

Climate Policy Perspectives and Energy Transitions in the Middle East and North Africa (MENA) Region: Setting the Scene

UNFCCC-ILO Event; MENA Climate Week- Dubai

Dr. Manal Shehabi

Academic Visitor, St. Antony's College, University of Oxford Founding Director, SHEER Research & Advisory Senior Research Fellow, Oxford Institute for Energy Studies Research Associate, Economic Research Forum

March 28, 2028

Suggested Citation:

Shehabi, M. (2022, March). *Climate Policy Perspectives and Energy Transitions in the Middle East and North Africa (MENA) Region: Setting the Scene*. UNFCCC-ILO Event; MENA Climate Week- Dubai, the UAE.

Disclaimer:

This contents of this presentation are the author's sole responsibility.

I. Introduction: Energy in the MENA Region

High & Rising Domestic Consumption/Capita, Population Growth, & Energy Poverty

Source: World Bank data.

Historic Change Domestic Consumption/\$1000 of GDP (2001-2018) and Rising with Population Growth

Source: Middle East Institute (2021); World Bank's World Development Indicators data.

High & Rising Domestic Emissions/Capita & the Energy Mix

Source: Shehabi (2021) based on World Bank (2014), World Development Indicators.

- Over 90% of the region's energy mix is from Fossil Fuels
- Exceptions <u>include</u>:
 - Egypt
 - Jordan
 - Morocco
 - UAE
- MENA exports ~45% of oil globally & and ~25% of gas exports
- Challenges of ensuring sufficient energy production that is economically and environmentally sustainable

CONT NUMBER OF STREET S

With some of the highest economic dependence on oil and gas exports

Source: Shehabi (2021)

Note: MtCO2eq= Million tonnes of carbon dioxide equivalent. *Source:* Shehabi (2021). Author's representation based on data from the UNFCCC (2018).

MENA Region at the Heart of the Global Energy Transitions with The World's Lowest Levelized Costs of Renewable Electricity

Global normal irradiation map

Source: World Bank (2019), Global Solar Atlas (n.d.).

MENA Region at the Heart of the Global Energy Transitions with The World's Lowest Levelized Costs of Renewable Electricity

Mean wind speeds at heights of 50 meters

Source: Global Wind Atlas (2022)

II. State of Energy Transitions in MENA

Energy Transitions in MENA Post COP26 & Preparing for COP27 Egypt and COP28 UAE

- Existing trends of development of large utility-scale renewable projects, with reducing costs and technology advancements
- > Net-Zero Producers Forum April 2021, with Saudi Arabia & Qatar
- > Net zero pledges, October-November 2021
 - UAE 2050
 - Turkey 2035
 - Saudi Arabia 2060; Green Deal
 - Bahrain 2060
- Intended Nationally Determined Contribution (INDC) submissions
 - Basis for cutting GHGs is the diversification of the domestic economy and enhancing carbon capture mechanisms, whilst continuing or increasing current levels of oil exports.
- Climate finance & \$100billion pledge- uncertain

Trajectory in MENA post COP26: Ongoing impacts from global climate change, adaptation and response measures

Both domestic and external dynamics SHEHABI- MENACW-UNFCCC ILO CLIMATE POLICY & ET MENA- MARCH 2022

Historically Slow but Accelerating Renewable Energy in MENA: Variations Across Hydrocarbon Exporters & Importers

Installed renewable energy capacity compared with national targets in hydrocarbon exporters Update to graph: <u>UAE at 7% by 2021;</u>

Country	PV (MW)	CSP (MW)	Wind (MW)	biomass and waste (MW)	Total RE (MW)	share of RE in total electricity capacity (%)	National RE targets
Bahrain	5	0	1	0	6	0.1%	5% by 2025 and 10% by 2035 of electricity generation
Kuwait	19	50	10	0	79	0.4%	15% by 2030 of electricity generation
Qatar	8	0	0	0	8	0.1%	200-500 MW of solar by 2020
Oman	5	0	0	38	43	0.4%	10% by 2025 of electricity generation
Saudi Arabia	89	50	3	0	142	0.2%	3.45GW by 2020; 9.56GW by 2023 (10% of cap), and 30% of electricity generation from renewables, nuclear, and others
UAE	487	100	1	1	589	2.0%	Abu Dhabi 7% of capacity by 202; Dubai 7% of electricity generation by 2020; Ras al-Khaimah 20-30% clean energy by 2040; total UAE 27% clean energy by 2021, 44% of capacity by 2050.

Notes: 2018 data for Kuwait and the UAE: 2017 data for the remaining countries. RE= Renewable Energy; PV= photo voltaic: CSP= concentrated solar power; MW = megawatt.

Source: Author from IRENA (2018, 2019), and national official documents of Visions and development plans in each GCC country.

Iraq 33% by 2030; Iran 10% by 2025; Libya 22% by 2030

SHEHABI- MENACW-UNFCCC ILO CLIMATE POLICY & ET MENA- MARCH 2022

Renewable electricity generated in hydrocarbon importers

- Egypt
 - 20% of power generation by 2022, target of 42% by 2035
- Jordan
 - Close to 15%, target of 35% by 2030
- Morocco
 - Installed 34% of renewable energy, targets of 42% by 2020, 52% by 2050
- Tunisia
 - 8% in 2019,

target of 30% by 2030 ¹²

Energy Transition Initiatives & Opportunities

Initiatives

- Renewable energy (mostly solar PV, but also CSP & wind)
- Nuclear power
- Carbon markets
- Carbon Capture, Utilization and Storage (CCUS)
- Circular carbon economy
- Hydrogen

Source: Shehabi (2021)

- The CCE is an integrated and inclusive approach to transitioning toward more **comprehensive**, resilient, sustainable, and climatefriendly energy systems that support and enable sustainable development. CCE enables countries to take advantage of **all** technologies, forms of energy, and mitigation opportunities according to resource availability, economics, and national circumstances.
- The G20 (2020) endorsed CCE be incorporated in various decarbonization pathways during the energy transition.

Reduce Reuse

Source: Circular Carbon Economy Guide (2020).

III. Just Transition, or Just Energy Transition?

Limited environmental focus in economic diversification plans
Slow renewables when energy transition is export-motivated
Limited CCUS & technology

4: Commercial and economic profitability, including for carbon

- 5: Weak regulatory environment
- 6: Limited water resources challenges
- 7: Affordability for consumers

Source: Author's representation based on aggregated data from the IEA (2021a). Shehabi (2021).

Kare Targets Achievable? Challenges...

8: Loss of efficiency & weakened resilience in private sector structure

Figure 5: Short run effects of terms of trade shocks under current economic policies and regulated oligopoly

Source: Shehabi (2020)

9: Ongoing effects of climate change, including coastal & water challenges; ensuing health, fiscal, & economic effects *Gulf; Nile Delta; fresh water*

Source: Ibrahim Ramadan/Anadolu Agency/Getty Images

10: Fiscal constraints for funding energy transitions along with subsidies and socio-economic development

Fiscal Constraints and Just Transitions Implications of MENA's Energy Transitions

Oil demand peaks in each scenario, but the level and timing vary; natural gas increases to 2025 with sharp divergences thereafter; coal falls in all scenarios

Note: 1 EJ is around 0.5 mb/d of oil, 29 bcm of natural gas or 34 Mtce of coal.

- STEPS= Stated Policies Scenario
- APS = Announced Pledges Scenario
- *NZE*= *Net zero emissions*
- Source: International Energy Agency (IEA) World Energy Outlook (2021)

- Expected future decline of hydrocarbon export
- Current environment of high energy costs
 - In hydrocarbon exporters → rising oil and gas upstream investments and capex
 - In hydrocarbon importers → rising energy imports bill and costs
- Fiscal constraints for energy transition & Just Transition
 - Technology
 - Infrastructure
 - Labor:
 - Energy industries are capital intensive, but constraints for funding government budgets for public wage bill, public sector jobs, & non-hydrocarbon sector growth
 - New green industries
- Households: Affordability with subsidies vs. fiscal sustainability

- Successful decarbonization depends on technology, governmental regulation, carbon pricing, funding, demand, and costs
- A transition towards a sustainable, low carbon and equitable energy system that is fair for the environment but is also fair and inclusive, creates decent work opportunities, and ensures energy access
- > How can this be applied to the MENA region?
- Achieving just transition requires understanding effects of the energy transition on MENA economies and maximizing positives and minimizing negatives of these impacts.

Thank you! Dr. Manal Shehabi @ManalShehabi manal-shehabi <u>www.manalshehabi.com</u> <u>Manal.shehabi@sheer-ra.com</u> <u>Manal.shehabi@sant.ox.ac.uk</u>

