894</td>
<td>0,1283</td>
<td>0,0000</td>
<td>14,110</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-798,788</td>
<td>1,4894</td>
<td>0,1283</td>
<td>0,0000</td>
<td>-797,170</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>811,280</td>
<td>0,000</td>
<td>0,0000</td>
<td>83,3108</td>
<td>0,0000</td>
<td>811,280</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>1142,6799</td>
<td>83,3108</td>
<td>0,0000</td>
<td>1225,991</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>995,9890</td>
<td>0,0000</td>
<td>0,0000</td>
<td>995,989</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>146,6909</td>
<td>83,3108</td>
<td>0,0000</td>
<td>230,002</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>86,0876</td>
<td>0,0000</td>
<td>0,0000</td>
<td>86,088</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>60,6033</td>
<td>83,3108</td>
<td>0,0000</td>
<td>143,914</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>СО₂ эмиссия</td>
<td>СО₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>12493,529</td>
<td>-797,073</td>
<td>4244,6047</td>
<td>1700,9014</td>
<td>0,0000</td>
<td>17641,962</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>11093,043</td>
<td>0,000</td>
<td>763,8162</td>
<td>34,5436</td>
<td>0,0000</td>
<td>11891,402</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>4883,382</td>
<td>0,000</td>
<td>2,0552</td>
<td>13,2931</td>
<td>0,0000</td>
<td>4898,730</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>922,392</td>
<td>0,000</td>
<td>1,5087</td>
<td>1,8386</td>
<td>0,0000</td>
<td>925,739</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1809,310</td>
<td>0,000</td>
<td>7,9092</td>
<td>4,7937</td>
<td>0,0000</td>
<td>1822,031</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>32,032</td>
<td>0,000</td>
<td>0,0047</td>
<td>0,2809</td>
<td>0,0000</td>
<td>32,317</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1675,010</td>
<td>0,000</td>
<td>7,7614</td>
<td>4,2594</td>
<td>0,0000</td>
<td>1687,031</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>97,050</td>
<td>0,000</td>
<td>0,1376</td>
<td>0,2437</td>
<td>0,0000</td>
<td>97,431</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>5,219</td>
<td>0,000</td>
<td>0,0055</td>
<td>0,0098</td>
<td>0,0000</td>
<td>5,235</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>3477,958</td>
<td>0,000</td>
<td>101,2971</td>
<td>14,6181</td>
<td>0,0000</td>
<td>3593,873</td>
</tr>
<tr>
<td>1А4а Коммерческий/институционный</td>
<td>1126,758</td>
<td>0,000</td>
<td>3,3311</td>
<td>4,6289</td>
<td>0,0000</td>
<td>1134,718</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1698,235</td>
<td>0,000</td>
<td>88,9010</td>
<td>8,1187</td>
<td>0,0000</td>
<td>1795,255</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>652,965</td>
<td>0,000</td>
<td>9,0650</td>
<td>1,8705</td>
<td>0,0000</td>
<td>663,901</td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>651,0461</td>
<td>0,0000</td>
<td>0,0000</td>
<td>651,046</td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>134,9921</td>
<td>0,0000</td>
<td>0,0000</td>
<td>134,992</td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>516,0540</td>
<td>0,0000</td>
<td>0,0000</td>
<td>516,054</td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>12,6840</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,684</td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>503,3700</td>
<td>0,0000</td>
<td>0,0000</td>
<td>503,370</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>626,216</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>626,216</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>611,159</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>611,159</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>13,086</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>13,086</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2В Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>1,971</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,971</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2620,1910</td>
<td>1583,5172</td>
<td>0,0000</td>
<td>4203,708</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2478,6510</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2478,651</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>114,6310</td>
<td>0,0000</td>
<td>0,0000</td>
<td>114,631</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>20,5800</td>
<td>0,0000</td>
<td>0,0000</td>
<td>20,580</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1580,9380</td>
<td>0,0000</td>
<td>1580,938</td>
</tr>
<tr>
<td>4Ф Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,3328</td>
<td>2,5792</td>
<td>0,0000</td>
<td>8,912</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>774,270</td>
<td>-797,073</td>
<td>1,6596</td>
<td>0,1429</td>
<td>0,0000</td>
<td>-21,001</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-797,073</td>
<td>1,6596</td>
<td>0,1429</td>
<td>0,0000</td>
<td>-795,271</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>774,270</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>774,270</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>858,9379</td>
<td>82,6977</td>
<td>0,0000</td>
<td>941,636</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>754,5319</td>
<td>0,0000</td>
<td>0,0000</td>
<td>754,532</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>104,4060</td>
<td>82,6977</td>
<td>0,0000</td>
<td>187,104</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>44,5453</td>
<td>0,0000</td>
<td>0,0000</td>
<td>44,545</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>59,8607</td>
<td>82,6977</td>
<td>0,0000</td>
<td>142,558</td>
</tr>
<tr>
<td>Категории источников/ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>Сумма</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>9401,836</td>
<td>-845,476</td>
<td>3329,6405</td>
<td>1328,5502</td>
<td>0,0000</td>
<td>13214,551</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>8254,185</td>
<td>0,000</td>
<td>611,7955</td>
<td>26,0512</td>
<td>0,0000</td>
<td>8892,032</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>8254,185</td>
<td>0,000</td>
<td>77,4907</td>
<td>26,0512</td>
<td>0,0000</td>
<td>8357,727</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>3870,813</td>
<td>0,000</td>
<td>1,5212</td>
<td>11,1860</td>
<td>0,0000</td>
<td>3883,520</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>658,941</td>
<td>0,000</td>
<td>1,0876</td>
<td>1,2493</td>
<td>0,0000</td>
<td>661,278</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1360,769</td>
<td>0,000</td>
<td>6,0338</td>
<td>3,6496</td>
<td>0,0000</td>
<td>1370,452</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>27,107</td>
<td>0,000</td>
<td>0,0040</td>
<td>0,2378</td>
<td>0,0000</td>
<td>27,349</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1260,420</td>
<td>0,000</td>
<td>5,9284</td>
<td>3,2324</td>
<td>0,0000</td>
<td>1269,581</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>68,422</td>
<td>0,000</td>
<td>0,0970</td>
<td>0,1717</td>
<td>0,0000</td>
<td>68,691</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>4,820</td>
<td>0,000</td>
<td>0,0044</td>
<td>0,0078</td>
<td>0,0000</td>
<td>4,832</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>2363,662</td>
<td>0,000</td>
<td>68,8481</td>
<td>9,9662</td>
<td>0,0000</td>
<td>2442,477</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>627,014</td>
<td>0,000</td>
<td>1,9750</td>
<td>2,4716</td>
<td>0,0000</td>
<td>631,461</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1250,062</td>
<td>0,000</td>
<td>59,6242</td>
<td>6,0772</td>
<td>0,0000</td>
<td>1315,764</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>486,586</td>
<td>0,000</td>
<td>7,2489</td>
<td>1,4173</td>
<td>0,0000</td>
<td>495,252</td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>534,3048</td>
<td>0,0000</td>
<td>0,0000</td>
<td>534,305</td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>56,5968</td>
<td>0,0000</td>
<td>0,0000</td>
<td>56,597</td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>477,7080</td>
<td>0,0000</td>
<td>0,0000</td>
<td>477,708</td>
</tr>
<tr>
<td>1Б2a Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>20,9580</td>
<td>0,0000</td>
<td>0,0000</td>
<td>20,958</td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>456,7500</td>
<td>0,0000</td>
<td>0,0000</td>
<td>456,750</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>414,641</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>414,641</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>403,301</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>403,301</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>9,306</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>9,306</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Потребление хлоруглеводородов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>2,034</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,034</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2177,5530</td>
<td>1228,7594</td>
<td>0,0000</td>
<td>3406,312</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2046,5025</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2046,503</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>101,4145</td>
<td>0,0000</td>
<td>0,0000</td>
<td>101,414</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>25,4856</td>
<td>0,0000</td>
<td>0,0000</td>
<td>25,486</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1227,0730</td>
<td>0,0000</td>
<td>1227,073</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>4,1557</td>
<td>1,6864</td>
<td>0,0000</td>
<td>5,842</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>733,010</td>
<td>-845,476</td>
<td>0,8169</td>
<td>0,0704</td>
<td>0,0000</td>
<td>-111,578</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-845,476</td>
<td>0,8169</td>
<td>0,0704</td>
<td>0,0000</td>
<td>-844,588</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>733,010</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>733,010</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>539,4751</td>
<td>73,6692</td>
<td>0,0000</td>
<td>613,144</td>
</tr>
<tr>
<td>6А Захранение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>462,3782</td>
<td>0,0000</td>
<td>0,0000</td>
<td>462,378</td>
</tr>
<tr>
<td>6B Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>77,0969</td>
<td>73,6692</td>
<td>0,0000</td>
<td>150,766</td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>18,2946</td>
<td>0,0000</td>
<td>0,0000</td>
<td>18,295</td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>58,8023</td>
<td>73,6692</td>
<td>0,0000</td>
<td>132,472</td>
</tr>
<tr>
<td>Категории источников</td>
<td>парниковые газы</td>
<td>(\text{CO}_2) эмиссия</td>
<td>(\text{CO}_2) сток</td>
<td>(\text{CH}_4)</td>
<td>(\text{N}_2\text{O})</td>
<td>(\text{HFC}_6)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>национальные эмиссии и стоки</td>
<td>6250,083</td>
<td>-841,700</td>
<td>3114,5893</td>
<td>1169,9966</td>
<td>3,6370</td>
<td>9696,606</td>
</tr>
<tr>
<td>1 энергетика</td>
<td>5239,945</td>
<td>0,000</td>
<td>515,3287</td>
<td>16,8724</td>
<td>0,0000</td>
<td>5772,146</td>
</tr>
<tr>
<td>1A сжигание топлива</td>
<td>5239,945</td>
<td>0,000</td>
<td>43,7640</td>
<td>16,8724</td>
<td>0,0000</td>
<td>5300,582</td>
</tr>
<tr>
<td>1A1 производство энергии</td>
<td>2682,900</td>
<td>0,000</td>
<td>0,9415</td>
<td>8,0783</td>
<td>0,0000</td>
<td>2691,920</td>
</tr>
<tr>
<td>1A2 промышленность и строительство</td>
<td>395,489</td>
<td>0,000</td>
<td>0,6665</td>
<td>0,6597</td>
<td>0,0000</td>
<td>396,815</td>
</tr>
<tr>
<td>1A3 транспорт</td>
<td>912,220</td>
<td>0,000</td>
<td>4,1584</td>
<td>2,5052</td>
<td>0,0000</td>
<td>918,883</td>
</tr>
<tr>
<td>1A3a гражданская авиация</td>
<td>22,182</td>
<td>0,000</td>
<td>0,0033</td>
<td>0,1944</td>
<td>0,0000</td>
<td>22,380</td>
</tr>
<tr>
<td>1A3б дорожный транспорт</td>
<td>845,822</td>
<td>0,000</td>
<td>4,0955</td>
<td>2,2053</td>
<td>0,0000</td>
<td>852,123</td>
</tr>
<tr>
<td>1A3c железнодорожный транспорт</td>
<td>39,795</td>
<td>0,000</td>
<td>0,0564</td>
<td>0,0998</td>
<td>0,0000</td>
<td>39,952</td>
</tr>
<tr>
<td>1A3д водный транспорт</td>
<td>4,420</td>
<td>0,000</td>
<td>0,0032</td>
<td>0,0056</td>
<td>0,0000</td>
<td>4,429</td>
</tr>
<tr>
<td>1A4 другие секторы</td>
<td>1249,337</td>
<td>0,000</td>
<td>37,9975</td>
<td>5,6293</td>
<td>0,0000</td>
<td>1292,964</td>
</tr>
<tr>
<td>1A4a коммерческий/институциональный</td>
<td>127,241</td>
<td>0,000</td>
<td>0,6189</td>
<td>0,3143</td>
<td>0,0000</td>
<td>128,174</td>
</tr>
<tr>
<td>1A4b жилой</td>
<td>801,890</td>
<td>0,000</td>
<td>31,9459</td>
<td>4,3505</td>
<td>0,0000</td>
<td>838,186</td>
</tr>
<tr>
<td>1A4с сельское хозяйство</td>
<td>320,207</td>
<td>0,000</td>
<td>5,4328</td>
<td>0,9644</td>
<td>0,0000</td>
<td>326,604</td>
</tr>
<tr>
<td>1В летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>471,5647</td>
<td>0,0000</td>
<td>0,0000</td>
<td>471,565</td>
</tr>
<tr>
<td>1В1 твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>32,7067</td>
<td>0,0000</td>
<td>0,0000</td>
<td>32,707</td>
</tr>
<tr>
<td>1В2 нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>438,8580</td>
<td>0,0000</td>
<td>0,0000</td>
<td>438,858</td>
</tr>
<tr>
<td>1В2а нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>17,4300</td>
<td>0,0000</td>
<td>0,0000</td>
<td>17,430</td>
</tr>
<tr>
<td>1В2б природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>421,4280</td>
<td>0,0000</td>
<td>0,0000</td>
<td>421,428</td>
</tr>
<tr>
<td>2 промышленные процессы</td>
<td>316,818</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>320,455</td>
</tr>
<tr>
<td>2А минеральные вещества</td>
<td>306,400</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>306,400</td>
</tr>
<tr>
<td>2В химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С производство металлов</td>
<td>8,319</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>8,319</td>
</tr>
<tr>
<td>2D другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2F потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2G взрывные работы</td>
<td>2,099</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,099</td>
</tr>
<tr>
<td>3 использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2028,1464</td>
<td>1073,1363</td>
<td>0,0000</td>
<td>3101,283</td>
</tr>
<tr>
<td>4А внутренняя ферmentation</td>
<td>0,000</td>
<td>0,000</td>
<td>1889,3826</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1889,383</td>
</tr>
<tr>
<td>4В системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>97,3134</td>
<td>0,0000</td>
<td>0,0000</td>
<td>97,313</td>
</tr>
<tr>
<td>4С выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>37,5732</td>
<td>0,0000</td>
<td>0,0000</td>
<td>37,573</td>
</tr>
<tr>
<td>4D сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1071,6080</td>
<td>0,0000</td>
<td>1071,608</td>
</tr>
<tr>
<td>4F сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>3,8762</td>
<td>1,5283</td>
<td>0,0000</td>
<td>5,404</td>
</tr>
<tr>
<td>5 «ЗИЗКХ»</td>
<td>693,320</td>
<td>-841,700</td>
<td>1,6097</td>
<td>0,1386</td>
<td>0,0000</td>
<td>-146,632</td>
</tr>
<tr>
<td>5А запасы древесной биомассы</td>
<td>0,000</td>
<td>-841,700</td>
<td>1,6097</td>
<td>0,1386</td>
<td>0,0000</td>
<td>-839,952</td>
</tr>
<tr>
<td>5В эмиссия и сток из почв</td>
<td>693,320</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>693,320</td>
</tr>
<tr>
<td>6 отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>569,5045</td>
<td>79,8493</td>
<td>0,0000</td>
<td>649,354</td>
</tr>
<tr>
<td>6А захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>498,3740</td>
<td>0,0000</td>
<td>0,0000</td>
<td>498,374</td>
</tr>
<tr>
<td>6В очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>71,1305</td>
<td>79,8493</td>
<td>0,0000</td>
<td>150,980</td>
</tr>
<tr>
<td>6В1 промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>12,6382</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,638</td>
</tr>
<tr>
<td>6В2 бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>58,4923</td>
<td>79,8493</td>
<td>0,0000</td>
<td>138,342</td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>SO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6397,237</td>
<td>-828,167</td>
<td>2887,5943</td>
<td>1164,2682</td>
<td>4,0932</td>
<td>9625,025</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5417,723</td>
<td>0,000</td>
<td>410,2225</td>
<td>16,8280</td>
<td>0,0000</td>
<td>5844,773</td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>5417,723</td>
<td>0,000</td>
<td>43,5724</td>
<td>16,8280</td>
<td>0,0000</td>
<td>5478,123</td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2783,301</td>
<td>0,000</td>
<td>0,9992</td>
<td>7,7717</td>
<td>0,0000</td>
<td>2792,072</td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>432,234</td>
<td>0,000</td>
<td>0,6883</td>
<td>0,7815</td>
<td>0,0000</td>
<td>433,704</td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>1078,152</td>
<td>0,000</td>
<td>5,0093</td>
<td>2,9319</td>
<td>0,0000</td>
<td>1086,093</td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>18,479</td>
<td>0,000</td>
<td>0,0027</td>
<td>0,1620</td>
<td>0,0000</td>
<td>18,644</td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>1022,000</td>
<td>0,000</td>
<td>4,9547</td>
<td>2,6781</td>
<td>0,0000</td>
<td>1029,633</td>
</tr>
<tr>
<td>1A3с Железные дороги</td>
<td>35,463</td>
<td>0,000</td>
<td>0,0503</td>
<td>0,0890</td>
<td>0,0000</td>
<td>35,602</td>
</tr>
<tr>
<td>1A3д Водный транспорт</td>
<td>2,210</td>
<td>0,000</td>
<td>0,0016</td>
<td>0,0028</td>
<td>0,0000</td>
<td>2,214</td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>1124,036</td>
<td>0,000</td>
<td>36,8755</td>
<td>5,3429</td>
<td>0,0000</td>
<td>1166,254</td>
</tr>
<tr>
<td>1A4а Коммерческий/институционный</td>
<td>113,801</td>
<td>0,000</td>
<td>0,5823</td>
<td>0,2796</td>
<td>0,0000</td>
<td>114,662</td>
</tr>
<tr>
<td>1A4в Жилой</td>
<td>687,601</td>
<td>0,000</td>
<td>30,1333</td>
<td>4,0895</td>
<td>0,0000</td>
<td>721,824</td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>322,634</td>
<td>0,000</td>
<td>6,1599</td>
<td>0,9737</td>
<td>0,0000</td>
<td>329,768</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>366,6501</td>
<td>0,0000</td>
<td>0,0000</td>
<td>366,650</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>22,6071</td>
<td>0,0000</td>
<td>0,0000</td>
<td>22,607</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>344,0430</td>
<td>0,0000</td>
<td>0,0000</td>
<td>344,043</td>
</tr>
<tr>
<td>1B2a Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>17,4510</td>
<td>0,0000</td>
<td>0,0000</td>
<td>17,451</td>
</tr>
<tr>
<td>1B2b Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>326,5920</td>
<td>0,0000</td>
<td>0,0000</td>
<td>326,592</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>321,164</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,0932</td>
<td>325,257</td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>307,234</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>307,234</td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>12,158</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,158</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,0932</td>
<td>4,093</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>1,772</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,772</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>1937,4642</td>
<td>1069,2830</td>
<td>0,0000</td>
<td>3006,747</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>1792,9758</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1792,976</td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>93,7768</td>
<td>0,0000</td>
<td>0,0000</td>
<td>93,777</td>
</tr>
<tr>
<td>4B Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>45,0744</td>
<td>0,0000</td>
<td>0,0000</td>
<td>45,074</td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>1067,0820</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1067,082</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>5,6375</td>
<td>2,2010</td>
<td>0,0000</td>
<td>7,838</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>537,8948</td>
<td>77,9840</td>
<td>0,0000</td>
<td>615,879</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>658,350</td>
<td>-828,167</td>
<td>2,0128</td>
<td>0,1733</td>
<td>0,0000</td>
<td>-167,631</td>
</tr>
<tr>
<td>5A Запасы древесной биомассы</td>
<td>0,000</td>
<td>-828,167</td>
<td>2,0128</td>
<td>0,1733</td>
<td>0,0000</td>
<td>-825,981</td>
</tr>
<tr>
<td>5B Эмиссия и сток из почв</td>
<td>658,350</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>658,350</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>537,8948</td>
<td>77,9840</td>
<td>0,0000</td>
<td>615,879</td>
</tr>
<tr>
<td>6A Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>462,8054</td>
<td>0,0000</td>
<td>0,0000</td>
<td>462,805</td>
</tr>
<tr>
<td>6B Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>75,0894</td>
<td>77,9840</td>
<td>0,0000</td>
<td>153,073</td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>14,8300</td>
<td>0,0000</td>
<td>0,0000</td>
<td>14,830</td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>60,2594</td>
<td>77,9840</td>
<td>0,0000</td>
<td>138,243</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>Сумма</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7172,305</td>
<td>-764,051</td>
<td>2881,2381</td>
<td>1368,6937</td>
<td>4,7175</td>
<td>10662,904</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5901,914</td>
<td>0,000</td>
<td>313,7580</td>
<td>17,7763</td>
<td>0,0000</td>
<td>6233,449</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5901,914</td>
<td>0,000</td>
<td>42,5715</td>
<td>17,7763</td>
<td>0,0000</td>
<td>5962,262</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>3190,093</td>
<td>0,000</td>
<td>1,1159</td>
<td>8,6273</td>
<td>0,0000</td>
<td>3199,836</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>468,980</td>
<td>0,000</td>
<td>0,7101</td>
<td>0,9033</td>
<td>0,0000</td>
<td>470,593</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1244,096</td>
<td>0,000</td>
<td>5,8603</td>
<td>3,3588</td>
<td>0,0000</td>
<td>1253,315</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>14,776</td>
<td>0,000</td>
<td>0,0022</td>
<td>0,1296</td>
<td>0,0000</td>
<td>14,908</td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>1198,190</td>
<td>0,000</td>
<td>5,8140</td>
<td>3,1512</td>
<td>0,0000</td>
<td>1207,155</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>31,130</td>
<td>0,000</td>
<td>0,0441</td>
<td>0,0781</td>
<td>0,0000</td>
<td>31,253</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>998,745</td>
<td>0,000</td>
<td>34,8852</td>
<td>4,8868</td>
<td>0,0000</td>
<td>1038,517</td>
</tr>
<tr>
<td>1А4а Коммерческий/институционный</td>
<td>100,371</td>
<td>0,000</td>
<td>0,5458</td>
<td>0,2449</td>
<td>0,0000</td>
<td>101,161</td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>573,313</td>
<td>0,000</td>
<td>27,4523</td>
<td>3,6586</td>
<td>0,0000</td>
<td>604,424</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>325,061</td>
<td>0,000</td>
<td>6,8871</td>
<td>0,9833</td>
<td>0,0000</td>
<td>332,932</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>271,1865</td>
<td>0,0000</td>
<td>0,0000</td>
<td>271,187</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>19,8795</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,880</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>251,3070</td>
<td>0,0000</td>
<td>0,0000</td>
<td>251,307</td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>18,7530</td>
<td>0,0000</td>
<td>0,0000</td>
<td>18,753</td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>232,5540</td>
<td>0,0000</td>
<td>0,0000</td>
<td>232,554</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>641,081</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,7175</td>
<td>645,798</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>626,528</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>626,528</td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>12,270</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,270</td>
</tr>
<tr>
<td>2D Другое производство</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>(продовольствие и напитки)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,7175</td>
<td>4,718</td>
</tr>
<tr>
<td>и гексафторида серы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>2,283</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,283</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>1999,5528</td>
<td>1278,1672</td>
<td>0,0000</td>
<td>3277,720</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>1844,7471</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1844,747</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>96,5727</td>
<td>0,0000</td>
<td>0,0000</td>
<td>96,573</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>51,1980</td>
<td>0,0000</td>
<td>0,0000</td>
<td>51,198</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1275,4640</td>
<td>0,0000</td>
<td>1275,464</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных</td>
<td>0,000</td>
<td>0,000</td>
<td>7,0335</td>
<td>2,7032</td>
<td>0,0000</td>
<td>9,737</td>
</tr>
<tr>
<td>остатков</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>629,310</td>
<td>-764,051</td>
<td>2,3327</td>
<td>0,2009</td>
<td>0,0000</td>
<td>-132,207</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-764,051</td>
<td>2,3327</td>
<td>0,2009</td>
<td>0,0000</td>
<td>-761,517</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>629,310</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>629,310</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>565,5946</td>
<td>72,5493</td>
<td>0,0000</td>
<td>638,144</td>
</tr>
<tr>
<td>6А Захранование ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>508,4981</td>
<td>0,0000</td>
<td>0,0000</td>
<td>508,498</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>57,0965</td>
<td>72,5493</td>
<td>0,0000</td>
<td>129,646</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>10,3542</td>
<td>0,0000</td>
<td>0,0000</td>
<td>10,354</td>
</tr>
<tr>
<td>6В2 бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>46,7424</td>
<td>72,5493</td>
<td>0,0000</td>
<td>119,292</td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>Сумма</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6125,879</td>
<td>-793,783</td>
<td>2766,2086</td>
<td>1359,1276</td>
<td>5,5099</td>
<td>9462,942</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5144,456</td>
<td>0,000</td>
<td>249,1417</td>
<td>16,5869</td>
<td>0,0000</td>
<td>5410,184</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5144,456</td>
<td>0,000</td>
<td>52,4424</td>
<td>16,5869</td>
<td>0,0000</td>
<td>5213,485</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2373,275</td>
<td>0,000</td>
<td>8,673</td>
<td>6,4539</td>
<td>0,0000</td>
<td>2380,596</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>468,151</td>
<td>0,000</td>
<td>0,6750</td>
<td>0,9064</td>
<td>0,0000</td>
<td>469,732</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1144,913</td>
<td>0,000</td>
<td>5,2273</td>
<td>3,0932</td>
<td>0,0000</td>
<td>1153,234</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>14,923</td>
<td>0,000</td>
<td>0,0022</td>
<td>0,1308</td>
<td>0,0000</td>
<td>15,056</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1102,230</td>
<td>0,000</td>
<td>5,1857</td>
<td>2,8926</td>
<td>0,0000</td>
<td>1110,308</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>27,761</td>
<td>0,000</td>
<td>0,0394</td>
<td>0,0698</td>
<td>0,0000</td>
<td>27,870</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1158,117</td>
<td>0,000</td>
<td>45,6728</td>
<td>6,1334</td>
<td>0,0000</td>
<td>1209,923</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>123,751</td>
<td>0,000</td>
<td>0,5977</td>
<td>0,3946</td>
<td>0,0000</td>
<td>124,743</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>654,969</td>
<td>0,000</td>
<td>34,9561</td>
<td>4,5130</td>
<td>0,0000</td>
<td>694,438</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>379,397</td>
<td>0,000</td>
<td>10,1190</td>
<td>1,2257</td>
<td>0,0000</td>
<td>390,742</td>
</tr>
<tr>
<td>1Б Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>196,6993</td>
<td>0,0000</td>
<td>0,0000</td>
<td>196,699</td>
</tr>
<tr>
<td>1Б1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>12,4873</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,487</td>
</tr>
<tr>
<td>1Б2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>184,2120</td>
<td>0,0000</td>
<td>0,0000</td>
<td>184,212</td>
</tr>
<tr>
<td>1Б2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>18,7320</td>
<td>0,0000</td>
<td>0,0000</td>
<td>18,732</td>
</tr>
<tr>
<td>1Б2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>165,4800</td>
<td>0,0000</td>
<td>0,0000</td>
<td>165,480</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>375,094</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,5099</td>
<td>380,604</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>358,876</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>358,876</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>11,996</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>11,996</td>
</tr>
<tr>
<td>2Д Другое производство</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>(продовольствие и напитки)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,5099</td>
<td>5,510</td>
</tr>
<tr>
<td>гексафторида серы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>4,222</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,222</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2038,6989</td>
<td>1266,4368</td>
<td>0,0000</td>
<td>3305,136</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>1885,4535</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1885,454</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>100,4583</td>
<td>0,0000</td>
<td>0,0000</td>
<td>100,458</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>45,9480</td>
<td>0,0000</td>
<td>0,0000</td>
<td>45,948</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1263,7770</td>
<td>0,0000</td>
<td>1263,777</td>
</tr>
<tr>
<td>4Е Сжигание сельскохозяйственных</td>
<td>0,000</td>
<td>0,000</td>
<td>6,8399</td>
<td>2,6598</td>
<td>0,0000</td>
<td>9,500</td>
</tr>
<tr>
<td>остатков</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>606,330</td>
<td>-793,783</td>
<td>1,9082</td>
<td>0,1643</td>
<td>0,0000</td>
<td>-185,381</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-793,783</td>
<td>1,9082</td>
<td>0,1643</td>
<td>0,0000</td>
<td>-791,711</td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>606,330</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>606,330</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>476,4598</td>
<td>75,9396</td>
<td>0,0000</td>
<td>552,399</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>412,2191</td>
<td>0,0000</td>
<td>0,0000</td>
<td>412,219</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>64,2407</td>
<td>75,9396</td>
<td>0,0000</td>
<td>140,180</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>4,5436</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,544</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>59,6972</td>
<td>75,9396</td>
<td>0,0000</td>
<td>135,637</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCα</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5641,263</td>
<td>-827,822</td>
<td>2799,9041</td>
<td>1373,5237</td>
<td>6,4703</td>
<td>8993,339</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4837,568</td>
<td>0,000</td>
<td>194,8619</td>
<td>17,1970</td>
<td>0,0000</td>
<td>5049,627</td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>4837,568</td>
<td>0,000</td>
<td>61,8230</td>
<td>17,1970</td>
<td>0,0000</td>
<td>4916,588</td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2007,018</td>
<td>0,000</td>
<td>0,7277</td>
<td>6,1991</td>
<td>0,0000</td>
<td>2013,945</td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>467,322</td>
<td>0,000</td>
<td>0,6399</td>
<td>0,9092</td>
<td>0,0000</td>
<td>468,871</td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>1045,740</td>
<td>0,000</td>
<td>4,5943</td>
<td>2,8273</td>
<td>0,0000</td>
<td>1053,162</td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>15,069</td>
<td>0,000</td>
<td>0,0022</td>
<td>0,1321</td>
<td>0,0000</td>
<td>15,204</td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>1006,280</td>
<td>0,000</td>
<td>4,5575</td>
<td>2,6338</td>
<td>0,0000</td>
<td>1013,471</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>24,391</td>
<td>0,000</td>
<td>0,0346</td>
<td>0,0614</td>
<td>0,0000</td>
<td>24,487</td>
</tr>
<tr>
<td>1A3d Водный транспорт</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>1317,488</td>
<td>0,000</td>
<td>55,8611</td>
<td>7,2614</td>
<td>0,0000</td>
<td>1380,610</td>
</tr>
<tr>
<td>1A4а Коммерческий/институционный</td>
<td>147,131</td>
<td>0,000</td>
<td>0,6497</td>
<td>0,5441</td>
<td>0,0000</td>
<td>148,324</td>
</tr>
<tr>
<td>1A4б Жилой</td>
<td>736,624</td>
<td>0,000</td>
<td>41,8605</td>
<td>5,2495</td>
<td>0,0000</td>
<td>783,734</td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>433,734</td>
<td>0,000</td>
<td>13,3508</td>
<td>1,4679</td>
<td>0,0000</td>
<td>448,552</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>133,0389</td>
<td>0,0000</td>
<td>0,0000</td>
<td>133,039</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>11,3649</td>
<td>0,0000</td>
<td>0,0000</td>
<td>11,365</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>121,6740</td>
<td>0,0000</td>
<td>0,0000</td>
<td>121,674</td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,0680</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,068</td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>102,6060</td>
<td>0,0000</td>
<td>0,0000</td>
<td>102,606</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>214,655</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,4703</td>
<td>221,125</td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>197,775</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>197,775</td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>12,149</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>12,149</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,4703</td>
<td>6,470</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>4,731</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,731</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2085,8544</td>
<td>1278,0866</td>
<td>0,0000</td>
<td>3363,941</td>
</tr>
<tr>
<td>4A Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>1924,5450</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1924,545</td>
</tr>
<tr>
<td>4B Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>103,6751</td>
<td>0,0000</td>
<td>0,0000</td>
<td>103,675</td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>51,0048</td>
<td>0,0000</td>
<td>0,0000</td>
<td>51,005</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1275,4640</td>
<td>0,0000</td>
<td>1275,464</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>6,6278</td>
<td>2,6226</td>
<td>9,250</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>589,040</td>
<td>-827,822</td>
<td>1,5770</td>
<td>0,1358</td>
<td>0,0000</td>
<td>-237,069</td>
</tr>
<tr>
<td>5A Запасы древесной биомассы</td>
<td>0,000</td>
<td>-827,822</td>
<td>1,5770</td>
<td>0,1358</td>
<td>0,0000</td>
<td>-826,109</td>
</tr>
<tr>
<td>5B Эмиссия и сток из почв</td>
<td>589,040</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>589,040</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>517,6108</td>
<td>78,1043</td>
<td>0,0000</td>
<td>595,715</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>456,2133</td>
<td>0,0000</td>
<td>0,0000</td>
<td>456,213</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>61,3975</td>
<td>78,1043</td>
<td>0,0000</td>
<td>139,502</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>1,4924</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1,492</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>59,9051</td>
<td>78,1043</td>
<td>0,0000</td>
<td>138,009</td>
</tr>
<tr>
<td>Категории источников/ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>Сумма</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5534,042</td>
<td>-808,808</td>
<td>2957,3356</td>
<td>1367,4926</td>
<td>7,5988</td>
<td>9057,660</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4710,341</td>
<td>0,000</td>
<td>328,5553</td>
<td>16,8998</td>
<td>0,0000</td>
<td>5055,796</td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>4710,341</td>
<td>0,000</td>
<td>59,0455</td>
<td>16,8998</td>
<td>0,0000</td>
<td>4876,286</td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>2144,894</td>
<td>0,000</td>
<td>0,7403</td>
<td>6,3624</td>
<td>0,0000</td>
<td>2151,997</td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>460,976</td>
<td>0,000</td>
<td>0,6333</td>
<td>0,8897</td>
<td>0,0000</td>
<td>462,499</td>
</tr>
<tr>
<td>1A3 Транспорт</td>
<td>949,520</td>
<td>0,000</td>
<td>4,2525</td>
<td>2,5629</td>
<td>0,0000</td>
<td>956,336</td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>12,737</td>
<td>0,000</td>
<td>0,0019</td>
<td>0,1117</td>
<td>0,0000</td>
<td>12,851</td>
</tr>
<tr>
<td>1A3б Дорожный транспорт</td>
<td>912,713</td>
<td>0,000</td>
<td>4,2165</td>
<td>2,3907</td>
<td>0,0000</td>
<td>919,320</td>
</tr>
<tr>
<td>1A3c Железные дороги</td>
<td>23,909</td>
<td>0,000</td>
<td>0,0339</td>
<td>0,0601</td>
<td>0,0000</td>
<td>24,003</td>
</tr>
<tr>
<td>1A3д Водный транспорт</td>
<td>0,160</td>
<td>0,000</td>
<td>0,0002</td>
<td>0,0004</td>
<td>0,0000</td>
<td>0,161</td>
</tr>
<tr>
<td>1A4 Другие секторы</td>
<td>1154,951</td>
<td>0,000</td>
<td>53,4195</td>
<td>7,0847</td>
<td>0,0000</td>
<td>1215,455</td>
</tr>
<tr>
<td>1A4а Коммерческий/институциональный</td>
<td>148,455</td>
<td>0,000</td>
<td>0,6810</td>
<td>0,5828</td>
<td>0,0000</td>
<td>149,718</td>
</tr>
<tr>
<td>1A4б Жилой</td>
<td>703,237</td>
<td>0,000</td>
<td>44,9977</td>
<td>5,5227</td>
<td>0,0000</td>
<td>753,758</td>
</tr>
<tr>
<td>1A4с Сельское хозяйство</td>
<td>303,259</td>
<td>0,000</td>
<td>7,7407</td>
<td>0,9793</td>
<td>0,0000</td>
<td>311,979</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>269,5098</td>
<td>0,0000</td>
<td>0,0000</td>
<td>269,510</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>20,7648</td>
<td>0,0000</td>
<td>0,0000</td>
<td>20,765</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>248,7450</td>
<td>0,0000</td>
<td>0,0000</td>
<td>248,745</td>
</tr>
<tr>
<td>1B2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,3200</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,320</td>
</tr>
<tr>
<td>1B2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>229,4250</td>
<td>0,0000</td>
<td>0,0000</td>
<td>229,425</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>246,801</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>7,5988</td>
<td>254,399</td>
</tr>
<tr>
<td>2A Минеральные вещества</td>
<td>229,818</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>229,818</td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>10,508</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>10,508</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>7,5988</td>
<td>7,599</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>6,475</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,475</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2115,7710</td>
<td>1274,9990</td>
<td>0,0000</td>
<td>3390,770</td>
</tr>
<tr>
<td>4A Внутренняя ферmentation</td>
<td>0,000</td>
<td>0,000</td>
<td>1950,0096</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1950,010</td>
</tr>
<tr>
<td>4B Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>105,6103</td>
<td>0,0000</td>
<td>0,0000</td>
<td>105,610</td>
</tr>
<tr>
<td>4C Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>53,9196</td>
<td>0,0000</td>
<td>0,0000</td>
<td>53,920</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1272,5190</td>
<td>0,0000</td>
<td>1272,519</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,2326</td>
<td>2,4800</td>
<td>0,0000</td>
<td>8,713</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>576,900</td>
<td>-808,808</td>
<td>2,4617</td>
<td>0,2120</td>
<td>0,0000</td>
<td>-229,235</td>
</tr>
<tr>
<td>5A Запасы древесной биомассы</td>
<td>0,000</td>
<td>-808,808</td>
<td>2,4617</td>
<td>0,2120</td>
<td>0,0000</td>
<td>-806,135</td>
</tr>
<tr>
<td>5B Эмиссия и сток из почв</td>
<td>576,900</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>576,900</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>510,5477</td>
<td>75,3817</td>
<td>0,0000</td>
<td>585,929</td>
</tr>
<tr>
<td>6A Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>438,5168</td>
<td>0,0000</td>
<td>0,0000</td>
<td>438,517</td>
</tr>
<tr>
<td>6B Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>72,0309</td>
<td>75,3817</td>
<td>0,0000</td>
<td>147,413</td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>6,5777</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,578</td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>65,4532</td>
<td>75,3817</td>
<td>0,0000</td>
<td>140,835</td>
</tr>
<tr>
<td>Категории источников\парниковые газы</td>
<td>CO_2 эмиссия</td>
<td>CO_2 сток</td>
<td>CH_4</td>
<td>N_2O</td>
<td>HFCs</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5298,153</td>
<td>-813,996</td>
<td>3103,4090</td>
<td>1411,2471</td>
<td>8,8953</td>
<td>9007,709</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4471,014</td>
<td>0,000</td>
<td>455,8980</td>
<td>16,1352</td>
<td>0,0000</td>
<td>4943,048</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2170,808</td>
<td>0,000</td>
<td>0,7244</td>
<td>5,8835</td>
<td>0,0000</td>
<td>2177,416</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>454,630</td>
<td>0,000</td>
<td>0,6266</td>
<td>0,8702</td>
<td>0,0000</td>
<td>456,127</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>853,302</td>
<td>0,000</td>
<td>3,9107</td>
<td>2,2989</td>
<td>0,0000</td>
<td>859,512</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>10,405</td>
<td>0,000</td>
<td>0,0015</td>
<td>0,0912</td>
<td>0,0000</td>
<td>10,498</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>819,148</td>
<td>0,000</td>
<td>3,8755</td>
<td>2,1480</td>
<td>0,0000</td>
<td>825,171</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>23,428</td>
<td>0,000</td>
<td>0,0332</td>
<td>0,0589</td>
<td>0,0000</td>
<td>23,520</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,321</td>
<td>0,000</td>
<td>0,0005</td>
<td>0,0008</td>
<td>0,0000</td>
<td>0,322</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>992,274</td>
<td>0,000</td>
<td>51,8624</td>
<td>7,0826</td>
<td>0,0000</td>
<td>1051,219</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>149,789</td>
<td>0,000</td>
<td>0,7123</td>
<td>0,6219</td>
<td>0,0000</td>
<td>151,123</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>669,851</td>
<td>0,000</td>
<td>49,0194</td>
<td>5,9703</td>
<td>0,0000</td>
<td>724,840</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>172,635</td>
<td>0,000</td>
<td>2,1307</td>
<td>0,4904</td>
<td>0,0000</td>
<td>175,256</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>398,7740</td>
<td>0,0000</td>
<td>0,0000</td>
<td>398,774</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>22,1390</td>
<td>0,0000</td>
<td>0,0000</td>
<td>22,139</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>376,6350</td>
<td>0,0000</td>
<td>0,0000</td>
<td>376,635</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>23,4780</td>
<td>0,0000</td>
<td>0,0000</td>
<td>23,478</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>353,1570</td>
<td>0,0000</td>
<td>0,0000</td>
<td>353,157</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>257,789</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>8,8953</td>
<td>266,684</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>240,071</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>240,071</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>11,424</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>11,424</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>8,8953</td>
<td>8,895</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>6,294</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,294</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2138,7030</td>
<td>1318,3153</td>
<td>0,0000</td>
<td>3457,018</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>1977,0786</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1977,079</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>107,3062</td>
<td>0,0000</td>
<td>0,0000</td>
<td>107,306</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>47,2416</td>
<td>0,0000</td>
<td>0,0000</td>
<td>47,242</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1315,4850</td>
<td>0,0000</td>
<td>1315,485</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>7,0820</td>
<td>2,8303</td>
<td>0,0000</td>
<td>9,912</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>569,350</td>
<td>-813,996</td>
<td>2,1445</td>
<td>0,1848</td>
<td>0,0000</td>
<td>-242,317</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-813,996</td>
<td>2,1445</td>
<td>0,1848</td>
<td>0,0000</td>
<td>-811,667</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>569,350</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>569,350</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>506,6634</td>
<td>76,6119</td>
<td>0,0000</td>
<td>583,275</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>437,4721</td>
<td>0,0000</td>
<td>0,0000</td>
<td>437,472</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>69,1913</td>
<td>76,6119</td>
<td>0,0000</td>
<td>145,803</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>5,9442</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,944</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>63,2472</td>
<td>76,6119</td>
<td>0,0000</td>
<td>139,859</td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO\textsubscript{2} эмиссия</td>
<td>CO\textsubscript{2} сток</td>
<td>CH\textsubscript{4}</td>
<td>N\textsubscript{2}O</td>
<td>HFC\textsubscript{s}</td>
<td>Сумма</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4642,274</td>
<td>0,000</td>
<td>59,373</td>
<td>17,329</td>
<td>0,000</td>
<td>4718,977</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2217,832</td>
<td>0,000</td>
<td>0,7066</td>
<td>6,630</td>
<td>0,000</td>
<td>2225,169</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>493,231</td>
<td>0,000</td>
<td>0,7384</td>
<td>0,8872</td>
<td>0,000</td>
<td>494,857</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>926,550</td>
<td>0,000</td>
<td>4,2946</td>
<td>2,4984</td>
<td>0,000</td>
<td>933,343</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>10,924</td>
<td>0,000</td>
<td>0,0016</td>
<td>0,0958</td>
<td>0,000</td>
<td>11,022</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>892,291</td>
<td>0,000</td>
<td>4,2599</td>
<td>2,3439</td>
<td>0,000</td>
<td>898,895</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>23,044</td>
<td>0,000</td>
<td>0,0327</td>
<td>0,0580</td>
<td>0,000</td>
<td>23,134</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,292</td>
<td>0,000</td>
<td>0,0004</td>
<td>0,0007</td>
<td>0,000</td>
<td>0,293</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1004,660</td>
<td>0,000</td>
<td>53,6340</td>
<td>7,3135</td>
<td>0,000</td>
<td>1065,608</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>143,351</td>
<td>0,000</td>
<td>0,6118</td>
<td>0,5992</td>
<td>0,000</td>
<td>144,562</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>693,585</td>
<td>0,000</td>
<td>50,7476</td>
<td>6,2316</td>
<td>0,000</td>
<td>750,564</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>167,724</td>
<td>0,000</td>
<td>2,2746</td>
<td>0,4827</td>
<td>0,000</td>
<td>170,482</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>696,7244</td>
<td>0,000</td>
<td>0,000</td>
<td>696,724</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>24,3674</td>
<td>0,000</td>
<td>0,000</td>
<td>24,367</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>672,3570</td>
<td>0,000</td>
<td>0,000</td>
<td>672,357</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2990</td>
<td>0,000</td>
<td>0,000</td>
<td>19,299</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>653,0580</td>
<td>0,000</td>
<td>0,000</td>
<td>653,058</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>284,460</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>284,460</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>10,508</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>10,508</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>10,360</td>
<td>0,000</td>
<td>10,360</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>7,274</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>7,274</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2011,1931</td>
<td>0,000</td>
<td>0,000</td>
<td>2011,193</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>109,4774</td>
<td>0,000</td>
<td>0,000</td>
<td>109,477</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>57,0024</td>
<td>0,000</td>
<td>0,000</td>
<td>57,002</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1338,022</td>
<td>0,000</td>
<td>1338,022</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,8943</td>
<td>2,7373</td>
<td>0,000</td>
<td>9,632</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>565,720</td>
<td>-822,758</td>
<td>2,3255</td>
<td>0,2003</td>
<td>0,000</td>
<td>-254,512</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>0,000</td>
<td>-822,758</td>
<td>2,3255</td>
<td>0,2003</td>
<td>0,000</td>
<td>-820,232</td>
</tr>
<tr>
<td>6 Отходы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>436,6459</td>
<td>0,000</td>
<td>0,000</td>
<td>436,646</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>67,5290</td>
<td>81,3953</td>
<td>0,000</td>
<td>148,924</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>4,3712</td>
<td>81,3953</td>
<td>0,000</td>
<td>4,371</td>
</tr>
<tr>
<td>6В2 бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>63,1579</td>
<td>81,3953</td>
<td>0,000</td>
<td>144,553</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>Сумма</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5659,880</td>
<td>-821,911</td>
<td>3721,9331</td>
<td>1455,0934</td>
<td>11,9927</td>
<td>10026,988</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4670,135</td>
<td>0,000</td>
<td>60,7720</td>
<td>17,5394</td>
<td>0,000</td>
<td>4784,446</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2121,457</td>
<td>0,000</td>
<td>0,6655</td>
<td>6,5556</td>
<td>0,000</td>
<td>2128,678</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>531,833</td>
<td>0,000</td>
<td>0,8502</td>
<td>0,9043</td>
<td>0,000</td>
<td>533,587</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>999,798</td>
<td>0,000</td>
<td>4,6874</td>
<td>2,6982</td>
<td>0,000</td>
<td>1007,175</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>11,443</td>
<td>0,000</td>
<td>0,0017</td>
<td>0,1003</td>
<td>0,000</td>
<td>11,545</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>965,434</td>
<td>0,000</td>
<td>4,6442</td>
<td>2,5401</td>
<td>0,000</td>
<td>972,618</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>22,659</td>
<td>0,000</td>
<td>0,0321</td>
<td>0,0570</td>
<td>0,000</td>
<td>22,749</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,262</td>
<td>0,000</td>
<td>0,0004</td>
<td>0,0007</td>
<td>0,000</td>
<td>0,263</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1017,046</td>
<td>0,000</td>
<td>54,5779</td>
<td>7,3814</td>
<td>0,000</td>
<td>1079,006</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональ</td>
<td>136,914</td>
<td>0,000</td>
<td>0,5113</td>
<td>0,5766</td>
<td>0,000</td>
<td>138,002</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>717,319</td>
<td>0,000</td>
<td>51,6479</td>
<td>6,3299</td>
<td>0,000</td>
<td>775,296</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>162,814</td>
<td>0,000</td>
<td>2,4186</td>
<td>0,4749</td>
<td>0,000</td>
<td>165,708</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>997,9515</td>
<td>0,000</td>
<td>0,000</td>
<td>997,952</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>20,9685</td>
<td>0,000</td>
<td>0,000</td>
<td>20,969</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>976,9830</td>
<td>0,000</td>
<td>0,000</td>
<td>976,983</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2780</td>
<td>0,000</td>
<td>0,000</td>
<td>19,278</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>957,7050</td>
<td>0,000</td>
<td>0,000</td>
<td>957,705</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>424,495</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>11,9927</td>
<td>436,488</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>405,456</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>405,456</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>7,100</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>7,100</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>11,9927</td>
<td>11,993</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>11,939</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>11,939</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2174,5710</td>
<td>1353,9126</td>
<td>0,000</td>
<td>3528,484</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2008,2342</td>
<td>0,000</td>
<td>0,000</td>
<td>2008,234</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>107,5939</td>
<td>0,000</td>
<td>0,000</td>
<td>107,594</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>52,3236</td>
<td>0,000</td>
<td>0,000</td>
<td>52,324</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>1351,3210</td>
<td>0,000</td>
<td>1351,321</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,4153</td>
<td>2,5916</td>
<td>0,000</td>
<td>9,007</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>565,250</td>
<td>-821,911</td>
<td>2,5080</td>
<td>0,2161</td>
<td>0,000</td>
<td>-253,937</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-821,911</td>
<td>2,5080</td>
<td>0,2161</td>
<td>0,000</td>
<td>-819,187</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>565,250</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>565,250</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>486,1306</td>
<td>83,4253</td>
<td>0,000</td>
<td>569,556</td>
</tr>
<tr>
<td>6А Захранование ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>423,3934</td>
<td>0,000</td>
<td>0,000</td>
<td>423,393</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>62,7372</td>
<td>83,4253</td>
<td>0,000</td>
<td>146,163</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>8,1345</td>
<td>0,000</td>
<td>0,000</td>
<td>8,135</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>54,6027</td>
<td>83,4253</td>
<td>0,000</td>
<td>138,028</td>
</tr>
<tr>
<td>Категории источников парниковых газов</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5886,323</td>
<td>-838,879</td>
<td>4220,1038</td>
<td>1452,8886</td>
<td>13,6634</td>
<td>10734,100</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>4826,880</td>
<td>0,000</td>
<td>1371,0234</td>
<td>18,5811</td>
<td>0,000</td>
<td>6216,485</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4826,880</td>
<td>0,000</td>
<td>63,7677</td>
<td>18,5811</td>
<td>0,000</td>
<td>4909,229</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2153,974</td>
<td>0,000</td>
<td>0,6707</td>
<td>7,0069</td>
<td>0,000</td>
<td>2161,652</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>570,434</td>
<td>0,000</td>
<td>0,9619</td>
<td>0,9216</td>
<td>0,000</td>
<td>572,318</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1073,050</td>
<td>0,000</td>
<td>5,0623</td>
<td>2,8976</td>
<td>0,000</td>
<td>1081,010</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>11,962</td>
<td>0,000</td>
<td>0,0018</td>
<td>0,1049</td>
<td>0,000</td>
<td>12,068</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1038,580</td>
<td>0,000</td>
<td>5,0286</td>
<td>2,7364</td>
<td>0,000</td>
<td>1046,345</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>22,275</td>
<td>0,000</td>
<td>0,0316</td>
<td>0,0558</td>
<td>0,000</td>
<td>22,362</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,233</td>
<td>0,000</td>
<td>0,0003</td>
<td>0,0006</td>
<td>0,000</td>
<td>0,234</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1029,423</td>
<td>0,000</td>
<td>57,0727</td>
<td>7,7550</td>
<td>0,000</td>
<td>1094,250</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>130,466</td>
<td>0,000</td>
<td>0,4108</td>
<td>0,5540</td>
<td>0,000</td>
<td>131,431</td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>741,052</td>
<td>0,000</td>
<td>54,0992</td>
<td>6,7335</td>
<td>0,000</td>
<td>801,885</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>157,904</td>
<td>0,000</td>
<td>2,5626</td>
<td>0,4675</td>
<td>0,000</td>
<td>160,934</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>1307,2557</td>
<td>0,000</td>
<td>0,000</td>
<td>1307,256</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>24,1347</td>
<td>0,000</td>
<td>0,000</td>
<td>24,135</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1283,1210</td>
<td>0,000</td>
<td>0,000</td>
<td>1283,121</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2360</td>
<td>0,000</td>
<td>0,000</td>
<td>19,236</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1263,8850</td>
<td>0,000</td>
<td>0,000</td>
<td>1263,885</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>492,493</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>506,156</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>472,755</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>472,755</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>9,046</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>9,046</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>13,6634</td>
<td>0,0000</td>
<td>13,663</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>10,692</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>10,692</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>2233,6650</td>
<td>1349,1138</td>
<td>0,0000</td>
<td>3582,779</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2064,6948</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2064,695</td>
</tr>
<tr>
<td>4А Внутренняя ферmentation</td>
<td>0,000</td>
<td>0,000</td>
<td>110,5306</td>
<td>0,0000</td>
<td>0,0000</td>
<td>110,531</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>51,8484</td>
<td>0,0000</td>
<td>0,0000</td>
<td>51,845</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1346,4230</td>
<td>0,0000</td>
<td>1346,423</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>6,5858</td>
<td>2,6908</td>
<td>0,0000</td>
<td>9,277</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>566,950</td>
<td>-838,879</td>
<td>2,0511</td>
<td>0,1767</td>
<td>0,0000</td>
<td>-269,701</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-838,879</td>
<td>2,0511</td>
<td>0,1767</td>
<td>0,0000</td>
<td>-836,651</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>566,950</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>566,950</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>613,3644</td>
<td>85,0169</td>
<td>0,0000</td>
<td>698,381</td>
</tr>
<tr>
<td>6А Захранение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>554,5364</td>
<td>0,0000</td>
<td>0,0000</td>
<td>554,536</td>
</tr>
<tr>
<td>6B Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>58,8280</td>
<td>85,0169</td>
<td>0,0000</td>
<td>143,845</td>
</tr>
<tr>
<td>6B1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>5,0527</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,053</td>
</tr>
<tr>
<td>6B2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>53,7753</td>
<td>85,0169</td>
<td>0,0000</td>
<td>138,792</td>
</tr>
<tr>
<td>Категории источников</td>
<td>парниковые газы</td>
<td>CO(_2) эмиссия</td>
<td>CO(_2) сток</td>
<td>CH(_4)</td>
<td>N(_2)O</td>
<td>HFC(_x)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>5961,846</td>
<td>-840,367</td>
<td>4480,5362</td>
<td>1499,0185</td>
<td>15,7622</td>
<td>11116,796</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>4851,768</td>
<td>0,000</td>
<td>64,8518</td>
<td>18,7549</td>
<td>0,0000</td>
<td>4935,375</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2054,630</td>
<td>0,000</td>
<td>6,0828</td>
<td>6,9539</td>
<td>0,0000</td>
<td>2062,192</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>609,035</td>
<td>0,000</td>
<td>1,0738</td>
<td>0,9387</td>
<td>0,0000</td>
<td>611,047</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1146,295</td>
<td>0,000</td>
<td>5,4462</td>
<td>3,0971</td>
<td>0,0000</td>
<td>1154,838</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,480</td>
<td>0,000</td>
<td>0,0019</td>
<td>0,1094</td>
<td>0,0000</td>
<td>12,592</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1111,720</td>
<td>0,000</td>
<td>5,4130</td>
<td>2,9323</td>
<td>0,0000</td>
<td>1120,065</td>
</tr>
<tr>
<td>1А3с Железнодорожные дороги</td>
<td>21,891</td>
<td>0,000</td>
<td>0,0310</td>
<td>0,0549</td>
<td>0,0000</td>
<td>21,977</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,204</td>
<td>0,000</td>
<td>0,0003</td>
<td>0,0005</td>
<td>0,0000</td>
<td>0,205</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1041,809</td>
<td>0,000</td>
<td>57,7236</td>
<td>7,7652</td>
<td>0,0000</td>
<td>1107,298</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>124,029</td>
<td>0,000</td>
<td>0,3104</td>
<td>0,5313</td>
<td>0,0000</td>
<td>124,870</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>764,786</td>
<td>0,000</td>
<td>54,7067</td>
<td>6,7741</td>
<td>0,0000</td>
<td>826,267</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>152,994</td>
<td>0,000</td>
<td>2,7066</td>
<td>0,4579</td>
<td>0,0000</td>
<td>156,160</td>
</tr>
<tr>
<td>1А5 Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>1602,1431</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1602,143</td>
</tr>
<tr>
<td>1А5а Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>22,2081</td>
<td>0,0000</td>
<td>0,0000</td>
<td>22,208</td>
</tr>
<tr>
<td>1А5б Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1579,9350</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1579,935</td>
</tr>
<tr>
<td>1А5а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2570</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,257</td>
</tr>
<tr>
<td>1А5б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1560,6780</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1560,678</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>540,388</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>15,7622</td>
<td>556,150</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>525,991</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>525,991</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>5,602</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,602</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>15,7622</td>
<td>15,762</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>8,795</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>8,795</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2301,6630</td>
<td>1391,9961</td>
<td>0,0000</td>
<td>3693,659</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2132,6130</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2132,613</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>113,5134</td>
<td>0,0000</td>
<td>0,0000</td>
<td>113,513</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>49,2912</td>
<td>0,0000</td>
<td>0,0000</td>
<td>49,291</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1389,4510</td>
<td>0,0000</td>
<td>1389,451</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>6,2328</td>
<td>2,5451</td>
<td>0,0000</td>
<td>8,778</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>569,690</td>
<td>-840,367</td>
<td>1,8176</td>
<td>0,1566</td>
<td>0,0000</td>
<td>-268,703</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-840,367</td>
<td>1,8176</td>
<td>0,1566</td>
<td>0,0000</td>
<td>-838,393</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>569,690</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>569,690</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>510,0607</td>
<td>88,1109</td>
<td>0,0000</td>
<td>598,172</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>455,9055</td>
<td>0,0000</td>
<td>0,0000</td>
<td>455,906</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>54,1552</td>
<td>88,1109</td>
<td>0,0000</td>
<td>142,266</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>4,3806</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4,381</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>49,7746</td>
<td>88,1109</td>
<td>0,0000</td>
<td>137,886</td>
</tr>
<tr>
<td>Категории источников\ парниковые газы</td>
<td>CO₂, эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₅</td>
<td>Сумма</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6099,765</td>
<td>-804,864</td>
<td>4398,765</td>
<td>1511,754</td>
<td>17,899</td>
<td>11223,321</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A Сжигание топлива</td>
<td>4961,463</td>
<td>0,000</td>
<td>1526,5980</td>
<td>21,1024</td>
<td>0,0000</td>
<td>6509,163</td>
</tr>
<tr>
<td>1A1 Производство энергии</td>
<td>1938,508</td>
<td>0,000</td>
<td>0,5628</td>
<td>6,6898</td>
<td>0,0000</td>
<td>1945,761</td>
</tr>
<tr>
<td>1A2 Промышленность и строительство</td>
<td>735,532</td>
<td>0,000</td>
<td>1,2984</td>
<td>1,0280</td>
<td>0,0000</td>
<td>737,585</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1199,439</td>
<td>0,000</td>
<td>5,6259</td>
<td>3,2377</td>
<td>0,0000</td>
<td>1208,303</td>
</tr>
<tr>
<td>1A3а Гражданская авиация</td>
<td>12,564</td>
<td>0,000</td>
<td>0,0021</td>
<td>0,1101</td>
<td>0,0000</td>
<td>12,676</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1164,560</td>
<td>0,000</td>
<td>5,5922</td>
<td>3,0715</td>
<td>0,0000</td>
<td>1173,224</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>22,316</td>
<td>0,000</td>
<td>0,0316</td>
<td>0,0561</td>
<td>0,0000</td>
<td>22,403</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1087,983</td>
<td>0,000</td>
<td>62,6003</td>
<td>10,1469</td>
<td>0,0000</td>
<td>1160,731</td>
</tr>
<tr>
<td>1А4а Коммерческий/институционный</td>
<td>120,456</td>
<td>0,000</td>
<td>1,3504</td>
<td>2,6821</td>
<td>0,0000</td>
<td>124,489</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>861,407</td>
<td>0,000</td>
<td>60,9619</td>
<td>7,1970</td>
<td>0,0000</td>
<td>929,566</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>106,120</td>
<td>0,000</td>
<td>0,2880</td>
<td>0,2678</td>
<td>0,0000</td>
<td>106,676</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>24,0165</td>
<td>0,0000</td>
<td>0,0000</td>
<td>24,017</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1432,4940</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1432,494</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,236</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,236</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1413,2580</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1413,258</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>566,092</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>17,899</td>
<td>583,992</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>562,917</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>562,917</td>
</tr>
<tr>
<td>2Б Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>3,175</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>3,175</td>
</tr>
<tr>
<td>2D Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>17,899</td>
<td>17,899</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2391,5640</td>
<td>1402,0215</td>
<td>0,0000</td>
<td>3793,586</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2215,0590</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2215,059</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>117,5154</td>
<td>0,0000</td>
<td>0,0000</td>
<td>117,515</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>53,3148</td>
<td>0,0000</td>
<td>0,0000</td>
<td>53,315</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1399,6810</td>
<td>0,0000</td>
<td>1399,681</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>5,6771</td>
<td>2,3405</td>
<td>0,0000</td>
<td>8,018</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>572,210</td>
<td>-804,864</td>
<td>2,5071</td>
<td>0,2158</td>
<td>0,0000</td>
<td>-229,931</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-804,864</td>
<td>2,5071</td>
<td>0,2158</td>
<td>0,0000</td>
<td>-802,141</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>572,210</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>572,210</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>478,0963</td>
<td>88,4152</td>
<td>0,0000</td>
<td>566,511</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>411,6488</td>
<td>0,0000</td>
<td>0,0000</td>
<td>411,649</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>66,4475</td>
<td>88,4152</td>
<td>0,0000</td>
<td>154,863</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>14,0328</td>
<td>0,0000</td>
<td>0,0000</td>
<td>14,033</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>52,4147</td>
<td>88,4152</td>
<td>0,0000</td>
<td>140,830</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7077,821</td>
<td>-804,167</td>
<td>4426,2861</td>
<td>1550,2310</td>
<td>20,2041</td>
<td>12270,375</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5840,425</td>
<td>0,000</td>
<td>1513,9987</td>
<td>23,0236</td>
<td>0,0000</td>
<td>7377,447</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5840,425</td>
<td>0,000</td>
<td>72,0197</td>
<td>23,0236</td>
<td>0,0000</td>
<td>5935,468</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1915,799</td>
<td>0,000</td>
<td>0,5515</td>
<td>6,6433</td>
<td>0,0000</td>
<td>1922,994</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>775,336</td>
<td>0,000</td>
<td>1,4019</td>
<td>1,1811</td>
<td>0,0000</td>
<td>777,919</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>1800,369</td>
<td>0,000</td>
<td>8,3092</td>
<td>4,6357</td>
<td>0,0000</td>
<td>1813,540</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>13,302</td>
<td>0,000</td>
<td>0,0033</td>
<td>0,1163</td>
<td>0,0000</td>
<td>13,422</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1760,030</td>
<td>0,000</td>
<td>1,4019</td>
<td>1,1811</td>
<td>0,0000</td>
<td>1772,975</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>26,861</td>
<td>0,000</td>
<td>0,0381</td>
<td>0,0676</td>
<td>0,0000</td>
<td>26,966</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,177</td>
<td>0,000</td>
<td>0,0002</td>
<td>0,0040</td>
<td>0,0000</td>
<td>0,178</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1348,921</td>
<td>0,000</td>
<td>61,7153</td>
<td>10,3791</td>
<td>0,0000</td>
<td>1421,015</td>
</tr>
<tr>
<td>1А4а Коммерческий/институционный</td>
<td>151,683</td>
<td>0,000</td>
<td>1,6867</td>
<td>3,0895</td>
<td>0,0000</td>
<td>156,459</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>876,731</td>
<td>0,000</td>
<td>58,6173</td>
<td>6,4843</td>
<td>0,0000</td>
<td>941,833</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>320,507</td>
<td>0,000</td>
<td>1,4114</td>
<td>0,8054</td>
<td>0,0000</td>
<td>322,724</td>
</tr>
<tr>
<td>1B Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>1441,979</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1441,979</td>
</tr>
<tr>
<td>1B1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>21,3290</td>
<td>0,0000</td>
<td>0,0000</td>
<td>21,329</td>
</tr>
<tr>
<td>1B2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1420,6500</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1420,650</td>
</tr>
<tr>
<td>1B2a Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2570</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,257</td>
</tr>
<tr>
<td>1B2b Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1401,3930</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1401,393</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>664,116</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>20,2041</td>
<td>684,320</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>657,586</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>657,586</td>
</tr>
<tr>
<td>2B Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2C Производство металлов</td>
<td>6,530</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>6,530</td>
</tr>
<tr>
<td>2D Другое производство</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2F Потребление галогеноуглеродов</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>20,2041</td>
<td>20,204</td>
</tr>
<tr>
<td>2G Взрывные работы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2491,7970</td>
<td>1440,5762</td>
<td>0,0000</td>
<td>3932,373</td>
</tr>
<tr>
<td>4А Внутренняя ферmentation</td>
<td>0,000</td>
<td>0,000</td>
<td>2312,8140</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2312,814</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>121,9951</td>
<td>0,0000</td>
<td>0,0000</td>
<td>121,995</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>51,8028</td>
<td>0,0000</td>
<td>0,0000</td>
<td>51,803</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1438,4000</td>
<td>0,0000</td>
<td>1438,400</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>5,1834</td>
<td>2,1762</td>
<td>0,0000</td>
<td>7,360</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>573,280</td>
<td>-804,167</td>
<td>2,4001</td>
<td>0,2068</td>
<td>0,0000</td>
<td>-228,280</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-804,167</td>
<td>2,4001</td>
<td>0,2068</td>
<td>0,0000</td>
<td>-801,560</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>573,280</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>573,280</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>418,0903</td>
<td>86,4244</td>
<td>0,0000</td>
<td>504,515</td>
</tr>
<tr>
<td>6А Захранование ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>347,9829</td>
<td>0,0000</td>
<td>0,0000</td>
<td>347,983</td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>70,1074</td>
<td>86,4244</td>
<td>0,0000</td>
<td>156,532</td>
</tr>
<tr>
<td>6Б1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>15,4101</td>
<td>0,0000</td>
<td>0,0000</td>
<td>15,410</td>
</tr>
<tr>
<td>6Б2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>54,6973</td>
<td>86,4244</td>
<td>0,0000</td>
<td>141,122</td>
</tr>
<tr>
<td>Категории источников парниковых газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC</td>
<td>Сумма</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7929,445</td>
<td>-804,080</td>
<td>4821,8887</td>
<td>1569,1471</td>
<td>22,6771</td>
<td>13539,077</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>6675,641</td>
<td>0,000</td>
<td>1662,0900</td>
<td>24,4290</td>
<td>0,0000</td>
<td>8362,160</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>6675,641</td>
<td>0,000</td>
<td>95,8452</td>
<td>24,4290</td>
<td>0,0000</td>
<td>6795,915</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2286,267</td>
<td>0,000</td>
<td>627,00</td>
<td>8,3982</td>
<td>0,0000</td>
<td>2295,292</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>697,610</td>
<td>0,000</td>
<td>1,2411</td>
<td>0,9170</td>
<td>0,0000</td>
<td>699,768</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2036,646</td>
<td>0,000</td>
<td>9,3894</td>
<td>0,0670</td>
<td>0,0000</td>
<td>2051,472</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>12,673</td>
<td>0,000</td>
<td>0,0026</td>
<td>0,1109</td>
<td>0,0000</td>
<td>12,786</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>1996,640</td>
<td>0,000</td>
<td>9,3482</td>
<td>5,2570</td>
<td>0,0000</td>
<td>2011,245</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>26,800</td>
<td>0,000</td>
<td>0,0379</td>
<td>0,0670</td>
<td>0,0000</td>
<td>26,905</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,534</td>
<td>0,000</td>
<td>0,0008</td>
<td>0,0013</td>
<td>0,0000</td>
<td>0,536</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1655,118</td>
<td>0,000</td>
<td>84,5878</td>
<td>9,6776</td>
<td>0,0000</td>
<td>1749,383</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>215,506</td>
<td>0,000</td>
<td>0,6097</td>
<td>0,8609</td>
<td>0,0000</td>
<td>216,976</td>
</tr>
<tr>
<td>1А4в Жилой</td>
<td>1195,987</td>
<td>0,000</td>
<td>83,6366</td>
<td>8,2029</td>
<td>0,0000</td>
<td>1287,555</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>243,625</td>
<td>0,000</td>
<td>0,6135</td>
<td>0,6138</td>
<td>0,0000</td>
<td>244,852</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>1566,2449</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1566,245</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>25,8109</td>
<td>0,0000</td>
<td>0,0000</td>
<td>25,811</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1540,4340</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1540,434</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2570</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,257</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1521,1770</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1521,177</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>682,013</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>22,6771</td>
<td>704,691</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>676,983</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>676,983</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>5,030</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>5,030</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2607,9480</td>
<td>1454,4084</td>
<td>0,0000</td>
<td>4062,356</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2424,8070</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2424,807</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>127,2377</td>
<td>0,0000</td>
<td>0,0000</td>
<td>127,238</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>50,6184</td>
<td>0,0000</td>
<td>0,0000</td>
<td>50,618</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1452,1950</td>
<td>0,0000</td>
<td>1452,195</td>
</tr>
<tr>
<td>4Е Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>5,2975</td>
<td>2,2134</td>
<td>0,0000</td>
<td>7,511</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>571,790</td>
<td>-804,080</td>
<td>2,2157</td>
<td>0,1907</td>
<td>0,0000</td>
<td>-229,884</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-804,080</td>
<td>2,2157</td>
<td>0,1907</td>
<td>0,0000</td>
<td>-801,674</td>
</tr>
<tr>
<td>5Б Эмиссия и сток из почв</td>
<td>571,790</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>571,790</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>549,6349</td>
<td>90,1190</td>
<td>0,0000</td>
<td>639,754</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>482,0452</td>
<td>0,0000</td>
<td>0,0000</td>
<td>482,045</td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>67,5897</td>
<td>90,1190</td>
<td>0,0000</td>
<td>157,709</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>13,5680</td>
<td>0,0000</td>
<td>0,0000</td>
<td>13,568</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>54,0217</td>
<td>90,1190</td>
<td>0,0000</td>
<td>144,141</td>
</tr>
<tr>
<td>Категории источников/парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFC₆</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>7501,451</td>
<td>-803,662</td>
<td>5023,7974</td>
<td>1680,3978</td>
<td>25,3182</td>
<td>13427,302</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>6612,306</td>
<td>0,000</td>
<td>88,5497</td>
<td>23,6378</td>
<td>0,0000</td>
<td>6724,294</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>2126,409</td>
<td>0,000</td>
<td>0,7120</td>
<td>8,1694</td>
<td>0,0000</td>
<td>2135,290</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>395,020</td>
<td>0,000</td>
<td>0,5392</td>
<td>1,0928</td>
<td>0,0000</td>
<td>396,652</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2427,504</td>
<td>0,000</td>
<td>10,7287</td>
<td>6,4647</td>
<td>0,0000</td>
<td>2444,698</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>14,149</td>
<td>0,000</td>
<td>0,0048</td>
<td>0,1234</td>
<td>0,0000</td>
<td>14,277</td>
</tr>
<tr>
<td>1А3в Дорожный транспорт</td>
<td>2358,330</td>
<td>0,000</td>
<td>10,6477</td>
<td>6,2065</td>
<td>0,0000</td>
<td>2375,184</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>54,670</td>
<td>0,000</td>
<td>0,0757</td>
<td>0,1339</td>
<td>0,0000</td>
<td>54,879</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,356</td>
<td>0,000</td>
<td>0,0005</td>
<td>0,0009</td>
<td>0,0000</td>
<td>0,357</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1663,373</td>
<td>0,000</td>
<td>76,5699</td>
<td>7,9109</td>
<td>0,0000</td>
<td>1747,853</td>
</tr>
<tr>
<td>1А4а Коммерческий/институциональный</td>
<td>231,056</td>
<td>0,000</td>
<td>0,6828</td>
<td>0,8575</td>
<td>0,0000</td>
<td>232,597</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1235,317</td>
<td>0,000</td>
<td>75,3567</td>
<td>6,5488</td>
<td>0,0000</td>
<td>1317,223</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>196,999</td>
<td>0,000</td>
<td>0,5304</td>
<td>0,5047</td>
<td>0,0000</td>
<td>198,034</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>1036,487</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1036,487</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>23,3005</td>
<td>0,0000</td>
<td>0,0000</td>
<td>23,300</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>1013,187</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1013,187</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2360</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,236</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>993,9510</td>
<td>0,0000</td>
<td>0,0000</td>
<td>993,9510</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>322,205</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>25,3182</td>
<td>347,523</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>319,317</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>319,317</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>2,888</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,888</td>
</tr>
<tr>
<td>2Д Другое производство (продовольствие и напитки)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>2Ф Потребление галогеноуглеродов и гексафторида серы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>25,3182</td>
<td>25,318</td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2734,0740</td>
<td>0,0000</td>
<td>0,0000</td>
<td>4296,496</td>
</tr>
<tr>
<td>4А Внутренняя ферментация</td>
<td>0,000</td>
<td>0,000</td>
<td>2541,2310</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2541,231</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>132,9019</td>
<td>0,0000</td>
<td>0,0000</td>
<td>132,902</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>52,7856</td>
<td>0,0000</td>
<td>0,0000</td>
<td>52,786</td>
</tr>
<tr>
<td>4Д Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1559,4860</td>
<td>0,0000</td>
<td>1559,486</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>7,1579</td>
<td>2,9357</td>
<td>0,0000</td>
<td>10,094</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>566,940</td>
<td>-803,662</td>
<td>1,9671</td>
<td>0,1693</td>
<td>0,0000</td>
<td>-234,586</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-803,662</td>
<td>1,9671</td>
<td>0,1693</td>
<td>0,0000</td>
<td>-801,526</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>566,940</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>566,940</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>1162,7190</td>
<td>94,1691</td>
<td>0,0000</td>
<td>1256,888</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>1091,0037</td>
<td>0,0000</td>
<td>0,0000</td>
<td>1091,004</td>
</tr>
<tr>
<td>6В Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>71,7153</td>
<td>94,1691</td>
<td>0,0000</td>
<td>165,884</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>15,5309</td>
<td>0,0000</td>
<td>0,0000</td>
<td>15,531</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>56,1844</td>
<td>94,1691</td>
<td>0,0000</td>
<td>150,333</td>
</tr>
<tr>
<td>Категории источников\ парниковые газы</td>
<td>CO₂ эмиссия</td>
<td>CO₂ сток</td>
<td>CH₄</td>
<td>N₂O</td>
<td>HFCs</td>
<td>Сумма</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Национальные эмиссии и стоки</td>
<td>6921,677</td>
<td>-804,097</td>
<td>4713,1629</td>
<td>1699,4463</td>
<td>28,1273</td>
<td>12558,316</td>
</tr>
<tr>
<td>1 Энергетика</td>
<td>5980,268</td>
<td>0,000</td>
<td>977,9863</td>
<td>22,5413</td>
<td>0,0000</td>
<td>6980,795</td>
</tr>
<tr>
<td>1А Сжигание топлива</td>
<td>5980,268</td>
<td>0,000</td>
<td>97,0072</td>
<td>22,5413</td>
<td>0,0000</td>
<td>6099,816</td>
</tr>
<tr>
<td>1А1 Производство энергии</td>
<td>1659,081</td>
<td>0,000</td>
<td>0,5073</td>
<td>6,3407</td>
<td>0,0000</td>
<td>1665,929</td>
</tr>
<tr>
<td>1А2 Промышленность и строительство</td>
<td>512,467</td>
<td>0,000</td>
<td>0,6162</td>
<td>1,3578</td>
<td>0,0000</td>
<td>514,441</td>
</tr>
<tr>
<td>1А3 Транспорт</td>
<td>2132,909</td>
<td>0,000</td>
<td>9,1045</td>
<td>5,6605</td>
<td>0,0000</td>
<td>2147,674</td>
</tr>
<tr>
<td>1А3а Гражданская авиация</td>
<td>18,641</td>
<td>0,000</td>
<td>0,0068</td>
<td>0,1625</td>
<td>0,0000</td>
<td>18,810</td>
</tr>
<tr>
<td>1А3б Дорожный транспорт</td>
<td>2112,330</td>
<td>0,000</td>
<td>9,0950</td>
<td>5,4932</td>
<td>0,0000</td>
<td>2126,918</td>
</tr>
<tr>
<td>1А3с Железные дороги</td>
<td>1,690</td>
<td>0,000</td>
<td>0,0024</td>
<td>0,0042</td>
<td>0,0000</td>
<td>1,696</td>
</tr>
<tr>
<td>1А3д Водный транспорт</td>
<td>0,248</td>
<td>0,000</td>
<td>0,0004</td>
<td>0,0006</td>
<td>0,0000</td>
<td>0,249</td>
</tr>
<tr>
<td>1А4 Другие секторы</td>
<td>1675,811</td>
<td>0,000</td>
<td>86,7792</td>
<td>9,1822</td>
<td>0,0000</td>
<td>1771,772</td>
</tr>
<tr>
<td>1А4а Коммерческий/институционный</td>
<td>210,211</td>
<td>0,000</td>
<td>0,6000</td>
<td>0,8091</td>
<td>0,0000</td>
<td>211,620</td>
</tr>
<tr>
<td>1А4б Жилой</td>
<td>1262,056</td>
<td>0,000</td>
<td>85,7910</td>
<td>7,8570</td>
<td>0,0000</td>
<td>1355,704</td>
</tr>
<tr>
<td>1А4с Сельское хозяйство</td>
<td>203,544</td>
<td>0,000</td>
<td>0,3882</td>
<td>0,5162</td>
<td>0,0000</td>
<td>204,448</td>
</tr>
<tr>
<td>1В Летучие эмиссии от топлива</td>
<td>0,000</td>
<td>0,000</td>
<td>880,9791</td>
<td>0,0000</td>
<td>0,0000</td>
<td>880,979</td>
</tr>
<tr>
<td>1В1 Твердое топливо</td>
<td>0,000</td>
<td>0,000</td>
<td>27,8541</td>
<td>0,0000</td>
<td>0,0000</td>
<td>27,854</td>
</tr>
<tr>
<td>1В2 Нефть и природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>853,1250</td>
<td>0,0000</td>
<td>0,0000</td>
<td>853,125</td>
</tr>
<tr>
<td>1В2а Нефть</td>
<td>0,000</td>
<td>0,000</td>
<td>19,2570</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,257</td>
</tr>
<tr>
<td>1В2б Природный газ</td>
<td>0,000</td>
<td>0,000</td>
<td>833,8680</td>
<td>0,0000</td>
<td>0,0000</td>
<td>833,868</td>
</tr>
<tr>
<td>2 Промышленные процессы</td>
<td>383,109</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>28,1273</td>
<td>411,237</td>
</tr>
<tr>
<td>2А Минеральные вещества</td>
<td>381,042</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>381,042</td>
</tr>
<tr>
<td>2В Химическая промышленность</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>2С Производство металлов</td>
<td>2,067</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2,067</td>
</tr>
<tr>
<td>2Д Другое производство</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>(продовольствие и напитки)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Потребление галогеноуглеродов</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>и гексафторида серы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Г Взрывные работы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>3 Использование растворителей</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>4 Сельское хозяйство</td>
<td>0,000</td>
<td>0,000</td>
<td>2793,5460</td>
<td>1582,2679</td>
<td>0,0000</td>
<td>4375,814</td>
</tr>
<tr>
<td>4А Внутренняя ферmentation</td>
<td>0,000</td>
<td>0,000</td>
<td>2598,2040</td>
<td>0,0000</td>
<td>0,0000</td>
<td>2598,204</td>
</tr>
<tr>
<td>4В Системы хранения навоза</td>
<td>0,000</td>
<td>0,000</td>
<td>134,3599</td>
<td>0,0000</td>
<td>0,0000</td>
<td>134,360</td>
</tr>
<tr>
<td>4С Выращивание риса</td>
<td>0,000</td>
<td>0,000</td>
<td>55,3224</td>
<td>0,0000</td>
<td>0,0000</td>
<td>55,322</td>
</tr>
<tr>
<td>4D Сельскохозяйственные почвы</td>
<td>0,000</td>
<td>0,000</td>
<td>0,0000</td>
<td>1579,9150</td>
<td>0,0000</td>
<td>1579,915</td>
</tr>
<tr>
<td>4F Сжигание сельскохозяйственных остатков</td>
<td>0,000</td>
<td>0,000</td>
<td>56795</td>
<td>23529</td>
<td>0,0000</td>
<td>8032</td>
</tr>
<tr>
<td>5 «ЗИЗЛХ»</td>
<td>558,300</td>
<td>-804,097</td>
<td>1,9126</td>
<td>0,1646</td>
<td>0,0000</td>
<td>-243,720</td>
</tr>
<tr>
<td>5А Запасы древесной биомассы</td>
<td>0,000</td>
<td>-804,097</td>
<td>1,9126</td>
<td>0,1646</td>
<td>0,0000</td>
<td>-802,020</td>
</tr>
<tr>
<td>5В Эмиссия и сток из почв</td>
<td>558,300</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>558,300</td>
</tr>
<tr>
<td>6 Отходы</td>
<td>0,000</td>
<td>0,000</td>
<td>939,7181</td>
<td>94,4725</td>
<td>0,0000</td>
<td>1034,191</td>
</tr>
<tr>
<td>6А Захоронение ТБО</td>
<td>0,000</td>
<td>0,000</td>
<td>873,7240</td>
<td>0,0000</td>
<td>0,0000</td>
<td>873,724</td>
</tr>
<tr>
<td>6Б Очистка сточных вод</td>
<td>0,000</td>
<td>0,000</td>
<td>65,9941</td>
<td>94,4725</td>
<td>0,0000</td>
<td>160,467</td>
</tr>
<tr>
<td>6В1 Промышленные воды</td>
<td>0,000</td>
<td>0,000</td>
<td>19,8228</td>
<td>0,0000</td>
<td>0,0000</td>
<td>19,823</td>
</tr>
<tr>
<td>6В2 Бытовые и коммерческие воды</td>
<td>0,000</td>
<td>0,000</td>
<td>46,1713</td>
<td>94,4725</td>
<td>0,0000</td>
<td>140,644</td>
</tr>
</tbody>
</table>
Приложение 3. Оценка распределения приземной температуры (°С) и суммы годовых осадков (мм) по территории Кыргызской Республики

Приложение 3.1. Распределение приземной температуры для сценария RCP4.5 по ансамблю из 17 климатических моделей на 2030 г.

Приложение 3.2. Распределение приземной температуры для сценария RCP4.5 по ансамблю из 19 климатических моделей на 2070 г.
Приложение 3.3. Распределение приземной температуры для сценария RCP8.5 по ансамблю из 17 климатических моделей на 2030 г.

Приложение 3.4. Распределение приземной температуры для сценария RCP8.5 по ансамблю из 17 климатических моделей на 2070 г.
Приложение 3.5. Распределение суммы годовых осадков для сценария RCP4.5 по ансамблю из 17 климатических моделей на 2030 г.

Приложение 3.6. Распределение суммы годовых осадков для сценария RCP4.5 по ансамблю из 19 климатических моделей на 2070 г.
Приложение 3.7. Распределение суммы годовых осадков для сценария RCP8.5 по ансамблю из 17 климатических моделей на 2030 г.

Приложение 3.8. Распределение суммы годовых осадков для сценария RCP8.5 по ансамблю из 17 климатических моделей на 2070 г.
Приложение 4. Выделение ареалов Кыргызской Республики с различной увлажненностью при изменении климата

Приложение 4.1. Ареалы Кыргызской Республики с различной увлажненностью на 2000 г.

Приложение 4.2. Ареалы Кыргызской Республики с различной увлажненностью при повышении температуры на 1,5°C и неизменных осадках относительно уровня периода 1961 – 1990 гг.
Приложение 4.3. Ареалы Кыргызской Республики с различной увлажненностью при повышении температуры на 4,0°C и неизменных осадках относительно уровня периода 1961 – 1990 гг.
Приложение 5. Возможная эволюция ареалов климатического оптимума основных лесообразующих пород деревьев Кыргызской Республики

Приложение 5.1. Ареалы для арчи зеравшанской

Приложение 5.2. Ареалы для арчи полушаровидная
Приложение 5.3. Ареалы для арчи туркестанская

Приложение 5.4. Ареалы для ели и пихты
Приложение 5.5. Ареалы для ореха грецкого
Приложение 6. Поддержка международными организациями деятельности в сфере изменения климата в Кыргызской Республике

<table>
<thead>
<tr>
<th>№</th>
<th>Деятельность стратегии, программы, планы, проекты и др.</th>
<th>Сроки реализации</th>
<th>Бюджет и источники финансирования</th>
<th>Направления деятельности адаптация, сокращение выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.</th>
</tr>
</thead>
</table>
| 1 | Программа «Охрана окружающей среды для устойчивого развития» | 2011-2016 | $ 1 096 790 ПРООН | Повышение потенциала
Поддержка формирования политических и координационных рамок адаптации и снижения выбросов ПГ.
Повышение потенциала лиц, принимающих решения по адаптации к изменению климата и снижению выбросов ПГ.
Повышение информированности по вопросам адаптации к изменению климата и снижению выбросов ПГ.
3 компонента:
• Продвижение принципов экологического развития посредством снижения выбросов углерода, выступающих в качестве вектора устойчивого развития;
• Переход к экономике, устойчивой к изменению климата посредством разработки стратегий по адаптации к изменению климата;
• Устойчивое управление природными ресурсами с целью улучшения состояния окружающей среды и уровня жизни. |
| 2 | Развитие малых ГЭС | 2010-2015 | $ 950 000 ГЭФ $100 000 ПРООН | Сокращение выбросов ПГ
Повышение потенциала
Сокращение выбросов ПГ за счет развития использования малых ГЭС в Кыргызстане:
1. Формирование рациональной и комплексной, ориентированной на рынок, политики в сфере энергетики и нормативно-правовой базы для развития малых ГЭС.
2. Развитие потенциала для эффективного решения институциональных вопросов и оценки экономической и финансовой жизнеспособности проектов малых ГЭС.
3. Развитие потенциала по вопросам проведения оценки гидрологических ресурсов, проектирования, оценки и реализации проектов, и обеспечение TO.
4. Подготовка пред ТЭО и технических проектов для 3 МГЭС.
5. Документирование/распространение полученного проектного опыта/передового опыта/уроков для их применения по всей стране. |
| 3 | Управление климатическими рисками (УКР) в Кыргызстане | 2010-2015 | $ 600 000 ВСРР ПРООН | Адаптация к ИК
Повышение потенциала
1. Создать соответствующие условия для внедрения принципов УКР на системном, институциональном и индивидуальных уровнях.
2. Продемонстрировать климатически адаптированное управление пастбищами в Сусамирской долине.
3. Управление знаниями и извлеченные уроки для УКР. |
| 4 | Поддержка Системы охраняемых территорий с фокусом на глобально значимое биоразнообразие лесных горных экосистем Западного Тянь-Шаня и устойчивые средства существования | 2016-2020 | $ 4 500 000 ПРООН/ГЭФ | Сокращение выбросов ПГ
Повышение потенциала
Повысить устойчивость системы охраняемых территорий Кыргызстана с фокусом на глобально-значимые экосистемы Западного Тянь-Шаня и его глобальное биоразнообразие, находящееся под угрозой. |
<table>
<thead>
<tr>
<th>#</th>
<th>Деятельность стратегии, программы, планы, проекты и др.</th>
<th>Сроки реализации</th>
<th>Бюджет и источники финансирования</th>
<th>Направления деятельности адаптация, сокращение выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Деятельность стратегии, программы, планы, проекты и др.</td>
<td>2016-2018</td>
<td>$ 950 000 ПРООН/ГЭФ</td>
<td>Повышение потенциала</td>
</tr>
<tr>
<td></td>
<td>Сроки реализации</td>
<td></td>
<td></td>
<td>Ожидаемые результаты проекта:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. Совершенствование инструментов политики и законодательства для эффективного мониторинга и принятия решений.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Укрепление институционального потенциала.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Повышение осведомленности о ценах глобальной окружающей среды.</td>
</tr>
<tr>
<td></td>
<td>Программа ООН по окружающей среде (UNEP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Содействие Кыргызской республике в подготовке Третьего национального сообщения по РКИК ООН</td>
<td>2012-2015</td>
<td>$ 500 000 ЮНЕП/ГЭФ</td>
<td>Техническая помощь</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Основные компоненты проекта:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• инвентаризация парниковых газов за 2006-2010 гг. и переоценка временного ряда 1990-2005 гг.;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• обновление анализа потенциальных мер по сокращению увеличения эмиссий парниковых газов в Кыргызстане;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• оценка потенциального воздействия изменения климата в выбранных областях Кыргызстана и меры по адаптации;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• подготовка Третьего национального сообщения и его представление КС;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• усиление технического и институционального потенциала страны;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• повышение уровня информированности, усиление обмена информацией и сотрудничества среди заинтересованных сторон.</td>
</tr>
<tr>
<td>2</td>
<td>Подготовка Предполагаемого национально-определенного вклада (iINDC) в соглашение РКИК ООН 2015 года</td>
<td>2015</td>
<td>$ 138 000 ЮНЕП/ГЭФ</td>
<td>Техническая помощь</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Основные компоненты проекта:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• институциональный механизм для подготовки INDC к Соглашению РКИК ООН;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• подготовка INDC;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• предоставление технической помощи для национальных команд при подготовке INDC.</td>
</tr>
<tr>
<td>1</td>
<td>Устойчивое управление горными лесами и земельными ресурсами Кыргызской Республики в условиях изменения климата</td>
<td>2014-2018</td>
<td>$ 24 454 695</td>
<td>Сокращение выбросов ПГ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>из них, $ 5 454 545 ГЭФ, $ 2 400 000 FAO, $ 1 700 000 GIZ, $ 5 000 000 IFAD, $ 500 000 WFP, $ 1 716 850 Горное партнерство</td>
<td>Адаптация к ИК</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Повышение потенциала</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Компонент 2: увеличение запасов углерода в лесах засушливых районов в рамках инновационных практик управления и восстановления</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Компонент 3: продвижение и демонстрация сельского хозяйства в условиях изменения климата, включая пастбища как часть устойчивого управления земельными и водными ресурсами на засушливых территориях.</td>
</tr>
<tr>
<td>2</td>
<td>Глобальный проект «Национальный мониторинг лесов и информационная система программы обезлесения и деградации лесов (СВОД+)»</td>
<td>2013-2016</td>
<td>Правительство Германии $ 5 235 598 для 18 стран</td>
<td>Адаптация к ИК</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Повышение потенциала</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Обмен опытом, передача знаний и укрепление потенциала на национальном уровне с учетом требований СВОД+. Создание потенциала в 18 развивающихся странах в целях проведения мониторинга лесных ресурсов в рамках мероприятий программы СВОД+ (обезлесение, деградация лесов, запасов углерода в лесах, устойчивое управление лесами и увеличение запасов углерода в лесах).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Оказание поддержки странам в разработке дистанционного зондирования и геоинформационных систем (ГИС) как компонента государственной системы мониторинга лесов.</td>
</tr>
<tr>
<td>№</td>
<td>Деятельность стратегии, программы, планы, проекты и др.</td>
<td>Сроки реализации</td>
<td>Бюджет и источники финансирования</td>
<td>Направления деятельности адаптация, сокращение выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Анализ климатических рисков и продовольственной безопасности (пилотный анализ)</td>
<td>2014</td>
<td>ВПП ООН</td>
<td>Адаптация к ИК Повышение потенциала Исследование (Материал для использования при подготовке программы адаптационных действий в секторе сельского хозяйства).</td>
</tr>
<tr>
<td>2</td>
<td>Картирование продовольственной безопасности и уязвимости</td>
<td>2014</td>
<td>$ 293,927 Департамент международного развития Великобритании (DFID)</td>
<td>Повышение информированности Разработать и распространить Национальный атлас по продовольственной безопасности и уязвимости на национальном и субнациональном уровнях в целях повышения понимания целей продовольственной безопасности, пробелов, проблем и возможностей.</td>
</tr>
<tr>
<td>3</td>
<td>Анализ адаптационных проектов ВПП ООН и партнеров для документации лучших практик по адаптационным мерам</td>
<td>2014</td>
<td>$ 80,000 Шведское агентство развития (SIDA)</td>
<td>Адаптация к ИК Повышение потенциала Выявить лучшие практики по адаптации для репликации в других проектах.</td>
</tr>
<tr>
<td>4</td>
<td>Анализ влияния климатических рисков на продовольственную безопасность по областям на уровне домохозяйств</td>
<td>2014</td>
<td>Шведское агентство развития (SIDA)</td>
<td>Адаптация к ИК Повышение потенциала Выявить и понять связь изменения климата с продовольственной безопасностью на уровне областей и разработать рекомендации.</td>
</tr>
<tr>
<td>5</td>
<td>Построение устойчивости в сообществах посредством создания инфраструктурных ресурсов</td>
<td>2014-2017</td>
<td>На стадии разработки</td>
<td>Адаптация к ИК Повышение потенциала</td>
</tr>
</tbody>
</table>

Всемирная продовольственная программа ООН (UNWFP)

Международный фонд сельскохозяйственного развития (IFAD)

| № | Проект по развитию животноводства и рынка - 2 | 2014-2018 | $ 32,000,000, из них $ 21,000,000 грант $ 11,000,000 займ МФСР | Адаптация к ИК Повышение потенциала Повышение информированности Адаптационные мероприятия в сфере управления пастбищами и животноводства. |

Германское общество по международному сотрудничеству (GIZ)

| № | Региональная программа по устойчивому использованию природных ресурсов (Программа EC – FLERMONECA) | 2013-2016 | € 11,400,000 страны ЦА BMZ | Сокращение выбросов ПГ Адаптация к ИК Повышение потенциала Наращивание потенциала стейкхолдеров в области адаптации к ИК, сокращения выбросов ПГ посредством продвижения подходов устойчивого управления земельными ресурсами. Компоненты в КР:
1. Поддержка пилотирования реформы лесного сектора.
2. Поддержка реформы пастбищного сектора.
3. Поддержка реформы управления дикими животными.
4. Поддержка разработки системы интегрированного земельного планирования.
5. Поддержка адаптации и внедрения подхода EbA (Ecosystem-based-Adaptation).
6. Наращивание адаптации и внедрения подхода EbA (Ecosystem-based-Adaptation).
7. Наращивание потенциала структур, ответственных за координацию политики страны в области ИК |
<table>
<thead>
<tr>
<th>№</th>
<th>Деятельность стратегии, программы, планы, проекты и др.</th>
<th>Сроки реализации</th>
<th>Бюджет и источники финансирования</th>
<th>Направления деятельности</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Региональная программа «Снижение биоразнообразия и сокращение выбросов ПГ, мониторинг, повышение потенциала» посредством управления орехоплодными лесами и пастбищами местным сообществом</td>
<td>2014-2018</td>
<td>€ 5 000 000 Юг Кыргызстана</td>
<td>Повышение потенциала</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMZ</td>
<td>Адаптация к ИК</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• разработка и внедрение планов управления и их climate proofing с привлечением общин для устойчивого управления лесами и пастбищами;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• расширение существующих лесных территорий за счет новых, адаптированных к изменению климата лесов и смешанных насаждений для производства орехов и фруктов;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• введение инновационных методов по повышению значимости biological разнообразия и повышению эффективности при использовании ресурсов.</td>
</tr>
<tr>
<td>3</td>
<td>Региональная программа «Здравоохранение в Центральной Азии»</td>
<td>2009-2018</td>
<td>Общий бюджет $ 28 000 за период 2009-2018</td>
<td>Сокращение выбросов ПГ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>000 Кыргызстан, Таджикистан, Узбекистан</td>
<td>Адаптация к ИК</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>€ 13 000 BMZ</td>
<td>Обеспечение теплой водой родильных отделений, используя солнечную энергию путем установки солнечных вакуумных водонагревающих установок.</td>
</tr>
<tr>
<td>4</td>
<td>Программа "Трансграничное управление водными ресурсами в Центральной Азии"</td>
<td>2009-2017</td>
<td>€ 21 000 000 (ЦА страны)</td>
<td>Повышение потенциала</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Более € 4 000 000 German Federal Foreign Office</td>
<td>Адаптация к ИК</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Компоненты:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Содействие региональному институциональному сотрудничеству.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Совершенствование управления бассейнами трансграничных рек.</td>
</tr>
<tr>
<td>6</td>
<td>Проект "Фонд поддержки гражданского общества"</td>
<td>2013-2014</td>
<td>€ 3 211 884 сом GIZ</td>
<td>Повышение образования и информированности</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149 300 сом вклад SEEB</td>
<td>Создание объединения мастеров и дальнейшее их институциональное развитие через проведенное обучение тренингов, а также способствование в усилении и распространении услуг по энергоэффективному строительству в Иссык-Кульской области.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2014-2015</td>
<td>Продвижение и использование энергоэффективных технологий и строительства через развитие Объединения Мастеров.</td>
</tr>
<tr>
<td>7</td>
<td>Платформа-страничка на фейсбуке, созданная партнерами и участниками семинаров и мастерских по разным тематикам развития ГО, в том числе проблемам экологии, изменения климата</td>
<td>2013- по настоящее время</td>
<td>€ 3 660 – гонорар координатора сети</td>
<td>Повышение потенциала и информированности гражданского общества</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Информация о различных возможностях по повышению потенциала гражданского общества, включая возможности мобилизации ресурсов.</td>
</tr>
<tr>
<td>8</td>
<td>Электронная рассылка по различным возможностям для НПО в Центральной Азии, в том числе по тематике экологии и изменения климата</td>
<td>2014 - по настоящее время</td>
<td>Страны ЦА</td>
<td>Повышение потенциала и информированности гражданского общества</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Информация о различных возможностях по повышению потенциала гражданского общества, так и возможностях фандрейзинга.</td>
</tr>
<tr>
<td>№</td>
<td>Деятельность стратегии, программы, планы, проекты и др.</td>
<td>Сроки реализации</td>
<td>Бюджет и источники финансирования</td>
<td>Направления деятельности адаптация, сокращение выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 10 | Разработка концепции для сглаживания конфликтных ситуаций по поводу природных ресурсов через инициирование регионального совета для устойчивого управления природными ресурсами, встроенных в существующие административные структуры на уровне водораздела в Нарынской области | 2014-2015 | € 81 400 10% вклад Camp Alatoo | Повышение потенциала и информированности гражданского общества
Разработан подход для облегчения работы регионального совета по устойчивому управлению природными ресурсами на уровне водораздела.
Создан совет «Табийгат башкаруу» для разрешения конфликтов на уровне административных структур. |
| 11 | Развитие социальных механизмов местного сообщества по обеспечению открытости, прозрачности работы органов МСУ в сфере реализации проектов – Айыл Демилгеси. Проект охватывает села Иссык-Кульской, Нарынской, Ошской областей. | 2014-2015 | € 429 191 10% собственный вклад Айыл Демилгеси | Повышение потенциала и информированности гражданского сообщества, использование энергоэффективного строительства и технологий.
Проведение обучающих тренингов для населения, представителей органов местного самоуправления по устойчивости реализации проектов |
| 12 | Программа «Профтехобразование и содействие занятости» и Министерство труда КР | 2014-2016 | € 7 750 000 BMZ | Повышение образования и информированности
Подготовка квалифицированных кадров для профессиональных лиц, выполнению теплоизоляционных работ, по энергоэффективному строительству.
Внедрение тем энергоэффективности и энергосбережения в учебное содержание строительных колледжей. |
| 13 | Повышение уровня жизни через адаптацию к ИК в Кыргызстане и Таджикистане | 2014-2018 | € 6 000 000 BMZ | Повышение потенциала
Адаптация к ИК
Повысить уровень жизни и снизить уязвимость местного населения в выбранных сообществах через мер по адаптации.
Компоненты в КР:
1. Адаптация к ИК в сельскохозяйственном секторе.
2. Адаптация к ИК для уменьшения стихийных бедствий. |
| 14 | Развитие NAMA в пастбищном и животноводческом секторе в Кыргызстане | 2015 | € 20 000 BMUB | Сокращение выбросов ПГ
Повышение потенциала
Разработка и доведение до финансирования NAMA. |
| 15 | Региональная программа по адаптации к ИК на основе экосистемных услуг в высокогорных регионах ЦА | 2015-2019 | € 4 000 000 Таджикистан Кыргызстан Казахстан BMZ | Повышение потенциала
Наращивание потенциала стейкхолдеров в области адаптации, сокращение выбросов ПГ посредством продвижения подходов устойчивого управления земельными ресурсами.
Компоненты в КР:
- Пилотирование подхода EbA в одном водном бассейне;
- Наращивание потенциала для внедрения в нац. стратегии по адаптации;
- Установление связи с фондами по адаптации для финансирования проектов по устойчивому управлению земельными ресурсами. |
| № | Девятельность стратегии, программы, планы, проекты и др. | Сроки реализации | Бюджет и источники финансирования | Направления деятельности адаптации, сокращения выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Программа по развитию потенциала и реализации предполагаемых национально-определенных вкладов (INDCs) в секторе землепользования</td>
<td>8 процессе подтверждения 2015</td>
<td>€ 100 000 Таджикистан Кыргызстан BMUB</td>
<td>Повышение потенциала Нарощивание потенциала в области адаптации. • Семинары по развитию потенциала по международным обсуждениям INDC и требованиям по национальному планированию. • Обзор INDC политических обязательств и существующей имплементирующей деятельности в Кыргызстане, а также обзор стран группы CACAM/MLDC. • Параллельное мероприятие на КС21 в Париже для презентации планирования, связанного с INDC и имплементацией в CACAM/MLDC регионе с фокусом на Кыргызстан</td>
</tr>
<tr>
<td>1</td>
<td>Интегрированный подход к развитию климатически благоприятных экономик стран Центральной Азии (NAMA).</td>
<td>01.2012 - 05.2014</td>
<td>€ 982 000 на страны ЦА ФРГ BMU</td>
<td>Сокращение выбросов ПГ Повышение потенциала Кыргызстан: Разработана Программа модернизации малых угольных котельных КР.</td>
</tr>
<tr>
<td>1</td>
<td>Содействие повышению устойчивости водоснабжения в Кыргызстане к изменению климата</td>
<td>2014-2017</td>
<td>$ 5 000 000</td>
<td>Адаптация к ИК Повышение потенциала • Повышение устойчивости системы водоснабжения КР к изменению климата. • Развитие потенциала в области управления водными ресурсами. • Повышение надежности водоснабжения и долгосрочной устойчивости источников питьевой воды.</td>
</tr>
<tr>
<td>2</td>
<td>Программа финансирования устойчивой энергии в Кыргызстане - KyrSEFF</td>
<td>2013-2016</td>
<td>$ 20 000 000 ЕБРР Кредитные линии для партнерских банков и МФО € 6 800 000 EU IPCA Финансирование компонента тех. помощи и выплаты грантов заёмщикам</td>
<td>Адаптация, Сокращение выбросов ПГ Мониторинг, повышение потенциала, повышение информированности KyrSEFF – программа финансирования, предназначенная для жилищного и коммерческого секторов, сопровождаемая комплексом мер бесплатной технической помощи. Программа сочетает в себе специализированные кредитные продукты и инвестиционные гранты для клиентов в жилищных и промышленных секторах. KyrSEFF обеспечивает финансирование для поставщиков оборудования, планирующих расширение своего бизнеса.</td>
</tr>
</tbody>
</table>
| 1 | Проект по интегрированному управлению лесными экосистемами | 2016-2021 | $ 15 000 000 ВБ $ 4 110 000 ГЭФ | Адаптация к ИК Повышение потенциала Повышение информированности Сокращение выбросов ПГ Ключевые результаты (на стадии обсуждения): • Площадь земель, где практики устойчивого управления земельными ресурсами адаптированы в результате реализации проекта. • Площадь лесов, включенных в планы управления. • Площадь земель, восстановленная или облесенная. • Обученные лесопользователи. • Государственные учреждения, которым оказана поддержка по повышению потенциала. • Поддержанные реформы в лесной политике, законодательстве и нормативно-правовой сфере.
<table>
<thead>
<tr>
<th>№</th>
<th>Деятельность стратегии, программы, планы, проекты и др.</th>
<th>Сроки реализации</th>
<th>Бюджет и источники финансирования</th>
<th>Направления деятельности</th>
<th>Европейский Союз (EC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Региональная программа по окружающей среде для Центральной Азии (EURECA)</td>
<td>2012-2015</td>
<td>€ 9 200 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 1: Региональная координация и поддержка для повышения уровня регионального сотрудничества между Евросоюзом и Центральной Азией в области охраны окружающей среды и водных ресурсов (WECOOP)</td>
<td>2012-2014</td>
<td>€ 1 496 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 2: Управление лесами и биоразнообразием, включая экологический мониторинг: FLERMONECA</td>
<td>2013–2015</td>
<td>€ 4 800 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 3: Распространение информации и гласность</td>
<td>2012-2014</td>
<td>€ 900 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Компонент 4: Повышение информированности в области охраны окружающей среды: AWARE</td>
<td>2012-2015</td>
<td>€ 900 000 ЭС</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Европейский Союз (ЕС)</td>
<td>2012-2015</td>
<td>€ 9 200 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 1: Региональная координация и поддержка для повышения уровня регионального сотрудничества между Евросоюзом и Центральной Азией в области охраны окружающей среды и водных ресурсов (WECOOP)</td>
<td>2012-2014</td>
<td>€ 1 496 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 2: Управление лесами и биоразнообразием, включая экологический мониторинг: FLERMONECA</td>
<td>2013–2015</td>
<td>€ 4 800 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 3: Распространение информации и гласность</td>
<td>2012-2014</td>
<td>€ 900 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Компонент 4: Повышение информированности в области охраны окружающей среды: AWARE</td>
<td>2012-2015</td>
<td>€ 900 000 ЭС</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Европейский Союз (ЕС)</td>
<td>2012-2015</td>
<td>€ 9 200 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 1: Региональная координация и поддержка для повышения уровня регионального сотрудничества между Евросоюзом и Центральной Азией в области охраны окружающей среды и водных ресурсов (WECOOP)</td>
<td>2012-2014</td>
<td>€ 1 496 000 ЭС</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 2: Управление лесами и биоразнообразием, включая экологический мониторинг: FLERMONECA</td>
<td>2013–2015</td>
<td>€ 4 800 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение потенциала</td>
<td>Повышение информированности</td>
</tr>
<tr>
<td></td>
<td>Компонент 3: Распространение информации и гласность</td>
<td>2012-2014</td>
<td>€ 900 000 Казахстан Кыргызстан Таджикистан Туркменистан Узбекистан</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Компонент 4: Повышение информированности в области охраны окружающей среды: AWARE</td>
<td>2012-2015</td>
<td>€ 900 000 ЭС</td>
<td>Повышение информированности</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Деятельность стратегии, программы, планы, проекты и др.</td>
<td>Сроки реализации</td>
<td>Бюджет и источники финансирования</td>
<td>Направления деятельности адаптация, сокращение выбросов ПГ, мониторинг, повышение потенциала, повышение информированности, др.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Региональная программа по устойчивой энергетике для Центральной Азии</td>
<td>2014-2016</td>
<td>€ 6 000 000 - техническая помощь € 2 000 000 - демонстрационные проекты и мероприятия по повышению осведомленности</td>
<td>Повышение потенциала Создание необходимых правовых и институциональных механизмов, способствующих внедрению возобновляемых источников энергии, а также повышению энергоэффективности на национальном уровне.</td>
<td></td>
</tr>
</tbody>
</table>
ТРЕТЬЕ НАЦИОНАЛЬНОЕ СООБЩЕНИЕ КЫРГЫЗСКОЙ РЕСПУБЛИКИ ПО РАМОЧНОЙ КОНВЕНЦИИ ООН ОБ ИЗМЕНЕНИИ КЛИМАТА БИШКЕК-2016