

¹World Meteorological Organization (<u>otarasova@wmo.int</u>, mpespi@wmo.int), ²University of Maryland, USA (pdecola@umd.edu), ³GNS Science, Wellington, New Zealand (j.Turnbull@gns.cri.nz), ⁴CIRES, University of Colorado at Boulder, USA

IG³IS Implementation principles

IG³IS is a common framework for provision of the systematic services to user **community** who intend to reduce its greenhouse gas emissions

- Support the use of atmospheric concentration data to improve emission estimates
- Consensus on a coherent set of good-practice methods and guidelines
- Quality control (benchmarking)
- Use greenhouse gas observations in the atmosphere
- Engage stakeholders from the initial phase
- Propagate consistent methods and standards
- Success-criteria is the use of provided information
- Concert matures with evolution of policy and technology

Engagement mechanism: regular user consultations

at facilities.

There is a need to improve energy efficiency in the industry; quantify & reduce methane emissions; to have projections for short- and long-term decision-making for staying ahead of risks & opportunities; to reduce the emissions from transport sector; and to promote scalable actions.

reports in Alberta region, Canada.

Technical capabilities

Oil and gas sector was the most successful one in implementation of the observations-based method for identification of emissions associated with the sector. These data were used to strengthen sector related legislation in USA and Canada.

User requirements in the Integrated Global Greenhouse Gas Information System (IG³IS) Oksana Tarasova¹, Phil DeCola², Jocelyn Turnbull^{3,4}, Mario Peiro¹

Š 0 Ċ

ds

Stakeholders Needs

To reduce uncertainties in refrigeration sector, LULUCF, soil emissions, wastewater treatment, biogas facilities, waste incineration and industrial leakages.

Develop a standard methodology for emission estimates for different sectors and scales; Develop tools to measure mitigation efficiency.

Stakeholder needs Geophysica about gaps

Technical capabilities

Observations emission based recommended as a quality control tool in IPCC National **Emission Inventory Guidelines 2019 refinement, they** allow to reduce uncertainty of the national totals reporting (examples include UK and Switzerland).

General Uncertainties:

To improve consistency between scales; better knowledge about the CH₄ emissions; improved mapping of urban sources; spatially scalable system; better understanding of public policy impacts.

cities that implement IG³IS Several managed to identify unknown emission in the cities through detailed mapping and supported identification of the efficient climate solution on urban scale.

Specific

Uncertainties:

emission estimates Improving vehicles; from on-road quantifying carbon sinks of tree planting initiatives; co-benefits to health sector related to air quality.

Stak

Los Angeles inverse model of 12 tower measurements shows methane hot spots at known & a large unknown source

Technical capabilities