Global Change Biology

INVITED RESEARCH REVIEW

WILEY

The impact of interventions in the global land and agri-food sectors on Nature's Contributions to People and the UN Sustainable Development Goals

Pamela McElwee¹ ^[D] | Katherine Calvin² | Donovan Campbell³ | Francesco Cherubini⁴ | Giacomo Grassi⁵ | Vladimir Korotkov⁶ | Anh Le Hoang⁷ | Shuaib Lwasa⁸ | Johnson Nkem⁹ | Ephraim Nkonya¹⁰ | Nobuko Saigusa¹¹ | Jean-Francois Soussana¹² | Miguel Angel Taboada¹³ | Frances Manning¹⁴ | Dorothy Nampanzira¹⁵ | Pete Smith¹⁴ ^[D]

- ⁴Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- ⁵European Commission, Joint Research Centre, Ispra, Italy
- ⁶Yu. A. Izrael Institute of Global Climate and Ecology, Moscow, Russia
- ⁷Ministry of Agriculture and Rural Development (MARD), Hanoi, Vietnam
- ⁸Department of Geography, Makerere University, Kampala, Uganda
- ⁹United Nations Economic Commission for Africa, Addis Ababa, Ethiopia
- ¹⁰International Food Policy Research Institute (IFPRI), Washington, DC, USA
- ¹¹Centre for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
- ¹²French National Institute for Agricultural, Environment and Food Research (INRA), Paris Cedex 07, France
- ¹³Natural Resources Research Centre (CIRN), Institute of Soils, National Agricultural Technology Institute (INTA), Buenos Aires, Argentina
- ¹⁴Institute of Biological & Environmental Sciences, University of Aberdeen, Aberdeen, UK

¹⁵Department of Livestock and Industrial Resources, Makerere University, Kampala, Uganda

Correspondence

Pamela McElwee, Department of Human Ecology, Rutgers University, New Brunswick, NJ 08840, USA. Email: pamela.mcelwee@rutgers.edu

Funding information

School of Environmental and Biological Sciences, Rutgers University; Norwegian Research Council; CGIAR Research Program on Water, Land, and Ecosystems

Abstract

Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co-benefits with and trade-offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade-offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced

¹Department of Human Ecology, Rutgers University, New Brunswick, NJ, USA

²Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, USA

³The University of the West Indies, Mona Campus, Kingston, Jamaica

landslides and hazards, reduced pollution, reduced post-harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co-benefits and trade-offs of different policy approaches can help decision-makers choose the more effective, or at the very minimum, more benign interventions for implementation.

KEYWORDS

adaptation, ecosystem services, food security, land degradation, mitigation, Nature's Contribution to People, sustainable development, sustainable land management, trade-offs

INTRODUCTION 1

The world currently faces a series of interrelated problems: climate change, loss of biodiversity and ecosystems, land degradation, food insecurity, and poverty, highlighting the need for transformative solutions that cut across these challenges (IPBES, 2018, 2019; Rockström et al., 2009; UN Environment, 2019). Changes in how land is used could tackle some of these problems and co-deliver multiple benefits, such as reduced greenhouse gas emissions, increased adaptive capacity to current and future climate changes, improved land health and quality, and improved access to and productivity of agriculture (Foley et al., 2011; Kanter et al., 2018). However, a major dilemma is how to achieve these multiple benefits without undue adverse side effects on other societal goals or on natural ecosystems (Guerry et al., 2015; Meyfroidt, 2018; Mirzabaev et al., 2015).

Numerous potential options have been suggested to address these land challenges, including various practices identified within sustainable land management (SLM; Reed et al., 2015; Sanz et al., 2017). However, deciding which interventions to pursue requires understanding their relative co-benefits with and trade-offs against different social and environmental goals (Sachs et al., 2019), and has been difficult without direct comparisons across a range of possible actions (lyer et al., 2018). While some interactions can be included in integrated assessment models (van Soest et al., 2019), others are less easily quantified, and need to be understood through different methods, such as expert assessments or literature reviews (Singh et al., 2018).

This study examines 40 of the response options identified in chapter 6 of the recent Intergovernmental Panel on Climate Change (IPCC) Special Report on Climate Change and Land (IPCC, 2019). These options encompassed different land management, value chain, or risk management practices commonly proposed to meet a diverse set of land challenges, among them mitigation, adaptation, degradation, and food security (Smith et al., 2020). These 40 options were assessed against their implications for nature, including biodiversity and water, and against their impacts on people, such as poverty reduction efforts or gender equality measures. We do

so by evaluating the 40 practices against the 17 UN Sustainable Development Goals (SDGs), as well as 18 Nature's Contributions to People (NCPs), a new term used by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019), and defined as "all the contributions, both positive and negative, of living nature (i.e., diversity of organisms, ecosystems, and their associated ecological and evolutionary processes) to the quality of life of people" (Díaz et al., 2018; Table 1). NCPs and ecosystem services are related, but not precisely parallel concepts (Kadykalo et al., 2019). IPBES authors have stressed NCPs are a particular way to think of ecosystem services, rather than a replacement for the term. Rather, the concept of NCP was proposed to be a broader umbrella to engage a wider range of scholarship, particularly from the social sciences and humanities, and a larger range of values around ecosystems (Pascual et al., 2017). Both SDGs and NCPs reflect attention to the interconnected relationships between people and ecosystems. The importance of assessing a range of response options and policies against the SDGs in particular was emphasized in the IPCC Special Report on the Impacts of Global Warming of 1.5°C (Roy et al., 2018). For example, negative effects from mitigation options across energy supply and demand and land use were particularly strong for SDG 1 and 2 (zero poverty and no hunger) and SDG 6 and 15 (clean water and sanitation and life on land), while positive effects were noted on SDG 3 (good health) and SDG 7 (affordable and clean energy). However, it is insufficient to judge progress against SDGs alone, as many of the planetary support systems that make sustainable development possible might be degraded through economic development; hence, there is a need for indicators of ecosystem change and health well beyond the SDGs specifically focused on ecosystems (e.g., SDG 14 and 15; Griggs et al., 2013). NCPs thus can be a useful proxy for both impacts on nature and benefits to humans (Ellis, Pascual, & Mertz, 2019).

Response options to land challenges may lead to unexpected adverse side effects or potential co-benefits with societal goals like SDGs and NCPs (Timko et al., 2018). In defining co-benefits and adverse side effects, we use the IPCC definitions: co-benefits are "positive effects that a policy or measure aimed at one objective might

TABLE 1 Explanation of Nature's Contributions to People (NCPs) and Sustainable Development Goals (SDGs)

SDGs	Explanation (UN, 2018)
SDG 1 No poverty	End poverty in all its forms everywhere
SDG 2 Zero hunger	End hunger, achieve food security and improved nutrition, and promote sustainable agriculture
SDG 3 Good health and well-being	Ensure healthy lives and promote well-being for all at all ages
SDG 4 Quality education	Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
SDG 5 Gender equity	Achieve gender equality and empower all women and girls
SDG 6 Clean water and sanitation	Ensure availability and sustainable management of water and sanitation for all
SDG 7 Affordable and clean energy	Ensure access to affordable, reliable, sustainable, and modern energy for all
SDG 8 Decent work and economic growth	Promote sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all
SDG 9 Industry, innovation, and infrastructure	Build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation
SDG 10 Reduced inequalities	Reduce inequality within and among countries
SDG 11 Sustainable cities and communities	Make cities and human settlements inclusive, safe, resilient, and sustainable
SDG 12 Responsible production and consumption	Ensure sustainable consumption and production patterns
SDG 13 Climate action	Take urgent action to combat climate change and its impacts
SDG 14 Life below water	Conserve and sustainably use the oceans, seas, and marine resources for sustainable development
SDG 15 Life on land	Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss
SDG 16 Peace, justice, and strong institutions	Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable, and inclusive institutions at all levels
SDG 17 Partnerships for the goals	Strengthen the means of implementation and revitalize the global partnership for sustainable development
NCPs	Explanation (IPBES, 2019)
NCP 1 Habitat creation and maintenance	The formation and continued production, by ecosystems, of ecological conditions necessary or favorable for living beings important to humans
NCP 2 Pollination and dispersal of seeds and other propagules	Facilitation by animals of movement of pollen among flowers, and dispersal of seeds, larvae, or spores of organisms beneficial or harmful to humans
NCP 3 Regulation of air quality	Regulation (by impediment or facilitation) by ecosystems, of atmospheric gasses; filtration, fixation, degradation, or storage of pollutants
NCP 4 Regulation of climate	Climate regulation by ecosystems (including regulation of global warming) through effects on emissions of greenhouse gases, biophysical feedbacks, biogenic volatile organic compounds, and aerosols
NCP 5 Regulation of ocean acidification	Regulation, by photosynthetic organisms of atmospheric CO2 concentrations and so seawater \ensuremath{pH}
NCP 6 Regulation of freshwater quantity, flow, and timing	Regulation, by ecosystems, of the quantity, location, and timing of the flow of surface and groundwater
NCP 7 Regulation of freshwater and coastal water quality	Regulation—through filtration of particles, pathogens, excess nutrients, and other chemicals—by ecosystems of water quality
NCP 8 Formation, protection, and decontamination of soils and sediments	Formation and long-term maintenance of soils including sediment retention and erosion prevention, maintenance of soil fertility, and degradation or storage of pollutants
NCP 9 Regulation of hazards and extreme events	Amelioration, by ecosystems, of the impacts of hazards; reduction of hazards; change in hazard frequency
NCP 10 Regulation of organisms detrimental to humans	Regulation, by ecosystems or organisms, of pests, pathogens, predators, competitors, parasites, and potentially harmful organisms
NCP 11 Energy	Production of biomass-based fuels, such as biofuel crops, animal waste, fuelwood, and agricultural residue

(Continues)

TABLE 1 (Continued)

NCPs	Explanation (IPBES, 2019)
NCP 12 Food and feed	Production of food from wild, managed, or domesticated organisms on land and in the ocean; production of feed
NCP 13 Materials and assistance	Production of materials derived from organisms in cultivated or wild ecosystems and direct use of living organisms for decoration, company, transport, and labor
NCP 14 Medicinal, biochemical, and genetic resources	Production of materials derived from organisms for medicinal purposes; production of genes and genetic information
NCP 15 Learning and inspiration	Opportunities for developing capabilities to prosper through education, knowledge acquisition, and inspiration for art and technological design (e.g., biomimicry)
NCP 16 Physical and psychological experiences	Opportunities for physically and psychologically beneficial activities, healing, relaxation, recreation, leisure, and aesthetic enjoyment based on close contact with nature
NCP 17 Supporting identities	The basis for religious, spiritual, and social-cohesion experiences; sense of place, purpose, belonging, rootedness or connectedness, associated with different entities of the living world; narratives and myths, rituals, and celebrations; satisfaction derived from knowing that a particular landscape, seascape, habitat, or species exist
NCP 18 Maintenance of options	Capacity of ecosystems, habitats, species, or genotypes to keep human options open in order to support a later good quality of life

have on other objectives, thereby increasing the total benefits for society or the environment" while adverse side effects are "negative effects that a policy or measure aimed at one objective might have on other objectives, without yet evaluating the net effect on overall social welfare" (IPCC, 2019). Both co-benefits and adverse side effects can be biophysical and/or socioeconomic in nature and "are often subject to uncertainty and depend on, among others, local circumstances and implementation practices" (IPCC, 2019). The co-benefits associated with some response options may increase their cost-effectiveness or attractiveness, while adverse side effects might discourage the use of some options, or at the very least, require identification of ways to manage the trade-offs (Bryan et al., 2016). However, managing trade-offs and encouraging co-benefits depend on well-implemented and coordinated activities in appropriate environmental contexts, often requiring institutional and enabling conditions for success and participation of multiple stakeholders (McShane et al., 2011; Reed, Barlow, Carmenta, van Vianen, & Sunderland, 2019). Therefore, it is important to identify these interactions early in decision-making processes, such as through reviews similar to the one presented here.

MATERIALS AND METHODS 2

Practices available to address the land challenges of climate change mitigation, climate change adaptation, desertification and land degradation, and food security were collated from chapters 2 to 5 of the IPCC Special Report on Climate Change and Land (IPCC, 2019). These practices and options were grouped to be broadly applicable in a global assessment, and details of how each practice category was defined and which specific elements the practice entails are found in Smith et al. (2020), table 1; for example, "improved cropland management" includes interventions related to crop improvement,

nutrient management, tillage, and water management. Once these categories of practices were assigned and defined, an extensive literature review was conducted to gather evidence on the intersections between each of these 40 practices and the 17 SDGs and 18 NCPs. Literature searches were conducted on Web of Science and Google Scholar to provide a sampling of relevant papers and key interactions; given that we had 1,400 interactions, we did not do a systematic review for each, but rather focused on the most relevant research papers returned by our searches, based on expert assessment.

Each response option was searched with keywords relating to the NCP and SDG in question (see Table 2 for examples). We used open-ended searches rather than ones with detailed SDG and NCP language in order to create a large literature pool (e.g., search terms included "gender" rather than "Sustainable Development Goal 5" or "gender equity"). Because much of the literature does not yet use the term NCP, we also used terminology related to "ecosystem services" in searches and acknowledge that some of the diverse concepts informing NCPs are not yet robust in the literature. Where our initial search did not return key terms in title or abstract, we extended searches to include reference to the body of the paper, to ensure a wide range of papers to initially review for each interaction. Papers varied in terms of scale (from global assessments to local case studies) as well as type of data collected and methods used, given that we drew from a very large pool of scholarly literature incorporating both the natural and social sciences. Authors then applied their expert judgment to review the most relevant papers (e.g., focusing on most cited, those with the widest synthesis such as meta-analyses or global scope, and prestige of outlets). These papers were then read carefully to understand the type and intensity of interactions between response options and the NCP or SDG. Key papers and interactions were then entered into a spreadsheet with reviews conducted individually per cell (Tables S1-S6).

 TABLE 2
 Examples of search terms and literature found during review

Examples of types of Description of interaction in Cell Search terms literature Supplementary Material Basis for expert assessment Agroforestry & SDG "agroforestry" + Meta-analysis for Africa Increased use of Literature mostly regional 5 (gender equity) "gender" or "women*" (Kiptot, Franzel, & agroforestry can benefit (Africa) but high agreement Degrande, 2014) female farmers as it in studies: however. shows Field studies. East Africa requires low overhead that women have positive (Gladwin, Peterson, & (Gladwin et al., 2002), but benefits on agroforestry Uttaro, 2002) attention must be paid to rather than agroforestry land tenure issues (Kiptot having benefits on gender & Franzel. 2012: Kiptot equity. Final assessment: et al., 2014) Medium positive impacts **Risk sharing** "risk sharing" or National studies of United Commercial crop insurance Literature all from the instruments & NCP "insurance" or States based on economic often encourages habitat United States but generally 1 (habitat creation) "risk spreading" modeling (Goodwin & conversion; Wright and in agreement that crop + "environmental Smith, 2003; Claassen Wimberly (2013) found insurance has small negative impact" or "ecosystem et al., 2011) half million ha decline in impact on habitat due impact" Regional (upper Midwest) grasslands in the Upper to association with crop data from land cover Midwest of the US expansion. Final assessment: study (Wright & 2006-2010 due to crop Small negative impacts Wimberly, 2013) conversion driven by higher prices and access to insurance. Reduced "Reduced General literature review Localized hazards like Literature mostly about impact of hazards on deforestation and deforestation" or (lactel et al. 2017) drought, floods, and dust degradation & "REDD" or "forest Locatelli et al., 2015) storms can be ameliorated diverse natural forests NCP 9 (regulation maintenance" + Field experiments (Cooperrather than direct effect by diverse tree cover, which "hazard*" or "extreme Ellis, Foster, Carlton, & of REDD on hazards per of hazards and would be encouraged by extreme events) event*" Lezberg, 1999) reduced deforestation se; reducing deforestation (Cooper-Ellis et al., 1999; of forest areas leading to Jactel et al., 2017; Locatelli improvement in hazard et al., 2015) regulation is implied benefit. Also is not a primary goal for most REDD programs. Final assessment: Small positive impacts Improved food "food processing" or Field-based case studies Improving storage and Literature has good "food retail"" or "food (Sadler, Gilliland, & processing and processing can reduce global coverage but little retailing & SDG 2 chain*" + "hunger" or Arku, 2013; Stathers, food waste and health quantification of the direct (zero hunger) "malnutrition" Lamboll, & Myumi, 2013) risks associated with poor impacts of improved Systematic literature management practices processing/retailing review (Hollis-Hansen, (Bradford et al., 2018; on hunger specifically. Vermont, Zafron, James & James, 2010; Increases in food availability Seidman, & Leone, 2019) Stathers et al., 2013; Tirado (which indirectly may General literature reviews et al., 2010). Improved reduce hunger) is variable in multiple disciplines food processing and supply most assessed in literature (Bradford et al., 2018; chains can contribute (e.g., Yang & Hanson, 2009), James & James, 2010; along with the importance to more food reaching Keding, Schneider, consumers and improved of processing to avoid & Jordan, 2013; nutrition (Hollis-Hansen contamination of food Tirado, Clarke, Jaykus, et al., 2019; Keding chains (which can lead to McQuatters-Gollop, & al., 2013; Vermeulen food deficiencies, e.g., Tirado et al., 2010). Final Frank, 2010; Vermeulen, et al., 2012) Campbell, Campbell, & assessment: Medium Ingram, 2012) positive impacts

Given the complications involved in multiple subgoals of some SDGs, as well as inconsistent definitions across some NCPs, our analysis should not be seen as reflecting all possible interactions and reviewing every possible publication, but rather provides an initial broad brush of which interactions appeared most prominent

or common in the reviewed literature. The interactions emerging from the literature reviews were then color-coded along a gradient as to small-medium-large positive or negative impact on the NCP/ SDG from each specific practice, based on expert evaluation of the literature, such as strength and amount of evidence. Since many

6

-WILEY- Global Change Biology

interactions could not be quantified, the small to large gradient is meant to be a relative assessment only. Where no interactions appeared in the literature, the cell was left blank.

Some of the SDG and NCP categories assessed may appear similar to each other, such as SDG 13 on "climate action" and NCP 4 on "regulation of climate." However, SDG 13 includes targets for both mitigation and adaptation, so options were weighed by whether they were useful for both. The NCP "regulation of climate" does not include an adaptation component, and refers to specifically to "positive or negative effects on emissions of greenhouse gases and positive or negative effects on biophysical feedbacks from vegetation cover to atmosphere" (Díaz et al., 2018). Thus, we evaluated only the relationship between response options and ecosystem impacts on local to global climate for this category.

Furthermore, in assessing both categories of NCPs and SDGs, we were cognizant that the two are different in both kind and in measurement. NCPs refer to processes, goods, and benefits that nature may provide to humans, while SDGs are goals to keep track of the progress expected by UN Parties towards economic, social, and environmental sustainability (Butchart, Miloslavich, Reyers, & Subramanian, 2019). In both cases, there are not always clear measurement standards that are widely agreed upon to determine successful provisioning of NCPs or achievement of some of the SDGs (Hák, Janoušková, & Moldan, 2016; McElwee, 2017). Thus, our reviews are meant to provide a relative sense of the presence or absence of co-benefits and trade-offs, as more detailed interactions were not possible in a review of this type.

For the evaluation process for NCP, we also considered that NCP are about ecosystems; therefore, options which may have overall positive effects, but which are *not* ecosystem based, are not included. For example, improved food transport and distribution could reduce ground-level ozone and thus improve air quality, but this is not an ecosystem-based NCP. Similarly, energy efficiency measures would reduce energy demand, but the "energy" NCP refers specifically to biomass-based fuel provisioning. This necessarily means that the land management options evaluated have more direct NCP effects than the value chain or governance options, which are less ecosystem focused.

In evaluating NCP, we have also tried to avoid "indirect" effects that is a response option might increase household income, which then could be invested in habitat-saving actions, or dietary change may lead to land sparing, which has benefits for soils. These are *indirect* impacts on an NCP. (The exception is NCP 6, regulation of ocean acidification, which is by itself an indirect impact. Therefore, any action that directly increases the amount of sequestered carbon is noted.) We focused primarily on *direct* effects in the literature: for example, local seed use preserves local landraces, which *directly* contributes to the NCP "maintenance of options." Therefore, the interactions we assessed should be considered a conservative estimation of effects; there are likely many more secondary and indirect effects, but they are too difficult to assess, or the literature is not yet complete or conclusive. Furthermore, many NCP may trade-off against one another, as supply of one NCP might lead to less availability of another (Rodríguez et al., 2006); for example, use of ecosystems to produce bioenergy will likely lead to decreases in water availability if mono-cropped high-intensity plantations are used (Gasparatos, Stromberg, & Takeuchi, 2011). These interactions and trade-offs *between* NCPs are not mapped directly in our assessment.

For our analysis of SDG interactions, the literature was particularly uneven. Because many land management options only produce indirect or multidirectional effects on SDGs, we indicate where directionality of impacts is mixed or unclear. As a result, the value chain and risk management options appear to offer more direct benefits for SDGs. Furthermore, some SDGs are internally difficult to assess because they contain many targets, not all of which could be evaluated (e.g., SDG 17 is about partnerships, but has targets ranging from foreign aid to debt restructuring to technology transfer to trade openness). Some SDG targets are clear and well defined (such as SDG 1 on eliminating extreme poverty), while other goals are about processes and interactions which make targets and indicators more challenging (e.g., SDG 13 on climate action which discusses the need to strengthen resilience and integrate climate policies into multiple sectors, but has no specific mitigation target; Campbell et al., 2018). We attempted to conduct literature searches for key indicators per SDG but found some more well represented in the literature than others.

Additionally, like NCPs, SDG goals are often interdependent in both positive and negative ways, with both synergies and trade-offs possible as outcomes (Campbell et al., 2018; Pradhan, Costa, Rybski, Lucht, & Kropp, 2017; Singh et al., 2018). For example, achieving SDG 15 on terrestrial ecosystem management might well provide cobenefits with SDG 3 on good health, such as through improved access to forest foods (Rowland, Ickowitz, Powell, Nasi, & Sunderland, 2017), and carbon sequestration to reach SDG 13 on climate action (Timko et al., 2018). Achieving some SDGs might make progress on others more difficult; for example, SDG 9 to increase industrialization and infrastructure and SDG 15 to improve life on land may conflict, as more industrialization is likely to lead to increased resource demands with negative effects on habitats (Nilsson et al., 2018). Therefore, a positive association on one SDG measure might be directly correlated with a negative measure on another. The specific caveats on each of these interactions can be found in the supplementary material tables.

3 | RESULTS

In the sections below, we provide the primary interactions arising from the literature review and represent them visually in Tables 3–8, while the textual descriptions of interactions and literature reviewed can be found in Tables S1–S6. In all tables, colors represent the direction of impact: positive (blue) or negative (brown), and the relative scale of the impact (dark colors for large impacts to light colors for smaller impacts). The supplementary material tables include brief explanations of directionality of interactions with specific references. Blank cells represent a finding of no evidence of an interaction and/

ient
anagem
nd m
on la
based
ptions
ponse o
d res
tegrated
of in
People
t L
ions .
ribut
Cont
ure's
n Nat
s o
Impact
ო
ABLE
Ē

	-											_
NCP 18 Maintenance of options												
NCP 17 Supporting identities									ſ		$\langle \rangle \rangle$	111
NCP 16 Physical and psychological experiences												
NCP 15 Learning and inspiration												
NCP 14 Medicinal, biochemical and genetic resources												
NCP 13 Materials and assistance												
NCP 12 Food and feed												
NCP 11 Energy												111
NCP 10 Regulation of organisms detrimental to numans												
NCP 9 Regulation of hazards & extreme events												
NCP 8 Formation, protection and decontamination of soils & sediments												
NCP 7 Regulation of freshwater and coastal water quality												
NCP 6 Regulation of freshwater quantity, flow and timing												
NCP 5 Regulation of ocean acidification												
NCP 4 Regulation of climate												
NCP 3 Regulation of air quality												
NCP 2 Pollination and dispersal of seeds and other propagules												
NCP 1 Habitat creation & maintenance												
Integrated response options based on land management	Increased food productivity	Improved cropland management	Improved grazing land management	Improved livestock management	Agroforestry	Agricultural diversification	Avoidance of conversion of grassland to cropland	Integrated water management		Improved and sustainable forest management	Reduced deforestation and degradation	a Braunner

Increased soil organic carbon content								
Reduced soil erosion								
Reduced soil salinization								
Reduced soil compaction								
Biochar addition to soil								

Reforestation and forest restoration

Afforestation

TABLE 3 (Continued)

NCP 18 Maintenance of options											
NCP 17 Supporting identities											
NCP 16 Physical and psychological experiences											
NCP 15 Learning and inspiration										mpacts, th nd	uo
NCP 14 Medicinal, biochemical and genetic resources										Variable impacts, can be both positive and	negative depending on
NCP 13 Materials and assistance											
NCP 12 Food and feed							$\parallel \parallel$				gative
NCP II Energy											Large negative
NCP 10 Regulation of organisms detrimental to humans											Ľ
NCP 9 Regulation of hazards & extreme events										:	Medium negative
NCP 8 Formation, protection and decontamination of soils & sediments											
NCP 7 Regulation of freshwater and coastal water quality											Small negative
NCP 6 Regulation of freshwater quantity, flow and timing											Sm
NCP 5 Regulation of ocean acidification											Small positive
NCP 4 Regulation of climate											Smê
NCP 3 Regulation of air quality											a .
other propagules NCP 2 Pollination and dispersal of seeds and										;	Medium positive
NCP 1 Habitat creation & maintenance											
Integrated response options based on land management	Fire management	Reduced landslides and natural hazards	Reduced pollution including acidification	Management of invasive species / encroachment	Restoration and avoided conversion of coastal wetlands	Restoration and avoided conversion of peatlands	Biodiversity conservation	Enhanced weathering of minerals	Bioenergy and BECCS ^a	LEGEND	No data to establish

^aNote that this refers to large areas of bioenergy crops capable of producing large mitigation benefits (>3 GtCO₂/year). The effect of bioenergy and BECCS on NCPs is scale and context dependent, and smaller scale and more sustainable bioenergy would lessen these negative impacts (IPCC, 2019).

mininin

Large negative impacts

negative impacts

Small negative impacts

Small positive impacts

positive impacts

Large positive impacts

relationship

No color

context

	NCP 18 M aintenance of options														
	NCP 17 Suppo rting identifies														
	NCP 16 Physical and psychological experiences														~
	NCP 15 Learning and inspiration										oacts,		с		ij
	NCP 14 Medicinal, biochemical and genetic resources										Variable impacts, can be both	positive and	depending on	context	
	NCP 13 M aterials and assistance										> 5	d u	q	° (\square
ient	NCP 12 Food and feed												tive		
nagem	NCP II Energy												Large negative	impacts	
chain ma	NCP 10 Regulation of organisms detrimental to anomans												Lar	dui	
on value	NCP 9 Regulation of hazards and extreme events											Medium	negative	impacts	
s based	NCP 8 Formation, protection and decontamination of soils & sediments											2		ц.	
e option	NCP 7 Regulation of freshwater and coastal water quality												Small negative	cts	
respons	NCP 6 Regulation of freshwater quantity, flow and timing												Sma	impacts	
ntegrated	NCP 5 Regulation of ocean acidification												Small positive	icts	
ole of I	NCP 4 Regulation of climate												Sma	impacts	
то Реор	NCP 3 R egulation of air quality													impacts	
Iputions	NCP 2 Pollination and dispersal of seeds and other propagules												Medium	positive impacts	
e s Conti	NCP 1 Habitat creation & maintenance												ive		
impacts on Nature S Contributions to People of Integrated response options based on Value chain management	options		st losses	(consumer	-		oly chains	d systems	essing and	e in food			Large positive	impacts	
IABLE 4 IMPAC	Integrated response options based on value chain management	Dietary change	Reduced post-harvest losses	Reduced food waste (consumer or retailer)	Material substitution	Sustainable sourcing	Management of supply chains	Enhanced urban food systems	Improved food processing and retail	Improved energy use in food systems	LEGEND	No data to	establish	relationship	No color

 TABLE 4
 Impacts on Nature's Contributions to People of integrated response options based on value chain management

,		-	1				
	NCP 18 Maintenance of options						
	NCP 17 Supporting identities						
	NCP 16 Physical and psychological experiences						
	NCP 15 Learning and inspiration						۶
	NCP 14 Medicinal, biochemical and genetic resources						Variable impacts, can be both positive and negative depending on context
	NCP 13 Materials and assistance						Variable can be bc positive a negative dependin context
	NCP 12 Food and feed						
	NCP 11 Energy						Large negative impacts
	NCP 10 Regulation of organisms detrimental to humans						Large n
	NCP 9 Regulation of hazards and extreme events						um ive cts
	NCP 8 Formation, protection and decontamination of soils & sediments						Medium negative impacts
	NCP 7 Regulation of freshwater and coastal water quality						egative
- nei inde	NCP 6 Regulation of freshwater quantity, flow and timing						Small negative impacts
נסד כסטוב סד ווונכפומונים ובשמחושב סטונוטו ממשכם מודושי וומוומפרווובוור	NCP 5 Regulation of ocean acidification						Small positive impacts
	NCP 4 Regulation of climate						Small p- impacts
sidoo	NCP 3 Regulation of air quality						positive
	NCP 2 Pollination and dispersal of seeds and other propagules						Medium pos impacts
	NCP I Habitat creation & maintenance						
	options based	n sprawl	ation		ment	ents	Large positive impacts
	Integrated response options based on risk management	Management of urban sprawl	Livelihood diversification	Use of local seeds	Disaster risk management	Risk sharing instruments	LEGEND No data to establish relationship No color

 TABLE 5
 Impacts on Nature's Contributions to People of integrated response options based on risk management

SDG 1 No poverty SDG 2 Zero hunger SDG 3 Good health and well-being SDG 4 Quality education SDG 4 Quality education SDG 4 Quality education SDG 6 Clean water and sanitation SDG 12 Responsible consumption and production SDG 13 Life below water SDG 15 Life on land from the source SDG 15 Life on land SDG 14 Life below water strong sDG 15 Climate action SDG 15 Responsible consumption and infrastructure strong SDG 16 Peace and justice and strong institutions SDG 17 Partnerships to achieve the goal sDG 17 Partnerships to achieve the goal strong SDG 17 Partnerships to achieve the goal sDG 17 Partnerships to achieve the goal strong sDG 17 Partnerships to achieve the goal sDG 17 Partnerships to achieve the goal sDG 17 Partnerships to achieve the goal																	
SDG 2 Zero hunger																	
based on	Increased food productivity	Improved cropland management	Improved grazing land management	Improved livestock management	Agroforestry	Agricultural diversification	Avoidance of conversion of grassland to cropland	Integrated water management	Improved and sustainable forest management	Reduced deforestation and degradation	Reforestation and forest restoration	Afforestation	алан алан алан алан алан алан алан алан	Increased soil organic carbon content	Reduced soil erosion	a 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Reduced soil salinization

TABLE 6 (Continued)

								Γ			
SDG 17 Partnerships to achieve the goal											
BDG 16 Peace and justice and strong institutions											
SDG 15 Life on land											
SDG 14 Life below water										Variable impacts, can be both positive and	on
SDG 13 Climate action									\square	Variable imj can be both positive and	negative depending on context
SDG 12 Responsible consumption and production										Vari can posi	negative dependii context
SDG 11 Sustainable cities and communities											Large negative impacts
SDG 10 Reduced inequality											Large ne impacts
SDG 9 Industry, innovation and infrastructure											
SDG 8 Decent work and economic growth											Medium negative impacts
SDG 7 Affordable and clean energy											egative
SDG 6 Clean water and sanitation											Small negative impacts
SDG 5 Gender equality											itive
SDG 4 Quality education											Small positive impacts
gniəd-lləw bus filsəf booD & DQ2											
SDG 2 Zero hunger											ı positi
SDG I No poverty											Medium positive impacts
Integrated response options based on land management		Reduced landslides and natural hazards	n including	nvasive species /	Restoration and avoided conversion of coastal wetlands	Restoration and avoided conversion of neatlands	ervation	rino of minerals	ECCS ^a		Large positive impacts
Integrated respon-	Fire management	Reduced landslid	Reduced pollution including acidification	Management of invasive species.	Restoration and a coastal wetlands	Restoration and a neatlands	Biodiversity conservation	Enhanced weathering of minerals	Bioenergy and BECCS ^a	LEGEND	No data to establish relationship

^aNote that this refers to large areas of bioenergy crops capable of producing large mitigation benefits (>3 GtCO₂/year). The effect of bioenergy and BECCS on SDGs is scale and context dependent, and smaller scale and more sustainable bioenergy would lessen these negative impacts (IPCC, 2019).

No color

e chain interventions	
ons based on valu	
ed response optic	
SDG of integrate	
Impacts on the UN	
TABLE 7	

					-							
BGG 17 Partnerships to achieve the goal												
BG 16 Pesce and justice and strong initians												
bnsl no sìiJ 21 DQS												~
SDG 14 Life below water											d d	Ĭ
SDG 13 Climate action											Variable impacts, can be both positive and negative depending on context	ij.
SDG 12 Responsible consumption and production											Variab can be positiv negativ depend context))
SDG 11 Sustainable cities and communities											Large negative impacts	
SDG 10 Reduced inequality											Large n. impacts	
SDG 9 Industry, innovation and infrastructure											Medium negative impacts	
growth											Medium impacts	
SDG 7 Affordable and clean energy											egative	
SDG 6 Clean water and sanitation											Small negative impacts	
SDG 5 Gender equality											live	
SDG 4 Quality education											Small positive impacts	
gniəd-lləw bns dilsəd booD & DDS											_	
SDG 2 Zero hunger											ı positiy	
SDG 1 No poverty											Medium positive impacts	
Integrated response options based on value chain management		est losses	Reduced food waste (consumer or retailer)	u		ß	pply chains	od systems	cessing & retail	se in food systems	Large positive	
Integrated response chain management	Dietary change	Reduced post-harvest losses	Reduced food wast	Material substitution		Sustainable sourcing	Management of supply chains	Enhanced urban food systems	Improved food processing & retail	Improved energy use in food systems	LEGEND No data to establish relationship	No color

1			r				
	SDG 17 Partnerships to achieve the goal						
	SDG 16 Peace, justice and strong institutions						
	SDG 15 Life on land						
	SDG 14 Life below water					\parallel	on on on
	SDG 13 Climate action					\square	Variable impacts, can be both positive and negative depending on context
	SDG 12 Responsible consumption and production						Variabl can be positivo negativ depend context
	SDG 11 Sustainable cities and communities						Large negative impacts
	SDG 10 Reduced inequality						Large n impacts
	SDG 9 Industry, innovation and infrastructure						Medium negative impacts
	SDG 8 Decent work and economic growth						
	vgrana neala and clean energy						Small negative impacts
	SDG 6 Clean water and sanitation					\parallel	
	SDG 5 Gender equality						Small positive impacts
	SDG 4 Quality education						Small pc impacts
	SDG 3 Good health and well-being						Medium positive impacts
	SDG 2 Zero hunger						Medium impacts
	SDG I No poverty						<u> </u>
	ptions based on	n sprawl	ation		ment	ents	Large positive impacts
	Integrated response options based on risk management	Management of urban sprawl	Livelihood diversification	Use of local seeds	Disaster risk management	Risk sharing instruments	LEGEND No data to establish relationship No color

 TABLE 8
 Impacts on the UN SDG of integrated response options based on risk management

Global Change Biology

TABLE 9	Interactions between	Nature's Contributions to	People (NCPs) for two	response options
				1 oop on oo op nono

NCP	Bioenergy and BECCS	Use of local seeds
NCP 1 Habitat creation and maintenance	Can reduce areas of natural habitat with negative effects on biodiversity (Hof et al., 2018; Immerzeel, Verweij, van der Hilst, & Faaij, 2014)	Use of commercial seeds can contribute to habitat loss through agricultural expansion and intensification; local seeds likely better (Upreti & Upreti, 2002)
NCP 2 Pollination and dispersal of seeds and other propagules	If natural habitats are decreased due to bioenergy expansion, would reduce natural pollinators (Keitt, 2009)	Use of open pollinated seeds is beneficial for pollinators and creates political will to conserve them (Helicke, 2015)
NCP 3 Regulation of air quality	The use of BECCS could reduce air pollution from use of fossil fuels (IPCC, 2018)	N/A
NCP 4 Regulation of climate	Large mitigation potential depending on scale, for example, up to ~11 GtCO ₂ eq/year (IPCC, 2018; Smith et al., 2020); any local and regional climate effects would be dependent on feedstock, prior land use, scale, and location	N/A
NCP 5 Regulation of ocean acidification	Bioenergy and BECCS will reduce ocean acidification by reducing CO ₂ emissions and concentrations (Doney, Fabry, Feely, & Kleypas, 2009; IPCC, 2018)	N/A
NCP 6 Regulation of freshwater quantity, flow, and timing	Depending on the feedstock, can require water. Models show high risk of water scarcity if BECCS is deployed on widespread scale (Hejazi et al., 2014; Popp, Dietrich, et al., 2011; Smith, Davis, et al., 2016) through both increases in water withdrawals (Bonsch et al., 2015; Hejazi et al., 2014) and changes in surface runoff (Cibin, Trybula, Chaubey, Brouder, & Volenec, 2016)	Local seeds often have lower water demands as they are suited to local environments (Adhikari, 2014)
NCP 7 Regulation of freshwater and coastal water quality	Bioenergy can affect freshwater quality via changes in nitrogen runoff from fertilizer application. However, the sign of the effect depends on what would have happened absent any bioenergy production, with some studies indicating improvements in water quality (Ng, Eheart, Cai, & Miguez, 2010) and others showing declines (Sinha, Michalak, Calvin, & Lawrence, 2019)	Likely to contribute to less pollution as local seeds are usually grown organically (Adhikari, 2014)
NCP 8 Formation, protection, and decontamination of soils and sediments	Will likely decrease soil quality if exotic fast-growing trees used (Humpenöder et al., 2018; Stoy et al., 2018)	Likely to contribute to better soils as local seeds are usually grown organically and with lower tillage (Adhikari, 2014)
NCP 9 Regulation of hazards and extreme events	N/A	N/A
NCP 10 Regulation of organisms detrimental to humans	N/A	Local seeds often need less pesticides thereby reducing pest resistance (Adhikari, 2014)
NCP 11 Energy	BECCS and biofuels can contribute up to 300 EJ of primary energy by 2100 (Clarke et al., 2014)	N/A
NCP 12 Food and feed	Large-scale deployment of bioenergy and BECCS can lead to significant trade-offs with food production and significantly higher food prices given large-scale land conversion (Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016)	Local seeds can lead to more diverse and healthy food in areas with strong food sovereignty networks (Bisht et al., 2018; Coomes et al., 2015). However, local seeds often are less productive than improved commercial varieties
NCP 13 Materials and assistance	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce opportunities for production of other materials	Local seeds can produce multifunctional materials (Adhikari, 2014)
NCP 14 Medicinal, biochemical, and genetic resources	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce genetic resources	Many local seeds can have multiple functions, including producing medicinals (Hammer & Teklu, 2008)

```
15
```

WILEY

-WILEY- 🔵 Global Change Biology

TABLE 9 (Continued)

NCP	Bioenergy and BECCS	Use of local seeds
NCP 15 Learning and inspiration	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce opportunities for learning and inspiration	Passing on seed information is important cultural learning process (Coomes et al., 2015)
NCP 16 Physical and psychological experiences	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce opportunities for recreation & tourism	N/A
NCP 17 Supporting identities	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce culturally significant landscapes	Seeds associated with specific cultural identities for many (Coomes et al., 2015)
NCP 18 Maintenance of options	If bioenergy and BECCS drive land use conversion (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016), it can reduce genetic diversity	Food sovereignty movements have promoted saving of genetic diversity of crops through on-farm maintenance (Isakson, 2009)

or no literature. In cases where there are both positive and negative interactions and the literature is uncertain about the overall impact, hashing appears in the box. In all cases, many of these interactions are contextual, or the literature only refers to certain co-benefits in specific regions or ecosystems, so readers are urged to consult the supplementary material tables for the specific caveats that may apply.

3.1 | Interactions of the options on NCP supply

Tables 3-5 summarize the impacts of the response options on NCP supply. Overall, several of the assessed response options stand out as having co-benefits across 10 or more NCPs with no adverse impacts on ecosystems: improved cropland management, agroforestry, increased soil organic carbon content, and fire management. Several options had mostly positive effects for 10 or more NCPs but some multidirectional interactions on others: improved and sustainable forest management, reduced deforestation and degradation, reforestation and forest restoration, restoration and avoided conversion of coastal wetlands, biodiversity conservation, and use of local seeds. Examples of co-benefits between response options and NCPs include positive impacts on habitat maintenance (NCP 1) from practices like invasive species management and agricultural diversification. For example, the latter improves resilience through enhanced diversity to mimic more natural systems and provide in-field habitat for natural pest defenses (Lin, 2011), while invasive species management has strong direct links to improved habitats and ecosystem diversity (Richardson & Wilgen, 2004).

Other response options may have strengths in some NCP but require trade-offs with others. For example, afforestation may bring many positive benefits for climate mitigation and biomass energy production but may trade-off with food production and water quantity. Many of the interactions are scale and context dependent; for example, large-scale afforestation of monocrop trees on water-scarce croplands would have negative effects (Kreidenweis et al., 2016), while well-managed small-scale afforestation on unused or degraded lands could have mostly beneficial effects (Yao & Li, 2010). Several response options, including afforestation, bioenergy and bioenergy with carbon capture and storage (BECCS), and some risk sharing instruments, like commercial crop insurance, can have significant negative consequences across multiple NCPs, but again, are dependent on scale and context. While BECCS may deliver large co-benefits for climate mitigation, it can result in a number of adverse impacts that are significant with regard to water provisioning, food and feed availability, and loss of supporting identities if BECCS competes against local land uses (Calvin et al., 2014; Stoy et al., 2018).

3.2 | Interactions of the options with SDGs

Tables 6-8 summarize the impact of the response options on the SDGs. Overall, several response options have co-benefits across 10 or more SDGs with no adverse side effects on any SDG: improved grazing land management, agroforestry, integrated water management, reduced post-harvest losses, and disaster risk management. Several options have mostly positive effects for 10 or more SDGs but some multidirectional interactions or one negative on others: improved and sustainable forest management, sustainable sourcing, enhanced urban food systems, management of urban sprawl, and use of local seeds. For example, on the latter option, use of local seeds can bring positive social benefits for poverty and hunger reduction, but may reduce potentials for international trade (SDG 17; Kloppenburg, 2014). Other response options like enhanced urban food systems and management of urban sprawl are generally positive for many SDG but may trade-off with one, like clean water (SDG 6) or decent work (SDG 8), as they may increase water use or slow economic growth (Badami & Ramankutty, 2015; Brueckner, 2000).

Some of the prominent synergies between response options and SDGs in the literature include positive poverty reduction

Global Change Biology —WILEY — 17

 TABLE 10
 Interactions between Sustainable Development Goals (SDGs) and two response options

SDG	Bioenergy and BECCS	Use of local seeds
SDG 1 No poverty	Bioenergy production could create jobs but could also compete for land with alternative uses (Clarke et al., 2014; Humpenöder et al., 2018; Popp et al., 2017; Smith, Davis, et al., 2016). Therefore, bioenergy could have positive or negative effects on poverty rates among smallholders, among other social effects (Dooley & Kartha, 2018; IPCC, 2018)	Many hundreds of millions of smallholders still rely on local seeds; without them, they would have to find money to buy commercial seeds (Altieri, Funes- Monzote, & Petersen, 2012; Howard, 2015; McGuire & Sperling, 2016)
SDG 2 Zero hunger	Biofuel plantations may lead to decreased food security through competition for land. Large-scale deployment of bioenergy and BECCS can lead to significant trade- offs with food production (Humpenöder et al., 2018; IPCC, 2018; Popp, Lotze-Campen, et al., 2011; Smith, Haszeldine, & Smith, 2016)	Local seeds revive and strengthen local food systems (McMichael & Schneider, 2011) and lead to more diverse and healthy food in areas with strong food sovereignty networks (Bisht et al., 2018; Coomes et al., 2015). However, local seeds often are less productive than improved varietie
SDG 3 Good health and well-being	BECCS could have positive effects through improvements in air quality (IPCC, 2018), but bioenergy and BECCS could have negative effects on health and well-being through impacts on food systems and water (Burns & Nicholson, 2017; Humpenöder et al., 2018)	Local seed use is associated with fewer pesticides (Altieri et al., 2012); loss of local seeds and substitution by commercial seeds is perceived by farmers to increase health risks (Mazzeo & Brenton, 2013), although overall literature on links between food sovereignty and health is weak (Jones, Shapiro, & Wilson, 2015)
SDG 4 Quality education	N/A	N/A
SDG 5 Gender equality	N/A	Women play important roles in preserving and using local seeds (Bezner Kerr, 2013; Ngcoya & Kumarakulasingam, 2017) and sovereignty movements paying more attention to gender needs (Park, White, & Julia, 2015)
SDG 6 Clean water and sanitation	Depending on the feedstock, can require water. Models show high risk of water scarcity if BECCS is deployed on widespread scale (Hejazi et al., 2014; Popp, Dietrich, et al., 2011; Smith, Davis, et al., 2016) through both increases in water withdrawals (Bonsch et al., 2015; Hejazi et al., 2014; IPCC, 2018) and changes in surface runoff (Cibin et al., 2016)	Local seeds often have lower water demands, as well as less use of pesticides that can contaminate water (Adhikari, 2014)
SDG 7 Affordable and clean energy	Bioenergy and BECCS can contribute up to 300 EJ of primary energy by 2100 (Clarke et al., 2014); bioenergy can provide clean, affordable energy (IPCC, 2018)	N/A
SDG 8 Decent work and economic growth	Access to clean, affordable energy will help economic growth (IPCC, 2018)	Food sovereignty supporters believe protecting smallholder agriculture provides more employment than commercial agriculture (Kloppenberg, 2010), although exact numbers unknown
SDG 9 Industry, innovation, and infrastructure	BECCS will require development of new technologies (Smith, Haszeldine, & Smith, 2016)	N/A
SDG 10 Reduced inequality	N/A	Seed sovereignty advocates believe it will contribute to reduced inequality (Park et al., 2015; Wittman, 2011), but there is inconclusive empirical evidence
SDG 11 Sustainable cities and communities	N/A	Seed sovereignty can help sustainable urban gardening (Demailly & Darly, 2017) which can be part of a sustainable city by providing fresh, local food (Leitgeb, Schneider, & Vogl, 2016)
SDG 12 Responsible consumption and production	Switching to bioenergy reduces depletion of finite resources (IPCC, 2018)	Locally developed seeds can both help protect local agrobiodiversity and can often be more climate resilient than generic commercial varieties, leading to more sustainable production (Coomes et al., 2015; Van Niekerk & Wynberg, 2017)

(Continues)

TABLE 10 (Continued)

SDG	Bioenergy and BECCS	Use of local seeds
SDG 13 Climate action	Large mitigation potential depending on scale, for example, up to ~11 GtCO ₂ eq/year (IPCC, 2018; Smith et al., 2020), but potentially large negative adaptation effects due to land competition (Dooley & Kartha, 2018; Fuss et al., 2016; Humpenöder et al., 2018)	Local seeds tend to be resilient to different climate hazards and thus can enhance adaptation (Louwaars, 2002; Santilli, 2012)
SDG 14 Life below water	Bioenergy and BECCS will reduce ocean acidification by reducing CO ₂ emissions and concentrations (Doney et al., 2009; IPCC, 2018)	N/A
SDG 15 Life on land	Can reduce areas of natural habitat with negative effects on biodiversity (Hof et al., 2018; Immerzeel et al., 2014; IPCC, 2018)	Use of commercial seeds can contribute to habitat loss through agricultural expansion and intensification; local seeds likely better (Upreti & Upreti, 2002)
SDG 16 Peace and justice and strong institutions	N/A	Seed sovereignty is positively associated with strong local food movements, which contribute to social capital (Coomes et al., 2015; Grey & Patel, 2015; McMichael & Schneider, 2011)
SDG 17 Partnerships to achieve the goal	N/A	Seed sovereignty could be seen as threat to free trade and imports of genetically modified seeds (Howard, 2015; Kloppenberg, 2010; Kloppenburg, 2014)

impacts (SDG 1) from activities like improved water management or better management of supply chains, or positive gender impacts (SDG 5) from livelihood diversification or use of local seeds. For example, women play important roles in preserving and using local seeds, which can empower them to take more active roles in agricultural production (Bezner Kerr, 2013; Ngcoya & Kumarakulasingam, 2017).

Other response options may help to deliver some SDGs but create multiple trade-offs with others, such as dietary change. Several response options, including avoidance of grassland conversion, reduced deforestation and degradation, reforestation and forest restoration, afforestation, and restoration and avoided conversion of peatlands potentially have trade-offs across multiple SDGs primarily as they prioritize land health over food production (Crooks, Herr, Tamelander, & Laffoley, 2011). Some response options, such as afforestation, biochar, and bioenergy and BECCS, will likely involve trade-offs over multiple SDGs with potentially significant adverse consequences (Bowman & Zilberman, 2013; Burns & Nicholson, 2017; Locatelli, Pavageau, Pramova, & Di Gregorio, 2015).

3.3 | Case studies of interactions

The supplementary material tables provide over 1,400 specific interactions that were assessed. To provide a flavor of what these review outcomes indicate, we note below for two options what the types and directionality of interactions found in the literature were (Tables 9 and 10). Bioenergy and BECCS and use of local seeds present a contrast, in that the literature on bioenergy/BECCS is mostly based on modelling studies (since this option is in limited operation), while the literature on local seeds is primarily based on local or regional case studies.

For the review of bioenergy/BECCS, we find that the literature on interactions with other land uses is fairly robust, with concerns about the impacts on important NCPs like habitats and biodiversity, water quantity, and soil quality reflected in models (Table 9). However, the literature on non-tangible NCPs, like learning or identities, is less direct; there, negative impacts are assumed rather than known, and based on impacts of land use change. For SDGs, we find conflicting evidence of the impact of BECCS on poverty and good health, while negative impacts on food security are strongly implied; such impacts trade-off with the potential for BECCS to make positive contributions to innovation, energy use, and climate mitigation (Table 10). In our review of use of local seeds, we find that the literature on NCP interactions is fairly thin, with a few key studies providing some indications of interactions, while the literature on SDG interactions is wider, with reports noting that use of noncommercial seeds can bring economic and social benefits, particularly in urban settings, and for women (Table 10). In both examples, there remain gaps in the literatures reviewed.

3.4 | Identifying patterns of co-benefits and tradeoffs

Overall, across both categories of SDGs and NCPs, 15 of 40 options that were evaluated deliver at least some co-benefits with no identified negative side effects or trade-offs for the full range of NCPs and SDGs (Table 11, blue shading). This includes many agriculture- and soil-based land management options, some ecosystem-based land management options, reduced post-harvest MCELWEE ET AL.

 TABLE 11
 Patterns of co-benefits and negative impacts across options

Global Change Biology

	Positive co- benefits for NCPs	Positive co- benefits for SDGs	Negative impacts for NCPs	Negative impacts for SDGs	Multidirectional NCP interactions	Multidirectional SDG interactions
Increased food productivity	5	11	1		4	1
Improved cropland management	11	9				
Improved grazing land management	9	10				
Improved livestock management	7	8				
Agroforestry	16	11				
Agricultural diversification	9	7				1
Avoidance of conversion of grassland to cropland	7	3	1	3		
Integrated water management	9	15				
Improved and sustainable forest management	15	11			3	2
Reduced deforestation and degradation	14	5		3	4	4
Reforestation and forest restoration	14	7		2	4	3
Afforestation	7	5	4	3	6	3
Increased soil organic carbon content	10	8				
Reduced soil erosion	7	7				
Reduced soil salinization	5	6				
Reduced soil compaction	6	6				
Biochar addition to soil	6	2	2	3	1	1
Fire management	12	5				
Reduced landslides and natural hazards	6	6				
Reduced pollution including acidification	7	7				
Management of invasive species/ encroachment	8	7	1			
Restoration and avoided conversion of coastal wetlands	14	5			1	4
Restoration and avoided conversion of peatlands	13	4	3	4		
Biodiversity conservation	15	7		1	2	6
Enhanced weathering of minerals	4	2	1	1		
Bioenergy and BECCS	4	4	11	3		
Dietary change	7	9		3		
Reduced post-harvest losses	7	12				
Reduced food waste (consumer or retailer)	6	10		2		1
Material substitution	3	5	1	3		1
Sustainable sourcing	7	12			2	2
Management of supply chains	3	11		2		
Enhanced urban food systems	10	14	2	1		
Improved food processing & retail	3	10		2		1
Improved energy use in food systems	3	7				
Management of urban sprawl	8	12		1		

19

-WILEY-

TABLE 11 (Continued)

	Positive co- benefits for NCPs	Positive co- benefits for SDGs	Negative impacts for NCPs	Negative impacts for SDGs	Multidirectional NCP interactions	Multidirectional SDG interactions
Livelihood diversification	2	7				3
Use of local seeds	11	11		1	1	1
Disaster risk management	3	15				
Risk sharing instruments	1	6	8	2		4

Notes: Columns are sums of categories of co-benefits and adverse side effects from Tables 3 to 8 and do not indicate the magnitude of the effect.
Blue indicates the presence of co-benefits with no noted adverse side effects.

Brown indicates the presence of multiple adverse side effects across both SDGs and NCPs.

Red text indicates presence of potentially negative trade-off.

-WILEY- Clobal Change Biology

Grey text indicates multidirectional impacts.

losses, improved energy use in food systems, and disaster risk management. Only five options (afforestation, biochar, avoided peatland conversion, bioenergy and BECCS, and some types of risk sharing instruments, such as crop insurance) have potentially negative impacts on five or more NCPs and SDGs combined (Table 11, brown shading). However, this comparison is meant only to give relative sense of potential adverse side effects, as the caveat stands that one positive co-benefit is not necessarily equal to one negative impact; the magnitude of effects varies widely depending on context.

3.5 | Combining NCPs and SDGs with other societal goals

Our findings of co-benefits and adverse side effects associated with a range of response options should also be combined with attention to how effectively the response options deliver across other key objectives such as climate change mitigation, climate change adaptation, land degradation and desertification, or food security. Smith et al. (2020) assessed the same 40 options against these specific challenges in a quantitative manner and found that nine of the options delivered medium to large benefits for all four land challenges. The options that stood out were increased food productivity, improved cropland management, improved grazing land management, improved livestock management, agroforestry, improved and sustainable forest management, increased soil organic carbon content, fire management and reduced post-harvest losses. Of these nine options, however, our analysis here showed potential adverse side effects on either the SDGs or NCPs for two options: increased food productivity (associated with potential NCP trade-offs around water and soil quality and beneficial pollinators and harmful pests) and improved and sustainable forest management (associated with the potential for NCP trade-offs around food production and hazard mitigation, and SDG trade-offs around poverty reduction and food production).

Looking only at response options that deliver the highest mitigation benefits, five options of the 40 have large potential (>3 $GtCO_2eq/year$) without adverse impacts on the other land

challenges, according to Smith et al. (2020): increased food productivity, reduced deforestation and degradation, increased soil organic carbon content, fire management and reduced post-harvest losses. Of these, only three (increased soil organic carbon content, fire management, and reduced post-harvest losses) were not associated with some potential negative side effects on either SDGs or NCPs in our analysis.

Sixteen practices that were evaluated had large climate adaptation potential, positively benefiting more than 25 million people a year, without adverse consequences for other land challenges: increased food productivity, improved cropland management, agroforestry, agricultural diversification, improved and sustainable forest management, increased soil organic carbon content, reduced landslides and natural hazards, restoration and reduced conversion of coastal wetlands, reduced post-harvest losses, sustainable sourcing, management of supply chains, improved food processing and retailing, improved energy use in food systems, livelihood diversification, use of local seeds, and disaster risk management (Smith et al., 2020). However, of these 16 options, more than half of them (9) do show potential trade-offs with either NCPs or SDGs in our analysis.

4 | DISCUSSION

Decision-makers are increasingly asking for policy options that will help them achieve agreed-upon global goals like the Paris Agreement and the SDGs in an integrated manner (Sachs et al., 2019). Many land challenges in particular can be met with a range of response options readily available, such as reducing the conversion of natural ecosystems or increasing soil carbon content using basic technologies like cover crops and changing tillage and residue management. Assessing these options against their co-benefits and adverse side effects can help policymakers to account for impacts on both natural and human systems. Our assessment using an extended literature review has been as comprehensive as possible (40 options times 18 NCPs and 17 SDGs) and robust (literature in the thousands of documents) to provide some direction to such policymaking and goal setting. Below we discuss the primary findings, limitations of the study, and some future research directions.

21

ICELWEE ET AL.	
ABLE 12 Highlig	nting response options for individual Sustainable Development Goals (SDGs)
SDGs	Response options with large positive impacts for this goal [and potential trade-offs (TO)]
SDG 1 No poverty	Integrated water management, increased soil organic carbon, disaster risk management High positive impact on this SDG but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), agricultural diversification (TO with SDG 10), management of supply chains (TO with SDG 6 & SDG 7), livelihood diversification (TO with SDG 4, SDG 5, & SDG 10)
SDG 2 Zero hunger	Agroforestry, integrated water management, increased soil organic carbon, reduced soil erosion, reduced salinization, reduced soil compaction, reduced post-harvest losses, disaster risk management High positive impact on this SDG but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), agricultural diversification (TO with SDG 10), dietary change (TO with SDG 1, SDG 7 & SDG 14), management of supply chains (TO with SDG 6 and SDG7), enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6)
SDG 3 Good health and well-being	Integrated water management, fire management, reduced pollution, reduced post-harvest losses, disaster risk management High positive impact on this SDG but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), dietary change (TO with SDG 1, SDG 7, & SDG 14), management of supply chains (TO with SDG 6 and SDG7), management of urban sprawl (TO with SDG 8), livelihood diversification (TO with SDG 4, SDG 5, & SDG 10)
SDG 4 Quality education ^a	Disaster risk management Medium positive impact on this SDG but comes with potential trade-offs: risk sharing instruments (TO with NCP 1, NCP 2, NCP 4, NCP 7, NCP 8, NCP 10, NCP 14, NCP 18, SDG 6, SDG 12, SDG 13, SDG 14, SDG 15, & SDG 17)
SDG 5 Gender equity ^a	Agroforestry, integrated water management, disaster risk management Medium positive impact on this SDG but comes with potential trade-offs: management of supply chains (TO with SDG 6 and SDG7), enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), use of local seeds (TO with NCP 12, SDG 2, & SDG 17)
SDG 6 Clean water and sanitation	Integrated water management, increased soil organic carbon, reduced post-harvest losses High positive impact on this SDG but comes with potential trade-offs: restoration of wetlands (NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (NCP 11, NCP 12, NCP 13, SDG 1, SDG 2, SDG 7, & SDG 8), dietary change (TO with SDG 1, SDG 7, & SDG 14), reduced food waste (TO with SDG 3, SDG 5, & SDG 7), management of urban sprawl (TO with SDG 8)
SDG 7 Affordable and clean energy	High positive impact on this SDG but comes with potential trade-offs: Bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12–18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13, & SDG 15)
SDG 8 Decent work and economic growth	Reduced post-harvest losses, disaster risk management High positive impact on this SDG but comes with potential trade-offs: reduced food waste (TO with SDG 3 SDG 5, & SDG 7), enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6)
SDG 9 Industry, innovation, and infrastructure	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2, & SDG 10), management of urban sprawl (TO with SDG 8)
SDG 10 Reduced inequality	High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7, & SDG 14), management of urban sprawl (TO with SDG 8)
SDG 11 Sustainable cities and communities	Disaster risk management High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7,, & SDG 6), management of urban sprawl (TO with SDG 8)
SDG 12 Responsible production and consumption	High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7, & SDG 14), sustainable sourcing (TO with NCP 12, NCP 17, SDG 2, & SDG 10), management of supply chains (TO with SDG 6 & SDG 7), enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6)
SDG 13 Climate action (includes benefits for both mitigation and adaptation)	Agroforestry, integrated water management, increased soil carbon content, reduced soil erosion, reduced soil salinization, reduced soil compaction, fire management, reduced post-harvest losses, disaster risk management High positive impact on this SDG but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), agricultural diversification (TO with SDG 10), improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, & SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), reforestation/restoration (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), afforestation (TO with NCP 1, NCP 6, NCP 9, NCP 10, NCP 12, NCP 13, NCP 18, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 5, SDG 6, SDG 7, SDG 8, SDG 9, & SDG 16), management of urban sprawl (TO with SDG 8)

sprawl (TO with SDG 8)

SDGs	Response options with large positive impacts for this goal [and potential trade-offs (TO)]
SDG 14 Life below water	High positive impact on this SDG but comes with potential trade-offs: restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, SDG 16)
SDG 15 Life on land	 Improved cropland management, improved grazing management, agroforestry, integrated water management, increased soil carbon, fire management High positive impact on this SDG but comes with potential trade-offs: avoided grassland conversion (TO with NCP 12, SDG 1, SDG 2, & SDG 8), improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, & SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), reforestation/restoration (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO with NCP 12, SDG 1, SDG 2, SDG 7, SDG 8, SDG 7, SDG 8, SDG 9, & SDG 16), management of urban sprawl (TO with SDG 8)
SDG 16 Peace and justice and strong institutions	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), use of local seeds (TO with NCP 12, SDG 2, & SDG 17)
SDG 17 Partnerships to achieve the goals	None

^aOnly moderate co-benefits were seen in these categories.

-WII FY-Blobal Change Biology

4.1 | Identifying co-benefits for people and nature

There are a clear range of potential synergies through co-benefits provided by the assessed response options. For example, there are positive co-benefits between many response options and important SDGs: these include positive poverty reduction impacts (SDG 1) from activities like integrated water management and increased soil carbon, and strengthened good health (SDG 3) from reducing pollution, fire management, and disaster risk management approaches. In some cases, our review has identified some response options that might not have been obvious choices for improvements in SDGs or NCPs at first glance, such as the important role that integrated water management could potentially play for gender equity. By starting our review with response options and actions first, and then comparing them across SDGs and NCPs for co-benefits, some of these interesting and unexpected interactions emerged. However, as many studies have noted, achieving co-benefits requires explicit assessments and agreements on criteria, and an understanding that not all co-benefits can accrue in every context (Hultman, Lou, & Hutton, 2020).

Table 12 indicates the strongest options identified from the assessment for specific SDGs (i.e., those for which Tables 3–8 indicated large positive impacts). However, while this can provide a suggestive template for what the preferred response options for each priority SDG might be, policymakers also need to consider the specific tradeoffs that may result, which are indicated in parentheses (indicating where negative impacts were found in the literature reviews).

For NCPs, examples of positive co-benefits include positive ecosystem impacts on habitat maintenance from activities like reduced land conversion across forests, grasslands, wetlands, and peatlands and fire management. Table 13 indicates the strongest options that emerged from the assessment of response options for specific NCPs, again providing the caveat that some of these options come with more trade-offs than others. As the recent IPBES Global Assessment noted, many NCPs can trade-off with one another, and achieving synthesis across multiple NCPs is an important policy goal (IPBES, 2019).

4.2 | Highlighting interactions between SDGs and NCPs

The strong synergies *between* positive co-benefits on both NCPs and SDGs for a number of response options (Table 11) are an important finding. This indicates that there are potentially win-wins that do not require the degradation of natural capital and ecosystems to achieve poverty and development objectives (Miteva, 2019). For example, pollination services (NCP 2) are essential for crop production necessary to reduce hunger (SDG 2; Dangles & Casas, 2019). While the literature remains rather thin on many of these interactions, evidence is growing that mutual reinforcement between improved environment management and goals for human well-being is in fact achievable (Schleicher, Schaafsma, & Vira, 2018).

Response options in which there are positive interactions and synergies across both NCPs and SDGs can help deliver on a range of social and ecological benefits. One of these win-win options, agroforestry, is noted in Figure 1. Agroforestry involves the deliberate planting of trees in croplands and silvopastoral systems and is a particularly integrative practice in that it is usually carried out to bring both ecological and social benefits, ranging from improved soil health to increased farm income. The literature reviews noted that agroforestry can contribute to poverty reduction (Leakey & Simons, 1997), reduces food insecurity (Mbow et al., 2014), and positively contributes to more nutritious diets (Haddad, 2000), as well as mimics natural ecosystem diversity (Jose, 2009), provides habitat for pollinators (Dainese et al., 2019), and increases soil water infiltration capacity

Global Change Biology

TABLE 13 Highlighting response options for individual Nature's Contributions to People (NCPs)

NCPs	Response options with large positive impacts for this contribution [and potential trade-offs (TO)]
NCP 1 Habitat creation and maintenance	Agroforestry, integrated water management High positive impact on this NCP but comes with potential trade-offs: improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, & SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), reforestation/restoration (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (NCP 12, SDG 1, SDG 2, SDG 7, SDG 8), biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16)
NCP 2 Pollination and dispersal of seeds and other propagules	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16)
NCP 3 Regulation of air quality	Reduced soil erosion High positive impact on this NCP but comes with potential trade-offs: management of urban sprawl (TO with SDG 8)
NCP 4 Regulation of climate	Agroforestry, increased soil carbon, fire management, reduced post-harvest losses High positive impact on this NCP but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), reforestation (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, SDG 10), afforestation (TO with NCP 1, NCP 2, NCP 6, NCP 7, NCP 8, NCP 9, NCP 10, NCP 12, NCP 13, NCP 18, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), mineral weathering (TO with NCP 7 & SDG 6), bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12-18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13, & SDG 15), dietary change (TO with SDG 1, SDG 7, & SDG 14), reduced food waste (TO with SDG 3, SDG 5, & SDG 7)
NCP 5 Regulation of ocean acidification (note: any action with high mitigation potential on NCP 4 is assumed to have same positive impact on ocean acidification)	Agroforestry, increased soil carbon, fire management, reduced post-harvest losses High positive impact on this NCP but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), reforestation (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, SDG 10), afforestation (TO with NCP 1, NCP 2, NCP 6, NCP 7, NCP 8, NCP 9, NCP 10, NCP 12, NCP 13, NCP 18, SDG 1, SDG 2, SDG 5, SDG 6, & SDG 10), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), mineral weathering (TO with NCP 7 & SDG 6), bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12-18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13, & SDG 15), dietary change (TO with SDG 1, SDG 7, & SDG 14), reduced food waste (TO with SDG 3, SDG 5, & SDG 7)
NCP 6 Regulation of freshwater quantity, flow, and timing	Integrated water management, increased soil carbon, reduced soil compaction High positive impact on this NCP but comes with potential trade-offs: improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, & SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO with NCP 12, SDG 1, SDG 2, SDG 7, & SDG 8), management of urban sprawl (TO with SDG 8)
NCP 7 Regulation of freshwater and coastal	Integrated water management, increased soil carbon, reduced soil salinization, reduced compaction, reduced pollution
water quality	High positive impact on this NCP but comes with potential trade-offs: Improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10, & SDG 17), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO with NCP 12, SDG 1, SDG 1, SDG 1, SDG 2, SDG 7, & SDG 8), management of urban sprawl (TO with SDG 8)
NCP 8 Formation, protection, and decontamination of soils and sediments	Agroforestry, increased soil carbon, reduced soil erosion, reduced salinization, reduced compaction High positive impact on this NCP but comes with potential trade-offs: Improved and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1, SDG 2), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO with NCP 12, SDG 1, SDG 2, SDG 7, & SDG 8), biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, & SDG 16), management of urban sprawl (TO with SDG 8)
NCP 9 Regulation of hazards and extreme events	Fire management, reduced landslides, disaster risk management High positive impact on this NCP but comes with potential trade-offs: restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9)
NCP 10 Regulation of organisms detrimental to humans	Agroforestry, increased soil carbon High positive impact on this NCP but comes with potential trade-offs: agricultural diversification (TO with SDG 10), use of local seeds (TO with NCP 12, SDG 2 & SDG 17)
NCP 11 Energy	High positive impact on this NCP but comes with potential trade-offs: bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12–18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13 & SDG 15)

WILEY

TABLE 13 (Continued)

NCPs	Response options with large positive impacts for this contribution [and potential trade-offs (TO)]
NCP 12 Food and feed	 Improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil carbon, reduced post-harvest losses High positive impact on this NCP but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10, & SDG 14) agricultural diversification (TO with SDG 10), dietary change (TO with SDG 1, SDG 7, & SDG 14), reduced food waste (TO with SDG 3, SDG 5, & SDG 7), enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), risk sharing instruments (TO with NCP 1, NCP 2, NCP 4, NCP 7, NCP 8, NCP 10, NCP 14, NCP 18, SDG 6, SDG 12, SDG 13, SDG 14, SDG 15, & SDG 17)
NCP 13 Materials and assistance	High positive impact on this NCP but comes with potential trade-offs: Material substitution (TO with NCP1, SDG 2, SDG 9, & SDG 15)
NCP 14 Medicinal, biochemical, and genetic resources	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16)
NCP 15 Learning and inspiration	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16), use of local seeds (TO with NCP 12, SDG 2, & SDG 17)
NCP 16 Physical and psychological experiences	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16)
NCP 17 Supporting identities	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16), use of local seeds (TO with NCP 12, SDG 2, & SDG 17)
NCP 18 Maintenance of options	High positive impact on this NCP but comes with potential trade-offs: biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9, & SDG 16), use of local seeds (TO with NCP 12, SDG 2, & SDG 17)

(Ilstedt, Malmer, Verbeeten, & Murdiyarso, 2007), among other benefits. As a result, our assessment of this practice shows a range of positive benefits for both NCPs and SDGs: for climate across three NCPs and one SDG (Climate action); benefits for biodiversity across four NCPs and one SDG (Life on Land); and benefits for humans across one NCP (Supporting identities) and five SDGs (Figure 1).

However, not all options are as integrative or beneficial as agroforestry. For other response options, there are trade-offs between SDGs and NCPs. For example, some response options stand out as being particularly positive across a range of SDGs, but few NCPs: *management of supply chains, improved food processing and retail,* and *disaster risk management.* Conversely, some options deliver co-benefits for many NCPs but few SDGs: *reduced deforestation and degradation, restoration and avoided conversion of coastal wetlands, and restoration and avoided conversion of peatlands.* These response options are primarily focused on natural land management options that minimize human impacts and maximize ecosystem functions, while the SDG-focused options are ones that improve access to food and reduce risks to livelihoods, with little attention to benefits for ecosystems.

There are also options that deliver a balanced set of co-benefits across both SDGs and NCPs with minimal side effects; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, nearly all soil management options aside from biochar, fire management, reduced landslides, reduced pollution, and reduced post-harvest losses. These particular options focus on human-dominated systems and seek to improve these in ways that have positive outcomes for both social and ecological components, while also minimizing external risks or improving resilience. Such approaches that recognize socio-ecological complexity in an integrated manner are increasingly important in ecosystem governance (Vasseur et al., 2017), as are evidenced in rising attention to concepts like "nature-based solutions" and "ecosystem-based adaptation" (Seddon et al., 2019, 2020).

4.3 | Making better policy choices to achieve global goals

The Paris Agreement and SDGs both reflect global goals for human and environmental well-being, but there are also potentially serious trade-offs between both of them and with other global objectives, like biodiversity conservation (lyer et al., 2018; Sachs et al., 2019; von Stechow et al., 2015). There is also concern that we are failing to make progress on many of the SDGs and on Paris Agreement pledges (ECOSOC, 2019). It is possible that one reason for slow progress is conflict among and between different goals, and hence, a closer look at response options could help identify areas where conflicts and trade-offs will need to be managed.

Our analysis can also help focus attention on beneficial options that could be included in Nationally Determined Contributions (NDCs) for the Paris Agreement, where countries note their pledges for mitigation and adaptation and how they intend to meet these goals (lyer et al., 2018). Recent analysis of these NDCs for their use of "nature-based solutions" reveals that 77% of NDCs contain at least one quantitative target for ecosystems in general (Seddon et al., 2019), but many NDCs are not specific on what response options might be included to meet that target. Among land-based actions, the forest sector generally receives the most attention in NDCs, as it can make significant contributions to both mitigation and

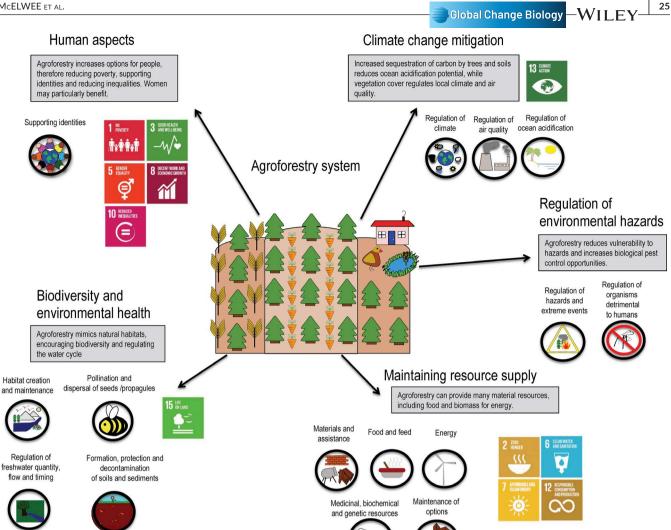


FIGURE 1 Impacts on Nature's Contributions to People (NCPs) and Sustainable Development Goals (SDGs) within Agroforestry Systems. Note: Circles are key NCPs and squares are key SDGs

adaptation goals; however, as we note, most options around forests do come with potential trade-offs related to food production and other NCPs that need to be recognized.

Moreover, the analysis presented here and in Smith et al. (2020) notes that significant mitigation benefits with minimal adverse side effects can also be achieved through attention to better agricultural and food practices (e.g., increased food productivity or increased soil organic carbon). However, there is very little attention in NDCs to these measures, or to demand-side shifts (e.g., reduced post-harvest losses or dietary change; Roe et al., 2019), which also shows promise in the analysis here. Thus, encouraging future NDC submissions to be explicit about what policies, options, and pathways will be used to achieve overall mitigation and adaptation goals could draw on methodological analysis such as that presented here. That is, the use of a trade-off and co-benefit literature review, drawing on multiple case studies, can clarify for policymakers the particular response options that best match their social and environmental goals within a specific geographical and societal context, and which minimize the most serious trade-offs.

Another key point emerging from this analysis is the need for policy coherence to support implementation of the response options, since there are many interactions and potential co-benefits that can be realized from bringing different response options and goals together (Griggs et al., 2014). Increasingly policymakers and researchers are thinking about "nexus" approaches that encourage integrated planning across sectors, particularly synergies between environmental and social planning (Weitz, Nilsson, & Davis, 2014). The goal of nexus approaches is "improving resource use efficiency and avoiding adverse impacts of single-sector development strategies" (Ringler & Lawford, 2013, 618). Our analysis here supports seeking opportunities for nexus outcomes, where multiple response options could co-deliver across a mix of NCPs and SDGs (e.g., waterland-energy-food), while also delivering climate mitigation and adaptation benefits (Karabulut, Udias, & Vigiak, 2019). These integrated and nexus approaches to provide co-benefits and synergies will require frequent assessment and strong engagement of stakeholders, given the complexity of challenges (Raymond et al., 2017; Reed et al., 2019).

4.4 | Study limitations, gaps, and future research

The literature assessed points to general directions of interactions, but much more information is needed to make more accurate assessments. For nearly all interactions, we could assess only positive or negative trends qualitatively, without the possibility of detailed quantification (e.g., how a doubling of area devoted to one response option would affect an NCP or SDG). Furthermore, because many of the NCPs and SDGs trade-off with one another (e.g., NCP 1 vs. NCP 11, or NCP 6 vs. SDG 7), simple assessments cannot fully capture the range of all interactions.

The context for any given option also needs to be considered carefully. For example, there are physical spatial limits on where many response options can be applied, for which this analysis was unable to go into contextual detail. Additionally, trying to assess the literature across the global scale has meant that many important, context-specific interactions (e.g., by location, ecosystem type, or administrative unit) cannot be accounted for. This is complicated by the fact that the literature is skewed toward some regions more than others, depending on the option assessed (e.g., Kuyah et al., 2016). Future assessments could help to clarify where these spatial biases are most relevant for which practices and options.

Furthermore, all land-based options we assessed are scale dependent, and the potential adverse side effects of practices such as BECCS are reflective of large-scale implementation. Such adverse side effects could be at least partially ameliorated if applied on a smaller share of the land, or if integrated into sustainably managed landscapes (Cacho, Negri, Zumpf, & Campbell, 2018), arguing further for multiscalar, nexus approaches to policy implementation.

As Tables 3-8 demonstrate, there are also considerable knowledge gaps. Many response options have not been investigated for their impacts on SDGs or NCPs, and thus, our literature reviews turned up no data. There are many suggestive relationships that would benefit from further research; for example, interactions of all the response options for their impacts on gender. Given that we know that women make up much of the agricultural workforce in the world, the lack of information on how various farming response options impact on gender dynamics is problematic. For example, we do have studies that show how gender impacts farming (i.e., women and men engage in different practices), but we are less clear on the reverse: that is, how do different farming practices result in more or less gender equity (the specific SDG goal). Thus, the directionality of impacts between options and SDGs/NCPs was particularly challenging in reviewing the literature. Furthermore, given how important land management is for the supply of NCPs, we would expect more research to be conducted on the full range of NCPs from different land management practices, but certain NCPs have greater limitations in the literature than others (e.g., there is considerably less information on pollination services, air quality, or hazard regulation impacts linked to different specific land use practices).

CONCLUSIONS 5

The world faces a series of interlinked challenges in our land sector: the need for mitigation of greenhouse gases, adaptation to existing and impending climate change, reducing land degradation, and ensuring food security. How to potentially address all the challenges in an integrated manner, without undue impacts on any of these challenges or on socio-environmental systems, is the goal of many countries in their NDCs, adoption of SDGs, and other national policies. Identifying potential options was also the overall goal for many countries in calling for the IPCC Climate Change and Land report.

Our comprehensive assessment concludes that a number of response options can make a valuable contribution to tackling these land challenges and at the same time help in eradicating poverty, provisioning and regulating water, producing food, energy, and other materials, and supporting sustainable cities and communities, among other positive benefits associated with NCPs and SDGs. The fact that there are a wide range of policy responses that have the potential to make positive contributions to sustainable development, ecosystem services, and other societal goals, with minimal trade-offs, is good news.

However, as our results suggest, care must be taken to acknowledge and manage the potential trade-offs where they do exist. Our analysis has pointed out that some response options with high mitigation or adaptation benefits do show potentially large adverse impacts on some SDGs or NCPs. Land management-based options that require significant land use change can adversely affect efforts to eradicate poverty and eliminate hunger (Molotoks et al., 2018); such trade-offs were identified with afforestation and BECCS/bioenergy in particular. Recognizing these trade-offs in advance can help policymakers find alternative measures, or at least possibilities to avoid or minimize negative effects, through well-managed implementation, safety nets, and welfare policies, among other solutions (Trisos et al., 2019). Similarly, social development options that are focused on human improvement to the exclusion of natural systems can have adverse effects on NCPs. Policymakers face strong challenges in trying to balance these competing goals, and use of trade-off analyses derived from extensive literature reviews, as we have done here, is one way to help identify these pitfalls.

Furthermore, our analysis also has highlighted the many important synergies between SDG goals and NCP supply. Some options to tackle land and climate challenges do in fact provide a balanced set of co-benefits across both SDGs and NCPs. What these balanced options have in common is that they acknowledge the integration of socio-ecological systems, rather than having primary objectives that are predominantly environmental or social. However, many of the positive co-benefits that are possible will not happen automatically, and are dependent on institutional and enabling conditions for success (IPCC, 2019). All too often, land and climate policies are not planned in an integrated manner, as examination of many existing NDCs reveals, and when synergies are not managed for explicitly,

Global Change Biology -

this can result in lost opportunities. Nexus approaches to socio-environmental systems and "nature-based solutions" that have an explicitly integrated human/ecosystem benefit model are two approaches identified here that show promise.

Thus, how response options and policies are designed and delivered will play an important role in determining how beneficial they are in supporting SDG and NCP goals, and future research on the implementation successes and failures of these options is sorely needed (Independent Group of Scientists appointed by the Secretary-General, 2019). Ensuring that policymakers can anticipate adverse impacts and positive co-benefits in advance, and potentially choose the most appropriate response options for their particular contexts and challenges, will require more assessments such as these, and increased attention to co-benefit and trade-off interactions in the overall literature.

ACKNOWLEDGEMENTS

Work for this paper was undertaken as part of the IPCC Special Report on climate change, desertification, land degradation, SLM, food security, and greenhouse gas fluxes in terrestrial ecosystems, and we thank the support provided by the Technical Support Units for Working Groups I, II, and III. Particular thanks are due to Renee van Diemen of WGIII. Additional funding and support for McElwee's involvement in the IPCC process was provided by Dean Robert Goodman of the School of Environmental and Biological Sciences, Rutgers University. Cherubini acknowledges the support of the Norwegian Research Council through the projects BIOPATH and MITISRESS. Nkonya was supported by the CGIAR Research Program on Water, Land, and Ecosystems. The authors have no conflict of interest to declare.

ORCID

Pamela McElwee b https://orcid.org/0000-0003-3525-9285 Pete Smith b https://orcid.org/0000-0002-3784-1124

REFERENCES

- Adhikari, J. (2014). Seed sovereignty: Analysing the debate on hybrid seeds and GMOs and bringing about sustainability in agricultural development. *Journal of Forest and Livelihood*, 12, 33–46. Retrieved from https://www.forestaction.org/app/webroot/vendor/tinymce/ editor/plugins/filemanager/files/JFLVOI12%281%29/Adhikari.pdf
- Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32, 1–13. https://doi.org/10.1007/s13593-011-0065-6
- Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: A critique based on an assessment of urban land constraints. *Global Food Security*, 4, 8–15. https://doi.org/10.1016/J. GFS.2014.10.003
- Bezner Kerr, R. (2013). Seed struggles and food sovereignty in northern Malawi. *Journal of Peasant Studies*, 40, 867–897. https://doi. org/10.1080/03066150.2013.848428
- Bisht, I. S., Mehta, P. S., Negi, K. S., Verma, S. K., Tyagi, R. K., & Garkoti, S. C. (2018). Farmers' rights, local food systems, and sustainable household dietary diversification: A case of Uttarakhand Himalaya in north-western India. *Agroecology and Sustainable Food Systems*, 42, 77–113. https://doi.org/10.1080/21683565.2017.1363118

- Bonsch, M., Popp, A., Biewald, A., Rolinski, S., Schmitz, C., Weindl, I., ... Humpenöder, F. (2015). Environmental flow provision: Implications for agricultural water and land-use at the global scale. *Global Environmental Change*, 30, 113–132. https://doi.org/10.1016/j.gloen vcha.2014.10.015
- Bowman, M. S., & Zilberman, D. (2013). Economic factors affecting diversified farming systems. *Ecology and Society*, 18, art33. https://doi. org/10.5751/ES-05574-180133
- Bradford, K. J., Dahal, P., Van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., & Wu, F. (2018). The dry chain: Reducing postharvest losses and improving food safety in humid climates. *Trends in Food Science & Technology*, 71, 84–93. https://doi.org/10.1016/j.tifs. 2017.11.002
- Brueckner, J. K. (2000). Urban sprawl: Diagnosis and remedies. International Regional Science Review, 23, 160–171. https://doi.org/10.1177/01600 1700761012710
- Bryan, B. A., Runting, R. K., Capon, T., Perring, M. P., Cunningham, S. C., Kragt, M. E., ... Wilson, K. A. (2016). Designer policy for carbon and biodiversity co-benefits under global change. *Nature Climate Change*, 6, 301–305. https://doi.org/10.1038/nclimate2874
- Burns, W., & Nicholson, S. (2017). Bioenergy and carbon capture with storage (BECCS): The prospects and challenges of an emerging climate policy response. *Journal of Environmental Studies and Sciences*, 7(4), 527–534. https://doi.org/10.1007/s13412-017-0445-6
- Butchart, S. H., Miloslavich, P., Reyers, B., & Subramanian, S. M. (2019). Chapter 3: Assessing progress towards meeting major international objectives related to nature and nature's contributions to people. In *IPBES global assessment on biodiversity and ecosystem services*. Bonn, Germany: IPBES. Retrieved from https://www.ipbes.net/ system/tdf/ipbes_global_assessment_chapter_3_unedited_31may. pdf?file=1&type=node&id=35279
- Cacho, J. F., Negri, M. C., Zumpf, C. R., & Campbell, P. (2018). Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services. Wiley Interdisciplinary Reviews: Energy and Environment, 7, e275. https://doi. org/10.1002/wene.275
- Calvin, K., Wise, M., Kyle, P., Patel, P., Clarke, L., & Edmonds, J. (2014). Trade-offs of different land and bioenergy policies on the path to achieving climate targets. *Climatic Change*, 123, 691–704. https://doi. org/10.1007/s10584-013-0897-y
- Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., Twomlow, S., & Wollenberg, E. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. *Current Opinion in Environmental Sustainability*, 34, 13–20. https://doi. org/10.1016/j.cosust.2018.06.005
- Cibin, R., Trybula, E., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2016). Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. GCB Bioenergy, 8, 837–848. https://doi.org/10.1111/gcbb.12307
- Claassen, R., Carriazo, F., Cooper, J. C., Hellerstein, D., & Ueda, K. (2011). Grassland to cropland conversion in the Northern Plains: The role of crop insurance, commodity, and disaster programs. Washington, DC: Economic Research Service Report Summary, US Department of Agriculture. Retrieved from https://www.ers.usda.gov/webdocs/ publications/44876/7477_err120.pdf?v=0
- Clarke, L. E., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., ... van Vuuren, D. P. (2014). Assessing transformation pathways. In Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 413–510). Geneva, Switzerland: IPCC. Retrieved from https://www.ipcc.ch/site/assets/ uploads/2018/02/ipcc_wg3_ar5_chapter6.pdf
- Coomes, O. T., McGuire, S. J., Garine, E., Caillon, S., McKey, D., Demeulenaere, E., ... Wencélius, J. (2015). Farmer seed networks make a limited contribution to agriculture? Four common

📑 Global Change Biology

misconceptions. Food Policy, 56, 41–50. https://doi.org/10.1016/J. FOODPOL.2015.07.008

- Cooper-Ellis, S., Foster, D. R., Carlton, G., & Lezberg, A. (1999). Forest response to catastrophic wind: Results from an experimental hurricane. *Ecology*, 80(8), 2683. https://doi.org/10.2307/177250
- Crooks, S., Herr, D., Tamelander, J., & Laffoley, D. (2011). Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: Challenges and opportunities. Washington, DC: World Bank. Retrieved from https://openknowle dge.worldbank.org/bitstream/handle/10986/18318/605780REPL ACEM10of0Coastal0Wetlands.pdf?sequence=1&isAllowed=y
- Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., ... Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. *Science Advances*, 5(10), eaax0121. https://doi.org/10.1126/sciadv. aax0121
- Dangles, O., & Casas, J. (2019). Ecosystem services provided by insects for achieving sustainable development goals. *Ecosystem Services*, 35, 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002
- Demailly, K. E., & Darly, S. (2017). Urban agriculture on the move in Paris: The routes of temporary gardening in the neoliberal city. ACME, 16(2), 332–361. Retrieved from https://hal.archives-ouvertes.fr/hal-01972331/
- Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., ... Shirayama, Y. (2018). Assessing nature's contributions to people. *Science*, 359, 270–272. https://doi.org/10.1126/science.aap8826
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO₂ problem. Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163 834
- Dooley, K., & Kartha, S. (2018). Land-based negative emissions: Risks for climate mitigation and impacts on sustainable development. *International Environmental Agreements: Politics, Law and Economics*, 18, 79–98. https://doi.org/10.1007/s10784-017-9382-9
- ECOSOC. (2019). Special edition: Progress towards the Sustainable Development Goals – Report of the Secretary-General. New York, NY: UN Economic and Social Council.
- Ellis, E. C., Pascual, U., & Mertz, O. (2019). Ecosystem services and nature's contribution to people: Negotiating diverse values and tradeoffs in land systems. *Current Opinion in Environmental Sustainability*, 38, 86–94. https://doi.org/10.1016/j.cosust.2019.05.001
- Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... Zaks, D. P. M. (2011). Solutions for a cultivated planet. *Nature*, 478, 337–342. https://doi.org/10.1038/natur e10452
- Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., ... Yamagata, Y. (2016). Research priorities for negative emissions. *Environmental Research Letters*, 11, 115007. https://doi. org/10.1088/1748-9326/11/11/115007
- Gasparatos, A., Stromberg, P., & Takeuchi, K. (2011). Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agriculture, Ecosystems & Environment, 142, 111–128. https://doi.org/10.1016/j.agee.2011.04.020
- Gladwin, C., Peterson, J., & Uttaro, R. (2002). Agroforestry innovations in Africa: Can they improve soil fertility on women farmers' fields? *African Studies Quarterly*, 1&2, 245–269. Retrieved from http://asq. africa.ufl.edu/files/Gladwin-Peterson-Uttaro-Vol6-Issue-12.pdf
- Goodwin, B. K., & Smith, V. H. (2003). An ex post evaluation of the Conservation Reserve, federal crop insurance, and other government programs: Program participation and soil erosion. *Journal of Agricultural and Resource Economics*, 28, 201–216.
- Grey, S., & Patel, R. (2015). Food sovereignty as decolonization: Some contributions from Indigenous movements to food system and development politics. Agriculture and Human Values, 32, 431–444. https://doi.org/10.1007/s10460-014-9548-9

- Griggs, D., Stafford Smith, M., Rockström, J., Öhman, M. C., Gaffney, O., Glaser, G., ... Shyamsundar, P. (2014). An integrated framework for sustainable development goals. *Ecology and Society*, 19, art49. https:// doi.org/10.5751/ES-07082-190449
- Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., ... Noble, I. (2013). Policy: Sustainable development goals for people and planet. *Nature*, 495, 305–307. https://doi. org/10.1038/495305a
- Guerry, A. D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G. C., Griffin, R., ... Vira, B. (2015). Natural capital and ecosystem services informing decisions: From promise to practice. *Proceedings of the National Academy of Sciences of United States of America*, 112, 7348–7355. https://doi.org/10.1073/pnas.1503751112
- Haddad, L. (2000). A conceptual framework for assessing agriculturenutrition linkages. *Food and Nutrition Bulletin*, 21(4), 367–373. https:// doi.org/10.1177/156482650002100405
- Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable development goals: A need for relevant indicators. *Ecological Indicators*, 60, 565– 573. https://doi.org/10.1016/j.ecolind.2015.08.003
- Hammer, K., & Teklu, Y. (2008). Plant genetic resources: Selected issues from genetic erosion to genetic engineering. *Journal of Agriculture and Rural Development in the Tropics and Subtropics*, 109. Retrieved from https://jarts.info/index.php/jarts/article/viewFile/72/65
- Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., ... Kim, S. (2014). Long-term global water projections using six socioeconomic scenarios in an integrated assessment modelling framework. *Technological Forecasting and Social Change*, 81, 205–226. https://doi. org/10.1016/j.techfore.2013.05.006
- Helicke, N. A. (2015). Seed exchange networks and food system resilience in the United States. Journal of Environmental Studies and Sciences, 5, 636–649. https://doi.org/10.1007/s13412-015-0346-5
- Hof, C., Voskamp, A., Biber, M. F., Böhning-Gaese, K., Engelhardt, E. K., Niamir, A., ... Hickler, T. (2018). Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proceedings of the National Academy of Sciences of the United States of America, 115, 13294–13299. https://doi.org/10.1073/ pnas.1807745115
- Hollis-Hansen, K., Vermont, L., Zafron, M. L., Seidman, J., & Leone, L. (2019). The introduction of new food retail opportunities in lower-income communities and the impact on fruit and vegetable intake: A systematic review. *Translational Behavioral Medicine*, 9, 837–846. https://doi.org/10.1093/tbm/ibz094
- Howard, P. H. (2015). Intellectual property and consolidation in the seed industry. Crop Science, 55, 2489–2495. https://doi.org/10.2135/ cropsci2014.09.0669
- Hultman, N., Lou, J., & Hutton, S. (2020). A review of community co-benefits of the clean development mechanism (CDM). *Environmental Research Letters*, 15, 1053002. https://doi.org/10.1088/1748-9326/ ab6396
- Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., ... Stevanovic, M. (2018). Large-scale bioenergy production: How to resolve sustainability trade-offs? *Environmental Research Letters*, 13, 024011. https://doi.org/10.1088/1748-9326/aa9e3b
- Ilstedt, U., Malmer, A., Verbeeten, E., & Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. *Forest Ecology and Management*, 251, 45–51. https://doi.org/10.1016/j.foreco.2007.06.014
- Immerzeel, D. J., Verweij, P. A., van der Hilst, F., & Faaij, A. P. C. (2014). Biodiversity impacts of bioenergy crop production: A state-of-theart review. GCB Bioenergy, 6, 183–209. https://doi.org/10.1111/ gcbb.12067
- Independent Group of Scientists appointed by the Secretary-General. (2019). Global Sustainable Development Report 2019: The future is now – Science for achieving sustainable development. New York, NY: UN.

WILEY-

Global Change Biology -

- IPBES. (2018). Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In R. Scholes, L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner & T. G. Holland (Eds.). Bonn, Germany: IPBES Secretariat. Retrieved from https://ipbes.net/assessmentreports/ldr
- IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In S. Diaz, J. Settele, & E. Brondizio (Eds.). Bonn, Germany: IPBES Secretariat. Retrieved from https://www.ipbes.net/system/tdf/spm_global_unedited_advance. pdf?file=1&type=node&id=35245
- IPCC. (2018). Global Warming of 1.5 °C: An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, ... T. Waterfield, Eds.). Retrieved from http://www.ipcc.ch/report/sr15/
- IPCC. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse. Geneva, Switzerland: Author. Retrieved from https://www.ipcc.ch/srccl-report-download-page/
- Isakson, S. R. (2009). No hay ganancia en la milpa: The agrarian question, food sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands. *Journal of Peasant Studies*, 36(4), 725– 759. https://doi.org/10.1080/03066150903353876
- Iyer, G., Calvin, K., Clarke, L., Edmonds, J., Hultman, N., Hartin, C., ... Pizer, W. (2018). Implications of sustainable development considerations for comparability across nationally determined contributions. *Nature Climate Change*, 8, 124–129. https://doi.org/10.1038/s4155 8-017-0039-z
- Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., ... Brockerhoff, E. G. (2017). Tree diversity drives forest stand resistance to natural disturbances. *Current Forestry Reports*, *3*, 223–243. https://doi.org/10.1007/s40725-017-0064-1
- James, S. J. J., & James, C. (2010). The food cold-chain and climate change. Food Research International, 43, 1944–1956. https://doi. org/10.1016/j.foodres.2010.02.001
- Jones, A. D., Shapiro, L. F., & Wilson, M. L. (2015). Assessing the potential and limitations of leveraging food sovereignty to improve human health. Frontiers in Public Health, 3, 263. https://doi.org/10.3389/ fpubh.2015.00263
- Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76, 1–10. https://doi. org/10.1007/s10457-009-9229-7
- Kadykalo, A. N., López-Rodriguez, M. D., Ainscough, J., Droste, N., Ryu, H., Ávila-Flores, G., ... Harmáčková, Z. V. (2019). Disentangling 'ecosystem services' and 'nature's contributions to people'. *Ecosystems and People*, 15, 269–287. https://doi.org/10.1080/26395916.2019.1669713
- Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., ... Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. *Agricultural Systems*, 163, 73–88. https://doi.org/10.1016/j.agsy.2016.09.010
- Karabulut, A. A., Udias, A., & Vigiak, O. (2019). Assessing the policy scenarios for the Ecosystem Water Food Energy (EWFE) nexus in the Mediterranean region. *Ecosystem Services*, 35, 231–240. https://doi. org/10.1016/j.ecoser.2018.12.013
- Keding, G. B., Schneider, K., & Jordan, I. (2013). Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. *Food Security*, 5, 825–846. https://doi.org/10.1007/ s12571-013-0312-6
- Keitt, T. H. (2009). Habitat conversion, extinction thresholds, and pollination services in agroecosystems. *Ecological Applications*, 19, 1561– 1573. https://doi.org/10.1890/08-0117.1

- Kiptot, E., & Franzel, S. (2012). Gender and agroforestry in Africa: A review of women's participation. Agroforestry Systems, 84, 35–58. https://doi.org/10.1007/s10457-011-9419-y
- Kiptot, E., Franzel, S., & Degrande, A. (2014). Gender, agroforestry and food security in Africa. Current Opinion in Environmental Sustainability, 6, 104–109. https://doi.org/10.1016/j.cosust.2013.10.019
- Kloppenberg, J. (2010). Impeding dispossession, enabling repossession: Biological open source and the recovery of seed sovereignty. *Journal of Agrarian Change*, 10, 367–388. https://doi. org/10.1111/j.1471-0366.2010.00275.x
- Kloppenburg, J. (2014). Re-purposing the master's tools: The open source seed initiative and the struggle for seed sovereignty. The Journal of Peasant Studies, 41, 1225–1246. https://doi.org/10.1080/03066150. 2013.875897
- Kreidenweis, U., Humpenöder, F., Stevanović, M., Bodirsky, B. L., Kriegler, E., Lotze-Campen, H., & Popp, A. (2016). Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects. *Environmental Research Letters*, 11, 085001. https://doi. org/10.1088/1748-9326/11/8/085001
- Kuyah, S., Öborn, I., Jonsson, M., Dahlin, A. S., Barrios, E., Muthuri, C., ... Sinclair, F. L. (2016). Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. International Journal of Biodiversity Science, Ecosystem Services & Management, 12, 255–273. https://doi.org/10.1080/21513732.2016.1214178
- Leakey, R. R. B., & Simons, A. J. (1997). The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agroforestry Systems, 38, 165–176. https://doi.org/10.1016/ b978-0-12-805356-0.00005-2
- Leitgeb, F., Schneider, S., & Vogl, C. R. (2016). Increasing food sovereignty with urban agriculture in Cuba. Agriculture and Human Values, 33, 415–426. https://doi.org/10.1007/s10460-015-9616-9
- Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. *BioScience*, 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4
- Locatelli, B., Pavageau, C., Pramova, E., & Di Gregorio, M. (2015). Integrating climate change mitigation and adaptation in agriculture and forestry: Opportunities and trade-offs. Wiley Interdisciplinary Reviews: Climate Change, 6, 585–598. https://doi.org/10.1002/wcc.357
- Louwaars, N. P. (2002). Seed policy, legislation and law. *Journal of New Seeds*, 4, 1–14. https://doi.org/10.1300/J153v04n01_01
- Mazzeo, J., & Brenton, B. (2013). Peasant resistance to hybrid seed in Haiti: The implications of humanitarian aid on food security and cultural identity. In H. Garth (Ed.), *Food and identity in the Caribbean* (pp. 121–137). https://doi.org/10.5040/9781350042162.ch-008
- Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P. A., & Kowero, G. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. *Current Opinion in Environmental Sustainability*, *6*, 61–67. https://doi.org/10.1016/j. cosust.2013.10.014
- McElwee, P. (2017). The metrics of making ecosystem services. *Environment and Society*, 8, 96–124. https://doi.org/10.3167/ares.2017.080105
- McGuire, S., & Sperling, L. (2016). Seed systems smallholder farmers use. Food Security, 8, 179–195. https://doi.org/10.1007/s1257 1-015-0528-8
- McMichael, P., & Schneider, M. (2011). Food security politics and the millennium development goals. *Third World Quarterly*, 32, 119–139. https://doi.org/10.1080/01436597.2011.543818
- McShane, T. O., Hirsch, P. D., Trung, T. C., Songorwa, A. N., Kinzig, A., Monteferri, B., ... O'Connor, S. (2011). Hard choices: Making trade-offs between biodiversity conservation and human well-being. *Biological Conservation*, 144, 966–972. https://doi.org/10.1016/j.biocon.2010. 04.038
- Meyfroidt, P. (2018). Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions. *Global Food Security*, 16, 9–16. https://doi.org/10.1016/j.gfs.2017.08.001

Global Change Biology

- Mirzabaev, A., Guta, D., Goedecke, J., Gaur, V., Börner, J., Virchow, D., ... von Braun, J. (2015). Bioenergy, food security and poverty reduction: Trade-offs and synergies along the water-energy-food security nexus. *Water International*, 40, 772-790. https://doi. org/10.1080/02508060.2015.1048924
- Miteva, D. A. (2019). The integration of natural capital into development policies. Oxford Review of Economic Policy, 35, 162–181. https://doi. org/10.1093/oxrep/gry029
- Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T. P., & Smith, P. (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. *Global Change Biology*, 24, 5895–5908. https://doi.org/10.1111/ gcb.14459
- Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. *Environmental Science & Technology*, 44, 7138–7144. https://doi.org/10.1021/es9039677
- Ngcoya, M., & Kumarakulasingam, N. (2017). The lived experience of food sovereignty: Gender, indigenous crops and small-scale farming in Mtubatuba, South Africa. *Journal of Agrarian Change*, 17, 480–496. https://doi.org/10.1111/joac.12170
- Nilsson, M., Chisholm, E., Griggs, D., Howden-Chapman, P., McCollum, D., Messerli, P., ... Stafford-Smith, M. (2018). Mapping interactions between the sustainable development goals: Lessons learned and ways forward. Sustainability Science, 13, 1489–1503. https://doi. org/10.1007/s11625-018-0604-z
- Park, C. M. Y., White, B., & Julia (2015). We are not all the same: Taking gender seriously in food sovereignty discourse. *Third World Quarterly*, 36, 584–599. https://doi.org/10.1080/01436597.2015. 1002988
- Pascual, U., Balvanera, P., Díaz, S., Pataki, G., Roth, E., Stenseke, M., ... Yagi, N. (2017). Valuing nature's contributions to people: The IPBES approach. *Current Opinion in Environmental Sustainability*, 26–27, 7– 16. https://doi.org/10.1016/j.cosust.2016.12.006
- Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., ... Vuuren, D. P. V. (2017). Land-use futures in the shared socio-economic pathways. *Global Environmental Change*, 42, 331–345. https:// doi.org/10.1016/j.gloenvcha.2016.10.002
- Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., ... Edenhofer, O. (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. *Environmental Research Letters*, *6*, 034017. https://doi.org/10.1088/1748-9326/6/3/034017
- Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer, N., & Bodirsky, B. (2011). On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. *Biomass* and Bioenergy, 35, 4770–4780. https://doi.org/10.1016/j.biombioe. 2010.06.014
- Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of Sustainable Development Goal (SDG) interactions. *Earth's Future*, 5, 1169–1179. https://doi.org/10.1002/2017EF000632
- Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., ... Calfapietra, C. (2017). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. *Environmental Science & Policy*, 77, 15–24. https://doi.org/10.1016/j. envsci.2017.07.008
- Reed, J., Barlow, J., Carmenta, R., van Vianen, J., & Sunderland, T. (2019). Engaging multiple stakeholders to reconcile climate, conservation and development objectives in tropical landscapes. *Biological Conservation*, 238, 108229. https://doi.org/10.1016/j.biocon.2019. 108229
- Reed, M. S., Stringer, L. C., Dougill, A. J., Perkins, J. S., Atlhopheng, J. R., Mulale, K., & Favretto, N. (2015). Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems. Journal of

Environmental Management, 151, 472–485. https://doi.org/10.1016/j. jenvman.2014.11.010

- Richardson, D. M., & Van Wilgen, B. W. (2004). Invasive alien plants in South Africa: How well do we understand the ecological impacts? South African Journal of Science, 100(1–2), 45–52. Retrieved from https://journals.co.za/content/sajsci/100/1-2/EJC96214
- Ringler, C., Bhaduri, A., & Lawford, R. (2013). The nexus across Water, Energy, Land and Food (WELF): Potential for improved resource use efficiency? Current Opinion in Environmental Sustainability, 5, 617– 624. https://doi.org/10.1016/J.COSUST.2013.11.002
- Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., ... Foley, J. A. (2009). A safe operating space for humanity. *Nature*, 461, 472–475. https://doi.org/10.1038/461472a
- Rodríguez, J. P., Beard Jr., T. D., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J., ... Peterson, G. D. (2006). Trade-offs across space, time, and ecosystem services. *Ecology and Society*, 11, 28. https://doi. org/10.5751/ES-01667-110128
- Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., ... Lawrence, D. (2019). Contribution of the land sector to a 1.5 °C world. *Nature Climate Change*, 9, 817–828. https://doi.org/10.1038/ s41558-019-0591-9
- Rowland, D., Ickowitz, A., Powell, B., Nasi, R., & Sunderland, T. (2017). Forest foods and healthy diets: Quantifying the contributions. *Environmental Conservation*, 44, 102–114. https://doi.org/10.1017/ S0376892916000151
- Roy, J., Tschakert, P., Waisman, H., Halim, S., Antwi-Agyei, P., Dasgupta, P., ... Rodriguez, A. (2018). Sustainable development, poverty eradication and reducing inequalities. In Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Geneva, Switzerland: IPCC. Retrieved from http://www.ipcc. ch/report/sr15/
- Sachs, J. D., Schmidt-Traub, G., Mazzucato, M., Messner, D., Nakicenovic, N., & Rockstrom, J. (2019). Six transformations to achieve the Sustainable Development Goals. *Nature Sustainability*, *2*, 805–814. https://doi.org/10.1038/s41893-019-0352-9
- Sadler, R. C., Gilliland, J. A., & Arku, G. (2013). A food retail-based intervention on food security and consumption. *International Journal* of Environmental Research and Public Health, 10, 3325–3346. https:// doi.org/10.3390/ijerph10083325
- Santilli, J. (2012). Agrobiodiversity and the law: Regulating genetic resources, food security and cultural diversity. New York, NY: Earthscan.
- Sanz, M. J., Vente, J., Chotte, J. L., Bernoux, M., Kust, I., Ruiz, M., ... Akhtar-Schuster, M. (2017). Sustainable Land Management contribution to successful land-based climate change adaptation and mitigation. A Report of the Science-Policy Interface. Bonn, Germany: UN Convention on Desertification. Retrieved from https://www.unccd.int/sites/default/files/documents/2017-09/ UNCCD_Report_SLM_web_v2.pdf
- Schleicher, J., Schaafsma, M., & Vira, B. (2018). Will the Sustainable Development Goals address the links between poverty and the natural environment? *Current Opinion in Environmental Sustainability*, 34, 43–47. https://doi.org/10.1016/j.cosust.2018.09.004
- Seddon, N., Daniels, E., Davis, R., Chausson, A., Harris, R., Hou-Jones, X., ... Wicander, S. (2020). Global recognition of the importance of nature-based solutions to the impacts of climate change. *Global Sustainability*, 3, 1–12. https://doi.org/10.1017/sus.2020.8
- Seddon, N., Sengupta, S., García-Espinosa, M., Hauler, I., Herr, D., & Rizvi, A. R. (2019). Nature-based solutions in nationally determined contributions: Synthesis and recommendations for enhancing climate ambition and action by 2020. Gland, Switzerland: WWF.
- Singh, G. G., Cisneros-Montemayor, A. M., Swartz, W., Cheung, W., Guy, J. A., Kenny, T.-A., ... Ota, Y. (2018). A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals.

30

II FY-

Marine Policy, 93, 223–231. https://doi.org/10.1016/j.marpol.2017. 05.030

- Sinha, E., Michalak, A. M., Calvin, K. V., & Lawrence, P. J. (2019). Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. *Nature Communications*, 10, 939. https://doi.org/10.1038/s41467-019-08884-w
- Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., ... Arneth, A. (2020). Which practices co-deliver food security, climate change mitigation and adaptation, and combat land-degradation and desertification? *Global Change Biology*, *26*, 1532–1575. https://doi. org/10.1111/gcb.14878
- Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., ... Yongsung, C. (2016). Biophysical and economic limits to negative CO₂ emissions. *Nature Climate Change*, 6, 42–50. https://doi.org/10.1038/ NCLIMATE2870
- Smith, P., Haszeldine, R. S., & Smith, S. M. (2016). Preliminary assessment of the potential for, and limitations to, terrestrial negative emission technologies in the UK. Environmental Science: Processes & Impacts, 18, 1400–1405. https://doi.org/10.1039/C6EM00386A
- Stathers, T., Lamboll, R., & Mvumi, B. M. (2013). Postharvest agriculture in changing climates: Its importance to African smallholder farmers. *Food Security*, 5, 361–392. https://doi.org/10.1007/s12571-013-0262-z
- Stoy, P. C., Ahmed, S., Jarchow, M., Rashford, B., Swanson, D., Albeke, S., ... Poulter, B. (2018). Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. *BioScience*, 68, 100–111. https://doi.org/10.1093/ biosci/bix145
- Timko, J., Le Billon, P., Zerriffi, H., Honey-Rosés, J., de la Roche, I., Gaston, C., ... Kozak, R. A. (2018). A policy nexus approach to forests and the SDGs: Tradeoffs and synergies. *Current Opinion in Environmental Sustainability*, 34, 7-12. https://doi.org/10.1016/j. cosust.2018.06.004
- Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: A review. *Food Research International*, 43, 1745–1765. https://doi.org/10.1016/j.foodres.2010. 07.003
- Trisos, C. H., Alexander, S. M., Gephart, J. A., Gurung, R., McIntyre, P. B., & Short, R. E. (2019). Mosquito net fishing exemplifies conflict among Sustainable Development Goals. *Nature Sustainability*, 2, 5–7. https:// doi.org/10.1038/s41893-018-0199-5
- UN. (2018). Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. New York, NY: Author. Retrieved from https://unstats.un.org/sdgs/ indicators/Global%20Indicator%20Framework_A.RES.71.313%20 Annex.pdf
- UN Environment. (2019). Global environment outlook GEO-6: Healthy planet, healthy people. In P. Ekins, J. Gupta, & P. Boileau (Eds.). Nairobi, Kenya: Author. https://doi.org/10.1017/9781108627146
- Upreti, B. R., & Upreti, Y. G. (2002). Factors leading to agro-biodiversity loss in developing countries: The case of Nepal. *Biodiversity* and Conservation, 11, 1607–1621. https://doi.org/10.1023/A:10168 62200156
- van Niekerk, J., & Wynberg, R. (2017). Traditional seed and exchange systems cement social relations and provide a safety net: A case study

from KwaZulu-Natal, South Africa. Agroecology and Sustainable Food Systems, 41, 1–25. https://doi.org/10.1080/21683565.2017.1359738

- van Soest, H. L., van Vuuren, D. P., Hilaire, J., Minx, J. C., Harmsen, M. J. H. M., Krey, V., ... Luderer, G. (2019). Analyzing interactions among Sustainable Development Goals with Integrated Assessment Models. *Global Transitions*, 1, 210–225. https://doi.org/10.1016/j. glt.2019.10.004
- Vasseur, L., Horning, D., Thornbush, M., Cohen-Shacham, E., Andrade, A., Barrow, E. D., ... Jones, M. (2017). Complex problems and unchallenged solutions: Bringing ecosystem governance to the forefront of the UN Sustainable Development Goals. *Ambio*, 46, 731–742. https:// doi.org/10.1007/s13280-017-0918-6
- Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-13 0608
- von Stechow, C., McCollum, D., Riahi, K., Minx, J. C., Kriegler, E., van Vuuren, D. P., ... Edenhofer, O. (2015). Integrating global climate change mitigation goals with other sustainability objectives: A synthesis. Annual Review of Environment and Resources, 40, 363–394. https://doi.org/10.1146/annurev-environ-021113-095626
- Weitz, N., Nilsson, M., & Davis, M. (2014). A nexus approach to the post-2015 agenda: Formulating integrated water, energy, and food SDGs. SAIS Review of International Affairs, 34, 37–50. https://doi. org/10.1353/sais.2014.0022
- Wittman, H. (2011). Food sovereignty: A new rights framework for food and nature? *Environment and Society*, 2, 87–105. https://doi. org/10.3167/ares.2011.020106
- Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences of the United States of America, 110, 4134–4139. https://doi.org/10.1073/pnas.1215404110
- Yang, R., & Hanson, P. M. (2009). Improved food availability for food security in Asia-Pacific region. Asia Pacific Journal of Clinical Nutrition, 18, 633–637.
- Yao, S., & Li, H. (2010). Agricultural productivity changes induced by the Sloping Land Conversion Program: An analysis of Wuqi County in the loess plateau region. *Environmental Management*, 45(3), 541–550. https://doi.org/10.1007/s00267-009-9416-3

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: McElwee P, Calvin K, Campbell D, et al. The impact of interventions in the global land and agri-food sectors on Nature's Contributions to People and the UN Sustainable Development Goals. *Glob Change Biol.* 2020;00:1–31. https://doi.org/10.1111/gcb.15219 Supplementary Online Material for "The impact of interventions in the global land and agri-food sectors on Nature's Contributions to People and the UN Sustainable Development Goals"

Table S1 Literature on Impacts on Nature's Contributions to People of integrated response options based on land management

<u>Response</u> options based on land management		Habitat creation and maintenance	Pollination and dispersal of seeds and other propagules	Regulation of air quality	Regulation of climate	Regulation of ocean acidificatio n	Regulation of freshwater quantity, flow and timing	Regulation of freshwater and coastal water quality	Formation, protection and decontam- ination of soils and sediments	Regulation of hazards and extreme events	Regulation of organisms detrimental to humans	Energy	Food and feed	Materials and assistance	Medicinal, biochemical and genetic resources	Learning and inspiration	Physical and psychological experiences	Support- ing identities	Maintenance of options
	Increased food	Higher productivity spares land (e.g. Balmford et al. 2018) especially if intensification is done sustainably; conventional intensification associated with biodiversity and habitat loss (Beckmann et	May reduce native pollinators if reliant on increased chemical inputs (Potts et al., 2010) but evidence is mixed on sustainable intensificati		Could provide significant mitigation potential (Smith et al. 2020) by avoiding emissions that would occur if increased food demand were met through expansion of the agricultural land area (Bustamant e t al., 2014; Lamb	Mitigation potential will reduce ocean	Food productivity increases likely will increase demand for irrigation, which affects water flow and timing (Mueller et al., 2012; Rockström et	Food productivity increases could impact water quality if increases in chemicals used, but evidence is mixed on sustainable intensification (Mueller et al, 2012; Rockström et	Context dependent: Intensification through additional input of fertiliser can result in negative impacts on climate, soil, water and air pollution (Tilman, Cassman, Matson, Naylor, & Polasky, 2002), but sustainable intensification can make positive use of soil ecosystem services		Increasing food production through agro- chemicals may increase pest resistance over time (Tilman et al., 2002), but sustainable intensificati on tries to		Sustainable intensificati on has strong potential to close yield gaps (Tilman, Balzer, Hill, & Befort,					Food productio n has coultural compone nts that can benefit social identities (Tengber g et al.,	
Agriculture	productivity Improved cropland management	al. 2019) Improved cropland management can contribute to diverse agroecosystem s (Tscharmke, Klein, Kruess, Steffan- Dewenter, & Thies, 2005) and promotes soil biodiversity (Ochl, Laczko, Oberholzer, Jansa, & Egli, 2017)	on Better crop managemen t can contribute to maintaining native pollinators (Dainese et al., 2019; Gardiner et al., 2009)	N/A Some potential benefits from some practices (e.g. residue retention instead of burning would reduce air pollution, Huang et al. 2012) but literature on other practices	Could provide moderate levels of mitigation (1.4-2.3 GtC0.2e yr ¹ (Smith et al., 2014, 2008)	acidification Mitigation potential will reduce ocean acidification	al., 2009), Cropland conversion leads to poorer water quantity due to runoff (Scanlon, Jolly, Sophocleous, & Zhang, 2007), improved management can reduce this (Fawcett, Christensen, & Tierney, 1994),	al., 2009) Cropland conversion has major impacts on water quantity (Scanlon et al., 2007). Cropland practices such as conservation tillage improve downstream water quality	2014) Improved cropland management has strong positive impacts on solis (Paustian et al., 2016)	N/A	avoid this. Some forms of improved cropland managemen t can decrease pathogens and pests (Tscharntke et al., 2016).	N/A NA	2011). Conservatio n agriculture contributes to food productivity and reduces food insecurity (Dar & Laxmipathi Gowda, 2013; Godfray & Gamett, 2014; Rosegrant & Cline, 2003)	N/A	N/A	N/A	N/A	2012) Many cropping systems have cultural compone nts that can benefit social identities (Tengber g et al., 2012)	N/A

Improved grazing land manage- ment	Can contribute to improved habitat for other species (Pons, Lambert, Rigolot, & Prodon, 2003; Plantureux, Peeters, & McCracken, 2005)	Possible that it may increase native pollinators but unclear evidence	N/A	Moderate mitigation potential (1.4–1.8 GtCO ₂ yr ¹) (P. Smith et al., 2008)	Mitigation potential will reduce ocean acidification	Best practices can improve water flow (Hibbert, 1983)	Best practices can improve water quality (Hibbert, 1983)	Improved grassland management increases soil carbon and quality (Conant & Paustian, 2002; Paustian et al., 2016)	N/A	N/A	N/A	Improved grassland managemen thas large potential contribute to food security through better livestock production (O'Mara, 2012)	Grassland management can provide olher materials (e.g. biofuel materials) (Prochnow, Heiermann, Piöchl, Amon, & Hobbs, 2009)	N/A	N/A	N/A	Many pastoralist s have close cultural connectio ns to livestock (Ainslie, 2013)	N/A
Improved livestock manage- ment	Can contribute to improved habitat if more efficient animals used, leading to less feed required (Strassburg et al., 2014)	Ν/Α	N/A	Moderate mitigation potential from direct and indirect pathways (0.2–1.8 GiCO ₂ e yr ⁻¹ (P. Smith et al., 2008;Herrer o et al., 2016)	Mitigation potential will reduce ocean acidification	N/A	Improved industrial livestock production can reduce water contamination (e.g. reduced effluents) (Hooda, Edwards, Anderson, & Edwards, Anderson, & Miller, 2000) Improved livestock management can contribute to better water as through manure management (Herrero & Thornton, 2013)	N/A	N/A	N/A	N/A	Improved livestock managemen t can contribute to reduced food insecurity among smallholder pastoralists (Hooft, Wollen, & Bhandari, 2012)	Livestock production also produces materials for use (leather, etc) (Hesse, 2006)	N/A	N/A	N/A	Many pastoralist s have close cultural connectio ns to livestock (Ainslie 2013)	N/A
Agro- forestry	Agroforestry mimics natural diversity and can strongly improve or provide additional habitat, including as conservation corridors (Jose, 2009; Jose 2012; Bhagwat, Willis, Birks, & Whittaker, 2008)	Diverse agroforestry systems can beneficial for pollinators (Dainese et al., 2019; Klefian- Dewenter, Buchori, & Tscharntke, 2002)	Trees in the landscape can remove air pollutants (Sutton et al., 2007)	Currently conserve carbon stocks equivalent to 0.7 GtCO ₂ yr ¹ ; global potential to increase range from 0.1 to 5.7 GtCO ₂ yr ¹ (Hawken, 2017); local climate benefits as well	Mitigation potential will reduce ocean acean	Planting trees on farms can increase soil water infiltration capacity (Ilstedt, Malmer, Verbecten, & Murdiyarso, 2007) and water quantity (Jose 2009)	Agro-forestry can be used to increase ecosystem services benefits, such as water quality, depending on species used (Jose 2009)	Mixed plantings improve soil (Mbow, Smith, Skole, Duguma, & Bustamante, 2014; Rao, Nair, & Ong, 1997)	Agroforestr y can reduce vulnerabilit y to hazards like wind and drought (Thorlakson & Neufeldt, 2012)	Diversity generally improves opportunitie s for biological pest control through beneficial arthropods (Gardiner et al., 2009; Rao, Singh, & Day, 2000); can reduces pests/pathog ens on smallholder farms (Vignola et al., 2015)	Agrofores try can be used to produce biomass for energy (Mbow, Smith, et al., 2014)	Agroforestr y contributes to food productivity and reduces food insecurity (Mbow, Van Noordwijk, et al., 2014)	Produces timber, frewood and animal fodder (Mbow, Smith, et al., 2014) Divide for for	Can provide medicinal and other resources (Rao, Palada, & Becker, 2014)	N/A	N/A	Many agroforest ry systems have important cultural compone nts (Rao et al., 2014)	Can contribut to maintaining diversity through native plantings (Ra et al., 2014)
101 Cat. j		Diversificati	1	1		Changing	Changing	Diversificatio		Diverse		Diversificati	Diversificatio	Practices for			Many	Can contrib
Agricultural	Crop diversification improves resilience through	on can enhance pollinator diversity,		Globally unquantifie d potential for		crops may improve water infiltration capacity but	crops may improve water quality if less pesticides are	n can introduce some crops that may have		agroecosyst ems tend to have less detrimental		on is associated with increased	n could provide additional materials and	agricultural diversification can include medicinal			diverse cropping systems have	to maintain biodiversity through na plantings

		diversity to mimic more natural systems including functional biodiversity at multiple spatial and/or temporal scales (Kremen, Iles, & Bacon, 2012; Lin, 2011)	on crops used (Altieri & Letourneau, 1982; Dainese et al., 2019; Sardiñas & Kremen, 2015)				highly on context, not function of diversification alone, so unclear effects	depends highly on context, not function of diversification alone, so unclear effects	qualities (eg nitrogen fixation) and crop rotation with multiple crops can improve soil carbon (McDaniel, Tiremann, & Grandy, 2014)		to in-field habitat for natural pest defences (Altieri & Letourneau, 1982; Gardiner et al., 2009) Intact		income and additional food sources for the farming household (Ebert, 2014; J. N. Pretty, Morison, & Hine, 2003)	(Van Huylenbroeck, Na, Metepenning en, & Verspecht, 2007)	systems (Chauhan, 2010)			compone nts (Rao et al., 2014)	Kremen, 2015)
con gras	voidance of onversion of assland to opland	Is aimed at preserving natural grassland habitat (Peeters, 2009)	N/A	N/A	Mitigation potential of 0.03 Gt CO ₂ yr ¹ (P. Smith et al., 2019)	Mitigation potential will reduce ocean acidification	Will likely improve water flow (inferred from improved soil quality) (Saviozzi, Levi-Minzi, Cardelli, & Riffaldi, 2001)	Will likely improve water quality (inferred from improved soil quality) (Saviozzi et al., 2001)	Strongly improves soil quality (Saviozzi et al., 2001)	N/A	agroecosyst ems tend to have less detrimental impacts from pests but little literature specifically on grasslands	N/A	Reducing cropland conversion can reduce food production potentials (West et al., 2010)	N/A	N/A	N/A	N/A	N/A	Retaining natural ecosystems can preserve genetic diversity (Ekins, Simon, Deutsch, Folke, & De Groot, 2003)
Inte wat	itegrated	Ecosystem health and services can be enhanced by improving water management (Bernex, 2016; Boelce, Chiramba, & Khaka, 2011; Jingya Liu et al., 2016; Lloyd et al., 2013)	Some IWM strategies generate synergies between multiple ecosystem services, such as pollination, yield and farm profitability (Hipólito, Boscolo, & Viana, 2018)	IWM practices exert strong influence on ecosystem structure and function, with potential implications for regulating air quality (Xia et al., 2017)	IWM influences the storage and flow of water in watersheds (Eisenbies, Aust, Burger, & Adams, 2007) which are important for regulating microclimat	ΝΑ	IWM practices such as preventing aquifer and surface water depletion, Managed Aquiffer Recharge (MAR), enhancing rainwater management and increasing water use in discharge areas can increase water quantity (Nejad, 2013; Pereira, Cordery, & Iacovides, 2002)	Improving regulations for water sharing, trading and pricing in IWM can increase water quality (ADB, 2016)	IWM can provide co- benefits such as healthier soils (D. Grey & Sadoff, 2007; Junguo Liu et al., 2007; Junguo	IWM like Undergroun d Taming of Floods for Irrigation (UTFI),and reducing evaporation losses can reduced impacts of extreme weather events (Dillon & Arshad, 2016)	Ν/Α	IWM could indirectly help productio n of biomass for energy and firewood by providing sufficient water but no specific	Water conservatio n and rational water allocations help meet increasing demand for demand for demand for demand for Velazquez, 2008; WBCSD, 2014)	IWM indirectly supports forest growth conditions thereby providing wood and fodder and other materials but. no specific	N/A	N/A	Ν/Α	N/A	Ν/Α

				1			Due to										1		
																			1
							evapotranspira												1
							tion, trees												1
							recharge												1
							atmospheric												1
							moisture,												1
							contributing to												ł
							rainfall locally												1
							and in distant												1
							location, and	Forests tend to					Complex						1
							microbial	maintain					relationship						1
							flora and	water quality					between						1
							biogenic	by reducing					food and						1
							VOCs	runoff and					forests. On						1
							associated	trapping		Forest cover			positive						1
							with some	sediments and		can stabilise			side, many						1
							trees can	nutrients (Idris		land against	Forests can		millions of						1
							directly	Medugu,		land against	contribute		households						1
							promote	Rafee Majid,		catastrophic	to pest		rely on						1
				Trees			rainfall	Johar, &		movements	control and		nutrients						1
				remove air			(Arneth et al.,	Choji, 2010;		or intense	landscape		sourced						1
				pollution by			2010; Ellison	Salvati, Sabbi,		run-off	diversity		from forests						1
				the			et al., 2017)	Smiraglia, &		during	generally		(Rowland,						1
				interception			Trees enhance	Zitti, 2014)		storms and	improves		Ickowitz.						1
				of			soil	Precipitation		flood	opportunitie		Powell.						1
				particulate			infiltration	filtered	Forests	events. (B.	s for		Nasi, &						1
				matter on			and, under	through	counteract	Locatelli,	biological		Sunderland.						1
				plant			suitable	forested	wind-driven	Pavageau,	pest control		2017;					Many	1
				surfaces and			conditions,	catchments	degradation of	et al., 2015).	(Jactel et		Wunder,				Forests in	natural	1
		SFM aims to		the			improve	delivers	soils and	However,	al., 2017),	SFM may	Angelsen,			Natural	general	forest	1
		retain		absorption			groundwater	purified	contribute to	reducing	although not	increase	& Belcher,			forest	support	landscape	1
		substantial		of gaseous			recharge	ground and	soil crosion	harvesting	necessarily	availabilit	2014). On	Forests		ecosystems	psychological	s support	1
		levels of	Likely	pollutants	Moderate		(Calder, 2007;	surface water	protection and	rates and	directly	y of	negative	provide many		often inspire	wellbeing	cultural	ı
		biodiversity,	contributes	through the	mitigation		Ellison et al.,	co-benefits	soil fertility	prolonging	linked to	biomass	side,	non-wood		learning	(Coldwell &	identities	ı
		carbon, and	to	leaf	benefits		2017; Neary,	(Calder, 2007;	enhancement	rotation	SFM. Some	for	proximity of	additional		(Schultz &	Evans, 2018).	for	1
		timber stocks,	conservatio	stomata,	globally, up		Ice, &	Ellison et al.,	for	periods in	intensive	energy,	forest to	materials	Forests	Lundholm.	Evidence that	indigenou	ı
		e.g. through	n of native	with	to about 2		Jackson,	2017; Neary	agricultural	SFM may	forest	dependin	cropland	(Locatelli,	provide	2010;	SFM can	s peoples	ı
		selective	pollinators,	significant	Gt CO ₂ e yr ⁻¹		2009). Many	et al., 2009).	resilience	induce an	managemen	g on	can increase	Catterall, et	medicinal and	Turtle,	improve the	(Bolaños,	Many SFM
		logging (Putz	although	benefits to	(Grassi,		SFM practices	Many SFM	(Locatelli,	increased	t practices	managem	crop raiding	al., 2015),	other	Convery, &	cultural and	2011;	practices are
		et al., 2012).	literature	human	Pilli, House,		are explicitly	practices are	Pavageau, et	vulnerabilit	increase	ent goals	by wild	although SFM	resources	Convery,	recreational	Garí,	aimed at
		SFM practices	specifically	health	Federici, &	Mitigation	aimed at water	explicitly	al. 2015),	y of stands	pest	(Kraxner	animals	practices are	(Wunder et	2015)	value of	2001),	preserving
	Improved	often aim at	on SFM and	(Nowak,	Kurz, 2018;	potential	supply	aimed at water	although not	to external	infestations	et al.,	(Few,	not	al., 2014)	although not	ecosystems	although	genetic
	and	improving	pollinators	Hirabayashi	Griscom et	will reduce	improvement	quality	often	disturbances	(Jactel,	2013;	Martin, &	necessarily	although not	necessarily	(Knoke et al.,	not linked	diversity
	sustainable	ecosystem	is small	, Bodine, &	al., 2017;	ocean	(Creed, Sass,	improvement	explicitly	(Yousefpou	Brockerhoff	Sikkema	Gross-	aimed at these	necessarily	directly	2014;	directly to	(Rajora &
	forest	functionality	(Potts et al.,	Greenfield,	Roe et al.,	acidification	Buttle, &	(Creed et al.,	managed for	r et al.,	, & Duelli,	et al.,	Camp,	other	directly linked	linked to	Plieninger et	SFM	Mosseler,
Forests	management	(Führer, 2000)	2010)	2014)	2019)		Jones, 2011)	2011)	in SFM	2018)	2005)	2014)	2017)	materials	to SFM	SFM	al., 2015)	practices	2001)
. 010303	management	(1 amer, 2000)	2010)	2017)	2017)		201103, 2011)	2011)	01 141	2010)	2303)	2014)	2317)	mater into	10 DI M	51 191	un, 2015)	Plactices	2001)

						r		r		1			C 1	r	r				
													Complex						
													relationship						
													between						
													food and						
													forests.						
													Many						
													millions of						
													households						
													rely on						
													-						
													nutrients						
							Standing						sourced						
							forests						from forests					Many	
							contribute to						(Rowland et					natural	
							rainfall locally						al., 2017),					forest	
							and in distant						therefore					landscape	
							locations, and						REDD has					s support	
							microbial	Standing					potential to					cultural	
							flora and	forests tend to				Reduced	benefit but					identities	
								maintain				deforestat						for	
							biogenic						only if not						
			1	1	1		VOCs	water quality		1		ion may	in					indigenou	
			1	1	1		associated	by reducing		1		increase	competition					s peoples	
		Reduced	1	1	1		with some	runoff and		Localized		standing	for cropland					(Bolaños,	
		deforestation					trees can	trapping		hazards like		wood	production					2011;	
		can enhance					directly	sediments and		drought,		stocks,	and there					Garí,	
		connectivity	Reduced				promote	nutrients (Idris		floods and		but	are					2001);	
		between forest	deforestatio				rainfall	Medugu et al.,		duststorms		availabilit	compensati				Forests in	however,	
		areas and	n				(Arneth et al.,	2010; Salvati	Intact forests	can be		y depends	on for any				general	REDD	
		conserve	contributes	Standing			2010; Ellison	et al., 2014)	counteract	ameliorated	Standing	on what	-				0	has been	
				0									losses of			N	support		
		biodiversity	to	forests			et al., 2017)	Precipitation	wind-driven	by diverse	forests can	restriction	land	-		Natural	psychological	controver	
		hotspots, but	conservatio	improve air	Large		Trees enhance	filtered	degradation of	tree cover,	contribute	s are in	(Luttrell,	Forests		forest	wellbeing	sial	
		there are major	n of native	pollution by	technical		soil	through	soils, and	which	to pest	place for	Sills,	provide many		ecosystems	(Coldwell &	among	
		argument in	pollinators	the	mitigation		infiltration	forested	contribute to	would be	control and	managem	Aryani,	non-wood	Reduced	often inspire	Evans, 2018).	some	
		literature if	(Priess et	interception	potential of		and, under	catchments	soil erosion	encouraged	landscape	ent;	Ekaputri, &	additional	deforestation	learning	Forests often	indigenou	
		REDD+	al., 2007;	of	0.4-5.8 Gt		suitable	delivers	protection and	by reduced	diversity	REDD	Evinke,	materials	can protect	(Schultz &	support	s groups	Reducing
		mechanism	Winfree,	particulate	CO ₂ e yr ⁻¹		conditions.	purified	soil fertility	deforestatio	generally	can also	2018).	(Locatelli,	forest	Lundholm,	recreational	who fear	deforestation
		sufficiently	Bartomeus,	matter	from REDD		improve	ground and	enhancement	n (Cooper-	improves	increase	Much	Catterall, et	medicinal	2010; Turtle	opportunities	it	will likely
				(Nowak et	(Griscom et	Mitigation	-	-	for	Ellis et al.				al., 2015),		et al., 2015)	(Liddle,		-
		prioritizes biodiversity	& Cariveau, 2011)	al., 2014)	al., 2017;	Mitigation potential	groundwater	surface water co-benefits	agricultural	2009; Jactel	opportunitie s for	competiti on with	uncertainty about how	however.	plants (Arnold & Pérez,	although not	(Liddle, 1997),	commodif ies nature	preserve forest
	D. J J						recharge							· · ·					genetic
	Reduced	over carbon	although no	although no	Houghton &	will reduce	(Calder, 2007;	(Calder, 2007;	resilience	et al., 2017;	biological	biofuel	REDD	REDD could	2001) as long	necessarily	although not	(Lemaitre	diversity
1	deforestation	(Gardner et al.,	literature	literature	Nassikas,	ocean	Ellison et al.,	Ellison et al.,	(Locatelli,	Locatelli,	pest control	for land	actually	restrict access	as REDD	directly	necessarily	, 2011;	(Rajora &
	and	2012; Panfil &	specifically	specifically	2018; Roe	acidification	2017; Neary	2017; Neary	Pavageau, et	Pavageau,	(Jactel et	(Persson,	works on	to some	policies do not	linked to	directly linked	Van Dam,	Mosseler,
	degradation	Harvey, 2016)	on REDD	on REDD	et al., 2019)		et al., 2009)	et al., 2009)	al., 2015).	et al., 2015)	al., 2017)	2012)	ground.	resources	restrict access.	REDD	to REDD	2011)	2001)
		Forest					Literature is			Reforestatio			Competition				Forests in		
1		landscape	1	1	1		mixed on	Reforestation		n is			for land		1		general	Restoratio	
		restoration											for land between						
1		specifically	1	1	1		reforestation	impacts on		commonly					1		support	n is	
		aims to regain					and	water quality	Forest	used to			reforestatio				psychological	increasing	
1		ecological	1	1	1		restoration	depend on tree	restoration	stabilise			n and		1		wellbeing	ly	
1		integrity in	1	1	1		impacts on	species and	with native	land against			agricultural		1		(Coldwell &	including	
		deforested or					water flow.	planting	species	landslides			production				Evans, 2018).	cultural	
		degraded					Particular	methods but	contributes to	and flood			is a				Public support	identity	
		forest					activities	tend to be	improved soil	events.			potentially				for	and	
		landscape					associated	positive	hydrological	(Laurance,			large				reforestation	cultural	
1		(Maginnis &	1	1	1		with forest	(Mansourian,	functions and	2007;			adverse		1		can increase	ecosyste	
		Jackson, 2007; Stanturf, Balily	1	1	1		landscape	Vallauri, &	soil fertility	Phillips &			side-effect		1	Reforestatio	when	ms	
		Stanturf, Palik, Williams,								•									
		Dumroese, &	D	D.C			restoration,	Dudley,	(Locatelli,	Marden,			(Boysen et			n offers	recreation and	services	Destauri
		Madsen, 2014)	Restoration	Reforestatio	Large		such as mixed	2005). China	Pavageau, et	2012).			al., 2017;			opportunitie	tourism	as goals	Restoration
1			and	n is being	technical		planting,	has seen large	al., 2015);	However,			Kreidenwei	Reforestation		s to engage	opportunities	(Agnoletti	can improve
1				suggested as	mitigation		assisted	increases in	Perkins,	reforested			s et al.,	can provide	Forest	public in	are explicitly	, 2014)	genetic
		However,	reforestatio				natural	water quality	Nimmo, &	systems can		Reforestat	2016; P.	other	restoration can	learning	included	and can	diversity if
		However, reforestation	reforestatio n likely	novel	potential of		naturai						0.14.1.1						
		However, reforestation with non-			potential of 1.5-10.1 Gt		regeneration,	linked to	Medeiros,	be	Reforestatio	ion can	Smith et al	materials	increase	opportunitie	(Gordon &	provide	explicitly
		However, reforestation with non- native species	n likely contributes	novel strategy to	1.5-10.1 Gt		regeneration,	linked to	Medeiros, 2012):			ion can increase	Smith et al., 2013) that					provide benefits	
		However, reforestation with non-	n likely contributes to native	novel strategy to combat	1.5-10.1 Gt CO ₂ e yr ⁻¹	Mitigation	regeneration, and reducing	linked to national	2012);	vulnerable	n is often	increase	2013) that	(Locatelli,	medicinal	s (Lazos-	Barton, 2015),	benefits	included in
		However, reforestation with non- native species do not provide same	n likely contributes to native pollinators	novel strategy to combat ground level	1.5-10.1 Gt CO ₂ e yr ⁻¹ (Bastin et	Mitigation	regeneration, and reducing impact of	linked to national reforestation	2012); reforestation	vulnerable to natural	n is often vulnerable	increase availabilit	2013) that can lead to	(Locatelli, Catterall, et	medicinal supply	s (Lazos- Chavero et	Barton, 2015), and recreation	benefits to	included in reforestation
	P.	However, reforestation with non- native species do not provide	n likely contributes to native pollinators if native	novel strategy to combat ground level ozone and	1.5-10.1 Gt CO ₂ e yr ⁻¹ (Bastin et al., 2019;	potential	regeneration, and reducing impact of disturbances	linked to national reforestation and	2012); reforestation also tends to	vulnerable to natural disasters	n is often vulnerable to pest	increase availabilit y of	2013) that can lead to increases in	(Locatelli, Catterall, et al., 2015)(Le,	medicinal supply although	s (Lazos- Chavero et al., 2016;	Barton, 2015), and recreation can increase	benefits to participati	included in reforestation planning
	Re-	However, reforestation with non- native species do not provide same biodiversity	n likely contributes to native pollinators if native forest	novel strategy to combat ground level ozone and other	1.5-10.1 Gt $CO_2e \ yr^{-1}$ (Bastin et al., 2019; Griscom et	potential will reduce	regeneration, and reducing impact of disturbances (e.g.	linked to national reforestation and restoration	2012) ; reforestation also tends to reduce soil	vulnerable to natural disasters like wind	n is often vulnerable to pest outbreaks	increase availabilit y of biomass	2013) that can lead to increases in food prices	(Locatelli, Catterall, et al., 2015)(Le, Smith,	medicinal supply although needs to be	s (Lazos- Chavero et al., 2016; Mello,	Barton, 2015), and recreation can increase the value of	benefits to participati ng	included in reforestation planning (Thomas
	forestation	However, reforestation with non- native species do not provide same biodiversity benefits	n likely contributes to native pollinators if native forest species used	novel strategy to combat ground level ozone and other pollutants	1.5-10.1 Gt CO ₂ e yr ⁻¹ (Bastin et al., 2019; Griscom et al., 2017;	potential will reduce ocean	regeneration, and reducing impact of disturbances (e.g. prescribed	linked to national reforestation and restoration (Zhou et al.,	2012) ; reforestation also tends to reduce soil erosion over	vulnerable to natural disasters like wind throws,	n is often vulnerable to pest outbreaks (Alfaro &	increase availabilit y of biomass for energy	2013) that can lead to increases in food prices (Calvin et	(Locatelli, Catterall, et al., 2015)(Le, Smith, Herbohn, &	medicinal supply although needs to be explicit goal	s (Lazos- Chavero et al., 2016; Mello, Townsend,	Barton, 2015), and recreation can increase	benefits to participati ng communit	included in reforestation planning (Thomas Ledig &
	forestation and forest	However, reforestation with non- native species do not provide same biodiversity benefits (Brundu &	n likely contributes to native pollinators if native forest species used (Winfree et	novel strategy to combat ground level ozone and other pollutants (Kroeger et	1.5-10.1 Gt CO ₂ e yr ⁻¹ (Bastin et al., 2019; Griscom et al., 2017; Roe et al.,	potential will reduce	regeneration, and reducing impact of disturbances (e.g. prescribed burning) have	linked to national reforestation and restoration	2012) ; reforestation also tends to reduce soil erosion over time (Zheng et	vulnerable to natural disasters like wind	n is often vulnerable to pest outbreaks (Alfaro & Glover,	increase availabilit y of biomass for energy (Swisher,	2013) that can lead to increases in food prices (Calvin et al., 2014;	(Locatelli, Catterall, et al., 2015)(Le, Smith, Herbohn, & Harrison,	medicinal supply although needs to be explicit goal (H. S. Lee,	s (Lazos- Chavero et al., 2016; Mello, Townsend, & Filardo,	Barton, 2015), and recreation can increase the value of reforested areas	benefits to participati ng communit ies	included in reforestation planning (Thomas Ledig & Kitzmiller,
	forestation	However, reforestation with non- native species do not provide same biodiversity benefits (Brundu & Richardson,	n likely contributes to native pollinators if native forest species used	novel strategy to combat ground level ozone and other pollutants	1.5-10.1 Gt CO ₂ e yr ⁻¹ (Bastin et al., 2019; Griscom et al., 2017;	potential will reduce ocean	regeneration, and reducing impact of disturbances (e.g. prescribed	linked to national reforestation and restoration (Zhou et al.,	2012) ; reforestation also tends to reduce soil erosion over	vulnerable to natural disasters like wind throws,	n is often vulnerable to pest outbreaks (Alfaro &	increase availabilit y of biomass for energy	2013) that can lead to increases in food prices (Calvin et	(Locatelli, Catterall, et al., 2015)(Le, Smith, Herbohn, &	medicinal supply although needs to be explicit goal	s (Lazos- Chavero et al., 2016; Mello, Townsend,	Barton, 2015), and recreation can increase the value of reforested	benefits to participati ng communit	included in reforestation planning (Thomas Ledig &

		Animal use of					implications			(Nolan et			s et al.,				Termansen, &	García et	
		restored					for fresh water			al., 2018)			2016; Reilly				Jensen, 2005)	al., 2019)	
		landscapes for					supply			,)			et al., 2012;					, ,	
		habitat																	
		depends on					(Ciccarese,						Wise et al.,						
		the sensitivity					Mattsson, &						2009).						
		individual					Pettenella,						Restoration						
		species to					2012; Suding						could						
		forest					et al., 2015).						increase						
		degradation					However,						forest food						
		(Budiharta et					reforestation						availability.						
		al., 2014)																	
		al., 2014)					also can have						however.						
							adverse side-												
							effects for												
							reduction of												
							water yield												
							and water												
							availability,												
							dependent on												
							species and												
							scale (Calder,												
							2007; Filoso,							1					
							Bezerra,												
		1	1		1		Weiss, &			1		1							
							Palmer, 2017)												
							Faimer, 2017)												
		Afforestation																	
		alone is not																	
		sufficient to																	
		increase																	
		abundance of																	
		indigenous					Afforestation												
		species and					using some												
		habitat, as					exotic species												
		depends on					can upset the												
		type of					balance of		Afforestation										
		vegetation,					evapotranspira		is frequently										
		scale of the					tion regimes,		used to										
		land transition,					with negative		counteract										
							-												
		and time					impacts on		land										
		required for a					water		degradation										
		population to					availability		problems										
		establish					(e.g.		(Buongiorno										
		(Barry, Yao,					groundwater		& Zhu, 2014;										
		Harrison,					decline)		Yirdaw,										Plantations
		Paragahawewa					particularly in		Tigabu, &										and large
		. & Pannell.					arid regions		Monge, 2017)										scale
			1		1					1		1							
		2014).					(Ellison et al.,		(Buongiorno								1		afforestation
		Monocrop	1		1		2017;		and Zhu	Dense		1		Afforestation					is not
		plantations are	1		1		Jackson,		2014).	plantings in		1		could increase			Urban tree		generally
		least	Afforested				2005;		However,	afforestatio			Future	availability of			planting is		genetically
		successful for	areas				Trabucco.		afforestation	n may be			needs for	other			associated		diverse and
		habitat but still	demonstrate		1		Zomer,	Water quality	runs the risk	more		1	food	materials and			with		can have
							Bossio, Van											A Comments i	
		may be	lower					benefits	of decreasing	susceptive			production	benefits			psychological	Afforestat	negative
		preferable to	pollinator	Afforestatio			Straaten, &	depend on	soil nutrients,	to natural	Afforestatio		are a	(Rueff,			and physical	ion could	consequence
		other land uses	diversity	n in urban	1		Verchot,	where	especially in	disasters	n is often	1	constraint	Parizot, Israel,		Reforestatio	benefits	contribute	for genetic
		(Brockerhoff,	than native	areas	Large		2008; J.	afforesting	intensively	like wind	vulnerable		for large-	& Schwartz,		n/afforestati	dependent on	to cultural	drift (Steinitz,
		Jactel,	forests	reduces	technical		Turner et al.,	and with what	managed	damage	to pest	Afforestat	scale	2008), but		on offers	type of trees	benefits	Robledo-
		Parrotta,	(Armstrong,	local air	mitigation		2016)	species, and if	plantations	fires, and	outbreaks	ion may	afforestatio	NTFPs etc not		learning	planted	but would	Arnuncio, &
		Quine, &	van	pollution	potential of		Irrigation of	plantations	(Berthrong,	diseases	(Ji, Wang,	increase	n plans	usually		0	(Camacho-	need to	Nathan, 2012)
																opportunitie			
		Sayer, 2008;	Hensbergen,	(Kroeger et	1.5-10.1 Gt		forest	require	Jobbágy, &	(Nambiar,	Wang, &	availabilit	(Calvin et	accounted for		s (Lazos-	Cervantes,	include	and reduction
		Pawson et al.,	Scott, &	al., 2014;	CO ₂ e yr ¹		plantations	fertilization,	Jackson,	Harwood, &	An, 2011;	y of	al., 2014;	in plantations	Afforestation	Chavero et	Schondube,	these	in genetic
		2013), unless	Milton,	Pincetl,	(Bastin et	Mitigation	can increase	which can get	2009;	Kien, 2015;	van Lierop,	biomass	Kreidenwei	and can	does not seem	al., 2016;	Castillo, &	compone	diversity in
		planted on	1996;	Gillespie,	al., 2019;	potential	water	into runoff (D.	Berthrong,	Seidl,	Lindquist,	for energy	s et al.,	displace	to be	Mello et al.,	MacGregor-	nt	soil
		native	Olschewski,	Pataki,	Griscom et	will reduce	consumption	F. Scott,	Schadt,	Schelhaas,	Sathyapala,	use	2016; Reilly	NTFP	associated	2010)	Fors, 2014;	explicitly	microbiology
		ecosystems	Klein, &	Saatchi, &	al., 2017;	ocean	(Sterling,	Bruijnzeel, &	Pineiro, &	Rammer, &	&	(Oberstei	et al., 2012;	collection	with increased	dependent	Whitburn,	(Reyes-	(Berthrong,
	Afforest-	(e.g.	Tscharntke.	Saphores,	Roe et al	acidification	Ducharne, &	Mackensen.	Jackson.	Verkerk.	Franceschin	ner et al.,	Wise et al.,	(McElwee,	availability of	on type of	Linklater, &	García et	Schadt, et al.,
			,			aciumcation	· · · · · · · · · · · · · · · · · · ·								-				
	ation	grasslands)	2010)	2013)	2019)		Polcher, 2013)	2005)	2009)	2014)	i, 2015)	2006)	2009)	2009)	medicinals	activity	Milfont, 2019)	al., 2019)	2009)

		1	r	r	r				1					In terms of	1		1		
														In terms of raw materials,					
		Improving soil				Mitigation								numerous	Some				
		carbon can				potential								products (e.g.	pharmaceutica				
		increase				will reduce							Increased	pharmaceutica	ls can be				
		overall land				ocean							soil organic	ls, clay for	derived from				
		productivity				acidification							carbon	bricks and	soils (SSSA,				
		and (more				. Rivers also							offers one	ceramics,	2015)				
		indirectly)				transport							of best	silicon from	although not				
		contribute to				dissolved							mitigation	sand used in	directly				
		habitat				organic							options with	electronics,	related to soil				
		maintenance				matter to	Soil organic		Increasing soil				minimal	and other	carbon				
		(Tscharntke et				oceans	matter is		organic				food	minerals) are	management.				
		al., 2005);				(Hedges,	known to	Soil organic	carbon		Increased		security	provided by	Genetic				
		practices that				Keil, &	increase water	matter is	contributes		soil organic		impacts	healthy soils	variability in				
		increase soil				Benner,	filtration with	known to	substantially		carbon		(Frank et	(SSSA, 2015)	microbial				
		carbon also			Mitigation	1997) but	positive	improve water	to healthier		decreases		al., 2017) as	although not	activity likely				
		likely benefit			potential of	unclear if	impacts on	filtration and	soils		pathogens		it improves	directly	higher with				
	Increased	soil			1.3-5.1	improved	downstream	protects water	(Lehmann &		in soil		food	related to soil	soil organic				
	soil organic	biodiversity			GtCO ₂ e yr-1	soil organic	flows	quality	Kleber, 2015;		(Lehmann		production	organic	carbon				
	carbon	(Bender et al.,			(P. Smith et	carbon will	(Keesstra et	(Lehmann &	Paustian et al.,		& Kleber,		yields (R.	carbon	(Keesstra et				
	content	2016)	N/A	N/A	al., 2008)	affect this	al., 2016)	Kleber, 2015)	2016)	N/A	2015)	N/A	Lal, 2006)	management	al., 2016)	N/A	N/A	N/A	N/A
			1	Particulate	,,		, , , ,	,	,		,	1	,,		,	1		1	
				matter															
				pollution, a															
				main															
				consequenc															
				e of wind															
				erosion,						Reducing			Soil erosion						
				imposes						soil erosion			often leads						
				severe						reduces			to decreased						
				adverse				Many		vulnerabilit			food						
				impacts on				practices to		y to hazards			production						
		Managing for		materials,			Many	reduce soil		like wind			(Pimentel et						
		soil erosion		structures			practices to	erosion (e.g.		storms in			al., 1995)						
		indirectly		and climate			reduce soil	conservation		dryland			and yields						
		decreases need		particularly			erosion tend	tillage)		areas and			often go up						
		for expanded		in urban			to positively	indirectly	Less eroded	landslides in			under some						
		cropland into		areas (Al-			improve water	improve water	soils are	mountainou			conservatio						
		natural habitats		Thani, Koç,			flow	quality	higher quality	s areas (El-			n regimes						
	Reduced soil	(Pimentel et		& Isaifan,			(Pimentel et	(Pimentel et	(Keesstra et	Swaify,			(Ghosh et						
	erosion	al., 1995)	N/A	2018)	N/A	N/A	al., 1995)	al., 1995)	al., 2016)	1997)	N/A	N/A	al., 2010).	N/A	N/A	N/A/	N/A	N/A	N/A
		Soil																	
		salinization										1				1		1	
		(eg. ,																	
		downriver										1				1		1	
		from																	
		irrigation/						Management				1				1		1	
		dams)						of soil salinity				1				1		1	
		negatively						improves				1	Reversing			1		1	
		impacts						water quality				1	soil			1		1	
		ecosystem						(Kotb,				1	degradation			1		1	
		functioning,						Watanabe,				1	contributes			1		1	
		soil						Ogino, &				1	to food			1		1	
		biodiversity,						Tanji, 2000;					productivity		Salinisation				
		and can						Soane & Van				1	and reduces		decreases soil	1		1	
		increase						Ouwerkerk,	Management			1	food		microbial	1		1	
		susceptibility						1995; Zalidis,	of soil salinity			1	insecurity		diversity (Nie	1		1	
		to invasive						Stamatiadis,	directly			1	(Pimentel et		et al., 2009);	1		1	
		species						Takavakoglou	improves soil			1	al., 1995;		reversing it	1		1	
		(Nilsson &						, Eskridge, &	quality			1	Shiferaw &		improves	1		1	
	Reduced soil	Berggren,				27/1	211	Misopolinos,	(Keesstra et	27/1	27/1		Holden,	211	genetic		27/4	27/1	27/4
Soils	salinisation	2000)	N/A	N/A	N/A	N/A	N/A	2002)	al., 2016)	N/A	N/A	N/A	1999)	N/A	resources	N/A	N/A	N/A	N/A

	Reduced soil compaction	Preventing compaction indirectly decreases need for expanded eropland into natural habitats (Lal, 2001; Pimentel et al., 1995)	N/A	N/A	N/A	N/A	Compaction can increase water runoff - management of soil compaction improves water quantity (Soane & Van Ouwerkerk, 1995; Zalidis et al., 2002)	Management of soil compaction improves water quality (Soane & Van Ouwerkerk, 1995; Zalidis et al., 2002)	Actions to reduce compaction directly improve soil quality (Kcesstra et al., 2016)	Compaction in soils increases rates of runoff and can contribute to floods (Hümann et al., 2011)	N/A	N/A	Compaction s reduces agricultural productivity and thus contributes to food insecurity (Nawaz, Bourrié, & Trolard, 2013); reversing this can lead to increased productivity Biochar	N/A	N/A	N/A	N/A	N/A	N/A
	Biochar addition to soil	Biochar production could compete with natural habitat, depending on feedstock used (Meyer, Glaser & Quicker, 2011), but unclear evidence on direct relationship	N/A	Biochar itself has little air quality impact, but depending on kiln technologie s, biochar production can create particulate emissions (Sparrevik et al., 2012)	Potential abatement of 0.03 to 6.6 GtCO ₂ e yr ⁻¹ (Hawken, 2017)	Mitigation potential will reduce ocean acidification	Biochar tends to improve soil water filtration and retention, thus can improve downstream flows (Beck, Johnson, & Spolek, 2011; Spokas et al., 2012)	Biochar can improve soil water filtration, thus impacting quality (Beck et al., 2011; Spokas et al., 2012)	Biochar can improve soil quality through addition of nutrients and stimulating microbial activity (Sohi, 2012; Jones, Rousk, et al. 2012;	N/A	N/A	N/A	Biochar addition can increases food yields, depending on context (Jeffery et al., 2017; P. Smith, 2016); however, biochar production could compete with croplands, depending on feedstock used (Meyer, Glaser & Quicker, 2011)	N/A	N/A	N/A	Ν/Α	N/A	N/A
Other ecosystems	Fire manage- ment Reduced landslides and natural hazards	Proactive fire management can improve and preserve natural habitat (Burrows, 2008) Fewer landslides can preserve natural habitat (Dolidon, Hofer, Jansky, & Sidle, 2009)	Reducing fire risk may improve habitat for pollinators (Brown, York, Christie, & Mccarthy, 2016)	Fire managemen timproves air quality, particularly in the periurban interface (Bowman & Johnston, 2005)	Total emissions from fires have been in the order of 8.1 GtCO ₂ e yr ^{1.} therefore some fraction of that can be reduced (Arora and Melton 2018; Tacconi 2016)	Mitigation potential will reduce occan acidification	Fires affect water quality and flow due to erosion exposure (Townsend & Douglas, 2000), therefore reduction in fire hazard should improve Practices to reduce landslides (cg vegetation cover) will likely improve water flow (Dolidon et al., 2009)	Fires affect water quality and flow due to erosion exposure (Townsend & Douglas, 2000), therefore reduction in fire hazard should improve Practices to reduce landslides (cg vegetation cover) will likely improve water quality (Dolidon et al., 2009)	Fire causes damage to soils, therefore fire management can reduce this (Certini, 2007) Practices to reduce landslides (eg vegetation cover) will likely improve soil quality (Keesstra et al., 2016)	Will reduce risk of wildfires as a major human hazard (McCaffrey, 2004; Kumagai, Caroll & Cohn, 2004) Fewer landslides strongly reduces risk of disasters (Dolidon et al., 2009; Kousky, 2010)	Some benefits to pest control from fire managemen t (Hardison, 1976) N/A	Will increase availabilit y of biomass, as fuel removal is a key managem ent strategy (Becker, Larson, & Lowell, 2009)	N/A Landslides can have negative impacts on food security (De Haen & Hemrich, 2007)	N/A	N/A	N/A	Reduced wildlife risk will increase recreation opportunities in landscapes (Venn & Calkin, 2011)	N/A	N/A

Reduced pollution including acidification	Air pollution like acid rain has major impacts on habitats like lakes (Schindler, Kasian, & Hesslein, 1989)	Pollution interferes with scents, which impact pollinators ability to detect resources (McFrederic k, Kathilankal, & Fuentes, 2008)	Reducing pollution will improve air quality with public health benefits (Nemet, Holloway, & Meier, 2010)	Climate impacts in two channels: reduce projected warming ~0.5°C by 2050 and 2) N deposition affects terrestrial C uptake 0.55- 1.28 GICO ₂ e yr ¹ (Bala, Devaraju, Chaturvedi, Caldeira, & Nemani, 2013; Shindell et al., 2012)	Mitigation potential will reduce ocean acidification	N/A	Pollution increases acidity of surface water (Larssen et al., 1999); less pollution improves water quality Invasive	Soil acidification due to air pollution in a serious problem in many countries (Tian & Niu, 2015); less pollution will reduce this	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manage- ment of invasive species / encroach- ment	Many invasive alien species (IAS) diminish biodiversity; improved management of IAS can lead to improved habitat and ecosystems (Richardson & Wilgen, 2004)	Invasive species can disrupt native plant- pollinator relations (Vanbergen, Espíndola, & Aizen, 2018)	N/A	N/A	N/A	Many invasives can reduce water flow (Richardson & Wilgen, 2004)	freshwater species can reduce water quality (Burnett, Kaiser, & Roumasset, 2007; Cchamier, Schachtschnei der, Le Maitre, Ashton, & Van Wilgen, 2012)	Likely to improve soil as invasive species generally have negative effects on soils (Ehrenfeld & Scott, 2001)	N/A	Many IAS are considered harmful pests (Charles & Dukes, 2008)	N/A	IAS can compete with crops and reduce crop yields by billions of dollars annually (Pejchar & Mooney, 2009)	Many IAS are important suppliers of useful materials (Pejchar & Mooney 2009).	N/A	N/A	N/A	N/A	Reducing IAS can increase biological diversity of native organisms (Simberloff, 2005)
Restoration and avoided conversion of coastal wetlands	Coastal wetlands are important natural habitats (Griscom et al., 2017; J. Howard et al., 2017)	Coastal wetlands contain many natural pollinators (Seddon et al., 2016)	N/A	Mitigation potential of 0.3-3.1 GtC0.20 yr ¹¹ (Griscom et al., 2017; Pendleton et al., 2012)	Mitigation potential will reduce ocean acidification	Wetlands store freshwater and enhance water flow (Bobbink, Whigham, Beltman, & Verhoeven, 2006)	Wetlands strongly filter and enhance water quality (Bobbink et al., 2006)	Wetland conservation actions benefit soil quality (Zhao et al., 2016)	Restoration of wetlands, tidal marshes, or mangroves provide water retention and protect coastal cities from storm surge flooding and shoreline erosion during storms as well as protection against sea level rise (Gittman, Popowich, Bruno, & Peterson, 2014; J.	Natural landscape diversity generally improves opportunitie s for biological pest control (Gardiner et al. 2009)	N/A	Mixed evidence: can affect agriculture/f isheries production when competition for land occurs, or could increase food production when ecosystems are restored (Crooks, Herr, Tamelander, & Laffoley, 2011; Pendleton et al., 2012)		Wetlands can be sources of medicines (UNEP, 2016)	Many wetlands serve as living labs for students (Sukhontap atipak & Srikosamata ra, 2012)	Wetlands based recreation is very popular and economically valuable (Bergstrom, Stoll, Tire, & Wright, 1990)	Many wetland species serve important cultural roles and contribute to communit y identity (Davenpo rt et al., 2010; Garibalot aribator a Turner, 2004)	Biodiversity and genetic diversity in wetlands is a priority for conservation (Denny, 1994)

									Haddad, Lawler, & Ferreira, 2016; Kaplan & Hepcan, 2009)									
Restoration and avoided conversion of peatlands	Peatlands are important natural habitats (Lindsay, 1993)	Avoided conversion likely conserves natural pollinators although less known directly about peatlands (Winfree et al., 2011)	Conversion of peatlands has been implicated in negative regional smoke and particulate matter emissions (Tacconi 2016)	Mitigation potential of 0.6-2 GfCO ₂ e yr ¹ Griscom et al. (2017); Hawken 2017	Mitigation potential will reduce ocean acidification	Peatland restoration will improve water quantity as play important roles in water retention and drainage (Johnston, 1991)	Peatland restoration will improve water quality as play important roles in water filtration (Johnston, 1991)	Avoided conversion will improve peatland soil quality (Paustian et al., 2016), since conversion leads to degradation	N/A	Natural landscape diversity generally improves opportunitie s for biological pest control (Gardiner et al. 2009)	Will reduce supply of any bioenergy (c.g. palm oil) sourced from peatlands (Pin Koh, 2007)	May reduce land available for smallholder s agriculture in tropical peatlands (Jewitt, Nasir, Page, Rieley, & Khanal, 2014), where food is produced on peatlands	Will reduce supply of some sourced from peatlands (e.g palm oil) (Murdiyarso, Hergoualc'h, & Verchot, 2010)	N/A	Peatlands can provide opportunitie s for learning and other cultural services (Waylen, Noort, & Blackstock, 2016)	European peatlands are sites of recreation (eg berry picking) (Joosten & Clarke, 2002; Tolvanen, Juutinen, & Svento, 2013)	Peatlands can serve as sites of cultural identity and heritage (e.g Scotland) (Byg, Martin- Ortega, Glenk, & Novo, 2017; Faccioli, Czajkows ki, Glenk, & Martin, 2018)	Conversion of peatlands leads to loss of soil and plant genetic diversity (Dislich et al., 2017)
	Biodiversity conservation includes measures aiming to promote species richness and natural habitats e.g. protected areas (Powers & Jetz, 2019) & which can also have carbon benefits	Biodiverse animal and insect populations are necessary for pollination (Anzures- Dadda, Andresen, Martínez, & Manson, 2011; Beaune, Fruth, Bollache, Hohmann, & Bretagnolle, 2013; Brockerhoff et al., 2017; Brodie & Aslan, 2012;	Landscapes ensured by protected areas can remove air pollutants (Sutton et al., 2007), unclear if biodiversity	Depending on the type of practice and specific context (E.g. protected areas, wildlife corridors, etc) the potential mitigation from protection of these areas for the period 2005-2095 is on average about 0.9 GtCO_req.	Mitigation potential will reduce ocean	Many actions taken to increase biodiversity (e.g protected areas) can also have incidental effects of improving water quantity (Egoh, Reyers, Rouget, Bode,	Many actions taken to increase biodiversity (eg protected areas) can also have incidental effects of improving water quality	Management of wild animals and protected habitats can influence soil conditions via changes in fire frequency and nutrient cycling and transport. Conserving and restoring megafauna in northern regions also prevents thawing of permafrost. Management of wild animals can influence land degradation processes by grazing, trampling and compacting soil surfaces, thereby altering surface temperatures and chenical reactions affecting sediment and	Managemen t of wild animals can influence fire frequency as grazers lower grass and vegetation densities as potential fuels	Biological diverse fauna can reduce pest outbreaks		Biodiversity generally has positive effects on crop production (Potts et al., 2010) but expansion of protected areas or wildlife corridors could compete with food production in some areas of tropics (Musters, 2000; Visconti, Bakkenes, Smith, Joppa, &	Expansion of protected areas or wildlife corridors could reduce production and consumption of some materials in strictly protected areas	Many animals are used as sources of medicines, and genetic diversity is important part of biodiversity conservation (Alves & Rosa, 2007; Neergheen-	Biomimicry is important source of learning	Biodiversity conservation and protected areas attract ecotourists and have high international value (Brandon, 1996; Lindsey, Alexander, Mills, Romañach, &	Indigenou s peoples commonl y link biodiversi ty to cultural identities, associatio n with place, kinship ties, customs and protocols, stories, and songs (Gould et al., 2014;	Biodiversity conservation explicitly aimed at maintaining options and genetic diversity (Witting &
Biodiversity		··,										-rr-,				, 66		
Biodiversity conserve- ation	(Cromsigt et al., 2018)	Winfree et al., 2011)	plays any role	yr ⁻¹ (Calvin et al., 2014)	acidification	& Richardson, 2009)	(Egoh et al., 2009)	carbon retention	(Schmitz et al., 2014)	(Tscharntke et al., 2007)	N/a	Sykes, 2015)	(McElwee, 2010)	Bhujun et al., 2017)	(Benyus, 2002)	Woodroffe, 2007)	Lyver et al., 2017)	Loeschcke, 1995)

Image: Construction Image: Construction										(Cromsigt et al., 2018; Schmitz et al., 2014, 2018)										
Image: Construction Image: Construction		weathering	N/A	N(A	N(A	potential of about 0.5-4 GtCO ₂ e yr ⁻¹ (Smith et al.	potential will reduce ocean	N/A	negative effects on water quality (Atekwana, Atekwana, Legall, & Krishnamurth	to improve soil quality (Kantola, Masters, Beerling, Long, & DeLucia, 2017; Rau & Caldeira,	N/A	N(A	N/A	contribute to increase food production by replenishing plant available silicon, potassium and other plant nutrients (Beerling et	N/A	N/A	N/A	N/A	N/A	N/A
negativeexpansion, effects oncouldwould bens (IPCC, to dependedin surfaceshowingexotic fastup to 300(HumpenödPop et al., 2017), it canPop et al., 2017), it canClarke et al., 2017, it canClarke et al., 20	Carbon	of minerals	Can reduce areas of natural habitat with negative effects on biodiversity (Hof et al.,	If natural habitats are decreased due to bioenergy expansion, would reduce natural	The use of BECCS could reduce air pollution from use of	Large mitigation potential depending on scale e.g. up to -11 GtCO ₂ yr ¹ (IPCC, 2018; Smith et al., 2020); any local and regional climate effects would be dependent on feedstock,	Bioenergy and BECCS will reduce ocean acidification by reducing CO ₂ emissions and concentratio ns (IPCC, 2018; Doney, Fabry,	Depending on the feedstock, can require water. Models show high risk of water scarcity if BECCS is deployed on widespread scale (Hejazi et al., 2014; Popp, Dietrich, et al., 2011; Smith, Davis, et al., 2015; Hogs, Davis, et al., 2015; Hogs, Davis, et al., 2014; Chabeby, Chabeby,	Bioenergy can affect freshwater quality via changes in nitrogen runoff from fertiliser application. However, the sign of the effect depends on what would have happened absent any bioenergy production, with some studies indicating improvements in water quality (Ng, Eheart, Cai, & Miguez, 2010) and others showing declines (Sinha, Michalak,	Will likely decrease soil quality if exotic fast growing trees used (Humpenöder	NA	NA	BECCS and biofuels can contribute up to 300 EJ of primary energy by	Large scale deployment of bioenergy and BECCS can lead to significant trade-offs with food production and significantly higher food prices given large-scale land conversion (Humpenöd er et al., 2017; Popp et al., 2017;	If bioenergy and BECCS drive land use conversion (Humpenöder et al., 2018; Smith et al., 2016; Clarke et al., 2014; Popp et al., 2017), it can reduce opportunities	If bioenergy and BECCS drive land use conversion (Humpenöder et al., 2016; Clarke et al., 2014; Popp et al., 2017), it	If bioenergy and BECCS drive land use conversion (Humpenöd er et al., 2018; Smith, Davis, et al., 2016; Clarke et al., 2014; Popp et al., 2017), it can reduce opportunitie	If bioenergy and BECCS drive land use conversion (Humpenöder et al., 2016; Smith, Davis, et al., 2018; Clarke et al., 2014; Popp et al., 2017), it can reduce	If bioenergy and BECCS drive land use conversio n (Humpen öder et al., 2018; Smith, Davis, et al., 2016; Clarke et al., 2017), it can reduce culturally	N/A If bioenergy and BECCS drive land use conversion (Humpenöder et al., 2018; Smith, Davis, et al., 2014; Clarke et al., 2014; Popp et al., 2017, it can reduce

Table S2 Literature on Impacts on Nature's Contributions to People of integrated response options based on value chain management

									Formation,										,,
			Pollination					Regulation	protection										
			and				Regulation	of	and	Regulation	Regulation				Medicinal,		Physical		
			dispersal of				of freshwater	freshwater	decontamina	of hazards	of				biochemica		and		
Integrated resp	onse options	Habitat	seeds and			Regulation	quantity,	and coastal	tion of soils	and	organisms			Materials	l and	Learning	psychologic		Maintenan
based on value	chain	creation and	other	Regulation of	Regulation	of ocean	flow and	water	and	extreme	detrimental		Food and	and	genetic	and	al	Supporting	ce of
management		maintenance	propagules	air quality	of climate	acidification	timing	quality	sediments	events	to humans	Energy	feed	assistance	resources	inspiration	experiences	identities	options
		Can lead to					0					- Cr							•
		reduced																	
		expansion of	Demand for																
		agricultural	more																
		lands, which	vegetables																
		can	will likely																
		spare/increase	encourage																
		natural	pollinator-																
		habitat	friendly																
		(Tilman et al.,	practices																
		2001;	(Laroche et																
		Laroche et al	al., 2020);																
		2020), as well	indirect										Will help						
		as encourage	impact from		Mitigation								increase						
		diversified	sparing of		potential of				Indirect		Indirect		global food						
		systems	lands which		0.7-8			Reduced	impact:		impact:		supplies by						
		(Kremen et	will likely		GtCO ₂ yr ⁻¹			meat	Sparing of		More		decreasing						
		al. 2012;	positively		due to			consumption	lands and		sustainable		demand for						
		Allen et al.,	increase		avoided			will improve	changes in		diets likely		high intensity						
		2014).	pollinators		land use		Will likely	water	nutrient input		will lead to		diets						
		Models of	(since they		conversion		reduce water	quality due	likely will		less pest		(particularly						
		future trends	are negative	Some possible	of reduced		consumption	to fewer	positively		outbreaks		reducing land		Some	Some	Some	Some	Some
		show better	effected by	positive	demand		if less water-	livestock,	increase soil		due to more		needed for	Some possible	possible	possible	possible	possible	possible
		outcomes for	intensive	indirect effects	(Hawken,		intensive	which are	quality		diversified		feed for	positive	positive	positive	positive	positive	positive
		habitat and	food	from land	2017;		food/livestock	water	(Willet et al.		agriculture		livestock)	indirect	indirect	indirect	indirect	indirect	indirect
		biodiversity	systems,	sparing or	Popp,	Mitigation	needs to be	polluting	2019), though		(Kremen et		(Kastner,	effects from	effects from	effects from	effects from	effects from	effects from
		from	Kremen,	reduced local	Lotze-	potential	produced	(Stoll-	no direct		al., 2012),		Rivas, Koch,	land sparing	land sparing	land sparing	land sparing	land sparing	land sparing
		sustainable	Williams &	emissions but	Campen, &	will reduce	(Tilman et al.,	Kleemann &	literature on		but not well		& Nonhebel,	but	but	but	but	but	but
	Dietary	diets (Henry	Thorpe,	unexplored in	Bodirsky,	ocean	2001; Allen et	O'Riordan,	dietary		quantified		2012; Willet	unexplored in	unexplored	unexplored	unexplored	unexplored	unexplored
	change	et al., 2019)	2002);	literature.	2010)	acidification.	al., 2014)	2015)	change alone	N/A	in lit.	N/A	et al., 2019)	literature.	in literature.	in literature.	in literature.	in literature.	in literature.
		Will lead to							Indirect		Reducing								
		reduced						Reduced	impact:		postharvest								
		expansion of						food	Sparing of		losses								
		ag lands,						production	lands and		usually	Possible							
		which can						will reduce	changes in		include	indirect							
		preserve						N fertiliser	nutrient input		positive	effect in							
		natural					Will reduce	use,	likely will		measures to	that post-	Will help						
		habitat	Indirect				water	improving	positively		deal with	harvest	increase		Some	Some	Some	Some	Some
		(Tilman et al.,	positive				consumption	water	increase soil		pests (e.g.	losses may	global food	Some possible	possible	possible	possible	possible	possible
		2001),	impact from				if less	quality	quality		integrated	be used for	supplies since	positive	positive	positive	positive	positive	positive
		although not	sparing of		Mitigation		food/livestock	(Kibler,	(Willet et al.		pest	biomass	waste	indirect	indirect	indirect	indirect	indirect	indirect
1		well	lands		potential of	Mitigation	needs to be	Reinhart,	2019), though		manage-	energy if	accounts for	effects from	effects from	effects from	effects from	effects from	effects from
1		quantified in	(Kremen,		4.5 GtCO ₂	potential	produced	Hawkins,	no direct		ment)	not	25% of total	land sparing	land sparing	land sparing	land sparing	land sparing	land sparing
	Reduced	lit for post-	Williams &		yr-1	will reduce	(Tilman et al.,	Motlagh, &	literature on		(Wilson &	edible/sold,	production	but	but	but	but	but	but
Demand	post-harvest	harvest losses	Thorpe,	27/4	(Bajželj et	ocean	2001; Allen et	Wright,	post-harvest	27/4	Pusey,	but no	(Kastner et al.,	unexplored in	unexplored	unexplored	unexplored	unexplored	unexplored
management	losses	specifically	2002);	N/A	al., 2014)	acidification	al., 2014)	2018)	losses alone	N/A	1985)	literature	2012)	literature.	in literature.	in literature.	in literature.	in literature.	in literature.

	Reduced food waste (consumer or retailer)	Improved storage and distribution reduces food waste and the need for compensatory intensification of agricultural areas (land sparing) and land use change (Stathers, Lamboll, & Mvumi, 2013)	Indirect positive impact from sparing of lands (Kremen, Williams & Thorpe, 2002)	N/A	Mitigation potential of 0.8 to 4.5 GCC0;yr ⁻¹ ((Bajželj et al., 2014; Hawken, 2014; Hradhan, Rybski, & Kropp, 2016)	Mitigation potential will roduce ocean acidification.	Will reduce water consumption if less water- intensive food livestock needs to be produced (Tilman et al., 2001; Allen et al., 2014))	Reduced food production will reduce N fertiliser use, improving water quality (Kibler et al., 2018)	Indirect impacts on soil (see above)	N/A	N/A	N/A	Will help increase global food supplies since waste accounts for 25% of total production (Kastner et al., 2012)	Some possible positive indirect effects from land sparing but unexplored in literature.	Some possible positive indirect effects from land sparing but unexplored in literature.	Some possible positive indirect effects from land sparing but unexplored in literature.			
	Material substitution	Material substitution increases demand for wood, which can lead to loss of habitat (Sathre & Gustavsson, 2006)	N/A	N/A	Possible mitigation potential of 0.25 to 1 GtCO ₂ yr ¹ (Oliver, Nassar, Lippke, & McCarter, 2014)	Mitigation potential will reduce ocean acidification	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Material substitution supplies building materials to replace concrete and other nonrewewable s (Gustavsson & Sathre, 2011)	N/A	N/A	N/A	N/A	N/A
	Sustainable sourcing	Commodity production is responsible for nearly 40% of deforestation (Henders, Persson, & Kastner, 2015). Forest certification and other sustainable sourcing schemes can reduce habitat fragmentation as compared to conventional supply chains (Rueda, Lambin, 2015)	Possible indirect benefits due to improved ecosystem management but no literature	Forest certification improved air quality in Indonesia by 5% due to reduced incidence of fire for palm oil due to zero deforestation pledges (Miteva, Loucks, & Pattanayak, 2015)	No quantified evidence but likely some mitigation benefits	N/A	Forest certification has led to improved water flow due to decreased road construction for logging (Miteva et al., 2015)	Forest certification has improved riparian waterways and reduced chemical inputs in some schemes (Rueda et al., 2015)	Possible indirect benefits due to improved ecosystem management but no literature	Possible indirect benefits due to improved ecosystem managemen t but no literature	Possible indirect benefits due to improved ecosystem managemen t but no literature	Sustainable sourcing can supply energy like biomass more sustainably (Sikkema et al., 2014)	Sustainable sourcing can encourage more production of high quality food due to price premiums (e.g. organic standards) (G. Smith, 2008); however, one study found increased food insecurity among indigenous peoples near a forest certification site (Doremus 2019) Improved	Sustainable sourcing is increasingly important in supply of timber and other materials production (Irland, 2008) Improved	Sustainable sourcing can supply medicinals, e.g. bioprospecti ng (Pierce & Laird 2003).	Possible indirect benefits due to improved ecosystem managemen t but no literature	Possible indirect benefits due to improved ecosystem managemen t but no literature	Comparativ e studies show community involvement in certification and standards for sustainable sourcing has been low (Pinto & McDermott 2013; Vandergeest 2007) thereby not strengthenin g community identities	Possible indirect benefits due to improved ecosystem managemen t but no literature
Supply management	Management of supply chains	N/A	N/A	Better management of supply chains may reduce energy use and air pollution in transport (Zhu et al., 2018)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	supply chains will help increase access to global food supplies (Hamprecht, Corsten, Noll, & Meier, 2005)	supply chains will help increase material supplies due to efficiency gains (Burritt & Schaltegger, 2014)	N/A	N/A	N/A	N/A	N/A

Enhance urban fo systems		Urban beekeeping has been important in keeping pollimators alive in cities (Gunnarsson & Federsel, 2014)(Urban agriculture can increase vegetation cover and improve air quality in urban areas (Cameron et al., 2012; Lin et al., 2015)	N/A	N/A	Water access often a constraint on urban agriculture and can increase demands (Badami & Ramankutty, 2015; de Bon, Parrot, & Moustier, 2010)	Urban agriculture can exacerbate urban water pollution problems (pesticide runoff, etc) (Pothukuchi & Kaufman, 1999)	N/A	N/A	N/A	N/A	Local urban food production is often more accessible to local populations and can increase food security (Eigenbrod & Gruda, 2015)	Urban food systems can supply other useful materials (Lin et al., 2015)	Many urban foods also have medicinal and health properties (Madaleno, 2000; Poe, McLain, Emery, & Hurley, 2013)	Urban agriculture can be used for teaching and learning (Travaline & Hunold, 2010)	Urban gardening provides physical benefits of being outdoors (Soga et al., 2017)	Urban agriculture can promote positive cultural identities (Baker, 2010)	Urban food can contribute to preserving local genetic diversity (Lin et al., 2015)
Improve food processii and reta	(see reduced ng food loss	Indirect benefits from less waste (see reduced food loss above)	Improved processing and retailing may reduce energy use associated with transport and storage, leading to less air pollution (Papadopoulos & Seferlis, 2013)	Indirect benefits from less waste (see reduced food loss above)	Indirect benefits from less waste (see reduced food loss above)	Improved processing and retailing may reduce water consumption associated with food processing (Nemecek, Jungbluth, Canals, & Schenck, 2016)	Indirect benefits from less waste (see reduced food loss above)	N/A	N/A	N/A	N/A	Improved food processing may increase food access, freshness and availability (Clark, Jung, & Lamsal, 2014)	N/A	N/A	N/A	N/A	N/A	N/A
Improve energy u in food systems		N/A	Improved energy use will lead to less local air pollution (Usubiaga- Liaño, Behrens, & Daioglou, 2020)	Small mitigation potential of 0.37 GtC02yr ¹ (James & James & James & James & James & James & James &	Mitigation potential will reduce ocean acidification	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table S3 Literature on Impacts on Nature's Contributions to People of integrated response options based on risk management

								Formation,										
		Pollination				Regulation		protection										1
		and				of		and								Physical		1
		dispersal of			Regulation	freshwater	Regulation of	decontamina	Regulation of	Regulation of				Medicinal,		and		1
Integrated response	Habitat	seeds and	Regulation		of ocean	quantity,	freshwater and	tion of soils	hazards and	organisms				biochemical	Learning	psychologic	Support-	Main-
options based on	creation and	other	of air	Regulation	acidificatio	flow and	coastal water	and	extreme	detrimental		Food and	Materials and	and genetic	and	al	ing	tenance of
risk management	maintenance	propagules	quality	of climate	n	timing	quality	sediments	events	to humans	Energy	feed	assistance	resources	inspiration	experiences	identities	options

Management of urban sprawl	Reducing urban sprawl can help preserve natural habitat in periurban areas (Pataki et al., 2011)	Reducing urban sprawl will help reduce loss of natural pollinators from habitat conversion (Cane, 2005)	Urban sprawl is a major contributor to air pollution in many cities worldwide (Frumkin, 2002)	Likely some but unquantifie d mitigation benefits	N/A	Managing urban sprawl can increase water availability in cities (Pataki et al., 2011)	Urban sprawl is associated with higher levels of water pollution due to loss of filtering vegetation and increasing impervious surfaces (Romero & Ordenes, 2004; Tu, Xia, Clarke, & Frei, 2007)	Likely to be very beneficial for soils as soil scaling is major problem in urban areas (Scalenghe & Marsan, 2009)	N/A	N/A	N/A	Urban sprawl often competes with land for food production and can reduce overall yields (Barbero- Sierra, Marques, & Ruiz-Pérez, 2013; J. Chen, 2007)	N/A	N/A	N/A	N/A	N/A	N/A
Livelihood diversification	Could have indirect impacts if diversification allows land sparing or reduction in land conversion, but no literature	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Diversificatio n is associated with increased access to income and additional food sources for the household (Pretty et al., 2003)	Diversification can increase access to materials (A. Smith et al., 2017)	N/A	N/A	N/A	N/A	N/A
Use of local seeds	Use of commercial seeds can contribute to habitat loss through agricultural expansion and intensification; local seeds likely better (Upreti & Upreti & 2002)	Use of open pollinated seeds is beneficial for pollinators and creates political will to conserve them (Helicke, 2015)	N/A	N/A	N/A	Local seeds often have lower water demands as they are suited to local environments (Adhikari, 2014)	Likely to contribute to less pollution as local seeds are usually grown organically (Adhikari, 2014)	Likely to contribute to better soils as local seeds are usually grown organically and with lower tillage (Adhikari, 2014)	N/A N/A	Local seeds often need less pesticides thereby reducing pest resistance (Adhikari, 2014)	N/A	Local seeds can lead to more diverse and healthy food in areas with strong food sovereighty networks (Bisht et al., 2018; Coomes et al., 2015). However local seeds often are less productive than improved commercial varieties.	Local seeds can produce multifunctional materials (Adhikari, 2014).	Many local seeds can have multiple functions, including producing medicinals (Hammer & Teklu, 2008)	Passing on seed information is important cultural learning process (Coomes et al., 2015)	N/A	Seeds associated with specific cultural identities for many (Coomes et al., 2015)	Food sovereignty movements have promoted saving of genetic diversity of crops through on- farm maintenanc e (Isakson, 2009)
<u>Disaster risk</u> management	Many habitats confer disaster protection (Kousky 2010), and some DRM strategies may include habitat protection explicitly for a positive benefit (Shreve & Kelman 2014) (e.g. mangrove protection, addressed above under	N/A	N/A	N/A	N/A	N/A	N/A	Some DRM strategies do have a soil conservation focus (Shreve & Kelman 2014) (addressed above in reduced soil erosion benefits), but otherwise umknown relationship.	DRM is one of the most effective ways to help people avoid extreme events and adapt to climate change (Mechler et al., 2014)	N/A	N/A	Early warning systems and other DRM measures can help avert food shortages e.g. from drought (Genesio et al., 2011; Hillbruner & Moloney, 2012)	N/A	N/A	N/A	N/A	DRM with an explicit cultural focus could help manage/ protect ecosystems to support identified but unclear how widespread or effective	N/A

	restoration and																	
	avoided																	
	conversion of																	
	wetlands), but																	
	unclear how																	
	extensive																	
	DRM																	
	benefiting																	
	habitats is																	
	Commercial																	
	crop insurance often							One study										
								found a 1%										
	encourages habitat			Some				increase in										
	conversion;			mitigation				farm receipts				Crop						
	(Wright &			benefits				•				insurance has						
	Wimberly,	Crop		from not				generated from				generally lead						
	2013) found	insurance is		using				subsidised				to (modest)						
	half million ha	likely to		commercial				farm		Crop		expansions in						
	decline in									•		cultivated land						
	grasslands in	negatively		crop insurance.				programs (including		insurance		area and						
	the Upper	impact natural		which						increases nitrogen use		increased food						Insurance
	Midwest of	pollinators						crop insurance and		and leads to		production		Insurance				encourages
	the US 2006-	due to		encourages agricultural				others)		treating more		(Roger		encourages				monocroppi
	2010 due to	incentives		expansion			Likely to have	increased soil		acreage with		Claassen.		monocropping				ng, leading
		for		(Claassen,			negative effect as	erosion by		both		Cooper, &		leading to loss				to loss of
	crop	production		Carriazo.			crop insurance	0.135 tons		herbicides and		Carriazo.		of genetic				
	driven by	(Horowitz		Cooper,			•			insecticides		2011;		diversity for				genetic diversity for
	higher prices	(Horowitz &		Hellerstein.			encourages more pesticide use	per acre (Goodwin		(Horowitz &		2011; Goodwin,		future				future
Risk sharing	and access to	a Lichtenberg,		& Ueda,			(Horowitz &	and Smith		Lichtenberg,		Vandeveer, &		(Glauber,				(Glauber,
instruments		1993)	N/A	2011)	N/A	N/A	Lichtenberg, 1993)	2003).	N/A	1993)	N/A	Deal, 2004)	N/A	(Glauber, 2004)	N/A	N/A	N/A	(Glauber, 2004)
instruments	insurance.	1995)	IN/A	2011)	IN/ A	IN/A	Licinenberg, 1993)	2005).	IN/A	1995)	IN/A	Deai, 2004)	IN/A	2004)	IN/A	IN/A	IN/A	2004)

Table S4 Literature on Impacts on the UN SDG of integrated response options based on land management

									GOAL 8:								GOAL 16:	GOAL 17:
				GOAL 3:			GOAL 6:	GOAL 7:	Decent Work	GOAL 9:		GOAL 11:	GOAL 12:				Peace and	Partnershi
				Good Health	GOAL 4:	GOAL 5:	Clean Water	Affordable	and	Industry,	GOAL 10:	Sustainable	Responsible		GOAL 14:		Justice	ps to
		GOAL 1: No	GOAL 2: Zero	and Well-	Quality	Gender	and	and Clean	Economic	Innovation and	Reduced	Cities and	Consumption	GOAL 13:	Life Below	GOAL 15:	Strong	achieve the
		Poverty	Hunger	being	Education	Equality	Sanitation	Energy	Growth	Infrastructure	Inequality	Communities	and Production	Climate Action	Water	Life on Land	Institutions	Goal
															Increased			
															food			
						Increased									productivity			
						productivity can benefit									might be achieved			
						female									through			
				Increased food		farmers, who									increased	Higher		
				productivity		make up 50%									pesticide or	productivity		
				leads to better		of agricultural									fertiliser	spares land		
				health status		labor in sub-	Food								use, which	(e.g. Balmford		Improved
				for farmers		Saharan	productivity								causes	et al. 2018)		agricultural
				(Dar &		Africa (Ross,	increases								runoff and	especially if		productivity
				Laxmipathi		Zereyesus,	could impact								dead zones	intensification		generally
		Increasing farm		Gowda, 2013;		Shanoyan, &	water quality				Increased			Increased	in oceans	is done		correlates
		yields for		Rosegrant &		Amanor-	if increases in				agricultural			production can	(Beusen et	sustainably;		with
		smallholders		Cline, 2003);		Boadu, 2015)	chemicals				production			increase	al., 2016);	conventional		increases in
		contributes to	Increasing farm	low farm		Low farm	used, but		Increased		can			adaptability to	some	intensification		trade in
		poverty	yields for	productivity is		productivity is	evidence is		agricultural		contribute			climate change	positive	associated		agricultural
		reduction (Irz,	smallholders	associated		associated	mixed on		production		to reducing	Increased food		(Pretty et al.	benefits	with		goods
		Lin, Thirtle, &	reduces food	with lower		with lower	sustainable		contributes to		inequality	production		2018). Also see	from	biodiversity		(Fader,
		Wiggins, 2001;	insecurity (Irz,	calorie intact		calorie intact	intensification		increased		among	can increase		Table SM1,	reduced	and habitat		Gerten,
		J. N. Pretty et	Lin, Thirtle, &	among women		among women	(Mueller et		economic		smallholder	urban food		regulation of	ocean	loss		Krause,
		al., 2003; A.	Wiggins, 2001;	farmers		farmers	al., 2012;		growth		s (Datt &	security (Ellis		climate for	acidification	(Beckmann et		Lucht, &
Agri-	Increased food	Smith et al.,	J. N. Pretty et	(Agarwal,		(Agarwal,	Rockström et		(Springmann		Ravallion,	& Sumberg,		mitigation	associated	al. 2019) (see		Cramer,
culture	productivity	2017)	al., 2003)	2018)	N/A	2018)	al., 2009)	N/A	et al., 2016).	N/A	1998)	1998)	N/A	benefits	with	Table 1)	N/A	2013)

Improved grazing land management Improved grazing land grazing	ropland management nerceases yields or mallholders and thus can contribute to soverty eduction (Irz et al., 2001; J. N. Pretty et al.,	and Conserv gement agricultu sess yields food holders producti us can thus can food inst ty (Dar & tion (Irz et Laxmipp 0); J. N. Gowda, et al., Godfray, K. Garrett, Rosegra	ulture pesticide use which cause health impact celivity and c (Erisman, an reduce Galloway, sinsecurity Seitzinger, & Bleker, & uipathi Butterbach- da, 2013; Bahl, 2011) a sett, 2014; improved foc grant & security, but , 2003) less lit on thi			Cropland management practices such as conservation tillage improve downstream and groundwater water quality and good management yractices can substantially decrease P losses in water		Improved cropland management can contribute to increased economic growth, mainly in		Improved cropland managemen t leading to increased agricultural production can contribute to reducing inequality among smallholder		Improved	Better cropland management as an adaptation strategy can impact millions (Challinor et al., 2014; Lipper et al., 2014; Lobell, Baldos, & Hertel, 2013; Vermeulen,	Some	Improved cropland management can contribute to diverse agroecosyste ms (Tscharntke, Klein, Kruess, Steffan- Dewenter, & Thies, 2005) and promotes		
Can increa productivi smallhold pastoralisti contribute poverty Improved grazing land (Boval & Dixon, 20 Improved livestock management Oixon, 20 Improved contribute poverty	Jugerty, 2011)	rty, 2011) Chile, 20		18/25	N/A	(Fawcett et al., 1994; Foster, 2018)	N/A	improvements in smallholder agriculture (Abraham & Pingali, 2017)	N/A	s (Abraham & Pingali, 2017; Datt & Ravallion, 1998)	N/A	conservation agriculture can contribute to sustainable production goals (Hobbs, Sayre, & Gupta, 2008)	Aggarwal, et al., 2012) Also see Table SM1, regulation of climate for mitigation potential	reduction potential, but covered in table S1. Other ocean impacts unknown	soil biodiversity (Oehl, Laczko, Oberholzer, Jansa, & Egli, 2017) (see Table 1)	N/A	N/A
livestock managem (e.g. bette breeding) contribute poverty	eduction	activity for holder ralists and Improve ibute to grazing ty manager tion contribu al & food sec	ng (Hooft et al., gement can 2012) but ibute to pathways are	N/A	N/A	Grassland management practices can improve downstream and groundwater water quality (Foster, 2018)	N/A	Improved land management for livestock can increase economic productivity, especially in global South (Pender, Place, Elui, & Institute, 2006)	N/A	Improved pastoral managemen t strategies can contribute to reducing inequality but are context specific (Lesorogol, 2003)	N/A	Improved grassland management contributes to sustainable production goals (O'Mara, 2012)	Could benefit up to 25 million people as an adaptation strategy Porter et al. 2014. Also see Table SM1, regulation of climate	Some acidification reduction potential, but covered in table S1. Other ocean impacts unknown	Can contribute to improved habitat for other species (Pons, Lambert, Rigolot, & Prodon, 2003; Plantureux, Peeters, & McCracken, 2005), reverse soil degradation, etc (see Table 1)	Grazing land managemen t requires collective action and therefore can increase social capital and build institutions (Mearms, 1996)	N/A
smallhold Improved pastoralist	ivestock nanagement e.g. better preeding) can contribute to	oved ock Improve gement livestoch manager ing) can contribu ibute to reduced ty insecuri tion for among holder smallhol ralists (K. pastorali Hooft et E. V. He	oved ock gement can bibute to ed food urity g holder ralists (K. Hooft et	N/A	N/A	Improved livestock production can reduce water contamination (e.g. reduced effluents) (Hooda et al., 2000) through management (Herrero & Thornton, 2013)	N/A	Improved livestock management can increase economic productivity and employment opportunities in global South (Mack, 1993)	N/A	N/A	N/A	Sustainable livestock management contributes to sustainable production goals (De Wit, Oldenbroek, Van Keulen, & Zwart, 1995)	Could benefit up to 25 million people as an adaptation strategy Porter et al. 2014. Also see Table SM1, regulation of climate	Some acidification reduction potential, but covered in table S1. Other ocean impacts unknown	Can contribute somewhat indirectly to improved habitat if more efficient animals used, leading to less feed required (Strassburg et al., 2014)	N/A	Improved livestock productivi would like correlate with increases i trade (Herrero, Thornton, Gerber, & Reid, 2009
Agrofores can be use used for poverty reduction, particular smallhold (Leaky & Simons, 1	mallholder bastoralists (K. E. V. Hooft et	Agrofor		N/A	Increased use of agroforestry can benefit female farmers as it requires low overhead (Gladwin et al. 2002), but land tenure	Agroforestry can be used to increase ecosystem services benefits, such as water quantity and quality (Jose, 2009)	Agroforestr y can increase biomass production for on-farm energy (Mbow, Van Noordwijk, et al., 2014)	Agroforestry and other forms of employment in forestry make major contributions to global GDP (Pimentel et al., 1997)	N/A	Agroforestr y promotion can contribute to reducing inequality among smallholder s (Leßmeister et al., 2018)	N/A	Agroforestry contributes to sustainable production goals (Mbow, Van Noordwijk, et al., 2014)	Large adaptation benefits for more than a billion people through multiple pathways (Lasco, Delfino, Catacutan, Simelton, & Wilson, 2014; Mbow, Smith, et	Some acidification reduction potential, but covered in table S1. Other ocean impacts unknown	Agroforestry mimics natural diversity and can strongly improve or provide additional habitat, including as conservation	N/A	N/A

					issues must be paid attention to (Kiptot & Franzel, 2012; Kiptot et al2014)								al., 2014). Also see Table SMI, regulation of climate		corridors (Jose, 2009; Jose 2012; Bhagwat, Willis, Birks, & Whittaker, 2008), reverse land degradation, etc. (See table 1)		
Agricultural diversification	Agricultural diversification is associated with increased weefare and incomes and decreased levels of poverty in several country studies (Arslan et al., 2018; Asfaw, Pallante, & Palma, 2018; Weinberger & Lumpkin, 2007) May reduce	Diversification is associated with increased access to income and additional food sources for the farming household (Ebert, 2014; Pretty et al., 2003).	More diversified agriculture leads to diversified diets which result in better health outcomes (Block & Webb, 2001; Ebert, 2014; Kadiyala, Harris, Headey, Yosef, & Gillespie, 2014)	N/A	Women and children tend to benefit from agricultural diversification due to improved diets (Pretty et al., 2003)	N/A	N/A	Agricultural diversification generally leads to economic growth (Pingali & Rosegrant, 1995; Rahman, 2009)	N/A	Increased agricultural diversificati on can contribute to reducing inequality among smallholder s (Makate, Wang, Makate, & Mango, 2016) although there is mixed evidence of inequality also increasing in commerciali sed systems (Pingali & Rosegrant, 1995; Weinberger & Lumpkin, 2007)	N/A	N/A	Diversification both increases resilience by spreading risk and provides economic benefits, with adaptation benefits, with adaptation benefits for likely more than 25 million people (Campbell, Thornton, Zougmoré, van Asten, & Lipper, 2014)	N/A	Crop diversification improves resilience through enhanced diversity to mimic more natural systems including functional biodiversity at multiple spatial and/or temporal scales (Kremen, Iles, & Bacon, 2012; Lin, 2011)	N/A	N/A
Avoidance of conversion of grassland to cropland	land available for cropping or livestock for poorer farmers; some grassland restoration programs in China have been detrimental to poor pastoralists (Foggin, 2008) Warious IWM	Can affect food security when competition for land occurs (O'Mara, 2012) Integrated,	Indirect health effects from reduced production potentially, but little lit	N/A	N/A	Retaining grasslands contributes to better water retention and improved quality (Scanhon et al., 2007) IWM aims to	N/A	Reduced cropland expansion may decrease GDP (Lewandrows ki, Darwin, Tsigas, & Raneses, 1999)	N/A	N/A Better IWM	N/A	N/A	Unknown for adaptation; see Table SM 1, regulation of climate, for mitigation	Some acidification reduction potential, but covered in table S1. Other ocean impacts unknown	Is aimed at preserving natural grassland habitat (Peeters, 2009), also has soil benefits and reverses land degradation (see Table 1) Ecosystem	N/A	N/A
Integrated water management	Various IWM practices contribute to poverty reduction (UNCTAD, 2011); green water harvesting contributes to alleviate poverty	Integrated, efficient, equitable and sustainable water resource management (e.g. water for agroecosystem) plays importance for food production and benefits to	IWM can reduce the global burden of disease and improve health (UNWater, 2015)	N/A	Involving women in IWM initiatives can increase project effectiveness and gender equity (Green & Baden, 1995)	IWM aims to solve watershed problems such as lack of water (quantity), deterioration in water quality, and low output (K. E. Lee et al.,	N/A	Improved water management is considered critical for sustainable socio- economic development (UN Water, 2015).	IWM can increase access of industry to water for economic growth (Rahaman & Varis, 2005)	Better IWM could reduce inequities in access to water, particularly thru community initiatives (Komakech, van der	Water is a limiting factor in urban growth and IWM can help improve access to urban water supplies (Bao & Fang, 2012)	IWM is part of sustainable production in food, water, and energy security (Rasul, 2016)	IWM has large adaptation benefits to help more than 250 million people potentially cope with water shortages Dillon and Arshad 2016; Liu et al. 2017.	IWM on land is likely to improve water quality runoff into oceans (Agboola & Braimoh, 2009)	Ecosystem health and services can be enhanced by improving water management (Bernex, 2016; Boelee, Chiramba, & Khaka, 2011; Jingya Liu et	IWM can reduce conflicts that arise from water scarcity (UN Water, 2015).	IWM encourages partnerships across countries and regions (UN Water, 2015)

		(D. 1. t. "			1	r	2010) 100	1		·	7	r				1 2016	,	
		(Rockström &	people (Lloyd et				2018) IWM				Zaag, &van					al., 2016;		i
		Falkenmark,	al., 2013)				increases				Koppen,					Lloyd et al.,		i
		2015);					water-use				2012)					2013), and		i
		improving					efficiency and									reversing land		i
		water irrigation					ensures									degradation		i
		reduces poverty					sustainable									(e.g.		i
		(Rengasamy,					withdrawals to									salinization)		1
		2006)					substantially									(see Table 1)		1
							reduce the									, I		i
							number of									, I		i
							people									, I		i
							suffering from									, I		i
							water scarcity											i
							(UNWater,									, I		i
							2015)									, I		i
										ļ/								
							Trees recharge									, I		1
							atmospheric									, I		1
							moisture,									, I		1
							contributing to									, I		i
							rainfall locally									, I		i
							and in distant									, I		i
							location, and									, I		i
							microbial									, I		i
					1		flora and	1								, I	, I	i I
							biogenic									, I		i
							VOCs			'								(I
			Complex				associated									, I		i
			relationship				with some									, I		i
			between food				trees can									, I		i
			and forests. On				directly									, I		i
			positive side,				promote									, I		i
			many millions of				rainfall				A few case					, I		i
			households rely				(Arneth et al.,				studies							1
							(Arneth et al., 2010; Ellison				show that					, I		i
			on nutrients															1
			sourced from				et al., 2017)				SFM does						Sustainable	1
		May contribute	forests (Nasi,				Trees enhance				have					SFM aims to	forest	i
		to poverty	Taber, & Van				soil				potential to					retain	managemen	i
		reduction if	Vliet, 2011;				infiltration				reduce					substantial	t often	i
		conditions are	Rowland et al.,				and, under				income					levels of	requires	1
		right (Blomley	2017; Wunder et				suitable				inequality					biodiversity,	collective	1
		& Ramadhani,	al., 2014). On				conditions,				(Nhim, Lee					carbon, and	action	i
		2006; Donovan,	negative side,	Forests in the			improve				& Phin,			Better forest		timber stocks,	institutions	i
		Stoian,	forest	United States			groundwater				2018) or			management can		e.g. through	(Ros-Tonen	SFM can
		Macqueen, &	conservation can	removed 17.4			recharge				historical			increase		selective	et al., 2008)	contribute
		Grouwels,	compete with	million tonnes		Women face	(Calder, 2007;				injustices			adaptation		logging (Putz	and	to increases
		2006) but	food production,	(t) of air	1	challenges in	Ellison et al.,	1			(Schelhas et			benefits for		et al., 2012).	community	in demand
		conflicting	raising prices (P.	pollution in	1	sustainable	2017; Neary	1			al. 2017)		Improved forest	millions of		SFM practices	forest	for wood
		data, as it may	Smith et al.,	2010 with		forest	et al., 2009).	SFM may	Forest	'	but needs to		management	people (CRED	Some	often aim at	managemen	products
		also favour	2013). Also	human health	1		Many SFM	-			but needs to be well-		-	2015; World	acidification		-	
						management		increase	management				contributes to			improving	t can	(e.g.
		large	proximity of	effects valued	1	(Mwangi,	practices are	availability	often require	CTM	designed		sustainable	Bank et al.	reduction	ecosystem	contribute	certification
		landowners	forest to	at 6.8 billion		Meinzen-	explicitly	of biomass	employment	SFM can	with		production	2009). Also see	potential,	functionality	to stronger) thereby
		who are less	cropland can	U.S. dollars		Dick, & Sun,	aimed at water	for energy	for active	increase the	community		goals, e.g. thru	Table SM 1,	but covered	(Führer,	communitie	increasing
	Improved and	poor	increase crop	(range: \$1.5-	1	2011) but	supply	(Kraxner et	replanting,	supply of wood	input		certification of	regulation of	in table S1.	2000), and	s (Pagdee,	trade
	sustainable	(Rametsteiner	raiding by wild	13.0 billion)		unclear how	improvement	al., 2013;	etc. (Ros-	for industrial use	(Faggin,		timber	climate, for	Other ocean	reducing	Kim, &	(McDonald
	forest	& Simula,	animals (Few et	(Nowak et al.,		SFM affects	(Creed et al.,	Sikkema et	Tonen et al.,	(Gustavsson &	Behagel &		(Rametsteiner &	mitigation	impacts	degradation	Daugherty,	& Lane,
	management	2003)	al., 2017)	2014)	N/A	gender equity.	2011)	al., 2014)	2008)	Sathre, 2011)	Arts 2017)	N/A	Simula, 2003).	benefits.	unknown	(see Table 1)	2006)	2004)
		REDD may	Complex	Reduced		Unclear how	Water supply	Avoiding	Reduced		Deforestatio			Well managed		Reduced	REDD will	Likely to
		contribute to	relationship	deforestation		avoided	is a presumed	deforestatio	forest	'	n can			REDD could		deforestation	likely be	contribute
		poverty	between food	can enhance	1	deforestation	benefit of	n can take	exploitation		increase			have adaptation	Some	can enhance	more	to decline in
		reduction but	and forests. On	human well-		might enhance	REDD	biofuel land	may decrease	'	inequity			benefits for up	acidification	connectivity	successful	trade in
		conflicting	positive side,	being by		gender equity,	programs, but	out of	GDP and thus	'	(Gibson			to 25 million	reduction	between forest	with	forest
		data. Although	many millions of	microclimatic	1	but REDD+	unclrea	production	needs to be		2018), but			people (CRED	potential,	areas and	collective	products,
		poverty is a	households rely	regulation for		projects need	evidence yet	as they both	compensated	May reduce	REDD+ has			2015; World	but covered	conserve	institutions	but
		focus of many	on nutrients	protecting			that existing	tend to		timber available	been shown			Bank et al.	in table S1.	biodiversity	and may	increases in
			on nutrients	protecting	1	to pay			for (e.g.			1						
	Paduaad		coursed from	naonla from		attention to	PEDD 5											portpor-line-
F ee f	Reduced	REDD+	sourced from	people from		attention to	REDD has	compete for	through	for industry	to have no			2009), but few	Other ocean	hotspots, but	incentivize	partnerships
Forestr	deforestation	REDD+ projects (Arhin,	forests	heat stresses		gender issues	increased	land (P.	REDD+	(Sunderlin et al.,	impact on			REDD plans are	impacts	there are	collective	between
Forestr y		REDD+			N/A			1		-		N/A	N/A			-		

	reduction has actually happened (Corbera, Hunsberger, & Vaddhanaphuti, 2017; Pokorny, Scholz, & de Jong, 2013; Scheba, 2018) and in some cases benefits have been captured by wealthier participants. Opportunity costs of participation can be high (Luttrell et al., 2018)	potential to benefit if not in competition for cropland production and there are compensation for any losses of production (Luttrell et al., 2018)	Trends of forest resources of nations are found to positively correlate with UNDP Human Development Index (Kauppi, Sandström, & Lipponen, 2018)		(Westholm & Arora- Jonsson, 2015)	quality for users at sites of implementatio n (Sunderlin et al., 2014)	Rimmer, Shutes, & Tabeau, 2016)	(Combes Motel, Pirard, & Combes, 2009)		Shrestha, & Bawa, 2017) or to increase inequality in some project areas (K. P. Andersson et al., 2018; Pelletier, Horning, Laporte, Samndong, & Goetz, 2018)			benefits (McElwee et al., 2017). Also see Table SM1, regulation of climate, for mitigation potentials		literature if REDD+ mechanism sufficiently prioritizes biodiversity over carbon (Gardner et al., 2012; Panfil & Harvey, 2016) thus lesser benefits may only be realized if not well-planned (See Table SM 1)	McDermott, & Boyd, 2017): more evidence needed however for conclusive strong relationship	with REDD+ (Combes Motel et al., 2009)
Reforestation and forest restoration	May contribute to poverty reduction but conflicting data (Tschakert, 2007). Many projects for reforestation may have some small impacts on poor households, while others actually increased poverty due to land losses or lack of economic impacts (Jindal, Swallow, & Kerr, 2008)	Forest expansion can affect crop production when competition for land occurs (Angelsen, 2010). An increase in global forest area can lead to increases in food prices through increasing land competition (Calvin et al., 2014; Kreidenweis et al., 2016; Reilly et al., 2012).	Reforestation can enhance human well- being by microelimatic regulation for protecting people from heat stresses (Locatelli, Catterall, et al., 2015) and remove air pollutants (Nowak et al., 2014)	ΝΑ	Reforestation has potential for negative impact on gender if women's lands are reforested without their involvement (McElwee, 2009), and projects often focus solely on men (Lazos Chavero et al., 2016)	mixed on reforestation and restoration impacts on water flow. Particular activities associated with forest landscape restoration, such as mixed planting, assisted natural regeneration, and reducing impact of disturbances (e.g. prescribed burning) have positive implications for fresh water supply (Ciccares et al., 2012; Suding et al., 2015). However, reforestation also can have adverse side- effects for reduction of water yield and water availability, dependent on species and	Reforestatio n can increase availability of biomass for energy (Swisher, 1994)	Reforestation often require employment for active replanting, etc (Jindal et al., 2008)	Will likely increase availability of timber for industry (Dwivedi, Khanna, Sharma, & Susacta, 2016)	Unclear impact on equity; deforestatio n can increase inequity (Gibson 2018), but some reforestatio n projects have increased incquality due to capture of benefits by richer households (McElwee, 2009)	Urban reforestation has strong positive benefits for sustainable cities (Pincetl et al., 2013)	Ν/Α	Could have adaptation benefits for more than 25 million people, if well managed (Griscom et al 2017). Also see Table SM1, regulation of climate, for mitigation benefits.	Some acidification reduction potential, but covered in table S1. Other ocean impacts unknown	Forest landscape restoration specifically aims to regain ecological deforested or deforested landscape (Magimis & Jackson, 2007; Stanturf, Palik, Williams, Dumroese, & Madsen, 2014) However, reforestation with non- native species do not provide same biodiversity benefits (Brundu & Richardson, 2016; Hulvey et al., 2013) Animal use of restored landscapes for habitat depends on the sensitivity individual species to forest (Budhatt at al., 2014) (See	ΝΑ	ΝΑ

-		1	r	r		1				1	1	1				r		r
							scale (Calder,											
							2007; Filoso et al., 2017)											
							et al., 2017)									Afforestation		
																alone is not		
							Afforestation									sufficient to		
							using some									increase		
							exotic species									abundance of		
							can upset the									indigenous		
			Future needs for				balance of									species and		
			food production				evapotranspira				Unclear					habitat, as		
			are a constraint				tion regimes,				impact on					depends on		
			for large-scale				with negative				equity;					type of		
			afforestation				impacts on				some					vegetation,		
			plans (Locatelli,				water				afforestatio					scale of the		
			Catterall, et al.,				availability				n projects					land		
			2015). Forest				particularly in				have					transition, and		
			expansion can				arid regions				increased					time required		
			affect crop				(Ellison et al.,				inequality					for a		
			production when				2017;				due to					population to		
		Although some	competition for				Trabucco et				capture of					establish		
		have argued	land occurs				al., 2008) and				benefits by					(Barry, Yao,		
		that	(Angelsen,				aggravate				richer					Harrison,		
		afforestation	2010). An				groundwater				households					Paragahawew		
		can be a tool	increase in			Afforestation	decline (Lu,	Afforestatio			(McElwee,					a, & Pannell,		
		for poverty	global forest			has potential	Zhao, Shi, &	n likely to			2009) and					2014).		
		reduction	area can lead to	Afforestation		for negative	Cao, 2016)	increase			other					Monocrop		
		(Holden, Benin,	increases in food	can enhance		impact on	Changes in	availability			exclusions					plantations on		
		Shiferaw, &	prices through	human well-		gender if	runoff affect	of biomass			(Ashraf,			Adaptation		native		
		Pender, 2003)	increasing land	being by		women's	water supply	for energy			2019; Zinda			benefits are		ecosystems		
		afforestation	competition	microclimatic		lands are	but can also	use,			& Zhang			dependent on		are bad for		
		can compete with land	(Calvin et al., 2014:	regulation for		reforested without their	contribute to	although not			2019) but	Urban afforestation		type of trees		habitat. Some		
		available for	2014; Kreidenweis et	protecting people from		involvement	changes in flood risks,	always clear what 'clean			other community-	has positive		planted, scale, and prior land	Some	soil and land degradation		
		cropping and	al., 2016; Reilly	heat stresses		(McElwee,	and irrigation				based	benefits for		use (Locatelli,	acidification	benefits		
		poor farmers	et al., 2010; Reiny	(Locatelli,		2009), and	of forest	energy' from	Afforestation	Will likely	projects can	sustainable		Catterall, et al.,	reduction	particularly		
		often do not	particularly	Catterall, et		projects often	plantations	biomass is,	often requires	increase	have more	cities and		2015) Also see	potential,	around		
		benefit from	under higher	al., 2015) and		focus solely	can increase	given	employment	availability of	shared	urban		Table SM1,	but covered	afforestation		
		afforestation	future carbon	remove air		on men	water	particulate	for active	timber for	benefits	households		regulation of	in table S1.	with use of		
		projects	prices	pollutants		(Lazos-	consumption	emissions	replanting,	industry	(Andersson	(Pincetl et al.,		climate, for	Other ocean	native species		
		(McElwee	(Kreidenweis et	(Nowak et al.,		Chavero et al.,	(Sterling et	(Obersteiner	etc. (Mather &	(Dwivedi et al.,	& Agrawal	2013; Sartori		mitigation	impacts	(See Table		
	Afforestation	2009)	al., 2016)	2014)	N/A	2016)	al., 2013)	et al., 2006)	Murray, 1987)	2016)	2011)	et al, 2019)	N/A	benefits	unknown	SM 1)	N/A	N/A
		,		There is		Gender					<i>.</i>					ĺ ĺ		
				evidence that		impacts use of												
		Can increase		increasing soil		soil organic										Improving soil		
		yields for		organic		matter										carbon can		
		smallholders,		carbon could		practices, eg.									Rivers	increase		
		which can		be effective in		women can be									transport	overall land		
		contribute to		reducing the		time									dissolved	productivity		
		poverty		prevalence of		constrained or								Increasing soil	organic	and (more		
		reduction, but		disease-		lack								organic matter	matter to	indirectly)		
1		because		causing		information to								content reverses	oceans	contribute to		
		adoption often		helminths (Battan Lal		implement Ouereek								land degradation	(Hedges et	habitat		
		depends on		(Rattan Lal,		(Quansah,								and provides	al 1997),	maintenance		
1		exogenous		2016; Wall,		Drechsel,			Terener					adaptation benefits to a	but unclear	(Tscharntke et		
		factors these need to be		Nielsen, & Six, 2015).		Yirenkyi, & Asante-	Soil organic		Increases agricultural					potential of	if improved SOM will	al., 2005); practices that		
		taken into		Also		Asante- Mensah,	matter is		production				Improved	billions of	impact this	increase soil		
		consideration		indirectly		2001; Zhang	known to		generally (R				conservation	people (IPBES,	and by how	carbon also		
		(Kassie, Jaleta,	Increasing the	contributes to		et al., 2019)	increase water		Lal, 2006),				agriculture	2018). Also see	much. Some	likely benefit		
		Shiferaw,	SOC pool raises	food		but not clear	filtration and		therefore				contributes to	Table SM1,	acidification	soil		
		Mmbando, &	food	productivity		how the	protects water		contributes to				sustainable	regulation of	reduction	biodiversity		
Soil	Increased soil	Mekuria, 2013;	productivity	which may		relationship	quality		increased				production goals	climate, for	potential,	(Bender et al.,		
manag	organic carbon	Wollni, Lee, &	rates (Frank et	have impact		works in	(Lehmann &		economic				(Hobbs et al.,	mitigation	but covered	2016) (See		
ement	content	Thies, 2010)	al., 2017)	on diets.	N/A	reverse.	Kleber, 2015)	N/A	growth	N/A	N/A	N/A	2008)	benefits	in table S1.	Table SM 1)	N/A	N/A
					l				1 -		l		<i>,</i>	1	l		l	1

			1		1	1					Particulate		1	1	1	1	
											matter				Mostly		
											pollution, a				indirect:		
											main				Managing for		
											consequence				soil erosion		
											of wind				indirectly		
											erosion,				decreases		
											imposes				need for		
					Women may						severe adverse				expanded		
					be constrained						impacts on				cropland into		
		Contributes to	Contributes to		in use of soil						materials,			Some	natural		
	Can increase	increased	food		conserving						structures and		Improves the	acidification	habitats		
	yields for	agricultural	productivity		practices	Managing soil					climate which		resilience of	reduction	(Pimentel et		
	smallholders	productivity and	and improves		(Zhang et al.,	erosion					directly affect		agriculture to	potential,	al., 1995).		
	and contributes to poverty	reduces food insecurity	farmer health (Pimentel et		2019), but not clear how the	generally improves					the sustainability		climate change and increases	but covered in table S1.	Generally improves land		
	reduction	(Pimentel et al.,	al., 1995;		relationship	water quality					of urban cities		food production	Other ocean	degradation		
Reduced soil	(Ananda &	1995; Shiferaw	Shiferaw &		works in	(Issaka &					(Al-Thani et		(IPBES, 2018;	impacts	overall (See		
erosion	Herath, 2003)	& Holden, 1999)	Holden, 1999)	N/A	reverse.	Ashraf, 2017)	N/A	N/A	N/A	N/A	al., 2018)	N/A	R. Lal, 1998).	unknown	Table SM 1)	N/A	N/A
crosion	Tielduii, 2005)	de Holdeli, 1999)	1101deii, 1999)		Tevelse.	100000					un, 2010)		Te. Lui, 1990).	unution	Soil		
															salinization		
			Salinisation is											1	(eg. downriver	1	
			known to have												from		1
			human health										Practices	1	irrigation/	1	
			impacts:										associated with		dams)		1
			wind-borne										management of	1	negatively	1	
			dust and										groundwater,	1	impacts	1	
	Salinisation can		respiratory										irrigation		ecosystem		
	impoverish		health; altered										techniques,		functioning,		
	farmers		ecology of		Women may								drainage,		soil		
	(Duraiappah,	Reversing	mosquito-		be constrained								mulching and		biodiversity,		
	1998) therefore	degradation contributes to	borne		in use of soil	Management							vegetation to		and can		
	preventing or reversing can	increased food	diseases; and mental health		conserving practices	of soil salinity strongly							reduce salinization also		increase susceptibility		
	increases yields	productivity and	consequences		(Zhang et al.,	improves							have adaptation		to invasive		
	for	reduces food	(Jardine,		(2019), but not	water quality							benefits (Qadir		species		
	smallholders	insecurity	Speldewinde,		clear how the	and quantity							et al. 2013;		(Nilsson &		
	and contribute	(Pimentel et al.,	Carver, &		relationship	(Kotb et al.,							UNCTAD 2011;		Berggren,		
Reduced soil	to poverty	1995: Shiferaw	Weinstein.		works in	2000; Zalidis							Dagar et al.		2000) See		
salinisation	reduction.	& Holden, 1999)	2007)	N/A	reverse.	et al., 2002)	N/A	N/A	N/A	N/A	N/A	N/A	2016)	N/A	Table SM 1	N/A	N/A
			Soil														
			compaction														
			has indirect														
	Soil		human health							1							
	compaction and		consequences		Women may	l				1							
	other forms of		as it		be constrained	Management							Will achieve	1		1	
	degradation can	Compaction	contributes to		in use of soil	of soil				1			adaptation				
	impoverish	reduces	runoff of		conserving	compaction				1			benefits related				
	farmers (Scherr, 2000)	agricultural productivity and	water and pollutants into		practices (Zhang et al.,	improves water quality							to better hydrological soil	1		1	
	(Scherr, 2000) prevention of	thus contributes	surface and		(Zhang et al., 2019), but not	and quantity							functioning	1		1	
	compaction	to food	groundwaters		clear how the	(Soane & Van							(Chamen,	1		1	
	thus contributes	insecurity	(Soane & Van		relationship	Ouwerkerk.							Moxey, Towers,		See Table SM		1
Reduced soil	to poverty	(Nawaz et al.,	Ouwerkerk,		works in	1994; Zalidis							Balana, &	1	1, habitat	1	
compaction	reduction.	2013)	1994)	N/A	reverse.	et al., 2002)	N/A	N/A	N/A	N/A	N/A	N/A	Hallett, 2015)	N/A	creation	N/A	N/A
•	Land to	Could		1	Women may		1	1	1	1	1		Adaptation	1	Biochar	1	1
		potentially affect	Biochar		be constrained								benefits		feedstock		1
	produce		production		in use of soil								primarily related	Some	production	1	
	produce biochar may	crop production			conserving								to improving the	acidification	could compete		1
		if competition	could have		conserving			1	1	1	1					1	1
	biochar may		could have negative		practices	Biochar							resilience of	reduction	with natural		
	biochar may reduce land	if competition	could have		practices (Zhang et al.,	Biochar improves soil							crop production	potential,	with natural habitat,		
	biochar may reduce land available for smallholders, and it tends to	if competition for land occurs	could have negative		practices	improves soil water									habitat, depending on		
	biochar may reduce land available for smallholders, and it tends to be unaffordable	if competition for land occurs (Ennis, Evans, Islam, Ralebitso- Senior, &	could have negative health impacts from particulate		practices (Zhang et al., 2019), but not clear how the	improves soil water filtration and							crop production systems to future climate change	potential, but covered in table	habitat, depending on feedstock used		
	biochar may reduce land available for smallholders, and it tends to	if competition for land occurs (Ennis, Evans, Islam, Ralebitso- Senior, & Senior, 2012),	could have negative health impacts from particulate matter, if low-		practices (Zhang et al., 2019), but not clear how the relationship	improves soil water filtration and retention							crop production systems to future climate change by increasing	potential, but covered	habitat, depending on feedstock used and location		
	biochar may reduce land available for smallholders, and it tends to be unaffordable for poor farmers; as of	if competition for land occurs (Ennis, Evans, Islam, Ralebitso- Senior, & Senior, 2012), although could	could have negative health impacts from particulate matter, if low- efficiency		practices (Zhang et al., 2019), but not clear how the relationship works in	improves soil water filtration and retention (Ennis et al.,							crop production systems to future climate change by increasing yield (Jeffery et	potential, but covered in table SM1. Other ocean	habitat, depending on feedstock used and location of production		
Biochar addition to soil	biochar may reduce land available for smallholders, and it tends to be unaffordable for poor	if competition for land occurs (Ennis, Evans, Islam, Ralebitso- Senior, & Senior, 2012),	could have negative health impacts from particulate matter, if low-	N/A	practices (Zhang et al., 2019), but not clear how the relationship	improves soil water filtration and retention	N/A	N/A	N/A	N/A	N/A	N/A	crop production systems to future climate change by increasing	potential, but covered in table SM1. Other	habitat, depending on feedstock used and location	N/A	N/A

		have shown	would have food	(Sparrevik et		references								for mitigation		Quicker,		
		poverty reduction	security benefit (Jeffery et al.,	al., 2012)		available on biochar in								benefits		2011)		
		benefits (Leach, Fairhead, &	2017)			particular.												
		Fraser, 2012)																
												Wildfires can threaten						
												property and						
												human health in urban areas,						
												with unique		Millions				
												vulnerabilities (Gill &		potentially exposure to		Proactive fire management		
												Stephens,		wildfire in future without better	Some acidification	can improve		
				Fire management			Fires affect water quality					2009; Winter & Fried,		fire management	reduction	and preserve natural habitat		
		Reducing fire destruction		reduces health risks from			and flow due to erosion					2000) therefore		as an adaptation option (Doerr et	potential, but covered	(Burrows, 2008) and		
		could have		particulates			exposure					management		al. (2016). Some	in table S1.	reduce land		
	Fire	poverty impact but little lit on		(Bowman & Johnston,			(Townsend & Douglas,					will reduce risk to urban		mitigation benefits (Table	Other ocean impacts	degradation generally (see		
	management	relationship	N/A	2005)	N/A	N/A	2000)	N/A	N/A	N/A	N/A	areas.	N/A	SM1)	unknown	Table SM1)	N/A	N/A
														Adaptation benefits from				
														use of increasing		F		
				Managing										plant cover and engineering		Fewer landslides can		
		Landslides can increase	Landslides are	landslides reduces health										practices as in mountainous		preserve natural habitat		
		vulnerability to	one of the	and injury										and sloped hilly		(Dolidon, Hofer, Jansky,		
		poverty (Msilimba,	natural disasters that have	risks (Haines, Kovats,			Likely					Landslide hazards are a		areas (Arnáez J et al. 2015;		& Sidle, 2009) and decrease		
		2010) therefore	impacts on food	Campbell-			relationship					major risk to		Gariano and		land		
	Reduced landslides and	management can reduce risks	security (De Haen &	Lendrum, & Corvalan,			with access to water, but					urban areas (Smyth &		Guzzetti 2016), little mitigation		degradation generally (see		
	natural hazards	to the poor	Hemrich, 2007)	2006)	N/A	N/A	little lit	N/A	N/A	N/A	N/A	Royle, 2000)	N/A	benefit	N/A Reduction	Table SM 1)	N/A	N/A
				Reducing acid											in pollution			
				deposition reduces health			Pollution increases								can improve water			
				risks,			acidity of							Some mitigation benefits, as N	quality			
				including respiratory			surface water, with likely							depostion affects	running to oceans	A		
				illnesses and			ecological					M		C uptake (Bala, Devaraju,	(Doney et	Air pollution like acid rain		
				increased morbidity			effects (Larssen et al.,					Management of pollution		Chaturvedi, Caldeira, &	al., 2007). Some	has major impacts on		
				(Larssen et al., 1999;			1999); less known about			Management of pollution can		can reduced exposure to		Nemani, 2013; Shindell et al.,	acidification reduction	habitats like lakes		
	Reduced			Lübkert-			access to			increase demand		health risks in		2012). (See Table SM1)	potential,	(Schindler, Kasian, &		
	pollution including			Alcamo & Krzyzanowski			clean drinking water by			for new technologies (D.		urban areas (Bartone,		Unclear adaptation	but covered in Table	Hesslein, 1989); see		
	acidification	N/A	N/A	, 1995)	N/A	N/A	people	N/A	N/A	Popp, 2006)	N/A	1991)	N/A	benefits	SM1.	Table SM1	N/A	N/A
																Many invasive alien species		
1																(IAS) diminish		
1							IAS like the		IAS removal					Adaptation		biodiversity; improved		
1		Invaciwa	IAS can	IAS have			golden apple snail/zebra		policies can increase					benefits from increased		management of IAS can		
1		Invasive species removal	compete with	strong			mussel have		employment					resilience of		lead to		
Other		policies can be beneficial to the	crops and reduce crop yields by	negative effects on			damaged aquatic		due to need for labour					ecosystems to climate change		improved habitat and		
eco-		poor (Van	billions of	human well-			ecosystems		(Van Wilgen					(Mainka &		ecosystems (Richardson &		
system manag	Management of invasive species /	Wilgen & Wannenburgh,	dollars annually (Pejchar &	being (Pejchar & Mooney,			(Pejchar & Mooney,		& Wannenburgh,					Howard, 2010; Reaser et al.,		Wilgen, 2004) (See Table		
ement	encroachment	2016)	Mooney, 2009)	2009)	N/A	N/A	2009)	N/A	2016)	N/A	N/A	N/A	N/A	2007)	N/A	SM 1)	N/A	N/A

	No. 1. 100	1				1					-		-			1	1
	Nearly 100 million people															1	
	rely on coastal																
	systems for																
	livelihoods																
	(Hinkel et al.		Mixed														
	(Hinker et al. 2014). But		evidence;						Protecting								
	· · · · · · · · · · · · · · · · · · ·		wetland						coastal wetlands								
	impacts on																
	poverty are		conservation						may reduce				Improved				
	mixed (Kumar		can increase						infrastructure				wetland				
	et al., 2011).	Mixed evidence:	mosquito						projects in				management is	Restoration			
	May reduce	can affect	presence and						coastal areas				adaptation	of coastal			
	land available	agriculture/fishe	disease, but						(e.g. sea dikes,				strategy that can	wetlands			
	for food	ries production	wetlands						etc.) (Jones,				decrease	can play a			
	production, and	when	important for					D	Hole, &				vulnerability to	large role in			
	poor design of	competition for	clean water					Restoration	Zavaleta, 2012)				coastal storms	providing	Coastal		
	interventions	land occurs, or	filtration for			Wetlands		projects often	and replace with				(Feagin et al.,	habitat for	wetlands are		
	can impoverish	could increase	human health			store		require	Nature-based				2010; H. P.	marine fish	important natural		
	people (J. C.	food production	as well (Dale			freshwater and		employment	solutions, which				Jones et al.,	species	habitats		
Restoration and	Ingram, Franco,	when	& Connelly,			enhance water		for active	could have				2012). Also	(Bobbink et	(Griscom et		
avoided	Rio, & Khazai,	ecosystems are	2012; Horwitz			quality		replanting,	positive econ				mitigation	al., 2006;	al., 2017; J.	1	
	2006; Mangora,	restored (Crooks	& Finlayson,			(Bobbink et		etc. (Crooks et	impact for some				benefits (See	Hale et al.,	Howard et al.,		
coastal wetlands	2011)	et al., 2011)	2011)	N/A	N/A	al., 2006)	N/A	al., 2011)	industries	N/A	N/A	N/A	Table SM1)	2009)	2017)	N/A	N/A
	May reduce															1	1
	land available															1	1
	for																
	smallholders in					Peatland	Peatlands in	Reduced									
	tropical					restoration	tropics are	peatland						Some			
	peatlands and	Can reduce crop	Positive health			will improve	often used	exploitation						acidification			
	could increase	production, e.g.	benefits from			water quality	for biofuels	may decrease						reduction			
	poverty (Jewitt	use of peatlands	reduced			as they play	and palm	GDP in						potential,			
	et al., 2014;	in tropics for	burning of			important	oil, so may	Southeast					Unknown	but covered	Peatlands are		
	Senaratna	palm oil and	peatlands in			roles in water	reduce the	Asia (Koh,					adaptation	in table	important		
Restoration and	Sellamuttu, de	other food crops	tropics, which			retention and	availability	Miettinen,					benefits. Some	SM1. Other	natural		
avoided	Silva, &	(Senaratna	produces haze			drainage	of these	Liew, &					mitigation	ocean	habitats		
conversion of	Nguyen-Khoa,	Sellamuttu et al.,	(Tacconi,			(Johnston,	(Danielsen	Ghazoul,					benefits (see	impacts	(Lindsay,		
peatlands	2011)	2011)	2016)	N/A	N/A	1991)	et al., 2009)	2011)	N/A	N/A	N/A	N/A	Table SM1).	unknown	1993)	N/A	N/A
			Biodiversity is					Economic		Studies							
			crucial for					benefits are		show							
			improving					very context		existing							
			sustainable					dependent;		inequality							
			and					positive		affects							
			diversified					economic		policies for							
	There is mixed	Biodiversity	diets (Global							-							
	evidence on the							benefits from		protected							
		conservation can	Panel on		NC 1			protected		areas							
	impacts of	improve	Panel on Agriculture		Mixed			protected areas and		areas (Kashwan							
	impacts of biodiversity	improve sustainable and	Panel on Agriculture and Food		evidence:			protected areas and conservation		areas (Kashwan 2017);							
	impacts of biodiversity conservation	improve sustainable and diversified diets	Panel on Agriculture and Food Systems for		evidence: women play			protected areas and conservation measures (e.g.		areas (Kashwan 2017); likely a							
	impacts of biodiversity conservation measures on	improve sustainable and diversified diets (Global Panel on	Panel on Agriculture and Food Systems for Nutrition,		evidence: women play important			protected areas and conservation measures (e.g. ecotourism) in		areas (Kashwan 2017); likely a relationship	33 out of 105						
	impacts of biodiversity conservation measures on poverty e.g	improve sustainable and diversified diets (Global Panel on Agriculture and	Panel on Agriculture and Food Systems for Nutrition, 2016).		evidence: women play important roles in		Some	protected areas and conservation measures (e.g. ecotourism) in many places		areas (Kashwan 2017); likely a relationship in reverse (of the largest					Some	
	impacts of biodiversity conservation measures on poverty e.g protected areas.	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the		evidence: women play important roles in biodiversity		biodiversity	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010;		areas (Kashwan 2017); likely a relationship in reverse (between	of the largest urban areas					measures	Transbound
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of		evidence: women play important roles in biodiversity conservation		biodiversity conservatio	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et		areas (Kashwan 2017); likely a relationship in reverse (between location of	of the largest urban areas worldwide			Biodiversity		measures for	ary
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators		evidence: women play important roles in biodiversity conservation due to		biodiversity conservatio n measures	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015),		areas (Kashwan 2017); likely a relationship in reverse (between location of protected	of the largest urban areas worldwide rely on			conservatio		measures for biodiversity	ary biodiversity
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would		evidence: women play important roles in biodiversity conservation due to gendered use		biodiversity conservatio n measures might	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and	of the largest urban areas worldwide rely on biodiversity		Likely strong	conservatio n measures	Biodiversity	measures for biodiversity conservatio	ary biodiversity conservatio
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to		evidence: women play important roles in biodiversity conservation due to gendered use of the	Biodiversity	biodiversity conservatio n measures might increase	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality)	of the largest urban areas worldwide rely on biodiversity conservation		adaptation	conservatio n measures like	Biodiversity conservation	measures for biodiversity conservatio n e.g. peace	ary biodiversity conservatio n can
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million		evidence: women play important roles in biodiversity conservation due to gendered use of the environment	conservation	biodiversity conservatio n measures might increase access to	protected areas and conservation measures (c.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear	of the largest urban areas worldwide rely on biodiversity conservation measures such		adaptation benefits for	conservatio n measures like protected	Biodiversity conservation includes	measures for biodiversity conservatio n e.g. peace parks,	ary biodiversity conservatio n can increase
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen,	conservation measures such	biodiversity conservatio n measures might increase access to biomass	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected		adaptation benefits for millions who	conservatio n measures like protected areas can	conservation includes measures	measures for biodiversity conservatio n e.g. peace parks, transbounda	ary biodiversity conservatio n can increase partnerships
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007;	conservation measures such as protected	biodiversity conservatio n measures might increase access to biomass supplies	protected areas and conservation measures (e.g. ecotourism) in many places (Gmis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for		adaptation benefits for millions who depend on	conservatio n measures like protected areas can increase	conservation includes measures aiming to	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected	ary biodiversity conservatio n can increase partnerships , but may
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau,	conservation measures such as protected areas can help	biodiversity conservatio n measures might increase access to biomass supplies (Erb,	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are common		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all,		adaptation benefits for millions who depend on biodiversity for	conservatio n measures like protected areas can increase ocean	conservation includes measures aiming to promote	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas,	ary biodiversity conservatio n can increase partnerships , but may reduce trade
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non-		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but	conservation measures such as protected areas can help ensure water	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, &	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are common (McElwee		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their		adaptation benefits for millions who depend on biodiversity for livelihoods	conservatio n measures like protected areas can increase ocean biodiversity	conservation includes measures aiming to promote species	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams,	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non-		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are	conservation measures such as protected areas can help ensure water supplies	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar,	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are common (McElwee 2010).		areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang,	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al.,	conservation includes measures aiming to promote species richness and	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories,	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams, 2004; Barrett,	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non- communicable and		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are often excluded	conservation measures such as protected areas can help ensure water supplies (Secretariat of	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar, 2012) while	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are common (McElwee 2010). Economic	Protected areas	areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have been	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang, Andrews,	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al., 2014); also	conservation includes measures aiming to promote species richness and natural	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories, can reduce	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions on use of
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams, 2004; Barrett, Travis, &	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local communities	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non- communicable and malnutrition-		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are often excluded for	conservation measures such as protected areas can help ensure water supplies (Secretariat of the	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar, 2012) while others might	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), While some local lost income from restrictions on land use are common (McElwee 2010). Economic impacts of	can be off-limits	areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have been criticized	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of the		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang, Andrews, Alverson, &	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al., 2014); also some	conservation includes measures aiming to promote species richness and	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories, can reduce conflict	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions on use of flora and
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams, 2004; Barrett, Travis, & Dasgupta,	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local communities (Molotoks,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non- communicable and malnutrition. related		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are often excluded for management	conservation measures such as protected areas can help ensure water supplies (Secretariat of the Convention on	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar, 2012) while others might	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on leand use are common (McElwee 2010), Economic impacts of marine	can be off-limits for development	areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have been criticized for equity	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of the Convention on		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang, Andrews, Alverson, & Mebratu, 2014);	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al., 2014); also some acidification	conservation includes measures aiming to promote species richness and natural habitats e.g. protected areas (Powers	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories, can reduce conflict (Hanks,	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions on use of flora and fauna
	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams, 2004; Barrett, Travis, & Dasgupta, 2011; Fisher &	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local communities (Molotoks, Kuhnert,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non- communicable and malnutrition- related diseases, and		evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are often excluded for management institutions	conservation measures such as protected areas can help ensure water supplies (Secretariat of the Convention on Biological	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar, 2012) while others might restrict them;	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on land use are common (McElwee 2010). Economic impacts of marine protected	can be off-limits for development of industry (e.g.	areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have been criticized for equity implications	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of the Convention on Biological		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang, Andrews, Alverson, & Mebratu, 2014); also, mitigation	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al., 2014); also some acidification benefits	conservation includes measures aiming to promote species richness and natural habitats e.g. protected areas (Powers & Jetz, 2019)	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories, can reduce conflict (Hanks, 2003; King	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions on use of flora and fauna (Abensperg-
Biodiversity	impacts of biodiversity conservation measures on poverty e.g protected areas. There is congruence between high poverty and high biodiversity but the exact nature of relationship is contested (W. M. Adams, 2004; Barrett, Travis, & Dasgupta,	improve sustainable and diversified diets (Global Panel on Agriculture and Food Systems for Nutrition, 2016). However, at the same time, some options to preserve biodiversity, like protected areas, may potentially conflict with food production by local communities (Molotoks,	Panel on Agriculture and Food Systems for Nutrition, 2016). Indirectly, the loss of pollinators would contribute to 1.42 million additional deaths per year from non- communicable and malnutrition. related	N/A	evidence: women play important roles in biodiversity conservation due to gendered use of the environment (Momsen, 2007; Rocheleau, 1995) but women are often excluded for management	conservation measures such as protected areas can help ensure water supplies (Secretariat of the Convention on	biodiversity conservatio n measures might increase access to biomass supplies (Erb, Haberl, & Plutzar, 2012) while others might	protected areas and conservation measures (e.g. ecotourism) in many places (Smis 2010; Balmford et al. 2015), while some local lost income from restrictions on leand use are common (McElwee 2010), Economic impacts of marine	can be off-limits for development	areas (Kashwan 2017); likely a relationship in reverse (between location of protected areas and inequality) but no clear lit. Plans to expand conservatio n to half the planet have been criticized for equity	of the largest urban areas worldwide rely on biodiversity conservation measures such as protected areas for some, or all, of their drinking water (Secretariat of the Convention on		adaptation benefits for millions who depend on biodiversity for livelihoods (Munang, Andrews, Alverson, & Mebratu, 2014);	conservatio n measures like protected areas can increase ocean biodiversity (Selig et al., 2014); also some acidification	conservation includes measures aiming to promote species richness and natural habitats e.g. protected areas (Powers	measures for biodiversity conservatio n e.g. peace parks, transbounda ry protected areas, indigenous territories, can reduce conflict (Hanks,	ary biodiversity conservatio n can increase partnerships , but may reduce trade due to restrictions on use of flora and fauna

				adjusted life-					term positive									
				years per year					benefits									
				(MR Smith et					(Lynam et al.									
				al., 2015).					(Lynam et al. 2020) but									
				al., 2013).					some short									
									term losses in									
									some cases									
									(Dalton 2004)									
							Mineral											
							weathering											
							can negatively											
							affect the											
							chemical											
							composition											
							of soil and											
							surface waters			Will require				Unknown				
							(Katz, 1989;			development of				adaptation				
							Atekwana,			new				benefits; some				
1							Atekwana,			technologies				moderate				
	Enhanced						Legall, &			(Schuiling &				mitigation				
	weathering of						Krishnamurth			Krijgsman,				benefits (Table				
CDR	minerals	N/A	N/A	N/A	N/A	N/A	y, 2005)	N/A	N/A	2006)	N/A	N/A	N/A	SM1)	N/A	N/A	N/A	N/A
con	mileruis						Depending on			2000)				5)				
							the feedstock,											
							can require											
							water. Models											
							show high risk											
		D.																
		Bioenergy					of water											
		production					scarcity if											
		could create					BECCS is											
		jobs but could					deployed on											
		also compete		BECCS could			widespread											
		for land with		have positive			scale (Hejazi											
		alternative uses	Biofuel	effects			et al., 2014;											
		(Humpenöder	plantations may	through			Popp,											
		et al., 2018;	lead to	improvements			Dietrich, et											
		Smith, Davis, et	decreased food	in air quality			al., 2011;							Large mitigation				
1		al., 2016;	security through	(IPCC, 2018)			Smith et al.,	Bioenergy						potential				
1		Clarke et al.,	competition for	but bioenergy			2016) through	and BECCS						depending on				
1		2014; Popp et	land. Large scale	and BECCS			both increases	can						scale e.g. up to				
1		al., 2017).	deployment of	could have			in water	contribute						~11 GtCO ₂ yr ⁻¹				
1		Therefore,	bioenergy and	negative			withdrawals	up to 300 EJ						(IPCC, 2018;				
1		bioenergy	BECCS can lead	effects on			(Bonsch et al.,	of primary						Smith et al.,				
1		could have	to significant	health and			2015; Hejazi	energy by						2020), but		Can reduce		
1		positive or	trade-offs with	wellbeing			et al., 2014;	2100						potentially large	Bioenergy	areas of		
1		negative effects	food production	through			IPCC, 2018)	(Clarke et						negative	and BECCS	natural habitat		
1		on poverty rates	(Humpenöder et	impacts on			and changes	al., 2014);		BECCS will				adaptation	will reduce	with negative		
1		among	al., 2018; Popp,	food systems			in surface	bioenergy	Access to	require				effects due to	ocean	effects on		
1		smallholders,	Lotze-Campen,	and water			runoff (Cibin,	can provide	clean,	development of			Switching to	land competition	acidification	biodiversity		
1		among other	et al., 2011;	(Burns &			Trybula,	clean,	affordable	new			bioenergy	(Dooley &	(covered in	(Hof et al.,		
		social effects	Smith.	Nicholson,			Chaubey,	affordable	energy will	technologies			reduces	Kartha, 2018;	Table 1) but	2018;		
		(Dooley &	Haszeldine, &	2017;			Brouder, &	energy	help economic	(Smith,			depletion of	Fuss et al., 2016;	unknown	Immerzeel et		
1	Bioenergy and	Kartha, 2018;	Smith, 2016;	Humpenöder			Volenec,	(IPCC,	growth (IPCC,	Haszeldine, &			finite resources	Humpenöder et	other effects	al., 2014;		
CDR	BECCS	IPCC, 2018).	IPCC, 2018)	et al., 2018)	N/A	N/A	2016)	2018)	2018)	Smith, 2016)	N/A	N/A	(IPCC, 2018)	al., 2018).	on oceans	IPCC, 2018)	N/A	N/A
		,,-	,,	,,			,	,		,,			· · · · · · · · · · · · · · · · · · ·	,,		,)		

Table S5 Literature on Impacts on the UN SDG of integrated response options based on value chain interventions

Integra																GOAL	
ted																16:	
respon																Peace	
se								GOAL 8:				GOAL 12:				and	
options			GOAL 3:				GOAL 7:	Decent Work	GOAL 9:		GOAL 11:	Responsible				Justice	GOAL 17:
based			Good Health	GOAL 4:	GOAL 5:	GOAL 6: Clean	Affordable	and	Industry,	GOAL 10:	Sustainable	Consumption	GOAL 13:	GOAL 14:	GOAL 15:	Strong	Partnerships
on	GOAL 1: No	GOAL 2: Zero	and Well-	Quality	Gender	Water and	and Clean	Economic	Innovation and	Reduced	Cities and	and	Climate	Life Below	Life on	Institutio	to achieve
value	Poverty	Hunger	being	Education	Equality	Sanitation	Energy	Growth	Infrastructure	Inequality	Communities	Production	Action	Water	Land	ns	the Goal

<u>chain</u>																		
manag ement																		
	Dietary change	Reduced demand for livestock may have negative effect on effect on effect an could suppress demand for other inputs (grains) that would affect poor farmers (Garnett, 2018) : could be made up with demand for other products but little lit	Reduced meat consumption can free up land for other activities to increase food production (Röös et al., 2017; Stoll-Kleemann & O'Riordan, 2015). High-meat diets in developed countries may limit improvement in food security in developing countries (Rosegrant, Leach, & Gerpacio, 1999); dietary change can contribute to food security goals (Bajželj et al., 2014; Godfray et al., 2010)	Overnutrition contributes to worse health outcomes, including diabetes and obesity (A. J. McMichael, Powles, Butler, & Uauy, 2007; Tilman & Clark, 2014). Dietary change away from meat consumption has major health benefits, including reduced heart disease and mortality (Friel, Marmot, Kjellstrom, & Vägerö, 2008; Popkin, 2008). Dietary change could contribute to S.1 million avoided deaths per year (Springmann et al., 2016)	N/A	N/A	Reduced meat consumption will reduce water consumption. (Muller et al., 2017) found that dietary change and waste reduction would lead to decreases in use of fertiliser (nitrogen and phosphorus), pesticides, water and energy. However, Tom et al. (2016) found water footprints of fruit/veg dietary shift in the US to increase by 16%	Dietary shifts away from meat to fish/fruits/veg etables increases energy use in the US by over 30% (Tom et al., 2016)	Health costs of meat-heavy diets add to health care costs and reduce GDP (Popkin, 2008)	N/A	There are currently large discrepancies in diets between developed and developing nations (Sans & Combris, 2015). Dietary change will reduce food inequality by reducing meat overconsumpt ion in Western countries and free up some cereals for consumption in poorer diets (Rosegrant et al., 1999)	Dictary change is most needed in urbanised, industrialised countries and con help contribute to local urban food systems (Tom et al., 2016)	A dietary shift away from meat can contribute to sustainable consumption by reducing greenhouse gas emissions and reducing cropland and pasture requirements (Bajželj et al., 2014; Stehfest et al., 2009).	Unknown adaptation benefits; high mitigation benefits (Table SM1)	Dietary change away from meat might put increased pressure on fish stocks (Mathijs, 2015; Vranken, Avermaete, Petalios, & Mathijs, 2014). Some acidification reduction potential, but covered in table SM1.	Can lead to reduced expansion of agricultural lands, which can spare/increa se natural habitat (Tilman et al., 2001; Laroche et al., 2020)	N/A	N/A
Deman d manag ement	Reduced post- harvest losses	Reducing food losses from storage and distribution operation can increase economic well-being without additional investment in production activities, which is beneficial to poor (Bradford et al., 2018)	Reducing food losses increases food availability, nutrition, and lower prices (Abass et al., 2014; Affognon, Mutungi, Sanginga, & Borgemeister, 2015; Sheahan & Barrett, 2017)	Improved storage enhances food quality and can reduce mycotoxin intake (Bradford et al., 2018; Stathers et al., 2013; Temba et al., 2016; Tirado, Clarke, Jaykus, McQuatters- Gollop, & Frank, 2010; especially in humid climates. The perishability and asfety of fresh foods are highly susceptible to	Reduced losses can increase income that could be spent on education, but no data available	Postharvest losses do have a gender dimension (Kaminski & Christiaensen, 2014), but unclear if reducing losses will contribute to gender equality (Rugumanu, 2009)	(Kummu et al., 2012) report 24% of global freshwater use and 23% of global fertiliser use is attributed to food losses. Reduced post harvest losses can decrease need for additional agricultural production and irrigation.	Reduced losses would reduce energy demands in production; 2030 +- 160 trillion BTU of energy were embedded in wasted food in 2007 in the US (Cuéllar & Webber, 2010)	In East and Southern Africa, postharvest loss for six major cereals was US\$1.6 billion or 15% of total production value; reducing losses would thus boost GDP substantially in developing countries with PHL (Hodges, Buzby, & Bennett, 2011)	Reducing PHL can involve improving infrastructure for farmers and marketers (Parfitt, Barthel, & Macnaughton, 2010)	Poorer households tend to experience more PHL, and thus reducing PHL can contribute to reducing inequality among farmers (Hodges et al., 2011).	N/A	Reducing PHL contributes to sustainable production goals (Parfitt et al., 2010)	Adaptation benefits for over 250 million people due to increased availability of food (Kummu et al. 2012). Also mitigation benefits (See Table SM1)	Some acidification reduction potential, but covered in table SM1.	Will lead to reduced expansion of ag lands, which can preserve natural habitat (Tilman et al., 2001), although not well quantified in lit for post-harvest losses specifically	N/A	Post harvest losses contribute to higher food prices and constraints on trade (Tefera, 2012)

				temperature increase (Bisbis, Gruda, & Blanke, 2018; J Ingram et al., 2016).														
	Reduced food waste (consumer or retailer)	Food waste tends to rise as incomes rise (Junguo Liu, Lundqvist, Weinberg, & Gustafisson, 2013; Parfitt et al., 2010), so it is not clear what the relationship to poverty is. Redistribution of food surplus to the poor could also food surplus to the poor could also poverty (Papargyropoulou, Lozano, K. Steinberger, Wright, & Ujang, 2014)	People who are already food insecure tend not to waste food (Nahman, de Lange, Oelofse, & Godfrey, 2012). Reduced food waste would increase the supply of food (FAO, 2011; P. Smith & Gregory, 2013) but it is unclear if this would benefit those who are food insecure in developing countries (Hertel & Baldos, 2016).	Evroly, Food waste can increase with healthier diets (Parizeau, von Massow, & Martin, 2015). Health and safety standards can restrict some approaches to reducing food waste (Halloran, Clement, Kornum, Bucatariu, & Magid, 2014). Changes in packaging to reduce waste might have negative health impacts (e.g. increased contamination) (Claudio, 2012)	Could be potentially beneficial as it would free up money to spend on other activities (Dorward, 2012) but unclear role of education	Reducing food waste within households often falls to women (Stefan, van Herpen, Tudoran, & Lähteenmäki, 2013) and can increase their labour workload (Hebrok & Boks, 2017). Women also generate more food waste and could be a site for intervention (Thyberg & Tonjes, 2016)	(Kummu et al., 2012) report 24% of global freshwater use and 23% of global fartiliser use is attributed to food losses. (Muller et al., 2017) found that lower impact agriculture could be practiced if dietary change and waste reduction were implemented, leading to lower GHG emissions, lower rates of deforestation, and decreases in use of fertiliser (nitrogen and phosphorus), pesticides, water and energy.	Reduced losses would reduce energy demands in production; 2030 +- 160 trillion BTU of energy were embedded in wasted food in wasted food in US (Cuéllar & Webber, 2010). However, food waste can be a sustainable source of biofuel (Uçkun Kiran, Trzeinski, Ng., & Liu, 2014)	Households in the UK throw out USS745 of food and drink cach year as food waste; South Africans throw out S7billion US worth of food per year (Nahman & de Lange, 2013). Reductions of postconsumer waste would increase household income (Hodges et al., 2011)	N/A	Wealthier households tend to waste more food (Parfitt et al., 2010), but unclear how reducing waste may contribute to reducing inequality.	There have been large increases in the throughput of materials such as the food-waste stream, import and solid-waste accumulation in urban areas (Grimm et al., 2008). Reducing compostable food waste reduces need for landfills (J. Smit & Nasr, 1992; Zaman & Lehmann, 2011)	Post- consumer food waste in industrialised countries (222 million ton) is almost as high as the total net food production in sub-Saharan Africa (230 million ton). (FAO, 2011) thereby reducing waste contributes to sustainable consumption.	Un-quantified adaptation benefits; see Table SM1, regulation of climate, for mitigation benefits	Reducing food waste may be related to food packaging, which is a major source of ocean pollution (Hoornweg, Bhada-Tata, & Kennedy, 2013; Lebreton et al., 2017); Some acidification potential, but covered in table SM1	Improved storage and distribution reduces food waste and the need for compensato ry intensificati on of agricultural areas (land sparing) and land use change (Stathers, Lamboll, & Myumi, 2013)	N/A	Food waste can contribute to higher food prices and constraints on trade (Tefera, 2012)
	Material substitutio n	N/A Value adding and	Could increase demand for wood and compete with land for agriculture (Petersen & Solberg, 2005) Sustainable	N/A Sustainable	N/A	N/A Women are	If water is used efficiently in production of wood, likely to be positive impact over cement production (Gustavsson & Sathre, 2011)	Concrete frames require 60-80% more energy than wood (Börjesson & Gustavsson, 2000). Material substitution can reduce embodied energy of buildings construction by up to 20% (Thormark, 2006; Upton, Miner, Spinney, & Heath, 2008)	The relationship between material substitution and GDP growth is unclear (Moore, Tilton, & Shields, 1996) Sustainable	Material substitution may reduce need for industrial production of cement etc. (Petersen & Solberg, 2005) Sustainable	N/A Data shows	Changing materials for urban construction can reduce cities' ecological footprint (Zaman & Lehmann, 2013)	Material substitution is a a form of sustainable production/co nsumption which replaces coment and other energy- intensive materials with wood (Fiksel, 2006) Value-adding	Unknown adaptation benefits; some mitgitation benefits (see Table SM1)	N/A Fisheries	Material substitution increases demand for wood, lead to loss of habitat (Sathre & Gustavsson, 2006) Commodity worknetion	N/A Many	N/A Value-adding
Supply manag ement	Sustainable sourcing	value adding and sustainable sourcing has been promoted as a poverty reduction strategy (Lundy et al. 2002; Whitfield 2012). Poor farmers can benefit from value-adding	sourcing may help to improve food security by increasing economic performance and revenues to local farmers through higher prices	sourcing and improved value-chains could help increase the nutritional status of food reaching consumers	Value- adding can increase income that could be spent on education, but no data available	highly employed in sustainable sourcing in many developing countries, but do not always gain	Possible benefits due to improved ecosystem management but no literature specifically on water	N/A	sourcing can expand markets and generate additional employment and expands GDP in developing	sourcing can create incentives to improve infrastructure in processing (Delgado, 1999). Expanding value chains can incorporate new	high-value agriculture is not always a pathway toward enhanced welfare (Dolan & Sorby, 2003;	Sustainable souring can increase incentives to keep peri-urban agriculture, but faces threats from rising land prices in urban	(e.g. fair trade, organic) can be an important source of sustainable consumption and	Likely some adaptation benefits due to increased incomes (Tayleur et al. 2018); unquantified mitigation	certification can have positive impact on ocean ecosystems (Jacquet et al. 2010), although	production is responsible for nearly 40% of deforestatio n (Henders, Persson, & Kastner, 2015). Forest	viany certificati on/ sourcing programs have communi ty institutio nal	has a strong relationship to expanding trade in developing countries in particular (Newfarmer et al., 2009)

	and new markets (Bamman, 2007; Swanson, 2006). However, much value-adding is captured upstream, not by poor producers so overall benefits uncertain (McMichael & Schneider, 2011; Oya, Schaefer &Skalidou 2018), and much sustainable sourcing is not directed to the poorest areas globally, so promise is not yet being met (Tayleur et al. 2018).	(Reidsma, Evert, Lansink, & Leemans, 2010); however, one study found increased food insecurity among indigenous peoples near a forest certification site (Doremus 2019), so likely depends on what is being certified/sourced	(e.g. organic standards) (Fan & Pandya-Lorch, 2012)		substantive benefits (Dolan & Sorby, 2003). Value-chains that target women could increase gender equity, but data is scare (Gengenbach, Schurman, Bassett, Munro, & Moseley, 2018)			countries in particular (Newfarmer, Shaw, & Walkenhorst, 2009)	sources of food producers into industrial systems of distribution (Bloom & Hinrichs, 2011)	Oya et al. 2018), and much value- adding is captured not by smallholders but higher up the chain (Neilson, 2007), which could create inequality	areas (Midmore & Jansen, 2003)	production (De Haen & Réquillart, 2014); however,	benefits but possible.	evidence is somewhat mixed (Ward 2008). Some acidification reduction potential, but covered in table SM1	certification and other sustainable sourcing schemes can reduce habitat fragmentati on as compared to conventiona l supply chains (Rueda, & Lambin, 2015; Tayleur et al. 2018))	building as an explicit goal (Sirdley & Lallau, 2020)	
Manage- ment of supply chains	Volatility of food supply and food price spikes in 2007 increased the number of people under the poverty line by between 100 million people (Ivanic & Martin, 2008) to 450 million people (Brinkman, De Pee, Sanogo, Subran, & Bloem, 2009), and caused welfare losses of 3% or more for poor households. Better management would have positive poverty impacts.	consumers benefit from better access and distribution (Coveney & O'Dwyer, 2009; John Ingram, 2011) Food prices strongly affect food security (Fujimori et al., 2019; Lewis & Witham, 2012; Regmi & Meade, 2013), and policies to improve supply chains will likely have strong impacts on food security (Raleigh, Choi, & Kniveton, 2015; Timmer, 2009; Torlesse, Kiess, & Bloem, 2003).	Access to quality food is a major contributor to whether a diet is healthy or not (Neff, Palmer, McKenzie, & Lawrence, 2009) and better supply chains may increase access	N/A	Women and girls are often the most effected ones in households when there are food shortages, therefore increases likely benefits them (Hadley, Lindstrom, Tessema, & Belachew, 2008; Kerr, 2005)	Increasing food imports can contribute to water scarcity through "embodied" or "virtual" water accounting (Guan & Hubacek, 2007; Hanjra & Qureshi, 2010; Jiang, 2009; Yang & Zehnder, 2002)	Food supply chains and flows can have adverse effects due to reliance on non- renewable energy for long-distance shipping (Kurian, 2017; A. Scott, 2017).	Better supply chain management can reduce price volatility, which can contribute to consumer price inflation and higher import costs as a percentage of GDP leading to account deficits (Gilbert & Morgan, 2010)	Excessive disruptions in food supply can place strains on infrastructure (e.g. needing additional storage facilities) (Yang & Zehnder, 2002). Improved food transport can create demands for improved infrastructure (Akkerman, Farahani, & Grunow, 2010; Shively & Thapa, 2016).	Improved food distribution could reduce inequality in access to high quality nutritious nutritious foods (Baldos & Hertel, 2015; Frank et al., 2017; Porter et al., 2014; Wheeler & von Braun, 2013).	Improved food distribution can contribute to better food access and stronger urban communities (Hendrickson, Smith, & Eikenberry, 2006; Kantor, 2001). Food price spikes often hit urban consumers the hardest in food importing countries, and increasing stability can reduce risk of food riots (Cohen & Garrett, 2010).	Improved storage and distribution are likely to contribute to sustainable production (J Ingram et al., 2016).	Likely medium to large adaptation benefits due to improved access to food storage and distribution especially in countries with indacquate infrastructure (Vermeulen, Campbell, et al., 2012) can strengthen climate resilience against future climate- related shocks (J Ingram et al., 2016; Stathers et al., 2013)	N/A	N/A	N/A	Better transport improves chances for expanding trade in developing countries (Newfarmer et al., 2009), Well-planned trade systems may act as a buffer to supply food to vulnerable regions (Baldos & Hertel, 2015; Frank et al., 2014; Wheeler & von Braun, 2013).
Enhanced urban food systems	As urban poor spend a great deal of their budget on food, enhanced UFS could reduce prices and contribute to poverty reduction for urban farmers (Ellis & Sumberg, 1998).	Food insecurity in urban areas is often invisible (Crush & Frayne, 2011). Improved urban food systems manage flows of food into, within, and out of the citles and have large role to play in reducing urban food security (Benis & Ferrão, 2017; Brinkley.	Urban diets are exposed to more unhealthy 'fast foods', and enhanced urban food systems can contribute to enhanced nutrition in urban areas (J. Dixon et al., 2007; Maxwell, 1999; Neff et	School feeding programs in urban areas can increase educational attendance and outcomes (Ashe & Sonnino, 2013)	Women play an important role in the provisioning of urban food (Binns & Lynch, 1998; Tao et al., 2015). Women also dominate informal urban food provisioning (wet markets, street food)	Water access often a constraint on urban agriculture (Badami & Ramankutty, 2015; de Bon et al., 2010). Urban agriculture can exacerbate urban water pollution problems (pesticide runoff, etc)	Local food production and use can reduce energy use, due to lower demand of resources for production, transport and infrastructure (Lee-Smith, 2010), but depends on context (Coley,	Urban food systems have as one aim to stimulate local economic development and increase employment in urban agriculture and food processing (D. W. Smith, 1998). As many as 50% of some cities'	Urban food provisioning creates demands for expanded infrastructure in processing, refrigeration, and transportation (Pothukuchi & Kaufman, 1999)	Many UFS in global South have goals to reduce inequality in access to food. (Allen, 2010; J. Dixon et al., 2007)	Urban food systems present opportunities for resilient food supply (Brinkley et al., 2016; Rocha, 2016). through improving the health status of urban dwellers and stimulating economic development (Tao et al., 2015)	UFS aim to combine sustainable production and consumption with local foodsheds (Allen, 2010; Tao et al., 2015)	Likely strong adaptation benefits due to increased access to food that is closer and fresher and less likely to experience disruptions from climate (Tao et al., 2015).	Some urban food systems rely on aquaculture with positive health/food benefits (Bunting & Little 2015) but not clear impact on oceans	Urban gardening can improve habitat and biodiversity in cities (Lin, Philpott, & Jha, 2015; Orsini et al.,	Building a resilient regional food system requires building local institutio ns (Akhtar, Tse, Khan, & Rao- Nicholso n, 2016).	N/A

		Birch, & Keating, 2016; Maxwell & Wiebe, 1999; Rocha, 2016; W. Smit, 2016), particularly in fostering regional food self-reliance (Aldababsch, Temimi, & Maghelal, 2018; Bustamante et al., 2014).	al., 2009; Tao et al., 2015).		(D. W. Smith, 1998)	(Pothukuchi & Kaufman, 1999)	Howard, & Winter, 2009; Mariola, 2008)	retail jobs are in food-related sector (Pothukuchi & Kaufman, 1999)								Productio n of food within cities can potentiall y lead to less likelihoo d of urban food shortages and conflicts (Cohen & Garrett, 2010)	
food	ng and Weinberger & ling Lumpkin, 2007)	Improving storage and processing can reduce food waste and health risks associated with poor management practices (Bradford et al., 2018; James & James, 2010; Stathers et al., 2013; Tirado et al., 2010). Improved food processing and supply chains can contribute to more food reaching consumers and improved nutrition (Keding, Schneider, & Jordan, 2013; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al 2019) There is some	Improved processing and distribution & storage systems can provide safer and healthier food to consumers (Vermeulen, Campbell, et al., 2012) and reduce food waste and health risks associated with poor storage management practices (James & James, 2010), although overpackaged prepared foods that are less healthy are also on rise (Galal, Corroon, & Tirrado, 2010; Carlos A. Monteiro, Levy, Claro, & Cannon, 2011) Organic	N/A	Improved food processing can displace street venders and informal food sellers, who are predominantly women (J. Dixon et al., 2007; D. W. Smith, 1998)	Food processing and packaging activities such as washing, heating, cooling are heavily dependent on freshwater so improved postharvest storage and distribution could reduce water demand via more efficiently performing systems (Garcia & You, 2016).	Food processing and packaging activities such as heating and cooling are heavily dependent on energy so improved efficiency could reduce energy demand (Garcia & You, 2016). Increased	Phytosanitary barriers currently prevent much food export from developing countries, and improvements developing countries, and improvements in processing would increase exports and GDP (Henson & Loader, 2001; Jongwanich, 2009). There is no	Improvements in processing, refrigeration, and transportation will require investments in improved infrastructure (John Ingram, 2011)	Inequality in access to food could increase if food processing aimed at wealthier consumers (Ericksen, 2008)	Improved food transport can reduce cities' ecological footprints and reduce overall emissions (Du, Zhang, Song, & Wen, 2006)	Improved food processing and agro- retailing contributes to sustainable production (John Ingram, 2011)	Likely adaptation benefits in terms of better access to food and improved storage such as weatherproofi ng transport systems, but unquantified (World Bank, 2017) Adaptation	N/A	N/A	N/A	Improved processing increases chances for expanding trade in developing countries (Newfarmer et al., 2009)
	•	limited evidence that improved transport increases food security in developing countries (Hine, 1993). Utilising energy-saving	agriculture is associated with increased energy efficiency, which have can have co- benefits by reduced	N/A	Increased efficiency might reduce women's labor workloads on farms (Rahman, 2010) but data is scarce.	Increased energy efficiency (e.g. in irrigation) can lead to more efficient water use (Ringler & Lawford, 2013; Rothausen & Conway, 2011)	energy efficiency will reduce demands for energy ; rebound effect is unclear (Swanton, Murphy,	clear association between higher energy use in agriculture and economic growth; these have become	N/A	N/A	N/A	Reducing energy use in agriculture contributes to sustainable production goals (J Ingram et al., 2016).	benefits due to reduced cost of energy inputs and increased food productivity, but unquantified (World Bank,	Some acidification reduction potential, but covered in table SM1	N/A	N/A	N/A

	strategies can	exposure to		Hume, &	decoupled in			2017). Also		
	support reduced	agrochemicals		Clements,	many			some		
	food waste (J	by farm		1996).	countries			mitigation		
	Ingram et al.,	workers			(Bonny,			benefits, see		
	2016) and	(Gomiero,			1993). Data is			Table SM1,		
	increased	Paoletti, &			unclear					
	production	Pimentel,			though on					
	efficiencies (P.	2008)			economic					
	Smith &				impacts of					
	Gregory, 2013).				potential cost					
					savings but					
					likely to be					
					some.					

Table S6 Literature on Impacts on the UN SDG of integrated response options based on risk management

In the second of the										CONT			r			1		
Integrated									60.11.0	GOAL 9:							60.11.14	CO. 1. 17
response									GOAL 8:	Industry,							GOAL 16:	GOAL 17:
options				GOAL 3:				GOAL 7:	Decent Work	Innovation			GOAL 12:		GOAL		Peace and	Partnershi
based on				Good	GOAL 4:	GOAL 5:	GOAL 6: Clean	Affordable	and	and	GOAL 10:	GOAL 11:	Responsible	GOAL 13:	14: Life	GOAL	Justice	ps to
<u>risk</u>		GOAL 1: No	GOAL 2:	Health and	Quality	Gender	Water and	and Clean	Economic	Infrastructur	Reduced	Sustainable Cities	Consumption	Climate	Below	15: Life	Strong	achieve the
management		Poverty	Zero Hunger	Well-being	Education	Equality	Sanitation	Energy	Growth	e	Inequality	and Communities	and Production	Action	Water	on Land	Institutions	Goal
									Sprawl is			Urban sprawl is						
									associated			associated with						
			There are						with rapid			unsustainability.						
			likely to be	Strong					economic			including						
			some benefits	association					growth in			increased transport						
			for food	between					some areas			and CO ₂						
			security since	urban					(Brueckner,	Urban sprawl		emissions, lack of						
			it is often	sprawl and					(Brucekher, 2000).	often		access to services,						
				•					,									
			agricultural	poorer				Sprawling or	Reducing	increases		and loss of civic						
			land that is	health				informal	urban sprawl	public		life (E. Andersson,		Improved				
			sealed by the	outcomes				settlements	is part of	infrastructure		2006; Kombe,		quality of				
			urban	(air				often do not	many	costs		2005). Sustainable		life could				
			expansion	pollution,				have access to	managed	(Brueckner,		cities include	Reducing urban	lead to			Urban sprawl	
		Inner city	(Barbero-	obesity,			Urban sprawl is	electricity or	"smart	2000), and		compactness,	sprawl and	enhanced			may reduce	
		poverty closely	Sierra et al.,	traffic			associated with	other services,	growth" plans,	densification		sustainable	promoting	resilience		Reducing	social capital	
		associated with	2013)	accidents)			higher levels of	increasing	which may	and		transport, density,	community	for	Some	urban	and	
		urban sprawl in	Some	(Freudenber			water pollution	chances HH	reduce overall	redevelopmen		mixed land uses,	gardens and	potentially	acidificati	sprawl	weakening	
		US context	evidence for	g, Galea, &			due to loss of	rely on dirty	economic	t can improve		diversity, passive	periurban	millions	on	can help	participatory	
		(Deng &	sprawl	Vlahov,			filtering vegetation	fuels	growth in	equality of	Urban sprawl	solar design, and	agriculture can	(Stone et al.	reduction	preserve	governance in	
		Huang, 2004;	reducing food	2005;			and increasing	(Dhingra,	return for	access to	is associated	greening (E.	contribute to	2010);	potential,	natural	cities	
		Frumkin, 2002;	production,	Frumkin,			impervious	Gandhi,	sustainability	infrastructure	with	Andersson, 2006;	more sustainable	mitigation	but	habitat in	(Frumkin,	
	Management	Jargowsky,	particularly in	2002;			surfaces (Romero	Chaurey, &	benefits	(Jenks &	inequality	H. Chen, Jia, &	production in	benefits as	covered	periurban	2002;	
	of urban	2002; Powell,	China (J.	Lopez,			& Ordenes, 2004;	Agarwal,	(Godschalk,	Burgess,	(Jargowsky,	Lau, 2008;	cities (B. Turner,	well (see	in table	areas	Nguyen,	
	sprawl	1999)	Chen, 2007)	2004)	N/A	N/A	Tu et al., 2007)	2008)	2003)	2000).	2002)	Jabareen, 2006)	2011)	Table SM1)	SM1	(Pataki et al., 2011)	2010)	N/A
	sprawr	1777)	Chen, 2007)	More	More	1074	Tu et al., 2007)	2000)	2003)	2000).	The	sabarcen, 2000)	2011)	Table Switt)	Bivi i	al., 2011)	2010)	10/11
				diversified	diversified	Women are					relationship	One part of urban						
				livelihoods	households	participants		Access to			between	livelihoods in						
				have	tend to be	in and					livelihood	developing						
				diversified	more affluent.	benefit from		clean energy			diversification	countries are						
					· · · ·			can provide										
				diets which	& have more	livelihood		additional			and inequality	linkages between						
		Diversification	Diversification	have better	disposal	diversificatio		opportunities			is	rural and urban	Livelihood			Could		
		is associated	is associated	health	income for	n, such as	Lack of access to	for livelihood			inconclusive	areas through	diversification	Livelihood		have		
		with increased	with increased	outcomes	education	having	affordable water	diversification	Livelihood		(Ellis, 1998).	migration and	can strengthen	diversificata		indirect		
		welfare and	access to	(Block &	(Ellis, 1998;	increased	may inhibit	(Brew-	diversification		In some cases	remittances (C	autonomy	tion is a		impacts if		
		incomes and	income and	Webb,	Estudillo &	control over	livelihood	Hammond,	by definition		diversification	Rakodi & Lloyd-	potentially	well	1	diversific		
		decreased	additional	2001;	Otsuka, 1999;	sources of	diversification	2010; Suckall,	contributes to		reduced	Jones, 2002;	leading to better	acknolwedg	1	ation		
		levels of	food sources	Kadiyala et	Steward,	HH income	(Calow,	Stringer, &	employment		inequality (R.	Carole Rakodi,	choices for	ed	1	allows		
		poverty in	for the	al., 2014)	2007), but	(N. M.	MacDonald, Nicol,	Tompkins,	by providing		H. Adams,	1999); this	consumption	adaptation	1	land		
		several country	household (J.	particularly	diversification	Smith, 2014)	& Robins, 2010)	2015) but	additional		1994) while in	livelihood	and production	strategy to	1	sparing or		
		studies (Arslan	Pretty, 2003);	for women	through	although it	but unclear if	unclear if	work		others cases it	diversification can	(Elmqvist &	reduce risk	1	reduction		
		et al., 2018;	likely some	and children	migration	can increase	diversification	diversification	opportunities		increases it	strengthen urban	Olsson, 2007; S.	(Morton	1	in land		
	Livelihood	Asfaw et al.,	food security	(J. Pretty,	may reduce	their labour	increases water	requires more	(Ellis, 1998;		(Reardon,	income (Ricci,	Schneider &	2007; Rigg		conversio n. but no		
	diversification	2018).	benefits	2003)	educational	requirements	consumption	energy use	Niehof, 2004)	N/A	Taylor,	2012)	Niederle, 2010)	2006)	N/A	literature	N/A	N/A
L)				8/			-,,	/		,		incluture		

				outcomes for	(Angeles &					Stamoulis,							
				children (Gioli, Khan,	Hill, 2009)					Lanjouw, & Balisacan,							
				(Gioli, Knan, Bisht, &						2008)							
				Scheffran,						ĺ.							
			Local seed	2014)													
			use is														
			associated														
			with fewer pesticides														
			(Altieri et														
			al., 2012);														
			loss of local seeds and														
		Local seeds	substitution														
		revive and	by														
		strengthen	commercial												11		
		local food systems	seeds is perceived		Women play										Use of commerci		
		(McMichael &	by farmers		important										al seeds		
	Many hundra 1-	Schneider, 2011) and load	to increase		roles in			Food				Locally developed seeds			can	Seed	Sand
	Many hundreds of millions of	2011) and lead to more	health risks (Mazzeo &		preserving and using			Food sovereignty				can both help			contribute to habitat	Seed sovereignty is	Seed sovereignty
	smallholders	diverse and	Brenton,		local seeds			supporters				protect local			loss	positively	could be
	still rely on local seeds;	healthy food in areas with	2013), although		(Bezner Kerr, 2013;			believe protecting		Seed sovereignty	Seed sovereignty	agrobiodiversity and can often be	Local seeds		through agricultur	associated with strong	seen as threat to
	without them	strong food	overall		Ngcoya &			smallholder		advocates	can help	more climate	tend to be		al	local food	free trade
	they would	sovereignty	literature on		Kumarakulas			agriculture		believe it will	sustainable urban	resilient than	resilient to		expansion	movements,	and imports
	have to find	networks (Bisht et al.,	links		ingam, 2017)			provides more		contribute to	gardening (Demailly &	generic	different climate		and intensific	which contribute to	of
	money to buy commercial	(Bisht et al., 2018; Coomes	between food		and sovereignty			employment than		reduced inequality	(Demaily & Darly, 2017)	commercial varieties, leading	hazards and		ation;	social capital	genetically modified
	seeds (Altieri,	et al., 2015).	sovereignty		movements	Local seeds often		commercial		(Park et al.,	which can be part	to more	thus can		local	(Coomes et	seeds
	Funes- Monzote, &	However local seeds can be	and health is weak		paying more attention to	have lower water demands, as well		agriculture (Kloppenberg,		2015; Wittman,	of a sustainable city by providing	sustainable production	enhance adaptation		seeds likely	al., 2015; Grey & Patel,	(Howard, 2015;
	Petersen, 2012;	less	(Jones,		gender needs	as less use of		(Kioppenberg, 2010)		2011) but	fresh, local food	(Coomes et al.,	(Louwaars		better	2015;	Kloppenber
	Howard, 2015;	productive	Shapiro, &		(Park, White,	pesticides that can		although exact		empirical	(Leitgeb,	2015; Van	2002;		(Upreti &	McMichael &	g, 2010;
Use of local seeds	McGuire & Sperling, 2016)	than improved varieties.	Wilson, 2015)	N/A	& Julia, 2015)	contaminate water (Adhikari, 2014)	N/A	numbers unknown	N/A	evidence limited.	Schneider, & Vogl, 2016)	Niekerk & Wynberg, 2017).	Santilli 2012)	N/A	Upreti, 2002)	Schneider, 2011).	Kloppenbur g, 2014)
 secus	Spering, 2010)	varieties.	2013)	IVA	2013)	(Funkari, 2014)	1971	unknown	IVA	minted.	vogi, 2010)	wynoerg, 2017).	2012)	10/1	Many	2011).	g, 2014)
															habitats		
														DRM can	confer disaster		
														play role	protection		
														in marine	(Kousky		
														managem ent, e.g.	2010), and some		
														warnings	DRM		
														of red	strategies		
											DRM can be very			tide, tsunami	may include		
		Famine early								DRM can	effective in urban	DRM can make		warnings	habitat	DRM can	
		warning	DRM very		Women often					reduce	settings such as	sustainable	DRM is	for constal	protection explicitly	reduce risk of conflict	
		systems have been	important for public		disproportion					inequality is since poorer	heat wave and flooding early	production more possible by	excellent	coastal communit	for a	(Meier, Bond,	
		successful to	health to	Effective	ately affected					people tend to	warning systems to	providing	adaptation	ies	positive	& Bond,	
		prevent impending	ensure people can	DRM is important to	by disasters; gender-	Many DRM				be more vulnerable to	minimise vulnerability	farmers with advance notice	strategy reaching the	(Lauterju ng,	benefit (Shreve &	2007), increase	
	DRM can help	food shortages	get shelter	ensure	sensitive	include water		DRM can help		impacts	(Bambrick, Capon,	of	largest	ng, Münch, &	(Shreve & Kelman	resilience of	
	prevent	and can	and medical	continued	EWS can	monitoring		minimise	DRM can help	(Khan, Mock,	Barnett, Beaty, &	environmental	number of	Rudloff,	2014)	communities	
	impoverishment as disasters are	improve food security	care during disasters	access to schools and	reduce their vulnerability	components that contribute to		damage from disasters,	protect infrastructures	& Bertrand, 1992), but	Burton, 2011; Djordjević, Butler,	needs (Parr, Sier, Battarbee,	people (billions)	2010; J. H. W.	(e.g.	(Mathbor, 2007) and	
	a major factor	(Genesio et	(Ebi &	education	(Enarson &	access to clean		which impacts	from damage	must be	Gourbesville,	Mackay, &	(billions) worldwide	H. W. Lee,	mangrove protection	strengthen	
	in poverty	al., 2011;	Schmier,	during	Meyreles,	water (Iglesias,		economic	during disaster	careful to	Mark, & Pasche,	Burgess, 2003;	(Hillbruner	Hodgkiss,), but	trust in	
Disaster risk	(Basher, 2006; Fothergill &	Hillbruner & Moloney,	2005; Greenough	hazards (Tatebe &	2004; Mustafa et	Garrote, Flores, & Moneo, 2007;		growth (Basher,	(Rogers & Tsirkunov,	avoid excluding	2011; Parnell, Simon, & Vogel,	Stigter, Sivakumar, &	and Moloney	Wong, & Lam,	unclear how	institutions (Altieri et al.,	
management	Peek, 2004)	2012)	et al., 2001)	Mutch, 2015)	al., 2015)	Wilhite, 2005)	N/A	(Basiler, 2006)	2011)	populations	2007)	Rijks, 2000)	2012)	2005)	extensive	(Atten et al., 2012)	N/A
 		, ,	,,	,	, ,	,,	r		/			,,,,,				/	

,	<i>_</i>								,									T
	1	· '	1 '	1 '	1 1	·	1 '	i '	1 1	. 1						DRM	1	
	1	· '	1 '	1 '	1 1	·	1 '	i '	1 1	. 1						benefiting	1	
!	ıl	·'	1'	1'	۱'	·'	۱'	i!	I!	·!						habitats is		
	1	·,	· · · ·	· · · · ·	· · · · ·	·	· · ·	í – ,	(, I					There is	(
	1 1	, · · ·	1 '	1 '	1 '	, · · ·	1 '	í '	1 1	. 1					mixed	, I	1	
	1 1	, · · · ·	1 '	1 '	1 1	· · ·	1 '	ı '	1 1	, I					evidence	ı !	1	1
	1 1	· · ·	1 '	1 '	1 1	· '	1 1	i '	1 1	. !					that crop	ı I	1	
	1 1	, · · ·	1 '	1 '	1 1	· · ·	1 '	ı '	1 1						insurance	1 1	1	1 1
	1	· '	1 '	1 '	1 1	·	1 '	i '	1 1	. 1						i 1	1	
	1 1	· · ·	1 '	1 '	1 1	· '	1 1	i '	1 1	. !					may	ı 1	1	
1	1	ر ا	1 '	1 '	1 1	· · ·	1 '	ı '	1 1	. 1					encourage	i 1	1	1
1	1 1	, · · ·	1 '	1 '	1 '	, · · ·	1 '	í '	1 1	. 1					excess	, I	1	
	1 1	· · ·	1 '	1 '	1 1	· '	1 1	i '	1 1	. !					fertiliser	ı 1	1	
	1	· '	1 '	1 '	1 1	·	1 '	i '	1 1	. 1					use	i 1	1	
	1 1	· · ·	1 '	1 '	1 1	· '	1 1	i '	1 1	. !					(Kramer,	ı 1	1	
	1 1	· · ·	1 '	1 '	1 1	· '	1 1	i '	1 1	. !					McSween	ı 1	1	
	1 1	, · · ·	1 '	1 '	1 '	, · · ·	1 '	í '	1 1	. 1					y, &	, I	1	
	1	ر <u>ا</u>	1 '	1 '	1 1	· · ·	1 '	ı '	1 1	. !					Stavros,	i 1	1	1
	1 1	, · · ·	1 '	1 '	1 '	, · · ·	1 '	í '	1 1	. 1					1983; V.	, I	1	
	1	ر <u>ا</u>	1 '	1 '	1 1	· · ·	1 '	ı '	1 1	. !					H. Smith	i 1	i i	1
	1 1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 '	1 1	, I					&	, 1	1	
	1 1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 '	1 1	, I					Goodwin,	, 1	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	, !					1996;	, I	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	, !					Wu,	, I	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	. !					1999),	, I	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	. !					which	, I	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	. !					contribute	, I	1	
	1	, · · ·	1 '	1 '	1 1	· · ·	1 '	1 1	1 1	. !					s to ocean	, I	1	
1	1	ر ا	1 '	1 '	1 1	Women	1 '	ı '	1 1	. !					pollution;	i 1	i i	1
	1 1	, · · ·	Availability of	1 '	1 '	farmers	1 '	í '	1 1	. 1					•	, I	1	
	1 1	· · ·		1 '	1 1		1 1	i '	1 1	. !					however,	ı 1	1	
	1 1	· · ·	crop insurance	1 '	1 1	vulnerable to	1 1	i '	1 1	. !				- : 00	some	ı 1	1	
	1 1	1	has generally	1 '	1 1	crop shocks,	1 1	i '	1 1	. !				Different	governme	ı 1	1	
	1	Crop insurance	lead to	1 '	1 1	but tend to	1 '	i '	1 1	. 1				risk sharing	nts re	i 1	1	
	1	reduces risks	(modest)	General	1 1	be more risk-	1 '	1 1	1 1	, !				instruments	requiring	, I	1	
	1	which can	expansions in	forms of	1 1	averse and	1 '	1 1	1 1	, !			Crop insurance	spread risk	reduction	, I	1	
	1	improve	cultivated land	social	1 1	skeptical of	1 '	1 1	1 1	, !			has been	and increase	s in	, I	1	
	1	poverty	area and	protection	1 1	commercial	1 '	1 1	Subsidised	, !			implicated as a	resilience,	nonpoint	, I	1	
	1	outcomes by	increased food	lead to	Households	insurance	1 '	1 1	crop insurance	, !			driver of	improving	source	, I	1	
	1	avoiding	production	better health	lacking	and rely on	1 '	1 1	contributes to	, !			unsustainable	adaptation	pollution	, I	1	
	1	catastrophic	(RL Claassen	outcomes;	insurance	more	1 '	1 1	economic	, !			production and	for millions	from	, I	1	
	1	losses, but is	et al., 2011;	somewhat	may withdraw	informal	1 '	1 1	growth in the	, !			disincentive to	(Platteau et	farms	, I	1	Subsidised
	1	often not used	Goodwin et	unclear how	children from	systems	Mixed evidence on	1 1	US (Atwood,	, !			diversification	al. 2017),	otherwise	, I	Community	crop
	1	by poorest	al., 2004);	much	school after	(Akter,	if crop insurance	1 1	Watts, &	, !			(M. S. Bowman	although	farmers	, I	risk sharing	insurance
	1	people, who	other risk	formal risk	crop shocks	Krupnik,	encourages or	1 1	Baquet, 1996)	, !			& Zilberman,	they can be	lose crop	, I	instruments	can be seen
	1	may rely on	sharing	sharing	(Bandara,	Rossi, &	reduces non-point	1 1	but at	, !			2013) although	negative for	insurance	, I	can help	as a subsidy
	1	more informal	instruments	contributes	Dehejia, &	Khanam,	source pollution	1 1	considerable	, !			community risk	mitigation	(Iho,	, I	strengthen	and barrier
	1	risk sharing	are aimed at	(Tirivayi,	Lavie-Rouse,	2016;	(M. S. Bowman &	1 1	cost to the	, !			sharing might	(see Table	Ribaudo,	See Table	resilience and	to trade
	1	(Platteau, De	food access	Knowles, &	2015; Jacoby	Fletschner &	Zilberman, 2013;	1 1	government	, !			increase	1,	&	SM 1,	institutions	(Young &
	Risk sharing	Bock, &	and	Davis,	& Skoufias,	Kenney,	Luo, Wang, &	1 1	(Glauber,	, !			diversification	regulation	Hyytiäine	habitat	(Agrawal,	Westcott,
	instruments	Gelade, 2017)	provisioning.	2016)	1997)	2014)	Qin, 2014)	N/A	2004).	N/A	N/A	N/A	and production	of climate)	n, 2015)	creation	2001)	2000)
	mati unicita	Gelade, 2017)	provisioning.	2010)	1997)	2014)	Qiii, 2014)	10/4	2004).	1971	10/1	IUI	and production	of enhance)	11, 2015)	creation	2001)	2000)

References for Supplementary Tables

Abass, A. B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. *Journal of Stored Products Research*, 57, 49–57. https://doi.org/10.1016/J.JSPR.2013.12.004

Abensperg-Traun, M. (2009). CITES, sustainable use of wild species and incentive-driven conservation in developing countries, with an emphasis on southern Africa. *Biological Conservation*, *142*(5), 948–963. https://doi.org/10.1016/j.biocon.2008.12.034

Abraham, M., & Pingali, P. (2017). Transforming smallholder agriculture to achieve the SDGs. In L. Riesgo, S. Gomez-Y-Paloma, & K. Louhichi (Eds.), *The role of small farms in food and nutrition security*. New York: Springer.

Adams, R. H. (1994). Non-farm income and inequality in rural Pakistan: a decomposition analysis. *Journal of Development Studies*, *31*(1), 110–133. https://doi.org/10.1080/00220389408422350

Adams, W. M. (2004). Biodiversity Conservation and the Eradication of Poverty. *Science*, 306(5699), 1146–1149. https://doi.org/10.1126/science.1097920

ADB. (2016). Asian water development outlook 2016; strengthening water security in Asia and the Pacific. Retrieved from Asian Development Bank website: https://www.adb.org/sites/default/files/publication/189411/awdo-2016.pdf

Adhikari, J. (2014). Seed sovereignty: analysing the debate on hybrid seeds and GMOs and bringing about sustainability in agricultural development. *Journal of Forest and Livelihood*, 12(1), 33–46. Retrieved from https://www.forestaction.org/app/webroot/vendor/tinymce/editor/plugins/filemanager/fil es/JFL VOI 12 %281%29/Adhikari.pdf

Affognon, H., Mutungi, C., Sanginga, P., & Borgemeister, C. (2015). Unpacking postharvest losses in sub-Saharan Africa: a meta-analysis. *World Development*, 66, 49–68. https://doi.org/10.1016/J.WORLDDEV.2014.08.002

Agarwal, B. (2018). Gender equality, food security and the sustainable development goals. *Current Opinion in Environmental Sustainability*, *34*, 26–32. https://doi.org/10.1016/j.cosust.2018.07.002

Agboola, J. I., & Braimoh, A. K. (2009). Strategic partnership for sustainable management of aquatic resources. *Water Resources Management*, 23(13), 2761–2775. https://doi.org/10.1007/s11269-009-9407-4

Agnoletti, M. (2014). Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. *Landscape and Urban Planning*, *126*, 66–73. https://doi.org/10.1016/j.landurbplan.2014.02.012

Agrawal, A. (2001). Common property institutions and sustainable governance of resources. *World Development*, 29(10), 1649–1672. https://doi.org/10.1016/S0305-750X(01)00063-8

Ainslie, A. (2013). The sociocultural contexts and meanings associated with livestock keeping in rural South Africa. *African Journal of Range & Forage Science*, *30*(1–2), 35–38. https://doi.org/10.2989/10220119.2013.770066

Akhtar, P., Tse, Y., Khan, Z., & Rao-Nicholson, R. (2016). Data-driven-b and adaptive leadership contributing to sustainability: Global agri-food supply chains connected with emerging markets. *International Journal of Production Economics*, 181, 392–401. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925527315005125

Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges.

OR Spectrum, 32(4), 863-904. https://doi.org/10.1007/s00291-010-0223-2

- Akter, S., Krupnik, T. J., Rossi, F., & Khanam, F. (2016). The influence of gender and product design on farmers' preferences for weather-indexed crop insurance. *Global Environmental Change*, 38, 217–229. https://doi.org/10.1016/j.gloenvcha.2016.03.010
- Al-Thani, H., Koç, M., & Isaifan, R. J. (2018). A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. *Environmental Science and Pollution Research*, 25(28), 27839–27857. https://doi.org/10.1007/s11356-018-2952-8
- Aldababseh, A., Temimi, M., & Maghelal, P. (2018). Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. *Sustainability*, *10*, 803–836. https://doi.org/10.3390/su10030803
- Alfaro, R., & Glover, S. (1989). *Insects Affecting Reforestation: Biology and Damage*. Victoria: Forestry Canada.
- Allen, P. (2010). Realizing justice in local food systems. *Cambridge Journal of Regions, Economy and Society*, 3(2), 295–308. https://doi.org/10.1093/cjres/rsq015
- Allen, T., Prosperi, P., Cogill, B., & Flichman, G. (2014). Agricultural biodiversity, socialecological systems and sustainable diets. *Proceedings of the Nutrition Society*, 73(4), 498-508. doi:10.1017/S002966511400069X
- Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. *Agronomy for Sustainable Development*, 32(1), 1–13. https://doi.org/10.1007/s13593-011-0065-6
- Altieri, M. A., & Letourneau, D. K. (1982). Vegetation management and biological control in agroecosystems. *Crop Protection*, 1(4), 405–430. https://doi.org/10.1016/0261-2194(82)90023-0
- Altman, M., Hart, T. G., & Jacobs, P. T. (2009). Household food security status in South Africa. *Agrekon*, 48(4), 345–361. https://doi.org/10.1080/03031853.2009.9523831
- Alves, R. R. N., & Rosa, I. M. L. (2007). Biodiversity, traditional medicine and public health: Where do they meet? *Journal of Ethnobiology and Ethnomedicine*, *3*, 1–9. https://doi.org/10.1186/1746-4269-3-14
- Ananda, J., & Herath, G. (2003). Soil erosion in developing countries: a socio-economic appraisal. *Journal of Environmental Management*, 68(4), 343–353. https://doi.org/10.1016/S0301-4797(03)00082-3
- Andersson, E. (2006). Urban landscapes and sustainable cities. *Ecology and Society*, 11(1), art34. https://doi.org/10.5751/ES-01639-110134
- Andersson, K., & Agrawal, A. (2011). Inequalities, institutions, and forest commons. *Global Environmental Change*, 21, 866-875. https://doi.org/10.1016/j.gloenvcha.2011.03.004.
- Andersson, K. P., Smith, S. M., Alston, L. J., Duchelle, A. E., Mwangi, E., Larson, A. M., ... Wong, G. Y. (2018). Wealth and the distribution of benefits from tropical forests: implications for REDD+. *Land Use Policy*, 72, 510–522. https://doi.org/10.1016/J.LANDUSEPOL.2018.01.012
- Angeles, L. C., & Hill, K. (2009). The gender dimension of the agrarian transition: women, men and livelihood diversification in two peri-urban farming communities in the Philippines. *Gender, Place & Culture*, 16(5), 609–629. https://doi.org/10.1080/09663690903148465
- Angelsen, A. (2010). Climate mitigation and food production in tropical landscapes special feature: policies for reduced deforestation and their impact on agricultural production. *Proceedings Of The National Academy Of Sciences Of The United States Of America*, 107(46), 19639–19644. Retrieved from

http://adsabs.harvard.edu/abs/2010PNAS..10719639A

- Anzures-Dadda, A., Andresen, E., Martínez, M. L., & Manson, R. H. (2011). Absence of howlers (Alouatta palliata) influences tree seedling densities in tropical rain forest fragments in Southern Mexico. *International Journal of Primatology*, 32(3), 634–651. https://doi.org/10.1007/s10764-011-9492-0
- Arhin, A. A. (2014). Safeguards and dangerguards: a framework for unpacking the black box of safeguards for REDD+. Forest Policy and Economics, 45, 24–31. https://doi.org/10.1016/J.FORPOL.2014.05.003
- Armstrong, A. J., van Hensbergen, H. J., Scott, D. F., & Milton, S. J. (1996). Are Pine Plantations "Inhospitable Seas" around Remnant Native Habitat within South-western Cape Forestry Areas? South African Forestry Journal, 176(1), 1–9. https://doi.org/10.1080/00382167.1996.9629703
- Arnáez J, Lana-Renault N, Lasanta T, Ruiz-Flaño P, & Castroviejo J. (2015). Effects of farming terraces on hydrological and geomorphological processes. A review. *Catena*, 128, 122–134. https://www.sciencedirect.com/science/article/pii/S0341816215000351
- Arneth, A., Sitch, S., Bondeau, A., Butterbach-Bahl, K., Foster, P., Gedney, N., ... Zaehle, S. (2010). From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. *Biogeosciences*, 7(1), 121–149. https://doi.org/10.5194/bg-7-121-2010
- Arnold, J. E. M., & Pérez, M. R. (2001). Can non-timber forest products match tropical forest conservation and development objectives? *Ecological Economics*, 39(3), 437–447. https://doi.org/10.1016/S0921-8009(01)00236-1
- Arora, V. K., & Melton, J. R. (2018). Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. *Nature Communications*, 9(1), 1326. https://doi.org/10.1038/s41467-018-03838-0
- Arslan, A., Cavatassi, R., Alfani, F., Mccarthy, N., Lipper, L., & Kokwe, M. (2018). Diversification under climate variability as part of a CSA strategy in rural Zambia. *Journal of Development Studies*, 54(3), 457–480. https://doi.org/10.1080/00220388.2017.1293813
- Asfaw, S., Pallante, G., & Palma, A. (2018). Diversification strategies and adaptation deficit: evidence from rural communities in Niger. *World Development*, *101*, 219–234. https://doi.org/10.1016/J.WORLDDEV.2017.09.004
- Ashe, L. M., & Sonnino, R. (2013). At the crossroads: new paradigms of food security, public health nutrition and school food. *Public Health Nutrition*, *16*(06), 1020–1027. https://doi.org/10.1017/S1368980012004326
- Asraf, U. (2019). Exclusions in afforestation projects in Pakistan. *Economic and Political Weekly*, *LIV*, 17-20
- Atekwana, E. A., Atekwana, E., Legall, F. D., & Krishnamurthy, R. V. (2005).
 Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. *Journal of Contaminant Hydrology*, 80(3–4), 149–167. https://doi.org/10.1016/J.JCONHYD.2005.06.009
- Atwood, J. A., Watts, M. J., & Baquet, A. E. (1996). An examination of the effects of price supports and federal crop insurance upon the economic growth, capital structure, and financial survival of wheat growers in the northern High Plains. *American Journal of Agricultural Economics*, 78(1), 212–224. https://doi.org/10.2307/1243792
- Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: a critique based on an assessment of urban land constraints. *Global Food Security*, *4*, 8–15. https://doi.org/10.1016/J.GFS.2014.10.003
- Bajželj, B., Richards, K. S., Allwood, J. M., Smith, P., Dennis, J. S., Curmi, E., & Gilligan,

C. A. (2014). Importance of food-demand management for climate mitigation. *Nature Climate Change*, *4*, 924–929. https://doi.org/10.1038/nclimate2353

- Baker, L. E. (2010). Tending cultural landscapes and food citizenship in Toronto's community gardens. *Geographical Review*, *94*(3), 305–325. https://doi.org/10.1111/j.1931-0846.2004.tb00175.x
- Bala, G., Devaraju, N., Chaturvedi, R. K., Caldeira, K., & Nemani, R. (2013). Nitrogen deposition: how important is it for global terrestrial carbon uptake? *Biogeosciences*, 10(11), 7147–7160. https://doi.org/10.5194/bg-10-7147-2013
- Baldos, U. L. C., & Hertel, T. W. (2015). The role of international trade in managing food security risks from climate change. *Food Security*, 7(2), 275–290. https://doi.org/10.1007/s12571-015-0435-z
- Balmford, A., Green, J.M.H., Anderson, M., Beresford, J., Huang, C., Naidoo, R., Walpole, M., & Manica, A. (2015). Walk on the wide side: Estimating the global magnitude of visits to protected areas. *PLOS Biology*, 13, e1002074 https://doi.org/10.1371/journal.pbio.1002074
- Balmford, A., Amano, T., Bartlett, H., Chadwick, D., Collins, A., Edwards, D., ... Waters, H. (2018). The environmental costs and benefits of high-yield farming. *Nature Sustainability*, 1(9), 477. https://doi.org/10.1038/s41893-018-0138-5
- Bambrick, H. J., Capon, A. G., Barnett, G. B., Beaty, R. M., & Burton, A. J. (2011). Climate change and health in the urban environment: adaptation opportunities in Australian cities. *Asia Pacific Journal of Public Health*, 23(2_suppl), 67S-79S. https://doi.org/10.1177/1010539510391774
- Bamman, H. (2007). Participatory value chain analysis for improved farmer incomes, employment opportunities and food security. *Pacific Economic Bulletin*, 22(3), 113– 125. Retrieved from http://lib.icimod.org/record/13039/files/5206.pdf
- Bandara, A., Dehejia, R., & Lavie-Rouse, S. (2015). The impact of income and non-income shocks on child labor: evidence from a panel survey of Tanzania. *World Development*, 67, 218–237. https://doi.org/10.1016/J.WORLDDEV.2014.10.019
- Bandiaky, S. (2008). Gender inequality in Malidino Biodiversity Community-based Reserve, Senegal: Political parties and the "Village Approach." *Conservation and Society*, *6*, 62–73.
- Bao, C., & Fang, C. (2012). Water resources flows related to urbanization in China: challenges and perspectives for water management and urban development. *Water Resources Management*, 26(2), 531–552. https://doi.org/10.1007/s11269-011-9930-y
- Barbero-Sierra, C., Marques, M. J., & Ruíz-Pérez, M. (2013). The case of urban sprawl in Spain as an active and irreversible driving force for desertification. *Journal of Arid Environments*, 90, 95–102. https://doi.org/10.1016/j.jaridenv.2012.10.014
- Barrett, C. B., Travis, A. J., & Dasgupta, P. (2011). On biodiversity conservation and poverty traps. *Proceedings of the National Academy of Sciences*, *108*(34), 13907–13912. https://doi.org/10.1073/pnas.1011521108
- Barry, L. E., Yao, R. T., Harrison, D. R., Paragahawewa, U. H., & Pannell, D. J. (2014). Enhancing ecosystem services through afforestation: how policy can help. *Land Use Policy*, 39, 135–145. https://doi.org/10.1016/J.LANDUSEPOL.2014.03.012
- Bartone, C. (1991). Environmental challenge in third world cities. *Journal of the American Planning Association*, *57*(4), 411–415. https://doi.org/10.1080/01944369108975515

Basher, R. (2006). Global early warning systems for natural hazards: systematic and peoplecentred. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 364(1845), 2167–2182. https://doi.org/10.1098/rsta.2006.1819

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., ... Crowther,

T. W. (2019). The global tree restoration potential. *Science*, *365*(6448), 76–79. https://doi.org/10.1126/science.aax0848

- Beaune, D., Fruth, B., Bollache, L., Hohmann, G., & Bretagnolle, F. (2013). Doom of the elephant-dependent trees in a Congo tropical forest. *Forest Ecology and Management*, 295, 109–117. https://doi.org/10.1016/J.FORECO.2012.12.041
- Beck, D. A., Johnson, G. R., & Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. *Environmental Pollution*, *159*(8–9), 2111–2118. https://doi.org/10.1016/J.ENVPOL.2011.01.022
- Becker, D. R., Larson, D., & Lowell, E. C. (2009). Financial considerations of policy options to enhance biomass utilization for reducing wildfire hazards. *Forest Policy and Economics*, 11(8), 628–635. https://doi.org/10.1016/J.FORPOL.2009.08.007
- Beckmann, M, Gerstner, K, Akin-Fajiye, M., Ceausu, S., Kambach, S., Kinlock, N.L., Phillips, R., Verhagen, W.,...Seppelt, R. (2019) Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. *Glob Change Biol.*, 25, 1941–1956. <u>https://doi.org/10.1111/gcb.14606</u>
- Bender, S.F., Wagg, C. & van der Heijden, M. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. *Trends in Ecology and Evolution*, *31*, 440-452.
- Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., ... Kelland, M. (2018). Farming with crops and rocks to address global climate, food and soil security. *Nature Plants*, 4(2), 138. https://www.nature.com/articles/s41477-018-0108-y
- Benis, K., & Ferrão, P. (2017). Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)–a life cycle assessment approach. *Journal of Cleaner Production*, 140, 784–795. https://doi.org/10.1016/j.jclepro.2016.05.176
- Benyus, J. (2002). Biomimicry: Innovation Inspired by Nature. New York: Harper Perennial.

Bergstrom, J. C., Stoll, J. R., Titre, J. P., & Wright, V. L. (1990). Economic value of wetlands-based recreation. *Ecological Economics*, 2(2), 129–147. https://doi.org/10.1016/0921-8009(90)90004-E

Bernex, N. (2016). *Linking ecosystem services and water security – SDGs offer a new opportunity for integration*. Retrieved from https://www.gwp.org/globalassets/global/toolbox/publications/perspectivepapers/gwp_pp_-ecosystemservices.pdf

- Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. *Ecological Applications*, *19*(8), 2228–2241. https://doi.org/10.1890/08-1730.1
- Berthrong, S. T., Schadt, C. W., Pineiro, G., & Jackson, R. B. (2009). Afforestation Alters the Composition of Functional Genes in Soil and Biogeochemical Processes in South American Grasslands. *Applied and Environmental Microbiology*, 75(19), 6240–6248. https://doi.org/10.1128/AEM.01126-09
- Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M., Middelburg, J. J., & Beusen, A. H. W. (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. *Biogeosciences*, *13*, 2441–2451. https://doi.org/10.5194/bg-13-2441-2016
- Bezner Kerr, R. (2013). Seed struggles and food sovereignty in northern Malawi. *Journal of Peasant Studies*, 40(5), 867–897. https://doi.org/10.1080/03066150.2013.848428
- Binns, T., & Lynch, K. (1998). Feeding Africa's growing cities into the 21st century: the potential of urban agriculture. *Journal of International Development*, *10*(6), 777–793. https://doi.org/10.1002/(SICI)1099-1328(1998090)10:6<777::AID-JID532>3.0.CO;2-Z

- Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality a review. *Journal of Cleaner Production*, *170*, 1602–1620. https://doi.org/10.1016/j.jclepro.2017.09.224
- Bisht, I. S., Mehta, P. S., Negi, K. S., Verma, S. K., Tyagi, R. K., & Garkoti, S. C. (2018). Farmers' rights, local food systems, and sustainable household dietary diversification: a case of Uttarakhand Himalaya in north-western India. *Agroecology and Sustainable Food Systems*, 42(1), 77–113. https://doi.org/10.1080/21683565.2017.1363118
- Block, S., & Webb, P. (2001). The dynamics of livelihood diversification in post-famine Ethiopia. *Food Policy*, *26*(4), 333–350. https://doi.org/10.1016/S0306-9192(01)00015-X
- Blomley, T., & Ramadhani, H. (2006). Going to scale with participatory forest management: early lessons from Tanzania. *International Forestry Review*, 8(1), 93–100. https://doi.org/10.1505/ifor.8.1.93
- Bloom, J. D., & Hinrichs, C. C. (2011). Moving local food through conventional food system infrastructure: value chain framework comparisons and insights. *Renewable Agriculture and Food Systems*, 26(01), 13–23. https://doi.org/10.1017/S1742170510000384
- Bobbink, R., Whigham, D. F., Beltman, B., & Verhoeven, J. T. A. (2006). Wetland functioning in relation to biodiversity conservation and restoration. In *Wetlands: Functioning, biodiversity conservation, and restoration* (pp. 1–12). https://doi.org/10.1007/978-3-540-33189-6 1
- Boelee, E., Chiramba, T., & Khaka, E. (2011). *An ecosystem services approach to water and food security*. Retrieved from International Water Management Institute (IWMI) website: http://www.iwmi.cgiar.org/Issues/Ecosystems/PDF/Synthesis_Report-An_Ecosystem_Services_Approach_to_Water_and_Food_Security_2011_UNEP-IWMI.pdf
- Bolaños, O. (2011). Redefining identities, redefining landscapes: Indigenous identity and land rights struggles in the Brazilian Amazon. *Journal of Cultural Geography*. https://doi.org/10.1080/08873631.2011.548480
- Bonny, S. (1993). Is agriculture using more and more energy? A French case study. *Agricultural Systems*, 43(1), 51–66. https://doi.org/10.1016/0308-521X(93)90092-G
- Bonsch, M., Popp, A., Biewald, A., Rolinski, S., Schmitz, C., Weindl, I., ... Humpenöder, F. (2015). Environmental flow provision: implications for agricultural water and land-use at the global scale. *Global Environmental Change*, 30, 113–132. https://doi.org/10.1016/j.gloenvcha.2014.10.015
- Börjesson, P., & Gustavsson, L. (2000). Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. *Energy Policy*, 28(9), 575–588. https://doi.org/10.1016/S0301-4215(00)00049-5
- Boval, M., & Dixon, R. M. (2012). The importance of grasslands for animal production and other functions: a review on management and methodological progress in the tropics. *Animal*, *6*(05), 748–762. https://doi.org/10.1017/S1751731112000304
- Bowman, D. M. J. S., & Johnston, F. H. (2005). Wildfire smoke, fire management, and human health. *EcoHealth*, 2(1), 76–80. https://doi.org/10.1007/s10393-004-0149-8
- Bowman, M. S., & Zilberman, D. (2013). Economic factors affecting diversified farming systems. *Ecology and Society*, *18*(1), art33. https://doi.org/10.5751/ES-05574-180133
- Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., & Schellnhuber, H. J. (2017). The limits to global-warming mitigation by terrestrial carbon removal. *Earth's Future*, *5*(5), 463–474. https://doi.org/10.1002/2016EF000469
- Bradford, K. J., Dahal, P., Van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., & Wu, F. (2018). The dry chain: reducing postharvest losses and improving food safety in humid climates. *Trends in Food Science and Technology*, 71, 84–93.

https://doi.org/10.1016/j.tifs.2017.11.002

- Brandon, K. (1996). Ecotourism and conservation: A review of key issues. *Environment Department Papers*. https://doi.org/10.1049/ip-vis:19941555
- Brew-Hammond, A. (2010). Energy access in Africa: challenges ahead. *Energy Policy*, 38(5), 2291–2301. https://doi.org/10.1016/J.ENPOL.2009.12.016
- Brinkley, C., Birch, E., & Keating, A. (2016). Feeding cities: Charting a research and practice agenda toward food security. *Agriculture & Food Security*, *3*(4), 81–87. Retrieved from http://www.foodsystemsjournal.org/index.php/fsj/article/view/190
- Brinkman, H., De Pee, S., Sanogo, I., Subran, L., & Bloem, M. (2009). High food prices and the global financial crisis have reduced access to nutritious food and worsened nutritional status and health. *The Journal of Nutrition*, 140(1), 153S-161S. https://doi.org/10.3945/jn.109.110767
- Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., ... Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. *Biodiversity and Conservation*, 26(13), 3005–3035. https://doi.org/10.1007/s10531-017-1453-2
- Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P., & Sayer, J. (2008). Plantation forests and biodiversity: oxymoron or opportunity? *Biodiversity and Conservation*, 17(5), 925–951. https://doi.org/10.1007/s10531-008-9380-x
- Brodie, J. F., & Aslan, C. E. (2012). Halting regime shifts in floristically intact tropical forests deprived of their frugivores. *Restoration Ecology*, 20(2), 153–157. https://doi.org/10.1111/j.1526-100X.2011.00833.x
- Brown, J., York, A., Christie, F., & Mccarthy, M. (2016). Effects of fire on pollinators and pollination. *Journal of Applied Ecology*, *54*(1), 313–322. https://doi.org/10.1111/1365-2664.12670
- Brueckner, J. K. (2000). Urban sprawl: diagnosis and remedies. *International Regional Science Review*, 23(2), 160–171. https://doi.org/10.1177/016001700761012710
- Brundu, G., & Richardson, D. M. (2016). Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. *NeoBiota*, *30*, 5–47. https://doi.org/10.3897/neobiota.30.7015
- Budiharta, S., Meijaard, E., Erskine, P. D., Rondinini, C., Pacifici, M., & Wilson, K. A. (2014). Restoring degraded tropical forests for carbon and biodiversity. *Environmental Research Letters*, 9(11), 114020. https://doi.org/10.1088/1748-9326/9/11/114020
- Bunting, S. & Little, D. (2015) Urban aquaculture for resilient food systems. In *Cities and Agriculture: Designing Resilient Urban Food Systems*, de Zeeuw, H. & Drechsel, P., (eds). London & New York: Earthscan.
- Buongiorno, J., & Zhu, S. (2014). Assessing the impact of planted forests on the global forest economy. *New Zealand Journal of Forestry Science*, 44(Suppl 1), S2. https://doi.org/10.1186/1179-5395-44-S1-S2
- Burnett, K. M., Kaiser, B. A., & Roumasset, J. A. (2007). Invasive species control over space and time: Miconia calvescens on Oahu, Hawaii. *Journal of Agricultural and Applied Economics*, 39(s1), 125–132. https://doi.org/10.1017/S1074070800028996
- Burns, W., & Nicholson, S. (2017). Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response. *Journal of Environmental Studies and Sciences*, 7(4), 527–534. https://doi.org/10.1007/s13412-017-0445-6
- Burritt, R., & Schaltegger, S. (2014). Accounting towards sustainability in production and supply chains. *The British Accounting Review*, 46(4), 327–343. https://doi.org/10.1016/j.bar.2014.10.001

- Burrows, N. D. (2008). Linking fire ecology and fire management in south-west Australian forest landscapes. *Forest Ecology and Management*, 255(7), 2394–2406. https://doi.org/10.1016/J.FORECO.2008.01.009
- Büscher, B., Fletcher, R., Brockington, D., Sandbrook, C., Adams, W., Campbell, L., . . . Shanker, K. (2017). Half-earth or whole earth? Radical ideas for conservation, and their implications. *Oryx*, *51*(3), 407-410. doi:10.1017/S0030605316001228
- Bustamante, M., Robledo-Abad, C., Harper, R., Mbow, C., Ravindranat, N. H., Sperling, F., ... Smith, P. (2014). Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. *Global Change Biology*, 20(10), 3270–3290. https://doi.org/10.1111/gcb.12591
- Byg, A., Martin-Ortega, J., Glenk, K., & Novo, P. (2017). Conservation in the face of ambivalent public perceptions The case of peatlands as 'the good, the bad and the ugly.' *Biological Conservation*. https://doi.org/10.1016/j.biocon.2016.12.022
- Calder, I. R. (2007). Forests and water—Ensuring forest benefits outweigh water costs. *Forest Ecology and Management*, 251(1–2), 110–120. https://doi.org/10.1016/j.foreco.2007.06.015
- Calow, R. C., MacDonald, A. M., Nicol, A. L., & Robins, N. S. (2010). Ground water security and drought in Africa: linking availability, access, and demand. *Ground Water*, 48(2), 246–256. https://doi.org/10.1111/j.1745-6584.2009.00558.x
- Calvin, K., Wise, M., Kyle, P., Patel, P., Clarke, L., & Edmonds, J. (2014). Trade-offs of different land and bioenergy policies on the path to achieving climate targets. *Climatic Change*, *123*(3–4), 691–704. https://doi.org/10.1007/s10584-013-0897-y
- Camacho-Cervantes, M., Schondube, J. E., Castillo, A., & MacGregor-Fors, I. (2014). How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. *Urban Ecosystems*, *17*(3), 761–773. https://doi.org/10.1007/s11252-014-0343-6
- Cameron, R. W. F., Blanuša, T., Taylor, J. E., Salisbury, A., Halstead, A. J., Henricot, B., & Thompson, K. (2012). The domestic garden – its contribution to urban green infrastructure. Urban Forestry & Urban Greening, 11(2), 129–137. https://doi.org/10.1016/J.UFUG.2012.01.002
- Campbell, B. M., Thornton, P., Zougmoré, R., van Asten, P., & Lipper, L. (2014). Sustainable intensification: What is its role in climate smart agriculture? *Current Opinion in Environmental Sustainability*, 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002
- Cane, J. (2005). Bees, pollination and the challenges of sprawl. In A. Johnson & M. W. Klemes (Eds.), *Nature in Fragments: The Legacy of Sprawl* (pp. 109–124). New York: Columbia University Press.
- Certini, G. (2005). Effects of fire on properties of forest soils: a review. *Oecologia*, 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8
- Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. *Nature Climate Change*, 4, 287–291. https://doi.org/10.1038/NCLIMATE2153
- Chamen, W., Moxey, A. P., Towers, W., Balana, B., & Hallett, P. D. (2015). Mitigating arable soil compaction: a review and analysis of available cost and benefit data. *Soil and Tillage Research*, *146*, 10–25. https://doi.org/10.1016/J.STILL.2014.09.011
- Chamier, J., Schachtschneider, K., Le Maitre, D., Ashton, P., & Van Wilgen, B. (2012). Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. *Water Sa*, 38(2), 345–356. https://doi.org/10.4314/wsa.v38i2.19
- Charles, H., & Dukes, J. S. (2008). Impacts of invasive species on ecosystem services. In *Biological Invasions* (pp. 217–237). https://doi.org/10.1007/978-3-540-36920-2_13

- Chauhan, R. S. (2010). Socioeconomic improvement through medicinal and aromatic plants (MAPs) cultivation in Uttarakhand, India. *Journal of Sustainable Agriculture*, *34*(6), 647–658. https://doi.org/10.1080/10440046.2010.493390
- Chen, H., Jia, B., & Lau, S. S. Y. (2008). Sustainable urban form for Chinese compact cities: challenges of a rapid urbanized economy. *Habitat International*, *32*(1), 28–40. https://doi.org/10.1016/J.HABITATINT.2007.06.005
- Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. *Catena*, 69(1), 1–15. https://doi.org/10.1016/j.catena.2006.04.019
- Cibin, R., Trybula, E., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2016). Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. *GCB Bioenergy*, 8(4), 837–848. https://doi.org/10.1111/gcbb.12307
- Ciccarese, L., Mattsson, A., & Pettenella, D. (2012). Ecosystem services from forest restoration: thinking ahead. *New Forests*, *43*(5), 543–560. https://doi.org/10.1007/s11056-012-9350-8
- Claassen, RL, Carriazo, F., Cooper, J., Hellerstein, D., & Ueda, K. (2011). *Grassland to cropland conversion in the Northern Plains. The role of crop insurance, commodity, and disaster programs*. Washington D.C.
- Claassen, Roger, Cooper, J. C., & Carriazo, F. (2011). Crop insurance, disaster payments, and land use change: the effect of sodsaver on incentives for grassland conversion. *Journal of Agricultural and Applied Economics*, 43(02), 195–211. https://doi.org/10.1017/S1074070800004168
- Clark, S., Jung, S., & Lamsal, B. (2014). *Food Processing: Principles and Applications*. New York: Wiley Blackwell.
- Clarke, L. E., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., ... van Vuuren, D. P. (2014). Assessing transformation pathways. In *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 413–510). Retrieved from

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc wg3 ar5 chapter6.pdf

- Claudio, L. (2012). Our food: packaging & public health. *Environmental Health Perspectives*, *120*(6). https://doi.org/10.1289/ehp.120-a232
- Cohen, M. J., & Garrett, J. L. (2010). The food price crisis and urban food (in)security. *Environment and Urbanization*, 22(2), 467–482. https://doi.org/10.1177/0956247810380375
- Coldwell, D. F., & Evans, K. L. (2018). Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity. *Landscape and Urban Planning*, 175, 114–122. https://doi.org/10.1016/J.LANDURBPLAN.2018.02.007
- Coley, D., Howard, M., & Winter, M. (2009). Local food, food miles and carbon emissions: a comparison of farm shop and mass distribution approaches. *Food Policy*, *34*(2), 150–155. https://doi.org/10.1016/J.FOODPOL.2008.11.001
- Combes Motel, P., Pirard, R., & Combes, J.-L. (2009). A methodology to estimate impacts of domestic policies on deforestation: compensated successful efforts for "avoided deforestation" (REDD). *Ecological Economics*, 68(3), 680–691. https://doi.org/10.1016/J.ECOLECON.2008.06.001
- Conant, R. T., & Paustian, K. (2002). Potential soil carbon sequestration in overgrazed grassland ecosystems. *Global Biogeochemical Cycles*, *16*(4), 90-1-90–99. https://doi.org/10.1029/2001GB001661
- Cooper-Ellis, Sarah, David R. Foster, Gary Carlton, and Ann Lezberg. 1999. Forest response

to catastrophic wind: Results from an experimental hurricane. *Ecology* 80(8): 2683. doi:10.2307/177250.

- Coomes, O. T., McGuire, S. J., Garine, E., Caillon, S., McKey, D., Demeulenaere, E., ... Wencélius, J. (2015). Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. *Food Policy*, 56, 41–50. https://doi.org/10.1016/J.FOODPOL.2015.07.008
- Corbera, E., Hunsberger, C., & Vaddhanaphuti, C. (2017). Climate change policies, land grabbing and conflict: perspectives from Southeast Asia. *Canadian Journal of Development Studies/Revue Canadienne d'études Du Développement*, 38(3, SI), 297– 304. https://doi.org/10.1080/02255189.2017.1343413
- Coveney, J., & O'Dwyer, L. A. (2009). Effects of mobility and location on food access. *Health & Place*, 15(1), 45–55. https://doi.org/10.1016/J.HEALTHPLACE.2008.01.010
- CRED. (2015). *The human cost of natural disasters 2015*. Retrieved from https://reliefweb.int/sites/reliefweb.int/files/resources/PAND report.pdf
- Creed, I. F., Sass, G. Z., Buttle, J. M., & Jones, J. A. (2011). Hydrological principles for sustainable management of forest ecosystems. *Hydrological Processes*, 25(13), 2152– 2160. https://doi.org/10.1002/hyp.8056
- Cromsigt, J. P. G. M., te Beest, M., Kerley, G. I. H., Landman, M., le Roux, E., & Smith, F. A. (2018). Trophic rewilding as a climate change mitigation strategy? *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373(1761), 20170440. https://doi.org/10.1098/rstb.2017.0440
- Crooks, S., Herr, D., Tamelander, J., & Laffoley, D. (2011). *Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities*. Washington D.C.
- Crush, J. S., & Frayne, G. B. (2011). Urban food insecurity and the new international food security agenda. *Development Southern Africa*, 28(4), 527–544. https://doi.org/10.1080/0376835X.2011.605571
- Cuéllar, A. D., & Webber, M. E. (2010). Wasted food, wasted energy: the embedded energy in food waste in the United States. *Environmental Science & Technology*, 44(16), 6464–6469. https://doi.org/10.1021/es100310d
- Dagar, J. C., Sharma, D. K., Sharma, P. C., & Singh, A. K. (2016). Innovativea saline agriculture. In *Innovative Saline Agriculture*. https://doi.org/10.1007/978-81-322-2770-0
- Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., ... Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. *Science Advances*, 5(10), eaax0121. https://doi.org/10.1126/sciadv.aax0121
- Dale, P. E. R., & Connelly, R. (2012). Wetlands and human health: An overview. *Wetlands Ecology and Management*. https://doi.org/10.1007/s11273-012-9264-4
- Dalton, T.M. (2004). An approach for integrating economic impact analysis into the evaluation of marine protected area sites. *Journal of Environmental Management*, 70, 333-349. <u>https://doi.org/10.1016/j.jenvman.2003.12.012</u>
- Danielsen, F., Beukma, H., Burgess, N. D., Parish, F., Brühl, C. A., Donald, P. F., ... Fitzherbert, E. B. (2009). Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. *Conservation Biology*, 23(2), 348–358. https://doi.org/10.1111/j.1523-1739.2008.01096.x
- Dar, W. D., & Laxmipathi Gowda, C. L. (2013). Declining agricultural productivity and global food security. *Journal of Crop Improvement*, *27*(2), 242–254. https://doi.org/10.1080/15427528.2011.653097
- Datt, G., & Ravallion, M. (1998). Farm productivity and rural poverty in India. Journal of

Development Studies, 34(4), 62-85. https://doi.org/10.1080/00220389808422529

- Davenport, M. A., Bridges, C. A., Mangun, J. C., Carver, A. D., Williard, K. W. J., & Jones, E. O. (2010). Building Local Community Commitment to Wetlands Restoration: A Case Study of the Cache River Wetlands in Southern Illinois, USA. *Environmental Management*, 45(4), 711–722. https://doi.org/10.1007/s00267-010-9446-x
- de Bon, H., Parrot, L., & Moustier, P. (2010). Sustainable urban agriculture in developing countries. A review. *Agronomy for Sustainable Development*, 30(1), 21–32. https://doi.org/10.1051/agro:2008062
- De Haen, H., & Hemrich, G. (2007). The economics of natural disasters: implications and challenges for food security. *Agricultural Economics*, *37*, 31–45. https://doi.org/10.1111/j.1574-0862.2007.00233.x
- De Haen, H., & Réquillart, V. (2014). Linkages between sustainable consumption and sustainable production: some suggestions for foresight work. *Food Security*, 6(1), 87–100. https://doi.org/10.1007/s12571-013-0323-3
- De Wit, J., Oldenbroek, J. K., Van Keulen, H., & Zwart, D. (1995). Criteria for sustainable livestock production: a proposal for implementation. *Agriculture, Ecosystems & Environment*, 53(3), 219–229. https://doi.org/10.1016/0167-8809(94)00579-4
- Delgado, C. L. (1999). Sources of growth in smallholder agriculture integration of smallholders with processors in sub-saharan Africa: the role of vertical and marketers of high value-added items. *Agrekon*, 38(sup001), 165–189. https://doi.org/10.1080/03031853.1999.9524913
- Demailly, K.-E., & Darly, S. (2017). Urban agriculture on the move in Paris: the routes of temporary gardening in the neoliberal city. ACME: An International E-Journal for Critical Geographies, 16(2), 332–361. Retrieved from https://hal.archivesouvertes.fr/hal-01972331/
- Deng, F. F., & Huang, Y. (2004). Uneven land reform and urban sprawl in China: the case of Beijing. *Progress in Planning*, 61, 211–236. https://doi.org/10.1016/j.progress.2003.10.004
- Denny, P. (1994). Biodiversity and wetlands. *Wetlands Ecology and Management*, 3(1). https://doi.org/10.1007/BF00177296
- Dhingra, C., Gandhi, S., Chaurey, A., & Agarwal, P. K. (2008). Access to clean energy services for the urban and peri-urban poor: a case-study of Delhi, India. *Energy for Sustainable Development*, 12(4), 49–55. https://doi.org/10.1016/S0973-0826(09)60007-7
- Dillon, P., & Arshad, M. (2016). Managed aquifer recharge in integrated water resource management. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, & A. Ross (Eds.), *Integrated Groundwater Management* (pp. 435–452). https://doi.org/10.1007/978-3-319-23576-9 17
- Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya, M., ... Wiegand, K. (2017). A review of the ecosystem functions in oil palm plantations, using forests as a reference system. *Biological Reviews*, 92(3), 1539–1569. https://doi.org/10.1111/brv.12295
- Dixon, J., Omwega, A. M., Friel, S., Burns, C., Donati, K., & Carlisle, R. (2007). The health equity dimensions of urban food systems. *Journal of Urban Health*, 84(S1), 118–129. https://doi.org/10.1007/s11524-007-9176-4
- Dixon, P., van Meijl, H., Rimmer, M., Shutes, L., & Tabeau, A. (2016). RED versus REDD: biofuel policy versus forest conservation. *Economic Modelling*, 52, 366–374. https://doi.org/10.1016/J.ECONMOD.2015.09.014
- Djordjević, S., Butler, D., Gourbesville, P., Mark, O., & Pasche, E. (2011). New policies to

deal with climate change and other drivers impacting on resilience to flooding in urban areas: the CORFU approach. *Environmental Science & Policy*, *14*(7), 864–873. https://doi.org/10.1016/J.ENVSCI.2011.05.008

- Doerr, S., & Santín, C. (2016). Global trends in wildfire and its impacts: perceptions versus realities in a changing world. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1696), 20150345. Retrieved from http://rstb.royalsocietypublishing.org/content/371/1696/20150345.abstract
- Dolan, C., & Sorby, K. (2003). *Gender and employment in high-value agriculture industries*. Retrieved from

http://documents.worldbank.org/curated/en/231481468739343863/pdf/multi0page.pdf

- Dolidon, N., Hofer, T., Jansky, L., & Sidle, R. (2009). Watershed and forest management for landslide risk reduction. In *Landslides Disaster Risk Reduction* (pp. 633–649). https://doi.org/10.1007/978-3-540-69970-5_33
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. *Annual Review of Marine Science*, *1*(1), 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
- Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J.-F., & Rasch, P. J. (2007). Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. *Proceedings of the National Academy of Sciences of the United States of America*, 104(37), 14580–14585. https://doi.org/10.1073/pnas.0702218104
- Donovan, J., Stoian, D., Macqueen, D., & Grouwels, S. (2006). The business side of sustainable forest management: small and medium forest enterprise development for poverty reduction. *Natural Resource Perspectives*, *104*, 1–5.
- Dooley, K., & Kartha, S. (2018). Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. *International Environmental Agreements: Politics, Law and Economics, 18*(1), 79–98. https://doi.org/10.1007/s10784-017-9382-9
- Doremus, J. (2019). Unintended impacts from forest certification: Evidence from indigenous Aka households in Congo. *Ecological Economics*, *166*, 106378. https://doi.org/10.1016/j.ecolecon.2019.106378.
- Dorward, L. J. (2012). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment. *Food Policy*, *37*(4), 463–466. https://doi.org/10.1016/j.foodpol.2012.04.006
- Du, B., Zhang, K., Song, G., & Wen, Z. (2006). Methodology for an urban ecological footprint to evaluate sustainable development in China. *International Journal of Sustainable Development & World Ecology*, 13(4), 245–254. https://doi.org/10.1080/13504500609469676
- Duraiappah, A. K. (1998). Poverty and environmental degradation: a review and analysis of the nexus. *World Development*, *26*(12), 2169–2179. https://doi.org/10.1016/S0305-750X(98)00100-4
- Dwivedi, P., Khanna, M., Sharma, A., & Susaeta, A. (2016). Efficacy of carbon and bioenergy markets in mitigating carbon emissions on reforested lands: A case study from Southern United States. *Forest Policy and Economics*, 67, 1–9. https://doi.org/10.1016/j.forpol.2016.03.002
- Ebert, A. (2014). Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. *Sustainability*, *6*(1), 319–335. https://doi.org/10.3390/su6010319
- Ebi, K. L., & Schmier, J. K. (2005). A stitch in time: improving public health early warning systems for extreme weather events. *Epidemiologic Reviews*, 27(1), 115–121.

https://doi.org/10.1093/epirev/mxi006

- Egoh, B., Reyers, B., Rouget, M., Bode, M., & Richardson, D. M. (2009). Spatial congruence between biodiversity and ecosystem services in South Africa. *Biological Conservation*, 142(3), 553–562. https://doi.org/10.1016/J.BIOCON.2008.11.009
- Ehrenfeld, J. G., & Scott, N. (2001). Invasive species and the soil: effects on organisms and ecosystem processes. *Ecological Applications*, *11*(5), 1259–1260. https://doi.org/10.1890/1051-0761(2001)011[1259:ISATSE]2.0.CO;2
- Eigenbrod, C., & Gruda, N. (2015). Urban vegetable for food security in cities. A review. *Agronomy for Sustainable Development*, 35(2), 483–498. https://doi.org/10.1007/s13593-014-0273-y
- Eisenbies, M. H., Aust, W. M., Burger, J. A., & Adams, M. B. (2007). Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—a review. *Forest Ecology and Management*, 242(2–3), 77–98.
- Ekins, P., Simon, S., Deutsch, L., Folke, C., & De Groot, R. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. *Ecological Economics*, 44(2–3), 165–185. https://doi.org/10.1016/S0921-8009(02)00272-0
- El-Swaify, S. A. (1997). Factors affecting soil erosion hazards and conservation needs for tropical steeplands. *Soil Technology*, 11(1), 3–16. https://doi.org/10.1016/S0933-3630(96)00111-0
- Ellis, F. (1998). Household strategies and rural livelihood diversification. *Journal of Development Studies*, 35(1), 1–38. https://doi.org/10.1080/00220389808422553
- Ellis, F., & Sumberg, J. (1998). Food production, urban areas and policy responses. *World Development*, *26*(2), 213–225. https://doi.org/10.1016/S0305-750X(97)10042-0
- Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., ... Sullivan, C.
 A. (2017). Trees, forests and water: cool insights for a hot world. *Global Environmental Change*, 43, 51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002
- Elmqvist, B., & Olsson, L. (2007). Livelihood diversification: continuity and change in the Sahel. *GeoJournal*, 67(3), 167–180. https://doi.org/10.1007/s10708-007-9043-6
- Enarson, E., & Meyreles, L. (2004). International perspectives on gender and disaster: differences and possibilities. *International Journal of Sociology and Social Policy*, 24(10/11), 49–93. https://doi.org/10.1108/01443330410791064
- Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. *Critical Reviews in Environmental Science and Technology*, 42(22), 2311–2364. https://doi.org/10.1080/10643389.2011.574115
- Erb, K.-H., Haberl, H., & Plutzar, C. (2012). Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. *Energy Policy*, 47, 260–269. https://doi.org/https://doi.org/10.1016/j.enpol.2012.04.066
- Ericksen, P. J. (2008). Conceptualizing food systems for global environmental change research. *Global Environmental Change*, 18(1), 234–245. https://doi.org/10.1016/j.gloenvcha.2007.09.002
- Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., & Butterbach-Bahl, K. (2011). Reactive nitrogen in the environment and its effect on climate change. *Current Opinion in Environmental Sustainability*, 3(5), 281–290. https://doi.org/10.1016/J.COSUST.2011.08.012
- Estudillo, J. P., & Otsuka, K. (1999). Green revolution, human capital, and off-farm employment: changing sources of income among farm households in Central Luzon,

1966–1994. *Economic Development and Cultural Change*, 47(3), 497–523. https://doi.org/10.1086/452417

- Faccioli, M., Czajkowski, M., Glenk, K., & Martin, J. (2018). Environmental attitudes and place identity as simultaneous determinants of preferences for environmental goods. *Envecon 2018: Applied Environmental Economics Conference*, (March), 1–33.
- Fader, M., Gerten, D., Krause, M., Lucht, W., & Cramer, W. (2013). Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. *Environmental Research Letters*, 8(1), 014046. https://doi.org/10.1088/1748-9326/8/1/014046
- Faggin, J.M., Behagel, J.H., & Arts, B. (2017). Sustainable forest management and socialecological systems: An institutional analysis of Caatinga, Brazil. *Forests*, 8, 454. <u>https://doi.org/10.3390/f8110454</u>
- Fan, S., & Pandya-Lorch, R. (2012). *Reshaping agriculture for nutrition and health: An IFPRI 2020 book*. https://doi.org/10.2499/9780896296732
- FAO. (2011). The state of the world's land and water resources for food and agriculture. Managing systems at risk. https://doi.org/10.4324/9780203142837
- Fawcett, R., Christensen, B., & Tierney, D. (1994). The impact of conservation tillage on pesticide runoff into surface water: a review and analysis. *Journal of Soil and Water Conservation*, 49(2), 126–135.
- Feagin, R. A., Mukherjee, N., Shanker, K., Baird, A. H., Cinner, J., Kerr, A. M., ... Dahdouh-Guebas, F. (2010). Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. *Conservation Letters*, 3(1), 1–11. https://doi.org/10.1111/j.1755-263X.2009.00087.x
- Few, R., Martin, A., & Gross-Camp, N. (2017). Trade-offs in linking adaptation and mitigation in the forests of the Congo Basin. *Regional Environmental Change*, 17(3), 851–863. https://doi.org/10.1007/s10113-016-1080-6
- Fiksel, J. (2006). A framework for sustainable materials management. *JOM*, *58*(8), 15–22. https://doi.org/10.1007/s11837-006-0047-3
- Filoso, S., Bezerra, M. O., Weiss, K. C. B., & Palmer, M. A. (2017). Impacts of forest restoration on water yield: A systematic review. *PLOS ONE*, 12(8), e0183210. https://doi.org/10.1371/journal.pone.0183210
- Fisher, B., & Christopher, T. (2007). Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots. *Ecological Economics*, 62(1), 93–101. https://doi.org/10.1016/j.ecolecon.2006.05.020
- Fletschner, D., & Kenney, L. (2014). Rural women's access to financial services: credit, savings, and insurance. In *Gender in Agriculture* (pp. 187–208). https://doi.org/10.1007/978-94-017-8616-4_8
- Foggin, J. M. (2008). Depopulating the Tibetan grasslands. *Mountain Research and Development*, 28(1), 26–31. https://doi.org/10.1659/mrd.0972
- Foster, S. (2018). Is UN Sustainable Development Goal 15 relevant to governing the intimate land-use/groundwater linkage? *Hydrogeology Journal*, *26*(4), 979–982. https://doi.org/10.1007/s10040-018-1782-6
- Fothergill, A., & Peek, L. A. (2004). Poverty and disasters in the United States: a review of recent sociological findings. *Natural Hazards*, 32(1), 89–110. https://doi.org/10.1023/B:NHAZ.0000026792.76181.d9
- Frank, S., Havlík, P., Soussana, J.-F., Levesque, A., Valin, H., Wollenberg, E., ... Obersteiner, M. (2017). Reducing greenhouse gas emissions in agriculture without compromising food security? *Environmental Research Letters*, 12(10), 105004. https://doi.org/10.1088/1748-9326/aa8c83

- Freudenberg, N., Galea, S., & Vlahov, D. (2005). Beyond urban penalty and urban sprawl: back to living conditions as the focus of urban health. *Journal of Community Health*, *30*(1), 1–11. https://doi.org/10.1007/s10900-004-6091-4
- Friel, S., Marmot, M., McMichael, A. J., Kjellstrom, T., & Vågerö, D. (2008). Global health equity and climate stabilisation: a common agenda. *The Lancet*, *372*(9650), 1677–1683. https://doi.org/10.1016/S0140-6736(08)61692-X
- Frumkin, H. (2002). Urban sprawl and public health. *Public Health Reports*, 117(3), 201–217. https://doi.org/10.1093/phr/117.3.201
- Führer, E. (2000). Forest functions, ecosystem stability and management. *Forest Ecology and Management*, *132*(1), 29–38. https://doi.org/10.1016/S0378-1127(00)00377-7
- Fujimori, S., Hasegawa, T., Krey, V., Riahi, K., Bertram, C., Bodirsky, B. L., ... van Vuuren, D. (2019). A multi-model assessment of food security implications of climate change mitigation. *Nature Sustainability*, 2(5), 386–396. https://doi.org/10.1038/s41893-019-0286-2
- Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., ... Yamagata, Y. (2016). Research priorities for negative emissions. *Environmental Research Letters*, 11(11), 115007. https://doi.org/10.1088/1748-9326/11/11/115007
- Galal, O., Corroon, M., & Tirado, C. (2010). Urban environment and health: food security. *Asia Pacific Journal of Public Health*, 22(3_suppl), 254S-261S. https://doi.org/10.1177/1010539510372993
- Garcia, D. J., & You, F. (2016). The water-energy-food nexus and process systems engineering: a new focus. *Computers & Chemical Engineering*, *91*, 49–67. https://doi.org/10.1016/J.COMPCHEMENG.2016.03.003
- Gardiner, M. M., Landis, D. A., Gratton, C., DiFonzo, C. D., O'Neal, M., Chacon, J. M., ... Heimpel, G. E. (2009). Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. *Ecological Applications*, 19(1), 143–154. https://doi.org/10.1890/07-1265.1
- Gardner, T. A., Burgess, N. D., Aguilar-Amuchastegui, N., Barlow, J., Berenguer, E., Clements, T., ... Vieira, I. C. G. (2012). A framework for integrating biodiversity concerns into national REDD+ programmes. *Biological Conservation*. https://doi.org/10.1016/j.biocon.2011.11.018
- Garí, J. A. (2001). Biodiversity and Indigenous agroecology in Amazonia : the Indigenous peoples of Pastaza. *Etnoecológica*, 5(7), 21–37.
- Gariano, S. L., & Guzzetti, F. (2016). Landslidesa in a changing climate. *Earth-Science Reviews*, *162*, 227–252. https://doi.org/10.1016/J.EARSCIREV.2016.08.011
- Garibaldi, A., & Turner, N. (2004). Cultural keystone species: Implications for ecological conservation and restoration. *Ecology and Society*, *9*(3), art1. https://doi.org/10.5751/ES-00669-090301
- Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? *Food Policy*, *36*, S23–S32. Retrieved from https://www.sciencedirect.com/science/article/pii/S0306919210001132
- Genesio, L., Bacci, M., Baron, C., Diarra, B., Di Vecchia, A., Alhassane, A., ... Traoré, S. (2011). Early warning systems for food security in West Africa: evolution, achievements and challenges. *Atmospheric Science Letters*, 12(1), 142–148. https://doi.org/10.1002/asl.332
- Gengenbach, H., Schurman, R. A., Bassett, T. J., Munro, W. A., & Moseley, W. G. (2018). Limits of the new green revolution for Africa: reconceptualising gendered agricultural value chains. *The Geographical Journal*, 184(2), 208–214. https://doi.org/10.1111/geoj.12233

- Ghosh, P. K., Das, A., Saha, R., Kharkrang, E., Tripathi, A. K., Munda, G. C., & Ngachan, S. V. (2010). Conservation agriculture towards achieving food security in North East India. *Current Science*, 99(7), 915–921.
- Gibson, J. (2018) Forest loss and economic inequality in the Solomon Islands: Using smallarea estimation to link environmental change to welfare outcomes. *Ecological Economics*, 148, 66-76. https://doi.org/10.1016/j.ecolecon.2018.02.012.
- Gilbert, C. L., & Morgan, C. W. (2010). Food price volatility. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1554), 3023–3034. https://doi.org/10.1098/rstb.2010.0139
- Gill, A. M., & Stephens, S. L. (2009). Scientific and social challenges for the management of fire-prone wildland–urban interfaces. *Environmental Research Letters*, 4(3), 034014. https://doi.org/10.1088/1748-9326/4/3/034014
- Gioli, G., Khan, T., Bisht, S., & Scheffran, J. (2014). Migration as an adaptation strategy and its gendered implications: a case study from the Upper Indus Basin. *Mountain Research and Development*, *34*(3), 255–265. https://doi.org/10.1659/MRD-JOURNAL-D-13-00089.1
- Gittman, R. K., Popowich, A. M., Bruno, J. F., & Peterson, C. H. (2014). Marshes with and without sills protect estuarine shorelines from erosion better than bulkheads during a Category 1 hurricane. Ocean & Coastal Management, 102, 94–102. https://doi.org/10.1016/j.ocecoaman.2014.09.016
- Glauber, J. W. (2004). Crop insurance reconsidered. *American Journal of Agricultural Economics*, 86(5), 1179–1195. https://doi.org/10.1111/j.0002-9092.2004.00663.x
- Gladwin, C., Peterson, J. & Uttaro, R. 2002. Agroforestry innovations in Africa: Can they improve soil fertility on women farmers' fields? *African Studies Quarterly* 1&2: 245-269.
- Global Panel on Agriculture and Food Systems for Nutrition. (2016). *Food systems and diets: facing the challenges of the 21st century*. Retrieved from http://www.glopan.org/foresight
- Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. *Science*, *327*(5967), 812–818. https://doi.org/10.1126/science.1185383
- Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *369*(1639), 20120273–20120273. https://doi.org/10.1098/rstb.2012.0273
- Godschalk, D. R. (2003). Urban hazard mitigation: creating resilient cities. *Natural Hazards Review*, 4(3), 136–143. https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)
- Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and environmental issues in organic and conventional agriculture. *Critical Reviews in Plant Sciences*, 27(4), 239– 254. https://doi.org/10.1080/07352680802225456
- Goodwin, B. K., & Smith, V. H. (2003). An ex post evaluation of the conservation reserve, federal crop insurance, and other government programs: program participation and soil erosion. *Journal of Agricultural and Resource Economics*, Vol. 28, pp. 201–216. https://doi.org/10.2307/40987182
- Goodwin, B. K., Vandeveer, M. L., & Deal, J. L. (2004). An empirical analysis of acreage effects of participation in the federal crop insurance program. *American Journal of Agricultural Economics*, 86(4), 1058–1077. https://doi.org/10.1111/j.0002-9092.2004.00653.x
- Gordon, J. S., & Barton, A. W. (2015). Stakeholder Attitudes Toward Reforestation and Management of Bottomland Hardwood Forests in the Mississippi Delta. *Journal of*

Forestry, 113(3), 308-314. https://doi.org/10.5849/jof.14-030

- Gould, R. K., Ardoin, N. M., Woodside, U., Satterfield, T., Hannahs, N., & Daily, G. C. (2014). The forest has a story: cultural ecosystem services in Kona, Hawai. *Ecology and Society*, 19(3), art55. https://doi.org/10.5751/ES-06893-190355
- Grassi, G., Pilli, R., House, J., Federici, S., & Kurz, W. A. (2018). Science-based approach for credible accounting of mitigation in managed forests. *Carbon Balance and Management*, *13*(1), 8. https://doi.org/10.1186/s13021-018-0096-2
- Green, C., & Baden, S. (1995). Integrated water resources management: a gender perspective. *IDS Bulletin*, 26(1), 92–100. https://doi.org/10.1111/j.1759-5436.1995.mp26001013.x
- Greenough, G., McGeehin, M., Bernard, S. M., Trtanj, J., Riad, J., & Engelberg, D. (2001). The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. *Environmental Health Perspectives*, 109(suppl 2), 191–198. https://doi.org/10.1289/ehp.109-1240666
- Grey, D., & Sadoff, C. W. (2007). Sink or swim? Water security for growth and development. *Water Policy*, 9(6), 545–571. https://doi.org/10.2166/wp.2007.021
- Grey, S., & Patel, R. (2015). Food sovereignty as decolonization: some contributions from Indigenous movements to food system and development politics. *Agriculture and Human Values*, *32*(3), 431–444. https://doi.org/10.1007/s10460-014-9548-9
- Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. *Science*, 319(5864), 756–760. https://doi.org/10.1126/SCIENCE.1150195
- Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., ... Fargione, J. (2017). Natural climate solutions. *Proceedings of the National Academy of Sciences*, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114
- Guan, D., & Hubacek, K. (2007). Assessment of regional trade and virtual water flows in China. *Ecological Economics*, 61(1), 159–170. https://doi.org/10.1016/J.ECOLECON.2006.02.022
- Gunnarsson, B., & Federsel, L. M. (2014). Bumblebees in the city: abundance, species richness and diversity in two urban habitats. *Journal of Insect Conservation*, 18(6), 1185–1191. https://doi.org/10.1007/s10841-014-9729-2
- Gustavsson, L., & Sathre, R. (2011). Energy and CO2 analysis of wood substitution in construction. *Climatic Change*, *105*(1–2), 129–153. https://doi.org/10.1007/s10584-010-9876-8
- Haddad, J., Lawler, S., & Ferreira, C. M. (2016). Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework. *Natural Hazards*, 80(2), 839–861. https://doi.org/10.1007/s11069-015-2000-7
- Haddad, L. (2000). A conceptual framework for assessing agriculture–nutrition linkages. *Food and Nutrition Bulletin*, *21*(4), 367–373. https://doi.org/10.1177/156482650002100405
- Hadley, C., Lindstrom, D., Tessema, F., & Belachew, T. (2008). Gender bias in the food insecurity experience of Ethiopian adolescents. *Social Science & Medicine*, 66(2), 427– 438. https://doi.org/10.1016/J.SOCSCIMED.2007.08.025
- Haggblade, S., Hazell, P., & Reardon, T. (2010). The rural non-farm economy: prospects for growth and poverty reduction. *World Development*, 38(10), 1429–1441. https://doi.org/10.1016/J.WORLDDEV.2009.06.008
- Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalan, C. (2006). Climate change and human health: impacts, vulnerability and public health. *Public Health*, 120(7), 585– 596. https://doi.org/10.1016/J.PUHE.2006.01.002

- Hale, L., Meliane, I., Davidson, S., Sandwith, T., Beck, M., Hoekstra, J., ... Hatziolos, M. (2009). Ecosystem-based adaptation in marine and coastal ecosystems. *Renewable Resources Journal*, 25(4), 21–28.
- Halloran, A., Clement, J., Kornum, N., Bucatariu, C., & Magid, J. (2014). Addressing food waste reduction in Denmark. *Food Policy*, 49, 294–301. https://doi.org/10.1016/J.FOODPOL.2014.09.005
- Hammer, K., & Teklu, Y. (2008). Plant genetic resources: selected issues from genetic erosion to genetic engineering. In *Journal of Agriculture and Rural Development in the Tropics and Subtropics* (Vol. 109). Retrieved from https://jarts.info/index.php/jarts/article/viewFile/72/65
- Hamprecht, J., Corsten, D., Noll, M., & Meier, E. (2005). Controlling the sustainability of food supply chains. *Supply Chain Management: An International Journal*, 10(1), 7–10. https://doi.org/10.1108/13598540510578315
- Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. *Food Policy*, 35(5), 365–377. https://doi.org/10.1016/J.FOODPOL.2010.05.006
- Hanks, J. (2003). Transfrontier conservation areas (TFCAs) in Southern Africa. *Journal of Sustainable Forestry*. https://doi.org/10.1300/j091v17n01_08
- Hardison, J. R. (1976). Fire and flame for plant disease control. *Annual Review of Phytopathology*, 14(1), 355–379. https://doi.org/10.1146/annurev.py.14.090176.002035
- Hawken, P. (2017). *Drawdown: the most comprehensive plan ever proposed to reverse global warming* (Island Pre). Washington DC: Penguin.
- Hebrok, M., & Boks, C. (2017). Household food waste: drivers and potential intervention points for design an extensive review. *Journal of Cleaner Production*, *151*, 380–392. https://doi.org/10.1016/J.JCLEPRO.2017.03.069
- Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? *Organic Geochemistry*, 27(5–6), 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1
- Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., ... Kim, S. (2014). Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. *Technological Forecasting and Social Change*, 81(1), 205–226. https://doi.org/10.1016/j.techfore.2013.05.006
- Helicke, N. A. (2015). Seed exchange networks and food system resilience in the United States. *Journal of Environmental Studies and Sciences*, 5(4), 636–649. https://doi.org/10.1007/s13412-015-0346-5
- Henders, S., Persson, U. M., & Kastner, T. (2015). Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. *Environmental Research Letters*, 10(12), 125012. https://doi.org/10.1088/1748-9326/10/12/125012
- Hendrickson, D., Smith, C., & Eikenberry, N. (2006). Fruit and vegetable access in four lowincome food deserts communities in Minnesota. *Agriculture and Human Values*, 23(3), 371–383. https://doi.org/10.1007/s10460-006-9002-8
- Henry, R., Alexander, P., Rabin, S., Anthoni, P., Rounsevell, M., & Arneth, A. (2019) The role of global dietary transitions for safeguarding biodiversity. *Global Environmental Change*, 58, 101956. https://doi.org/10.1016/j.gloenvcha.2019.101956.
- Henson, S., & Loader, R. (2001). Barriers to agricultural exports from developing countries: the role of sanitary and phytosanitary requirements. *World Development*, 29(1), 85–102. https://doi.org/10.1016/S0305-750X(00)00085-1
- Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., ...

Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. *Nature Climate Change*, *6*(5), 452–461. https://doi.org/10.1038/nclimate2925

- Herrero, M., & Thornton, P. K. (2013). Livestock and global change: Emerging issues for sustainable food systems. *Proceedings of the National Academy of Sciences*, 110(52), 20878–20881. https://doi.org/10.1073/pnas.1321844111
- Herrero, M., Thornton, P. K., Gerber, P., & Reid, R. S. (2009). Livestock, livelihoods and the environment: understanding the trade-offs. *Current Opinion in Environmental Sustainability*, *1*(2), 111–120. https://doi.org/10.1016/J.COSUST.2009.10.003
- Hertel, T. W., & Baldos, U. L. C. (2016). Attaining food and environmental security in an era of globalization. *Global Environmental Change*, *41*, 195–205. https://doi.org/10.1016/J.GLOENVCHA.2016.10.006
- Hesse, C. (2006). *Pastoralism: drylands' invisible asset?: development a framework for assessing the value of pastoralism in East Africa*. Retrieved from IIED website: https://pubs.iied.org/12534IIED/
- Hibbert, A. R. (1983). Water yield improvement potential by vegetation management on western rangelands. *Journal of the American Water Resources Association*, 19(3), 375–381. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.9333&rep=rep1&type=p
- df Hiç, C., Pradhan, P., Rybski, D., & Kropp, J. P. (2016). Food surplus and its climate burdens. *Environmental Science and Technology*, 50(8), 4269–4277. https://doi.org/10.1021/acs.est.5b05088
- Hillbruner, C., & Moloney, G. (2012). When early warning is not enough—lessons learned from the 2011 Somalia famine. *Global Food Security*, *1*(1), 20–28. https://doi.org/10.1016/J.GFS.2012.08.001
- Hine, J. L. (1993). Transport and marketing priorities to improve food security in Ghana and the rest of Africa. In *Regional Food Security and Rural Infrastructure: an International Symposium*. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.451.5661&rep=rep1&type=p df
- Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., ... Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. *Proceedings of the National Academy of Sciences of the United States of America*, 111(9), 3292–3297. https://doi.org/10.1073/pnas.1222469111
- Hipólito, J., Boscolo, D., & Viana, B. F. (2018). Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. *Agriculture, Ecosystems and Environment*, 256, 218–225. https://doi.org/10.1016/j.agee.2017.09.038
- Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. *Philosophical Transactions of the Royal Society B: Biological Sciences*, Vol. 363, pp. 543–555. https://doi.org/10.1098/rstb.2007.2169
- Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. *The Journal of Agricultural Science*, 149(S1), 37–45. https://doi.org/10.1017/S0021859610000936
- Hof, C., Voskamp, A., Biber, M. F., Böhning-Gaese, K., Engelhardt, E. K., Niamir, A., ... Hickler, T. (2018). Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. *Proceedings of the National Academy* of Sciences, 115(52), 13294–13299. https://doi.org/10.1073/pnas.1807745115
- Holden, S., Benin, S., Shiferaw, B., & Pender, J. (2003). Tree planting for poverty reduction in less-favoured areas of the Ethiopian highlands. *Small-Scale Forest Economics*,

Management and Policy, 2(1), 63-80. https://doi.org/10.1007/s11842-003-006-6

- Hollis-Hansen, K., Vermont, L., Zafron, M.L., Seidman, J., & Leone, L. 2019. The introduction of new food retail opportunities in lower-income communities and the impact on fruit and vegetable intake: a systematic review, *Translational Behavioral Medicine*, Volume 9, Issue 5, October 2019, 837- 846 https://doi.org/10.1093/tbm/ibz094
- Hooda, P. S., Edwards, A. C., Anderson, H. A., & Miller, A. (2000). A review of water quality concerns in livestock farming areas. *Science of The Total Environment*, 250(1–3), 143–167. https://doi.org/10.1016/S0048-9697(00)00373-9
- Hooft, K. E. V., Wollen, T. S., & Bhandari, D. P. (2012). Sustainable livestock management for poverty alleviation and food security (K. E. van't Hooft, T. S. Wollen, & B. P. Bhandari, Eds.). https://doi.org/10.1079/9781845938277.0000
- Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: Waste production must peak this century. *Nature*, *502*(7473), 615–617. https://doi.org/10.1038/502615a
- Horowitz, J. K., & Lichtenberg, E. (1993). Insurance, Moral Hazard, and Chemical Use in Agriculture. *American Journal of Agricultural Economics*, 75(4), 926. https://doi.org/10.2307/1243980
- Horwitz, P., & Finlayson, C. M. (2011). Wetlands as settings for human health: Incorporating ecosystem services and health impact assessment into water resource management. *BioScience*, 61(9), 678–688. https://doi.org/10.1525/bio.2011.61.9.6
- Houghton, R. A., & Nassikas, A. A. (2018). Negative emissions from stopping deforestation and forest degradation, globally. *Global Change Biology*, 24(1), 350–359. https://doi.org/10.1111/gcb.13876
- Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., Mcleod, E., ... Simpson, S. (2017). Clarifying the role of coastal and marine systems in climate mitigation. *Frontiers in Ecology and the Environment*, 15(1), 42–50. https://doi.org/10.1002/fee.1451
- Howard, P. H. (2015). Intellectual property and consolidation in the seed industry. *Crop Science*, *55*(6), 2489. https://doi.org/10.2135/cropsci2014.09.0669
- Huang, X., Li, M., Li, J., & Song, Y. (2012)A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. *Atmospheric Environment*, 50, 9-15. https://doi.org/10.1016/j.atmosenv.2012.01.017.
- Hulvey, K. B., Hobbs, R. J., Standish, R. J., Lindenmayer, D. B., Lach, L., & Perring, M. P. (2013). Benefits of tree mixes in carbon plantings. *Nature Climate Change*, 3(10), 869– 874. https://doi.org/10.1038/nclimate1862
- Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., & Caspari, T. (2011). Identification of runoff processes – the impact of different forest types and soil properties on runoff formation and floods. *Journal of Hydrology*, 409(3–4), 637–649. https://doi.org/10.1016/J.JHYDROL.2011.08.067
- Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., ... Stevanovic, M. (2018). Large-scale bioenergy production: how to resolve sustainability trade-offs? *Environmental Research Letters*, 13(2), 024011. https://doi.org/10.1088/1748-9326/aa9e3b
- Idris Medugu, N., Rafee Majid, M., Johar, F., & Choji, I. D. (2010). The role of afforestation programme in combating desertification in Nigeria. *International Journal of Climate Change Strategies and Management*, 2(1), 35–47. https://doi.org/10.1108/17568691011020247
- Iglesias, A., Garrote, L., Flores, F., & Moneo, M. (2007). Challenges to manage the risk of water scarcity and climate change in the Mediterranean. *Water Resources Management*,

21(5), 775-788. https://doi.org/10.1007/s11269-006-9111-6

- Iho, A., Ribaudo, M., & Hyytiäinen, K. (2015). Water protection in the Baltic Sea and the Chesapeake Bay: institutions, policies and efficiency. *Marine Pollution Bulletin*, 93(1–2), 81–93. https://doi.org/10.1016/J.MARPOLBUL.2015.02.011
- Ilstedt, U., Malmer, A., Verbeeten, E., & Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. *Forest Ecology and Management*, 251(1–2), 45–51. https://doi.org/10.1016/J.FORECO.2007.06.014
- Immerzeel, D.J., Verweij, P.A., van der Hilst, F. and Faaij, A.P.C. (2014), Biodiversity impacts of bioenergy crop production: a state-of-the-art review. *GCB Bioenergy*, *6*, 183-209. doi:10.1111/gcbb.12067
- Ingram, J. C., Franco, G., Rio, C. R., & Khazai, B. (2006). Post-disaster recovery dilemmas: challenges in balancing short-term and long-term needs for vulnerability reduction. *Environmental Science & Policy*, 9(7–8), 607–613. https://doi.org/10.1016/J.ENVSCI.2006.07.006
- Ingram, J, Dyball, R., Howden, M., Vermeulen, S., Ganett, T., Redlingshöfer, B., ... Porter, J. (2016). Food security, food systems, and environmental change. *Solutions Journal*, (May-June), 63–73. Retrieved from https://ora.ox.ac.uk/objects/uuid:e7f84fc6-9a91-4c0f-8ba1-

3715e2ccc901/download_file?file_format=pdf&safe_filename=Fea_Ingram_4-20-16.pdf&type_of_work=Journal+article

- Ingram, John. (2011). A food systems approach to researching food security and its interactions with global environmental change. *Food Security*, *3*(4), 417–431. https://doi.org/10.1007/s12571-011-0149-9
- IPBES. (2018). Summary for policymakers of the thematic assessment report on land degradation and restoration of the intergovernmental science-policy platform on biodiversity and ecosystem services (R. Scholes, L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, ... T. G. Holland, Eds.). Bonn, Germany: IPBES Secretariat.
- IPCC. (2018). Global Warming of 1.5 °C: An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate chang (V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, ... T. Waterfield, Eds.). Retrieved from http://www.ipcc.ch/report/sr15/
- Irland, L. C. (2008). Developing markets for certified wood products: greening the supply chain for construction materials. *Journal of Industrial Ecology*, *11*(1), 201–216. https://doi.org/10.1162/jiec.2007.1052
- Irz, X., Lin, L., Thirtle, C., & Wiggins, S. (2001). Agricultural productivity growth and poverty alleviation. *Development Policy Review*, 19(4), 449–466. https://doi.org/10.1111/1467-7679.00144
- Isakson, S. R. (2009). No hay ganancia en la milpa: The agrarian question, food sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands. *Journal of Peasant Studies*, *36*(4), 725–759. https://doi.org/10.1080/03066150903353876
- Issaka, S., & Ashraf, M. A. (2017). Impact of soil erosion and degradation on water quality: a review. *Geology, Ecology, and Landscapes*, 1(1), 1–11. https://doi.org/10.1080/24749508.2017.1301053
- Ivanic, M., & Martin, W. (2008). Implications of higher global food prices for poverty in low-income countries. *Agricultural Economics*, 39, 405–416. https://doi.org/10.1111/j.1574-0862.2008.00347.x

- Jabareen, Y. R. (2006). Sustainable urban forms. *Journal of Planning Education and Research*, *26*(1), 38–52. https://doi.org/10.1177/0739456X05285119
- Jacquet, J., Hocevar, J., Lai, S., Majluf, P., Pelletier, N., Pitcher, T., . . . Pauly, D. (2010). Conserving wild fish in a sea of market-based efforts. *Oryx*, 44(1), 45-56. doi:10.1017/S0030605309990470
- Jackson, R. B. (2005). Trading Water for Carbon with Biological Carbon Sequestration. *Science*, *310*(5756), 1944–1947. https://doi.org/10.1126/science.1119282
- Jacoby, H. G., & Skoufias, E. (1997). Risk, financial markets, and human capital in a developing country. *The Review of Economic Studies*, *64*(3), 311. https://doi.org/10.2307/2971716
- Jactel, H., Brockerhoff, E., & Duelli, P. (2005). A Test of the Biodiversity-Stability Theory: Meta-analysis of Tree Species Diversity Effects on Insect Pest Infestations, and Reexamination of Responsible Factors. In *Forest Diversity and Function* (pp. 235–262). https://doi.org/10.1007/3-540-26599-6_12
- Jactel, Hervé, Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., ... Brockerhoff, E. G. (2017). Tree diversity drives forest stand resistance to natural disturbances. *Current Forestry Reports*, 3(3), 223–243. https://doi.org/10.1007/s40725-017-0064-1
- James, S. J. J., & James, C. (2010). The food cold-chain and climate change. *Food Research International*, 43(7), 1944–1956. https://doi.org/10.1016/j.foodres.2010.02.001
- Jardine, A., Speldewinde, P., Carver, S., & Weinstein, P. (2007). Dryland salinity and ecosystem distress syndrome: human health implications. *EcoHealth*, 4(1), 10–17. https://doi.org/10.1007/s10393-006-0078-9
- Jargowsky, P. (2002). Sprawl, concentration of poverty, and urban inequality. In G. D. Squires (Ed.), *Urban Sprawl Causes, Consequences and Policy Responses* (pp. 39–72). Washington D.C.: Urban Institute.
- Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. *Environmental Research Letters*, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd
- Jenks, M., & Burgess, R. (2000). Compact cities: sustainable urban forms for developing countries. Retrieved from https://books.google.co.nz/books?hl=en&lr=&id=glqRAgAAQBAJ&oi=fnd&pg=PP1& dq=Compact+cities:+sustainable+urban+forms+for+developing+countries,+&ots=qRM 7Jr3gi7&sig=CEMvH0bRjpYWeAB0m_x2v5xhn0U#v=onepage&q=Compact cities%3A sustainable urban forms for develop
- Jewitt, S. L., Nasir, D., Page, S. E., Rieley, J. O., & Khanal, K. (2014). Indonesia's contested domains. Deforestation, rehabilitation and conservation-with-development in Central Kalimantan's tropical peatlands. *International Forestry Review*, 16(4), 405–420. https://doi.org/10.1505/146554814813484086
- Ji, L., Wang, Z., Wang, X., & An, L. (2011). Forest insect pest management and rorest management in China: An overview. *Environmental Management*, 48(6), 1107–1121. https://doi.org/10.1007/s00267-011-9697-1
- Jiang, Y. (2009). China's water scarcity. *Journal of Environmental Management*, 90(11), 3185–3196. https://doi.org/10.1016/J.JENVMAN.2009.04.016
- Jindal, R., Swallow, B., & Kerr, J. (2008). Forestry-based carbon sequestration projects in Africa: potential benefits and challenges. *Natural Resources Forum*, *32*(2), 116–130. https://doi.org/10.1111/j.1477-8947.2008.00176.x
- Johnston, C. A. (1991). Sediment and nutrient retention by freshwater wetlands: Effects on

surface water quality. *Critical Reviews in Environmental Control*, 21(5–6), 491–565. https://doi.org/10.1080/10643389109388425

- Jones, A.D., Shapiro, L.F., & Wilson M.L. (2015). Assessing the potential and limitations of leveraging food sovereignty to improve human health. *Frontiers in Public Health*, 3, 263 <u>https://doi.org/10.3389/fpubh.2015.00263</u>
- Jones, D.L., Rousk, J., Edwards-Jones, G., Deluca, T.H., & Murphy, D.V. (2012)Biocharmediated changes in soil quality and plant growth in a three year field trial. *Soil Biology and Biochemistry*, 45, 113-124.
- Jones, H. P., Hole, D. G., & Zavaleta, E. S. (2012). Harnessing nature to help people adapt to climate change. *Nature Climate Change*, 2(7), 504–509. https://doi.org/10.1038/nclimate1463
- Jongwanich, J. (2009). The impact of food safety standards on processed food exports from developing countries. *Food Policy*, *34*(5), 447–457. https://doi.org/10.1016/J.FOODPOL.2009.05.004
- Joosten, H., & Clarke, D. (2002). Wise Use of Mires and Peatlands. In *International Mire Conservation Group and International Peat Society, Helsinki*. https://doi.org/10.1016/s0925-8574(98)00046-9
- Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. *Agroforestry Systems*, 76(1), 1–10. https://doi.org/10.1007/s10457-009-9229-7
- Kadiyala, S., Harris, J., Headey, D., Yosef, S., & Gillespie, S. (2014). Agriculture and nutrition in India: mapping evidence to pathways. *Annals of the New York Academy of Sciences*, 1331(1), 43–56. https://doi.org/10.1111/nyas.12477
- Kaminski, J., & Christiaensen, L. (2014). Post-Harvest Loss in Sub-Saharan Africa What Do Farmers Say? In Policy Research Working Papers. https://doi.org/10.1596/1813-9450-6831
- Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P., & DeLucia, E. H. (2017). Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. *Biology Letters*, 13(4), 20160714. https://doi.org/10.1098/rsbl.2016.0714
- Kantor, L. (2001). Community food security programs improve food access. *Food Review*, 24, 20–26.
- Kaplan, A., & Hepcan, Ş. (2009). An examination of ecological risk assessment at landscape scale and the management plan. In *Decision Support for Natural Disasters and Intentional Threats to Water Security* (pp. 237–251). Springer.
- Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F., & Mekuria, M. (2013). Adoption of interrelated sustainable agricultural practices in smallholder systems: evidence from rural Tanzania. *Technological Forecasting and Social Change*, 80(3), 525–540. https://doi.org/10.1016/J.TECHFORE.2012.08.007
- Kashwan, P. (2017) Inequality, democracy, and the environment: A cross-national analysis. *Ecological Economics*, *131*, 139-151. https://doi.org/10.1016/j.ecolecon.2016.08.018.
- Kastner, T., Rivas, M. J. I., Koch, W., & Nonhebel, S. (2012). Global changes in diets and the consequences for land requirements for food. *Proceedings of the National Academy* of Sciences of the United States of America, 109(18), 6868–6872. https://doi.org/10.1073/pnas.1117054109
- Katz, B. G. (1989). Influence of mineral weathering reactions on the chemical-composition of soil-water, springs, and ground-water, Catoctin Mountains, Maryland. *Hydrological Processes*, *3*(2), 185–202.
- Kauppi, P. E., Sandström, V., & Lipponen, A. (2018). Forest resources of nations in relation

to human well-being. PLOS ONE, 13(5), e0196248.

https://doi.org/10.1371/journal.pone.0196248

- Keding, G. B., Schneider, K., & Jordan, I. (2013). Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. *Food Security*, 5(6), 825–846. https://doi.org/10.1007/s12571-013-0312-6
- Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., ... Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL, 2, 111–128. https://doi.org/10.5194/soil-2-111-2016
- Keitt, T. H. (2009). Habitat conversion, extinction thresholds, and pollination services in agroecosystems. *Ecological Applications*, 19(6), 1561–1573. https://doi.org/10.1890/08-0117.1
- Kerr, R. B. (2005). Food security in Northern Malawi: gender, kinship relations and entitlements in historical context. *Journal of Southern African Studies*, *31*(1), 53–74. https://doi.org/10.1080/03057070500035679
- Khan, M. M., Mock, N. B., & Bertrand, W. B. (1992). Composite indicators for famine early warning systems. *Disasters*, *16*(3), 195–206. https://doi.org/10.1111/j.1467-7717.1992.tb00398.x
- Kibler, K. M., Reinhart, D., Hawkins, C., Motlagh, A. M., & Wright, J. (2018). Food waste and the food-energy-water nexus: a review of food waste management alternatives. *Waste Management*, 74, 52–62. https://doi.org/10.1016/J.WASMAN.2018.01.014
- King, B., & Wilcox, S. (2008). Peace Parks and jaguar trails: transboundary conservation in a globalizing world. *GeoJournal*, 71(4), 221–231. https://doi.org/10.1007/s10708-008-9158-4
- Kiptot, E., & Franzel, S. (2012). Gender and agroforestry in Africa: a review of women's participation. *Agroforestry Systems*, 84(1), 35–58. https://doi.org/10.1007/s10457-011-9419-y
- Kiptot, E., Franzel, S. & Degrande, A. (2014). Gender, agroforestry and food security in Africa. *Current Opinion in Environmental Sustainability*, 6: 104-109.
- Klein, A.-M., Steffan-Dewenter, I., Buchori, D., & Tscharntke, T. (2002). Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. *Conservation Biology*, *16*(4), 1003–1014. https://doi.org/10.1046/j.1523-1739.2002.00499.x
- Kloppenberg, J. (2010). Impeding dispossession, enabling repossession: biological open source and the recovery of seed sovereignty. *Journal of Agrarian Change*, *10*(3), 367– 388. https://doi.org/10.1111/j.1471-0366.2010.00275.x
- Kloppenburg, J. (2014). Re-purposing the master's tools: the open source seed initiative and the struggle for seed sovereignty. *The Journal of Peasant Studies*, *41*(6), 1225–1246. https://doi.org/10.1080/03066150.2013.875897
- Knoke, T., Bendix, J., Pohle, P., Hamer, U., Hildebrandt, P., Roos, K., ... Beck, E. (2014). Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. *Nature Communications*, 5(1), 5612. https://doi.org/10.1038/ncomms6612
- Koh, L. P., Miettinen, J., Liew, S. C., & Ghazoul, J. (2011). Remotely sensed evidence of tropical peatland conversion to oil palm. *Proceedings of the National Academy of Sciences of the United States of America*, 108(12), 5127–5132. https://doi.org/10.1073/pnas.1018776108
- Komakech, H.C., van der Zaag, P., & van Koppen, B (2012). The dynamics between water asymmetry, inequality and heterogeneity sustaining canal institutions in the Makanya

catchment, Tanzania. *Water Policy, 14,* 800–820 doi: <u>https://doi.org/10.2166/wp.2012.196</u>

- Kombe, W. J. (2005). Land use dynamics in peri-urban areas and their implications on the urban growth and form: the case of Dar es Salaam, Tanzania. *Habitat International*, 29(1), 113–135. https://doi.org/10.1016/S0197-3975(03)00076-6
- Kotb, T. H. ., Watanabe, T., Ogino, Y., & Tanji, K. K. (2000). Soil salinization in the Nile Delta and related policy issues in Egypt. *Agricultural Water Management*, 43(2), 239– 261. https://doi.org/10.1016/S0378-3774(99)00052-9
- Kousky, C. (2010). Using natural capital to reduce disaster risk. *Journal of Natural Resources Policy Research*, 2(4), 343–356. https://doi.org/10.1080/19390459.2010.511451
- Kramer, R. A., McSweeny, W. T., & Stavros, R. W. (1983). Soil Conservation with Uncertain Revenues and Input Supplies. *American Journal of Agricultural Economics*, 65(4), 694. https://doi.org/10.2307/1240457
- Kraxner, F., Nordström, E.-M., Havlík, P., Gusti, M., Mosnier, A., Frank, S., ... Obersteiner, M. (2013). Global bioenergy scenarios – future forest development, land-use implications, and trade-offs. *Biomass and Bioenergy*, 57, 86–96. https://doi.org/10.1016/J.BIOMBIOE.2013.02.003
- Kreidenweis, U., Humpenöder, F., Stevanović, M., Bodirsky, B. L., Kriegler, E., Lotze-Campen, H., & Popp, A. (2016). Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects. *Environmental Research Letters*, 11(8), 085001. https://doi.org/10.1088/1748-9326/11/8/085001
- Kremen, C., Williams, N.M., & Thorp, R.W., 2002. Crop pollination from native bees at riskfrom agricultural intensification. *Proceedings of the National Academy of Sciences*, 99, 16812-16816.
- Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. *Ecology and Society*, *17*(4), art44. https://doi.org/10.5751/ES-05103-170444
- Kroeger, T., Escobedo, F. J., Hernandez, J. L., Varela, S., Delphin, S., Fisher, J. R. B., & Waldron, J. (2014). Reforestation as a novel abatement and compliance measure for ground-level ozone. *Proceedings of the National Academy of Sciences*, 111(40), E4204– E4213. https://doi.org/10.1073/pnas.1409785111
- Kumagai, Y., Carroll, M.S., & Cohn, P. (2004) Coping with interface wildfire as a human event: Lessons from the disasters/hazards literature. *Journal of Forestry*, *102*, 28-32.
- Kumar, R., Horwitz, P., Milton, G. R., Sellamuttu, S. S., Buckton, S. T., Davidson, N. C., ... Baker, C. (2011). Assessing wetland ecosystem services and poverty interlinkages: a general framework and case study. *Hydrological Sciences Journal*, 56(8), 1602–1621. https://doi.org/10.1080/02626667.2011.631496
- Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. (2012). Lost-food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. *Science of The Total Environment*, 438, 477–489. https://doi.org/10.1016/J.SCITOTENV.2012.08.092
- Kurian, M. (2017). The water-energy-food nexus. *Environmental Science & Policy*, 68, 97–106. https://doi.org/10.1016/j.envsci.2016.11.006
- Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. *Critical Reviews in Plant Sciences*, 17(4), 319–464. https://doi.org/10.1080/07352689891304249
- Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472

- Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. *Land Degradation & Development*, 17(2), 197–209. https://doi.org/10.1002/ldr.696
- Lal, Rattan. (2016). Soil health and carbon management. *Food and Energy Security*, 5(4), 212–222. https://doi.org/10.1002/fes3.96
- Lamb, A., Green, R., Bateman, I., Broadmeadow, M., Bruce, T., Burney, J., ... Balmford, A. (2016). The potential for land sparing to offset greenhouse gas emissions from agriculture. *Nature Climate Change*, 6(5), 488–492. https://doi.org/10.1038/nclimate2910
- Laroche, P., Schulp, C., Kastner, T., & Verburg, P. (2020) Telecoupled environmental impacts of current and alternative Western diets. *Global Environmental Change*, *62*, 102066. https://doi.org/10.1016/j.gloenvcha.2020.102066.
- Larssen, T., Seip, H. M., Semb, A., Mulder, J., Muniz, I. P., Vogt, R. D., ... Eilertsen, O. (1999). Acid deposition and its effects in China: an overview. *Environmental Science & Policy*, 2(1), 9–24. https://doi.org/10.1016/S1462-9011(98)00043-4
- Lasco, R. D., Delfino, R. J. P., Catacutan, D. C., Simelton, E. S., & Wilson, D. M. (2014). Climate risk adaptation by smallholder farmers: the roles of trees and agroforestry. *Current Opinion in Environmental Sustainability*, 6(1), 83–88. https://doi.org/10.1016/j.cosust.2013.11.013
- Laurance, W. F. (2007). Forests and floods. *Nature*, *449*(7161), 409–410. https://doi.org/10.1038/449409a
- Lauterjung, J., Münch, U., & Rudloff, A. (2010). The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia. *Hazards Earth Syst. Sci*, 10, 641–646. https://doi.org/10.5194/nhess-10-641-2010
- Lazos-Chavero, E., Zinda, J., Bennett-Curry, A., Balvanera, P., Bloomfield, G., Lindell, C., & Negra, C. (2016). Stakeholders and tropical reforestation: challenges, trade-offs, and strategies in dynamic environments. *Biotropica*, 48(6), 900–914. https://doi.org/10.1111/btp.12391
- Le, H. D., Smith, C., Herbohn, J., & Harrison, S. (2012). More than just trees: Assessing reforestation success in tropical developing countries. *Journal of Rural Studies*, 28(1), 5–19. https://doi.org/10.1016/j.jrurstud.2011.07.006
- Leach, M., Fairhead, J., & Fraser, J. (2012). Green grabs and biochar: revaluing African soils and farming in the new carbon economy. *Journal of Peasant Studies*, *39*(2), 285–307. https://doi.org/10.1080/03066150.2012.658042
- Leakey, R. R. B., & Simons, A. J. (1997). The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. *Agroforestry Systems*, 38(1–3), 165–176. https://doi.org/10.1016/b978-0-12-805356-0.00005-2
- Lebreton, L. C. M., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world's oceans. *Nature Communications*, *8*, 1–10. https://doi.org/10.1038/ncomms15611
- Lee-Smith, D. (2010). Cities feeding people: an update on urban agriculture in equatorial Africa. *Environment and Urbanization*, 22(2), 483–499. https://doi.org/10.1177/0956247810377383
- Lee, H. S. (2004). Introducing the cultivation of medicinal plants and wild fruits in forest rehabilitation operations on former shifting cultivation sites in Sarawak Malaysia: Issues and challenges. *Southeast Asian Studies*, *42*(1), 60–73. https://doi.org/10.20495/tak.42.1 60
- Lee, J. H. W., Hodgkiss, I. J., Wong, K. T. M., & Lam, I. H. Y. (2005). Real time observations of coastal algal blooms by an early warning system. *Estuarine, Coastal and*

Shelf Science, 65(1-2), 172-190. https://doi.org/10.1016/J.ECSS.2005.06.005

- Lee, K. E., Abdullah, R., Hanafiah, M. M., Halim, A. A., Mokhtar, M., Goh, C. T., & Alam, L. (2018). An integrated approach for stakeholder participation in watershed management. In *Environmental Risk Analysis for Asian-Oriented, Risk-Based Watershed Management* (pp. 135–143). https://doi.org/10.1007/978-981-10-8090-6_10
- Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. *Nature*, 528(7580), 60. https://doi.org/10.1038/nature16069
- Leitgeb, F., Schneider, S., & Vogl, C. R. (2016). Increasing food sovereignty with urban agriculture in Cuba. *Agriculture and Human Values*, *33*(2), 415–426. https://doi.org/10.1007/s10460-015-9616-9
- Lemaitre, S. (2011). Indigenous Peoples' Land Rights and REDD: A Case Study. *Review of European Community & International Environmental Law*, 20(2), 150–162. https://doi.org/10.1111/j.1467-9388.2011.00716.x
- Lesorogol, C. K. (2003). Transforming institutions among pastoralists: inequality and land privatization. *American Anthropologist*, *105*(3), 531–541. https://doi.org/10.1525/aa.2003.105.3.531
- Leßmeister, A., Heubach, K., Lykke, A. M., Thiombiano, A., Wittig, R., & Hahn, K. (2018). The contribution of non-timber forest products (NTFPs) to rural household revenues in two villages in south-eastern Burkina Faso. *Agroforestry Systems*, 92(1), 139–155. https://doi.org/10.1007/s10457-016-0021-1
- Lewandrowski, J., Darwin, R., Tsigas, M., & Raneses, A. (1999). Estimating costs of protecting global ecosystem diversity. *Ecological Economics*, 29(1), 111–125. https://doi.org/10.1016/S0921-8009(98)00058-5
- Lewis, K., & Witham, C. (2012). Agricultural commodities and climate change. *Climate Policy*, *12*(sup01), S53–S61. https://doi.org/10.1080/14693062.2012.728790
- Liddle, M. (1997). *Recreation ecology: the ecological impact of outdoor recreation and ecotourism*. Chapman & Hall Ltd.
- Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. *BioScience*. https://doi.org/10.1525/bio.2011.61.3.4
- Lin, B. B., Philpott, S. M., & Jha, S. (2015). The future of urban agriculture and biodiversityecosystem services: challenges and next steps. *Basic and Applied Ecology*, *16*(3), 189– 201. https://doi.org/10.1016/J.BAAE.2015.01.005
- Lindsay, R. A. (1993). Peatland conservation from cinders to Cinderella. *Biodiversity and Conservation*, 2(5), 528–540. https://doi.org/10.1007/BF00056746
- Lindsey, P. A., Alexander, R., Mills, M. G. L., Romañach, S., & Woodroffe, R. (2007).
 Wildlife Viewing Preferences of Visitors to Protected Areas in South Africa: Implications for the Role of Ecotourism in Conservation. *Journal of Ecotourism*, 6(1), 19–33. https://doi.org/10.2167/joe133.0
- Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... Torquebiau, E. F. (2014). Climate-smart agriculture for food security. *Nature Climate Change*, *4*, 1068–1072. https://doi.org/10.1038/nclimate2437
- Liu, Jingya, Li, J., Gao, Z., Yang, M., Qin, K., & Yang, X. (2016). Ecosystem services insights into water resources management in China: a case of Xi'an City. *International Journal of Environmental Research and Public Health*, 13(12). https://doi.org/10.3390/ijerph13121169
- Liu, Junguo, Lundqvist, J., Weinberg, J., & Gustafsson, J. (2013). Food losses and waste in China and their implication for water and land. *Environmental Science & Technology*, 47(18), 10137–10144. https://doi.org/10.1021/es401426b

- Liu, Junguo, Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., ... Oki, T. (2017). Water scarcity assessments in the past, present, and future. *Earth's Future*, *5*(6), 545–559. https://doi.org/10.1002/2016EF000518
- Lloyd, G. J., Korsgaard, L., Tharme, R., Boelee, E., Clement, F., Barron, J., & Eriyagama, N. (2013). Water management for ecosystem health and food production. In E. Boelee (Ed.), *Managing water and agroecosystems for food security* (pp. 142–155). CAB International.
- Lobell, D. B., Baldos, U. L. C., & Hertel, T. W. (2013). Climate adaptation as mitigation: the case of agricultural investments. *Environmental Research Letters*, 8(1), 015012. https://doi.org/10.1088/1748-9326/8/1/015012
- Locatelli, B., Pavageau, C., Pramova, E., & Di Gregorio, M. (2015). Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs. *Wiley Interdisciplinary Reviews: Climate Change*, *6*(6), 585–598. https://doi.org/10.1002/wcc.357
- Locatelli, B., Catterall, C. P., Imbach, P., Kumar, C., Lasco, R., Marín-Spiotta, E., ... Uriarte, M. (2015). Tropical reforestation and climate change: beyond carbon. *Restoration Ecology*, 23(4), 337–343. https://doi.org/10.1111/rec.12209
- Lopez, R. (2004). Urban sprawl and risk for being overweight or obese. *American Journal of Public Health*, 94(9), 1574–1579. https://doi.org/10.2105/AJPH.94.9.1574
- Louwaars, N. P. (2002). Seed policy, legislation and law. *Journal of New Seeds*, 4(1–2), 1–14. https://doi.org/10.1300/J153v04n01_01
- Lu, C., Zhao, T., Shi, X., & Cao, S. (2016). Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. *Journal of Cleaner Production*, 176, 1213–1222. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.03.046
- Lübkert-Alcamo, B., & Krzyzanowski, M. (1995). Estimate of health impacts of acidifying air pollutants and tropospheric ozone in Europe. *Water, Air, & Soil Pollution, 85*(1), 167–176. https://doi.org/10.1007/BF00483698
- Lundy, M., Ostertag, C. F., & Best, R. (2002). Value adding, agroenterprise and poverty reduction: a territorial approach for rural business development. Retrieved from https://pdfs.semanticscholar.org/a4a1/7f6df24ec2982683e4144774a5825cb13cf5.pdf
- Luo, L., Wang, Y., & Qin, L. (2014). Incentives for promoting agricultural clean production technologies in China. *Journal of Cleaner Production*, 74, 54–61. https://doi.org/10.1016/J.JCLEPRO.2014.03.045
- Luttrell, C., Sills, E., Aryani, R., Ekaputri, A. D., & Evinke, M. F. (2018). Beyond opportunity costs: who bears the implementation costs of reducing emissions from deforestation and degradation? *Mitigation and Adaptation Strategies for Global Change*, 23(2), 291–310. https://doi.org/10.1007/s11027-016-9736-6
- Lynham, J., Nikolaev, A., Raynor, J., Vilela, T., & Villasenor-Derbez, J.C. (2020). Impact of two of the world's largest protected areas on longline fishery catch rates. *Nature Communications*, *11*, 979. https://doi.org/10.1038/s41467-020-14588-3
- Lyver, P. O., Timoti, P., Gormley, A. M., Jones, C. J., Richardson, S. J., Tahi, B. L., & Greenhalgh, S. (2017). Key Māori values strengthen the mapping of forest ecosystem services. *Ecosystem Services*, 27, 92–102. https://doi.org/10.1016/J.ECOSER.2017.08.009
- Mack, S. (1993). Strategies for sustainable animal agriculture in developing countries. FAO Expert Consultation Held in Rome, Italy 10-14 December 1990. Rome, Italy.
- Madaleno, I. (2000). Urban agriculture in Belém, Brazil. *Cities*, 17(1), 73–77. https://doi.org/10.1016/S0264-2751(99)00053-0

- Maginnis, S., & Jackson, W. (2007). What is FLR and how does it differ from current approaches? In J. Rietbergen-McCracken, S. Maginnis, & A. Sarre (Eds.), *The forest landscape restoration handbook* (pp. 5–20). London, UK: Earthscan.
- Mainka, S. A., & Howard, G. W. (2010). Climate change and invasive species: double jeopardy. *Integrative Zoology*, 5(2), 102–111. https://doi.org/10.1111/j.1749-4877.2010.00193.x
- Makate, C., Wang, R., Makate, M., & Mango, N. (2016). Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change. *SpringerPlus*, *5*(1), 1135. https://doi.org/10.1186/s40064-016-2802-4
- Mangora, M. M. (2011). Poverty and institutional management stand-off: a restoration and conservation dilemma for mangrove forests of Tanzania. *Wetlands Ecology and Management*, *19*(6), 533–543. https://doi.org/10.1007/s11273-011-9234-2
- Mansourian, S., Vallauri, D., & Dudley, N. (2005). Forest Restoration in Landscapes. In Forest Restoration in Landscapes: Beyond Planting Trees. https://doi.org/10.1007/0-387-29112-1
- Mariola, M. J. (2008). The local industrial complex? Questioning the link between local foods and energy use. *Agriculture and Human Values*, *25*(2), 193–196. https://doi.org/10.1007/s10460-008-9115-3
- Mathbor, G. M. (2007). Enhancement of community preparedness for natural disasters. *International Social Work*, 50(3), 357–369. https://doi.org/10.1177/0020872807076049
- Mather, A. S., & Murray, N. C. (1987). Employment and private-sector afforestation in Scotland. *Journal of Rural Studies*, *3*(3), 207–218. https://doi.org/10.1016/0743-0167(87)90070-2
- Mathijs, E. (2015). Exploring future patterns of meat consumption. *Meat Science*, 109, 112–116. https://doi.org/10.1016/J.MEATSCI.2015.05.007
- Maxwell, D. (1999). The political economy of urban food security in sub-Saharan Africa. *World Development*, 27(11), 1939–1953. https://doi.org/10.1016/S0305-750X(99)00101-1
- Maxwell, D., & Wiebe, K. (1999). Land tenure and food security: exploring dynamic linkages. *Development and Change*, *30*(4), 825–849. https://doi.org/10.1111/1467-7660.00139
- Mazzeo, J., & Brenton, B. (2013). Peasant resistence to hybrid seed in Haiti: the implications of humanitarian aid on food security and cultural identity. In H. Garth (Ed.), *Food and Identity in the Caribbean* (pp. 121–137). https://doi.org/10.5040/9781350042162.ch-008
- Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. *Current Opinion in Environmental Sustainability*, 6, 8–14. https://doi.org/10.1016/j.cosust.2013.09.002
- Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P. A., & Kowero, G. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. *Current Opinion in Environmental Sustainability*, 6(1), 61–67. https://doi.org/10.1016/j.cosust.2013.10.014
- McCaffrey, S. (2004). Thinking of wildfire as a natural hazard. *Society & Natural Resources*, 17(6), 509–516. https://doi.org/10.1080/08941920490452445
- McDaniel, M., Tiemann, L., & Grandy, A. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. *Ecological Applications*, 24(3), 560–570. https://doi.org/10.1890/13-0616.1
- McDonald, G. T., & Lane, M. B. (2004). Converging global indicators for sustainable forest management. *Forest Policy and Economics*, 6(1), 63–70. https://doi.org/10.1016/S1389-

9341(02)00101-6

- McElwee, P. (2009). Reforesting "Bare Hills" in Vietnam: Social and Environmental Consequences of the 5 Million Hectare Reforestation Program. *AMBIO: A Journal of the Human Environment*, *38*(6), 325–333. https://doi.org/10.1579/08-R-520.1
- McElwee, P. (2010). Resource use among rural agricultural households near protected areas in Vietnam: The social costs of conservation and implications for enforcement. *Environmental Management*, 45, 113-131. https://doi.org/10.1007/s00267-009-9394-5
- McElwee, P., Nguyen, V. H. T., Nguyen, D. V., Tran, N. H., Le, H. V. T., Nghiem, T. P., & Vu, H. D. T. (2017). Using REDD+ policy to facilitate climate adaptation at the local level: synergies and challenges in Vietnam. *Forests*, 8(1), 1–25. https://doi.org/10.3390/f8010011
- McFrederick, Q. S., Kathilankal, J. C., & Fuentes, J. D. (2008). Air pollution modifies floral scent trails. *Atmospheric Environment*, 42(10), 2336–2348. https://doi.org/10.1016/J.ATMOSENV.2007.12.033
- McGuire, S., & Sperling, L. (2016). Seed systems smallholder farmers use. *Food Security*, 8(1), 179–195. https://doi.org/10.1007/s12571-015-0528-8
- McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. *The Lancet*, *370*(9594), 1253–1263. https://doi.org/10.1016/S0140-6736(07)61256-2
- McMichael, P., & Schneider, M. (2011). Food security politics and the millennium development goals. *Third World Quarterly*, *32*(1), 119–139. https://doi.org/10.1080/01436597.2011.543818
- Mearns, R. (1996). Community, collective action and common grazing: the case of postsocialist Mongolia. *Journal of Development Studies*, *32*(3), 297–339. https://doi.org/10.1080/00220389608422418
- Mechler, R., Bouwer, L. M., Linnerooth-Bayer, J., Hochrainer-Stigler, S., Aerts, J. C. J. H., Surminski, S., & Williges, K. (2014). Managing unnatural disaster risk from climate extremes. *Nature Climate Change*, 4(4), 235–237. https://doi.org/10.1038/nclimate2137
- Meier, P., Bond, D., & Bond, J. (2007). Environmental influences on pastoral conflict in the Horn of Africa. *Political Geography*, 26(6), 716–735. https://doi.org/10.1016/J.POLGEO.2007.06.001
- Mello, A. J., Townsend, P. A., & Filardo, K. (2010). Reforestation and restoration at the Cloud Forest School in Monteverde, Costa Rica: Learning by doing. *Ecological Restoration*. https://doi.org/10.3368/er.28.2.148
- Meyer, S., Glaser, B., & Quicker, P. (2011). Technological, economical, and climate-related aspects of biochar production technologies: A literature review. *Environmental Science & Technology*, *45*, 9473-9483.
- Midmore, D. J., & Jansen, H. G. P. (2003). Supplying vegetables to Asian cities: is there a case for peri-urban production? *Food Policy*, *28*(1), 13–27. https://doi.org/10.1016/S0306-9192(02)00067-2
- Miteva, D. A., Loucks, C. J., & Pattanayak, S. K. (2015). Social and environmental impacts of forest management certification in Indonesia. *PLOS ONE*, *10*(7), e0129675. https://doi.org/10.1371/journal.pone.0129675
- Molotoks, A., Kuhnert, M., Dawson, T., & Smith, P. (2017). Global hotspots of conflict risk between food security and biodiversity conservation. *Land*, *6*(4), 67. https://doi.org/10.3390/land6040067
- Momsen, J. H. (2007). Gender and Biodiversity: A New Approach to Linking Environment and Development. *Geography Compass*, 1(2), 149–162. https://doi.org/10.1111/j.1749-8198.2007.00011.x

- Monteiro, Carlos A. (2009). Nutrition and health. The issue is not food, nor nutrients, so much as processing. *Public Health Nutrition*, *12*(5), 729–731. https://doi.org/10.1017/S1368980009005291
- Monteiro, Carlos Augusto, Levy, R. B., Claro, R. M., de Castro, I. R. R., & Cannon, G. (2011). Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. *Public Health Nutrition*, 14(01), 5–13. https://doi.org/10.1017/S1368980010003241
- Moore, D. J., Tilton, J. E., & Shields, D. J. (1996). Economic growth and the demand for construction materials. *Resources Policy*, 22(3), 197–205. https://doi.org/10.1016/S0301-4207(96)00037-2
- Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. *Proceedings of the National Academy of Sciences of the United States of America*, 104(50), 19680–19685. https://doi.org/10.1073/pnas.0701855104
- Msilimba, G. G. (2010). The socioeconomic and environmental effects of the 2003 landslides in the Rumphi and Ntcheu Districts (Malawi). *Natural Hazards*, *53*(2), 347–360. https://doi.org/10.1007/s11069-009-9437-5
- Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. *Nature*, 490(7419), 254–257. https://doi.org/10.1038/nature11420
- Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K.-H. H., ... Niggli, U. (2017). Strategies for feeding the world more sustainably with organic agriculture. *Nature Communications*, 8(1), 1290. https://doi.org/10.1038/s41467-017-01410-w
- Munang, R., Andrews, J., Alverson, K., & Mebratu, D. (2014). Harnessing ecosystem-based adaptation to address the social dimensions of climate change. *Environment: Science* and Policy for Sustainable Development, 56(1), 18–24. https://doi.org/10.1080/00139157.2014.861676
- Murdiyarso, D., Hergoualc'h, K., & Verchot, L. V. (2010). Opportunities for reducing greenhouse gas emissions in tropical peatlands. *Proceedings of the National Academy of Sciences of the United States of America*, 107(46), 19655–19660. https://doi.org/10.1073/pnas.0911966107
- Mustafa, D., Gioli, G., Qazi, S., Waraich, R., Rehman, A., & Zahoor, R. (2015). Gendering flood early warning systems: the case of Pakistan. *Environmental Hazards*, 14(4), 312–328. https://doi.org/10.1080/17477891.2015.1075859
- Musters, C. J. M. (2000). Ecology: Can protected areas be expanded in Africa? *Science*, 287(5459), 1759–1760. https://doi.org/10.1126/science.287.5459.1759
- Mwangi, E., Meinzen-Dick, R., & Sun, Y. (2011). Gender and sustainable forest management in East Africa and Latin America. *Ecology and Society*, *16*(1), art17. https://doi.org/10.5751/ES-03873-160117
- Nahman, A., & de Lange, W. (2013). Costs of food waste along the value chain: evidence from South Africa. *Waste Management*, *33*(11), 2493–2500. https://doi.org/10.1016/J.WASMAN.2013.07.012
- Nahman, A., de Lange, W., Oelofse, S., & Godfrey, L. (2012). The costs of household food waste in South Africa. *Waste Management*, *32*(11), 2147–2153. https://doi.org/10.1016/J.WASMAN.2012.04.012
- Nambiar, E. S., Harwood, C. E., & Kien, N. D. (2015). Acacia plantations in Vietnam: research and knowledge application to secure a sustainable future. *Southern Forests: A Journal of Forest Science*, 77(1), 1–10. https://doi.org/10.2989/20702620.2014.999301
- Nasi, R., Taber, A., & Van Vliet, N. (2011). Empty forests, empty stomachs? Bushmeat and

livelihoods in the Congo and Amazon Basins. *International Forestry Review*, *13*(3), 355–368. https://doi.org/10.1505/146554811798293872

- Nawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. *Agronomy for Sustainable Development*, *33*(2), 291–309. https://doi.org/10.1007/s13593-011-0071-8
- Neary, D. G., Ice, G. G., & Jackson, C. R. (2009). Linkages between forest soils and water quality and quantity. *Forest Ecology and Management*, *258*(10), 2269–2281. https://doi.org/10.1016/j.foreco.2009.05.027
- Neergheen-Bhujun, V., Awan, A. T., Baran, Y., Bunnefeld, N., Chan, K., Cruz, T. E. dela, ... Kagansky, A. (2017). Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. *Journal of Global Health*, 7(2), 1–5. https://doi.org/10.7189/jogh.07.020304
- Neff, R. A., Palmer, A. M., McKenzie, S. E., & Lawrence, R. S. (2009). Food systems and public health disparities. *Journal of Hunger & Environmental Nutrition*, 4(3–4), 282–314. https://doi.org/10.1080/19320240903337041
- Neilson, J. (2007). Institutions, the governance of quality and on-farm value retention for Indonesian specialty coffee. *Singapore Journal of Tropical Geography*, *28*(2), 188–204. https://doi.org/10.1111/j.1467-9493.2007.00290.x
- Nejad, A. N. (2013). Soil and water conservation for desertification control in Iran. In G. Heshmati & V. Squires (Eds.), *Combating Desertification in Asia, Africa and the Middle East: Proven practices* (pp. 377–400). https://doi.org/10.1007/978-94-007-6652-5 18
- Nemecek, T., Jungbluth, N., i Canals, L. M., & Schenck, R. (2016). Environmental impacts of food consumption and nutrition: where are we and what is next? *The International Journal of Life Cycle Assessment*, 21(5), 607–620. https://doi.org/10.1007/s11367-016-1071-3
- Nemet, G. F., Holloway, T., & Meier, P. (2010). Implications of incorporating air-quality cobenefits into climate change policymaking. *Environmental Research Letters*, 5(1), 014007. https://doi.org/10.1088/1748-9326/5/1/014007
- Newfarmer, R. S., Shaw, W., & Walkenhorst, P. (2009). *Breaking into new markets: emerging lessons for export diversification*. World Bank.
- Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. *Environmental Science & Technology*, 44(18), 7138–7144. https://doi.org/10.1021/es9039677
- Ngcoya, M., & Kumarakulasingam, N. (2017). The lived experience of food sovereignty: gender, indigenous crops and small-scale farming in Mtubatuba, South Africa. *Journal of Agrarian Change*, *17*(3), 480–496. https://doi.org/10.1111/joac.12170
- Nguyen, D. (2010). Evidence of the impacts of urban sprawl on social capital. *Environment* and Planning B: Planning and Design, 37(4), 610–627. https://doi.org/10.1068/b35120
- Nhem, S., Lee, Y.J. & Phin, S. (2018). The impact of forest resource decline: Analyzing forest-related income supplements to reduce income inequality and poverty of the Kouy indigenous people living in Kampong Thom province, Cambodia. *Journal of Sustainable Forestry*, 37, 97-119. DOI: <u>10.1080/10549811.2017.1369887</u>
- Nie, M., Zhang, X., Wang, J., Jiang, L., Yang, J., Quan, Z., ... Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. *Soil Biology and Biochemistry*, *41*(12), 2535–2542. https://doi.org/10.1016/J.SOILBIO.2009.09.012
- Niehof, A. (2004). The significance of diversification for rural livelihood systems. *Food Policy*, *29*(4), 321–338. https://doi.org/10.1016/j.foodpol.2004.07.009

- Nilsson, C., & Berggren, K. (2000). Alterations of riparian ecosystems caused by river regulation. *BioScience*, *50*(9), 783. https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2
- Nolan, R. H., Drew, D. M., O'Grady, A. P., Pinkard, E. A., Paul, K., Roxburgh, S. H., ... Ramp, D. (2018). Safeguarding reforestation efforts against changes in climate and disturbance regimes. *Forest Ecology and Management*, 424, 458–467. https://doi.org/10.1016/j.foreco.2018.05.025
- Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. *Environmental Pollution*, *193*, 119–129. https://doi.org/10.1016/j.envpol.2014.05.028
- O'Mara, F. (2012). The role of grasslands in food security and climate change. *Annals of Botany*, *110*(6), 1263–1270. https://doi.org/10.1093/aob/mcs209
- Obersteiner, M., Alexandrov, G., Benítez, P. C., McCallum, I., Kraxner, F., Riahi, K., ... Yamagata, Y. (2006). Global supply of biomass for energy and carbon sequestration from afforestation/reforestation activities. *Mitigation and Adaptation Strategies for Global Change*, 11(5–6), 1003–1021. https://doi.org/10.1007/s11027-006-9031-z
- Oehl, F., Laczko, E., Oberholzer, H.-R., Jansa, J., & Egli, S. (2017). Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. *Biology and Fertility of Soils*, *53*(7), 777–797. https://doi.org/10.1007/s00374-017-1217-x
- Oliver, C. D., Nassar, N. T., Lippke, B. R., & McCarter, J. B. (2014). Carbon, fossil fuel, and biodiversity mitigation with wood and forests. *Journal of Sustainable Forestry*, 33(3), 248–275. https://doi.org/10.1080/10549811.2013.839386
- Olschewski, R., Klein, A.-M., & Tscharntke, T. (2010). Economic trade-offs between carbon sequestration, timber production, and crop pollination in tropical forested landscapes. *Ecological Complexity*, 7(3), 314–319. https://doi.org/10.1016/j.ecocom.2010.01.002
- Orsini, F., Gasperi, D., Marchetti, L., Piovene, C., Draghetti, S., Ramazzotti, S., ... Gianquinto, G. (2014). Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: the potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. *Food Security*, 6(6), 781–792. https://doi.org/10.1007/s12571-014-0389-6
- Oya, C., Schaefer, F., & Skalidou, D. (2018) The effectiveness of agricultural certification in developing countries: A systematic review. *World Development*, 112, 282-312. https://doi.org/10.1016/j.worlddev.2018.08.001.
- Pagdee, A., Kim, Y., & Daugherty, P. J. (2006). What Makes Community Forest Management Successful: A Meta-Study From Community Forests Throughout the World. Society & Natural Resources, 19(1), 33–52. https://doi.org/10.1080/08941920500323260
- Panfil, S. N., & Harvey, C. A. (2016). REDD+ and Biodiversity Conservation: A Review of the Biodiversity Goals, Monitoring Methods, and Impacts of 80 REDD+ Projects. *Conservation Letters*, 9(2), 143–150. https://doi.org/10.1111/conl.12188
- Papadopoulos, A. I., & Seferlis, P. (2013). Automation for a sustainable food industry: computer aided analysis and control engineering methods. In *Robotics and Automation in the Food Industry* (pp. 441–485). https://doi.org/10.1533/9780857095763.2.441
- Papargyropoulou, E., Lozano, R., K. Steinberger, J., Wright, N., & Ujang, Z. bin. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. *Journal of Cleaner Production*, 76, 106–115. https://doi.org/10.1016/J.JCLEPRO.2014.04.020
- Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. *Philosophical Transactions of the Royal*

Society B: Biological Sciences, *365*(1554), 3065–3081. https://doi.org/10.1098/rstb.2010.0126

- Parizeau, K., von Massow, M., & Martin, R. (2015). Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. *Waste Management*, 35, 207–217. https://doi.org/10.1016/J.WASMAN.2014.09.019
- Park, C. M. Y., White, B., & Julia. (2015). We are not all the same: taking gender seriously in food sovereignty discourse. *Third World Quarterly*, *36*(3), 584–599. https://doi.org/10.1080/01436597.2015.1002988
- Parnell, S., Simon, D., & Vogel, C. (2007). Global environmental change: conceptualising the growing challenge for cities in poor countries. *Area*, 39(3), 357–369. https://doi.org/10.1111/j.1475-4762.2007.00760.x
- Parr, T. W., Sier, A. R. J., Battarbee, R. W., Mackay, A., & Burgess, J. (2003). Detecting environmental change: science and society—perspectives on long-term research and monitoring in the 21st century. *Science of The Total Environment*, 310(1–3), 1–8. https://doi.org/10.1016/S0048-9697(03)00257-2
- Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., ... Zipperer, W. C. (2011). Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. *Frontiers in Ecology and the Environment*, 9(1), 27–36. https://doi.org/10.1890/090220
- Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climatesmart soils. *Nature*, 532(7597), 49–57. https://doi.org/10.1038/nature17174
- Pawson, S. M., Brin, A., Brockerhoff, E. G., Lamb, D., Payn, T. W., Paquette, A., & Parrotta, J. A. (2013). Plantation forests, climate change and biodiversity. *Biodiversity and Conservation*, 22(5), 1203–1227. https://doi.org/10.1007/s10531-013-0458-8
- Peeters, A. (2009). Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. *Grassland Science*, 55(3), 113–125. https://doi.org/10.1111/j.1744-697X.2009.00154.x
- Pejchar, L., & Mooney, H. A. (2009). Invasive species, ecosystem services and human wellbeing. *Trends in Ecology & Evolution*, 24(9), 497–504. https://doi.org/10.1016/J.TREE.2009.03.016
- Pelletier, J., Horning, N., Laporte, N., Samndong, R. A., & Goetz, S. (2018). Anticipating social equity impacts in REDD+ policy design: an example from the Democratic Republic of Congo. *Land Use Policy*, 75, 102–115. https://doi.org/10.1016/J.LANDUSEPOL.2018.03.011
- Pender, J., Place, F., Ehui, S., & Institute., I. F. P. R. (2006). Strategies for sustainable land management in the East African highlands. Retrieved from http://outputs.worldagroforestry.org/cgi-bin/koha/opac-detail.pl?biblionumber=36475
- Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., ... Marbà, N. (2012). Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems. *PloS One*, 7(9), e43542.
- Pereira, L. S., Cordery, I., & Iacovides, I. (2002). Coping with water scarcity. In *Technical Documents in Hydrology* (Vol. 58). Paris: UNESCO.
- Perkins, K. S., Nimmo, J. R., & Medeiros, A. C. (2012). Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands. *Geophysical Research Letters*, 39(5), n/a-n/a. https://doi.org/10.1029/2012GL051120
- Persson, M. (2012). Conserve or convert? Pan-tropical modeling of REDD-bioenergy competition. *Biological Conservation*, 146(1), 81–88. https://doi.org/10.1016/j.biocon.2011.10.038
- Petersen, A. K., & Solberg, B. (2005). Environmental and economic impacts of substitution

between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. *Forest Policy and Economics*, 7(3), 249–259. https://doi.org/10.1016/S1389-9341(03)00063-7

- Phillips, C., & Marden, M. (2012). Reforestation schemes to manage regional landslide risk. In *Landslide Hazard and Risk* (pp. 517–547). https://doi.org/10.1002/9780470012659.ch18
- Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... Saffouri, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. *Science*, 267(5201), 1117–1123.
- Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., ... Cliff, B. (1997). Economic and environmental benefits of biodiversity. *BioScience*, 47(11), 747–757. https://doi.org/10.2307/1313097
- Pin Koh, L. (2007). Potential habitat and biodiversity losses from intensified biodiesel feedstock production. *Conservation Biology*, 21(5), 1373–1375. https://doi.org/10.1111/j.1523-1739.2007.00771.x
- Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S., & Saphores, J.-D. (2013). Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. *GeoJournal*, 78(3), 475–493. https://doi.org/10.1007/s10708-012-9446-x
- Pingali, P. L., & Rosegrant, M. W. (1995). Agricultural commercialization and diversification: processes and policies. *Food Policy*, 20(3), 171–185. https://doi.org/10.1016/0306-9192(95)00012-4
- Pinto, L.F.G & McDermott, C. (2013). Equity and forest certification A case study in Brazil. Forest Policy and Economics, 30, 23-29. https://doi.org/10.1016/j.forpol.2013.03.002.
- Plantureux, S., Peeters, A., & McCracken, D. (2005). Biodiversity in intensive grasslands. Effect of management, improvement and challenges. *Agronomy Research*, 3(2), 153– 164. Retrieved from https://agronomy.emu.ee/wpcontent/uploads/2005/02/p3203.pdf#abstract-1846
- Platteau, J.-P., De Bock, O., & Gelade, W. (2017). The demand for microinsurance: a literature review. *World Development*, *94*, 139–156. https://doi.org/10.1016/j.worlddev.2017.01.010
- Plieninger, T., Bieling, C., Fagerholm, N., Byg, A., Hartel, T., Hurley, P., ... Huntsinger, L. (2015). The role of cultural ecosystem services in landscape management and planning. *Current Opinion in Environmental Sustainability*, 14, 28–33. https://doi.org/10.1016/J.COSUST.2015.02.006
- Poe, M. R., McLain, R. J., Emery, M., & Hurley, P. T. (2013). Urban Forest Justice and the Rights to Wild Foods, Medicines, and Materials in the City. *Human Ecology*, 41(3), 409–422. https://doi.org/10.1007/s10745-013-9572-1
- Pokorny, B., Scholz, I., & de Jong, W. (2013). REDD+ for the poor or the poor for REDD+? About the limitations of environmental policies in the Amazon and the potential of achieving environmental goals through pro-poor policies. *Ecology and Society*, *18*(2), art3. https://doi.org/10.5751/ES-05458-180203
- Pons, P., Lambert, B., Rigolot, E., & Prodon, R. (2003). The effects of grassland management using fire on habitat occupancy and conservation of birds in a mosaic landscape. *Biodiversity and Conservation*, 12(9), 1843–1860. https://doi.org/10.1023/A:1024191814560
- Popkin, B. M. (2008). Will China's nutrition transition overwhelm its health care system and slow economic growth? *Health Affairs*, 27(4), 1064–1076. https://doi.org/10.1377/hlthaff.27.4.1064

- Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., ... Van Vuuren, D. P. (2017). Land-use futures in the shared socio-economic pathways. *Global Environmental Change*, 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002
- Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., ... Edenhofer, O. (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. *Environmental Research Letters*, 6(3), 034017. https://doi.org/10.1088/1748-9326/6/3/034017
- Popp, A., Lotze-Campen, H., & Bodirsky, B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. *Global Environmental Change*, 20(3), 451–462.
- Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer, N., & Bodirsky, B. (2011). On sustainability of bioenergy production: integrating co-emissions from agricultural intensification. *Biomass and Bioenergy*, 35(12), 4770–4780. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.06.014
- Popp, D. (2006). International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany. *Journal of Environmental Economics and Management*, 51(1), 46–71. https://doi.org/10.1016/J.JEEM.2005.04.006
- Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., ... Travasso, M. I. (2014). Food security and food production systems. In *Climate Change* 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1111/j.1728-4457.2009.00312.x
- Pothukuchi, K., & Kaufman, J. L. (1999). Placing the food system on the urban agenda: the role of municipal institutions in food systems planning. *Agriculture and Human Values*, *16*(2), 213–224. https://doi.org/10.1023/A:1007558805953
- Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. *Trends in Ecology & Evolution*, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
- Powell, J. (1999). Race, poverty, and urban sprawl: access to opportunities through regional strategies. *Forum for Social Economics*, 28(2), 1–20. https://doi.org/10.1007/BF02833980
- Powers, R. P., & Jetz, W. (2019). Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. *Nature Climate Change*, 9(4), 323–329. https://doi.org/10.1038/s41558-019-0406-z
- Pretty, J.A. (2003). Social capital and the collective management of resources. *Science*, *302*(5652), 1912–1914. https://doi.org/10.1126/science.1090847
- Pretty, J.A., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., ... Pierzynski, G. (2018). Global assessment of agricultural system redesign for sustainable intensification. *Nature Sustainability*, 1(8), 441. https://doi.org/10.1038/s41893-018-0114-0
- Pretty, J. N., Morison, J. I. L., & Hine, R. E. (2003). Reducing food poverty by increasing agricultural sustainability in developing countries. *Agriculture, Ecosystems & Environment*, 95(1), 217–234. https://doi.org/10.1016/S0167-8809(02)00087-7
- Priess, J. A., Mimler, M., Klein, A.-M., Schwarze, S., Tscharntke, T., & Steffan-Dewenter, I. (2007). Linking deforestation scenarios to pollination services and economic returns in coffee agroforestry systems. *Ecological Applications*, 17(2), 407–417. https://doi.org/10.1890/05-1795

- Prochnow, A., Heiermann, M., Plöchl, M., Amon, T., & Hobbs, P. J. (2009). Bioenergy from permanent grassland a review: 2. combustion. *Bioresource Technology*, *100*(21), 4945–4954. https://doi.org/10.1016/J.BIORTECH.2009.05.069
- Putz, F. E., Zuidema, P. A., Synnott, T., Peña-Claros, M., Pinard, M. A., Sheil, D., ... Zagt, R. (2012). Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. *Conservation Letters*, 5(4), 296–303. https://doi.org/10.1111/j.1755-263X.2012.00242.x
- Qadir, M., Noble, A. D., & Chartres, C. (2013). Adapting to climate change by improving water productivity of soils in dry areas. *Land Degradation & Development*, 24(1), 12– 21. https://doi.org/10.1002/ldr.1091
- Quansah, C., Drechsel, P., Yirenkyi, B. B. B., & Asante-Mensah, S. (2001). Farmers' perceptions and management of soil organic matter A case study from West Africa. *Nutrient Cycling in Agroecosystems*, *61*(1/2), 205–213. https://doi.org/10.1007/978-94-017-2172-1_19
- Rahaman, M. M., & Varis, O. (2005). Integrated water resources management: evolution, prospects and future challenges. *Sustainability: Science, Practice and Policy*, 1(1), 15–21. https://doi.org/10.1080/15487733.2005.11907961
- Rahman, S. (2009). Whether crop diversification is a desired strategy for agricultural growth in Bangladesh? *Food Policy*, *34*(4), 340–349. https://doi.org/10.1016/J.FOODPOL.2009.02.004
- Rahman, S. (2010). Women's labour contribution to productivity and efficiency in agriculture: empirical evidence from Bangladesh. *Journal of Agricultural Economics*, 61(2), 318–342. https://doi.org/10.1111/j.1477-9552.2010.00243.x
- Rajora, O. ., & Mosseler, A. (2001). Challenges and opportunities for conservation of forest genetic resources. *Euphytica*, 118, 197–212. https://doi.org/10.1023/A:1004150525384
- Rakodi, C, & Lloyd-Jones, T. (2002). Urban livelihoods: a people-centred approach to poverty reduction. https://doi.org/10.4324/9781849773805
- Rakodi, Carole. (1999). A capital assets framework for analysing household livelihood strategies: implications for policy. *Development Policy Review*, *17*(3), 315–342. https://doi.org/10.1111/1467-7679.00090
- Raleigh, C., Choi, H. J., & Kniveton, D. (2015). The devil is in the details: An investigation of the relationships between conflict, food price and climate across Africa. *Global Environmental Change*, *32*, 187–199. https://doi.org/10.1016/j.gloenvcha.2015.03.005
- Rametsteiner, E., & Simula, M. (2003). Forest certification—an instrument to promote sustainable forest management? *Journal of Environmental Management*, 67(1), 87–98. https://doi.org/10.1016/S0301-4797(02)00191-3
- Rao, M. R., Nair, P. K. R., & Ong, C. K. (1997). Biophysical interactions in tropical agroforestry systems. *Agroforestry Systems*, 38(1/3), 3–50. https://doi.org/10.1023/A:1005971525590
- Rao, M. R., Palada, M. C., & Becker, B. N. (2014). Medicinal and aromatic plants in agroforestry systems. *Agroforestry Systems*, *61*(1–3), 107–122. https://doi.org/10.1023/B:AGFO.0000028993.83007.4b
- Rao, M. R., Singh, M. P., & Day, R. (2000). Insect pest problems in tropical agroforestry systems: Contributory factors and strategies for management. *Agroforestry Systems*, 50. https://doi.org/10.1023/A:1006421701772
- Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. *Environmental Development*, 18, 14–25. https://doi.org/10.1016/J.ENVDEV.2015.12.001
- Rau, G. H., & Caldeira, K. (1999). Enhanced carbonate dissolution: a means of sequestering

waste CO2 as ocean bicarbonate. *Energy Conversion and Management*, 40(17), 1803–1813. https://doi.org/10.1016/S0196-8904(99)00071-0

- Reardon, T., Taylor, J. E., Stamoulis, K., Lanjouw, P., & Balisacan, A. (2008). Effects of non-farm employment on rural income inequality in developing countries: an investment perspective. *Journal of Agricultural Economics*, 51(2), 266–288. https://doi.org/10.1111/j.1477-9552.2000.tb01228.x
- Reaser, J., Meyerson, L., Cronk, Q., De Poorter, M., Eledrege, L. G., Gree, E., ... Vaiutu, L. (2007). Ecological and socioeconomic impacts of invasive alien species in island ecosystems. *Environmental Conservation*, 34(2), 98–111. https://doi.org/10.1017/S0376892907003815
- Regmi, A., & Meade, B. (2013). Demand side drivers of global food security. *Global Food Security*, 2(3), 166–171. https://doi.org/10.1016/j.gfs.2013.08.001
- Reidsma, P., Ewert, F., Lansink, A. O., & Leemans, R. (2010). Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. *European Journal of Agronomy*, 32(1), 91–102. https://doi.org/10.1016/j.eja.2009.06.003
- Reilly, J., Melillo, J., Cai, Y., Kicklighter, D., Gurgel, A., Paltsev, S., ... Schlosser, A. (2012). Using land to mitigate climate change: hitting the target, recognizing the tradeoffs. *Environmental Science & Technology*, 46(11), 5672–5679. https://doi.org/10.1021/es2034729
- Rengasamy, P. (2006). World salinization with emphasis on Australia. *Journal of Experimental Botany*, 57(5), 1017–1023. https://doi.org/10.1093/jxb/erj108
- Reyes-García, V., Fernández-Llamazares, Á., McElwee, P., Molnár, Z., Öllerer, K., Wilson, S. J., & Brondizio, E. S. (2019). The contributions of Indigenous Peoples and local communities to ecological restoration. *Restoration Ecology*, 27(1), 3–8. https://doi.org/10.1111/rec.12894
- Ricci, L. (2012). Peri-urban livelihood and adaptive capacity: urban development in Dar Es Salaam. *Consilience: The Journal of Sustainable Development*, 7(1), 46–63. https://doi.org/10.7916/D8668DM1
- Richardson, D. M., & Wilgen, B. W. Van. (2004). Invasive alien plants in South Africa: how well do we understand the ecological impacts? *South African Journal of Science*, 100(1–2), 45–52. Retrieved from https://journals.co.za/content/sajsci/100/1-2/EJC96214
- Rigg, J. (2006). Land, farming, livelihoods, and poverty: rethinking the links in the Rural South. *World Development*, 34(1), 180–202. https://doi.org/10.1016/j.worlddev.2005.07.015
- Ringler, C., & Lawford, R. (2013). The nexus across Water, Energy, Land and Food (WELF): potential for improved resource use efficiency? *Current Opinion in Environmental Sustainability*, 5(6), 617–624. https://doi.org/10.1016/J.COSUST.2013.11.002
- Rocha, C. (2016). *Belo horizonte: the opportunities and challenges of urban food security policy*. Retrieved from http://fondazionefeltrinelli.it/app/uploads/2016/05/The-Governance-of-City-Food-Systems_The-Cases-Study-from-Around-The-World.pdf#page=29
- Rocheleau, D. E. (1995). Gender and biodiversity: a feminist political ecology perspective. *IDS Bulletin*, *26*(1), 9–16. https://doi.org/10.1111/j.1759-5436.1995.mp26001002.x
- Rockström, J., & Falkenmark, M. (2015). Agriculture: increase water harvesting in Africa. *Nature*, *519*(7543), 283–285. https://doi.org/10.1038/519283a
- Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global food production: the potential of green water for increasing

resilience to global change. Water Resources Research, 45(7).

https://doi.org/10.1029/2007WR006767@10.1002/(ISSN)1944-7973.LANDUSE1

- Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., ... Lawrence, D. (2019). Contribution of the land sector to a 1.5 °C world. *Nature Climate Change*. https://doi.org/10.1038/s41558-019-0591-9
- Rogers, D., & Tsirkunov, V. (2011). Costs and benefits of early warning systems. Retrieved from

https://www.preventionweb.net/english/hyogo/gar/2011/en/bgdocs/Rogers_&_Tsirkuno $v_2011.pdf$

- Romero, H., & Ordenes, F. (2004). Emerging urbanization in the Southern Andes. *Mountain Research and Development*, 24(3), 197–201. https://doi.org/10.1659/0276-4741(2004)024[0197:EUITSA]2.0.CO;2
- Röös, E., Bajželj, B., Smith, P., Patel, M., Little, D., & Garnett, T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. *Global Environmental Change*, 47, 1–12. https://doi.org/10.1016/J.GLOENVCHA.2017.09.001
- Ros-Tonen, M. A. F., van Andel, T., Morsello, C., Otsuki, K., Rosendo, S., & Scholz, I. (2008). Forest-related partnerships in Brazilian Amazonia: there is more to sustainable forest management than reduced impact logging. *Forest Ecology and Management*, 256(7), 1482–1497. https://doi.org/10.1016/J.FORECO.2008.02.044
- Rosegrant, M. W., & Cline, S. A. (2003). Global food security: Challenges and policies. *Science*, Vol. 302, pp. 1917–1919. https://doi.org/10.1126/science.1092958
- Rosegrant, M. W., Leach, N., & Gerpacio, R. V. (1999). Alternative futures for world cereal and meat consumption. *Proceedings of the Nutrition Society*, *58*(02), 219–234. https://doi.org/10.1017/S0029665199000312
- Ross, K., Zereyesus, Y., Shanoyan, A., & Amanor-Boadu, V. (2015). The health effects of women empowerment: recent evidence from Northern Ghana. *International Food and Agribusiness Management Review*, *18*(1), 127–144. Retrieved from https://www.ifama.org/resources/Documents/v18i1/Ross-Zereyesus-Shanoyan-Boadu.pdf
- Rothausen, S. G. S. A., & Conway, D. (2011). Greenhouse-gas emissions from energy use in the water sector. *Nature Climate Change*, *1*(4), 210–219. https://doi.org/10.1038/nclimate1147
- Rowland, D., Ickowitz, A., Powell, B., Nasi, R., & Sunderland, T. (2017). Forest foods and healthy diets: Quantifying the contributions. *Environmental Conservation*, 44(02), 102– 114. https://doi.org/10.1017/S0376892916000151
- Roy, J., Tschakert, P., Waisman, H., Halim, S., Antwi-Agyei, P., Dasgupta, P., ... Rodriguez, A. (2018). Sustainable development, poverty eradication and reducing inequalities. In *Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change.* Retrieved from http://www.ipcc.ch/report/sr15/
- Rueda, X., Thomas, N. E., & Lambin, E. F. (2015). Eco-certification and coffee cultivation enhance tree cover and forest connectivity in the Colombian coffee landscapes. *Regional Environmental Change*, *15*(1), 25–33. https://doi.org/10.1007/s10113-014-0607-y
- Rueff, H., Parizot, C., Israel, A. Ben, & Schwartz, M. (2008). Dryland afforestation and poverty alleviation: Bedouin and Palestinian non-timber forest product collectors in contrasting economic environments. *Human Ecology*, *36*(6), 923–930. https://doi.org/10.1007/s10745-008-9202-5

Rugumamu, C. (2009). Assessment of post-harvest technologies and gender relations in

maize loss reduction in Pangawe Village eastern Tanzania. *Tanzania Journal of Science*, 35(1), 67–76. Retrieved from https://www.ajol.info/index.php/tjs/article/view/73533

- Saeed, A.-R., McDermott, C., & Boyd, E. (2017). Are REDD+ community forest projects following the principles for collective action, as proposed by Ostrom? *International Journal of the Commons*, 11(1), 572–596. http://doi.org/10.18352/ijc.700
- Salvati, L., Sabbi, A., Smiraglia, D., & Zitti, M. (2014). Does forest expansion mitigate the risk of desertification? Exploring soil degradation and land-use changes in a Mediterranean country. *International Forestry Review*, 16(4), 485–496. https://doi.org/10.1505/146554814813484149
- Sans, P., & Combris, P. (2015). World meat consumption patterns: An overview of the last fifty years (1961–2011). *Meat Science*, 109, 106–111. https://doi.org/10.1016/j.meatsci.2015.05.012
- Santilli, J. (2012). Agrobiodiversity and the law: regulating genetic resources, food security and cultural diversity. New York: Earthscan.
- Sardiñas, H. S., & Kremen, C. (2015). Pollination services from field-scale agricultural diversification may be context-dependent. *Agriculture, Ecosystems & Environment, 207*, 17–25. https://doi.org/10.1016/J.AGEE.2015.03.020
- Sathre, R., & Gustavsson, L. (2006). Energy and carbon balances of wood cascade chains. *Resources, Conservation and Recycling*, 47(4), 332–355. https://doi.org/10.1016/j.resconrec.2005.12.008
- Sartori, R.A., Martins, G, Zau, A., & Brasil, L. (2019) Urban afforestation and favela: A study in a community of Rio de Janeiro, Brazil. *Urban Forestry & Urban Greening*, 40, 84-92.
- Saviozzi, A., Levi-Minzi, R., Cardelli, R., & Riffaldi, R. (2001). A comparison of soil quality in adjacent cultivated, forest and native grassland soils. *Plant and Soil*, 233(2), 251–259. https://doi.org/10.1023/A:1010526209076
- Scalenghe, R., & Marsan, F. A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1–2), 1–10. https://doi.org/10.1016/J.LANDURBPLAN.2008.10.011
- Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. *Water Resources Research*, 43(3). https://doi.org/10.1029/2006WR005486
- Scheba, A. (2018). Market-based conservation for better livelihoods? The promises and fallacies of REDD+ in Tanzania. *Land*, 7(4), 119. https://doi.org/10.3390/land7040119
- Schelhas, J., Hitchner, S., Gaither, C.J., Fraser, R., Jennings, V., & Diop, A. (2017) Engaging African American landowners in sustainable forest management. *Journal of Forestry*, 115, 26–33, https://doi.org/10.5849/jof.15-116
- Scherr, S. J. (2000). A downward spiral? Research evidence on the relationship between poverty and natural resource degradation. *Food Policy*, *25*(4), 479–498. https://doi.org/10.1016/S0306-9192(00)00022-1
- Schindler, D. W., Kasian, S. E. M., & Hesslein, R. H. (1989). Biological impoverishment in lakes of the midwestern and northeastern United States from acid rain. *Environmental Science & Technology*, 23(5), 573–580. https://doi.org/10.1021/es00063a010
- Schmitz, O. J., Raymond, P. A., Estes, J. A., Kurz, W. A., Holtgrieve, G. W., Ritchie, M. E., ... Bradford, M. A. (2014). Animating the carbon cycle. *Ecosystems*, 17(2), 344–359. https://doi.org/10.1007/s10021-013-9715-7
- Schmitz, O. J., Wilmers, C. C., Leroux, S. J., Doughty, C. E., Atwood, T. B., Galetti, M., ... Goetz, S. J. (2018). Animals and the zoogeochemistry of the carbon cycle. *Science*, 362(6419), eaar3213. https://doi.org/10.1126/SCIENCE.AAR3213

- Schneider, K., & Gugerty, P. M. K. (2011). Agricultural productivity and poverty reduction: linkages and pathways. *Libraries Test Journal*, 1(1), 56–74. https://doi.org/10.7152/12259
- Schneider, S., & Niederle, P. A. (2010). Resistance strategies and diversification of rural livelihoods: the construction of autonomy among Brazilian family farmers. *The Journal* of *Peasant Studies*, 37(2), 379–405. https://doi.org/10.1080/03066151003595168
- Schuiling, R. D., & Krijgsman, P. (2006). Enhanced weathering: an effective and cheap tool to sequester CO2. *Climatic Change*, 74(1–3), 349–354. https://doi.org/10.1007/s10584-005-3485-y
- Schulte, R., Creamer, R.E., Donnellan, T., Farrelly, N., Fealy, R., O'Donoghue, C., & O'hUallachain, R. (2014) Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. *Environmental Science & Policy*, 38, 45-58. https://doi.org/10.1016/j.envsci.2013.10.002.
- Schultz, L., & Lundholm, C. (2010). Learning for resilience? Exploring learning opportunities in biosphere reserves. *Environmental Education Research*, 16(5–6), 645– 663. https://doi.org/10.1080/13504622.2010.505442
- Scott, A. (2017). Making governance work for water energy food nexus approaches. *CKDN Working Paper*, (June). Retrieved from https://www.africaportal.org/publications/making-governance-work-waterenergyfoodnexus-approaches/
- Scott, D. F., Bruijnzeel, L. A., & Mackensen, J. (2005). The hydrological and soil impacts of forestation in the tropics. In M. Bonel & L. A. Bruijnzeel (Eds.), *Forests, Water and People in the Humid Tropics* (pp. 622–651). Cambridge University Press.
- Secretariat of the Convention on Biological Diversity. (2008). *Protected areas in today's world: their values and benefits for the welfare of the planet*. Montreal: CBD.
- Seddon, N., Hou-Jones, X., Pye, T., Reid, H., Roe, D., Mountain, D., & Rizvi, A. R. (2016). *Ecosystem-based Adaptation: a win-win formula for sustainability in a warming world?* Retrieved from http://pubs.iied.org/17364IIED
- Seidl, R., Schelhaas, M. J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. *Nature Climate Change*, 4(9), 806–810. https://doi.org/10.1038/nclimate2318
- Selig, E. R., Turner, W. R., Troëng, S., Wallace, B. P., Halpern, B. S., Kaschner, K., ... Mittermeier, R. A. (2014). Global priorities for marine biodiversity conservation. *PLoS* ONE, 9(1), e82898. https://doi.org/10.1371/journal.pone.0082898
- Senaratna Sellamuttu, S., de Silva, S., & Nguyen-Khoa, S. (2011). Exploring relationships between conservation and poverty reduction in wetland ecosystems: lessons from 10 integrated wetland conservation and poverty reduction initiatives. *International Journal* of Sustainable Development & World Ecology, 18(4), 328–340. https://doi.org/10.1080/13504509.2011.560034
- Sheahan, M., & Barrett, C. B. (2017). Review: Food loss and waste in Sub-Saharan Africa. *Food Policy*, 70, 1–12. https://doi.org/10.1016/j.foodpol.2017.03.012
- Shreve, C.M., & Kelman, I. (2014). Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction. *International Journal of Disaster Risk Reduction*, 10, 213-235. https://doi.org/10.1016/j.ijdrr.2014.08.004.
- Shiferaw, B., & Holden, S. (1999). Soil erosion and smallholders' conservation decisions in the highlands of Ethiopia. *World Development*, 27(4), 739–752. https://doi.org/10.1016/S0305-750X(98)00159-4
- Shindell, D., Kuylenstierna, J., Vignati, E., Van Dingenen, R., Amann, M., Klimont, Z., ...

Schwartz, J. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. *Science*, *335*(6065), 183–189. https://doi.org/10.1126/science.1210026

- Shively, G., & Thapa, G. (2016). Markets, transportation infrastructure, and food prices in Nepal. American Journal of Agricultural Economics, 99(3), aaw086. https://doi.org/10.1093/ajae/aaw086
- Shrestha, S., Shrestha, U. B., & Bawa, K. S. (2017). Contribution of REDD+ payments to the economy of rural households in Nepal. *Applied Geography*, *88*, 151–160. https://doi.org/10.1016/J.APGEOG.2017.09.001
- Sikkema, R., Junginger, M., Van Dam, J., Stegeman, G., Durrant, D., Faaij, A., ... Faaij, A. (2014). Legal harvesting, sustainable sourcing and cascaded use of wood for bioenergy: their coverage through existing certification frameworks for sustainable forest management. *Forests*, 5(9), 2163–2211. https://doi.org/10.3390/f5092163
- Simberloff, D. (2005). Non-native species DO threaten the natural environment! *Journal of Agricultural and Environmental Ethics*, *18*(6), 595–607. https://doi.org/10.1007/s10806-005-2851-0
- Sims, K. (2010) Conservation and development: Evidence from Thai protected areas. *Journal* of Environmental Economics and Management, 60, 94-114. https://doi.org/10.1016/j.jeem.2010.05.003
- Sinha, E., Michalak, A. M., Calvin, K. V., & Lawrence, P. J. (2019). Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. *Nature Communications*, *10*(1), 939. https://doi.org/10.1038/s41467-019-08884-w
- Sirdey, N. & Lallau, B. (2020) How do producer organisations enhance farmers' empowerment in the context of fair trade certification? *Oxford Development Studies*, DOI: 10.1080/13600818.2020.1725962
- Smit, J., & Nasr, J. (1992). Urban agriculture for sustainable cities: using wastes and idle land and water bodies as resources. *Environment and Urbanization*, 4(2), 141–152. https://doi.org/10.1177/095624789200400214
- Smit, W. (2016). Urban governance and urban food systems in Africa: examining the linkages. *Cities*, *58*, 80–86. https://doi.org/doi.org/10.1016/j.cities.2016.05.001
- Smith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., & Glover, J. (2017). Measuring sustainable intensification in smallholder agroecosystems: A review. *Global Food Security*, 12, 127–138. https://doi.org/10.1016/j.gfs.2016.11.002
- Smith, B. G. (2008). Developing sustainable food supply chains. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1492), 849–861. https://doi.org/10.1098/rstb.2007.2187
- Smith, D. W. (1998). Urban food systems and the poor in developing countries. *Transactions of the Institute of British Geographers*, 23(2), 207–219. https://doi.org/10.1111/j.0020-2754.1998.00207.x
- Smith, M.R., Singh, G.M., Mozaffarian, D., & Myers, S.M. (2015). Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. *Lancet*, 386, 1964–72. http://dx.doi.org/10.1016/ S0140-6736(15)61085-6
- Smith, N. M. (2014). Gender and livelihood diversification: Maasai women's market activities in northern Tanzania. *The Journal of Development Studies*, 1–14. https://doi.org/10.1080/00220388.2014.957278
- Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. *Global Change Biology*, *22*(3), 1315–1324. https://doi.org/10.1111/gcb.13178
- Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., ... Arneth, A. (2020). Which practices co-deliver food security, climate change mitigation and

adaptation, and combat land-degradation and desertification? *Global Change Biology*, *26*, 1532-1575. https://doi.org/10.1111/gcb.14878

- Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Bustamante, M., ... Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, ... J. C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from http://pure.iiasa.ac.at/11115/
- Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., ... Bustamante, M. (2015). *Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils*. 1, 665–685. https://doi.org/10.5194/soil-1-665-2015
- Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., ... Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. *Nature Climate Change*, 6, 42–50. https://doi.org/10.1038/NCLIMATE2870
- Smith, P., & Gregory, P. J. (2013). Climate change and sustainable food production. Proceedings of the Nutrition Society, 72(01), 21–28. https://doi.org/10.1017/S0029665112002832
- Smith, P., Haberl, H., Popp, A., Erb, K. H., Lauk, C., Harper, R., ... Rose, S. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? *Global Change Biology*, 19(8), 2285–2302. https://doi.org/10.1111/gcb.12160
- Smith, P., Haszeldine, R. S., & Smith, S. M. (2016). Preliminary assessment of the potential for, and limitations to, terrestrial negative emission technologies in the UK. *Environ. Sci.: Processes Impacts*, 18, 1400–1405. https://doi.org/10.1039/C6EM00386A
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., ... Smith, J. (2008). Greenhouse gas mitigation in agriculture. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184
- Smith, V. H., & Goodwin, B. K. (1996). Crop insurance, moral hazard, and agricultural chemical use. *American Journal of Agricultural Economics*, 78(2), 428. https://doi.org/10.2307/1243714
- Smyth, C. G., & Royle, S. A. (2000). Urban landslide hazards: incidence and causative factors in Niterói, Rio de Janeiro State, Brazil. *Applied Geography*, 20(2), 95–118. https://doi.org/10.1016/S0143-6228(00)00004-7
- Soane, B. D., & Van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. Developments in Agricultural Engineering, 11, 1–21. https://doi.org/10.1016/B978-0-444-88286-8.50009-X
- Soane, B. D., & Van Ouwerkerk, C. (1995). Implications of soil compaction in crop production for the quality of the environment. *Soil and Tillage Research*, 35(1–2), 5–22. https://doi.org/10.1016/0167-1987(95)00475-8
- Soga, M., Cox, D., Yamaura, Y., Gaston, K., Kurisu, K., & Hanaki, K. (2017). Health Benefits of Urban Allotment Gardening: Improved Physical and Psychological Well-Being and Social Integration. *International Journal of Environmental Research and Public Health*, 14(1), 71. https://doi.org/10.3390/ijerph14010071
- Sohi, S. (2012). Carbon storage with benefits. *Science*, *338*(6110), 1034–1035. https://doi.org/10.1126/science.1227620
- Sparrevik, M., Field, J.L., Martinsen, V., Breedveld, G.D., & Cornelissen, G. (2012). Life cycle assessment to evaluation the environmental impact of biochar implementation in

conservation agriculture in Zambia. *Environmental Science and Technology*, 47, 1206-1215. https://pubs.acs.org/doi/pdf/10.1021/es302720k

- Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., ... Nichols, K. A. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. *Journal of Environment Quality*, 41(4), 973. https://doi.org/10.2134/jeq2011.0069
- Springmann, M., Mason-D'Croz, D., Robinson, S., Garnett, T., Godfray, H. C. J., Gollin, D., ... Scarborough, P. (2016). Global and regional health effects of future food production under climate change: a modelling study. *The Lancet*, 387(10031), 1937–1946. https://doi.org/10.1016/S0140-6736(15)01156-3
- SSSA. (2015). Soils and products we use. In *Soils Overview*. Retrieved from https://www.soils.org/files/sssa/iys/october-soils-overview.pdf
- Stanturf, J. A., Palik, B. J., Williams, M. I., Dumroese, R. K., & Madsen, P. (2014). Forest restoration paradigms. *Journal of Sustainable Forestry*, 33(sup1), S161–S194. https://doi.org/10.1080/10549811.2014.884004
- Stathers, T., Lamboll, R., & Mvumi, B. M. (2013). Postharvest agriculture in changing climates: its importance to African smallholder farmers. *Food Security*, 5(3), 361–392. https://doi.org/10.1007/s12571-013-0262-z
- Stefan, V., van Herpen, E., Tudoran, A. A., & Lähteenmäki, L. (2013). Avoiding food waste by Romanian consumers: the importance of planning and shopping routines. *Food Quality and Preference*, 28(1), 375–381. https://doi.org/10.1016/J.FOODQUAL.2012.11.001
- Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G. J., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. *Climatic Change*, 95(1–2), 83–102. https://doi.org/10.1007/s10584-008-9534-6
- Steinitz, O., Robledo-Arnuncio, J. J., & Nathan, R. (2012). Effects of forest plantations on the genetic composition of conspecific native Aleppo pine populations. *Molecular Ecology*, 21(2), 300–313. https://doi.org/10.1111/j.1365-294X.2011.05394.x
- Sterling, S. M., Ducharne, A., & Polcher, J. (2013). The impact of global land-cover change on the terrestrial water cycle. *Nature Climate Change*, 3(4), 385–390. https://doi.org/Doi 10.1038/Nclimate1690
- Steward, A. (2007). Nobody farms here anymore: livelihood diversification in the Amazonian community of Carvão, a historical perspective. *Agriculture and Human Values*, *24*(1), 75–92. https://doi.org/10.1007/s10460-006-9032-2
- Stigter, C., Sivakumar, M. V., & Rijks, D. (2000). Agrometeorology in the 21st century: workshop summary and recommendations on needs and perspectives. *Agricultural and Forest Meteorology*, 103(1–2), 209–227. https://doi.org/10.1016/S0168-1923(00)00113-1
- Stoll-Kleemann, S., & O'Riordan, T. (2015). The sustainability challenges of our meat and dairy diets. *Environment: Science and Policy for Sustainable Development*, 57(3), 34– 48. https://doi.org/10.1080/00139157.2015.1025644
- Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? *Environmental Health Perspectives*, 118(10), 1425–1428. https://doi.org/10.1289/ehp.0901879
- Stoy, P. C., Ahmed, S., Jarchow, M., Rashford, B., Swanson, D., Albeke, S., ... Poulter, B. (2018). Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. *BioScience*, 68(2), 100–111. https://doi.org/10.1093/biosci/bix145

Strassburg, B. B. N., Latawiec, A. E., Barioni, L. G., Nobre, C. A., Da Silva, V. P., Valentim,

J. F., ... Assad, E. D. (2014). When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. *Global Environmental Change*, *28*, 84–97.

- https://doi.org/10.1016/J.GLOENVCHA.2014.06.001
- Suckall, N., Stringer, L. C., & Tompkins, E. L. (2015). Presenting triple-wins? Assessing projects that deliver adaptation, mitigation and development co-benefits in rural sub-Saharan Africa. *Ambio*, 44(1), 34–41. https://doi.org/10.1007/s13280-014-0520-0
- Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., ... Schwartz, K. Z. S. (2015). Committing to ecological restoration. *Science*, 348(6235), 638 LP – 640. https://doi.org/10.1126/science.aaa4216
- Sukhontapatipak, C., & Srikosamatara, S. (2012). The role of field exercises in ecological learning and values education: action research on the use of campus wetlands. *Journal of Biological Education*, *46*(1), 36–44. https://doi.org/10.1080/00219266.2011.554574
- Sunderlin, W., Ekaputri, A. D., Sills, E. O., Duchelle, A. E., Kweka, D., Diprose, R., ... Toniolo, A. (2014). The challenge of establishing REDD+ on the ground: Insights from 23 subnational initiatives in six countries. In *The challenge of establishing REDD+ on the ground: Insights from 23 subnational initiatives in six countries*. https://doi.org/10.17528/cifor/004491
- Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Bahl, K. B., Cellier, P., ... Reis, S. (2007). Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. *Environmental Pollution*, 150(1), 125–139. https://doi.org/10.1016/J.ENVPOL.2007.04.014
- Swanson, B. E. (2006). Extension strategies for poverty alleviation: lessons from China and India. *The Journal of Agricultural Education and Extension*, 12(4), 285–299. https://doi.org/10.1080/13892240601062488
- Swanton, C. J., Murphy, S. D., Hume, D. J., & Clements, D. (1996). Recent improvements in the energy efficiency of agriculture: case studies from Ontario, Canada. *Agricultural Systems*, 52, 399–418.
- Swisher, J. N. (1994). Forestry and biomass energy projects: bottom-up comparisons of CO2 storage and costs. *Biomass and Bioenergy*, *6*(5), 359–368. https://doi.org/10.1016/0961-9534(94)00061-W
- Tacconi, L. (2016). Preventing fires and haze in Southeast Asia. *Nature Climate Change*, 6(7), 640–643. https://doi.org/10.1038/nclimate3008
- Tao, Y., Li, F., Liu, X., Zhao, D., Sun, X., & Xu, L. (2015). Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. *Ecological Modelling*, 318, 210–216. https://doi.org/10.1016/j.ecolmodel.2015.04.027
- Tatebe, J. & Mutch, C. (2015) Perspectives on education, children and young people in disaster risk reduction. *International Journal of Disaster Risk Reduction*, 14, 108-114, https://doi.org/10.1016/j.ijdrr.2015.06.011.
- Tayleur, C., Balmford, A., Buchanan, G. M., Butchart, S. H. M., Ducharme, H., Green, R. E., ... Phalan, B. (2018). Global coverage of agricultural sustainability standards, and their role in conserving biodiversity. *Conservation Letters*, 10(5), 610–618. https://doi.org/10.1111/conl.12314
- Tefera, T. (2012). Post-harvest losses in African maize in the face of increasing food shortage. *Food Security*, 4(2), 267–277. https://doi.org/10.1007/s12571-012-0182-3
- Temba, B. A., Sultanbawa, Y., Kriticos, D. J., Fox, G. P., Harvey, J. J. W., & Fletcher, M. T. (2016). Tools for defusing a major global food and feed safety risk: nonbiological postharvest procedures to decontaminate mycotoxins in foods and feeds. *Journal of*

Agricultural and Food Chemistry, 64(47), 8959–8972. https://doi.org/10.1021/acs.jafc.6b03777

- Tengberg, A., Fredholm, S., Eliasson, I., Knez, I., Saltzman, K., & Wetterberg, O. (2012). Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. *Ecosystem Services*, 2, 14–26. https://doi.org/10.1016/J.ECOSER.2012.07.006
- Thomas Ledig, F., & Kitzmiller, J. H. (1992). Genetic strategies for reforestation in the face of global climate change. *Forest Ecology and Management*, *50*(1–2), 153–169. https://doi.org/10.1016/0378-1127(92)90321-Y
- Thorlakson, T., & Neufeldt, H. (2012). Reducing subsistence farmers' vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. *Agriculture & Food Security*, *1*(1), 15. https://doi.org/10.1186/2048-7010-1-15
- Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. *Building and Environment*, *41*(8), 1019–1026. https://doi.org/10.1016/J.BUILDENV.2005.04.026
- Thyberg, K. L., & Tonjes, D. J. (2016). Drivers of food waste and their implications for sustainable policy development. *Resources, Conservation and Recycling, 106*, 110–123. https://doi.org/10.1016/J.RESCONREC.2015.11.016
- Tian, D., & Niu, S. (2015). A global analysis of soil acidification caused by nitrogen addition. *Environmental Research Letters*, 10(2), 024019. https://doi.org/10.1088/1748-9326/10/2/024019
- Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences of the United States of America*, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108
- Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. *Nature*, Vol. 418, pp. 671–677. https://doi.org/10.1038/nature01014
- Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. *Nature*, *515*(7528), 518–522. https://doi.org/10.1038/nature13959
- Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., ... Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. *Science*, 292(5515), 281–284. https://doi.org/10.1126/science.1057544
- Timmer, C. (2009). Preventing food crises using a food policy approach. *The Journal of Nutrition*, 140(1), 224S-228S. Retrieved from https://academic.oup.com/jn/article-abstract/140/1/224S/4743317
- Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: a review. *Food Research International*, 43(7), 1745– 1765. https://doi.org/10.1016/j.foodres.2010.07.003
- Tirivayi, N., Knowles, M., & Davis, B. (2016). The interaction between social protection and agriculture: a review of evidence. *Global Food Security*, *10*, 52–62. https://doi.org/10.1016/J.GFS.2016.08.004
- Tolvanen, A., Juutinen, A., & Svento, R. (2013). Preferences of local people for the use of peatlands: The case of the richest peatland region in Finland. *Ecology and Society*, *18*(2), 19. https://doi.org/10.5751/ES-05496-180219
- Tom, M. S., Fischbeck, P. S., & Hendrickson, C. T. (2016). Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. *Environment Systems and Decisions*, 36(1), 92–103. https://doi.org/10.1007/s10669-015-9577-y
- Torlesse, H., Kiess, L., & Bloem, M. W. (2003). Association of Household Rice Expenditure

with Child Nutritional Status Indicates a Role for Macroeconomic Food Policy in Combating Malnutrition. *The Journal of Nutrition*, *133*(5), 1320–1325. https://doi.org/10.1093/jn/133.5.1320

- Townsend, S. A., & Douglas, M. M. (2000). The effect of three fire regimes on stream water quality, water yield and export coefficients in a tropical savanna (northern Australia). *Journal of Hydrology*, 229(3–4), 118–137. https://doi.org/10.1016/S0022-1694(00)00165-7
- Trabucco, A., Zomer, R. J., Bossio, D. A., Van Straaten, O., & Verchot, L. V. (2008). Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. *Agriculture, Ecosystems and Environment*, 126(1–2), 81–97. https://doi.org/10.1016/j.agee.2008.01.015
- Travaline, K., & Hunold, C. (2010). Urban agriculture and ecological citizenship in Philadelphia. *Local Environment*, 15(6), 581–590. https://doi.org/10.1080/13549839.2010.487529
- Tschakert, P. (2007). Views from the vulnerable: understanding climatic and other stressors in the Sahel. *Global Environmental Change*, *17*(3–4), 381–396. https://doi.org/10.1016/J.GLOENVCHA.2006.11.008
- Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand, T. A., ... Vidal, S. (2007). Conservation biological control and enemy diversity on a landscape scale. *Biological Control*, 43(3), 294–309. https://doi.org/10.1016/j.biocontrol.2007.08.006
- Tscharntke, T., Karp, D. S., Chaplin-Kramer, R., Batáry, P., DeClerck, F., Gratton, C., ... Zhang, W. (2016). When natural habitat fails to enhance biological pest control – Five hypotheses. *Biological Conservation*, Vol. 204, pp. 449–458. https://doi.org/10.1016/j.biocon.2016.10.001
- Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. *Ecology Letters*, 8(8), 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
- Tu, J., Xia, Z.-G., Clarke, K. C., & Frei, A. (2007). Impact of urban sprawl on water quality in Eastern Massachusetts, USA. *Environmental Management*, 40(2), 183–200. https://doi.org/10.1007/s00267-006-0097-x
- Turner, B. (2011). Embodied connections: sustainability, food systems and community gardens. *Local Environment*, *16*(6), 509–522. https://doi.org/10.1080/13549839.2011.569537
- Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., ... Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. *Nature*, 535(7612), 411–415. https://doi.org/10.1038/nature18645
- Turtle, C., Convery, I., & Convery, K. (2015). Forest Schools and environmental attitudes: A case study of children aged 8-11 years. *Cogent Education*, 2(1), 1100103. https://doi.org/10.1080/2331186X.2015.1100103
- Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion of food waste to energy: a review. *Fuel*, *134*, 389–399. https://doi.org/10.1016/J.FUEL.2014.05.074
- UNCTAD. (2011). Water for food innovative water management technologies for food security and poverty alleviation. Retrieved from http://unctad.org/en/docs/dtlstict2011d2 en.pdf
- UNEP. (2016). Options for Ecosystem-based Adaptation (EBA) in coastal environments: a guide for environmental managers and planners. Nairobi.
- UNWater. (2015). Water for a sustainable world. UNESCO.
- Upreti, B. R., & Upreti, Y. G. (2002). Factors leading to agro-biodiversity loss in developing

countries: the case of Nepal. *Biodiversity and Conservation*, 11(9), 1607–1621. https://doi.org/10.1023/A:1016862200156

- Upton, B., Miner, R., Spinney, M., & Heath, L. S. (2008). The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. *Biomass and Bioenergy*, *32*(1), 1–10. https://doi.org/10.1016/J.BIOMBIOE.2007.07.001
- Van Dam, C. (2011). Indigenous Territories and REDD in Latin America: Opportunity or Threat? *Forests*, 2(1), 394–414. https://doi.org/10.3390/f2010394
- Van Huylenbroeck, G., Vandermeulen, V., Mettepenningen, E., & Verspecht, A. (2007). Multifunctionality of Agriculture: A Review of Definitions, Evidence and Instruments. *Living Reviews in Landscape Research*, 1, 3. https://doi.org/10.12942/lrlr-2007-3
- van Lierop, P., Lindquist, E., Sathyapala, S., & Franceschini, G. (2015). Global forest area disturbance from fire, insect pests, diseases and severe weather events. *Forest Ecology and Management*. https://doi.org/10.1016/j.foreco.2015.06.010
- Van Niekerk, J., & Wynberg, R. (2017). Traditional seed and exchange systems cement social relations and provide a safety net: a case study from KwaZulu-Natal, South Africa. Agroecology and Sustainable Food Systems, 41(9–10), 1–25. https://doi.org/10.1080/21683565.2017.1359738
- Van Wilgen, B. W., & Wannenburgh, A. (2016). Co-facilitating invasive species control, water conservation and poverty relief: achievements and challenges in South Africa's Working for Water programme. *Current Opinion in Environmental Sustainability*, 19, 7–17. https://doi.org/10.1016/J.COSUST.2015.08.012
- Vanbergen, A. J., Espíndola, A., & Aizen, M. A. (2018). Risks to pollinators and pollination from invasive alien species. *Nature Ecology and Evolution*. https://doi.org/10.1038/s41559-017-0412-3
- Vandergeest, P. (2007). Certification and communities: Alternatives for regulating the environmental and social impacts of shrimp farming. *World Development*, 35, 1152-1171. https://doi.org/10.1016/j.worlddev.2006.12.002.
- Venn, T. J., & Calkin, D. E. (2011). Accommodating non-market values in evaluation of wildfire management in the United States: challenges and opportunities. *International Journal of Wildland Fire*, 20(3), 327. https://doi.org/10.1071/WF09095
- Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., ... Wollenberg, E. (2012). Options for support to agriculture and food security under climate change. *Environmental Science and Policy*, Vol. 15, pp. 136–144. https://doi.org/10.1016/j.envsci.2011.09.003
- Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate Change and Food Systems. Annual Review of Environment and Resources, 37(1), 195–222. https://doi.org/10.1146/annurev-environ-020411-130608
- Vignola, R., Harvey, C. A., Bautista-Solis, P., Avelino, J., Rapidel, B., Donatti, C., & Martinez, R. (2015). Ecosystem-based Adaptation for smallholder farmers: definitions, opportunities and constraints. *Agriculture, Ecosystems & Environment, 211*, 126–132. https://doi.org/10.1016/J.AGEE.2015.05.013
- Visconti, P., Bakkenes, M., Smith, R. J., Joppa, L., & Sykes, R. E. (2015). Socio-economic and ecological impacts of global protected area expansion plans. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370(1681), 20140284. https://doi.org/10.1098/rstb.2014.0284
- Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption: emerging evidence of a second nutrition transition. *Environmental Science* & Policy, 39, 95–106. https://doi.org/10.1016/J.ENVSCI.2014.02.009

- Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. *Nature*, *528*(7580), 69. https://doi.org/10.1038/nature15744
- Ward, T.J. (2008), Barriers to biodiversity conservation in marine fishery certification. *Fish and Fisheries*, 9, 169-177. doi:<u>10.1111/j.1467-2979.2008.00277.x</u>
- Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18215–18220. https://doi.org/10.1073/pnas.0805554105
- Waylen, K. A., Noort, R. van de, & Blackstock, K. L. (2016). Peatlands and cultural ecosystem services. In A. Bonn, T. Allott, M. Evans, H. Joosten, & R. Stoneman (Eds.), *Peatland Restoration and Ecosystem Services* (pp. 114–128). https://doi.org/10.1017/CBO9781139177788.008
- WBCSD. (2014). *Co-optimizing solutions: water and energy for food, feed and fiber*. Retrieved from https://docs.wbcsd.org/2014/05/WBCSD Co-op Report.pdf
- Weinberger, K., & Lumpkin, T. A. (2007). Diversification into horticulture and poverty reduction: a research agenda. *World Development*, *35*(8), 1464–1480. https://doi.org/10.1016/J.WORLDDEV.2007.05.002
- West, P. C., Gibbs, H. K., Monfreda, C., Wagner, J., Barford, C. C., Carpenter, S. R., & Foley, J. A. (2010). Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. *Proceedings of the National Academy of Sciences of the United States of America*, 107(46), 19645–19648. https://doi.org/10.1073/pnas.1011078107
- Westholm, L., & Arora-Jonsson, S. (2015). Defining solutions, finding problems: deforestation, gender, and REDD+ in Burkina Faso. *Conservation and Society*, 13(2), 189. https://doi.org/10.4103/0972-4923.164203
- Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. *Science*, *341*(6145), 508–513. https://doi.org/10.1126/science.1239402
- Whitburn, J., Linklater, W. L., & Milfont, T. L. (2019). Exposure to urban nature and tree planting are related to pro-environmental behavior via connection to nature, the use of nature for psychological restoration, and environmental attitudes. *Environment and Behavior*, 51(7), 787–810. https://doi.org/10.1177/0013916517751009
- Whitfield, L. (2012). How countries become rich and reduce poverty: a review of heterodox explanations of economic development. *Development Policy Review*, *30*(3), 239–260. https://doi.org/10.1111/j.1467-7679.2012.00575.x
- Wilhite, D. A. (2005). *Drought and Water Crises* (D. A. Wilhite, Ed.). https://doi.org/10.1201/9781420028386
- Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., ... Murray, C. (2019) Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. *The Lancet*, 393, 447-492, https://doi.org/10.1016/S0140-6736(18)31788-4.
- Wilson, C. L., & Pusey, P. L. (1985). Potential for biological control of postharvest plant diseases. *Plant Disease*, 69, 375–378. https://doi.org/10.1094/PD-69-375
- Winfree, R., Bartomeus, I., & Cariveau, D. P. (2011). Native Pollinators in Anthropogenic Habitats. *Annual Review of Ecology, Evolution, and Systematics*, *42*(1), 1–22. https://doi.org/10.1146/annurev-ecolsys-102710-145042
- Winter, G., & Fried, J. S. (2000). Homeowner perspectives on fire hazard, responsibility, and management strategies at the wildland-urban interface. *Society & Natural Resources*, 13(1), 33–49. https://doi.org/10.1080/089419200279225
- Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., ... Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. *Science*,

324(5931), 1183-1186. https://doi.org/10.1126/science.1168475

- Witting, L., & Loeschcke, V. (1995). The optimization of biodiversity conservation. Biological Conservation, 71(2), 205–207. https://doi.org/10.1016/0006-3207(94)00041-N
- Wittman, H. (2011). Food sovereignty: a new rights framework for food and nature? *Environment and Society*, 2(1), 87–105. https://doi.org/10.3167/ares.2011.020106
- Wollni, M., Lee, D. R., & Thies, J. E. (2010). Conservation agriculture, organic marketing, and collective action in the Honduran hillsides. *Agricultural Economics*, 41(3–4), 373–384. https://doi.org/10.1111/j.1574-0862.2010.00445.x
- World Bank. (2017). *Future of food: shaping the food system to deliver jobs*. Washington, D.C.
- World Bank, FAO, & IFAD. (2009). Module 15: gender and forestry. In *Gender in* Agriculture Sourcebook (pp. 643–674). https://doi.org/10.1596/978-0-8213-7587-7
- Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. *Proceedings of the National Academy of Sciences*, 110(10), 4134–4139. https://doi.org/10.1073/pnas.1215404110
- Wu, J. (1999). Crop insurance, acreage decisions, and nonpoint-source pollution. American Journal of Agricultural Economics, 81(2), 305. https://doi.org/10.2307/1244583
- Wunder, S., Angelsen, A., & Belcher, B. (2014). Forests, livelihoods, and conservation: broadening the empirical base. *World Development*, 64(S1), S1–S11. https://doi.org/doi.org/10.1016/j.worlddev.2014.03.007
- Xia, J., Duan, Q.-Y., Luo, Y., Xie, Z.-H., Liu, Z.-Y., & Mo, X.-G. (2017). Climate change and water resources: case study of Eastern Monsoon Region of China. *Advances in Climate Change Research*, 8(2), 63–67. https://doi.org/10.1016/j.accre.2017.03.007
- Yang, H., & Zehnder, A. J. B. (2002). Water scarcity and food import: a case study for southern Mediterranean countries. *World Development*, 30(8), 1413–1430. https://doi.org/10.1016/S0305-750X(02)00047-5
- Yirdaw, E., Tigabu, M., & Monge, A. (2017). Rehabilitation of degraded dryland ecosystems review. *Silva Fennica*, *51*(1B), 1673. https://doi.org/10.14214/sf.1673
- Young, C. E., & Westcott, P. C. (2000). How decoupled is U.S. agricultural support for major crops? *Amer. J. Agr. Econ*, 82, 762–767. https://doi.org/10.1111/0002-9092.00076
- Yousefpour, R., Augustynczik, A. L. D., Reyer, C. P. O., Lasch-Born, P., Suckow, F., & Hanewinkel, M. (2018). Realizing mitigation efficiency of European commercial forests by climate smart forestry. *Scientific Reports*, 8(1), 345. https://doi.org/10.1038/s41598-017-18778-w
- Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. *Agriculture, Ecosystems & Environment*, 88(2), 137–146. https://doi.org/10.1016/S0167-8809(01)00249-3
- Zaman, A. U., & Lehmann, S. (2011). Urban growth and waste management optimization towards 'zero waste city.' *City, Culture and Society*, *2*(4), 177–187. https://doi.org/10.1016/J.CCS.2011.11.007
- Zaman, A. U., & Lehmann, S. (2013). The zero waste index: a performance measurement tool for waste management systems in a 'zero waste city.' *Journal of Cleaner Production*, *50*, 123–132. https://doi.org/10.1016/J.JCLEPRO.2012.11.041
- Zandersen, M., Termansen, M., & Jensen, F. (2005). Valuing New Forest Sites over Time: the Case of Afforestation and Recreation in Denmark. In *Working Papers FNU-80, Research unit Sustainability and Global Change, Hamburg University.* Hamburg.

- Zhang, W., Walker, D., Hernandez, C. C., Elias, M., Meinzen-Dick, R., & Nkonya, E. M. (2019). Gendered opportunities for improving soil health: A conceptual framework to help set the research agenda. https://doi.org/10.2499/p15738coll2.133203
- Zhao, Q., Bai, J., Huang, L., Gu, B., Lu, Q., & Gao, Z. (2016). A review of methodologies and success indicators for coastal wetland restoration. *Ecological Indicators*, 60, 442– 452. https://doi.org/10.1016/j.ecolind.2015.07.003
- Zheng, H., Chen, F., Ouyang, Z., Tu, N., Xu, W., Wang, X., ... Tian, Y. (2008). Impacts of reforestation approaches on runoff control in the hilly red soil region of Southern China. *Journal of Hydrology*, 356(1–2), 174–184. https://doi.org/10.1016/j.jhydrol.2008.04.007
- Zhou, Y., Ma, J., Zhang, Y., Qin, B., Jeppesen, E., Shi, K., ... Gao, G. (2017). Improving water quality in China: Environmental investment pays dividends. *Water Research*, 118, 152–159. https://doi.org/10.1016/j.watres.2017.04.035
- Zhu, Z., Chu, F., Dolgui, A., Chu, C., Zhou, W., & Piramuthu, S. (2018). Recent advances and opportunities in sustainable food supply chain: a model-oriented review. *International Journal of Production Research*, 56(17), 5700–5722. https://doi.org/10.1080/00207543.2018.1425014
- Zinda, J.A. & Zhang, Z. (2019) Explaining heterogeneous afforestation outcomes: How community officials and households mediate tree cover change in China. *World Development*, *122*, 385-398. https://doi.org/10.1016/j.worlddev.2019.05.020.