

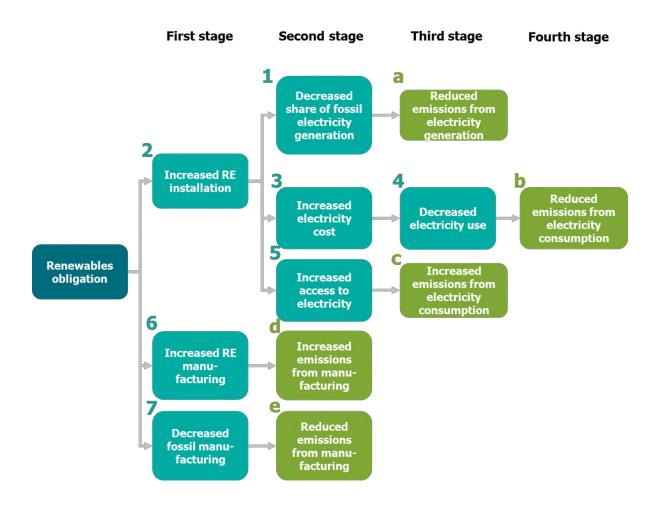
Greenhouse Gas Protocol Policy and Action Standard

Exercises

Exercise 1: Identifying effects

The list below provides some potential effects (not an exhaustive list) for a renewables obligation policy, that currently being planned and is expected to begin implementation in 2023:

- I. Decreased emissions from imported fossil fuel generation equipment
- II. Reduced GHG emissions from operating fossil fuel fired plants in the grid
- III. Increased emissions from imported renewable generation equipment
- IV. Reduced emissions from reduced electricity consumption due to higher prices
- V. Increased emissions from national production of renewable generation equipment
- VI. Reduced emissions from national manufacturing fossil fuel fired plant equipment
- VII. Increased emissions from higher energy use due to improved access


Differentiate the effects by type and put them in the table below.

Indicator types	Short-term	Long-term
Intended effects	(II.) Reduced GHG emissions from operating fossil fuel fired plants in the grid (VI.) Reduced emissions from national manufacturing of fossil fuel fired plant equipment	
Unintended effects (Including rebound effects)	 (V.) Increased emissions from national production of renewable generation equipment (IV.) Reduced emissions from reduced electricity consumption due to higher prices 	(VII.) Increased emissions from higher energy use due to improved access
Out-of-jurisdiction effects (Leakage and spillover effects)	(III.) Increased emissions from imported renewable generation equipment(I.) Decreased emissions from imported fossil fuel generation equipment	

Exercise 2: Mapping the causal chain

Complete the causal chain below based on the in-jurisdiction effects identified in exercise 1, by matching the effects to their location on the causal chain map.

Intermediate effect	Map location
Increased access to electricity	5
Decreased electricity use	4
Decreased fossil manufacturing	7
Decreased share of fossil electricity generation	1
Increased RE manufacturing	6
Increased RE installation	2
Increased electricity cost	3

GHG effect	Map location
Increased emissions from manufacturing	d
Increased emissions from electricity consumption	С
Reduced emissions from electricity generation	a
Reduced emissions from manufacturing	e
Reduced emissions from electricity consumption	b

Intermediate effects (arranged in serial order)

1. Decreased share of fossil electricity generation
2. Increased RE installation
3. Increased electricity cost
4. Decreased electricity use
5. Increased access to electricity
6. Increased RE manufacturing
7. Decreased fossil manufacturing

GHG effects (arranged in serial order)

a. Reduced emissions from electricity generation [listed as II. in Exercise 1]
b. Reduced emissions from electricity consumption [listed as IV. in Exercise 1]
c. Increased emissions from electricity consumption [listed as VII. in Exercise 1]
d. Increased emissions from manufacturing [listed as V. in Exercise 1]
e. Reduced emissions from manufacturing [listed as VI. in Exercise 1]

Exercise 3: Assessing effects by gas

Which of the effects and gases should be included in the GHG assessment boundary given the assessment of likelihood and magnitude in the table below?

GHG effect	Likelihood	Relative magnitude	Included?					
Reduced emissions from operating fossil fuel fired plants in the grid								
CO ₂	Likely	Major	Included					
CH ₄	Likely	Minor	Excluded					
N ₂ O	Likely	Minor	Excluded					
Reduced emissions	from national manufa	acturing of fossil fuel fi	red plant equipment					
CO ₂	Unlikely	Moderate	Excluded					
CH ₄	Unlikely	Minor	Excluded					
N ₂ O	N₂O Unlikely		Excluded					
Increased emissions from national production of renewable generation equipment								
CO ₂	Possible	Minor	Excluded					
CH ₄	Possible	Minor	Excluded					

N ₂ O	Possible	Minor	Excluded		
Reduced emissions from reduced electricity consumption due to higher prices					
CO ₂	O ₂ Possible		Included		
CH ₄	Possible	Minor	Excluded		
N ₂ O	Possible	Minor	Excluded		

Likelihood	Magnitude					
	Minor	Moderate Major				
Very likely						
Likely		Should include				
Possible						
Unlikely	May o					
Very unlikely						

 ${\it Note:}$ The area shaded green corresponds to significant GHG effects.

Exercise 4: Calculate baseline emissions

Equation:

Baseline emissions = \sum (Electricity demand * share in fuel mix_{fuel} * emission factor_{fuel})

- = Electricity demand * share in fuel mix_{gas} * emission factor_{gas}
- + Electricity demand * share in fuel mix_{REN} * emission factor_{REN}

Parameters	Values 2022				
Electricity demand	100 TWh/yr				
Chara in fual mix	Share _{gas} : 95% Gas				
Share in fuel mix	Share _{REN} : 5% Renewables				
Emission factors	Emission factor _{gas} :		200,000 t CO ₂ /TWh		
EIIIISSIOII IACTOIS	Emission factor _{REN} :		0 t CO ₂ /TWh		

Emissions factor rounded to facilitate calculation

Baseline emissions = $100 \text{ TWh/yr} * 0.95 * 200,000 \text{ t } CO_2/\text{TWh} + 100 \text{ TWh/yr} * 0.05 * 0 \text{ t } CO_2/\text{TWh}$

 $= 19,000,000 t CO_2/yr + 0 t CO_2/yr$

 $= 19.0 Mt CO_2/yr$

Exercise 5: Estimate policy scenario emissions

Equation:

Policy scenario emissions = \sum (Electricity demand * share in fuel mix_{fuel} * emission factor_{fuel})

- = Electricity demand * share in fuel mix_{gas} * emission factor_{gas}
- + Electricity demand * share in fuel mix_{REN} * emission factor_{REN}

Parameters	Values 2025				
Electricity demand	100 TWh/yr				
Share in fuel mix	Share _{gas} :	80% Gas			
Silare in ruel lillx	Share _{REN} :	20% Renewables			

Emission factors

Emission factor_{gas}: 200,000 t CO₂/TWh

Emission factor_{REN}: 0 t CO₂/TWh

Emissions factor rounded to facilitate calculation

Policy scenario emissions = 100 TWh/yr * 0.80 * 200,000 t CO_2 /TWh + 100 TWh/yr * 0.20 * 0 t CO_2 /TWh

 $= 16,000,000 \text{ t } CO_2/yr + 0 \text{ t } CO_2/yr$

 $= 16.0 Mt CO_2/yr$

Exercise 6: Calculating GHG effects ex-ante

Calculate the change in GHG emissions based on the information provided in the table below.

Effect	Estimated baseline emissions in 2022	Estimated policy emissions in 2025	Change (Policy - Baseline)
Reduced emissions from stationary combustion for electricity production	19.0 Mt CO ₂	16.0 Mt CO ₂	-3 Mt CO ₂
Reduced emissions from decreased energy consumption due to higher prices	/	-0.4 Mt CO ₂	-0.4 Mt CO ₂
Total	19.0 Mt CO ₂	15.6 Mt CO ₂	-3.4 Mt CO ₂

Exercise 7: Complete table 5 from Annex II, decision 5/CMA.3 (common tabular format adopted in Glasgow)

Complete an entry into the table, based on the example policy we have utilized throughout these exercises (renewables obligation).

5. Mitigation policies and measures, actions and plans, including those with mitigation co-benefits resulting from adaptation actions and economic diversification plans, related to implementing and achieving a nationally determined contribution under Article 4 of the Paris Agreement^{a,b}

			Type of		Sector(s)	Gases	Start year of	Implementing	Estimates of 0 reductions (GHG emission kt CO2 eq) ^{j,k}
Namec	Description ^{d,e,f}	Objectives	instrument ^g	Status ^h	affected	affected	implementation	entity or entities	Achieved	Expected

5. Mitigation policies and measures, actions and plans, including those with mitigation co-benefits resulting from adaptation actions and economic diversification plans, related to implementing and achieving a nationally determined contribution under Article 4 of the Paris Agreement Estimates of GHG emission Type of Sector(s) Start year of **Implementing** Description Objectives Gases affected reductions (kt CO₂ eq) Name Status instrument affected implementation entity or entities Achieved Expected Renewables Mandate Reduced Regulation Planned Energy CO_2 2023 National utility 3.4 Mt CO₂e obligation = 3400 kt GHG to reduce CO₂e percentage emissions of fossil from fuel fired operating fossil fuel energy fired plants generation in the grid

^a Each Party shall provide information on actions, policies and measures that support the implementation and achievement of its NDC under Article 4 of the Paris Agreement, focusing on