# **€**

#### Quality Assurance/Quality Control (QA/QC) Plan and Procedures and Key Category Analysis (KCA)

Remote Training on the Building of Sustainable National Greenhouse Gas Inventory Management Systems

John Watterson (QA/QC), Céline Gueguen (KCA)

Ricardo Energy & Environment, on behalf of the U.S. Environmental Protection Agency

Wednesday 9<sup>th</sup>, 2024

### Housekeeping

#### **Chat and Q&A**

- Please feel free to introduce yourselves in the Chat channel
   Name, Country, Organization and Role
- Please place questions in the chat channel or wait to ask them in the Q&A

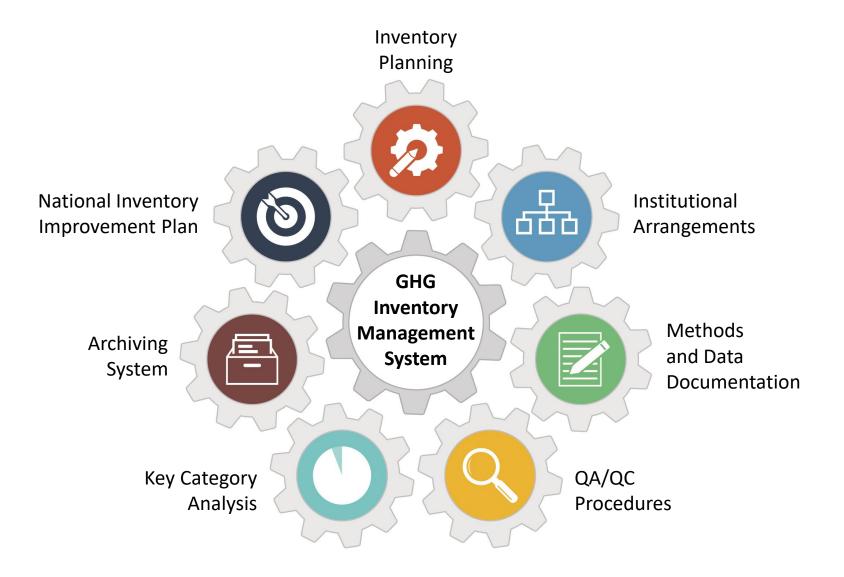
### Recording

 Today's session will be recorded, so you can view it again later

# Agenda

| 5 min  | Welcome and Introduction                                                     | John Watterson   |
|--------|------------------------------------------------------------------------------|------------------|
| 15 min | Template 4: Quality Assurance/Quality Control (QA/QC)<br>Plan and Procedures | John Watterson   |
| 5 min  | Mentimeter poll on QA/QC                                                     | Serena Churchill |
| 20 min | Template 4: QA/QC Plan and Procedures Walk Through                           | John Watterson   |
| 10 min | Q&A                                                                          | John Watterson   |
| 5 min  | Break                                                                        |                  |
| 5 min  | Mentimeter poll on KCA                                                       | Serena Churchill |
| 35 min | Template 5: Key Category Analysis (KCA)                                      | Serena Wartmann  |
| 10 min | Q&A                                                                          | Serena Wartmann  |
| 5 min  | Conclusions and Next Webinairs                                               | John Watterson   |

#### Overview


# Template 4 – QA/QC Plan and Procedures

- Review difference and importance between:
  - The concepts of QA and QC
     General procedures and sector/category-specific procedures
- Walk through the (draft) updated Template

#### Template 5 – Key Category Analysis

- Why prioritizing within the Inventory is helpful and necessary
- Different methods to identify your key categories

#### Developing a Sustainable National GHG Inventory System



# Quality Assurance (QA) and Quality Control (QC)



### Importance of QA/QC – Why bother?



# Helps identify improvement options!

#### Builds confidence in national GHG inventories!



A planned system of review procedures conducted by personnel **not directly involved** in the inventory compilation/development process.

Reviews, *preferably by independent third parties*, are performed upon a completed inventory following quality control procedure. Reviews:

- Verify the data quality objectives were met;
- Ensure that the inventory represents the best possible estimates of emissions and sinks;
- Support the quality control program.





A system of routine technical activities to assess and maintain the quality of the inventory as it is being compiled. **It is performed by personnel compiling the inventory**.

The system is designed to:

- Provide routine and consistent checks to ensure data integrity, correctness, and completeness;
- Identify and address errors and omissions;
- Document and archive inventory material and record all QC activities;
- Check data acquisition, calculations, and procedures;
- Document technical reviews of data, methods, and results



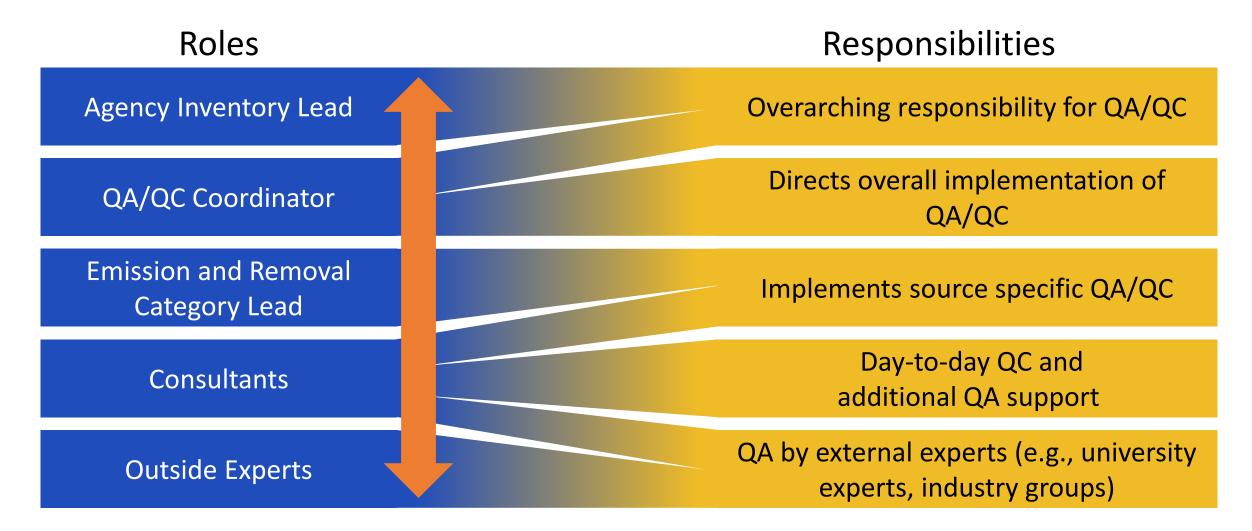
### Verification



- Verification refers to the collection of activities and procedures conducted during the planning and development, or after completion of an inventory that can help to establish its reliability.
- Verification activities include comparisons with emission or removal estimates prepared by other bodies and comparisons with estimates derived from fully independent assessments – such as from inverse modelling.

#### Example from 2006 IPCC Guidelines

The IPCC provides potential outside verification checks in the national level CO<sub>2</sub> emissions estimates compiled by the International Energy Agency (IEA)


# Key Components of a QA/QC and Verification System





### QA/QC Roles and Responsibilities





One person can have multiple roles. Not all roles are full time!

### **General Quality Control Procedures**



#### Apply at category and cross-cutting levels

- Data gathering, input, and handling activities
- Data documentation
- Calculating emissions and checking calculations
- Check overall data has been aggregated properly from lower levels
- Consider adding quality control procedures relevant to country specific compilation processes (e.g., data used in figures and tables QC)

# See IPCC 2006 GLs Volume 1, Table 6.1 and additional examples for documenting QC implementation are in

#### Annex 6A1)

|                                                                                                                                                       | TABLE 6.1<br>General inventory QC procedures                                                                                                                                                                                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC Activity                                                                                                                                           | Procedures                                                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Check that assumptions and<br>criteria for the selection of activity<br>data, emission factors, and other<br>estimation parameters are<br>documented. | <ul> <li>Cross-check descriptions of activity data, emission<br/>estimation parameters with information on categor<br/>are properly recorded and archived.</li> </ul>                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Check for transcription errors in<br>data input and references.                                                                                       | <ul> <li>Confirm that bibliographical data references a<br/>internal documentation.</li> <li>Cross-check a sample of input data from<br/>measurements or parameters used in calculations)</li> </ul>                                                 | each category (either            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Check that emissions and<br>removals are calculated correctly.                                                                                        | <ul> <li>Reproduce a set of emissions and removals calculi</li> <li>Use a simple approximation method that gives sin<br/>and more complex calculation to ensure that ther<br/>calculation error.</li> </ul>                                          | nilar results to the original    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Check that parameters and units<br>are correctly recorded and that<br>appropriate conversion factors are<br>used.                                     | Check that units are properly labelled in calculatio     Check that units are correctly carried through f     calculations.     Check that conversion factors are correct.     Check that temporal and spatial adjustment facts                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                       | <ul> <li>Examine the included intrinsic documentation (s</li> <li>confirm that the appropriate data proc</li> </ul>                                                                                                                                  | 001.07                           | TABLE 6.1 (CONTINUED)<br>GENERAL INVENTORY QC PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                             |
| Check the integrity of database<br>files.                                                                                                             | represented in the database.<br>- confirm that data relationships are con-<br>database.<br>- ensure that data fields are properly labe-<br>design specifications.<br>- ensure that adequate documentation of da<br>and operation are archived.       | QC Activity Check completeness.  | Procedures           Confirm that estimates are reported for all categories and for all years from the appropriate base year to the period of the current inventory.           For subcategories, confirm that entire category is being covered.           Provide clear definition of 'Other' type categories.           Check that known data gaps that result in incomplete estimates are documented, including a cualitative evaluation of the importance of the |
| Check for consistency in data<br>between categories.                                                                                                  | <ul> <li>Identify parameters (e.g., activity data, const<br/>multiple categories and confirm that there is con<br/>for these parameters in the emission/removal cal</li> </ul>                                                                       |                                  | estimate in relation to total emissions (e.g., subcategories classified as 'not<br>estimated', see Chapter 8, Reporting Guidance and Tables).                                                                                                                                                                                                                                                                                                                        |
| Check that the movement of<br>inventory data among processing<br>steps is correct.                                                                    | <ul> <li>Check that emissions and removals data are<br/>lower reporting levels to higher reporting<br/>summaries.</li> <li>Check that emissions and removals data are co<br/>different intermediate products.</li> </ul>                             |                                  | <ul> <li>For each category, current investory estimates should be compared to<br/>previous estimates, if available. If there are significant changes or<br/>departures from expected rends, re-check estimates and explain any<br/>differences. Significant changes in emissions or removals from previous<br/>years may indicate possible input or calculation errors.</li> <li>Check value of implied emission factors (aggregate emissions divided by</li> </ul>  |
| Check that uncertainties in<br>emissions and removals are<br>estimated and calculated correctly.                                                      | Check that qualifications of individuals provi<br>uncertainty estimates are appropriate.     Check that qualifications, assumptions and expe<br>Check that calculated uncertainties are complete<br>If necessary, duplicate uncertainty calculations | Trend checks.                    | activity data) across time series.<br>Do any years show outliers that are not explained?<br>If they remain static across time series, are changes in emissions or<br>removals being captured?<br>Check if there are any unusual and unexplained trends noticed for activity<br>data or other parameters across the time series.                                                                                                                                      |
|                                                                                                                                                       | probability distributions used by Monte Carlo a<br>uncertainty calculations according to Approach<br>Check for temporal consistency in time series in<br>Check for consistency in the algorithm/met                                                  | Review of internal documentation | Check that there is detailed internal documentation to support the estimates<br>and enable reproduction of the emission, removal and uncertainty<br>estimates.     Check that investory data, supporting data, and inventory records are                                                                                                                                                                                                                             |
| Check time series consistency.                                                                                                                        | <ul> <li>throughout the time series.</li> <li>Check methodological and data changes resultin</li> <li>Check that the effects of mitigation activitie reflected in time series calculations.</li> </ul>                                               | and archiving.                   | <ul> <li>archived and stored to facilitate detailed review.</li> <li>Check that the archive is closed and retained in secure place following completion of the inventory.</li> <li>Check integrity of any data archiving arrangements of outside organisations involved in inventory preparation.</li> </ul>                                                                                                                                                         |

# Procedures to Apply Quality Control

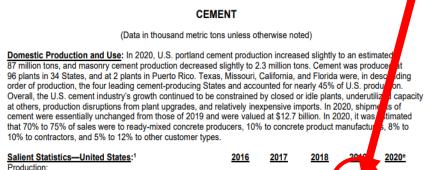


#### Example General Quality Control Checks

- 1. Check that spreadsheets use consistent units, properly labelled
- 2. Check that estimates are reported for all source categories and for all years
- 3. Cross-check spreadsheet values to publication values
- 4. Trend checks (e.g., can be automated, i.e., to check implied emission factor over time series, check for unexplained trends)

#### Example Category-Specific Quality Control Checks

- Check for fuel consumption year to year trends (Energy sector)
   Follow up with external sources when fuel consumption inputs show unusual trends
- 2. Mass balance checks (Energy sector)
- 3. Land area consistency checks (FOLU sector)


### Example QC Procedure



| AD AE<br>2017 2018<br>76,678 77,112 | AF<br>2019<br>7,112 79,0 |
|-------------------------------------|--------------------------|
|                                     |                          |
| 76,678 77,11                        | 7,112 79,0               |
|                                     |                          |
| 9,114 39,335                        | 40,298                   |
| 782 787                             | 806                      |
| 9,896 40,122                        | 41,1                     |
| 39.9 40.1                           | 41                       |
|                                     |                          |

#### **Quality Control Procedure #1:**

- Cross-check spreadsheet values to publication values
- Document implementation in checklist



| Salient Statistics—United States:                   | 2016   | 2017   | 2018   |          | 2020°   |  |
|-----------------------------------------------------|--------|--------|--------|----------|---------|--|
| Production:                                         |        |        |        |          |         |  |
| Portland and masonry cement <sup>2</sup>            | 84,695 | 86,356 | 86,368 | e88,00   | 89,000  |  |
| Clinker                                             | 75,633 | 76,678 | 77,112 | 79,000   | 79,000  |  |
| Shipments to final customers, includes exports      | 95,397 | 97,935 | 99,419 | 103,000  | 03,000  |  |
| Imports for consumption:                            |        |        |        |          |         |  |
| Hydraulic cement                                    | 11,742 | 12,288 | 13,764 | 1,000    | 15,000  |  |
| Clinker                                             | 1,496  | 1,209  | 967    | 1,160    | 1,400   |  |
| Exports of hydraulic cement and clinker             | 1,097  | 1,035  | 919    | 1,002    | 1,000   |  |
| Consumption, apparent <sup>3</sup>                  | 95,150 | 97,160 | 98,500 | e103,000 | 102,000 |  |
| Price, average mill value, dollars per ton          | 111    | 117    | 121    | e123     | 124     |  |
| Stocks, cement, yearend                             | 7,420  | 7,870  | 8,580  | e7,140   | 7,800   |  |
| Employment, mine and mill, numbere                  | 12,700 | 12,500 | 12,300 | 12,500   | 12,500  |  |
| Net import reliance <sup>4</sup> as a percentage of |        |        |        |          |         |  |
| apparent consumption                                | 13     | 13     | 14     | 14       | 15      |  |
|                                                     |        |        |        |          |         |  |

Recycling: Cement is not recycled, but significant quantities of concrete are recycled for use as a construction aggregate. Cement kilns can use waste fuels, recycled cement kiln dust, and recycled raw materials such as slags and fly ash. Various secondary materials can be incorporated as supplementary cementitious materials (SCMs) in blended cements and in the cement paste in concrete.

### Example QC Procedure



| Α | AG12 • : $\times \checkmark f_x$     |                                            |        |        |        |        |        |        |        |        |  |
|---|--------------------------------------|--------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| 1 | A                                    | В                                          | С      | D      | Е      | F      | AC     | AD     | AE     | AF     |  |
| 1 | CO2 EMISSIONS FROM CEMENT PRODUCTION |                                            |        |        |        |        |        |        |        |        |  |
| 2 |                                      |                                            | 1990   | 1991   | 1992   | 1993   | 2016   | 2017   | 2018   | 2019   |  |
| 3 | Clinker Production                   | (Thousand metric tons)                     | 64,355 | 62,918 | 63,411 | 66,957 | 75,633 | 76,678 | 77,112 | 79,000 |  |
| 4 | CO <sub>2</sub> Released             | (Thousand metric tons)                     | 32,828 | 32,095 | 32,346 | 34,155 | 38,581 | 39,114 | 39,335 | 40,298 |  |
| 5 | CKD CO <sub>2</sub> Release*         | (Thousand metric tons)                     | 157    | 642    | 647    | 683    | 772    | 782    | 787    | 806    |  |
| 6 | Total CO₂ Release                    | (thousand metric tons CO <sub>2</sub> Eq.) | 33,48- | 32,736 | 32,993 | 34,838 | 39,352 | 39,896 | 40,122 | 41,104 |  |
| 7 |                                      | (million metric tons CO <sub>2</sub> Eq.)  | 33.5   | Ja     | 33.0   | 34.8   | 39.4   | 39.9   | 40.1   | 41.1   |  |
| 8 |                                      |                                            |        |        |        |        |        |        |        |        |  |

#### **QC Procedure #2:**

- Check that spreadsheets use consistent units and are properly labelled
- Document implementation in checklist

Domestic Production and Use: In 2020, U.S. portland cement production increased slightly to an estimated 87 million tons, and masonry cement production decreased slightly to 2.3 million tons. Cement was produced at 96 plants in 34 States, and at 2 plants in Puerto Rico. Texas, Missouri, California, and Florida were, in descending order of production, the four leading cement-producing States and accounted for nearly 45% of U.S. production. Overall, the U.S. cement tindustry's growth continued to be constrained by closed or idle plants, underutilized capacity at others, production disruptions from plant upgrades, and relatively inexpensive imports. In 2020, shipments of cement were essentially unchanged from those of 2019 and were valued at \$12.7 billion. In 2020, it was estimated that 70% to 75% of sales were to ready-mixed concrete producers, 10% to concrete product manufactures, 8% to 10% to contractors, and 5% to 12% to other customer types.

CEMENT

| Salient Statistics—United States:1                  | 2016   | 2017   | <u>2018</u> | <u>2019</u> | 2020e   |  |
|-----------------------------------------------------|--------|--------|-------------|-------------|---------|--|
| Production:                                         |        |        |             |             |         |  |
| Portland and masonry cement <sup>2</sup>            | 84,695 | 86,356 | 86,368      | e88,000     | 89,000  |  |
| Clinker                                             | 75,633 | 76,678 | 77,112      | 79,000      | 79,000  |  |
| Shipments to final customers, includes exports      | 95,397 | 97,935 | 99,419      | 103,000     | 103,000 |  |
| Imports for consumption:                            |        |        |             |             |         |  |
| Hydraulic cement                                    | 11,742 | 12,288 | 13,764      | 14,690      | 15,000  |  |
| Clinker                                             | 1,496  | 1,209  | 967         | 1,160       | 1,400   |  |
| Exports of hydraulic cement and clinker             | 1,097  | 1,035  | 919         | 1,002       | 1,000   |  |
| Consumption, apparent <sup>3</sup>                  | 95,150 | 97,160 | 98,500      | e103,000    | 102,000 |  |
| Price, average mill value, dollars per ton          | 111    | 117    | 121         | e123        | 124     |  |
| Stocks, cement, yearend                             | 7,420  | 7,870  | 8,580       | e7,140      | 7,800   |  |
| Employment, mine and mill, numbere                  | 12,700 | 12,500 | 12,300      | 12,500      | 12,500  |  |
| Net import reliance <sup>4</sup> as a percentage of |        |        |             |             |         |  |
| apparent consumption                                | 13     | 13     | 14          | 14          | 15      |  |

Recycling: Cement is not recycled, but significant quantities of concrete are recycled for use as a construction aggregate. Cement kilns can use waste fuels, recycled cement kiln dust, and recycled raw materials such as slags and fly ash. Various secondary materials can be incorporated as supplementary cementitious materials (SCMs) in blended cements and in the cement paste in concrete.



# General QC checks are applicable to all inventory categories and all types of data

Questions to consider for prioritizing your QC process:

- 1. Is the source/sink a Key Category?
- 2. Has a category's methodology or data changed?
- 3. Is there a high level of uncertainty for the category?
- 4. When was the last time this category went through the QC check?

Some categories need more QA/QC than others!

## When to Apply the Quality Control



What level of quality control is needed <u>annually</u>?

- Appy general checks to a sample of data and calculations from each category each year
- Quality control (QC) should be performed prior to any peer review
- Apply if you update data prior to finalizing inventory

Some quality control is needed only periodically.

- Category-specific procedures may only be applied every other year, and can be prioritized for key categories
- Emission factors/activity data QC may only need to be implemented when there are changes (e.g., in activity, data sources, or science)

### **Quality Assurance Procedures**



#### • Expert peer review (should)

- Provide an objective review of methods, data and results and ensure it is reasonable/technically sound
- Involve reviewers or experts not involved in preparing the inventory
- Can focus on whole report and/or parts
  - Prioritize key categories and areas with methodological refinements
- Audits
  - Provide an in-depth analysis of the procedures taken to develop an inventory, based on the documentation available

# Quality Control – "Bottom Line"

- 1. Check your work i.e., implementing and documenting QA/QC steps assures inventory quality and builds confidence in national data
- 2. Start with general quality control (QC) checklist included in IPCC guidance
- 3. Identify areas for improvement (beyond identifying basic errors)
- 4. Develop a basic QC plan to check all estimates, and add additional checks prioritizing more significant categories (i.e., key categories)
  - Assign roles/responsibilities (e.g., a QA/QC coordinator to implement and maintain QA/QC plan)
  - Consider if you can include additional QC checks for Key Categories
  - Communicate plan and outputs to inventory compilation team
- 5. Establish a process and schedule for QA

#### Poll Questions - Mentimeter



#### Go to www.menti.com

Enter the code

# 8125 9360



Or use QR code

# QA/QC Procedures Template

### How This Template Will Help!



Resources in the QA/QC Template will help the inventory team:

- Define QA/QC roles and responsibilities
- Establish your official QA/QC timeline to build upon
- Establish general & category-specific QC procedures
- Establish QA procedures
- Document external reviewers
- Document improvements for the future



#### Table 4-1. Inventory Compilation Team Members Responsible for QA/QC Activities

| Role                                 | QA/QC Responsibility                                                                                                                                                                                | Name         | Organization | Contact Information |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------------|
| National<br>Inventory<br>Coordinator | <ul> <li>Coordinate with the QA/QC<br/>Coordinator on QA/QC plan<br/>implementation</li> <li>Focus on cross-cutting QA/QC<br/>activities</li> </ul>                                                 | [Enter Text] |              |                     |
| QA/QC<br>Coordinator                 | <ul> <li>Develop and implement the<br/>overall QA/QC plan</li> </ul>                                                                                                                                |              |              |                     |
| Sector or<br>Category Lead(s)        | <ul> <li>Develop and implement<br/>general, sector/category-<br/>specific (as appropriate) QA/QC<br/>procedures listed in Tables 4-3<br/>and 4-4 below.</li> <li>Focus on key categories</li> </ul> |              |              |                     |



#### Table 4-1. Inventory Compilation Team Members Responsible for QA/QC Activities

| Role                                 | QA/QC Responsibility                                                                                                                                  | Name       | Organization | Contact Information    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------------|
| National<br>Inventory<br>Coordinator | <ul> <li>Coordinate with the QA/QC<br/>Coordinator on QA/QC plan<br/>implementation</li> <li>Focus on cross-cutting QA/QC<br/>activities</li> </ul>   | M. Desai   | EPA          | Email and Phone Number |
| QA/QC<br>Coordinator                 | <ul> <li>Develop and implement the<br/>overall QA/QC plan</li> </ul>                                                                                  | J. Steller | EPA          | Email and Phone Number |
| Sector or                            | Develop and implement                                                                                                                                 | A. Chiu    | EPA - OAP    | Email and Phone Number |
| Category Lead(s)                     | general, sector/category-                                                                                                                             | T. Wirth   | EPA – OAP    | Email and Phone Number |
|                                      | <ul> <li>specific (as appropriate) QA/QC</li> <li>procedures listed in Tables 4-3</li> <li>and 4-4 below.</li> <li>Focus on key categories</li> </ul> | S. Roberts | EPA – OTAQ   | Email and Phone Number |
|                                      |                                                                                                                                                       | G. Domke   | USFS         | Email and Phone Number |

## Step 2: Document Existing QA/QC

#### Table 4-2. Documentation of Existing QA/QC Activities

| QA/QC Documentation Questions                                                                                                                              | Sector/Category | Procedure | Supporting Documents |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------------|
| Are there existing QC procedures from previous compilation cycles?                                                                                         | [Enter text]    |           |                      |
| Are there existing QA activities from previous compilation cycles?                                                                                         |                 |           |                      |
| Are QA/QC findings from previous checks<br>and reviews logged into an overall<br>inventory improvement plan?                                               |                 |           |                      |
| Are there additional QA/QC activities and procedures that are documented elsewhere?                                                                        |                 |           |                      |
| Does the entity responsible for GHG<br>inventory development have any data<br>quality or quality assurance procedures<br>that must be followed?            |                 |           |                      |
| Have data providers (e.g., government<br>agencies, industry) undertaken data quality<br>procedures before providing data for GHG<br>inventory development? |                 |           |                      |



#### Table 4-2. Documentation of Existing QA/QC Activities

| QA/QC Documentation Questions                                                                                                                              | Sector/Category | Procedure                                                                                                                      | Supporting Documents                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Are there existing QC procedures from previous compilation cycles?                                                                                         | Livestock       | Yes, a basic checklist exists.                                                                                                 | Livestock QC.xlsx                      |
| Are there existing QA activities from previous compilation cycles?                                                                                         | Livestock       | Yes, a basic expert peer review procedure is documented                                                                        | QA Expert Review Steps.docx            |
| Are QA/QC findings from previous checks<br>and reviews logged into an overall<br>inventory improvement plan?                                               | Livestock       | No, previous QA/QC activities were not sufficiently recorded.                                                                  | N/A                                    |
| Are there additional QA/QC activities and procedures that are documented elsewhere?                                                                        | Livestock       | No, currently no additional QA/QC activities are documented.                                                                   | N/A                                    |
| Does the entity responsible for GHG<br>inventory development have any data<br>quality or quality assurance procedures<br>that must be followed?            | Livestock       | Yes, a series of rules have been established that must be followed.                                                            | Quality Assurance Project<br>Plan.docx |
| Have data providers (e.g., government<br>agencies, industry) undertaken data quality<br>procedures before providing data for GHG<br>inventory development? | Livestock       | Yes, the underlying activity data are held to<br>a statistical standard and documented in<br>the individual reference reports. | Sheep and Lambs Annual<br>Report.pdf   |

## **Step 3:** Establish general QC procedures

#### Table 4-3. General QA/QC Procedures

|                                  | Procedure Completed |                       | Сог            | Supporting      |               |               |
|----------------------------------|---------------------|-----------------------|----------------|-----------------|---------------|---------------|
| Item                             | Date                | Name                  | Errors (Y/N)   | Action Taken    | Name,<br>Date | Documents     |
| DATA GATHERING, INPUT, AN        | ID HANDLI           | NG CHECKS             |                |                 |               |               |
| 1. Check a sample of input fo    | r transcript        | ion errors. Use elect | ronic data whe | ere possible to | minimize      | transcription |
| errors from manual data entr     | 'Y                  |                       |                |                 |               |               |
| a. Check a sample of the input   |                     |                       |                |                 |               |               |
| data from each category (e.g.,   |                     |                       |                |                 |               |               |
| activity data, emission factors, |                     |                       |                |                 |               |               |
| uncertainty inputs) for          |                     |                       |                |                 |               |               |
| transcription errors.            |                     |                       |                |                 |               |               |
| b. Ensure that all activity data |                     |                       |                |                 |               |               |
| and conversion factors are       |                     |                       |                |                 |               |               |
| entered with the appropriate     |                     |                       |                |                 |               |               |
| number of significant figures or |                     |                       |                |                 |               |               |
| to the exact value.              |                     |                       |                |                 |               |               |

Who completes this table: QA/QC Coordinator, with NIC and Sector/Category Leads

# Example of Table 4-3



#### Table 4-3. General QA/QC Procedures

|                                                                                                                                                                                   | Procedure Completed                                                                                                                             |           | Corrective Measure<br>(if applicable) |              |               | Supporting    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|--------------|---------------|---------------|--|--|--|
| Item                                                                                                                                                                              | Date                                                                                                                                            | Name      | Errors (Y/N)                          | Action Taken | Name,<br>Date | Documents     |  |  |  |
| DATA GATHERING, INPUT, AN                                                                                                                                                         | ID HANDLI                                                                                                                                       | NG CHECKS |                                       |              |               |               |  |  |  |
|                                                                                                                                                                                   | 1. Check a sample of input for transcription errors. Use electronic data where possible to minimize transcription errors from manual data entry |           |                                       |              |               |               |  |  |  |
| a. Check a sample of the input<br>data from each category (e.g.,<br>activity data, emission factors,<br>uncertainty inputs) for<br>transcription errors.                          | 10/1/20<br>23                                                                                                                                   | A. Smith  | N                                     | 10/1/2023    | A.<br>Smith   | CementQA.xlsx |  |  |  |
| <ul> <li>b. Ensure that all activity data<br/>and conversion factors are<br/>entered with the appropriate<br/>number of significant figures or<br/>to the exact value.</li> </ul> | 10/2/20<br>23                                                                                                                                   | A. Smith  | Y                                     | 10/2/2023    | A.<br>Smith   | Cement.xlsx   |  |  |  |
| Who completes                                                                                                                                                                     | Who completes this table: QA/QC Coordinator, with NIC and Sector/Category Leads                                                                 |           |                                       |              |               |               |  |  |  |
|                                                                                                                                                                                   |                                                                                                                                                 |           |                                       |              |               |               |  |  |  |

### Step 4: Category-Specific QC Activities



#### Table 4-4. Category-specific QC Procedures

|                                                                                 | Procedure Completed |                                    | Corrective Measure Taken |             |                                       | Supporting |
|---------------------------------------------------------------------------------|---------------------|------------------------------------|--------------------------|-------------|---------------------------------------|------------|
|                                                                                 |                     |                                    | (if applicable)          |             |                                       |            |
| Item                                                                            | Date                | Name (first initial, last<br>name) | Errors (Y/N)             | Date        | Name (first<br>initial, last<br>name) | Documents  |
| <b>EMISSION DATA QUALITY CH</b>                                                 | ECKS                |                                    |                          |             |                                       |            |
| 1. Check EMISSIONS COMPAR                                                       | RISONS: His         | storical data for catego           | ries and key             | subcategori | es.                                   |            |
| a. Compare emission estimates                                                   | [Enter              |                                    |                          |             |                                       |            |
| to results from previous                                                        | text]               |                                    |                          |             |                                       |            |
| inventories and review any                                                      |                     |                                    |                          |             |                                       |            |
| unusual increases or decreases.                                                 |                     |                                    |                          |             |                                       |            |
| Compare national-level                                                          |                     |                                    |                          |             |                                       |            |
| estimates as well as category                                                   |                     |                                    |                          |             |                                       |            |
| and subcategory estimates.                                                      |                     |                                    |                          |             |                                       |            |
| b. Check against independent                                                    |                     |                                    |                          |             |                                       |            |
| estimates of emissions and/or                                                   |                     |                                    |                          |             |                                       |            |
| removals based on alternative                                                   |                     |                                    |                          |             |                                       |            |
| methods.                                                                        |                     |                                    |                          |             |                                       |            |
| Who completes this table: QA/QC Coordinator, with NIC and Sector/Category Leads |                     |                                    |                          |             |                                       |            |
|                                                                                 |                     |                                    |                          |             |                                       |            |

### Example of Table 4-4



31

#### Table 4-4. Category-specific QC Procedures

|                                                                                                                                                                                                                                                                             | Procedure Completed |                                    | Corrective Measure Taken |             | Supporting                            |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|--------------------------|-------------|---------------------------------------|-----------|
|                                                                                                                                                                                                                                                                             |                     |                                    | (if applicable)          |             |                                       |           |
| Item                                                                                                                                                                                                                                                                        | Date                | te Name (first initial, last name) | Errors (Y/N)             | Date        | Name (first<br>initial, last<br>name) | Documents |
| <b>EMISSION DATA QUALITY CH</b>                                                                                                                                                                                                                                             | ECKS                | -                                  | •                        | •           | •                                     | 2         |
| 1. Check EMISSIONS COMPAR                                                                                                                                                                                                                                                   | RISONS: His         | storical data for catego           | ries and key             | subcategori | es.                                   |           |
| <ul> <li>a. Compare emission estimates</li> <li>to results from previous</li> <li>inventories and review any</li> <li>unusual increases or decreases.</li> <li>Compare national-level</li> <li>estimates as well as category</li> <li>and subcategory estimates.</li> </ul> | 9/27/20<br>23       | A. Anderson                        | Y                        | 9/27/2023   | A.<br>Anderson                        | QA.xslsx  |
| b. Check against independent<br>estimates of emissions and/or<br>removals based on alternative<br>methods.                                                                                                                                                                  | 9/27/20<br>23       | A. Anderson                        | N                        | 9/27/2023   | A. Anders<br>on                       | QA.xlsx   |
| Who completes this table: QA/QC Coordinator, with NIC and Sector/Category Leads                                                                                                                                                                                             |                     |                                    |                          |             |                                       |           |
|                                                                                                                                                                                                                                                                             |                     |                                    |                          |             |                                       |           |

### **Step 5:** Establish QA activities



Enter information into Table 4-5 for each category

#### **Table 4-5. Comments from External Reviewers**

| Name | Organizatio<br>n | Area of<br>Expertise | Sector/Cat<br>egory | Contact<br>Information | Date<br>Comments<br>Received | Comment Summary |
|------|------------------|----------------------|---------------------|------------------------|------------------------------|-----------------|
|      |                  |                      |                     |                        |                              |                 |
|      |                  |                      |                     |                        |                              |                 |
|      |                  |                      |                     |                        |                              |                 |
|      |                  |                      |                     |                        |                              |                 |

Who completes this table: Sector/Category Leads



#### Table 4-5. Comments from External Reviewers

| Name           | Organizatio<br>n  | Area of Expertise     | Sector/Category | Contact<br>Information           | Date<br>Comments<br>Received | Comment Summary                                                   |
|----------------|-------------------|-----------------------|-----------------|----------------------------------|------------------------------|-------------------------------------------------------------------|
| Jane Expert    | Auto Corp         | Mobile Sources        |                 | (111) 234-5678<br>jane@auto.com  | 3/18/22                      | A country specific emission factor is possible to calculate using |
| John<br>Expert | Univ. Of<br>Place | Power plant<br>models |                 | (211) 234-5678<br>john@place.edu | 3/18/22                      | The number of iterations in the model should be increased because |
|                |                   |                       |                 |                                  |                              |                                                                   |
|                |                   |                       |                 |                                  |                              |                                                                   |

Who completes this table: Sector/Category Leads

#### **Expert Reviewers**



- Ideally independent of the inventory agency
- Should be affiliated with other agencies, research facilities, international organizations, or others with relevant expertise
- Could also be affiliated with data supplying agencies/ organizations, national education institutions, or trade associations if applicable
- How to identify
  - Sector/Category Leads should provide recommendations
  - The QA/QC coordinator should maintain these recommendations and ask for updates at the beginning of each Inventory cycle

### Step 6: Implement the QA/QC Plan



#### Table 4-6. Timeline of communication and implementation of the QA/QC plan

| Activity                                                                                                                                  | Timeline (When the activity will occur) | Outcome (Description of results of<br>the activity) | Potential Improvements (How the activity<br>may be modified to produce a better<br>outcome) |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Create or update the QA/QC plan                                                                                                           |                                         |                                                     |                                                                                             |
| Distribute the plan to<br>each inventory<br>compilation team<br>member or external<br>expert                                              |                                         |                                                     |                                                                                             |
| Engage with members<br>of the inventory team<br>and external experts to<br>ensure procedures and<br>purpose of the QA/QC<br>plan is clear |                                         |                                                     |                                                                                             |

### Example of Table 4-6



#### Table 4-6. Timeline of communication and implementation of the QA/QC plan

| Activity                                                                                                                                  | Timeline (When the activity will occur) | Outcome (Description of results of<br>the activity)                                                                                       | Potential Improvements (How the activity<br>may be modified to produce a better<br>outcome)                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Create or update the QA/QC plan                                                                                                           | Update plan by June 30<br>each year     | 1.                                                                                                                                        | In addition to the Expert Review and Public Review QA processes, a potential                                                                                 |  |
| Distribute the plan to<br>each inventory<br>compilation team<br>member or external<br>expert                                              | Identify by July 14                     | Inventory. Categories to undergo                                                                                                          | improvement is to conduct an internal<br>peer review QC process by inventory team<br>members to focus on consistency and<br>clarify of inventory information |  |
| Engage with members<br>of the inventory team<br>and external experts to<br>ensure procedures and<br>purpose of the QA/QC<br>plan is clear | No later than July 31                   | Ideally determine any steps or actions<br>that are unclear to inventory team so<br>each member understands fully the<br>purpose and role. | Update any steps that are unclear to inventory team                                                                                                          |  |

## Step 7: Propose Improvements



Enter information into Table 4-7 for each category

### Table 4-7. Potential Improvements to the GHG inventory

| Торіс        | Category Code<br>and Name | Issue | Improvement<br>Option | Relevant Inventory Quality<br>Principle |
|--------------|---------------------------|-------|-----------------------|-----------------------------------------|
| [Enter text] |                           |       |                       |                                         |
|              |                           |       |                       |                                         |
|              |                           |       |                       |                                         |
|              |                           |       |                       |                                         |

Who completes this table: Sector/Category Leads



### Table 4-7. Potential Improvements to the GHG inventory

| Торіс     | Category Code<br>and Name   | Issue                                   | Improvement Option                                                               | Relevant Inventory<br>Quality Principle |
|-----------|-----------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| Equations | 5.1 Enteric<br>Fermentation | Implement year-specific milk fat values | Use Ministry of Agriculture reports<br>to update milk fat percentage<br>annually | Accuracy                                |
|           |                             |                                         |                                                                                  |                                         |
|           |                             |                                         |                                                                                  |                                         |
|           |                             |                                         |                                                                                  |                                         |

Who completes this table: Sector/Category Leads



Checklists to track tasks may help the **QA/QC Coordinator** track progress of the development of the overall QA/QC plan, and QA/QC activities throughout the process, these include:

### • QA/QC Coordinator Checklist

- Developing, periodically reviewing, and updating the QA/QC plan
- Managing and delivery documentation of QA/QC activities to the NIC and Archiving Coordinator (see Template 2. Institutional Arrangements)

| Activities                                                                   | Procedure Completed |           |  |
|------------------------------------------------------------------------------|---------------------|-----------|--|
|                                                                              | Name                | Date      |  |
| 1. Communicate and clarify QA/QC responsibilities to inventory team members. | B. Wilson           | 9/30/2023 |  |

## Additional Forms & Checklists, continued



- National Inventory Coordinator (NIC) Checklist: Cross-Cutting Checks for Overall Inventory Quality
  - Check t hat calculations using the same data inputs (e.g., animal population data) report comparable values and units (e.g., magnitude)
  - Ensure that trends are explained, especially when there is a departure from expected trends
- National Inventory Coordinator (NIC) Checklist: Detailed Checklist for National Inventory Document (NID)
  - Ensuring the correct year and current trends discussion are included
  - Checking that table formatting is consistent across NID

## Expert Review Elicitation Template



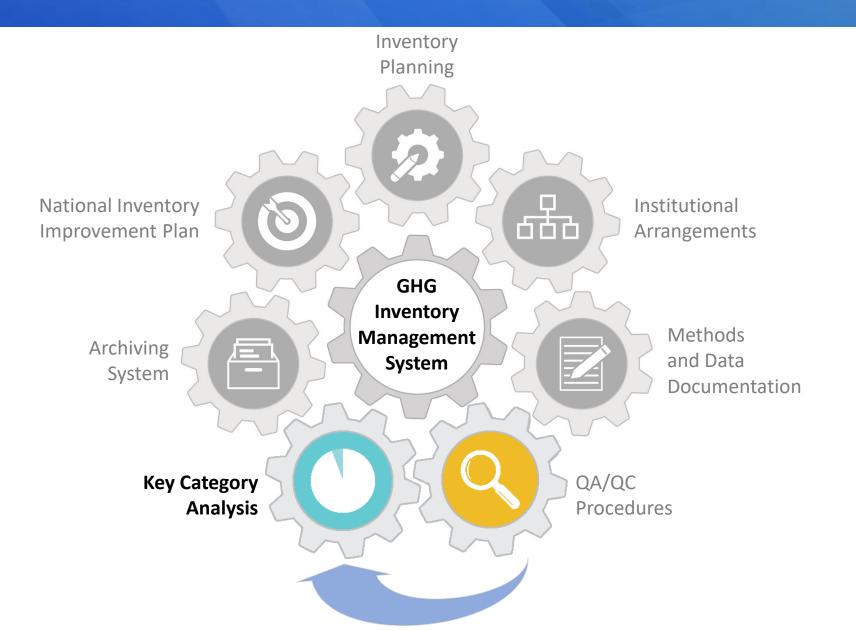
- The suggested text walks through examples of a memorandum including:
  - Subject Line
  - Introduction
  - Categories to be reviewed
  - Relevant updates
    - Meaning the categories where methodological updates have been applied, summarize the updates
  - General Questions
  - Sector/Category-specific Questions
  - Submitting feedback
    - Instruct the reviewer how and when you would like the feedback to be returned, as well as a contact in case they have questions

## Action Items for QA/QC Procedures



- 1. Assign specific QA/QC responsibilities
- 2. Develop your QA/QC Plan, and include budget information
- 3. Communicate QA/QC Plan with the whole inventory compilation team
  - 1. The National Inventory Inception Memorandum Template is an effective way to document and communicate the QA/QC plan
- 4. Establish a process and schedule for the QA review
- 5. Identify potential improvements to QA/QC during the process
  - This will make the National Inventory Improvement Plan (Template 7) easier to complete

\*\*Make sure the whole inventory team understand the inventory QA/QC plan and know what their roles and responsibilities are\*\*

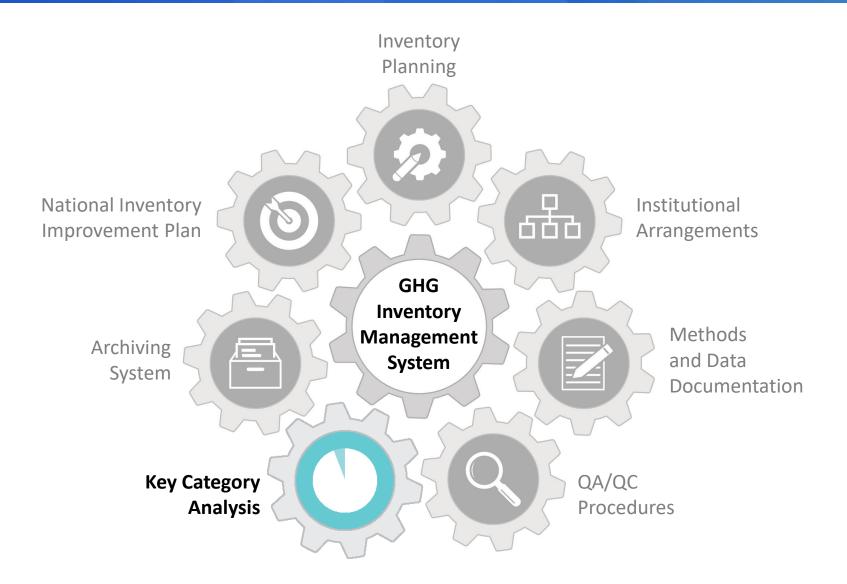

### Other Resources



- The *Managing National GHG Inventory Process* handbook is a good source:
  - Pages 27-28: QC Procedures
  - Page 47-48: Can ask peer review questions of own inventory
- Handbook on Measurement, Reporting and Verification For Developing Country Parties
- <u>Guide For Peer Review of National GHG Inventories</u>

### Next template...






# Questions?



### Key Category Analysis





### Poll Questions - Mentimeter



### Go to www.menti.com

Enter the code

## 8125 9360

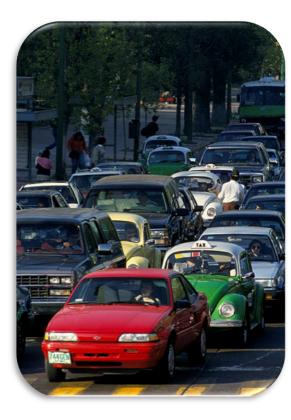


Or use QR code

## What is a Key Category?






2006 IPCC Volume 1, Chapter 4

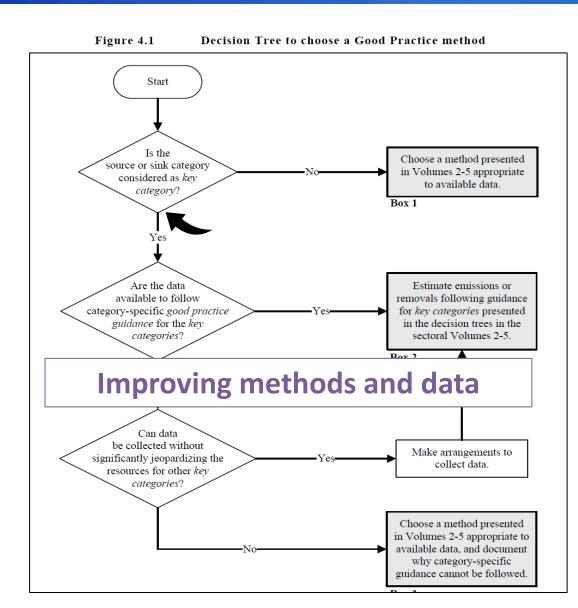
A <u>category</u> that is prioritized within the national inventory system because its <u>estimate</u> has a **significant influence** on a country's <u>total inventory</u> of greenhouse gases in terms of the **absolute level, the trend, or the uncertainty in emissions and removals.** 

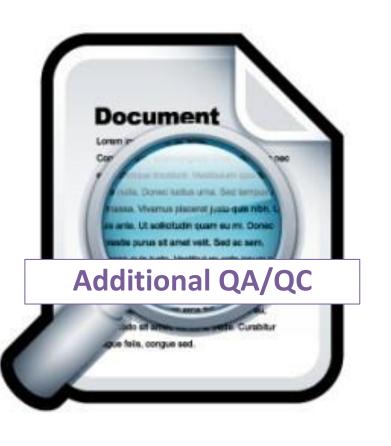
### Example Key Source and Sink Categories



Absolute level contribution to total emissions




Trend: High growth rate in emissions




Uncertainty in emissions or removals



## Prioritizing Key Categories in National GHG Inventories





## How to Identify Key Categories





## How to Identify Key Categories



### **Quantitative Approaches**

### **Qualitative Approaches**

 Use emission and sink estimates and uncertainty analysis results to analyze actual category contribution to both overall emissions and sinks and uncertainty.



## How to Identify Key Categories



#### **Qualitative Approaches Quantitative Approaches** Completeness: If there are • known categories that are Use emission and sink excluded from the inventory, estimates and uncertainty consider qualitive criteria to analysis results to analyze identify any additional key actual category contribution categories. to both overall emissions and sinks and uncertainty. ۲

 Other qualitative criteria include expected growth, lack of quantified uncertainty assessment, and mitigation effects

## Quantitative Assessment for Identifying Key Categories



- Approach 1 sorts and ranks source and sink categories according to their absolute contribution to total emissions and removals and identifies categories that collectively contribute 95% of total national emissions and removals
  - ✓ A "level assessment" looks at a particular year
  - ✓ A "trend assessment" looks at the category trend relative to national trend in emissions and removals
- Approach 2 is similar, but sorts and ranks category estimates according to their absolute contribution weighted by uncertainty, and identifies categories that collectively contribute 90% of uncertainty weighted total national emissions and removals

**Note:** If using the IPCC Inventory Software, quantitative KCA is performed automatically by the software as data is entered – no need to process separately. Future reporting tools will also automate implementation of Approach 1 for identifying key categories.



### Before you get started:

- 1. Identify roles Decide who will conduct the KCA (e.g., National Inventory Coordinator).
- 2. Organize your inventory estimates in at disaggregation levels consistent with IPCC guidance: estimates are organized by the categories, subcategories where applicable, and gases as outlined in the 2006 IPCC Guidelines, Volume 1, Chapter 4, Table 4.1.

 $\rightarrow$  Perform analysis including and excluding LULUCF sector

### 2006 IPCC Equation for a Level Assessment (Approach 1)

#### Equation 4.1 Level Assessment (Approach 1)

$$L_{x,t} = \left| E_{x,t} \right| / \sum_{v} \left| E_{y,t} \right|$$

#### Where,

- = Level assessment of source or sink category x in latest inventory year (year t)
- = absolute value of emission or removal estimate of source or sink category x in year t
- $\sum_{y} |E_{y,t}|$  = total contribution, which is the sum of the absolute values of emissions and removals in year t calculated using the aggregation level chosen by the country for key category analysis.

**Step 1)** List all inventory categories for year of level analysis (e.g., latest reported year)

| Emission Category | Gas | Gg CO <sub>2</sub> eq. |
|-------------------|-----|------------------------|
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |
|                   |     |                        |

**Step 1)** List all inventory categories for year of level analysis (e.g., latest reported year)

| Emission Category                          | Gas              | Gg CO <sub>2</sub> eq. |
|--------------------------------------------|------------------|------------------------|
| Energy Industries (solid fuel)             | CO <sub>2</sub>  | 300                    |
| Road Transportation                        | CO <sub>2</sub>  | 110                    |
| Iron and Steel Production                  | CO <sub>2</sub>  | 90                     |
| Iron and Steel Production                  | CH <sub>4</sub>  | 1                      |
| Forest Land Remaining Forest Land          | CO <sub>2</sub>  | -190                   |
| Croplands Remaining Croplands              | CO <sub>2</sub>  | 6                      |
| Product Uses as ODS Substitutes (Aerosols) | HFC&PFC          | 4                      |
| Enteric Fermentation                       | CH <sub>4</sub>  | 100                    |
| Manure Management                          | N <sub>2</sub> O | 80                     |
| Cement Production                          | CO <sub>2</sub>  | 30                     |
| Rice Cultivation                           | CH <sub>4</sub>  | 50                     |

**Important good practice:** The analysis should be performed at appropriate level of aggregation (i.e., at level at which you estimate IPCC categories or subcategories, per methods and decision trees).

| А                  | в                                         | С                | D                           | E           | F       | G                                  |
|--------------------|-------------------------------------------|------------------|-----------------------------|-------------|---------|------------------------------------|
| IPCC Category code | IPCC Category                             | Greenhouse gas   | 1994<br>Ex.t<br>(Gg CO2 Eq) | (Gg CO2 Eq) | Lx,t    | Cumulative<br>Total of Column<br>F |
| 2.G                | Other Product Manufacture and Use         | SF6, PFCs        | 753201.6125                 | 753201.6125 | 0.7526  | 0.752                              |
| 2.F.6              | Other Applications (please specify)       | HFCs, PFCs       | 70736                       | 70736       | 0.07068 | 0.8232                             |
| 1.A.1              | Energy Industries - Solid Fuels           | CARBON DIOXID_   | 29743.85                    | 29743.85    | 0.02972 | 0.85                               |
| 2.F.5              | Solvents                                  | HFCs, PFCs       | 27420                       | 27420       | 0.0274  | 0.880                              |
| 1.B.2.a            | Oil                                       | NITROUS OXIDE_   | 26988.6                     | 26988.6     | 0.02697 | 0.9073                             |
| 3.D.1              | Harvested Wood Products                   | CARBON DIOXID_   | -22505.91952                | 22505.91952 | 0.02249 | 0.9298                             |
| 2.E                | Electronics Industry                      | SF6, PFCs, HFCs_ | 20600.3124                  | 20600.3124  | 0.02058 | 0.9504                             |
| 1.A.3.b            | Road Transportation                       | CARBON DIOXID    | 13448.0555                  | 13448.0555  | 0.01344 | 0.9638                             |
| 4.C                | Incineration and Open Burning of Waste    | CARBON DIOXID    | 7704.54027                  | 7704.54027  | 0.0077  | 0.9715                             |
| 4.A                | Solid Waste Disposal                      | METHANE (CH4)    | 3705.3582                   | 3705.3582   | 0.0037  | 0.9752                             |
| 1.A.2              | Manufacturing Industries and Construction | CARBON DIOXID    | 3516.442                    | 3516.442    | 0.00351 | 0.9787                             |
| 1.A1               | Energy Industries - Liquid Fuels          | CARBON DIOXID    | 3387.944                    | 3387.944    | 0.00339 | 0.9821                             |
| 2.G                | Other Product Manufacture and Use         | NITROUS OXIDE (  | 3349.9096                   | 3349.9096   | 0.00335 | 0.9855                             |
| 2.D                | Non-Energy Products from Euels and Solv.  | CARBON DIOXID.   | 3342,603                    | 3342,603    | 0.00334 | 0.9888                             |

**Step 2)** Sort in descending order by contribution to total emissions (absolute values)

| Gas             | Gg CO <sub>2</sub> eq.                                                                                                                                                                                      | Cumulative %                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $CO_2$          | 300                                                                                                                                                                                                         |                                                                                                                                |
| $CO_2$          | 190                                                                                                                                                                                                         |                                                                                                                                |
| $CO_2$          | 110                                                                                                                                                                                                         |                                                                                                                                |
| $CH_4$          | 100                                                                                                                                                                                                         |                                                                                                                                |
| $CO_2$          | 90                                                                                                                                                                                                          |                                                                                                                                |
| $N_2O$          | 80                                                                                                                                                                                                          |                                                                                                                                |
| $CH_4$          | 50                                                                                                                                                                                                          |                                                                                                                                |
| CO <sub>2</sub> | 30                                                                                                                                                                                                          |                                                                                                                                |
| $CO_2$          | 6                                                                                                                                                                                                           |                                                                                                                                |
| HFC&PFC         | 4                                                                                                                                                                                                           |                                                                                                                                |
| CH <sub>4</sub> | 1                                                                                                                                                                                                           |                                                                                                                                |
|                 | $\begin{array}{c} \text{CO}_2 \\ \text{CO}_2 \\ \text{CO}_2 \\ \text{CH}_4 \\ \text{CO}_2 \\ \text{N}_2 \text{O} \\ \text{CH}_4 \\ \text{CO}_2 \\ \text{CO}_2 \\ \text{CO}_2 \\ \text{HFC&PFC} \end{array}$ | $CO_2$ 300 $CO_2$ 190 $CO_2$ 110 $CO_2$ 100 $CO_2$ 90 $CO_2$ 90 $CO_2$ 90 $CO_2$ 30 $CO_2$ 30 $CO_2$ 6         HFC&PFC       4 |

**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

| Emission Category                             | Gas              | Gg CO <sub>2</sub> eq. | Cumulative % |
|-----------------------------------------------|------------------|------------------------|--------------|
| Energy Industries (solid fuel)                | CO <sub>2</sub>  | 300                    |              |
| Forest Land Remaining Forest Land             | CO <sub>2</sub>  | 190                    |              |
| Road Transport                                | CO <sub>2</sub>  | 110                    |              |
| Enteric Fermentation                          | CH <sub>4</sub>  | 100                    |              |
| Iron and Steel Production                     | CO <sub>2</sub>  | 90                     |              |
| Manure Management                             | N <sub>2</sub> O | 80                     |              |
| Rice Cultivation                              | CH <sub>4</sub>  | 50                     |              |
| Cement Production                             | CO <sub>2</sub>  | 30                     |              |
| Croplands Remaining Croplands                 | $CO_2$           | 6                      |              |
| Product Uses as ODS Substitutes<br>(Aerosols) | HFC&PF           | 4                      |              |
| Iron and Steel Production                     | CH4              | 1                      | L            |
|                                               | ·                | <b>TOTAL : 961</b>     |              |

**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

| Emission Category                             | Gas              | Gg CO <sub>2</sub> eq. | Cumulative %     |   |
|-----------------------------------------------|------------------|------------------------|------------------|---|
| Energy Industries (solid fuel)                | CO <sub>2</sub>  | 300                    | = 300/961 × 100% | = |
| Forest Land Remaining Forest Land             | $CO_2$           | 190                    |                  |   |
| Road Transport                                | $CO_2$           | 110                    |                  |   |
| Enteric Fermentation                          | $CH_4$           | 100                    |                  |   |
| Iron and Steel Production                     | $CO_2$           | 90                     |                  |   |
| Manure Management                             | N <sub>2</sub> O | 80                     |                  |   |
| Rice Cultivation                              | CH <sub>4</sub>  | 50                     |                  |   |
| Cement Production                             | CO <sub>2</sub>  | 30                     |                  |   |
| Croplands Remaining Croplands                 | $CO_2$           | 6                      |                  |   |
| Product Uses as ODS Substitutes<br>(Aerosols) | HFC&PFC          | 4                      |                  |   |
| Iron and Steel Production                     | $CH_4$           | 1                      |                  |   |

### **TOTAL : 961**

**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

| Gas             | Gg CO <sub>2</sub> eq.                                                                            | Cumulative %                                                                                                                 |                                                                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO <sub>2</sub> | 300                                                                                               | 31%                                                                                                                          |                                                                                                                                                                                |
| CO <sub>2</sub> | 190                                                                                               | = [(190/961)*100]<br>+ <b>31%</b>                                                                                            | = 20% + 31% = 51%                                                                                                                                                              |
| CO <sub>2</sub> | 110                                                                                               |                                                                                                                              |                                                                                                                                                                                |
| $CH_4$          | 100                                                                                               |                                                                                                                              |                                                                                                                                                                                |
| $CO_2$          | 90                                                                                                |                                                                                                                              |                                                                                                                                                                                |
| $N_2O$          | 80                                                                                                |                                                                                                                              |                                                                                                                                                                                |
| CH <sub>4</sub> | 50                                                                                                |                                                                                                                              |                                                                                                                                                                                |
| CO <sub>2</sub> | 30                                                                                                |                                                                                                                              |                                                                                                                                                                                |
| $CO_2$          | 6                                                                                                 |                                                                                                                              |                                                                                                                                                                                |
|                 |                                                                                                   |                                                                                                                              |                                                                                                                                                                                |
| HFC&PFC         | 4                                                                                                 |                                                                                                                              |                                                                                                                                                                                |
| $CH_4$          |                                                                                                   |                                                                                                                              | 64                                                                                                                                                                             |
|                 | $CO_2$<br>$CO_2$<br>$CO_2$<br>$CH_4$<br>$CO_2$<br>$N_2O$<br>$CH_4$<br>$CO_2$<br>$CO_2$<br>HFC&PFC | $CO_2$ 300 $CO_2$ 190 $CO_2$ 110 $CO_2$ 90 $CO_2$ 90 $N_2O$ 80 $CO_2$ 30 $CO_2$ 30 $CO_2$ 6         HFC&PFC       4 $CH_4$ 1 | $CO_2$ $300$ $31\%$ $CO_2$ $190$ $= [(190/961)*100]$<br>$+ 31\%$ $CO_2$ $110$ $CO_2$ $110$ $CH_4$ $100$ $CO_2$ $90$ $N_2O$ $80$ $CH_4$ $50$ $CO_2$ $30$ $CO_2$ $6$ HFC&PFC $4$ |

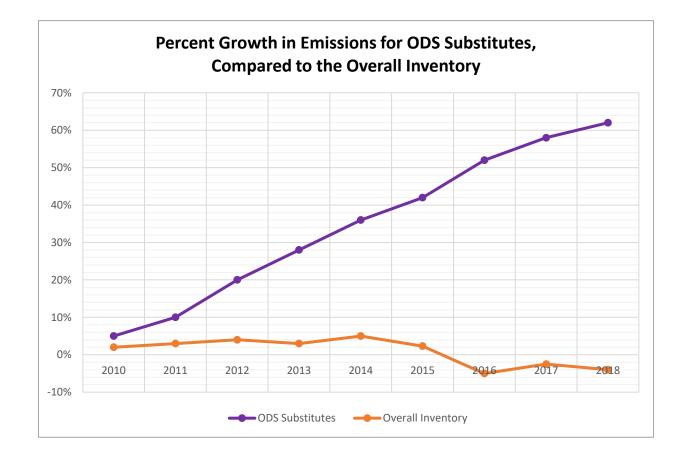
**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

| Emission Category                             | Gas              | Gg CO2 ea. | Cumulative % |                                    |
|-----------------------------------------------|------------------|------------|--------------|------------------------------------|
| Energy Industries (solid fuel)                | CO <sub>2</sub>  | 300        | 31%          | Sum to 95%                         |
| Forest Land Remaining Forest Land             | $CO_2$           | 190        | 51%          | 1                                  |
| Road Transport                                | $CO_2$           | 110        | 62%          | These are key                      |
| Enteric Fermentation                          | CH <sub>4</sub>  | 100        | 73%          | categories                         |
| Iron and Steel Production                     | CO <sub>2</sub>  | 90         | 82%          | identified by                      |
| Manure Management                             | N <sub>2</sub> O | 80         | 91%          | the approach 3                     |
| Rice Cultivation                              | CH <sub>4</sub>  | 50         | 96%          | level                              |
| Cement Production                             | CO <sub>2</sub>  | 30         | 99%          | assessment                         |
| Croplands Remaining Croplands                 | $CO_2$           | 6          | 99%          | (including                         |
| Product Uses as ODS Substitutes<br>(Aerosols) | HFC&PFC          | 4          | 99.9%        | LULUCF) for the<br>latest reported |
| Iron and Steel Production                     | $CH_4$           | 1          | 100%         | year                               |



**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

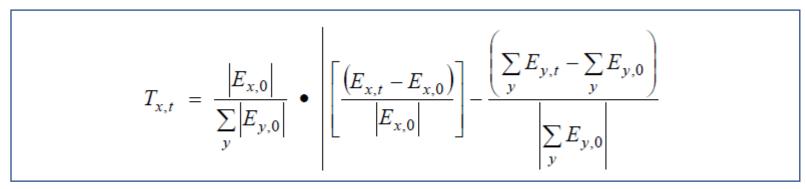
| Emission Category                             | Gas              | Gg CO <sub>2</sub> eq. | Cumulative % |                   |
|-----------------------------------------------|------------------|------------------------|--------------|-------------------|
| Energy Industries (solid fuel)                | CO <sub>2</sub>  | 300                    | 31%          |                   |
| Forest Land Remaining Forest Land             | CO <sub>2</sub>  | 190                    | 51%          |                   |
| Road Transport                                | $CO_2$           | 110                    | 62%          | <b>Sum to 95%</b> |
| Enteric Fermentation                          | $CH_4$           | 100                    | 73%          | ſ                 |
| Iron and Steel Production                     | CO <sub>2</sub>  | 90                     | 82%          |                   |
| ivianure ivianagement                         | N <sub>2</sub> O | 80                     | 91%          |                   |
| Rice Cultivation                              | CH <sub>4</sub>  | 50                     | 96%          |                   |
| Cement Production                             | $CO_2$           | 30                     | 99%          |                   |
| Croplands Remaining Croplands                 | $CO_2$           | 6                      | 99%          |                   |
| Product Uses as ODS Substitutes<br>(Aerosols) | HFC&PFC          | 4                      | 99.9%        |                   |
| Iron and Steel Production                     | CH <sub>4</sub>  | 1                      | 100%         |                   |
|                                               |                  |                        |              |                   |


**Step 3)** Sum cumulative contribution of sources and sinks in absolute, descending order until you reach 95%

| Emission Category                 | Gas              | Gg CO <sub>2</sub> eq. | Cumulative % |
|-----------------------------------|------------------|------------------------|--------------|
| Energy Industries (solid fuel)    | CO <sub>2</sub>  | 300                    | 31%          |
| Forest Land Remaining Forest Land | CO <sub>2</sub>  | 190                    | 51%          |
| Road Transport                    | CO <sub>2</sub>  | 110                    | 62%          |
| Enteric Fermentation              | $CH_4$           | 100                    | 73%          |
| Iron and Steel Production         | CO <sub>2</sub>  | 90                     | 82%          |
| Manure Management                 | N <sub>2</sub> O | 80                     | 91%          |
| Rice Cultivation                  | $CH_4$           | 50                     | 96%          |
| Sement Production                 |                  | 30                     | 99%          |
| Croplands Remaining Croplands     | $CO_2$           | 6                      | 99%          |
| Product Uses as ODS Substitutes   | HFC&PFC          | Λ                      | 00.0%        |
| (Aerosols)                        |                  | 4                      | 99.9%        |
| Iron and Steel Production         | CH <sub>4</sub>  | 1                      | 100%         |

ETF reporting guidelines provide flexibility for developing countries, in light of their capacities, to instead use a threshold of no lower than 85% to allow focus on improving fewer categories

### Quantitative Assessment: Trend Assessment






A trend assessment looks at a category's relative changes in emissions over time, instead of the contribution of a category to the total emission estimates for a country in a particular year (2006 IPCC GL).

### 2006 IPCC Equation for a Trend Assessment (Approach 1)

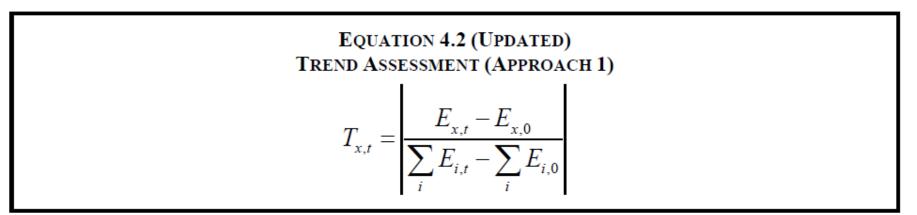
#### Equation 4.2 Trend Assessment (Approach 1)



#### Where,

 $T_{x,t}$  = trend assessment of source or sink category x in year t as compared to the base year (year 0)

 $|E_{x,0}|$  = absolute value of emission or removal estimate of source or sink category x in year 0


 $E_{x,t and} E_{x,0}$  = real values of estimates of source or sink category x in years t and 0, respectively

 $\sum_{y} E_{y,t}$  and  $\sum_{y} E_{y,0}$  = total inventory estimates in years *t* and 0, respectively

Note if base year = zero, activity was not occurring than use equation 4.3 to calculate trend assessment EQUATION 4.3 TREND ASSESSMENT WITH ZERO BASE YEAR EMISSIONS  $T_{x,t} = \left| E_{x,t} / \sum_{y} \left| E_{y,0} \right| \right|$ 

### 2019 Refinement Equation for Trend Assessment (Approach 1) Updated/Simplified

Improved approach to identifying categories whose trend contributes to the trend of the overall inventory, which may not be captured by level assessment.



Where:

 $T_{x,t}$  = trend assessment of source or sink category x in year t as compared to the base year (year 0)

 $E_{x,0}$  and  $E_{x,t}$  = value of emission or removal estimate of source or sink category x in year 0 and year t

 $\sum_{i} E_{i,t} \text{ and } \sum_{i} E_{i,0} = \text{total inventory estimates in years } t \text{ and } 0, \text{ respectively}$ for i = 1, ..., n



| Emission Category                          | Gas                 | 1990       | 2018       | Trend<br>Assessment | %<br>Contribution<br>to Trend                                                                       | Cumulative<br>Total |  |
|--------------------------------------------|---------------------|------------|------------|---------------------|-----------------------------------------------------------------------------------------------------|---------------------|--|
|                                            |                     | Gg CO₂ eq. | Gg CO₂ eq. |                     | Per 2006 IPCC                                                                                       |                     |  |
| Energy Industries (solid fuel)             | CO <sub>2</sub>     | 200        | 300        | =                   | calculated as the difference between the                                                            |                     |  |
| Forest Land Remaining Forest Land          | CO <sub>2</sub>     | -210       | -190       |                     | trend of each category<br>(the change in category                                                   |                     |  |
| Road Transport                             | CO <sub>2</sub>     | 60         | 110        |                     |                                                                                                     |                     |  |
| Enteric Fermentation                       | $CH_4$              | 80         | 100        |                     | between the base and                                                                                |                     |  |
| Iron and Steel Production                  | CO <sub>2</sub>     | 120        | 90         |                     | current year) and trend<br>of the total inventory                                                   |                     |  |
| Manure Management                          | CO <sub>2</sub>     | 70         | 80         |                     | (the change in                                                                                      | ,                   |  |
| Rice Cultivation                           | $CH_4$              | 45         | 50         |                     | inventory emi                                                                                       | ssions over         |  |
| Cement Production                          | CO <sub>2</sub>     | 35         | 30         |                     | time), weighte                                                                                      | ,                   |  |
| Croplands Remaining Croplands              | $N_2O$              | 8          | 6          |                     | relative contribution of<br>this category to absolute<br>total emissions in the<br>base year (level |                     |  |
| Product Uses as ODS Substitutes (Aerosols) | HFC&PF              | C 1        | 4          |                     |                                                                                                     |                     |  |
| Iron and Steel Production                  | CH <sub>4</sub>     | 1.5        | 1          |                     |                                                                                                     |                     |  |
|                                            | <b>TOTAL: 410.5</b> |            | TOTAL: 58  | 1                   | assessment in base year).                                                                           |                     |  |



| Emission Category                          | Gas              | 1990       | 2018                   | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total |
|--------------------------------------------|------------------|------------|------------------------|---------------------|-------------------------------|---------------------|
|                                            |                  | Gg CO2 eq. | Gg CO <sub>2</sub> eq. |                     |                               |                     |
| Energy Industries (solid fuel)             | CO <sub>2</sub>  | 200        | 300                    | 0.02                |                               |                     |
| Forest Land Remaining Forest Land          | CO <sub>2</sub>  | -210       | -190                   | 0.08                |                               |                     |
| Road Transport                             | CO <sub>2</sub>  | 60         | 110                    | 0.03                |                               |                     |
| Enteric Fermentation                       | CH <sub>4</sub>  | 80         | 100                    | 0.02                |                               |                     |
| Iron and Steel Production                  | CO <sub>2</sub>  | 120        | 90                     | 0.1                 |                               |                     |
| Manure Management                          | CO <sub>2</sub>  | 70         | 80                     | 0.02                |                               |                     |
| Rice Cultivation                           | CH <sub>4</sub>  | 45         | 50                     | 0.02                |                               |                     |
| Cement Production                          | CO <sub>2</sub>  | 35         | 30                     | 0.02                |                               |                     |
| Croplands Remaining Croplands              | N <sub>2</sub> O | 8          | 6                      | 0.01                |                               |                     |
| Product Uses as ODS Substitutes (Aerosols) | HFC&PFC          | 1          | 4                      | 0.00                |                               |                     |
| Iron and Steel Production                  | CH <sub>4</sub>  | 1.5        | 1                      | 0.00                |                               |                     |
|                                            |                  |            |                        | TOTAL: 0.32         |                               |                     |

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

### Quantitative Assessment: Conducting an Approach 1 Trend Assessment (w/LULUCF)



| Emission Category                                      | Gas                | 1990       | 2018       | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total |
|--------------------------------------------------------|--------------------|------------|------------|---------------------|-------------------------------|---------------------|
|                                                        |                    | Gg CO₂ eq. | Gg CO₂ eq. |                     |                               |                     |
| Energy Industries (solid fuel)                         | CO <sub>2</sub>    | 200        | 300        | 0.02                | 6%                            |                     |
| Forest Land Remaining Forest Land                      | CO <sub>2</sub>    | -210       | -190       | 0.08                | 25%                           |                     |
| Road Transport                                         | CO <sub>2</sub>    | 60         | 110        | 0.03                | 10%                           |                     |
| Enteric Fermentation                                   | $CH_4$             | 80         | 100        | 0.02                | 5%                            |                     |
| Iron and Steel Production                              | CO <sub>2</sub>    | 120        | 90         | 0.1                 | 30%                           |                     |
| Manure Management                                      | CO <sub>2</sub>    | 70         | 80         | 0.02                | 7%                            |                     |
| Rice Cultivation                                       | $CH_4$             | 45         | 50         | 0.02                | 5%                            |                     |
| Cement Production                                      | CO <sub>2</sub>    | 35         | 30         | 0.02                | 7%                            |                     |
| Croplands Remaining Croplands                          | N <sub>2</sub> O   | 8          | 6          | 0.01                | 2%                            |                     |
| Product Uses as ODS Substitutes (Aerosols)             | HFC&PFC            | 1          | 4          | 0.00                | 1%                            |                     |
| Iron and Steel Production                              | CH <sub>4</sub>    | 1.5        | 1          | 0.00                | 0%                            |                     |
| Follow equations in 2006 IDCC CLs. Volume 1. Chapter / | <b>TOTAL: 0.32</b> |            |            |                     |                               |                     |

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

#### Quantitative Assessment: Conducting an Approach 1 Trend Assessment



| Emission Category                          | Gas              | <b>1990</b><br>Gg CO2 eq. | <b>2018</b><br>Gg CO2 eq. | Trend<br>Assessment | %<br>Contribution<br>to Trend | Cumulative<br>Total |
|--------------------------------------------|------------------|---------------------------|---------------------------|---------------------|-------------------------------|---------------------|
| Iron and Steel Production                  | CO <sub>2</sub>  | 120                       | 90                        | 0.02                | 30%                           | 30%                 |
| Forest Land Remaining Forest Land          | CO2              | -210                      | -190                      | 0.08                | 25%                           | 56%                 |
| Road Transport                             | CO <sub>2</sub>  | 60                        | 110                       | 0.03                | 10%                           | 65%                 |
| Cement Production                          | CO <sub>2</sub>  | 35                        | 30                        | 0.02                | 7%                            | 73%                 |
| Manure Management                          | CO <sub>2</sub>  | 70                        | 80                        | 0.1                 | 7%                            | 80%                 |
| Energy Industries (solid fuel)             | CO2              | 200                       | 300                       | 0.02                | 6%                            | 86%                 |
| Rice Cultivation                           | CH <sub>4</sub>  | 45                        | 50                        | 0.02                | 5%                            | 92%                 |
| Enteric Fermentation                       | CH₄              | 80                        | 100                       | 0.02                | 5%                            | ە97°ە               |
| Croplands Remaining Croplands              | N <sub>2</sub> O | 8                         | G                         | 0.01                | 2%                            | 99%                 |
| Product Uses as ODS Substitutes (Aerosols) | HFC&PFC          | 1                         | 4                         | 0.00                | 10/                           | Sum to              |
| Iron and Steel Production                  | CH₄              | 1.5                       | 1                         | 0.00                | 0%                            | 95%                 |
|                                            |                  |                           |                           | TOTAL:              |                               |                     |

0.32

Follow equations in 2006 IPCC GLs, Volume 1, Chapter 4 to calculate Trend Assessment

#### 2006 IPCC Equation for a Level orTrend Assessment (Approach 2)

EQUATION 4.4 LEVEL ASSESSMENT (APPROACH 2)

$$LU_{x,t} = \left(L_{x,t} \bullet U_{x,t}\right) / \sum_{y} \left[\left(L_{y,t} \bullet U_{y,t}\right)\right]$$

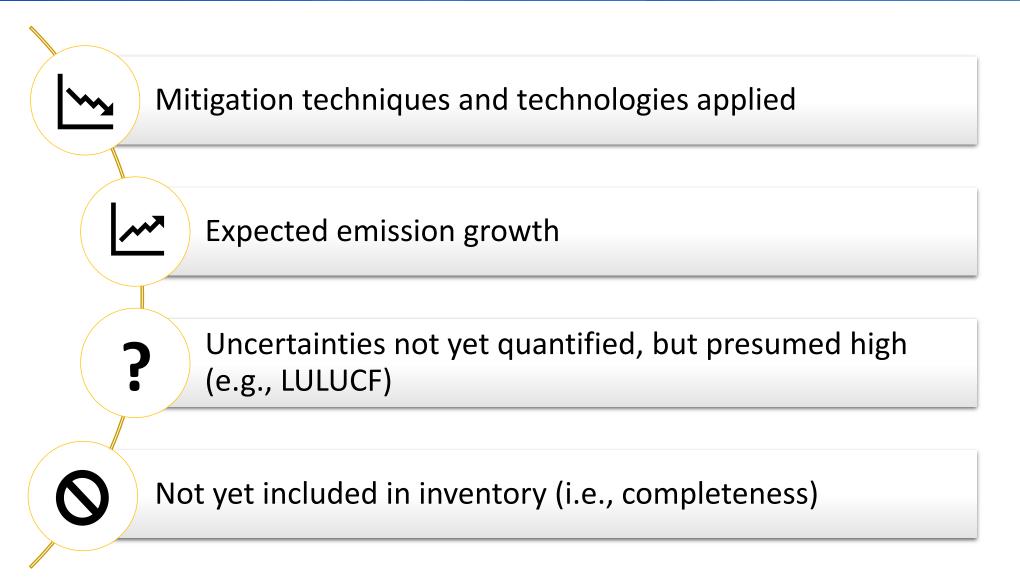
Where:

- $LU_{x,t}$  = level assessment for category x in latest inventory year (year t) with uncertainty
- $L_{x,t}$  = computed as in Equation 4.1
- $U_{x,t}$  = category percentage uncertainty in year t

EQUATION 4.5 TREND ASSESSMENT (APPROACH 2)  $TU_{x,t} = (T_{x,t} \bullet U_{x,t})$ 

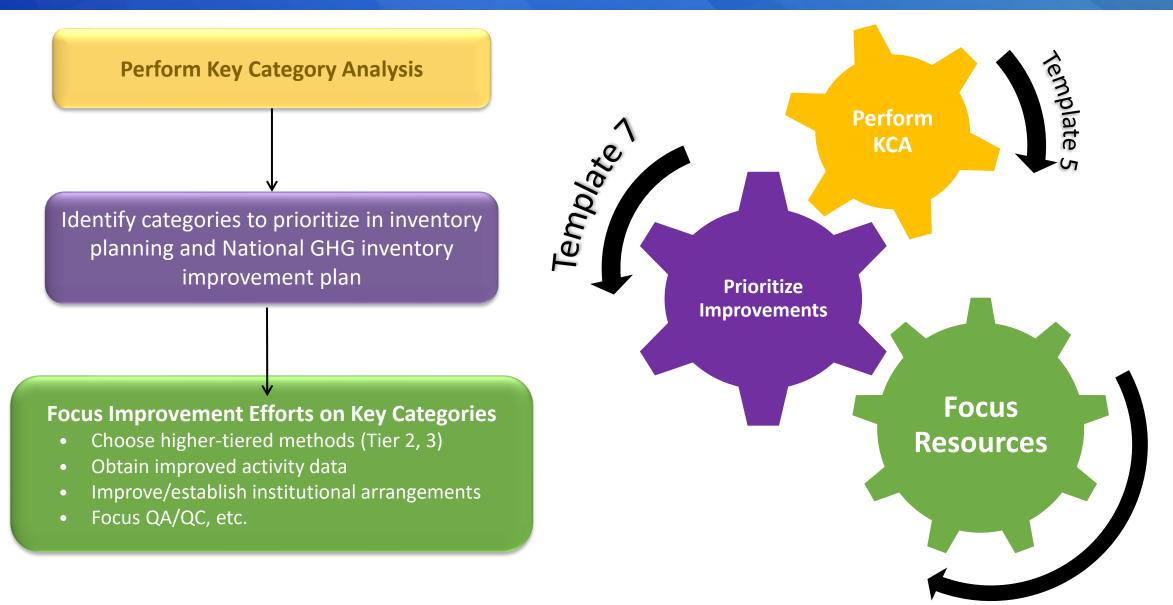
Where:

- $TU_{x,t}$  = trend assessment for category x in latest inventory year (year t) with uncertainty
- $T_{x,t}$  = trend assessment computed as in Equation 4.2
- $U_{x,t}$  = category percentage uncertainty in year t


#### Quantitative Assessment: Considering Uncertainty when Conducting an Approach 2 Trend Assessment



| Emission Category                             | Gas              | <b>1990</b><br>Gg CO2 eq. | <b>2018</b><br>Gg CO2 eq. | Trend<br>Assessment | Trend<br>Assessment<br>Including<br>Uncertainty | %<br>Contribution<br>to Trend | Cumulative<br>Total |
|-----------------------------------------------|------------------|---------------------------|---------------------------|---------------------|-------------------------------------------------|-------------------------------|---------------------|
| Energy Industries (solid fuel)                | CO <sub>2</sub>  | 200                       | 300                       | 0.02                | =0.02*U <sub>x,2018</sub>                       |                               |                     |
| Forest Land Remaining Forest Land             | CO <sub>2</sub>  | -210                      | -190                      | 0.08                |                                                 |                               |                     |
| Road Transport                                | CO <sub>2</sub>  | 60                        | 110                       | 0.03                |                                                 |                               |                     |
| Enteric Fermentation                          | CH <sub>4</sub>  | 80                        | 100                       | 0.02                |                                                 |                               |                     |
| Iron and Steel Production                     | CO <sub>2</sub>  | 120                       | 90                        | 0.1                 |                                                 |                               |                     |
| Manure Management                             | CO <sub>2</sub>  | 70                        | 80                        | 0.02                |                                                 |                               |                     |
| Rice Cultivation                              | CH <sub>4</sub>  | 45                        | 50                        | 0.02                |                                                 |                               |                     |
| Cement Production                             | CO <sub>2</sub>  | 35                        | 30                        | 0.02                |                                                 |                               |                     |
| Croplands Remaining Croplands                 | N <sub>2</sub> O | 8                         | 6                         | 0.01                |                                                 |                               |                     |
| Product Uses as ODS Substitutes<br>(Aerosols) | HFC&PFC          | 1                         | 4                         | 0.00                |                                                 |                               |                     |
| Iron and Steel Production                     | CH <sub>4</sub>  | 1.5                       | 1                         | 0.00                | TOTAL:                                          | ļ                             |                     |
|                                               |                  |                           |                           |                     | TBD                                             |                               |                     |


## Qualitative Assessments to Conducting Key Category Analysis





## Recap: Why Do a Key Category Analysis?





## Key Categories in the National Inventory Compilation Cycle



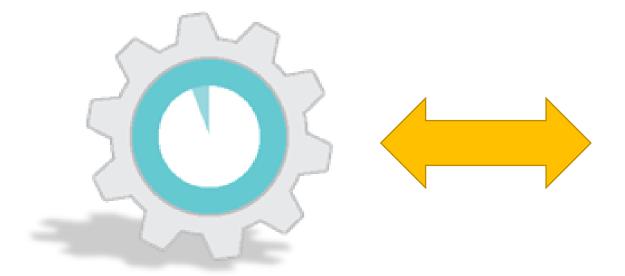


- and references
- Write inventory report, prepare draft reporting tables

### Which tools for the KCA?

✓ **National calculation file :** self implementation of the on IPCC equations

- ✓ **IPCC Software :** automates the KCA by implementing the IPCC equations
- ETF / GHG Inventory Reporting tool : generation of the Common Reporting Table 7 -SUMMARY OVERVIEW FOR KEY CATEGORIES (Level, Trend, including and excluding LULUCF ; using the reporting default category disaggregation levels)
- ✓ EPA key category tool : spreadsheet tool (Excel) to help inventory teams conduct a KCA, especially when not using the IPCC Software for the inventory


#### IPCC Inventory Software

#### Automates preparing a quantitative KCA analysis

| proach 1: Level Asses | sment Approach 1: Trend Assessment        |                  |                             |                      |         |                                    |
|-----------------------|-------------------------------------------|------------------|-----------------------------|----------------------|---------|------------------------------------|
| А                     | B                                         | С                | D                           | E                    | F       | G                                  |
| PCC Category code     | IPCC Category                             | Greenhouse gas   | 1994<br>Ex,t<br>(Gg CO2 Eq) | Ex,t <br>(Gg CO2 Eq) | Lx,t    | Cumulative<br>Total of Column<br>F |
| 2.G                   | Other Product Manufacture and Use         | SF6, PFCs        | 753201.6125                 | 753201.6125          | 0.7526  | 0.7526                             |
| 2.F.6                 | Other Applications (please specify)       | HFCs, PFCs       | 70736                       | 70736                | 0.07068 | 0.82328                            |
| 1.A.1                 | Energy Industries - Solid Fuels           | CARBON DIOXID_   | 29743.85                    | 29743.85             | 0.02972 | 0.853                              |
| 2.F.5                 | Solvents                                  | HFCs, PFCs       | 27420                       | 27420                | 0.0274  | 0.8804                             |
| 1.B.2.a               | Oil                                       | NITROUS OXIDE_   | 26988.6                     | 26988.6              | 0.02697 | 0.90737                            |
| 3.D.1                 | Harvested Wood Products                   | CARBON DIOXID_   | -22505.91952                | 22505.91952          | 0.02249 | 0.92986                            |
| 2.E                   | Electronics Industry                      | SF6, PFCs, HFCs_ | 20600.3124                  | 20600.3124           | 0.02058 | 0.95044                            |
| 1.A.3.b               | Road Transportation                       | CARBON DIOXID    | 13448.0555                  | 13448.0555           | 0.01344 | 0.96388                            |
| 4.C                   | Incineration and Open Burning of Waste    | CARBON DIOXID    | 7704.54027                  | 7704.54027           | 0.0077  | 0.97158                            |
| 4.A                   | Solid Waste Disposal                      | METHANE (CH4)    | 3705.3582                   | 3705.3582            | 0.0037  | 0.97528                            |
| 1.A.2                 | Manufacturing Industries and Construction | CARBON DIOXID.   | 3516.442                    | 3516.442             | 0.00351 | 0.97879                            |
| 1A1                   | Energy Industries - Liquid Fuels          | CARBON DIOXID    | 3387.944                    | 3387.944             | 0.00339 | 0.98218                            |
| 2.G                   | Other Product Manufacture and Use         | NITROUS OXIDE (  | 3349.9096                   | 3349.9096            | 0.00335 | 0.98552                            |
| 2.D                   | Non-Energy Products from Fuels and Solv.  | CARBON DIOXID.   | 3342.603                    | 3342,603             | 0.00334 | 0.98886                            |

#### EPA Key Category Analysis







#### Key Category Tool

Helps implement IPCC methods, and calculate Key Categories using Microsoft Excel or OpenOffice Calc

Note: EPA is updating this tool, so stay tuned for a new version coming soon.

#### National System Templates

Template 5: Key Category Analysis

#### Documenting KCA Results



- Save copies of the file as different versions for draft and final analyses by inserting the date or version number at the end of the file name (e.g., "KCA Tool v2.xls").
- You may also use the 2006 IPCC Guidelines inventory software, which has a KCA module in it, or build your own spreadsheet(s) that follow the methodologies in the 2006 IPCC Guidelines.

#### STEP 3: Complete the Approach 1 key category current year level assessment

Complete Table 5-1, below, using the results from the KCA you performed in Step 2. This table will be a record of the results of the IPCC Approach 1 key category level assessment for the most recent or current year (e.g., 2019). Add as many rows to the table as necessary to provide detailed information for each category.

| If or when the inventory is updated, update the KCA.                                                                                                                                                                       |                                                                           | Appr          |                                                       |                                          |                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|-------------------------------------------------------|------------------------------------------|----------------------------------------------------|--|--|
| Table 5-1: Key Cate                                                                                                                                                                                                        | gories Based on Contribution to Total National Emissions<br>IPCC Category | Gas           | Current Year<br>Emissions<br>(Gg CO <sub>2</sub> Eq.) | Contribution<br>to National<br>Emissions | Cumulative<br>Per Cent of<br>National<br>Emissions |  |  |
|                                                                                                                                                                                                                            |                                                                           |               |                                                       |                                          |                                                    |  |  |
| *Depresente regulte fre                                                                                                                                                                                                    | m the "Key Category Approach 1 Accessment for the Current Year" che       | at in the EDA | VCA tool                                              |                                          |                                                    |  |  |
| *Represents results from the "Key Category Approach 1 Assessment for the Current Year" sheet in the EPA KCA tool.                                                                                                          |                                                                           |               |                                                       |                                          |                                                    |  |  |
| <ul> <li>STEP 4: Complete the Approach 1 key category base year level assessment and trend assessment</li> <li>Complete this step if your country has GHG inventories with a time series of more than one year.</li> </ul> |                                                                           |               |                                                       |                                          |                                                    |  |  |
| If your country has a GHG inventory for only one year, proceed to Step 5.                                                                                                                                                  |                                                                           |               |                                                       |                                          |                                                    |  |  |

### How this Template Will Help!



# The *Key Category Analysis Tool and Template* will help the inventory team:



- Identify, document, and summarize all key categories identified using latest Inventory based on approaches available
  - Approach 1
  - Approach 2 (reflects uncertainty)
  - Qualitative criteria
- Document inventory improvements for the future

## Action Items for Key Category Analysis



- 1. Assign specific responsibilities for who will do the KCA
- 2. Collect all emissions and removal estimates and if available, also the corresponding uncertainty assessments
- 3. Ensure analysis is at appropriate level of disaggregation
- 4. Conduct the Key Category Analysis
- 5. Document KCA results in the template
- 6. Identify inventory improvements based on KCA results
- 7. Archive analysis and KCA data for future inventories, review, and staff training

### Where to Obtain the Key Category Analysis Tool



Available Online at

#### https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems

#### 5. Key Category Analysis (KCA)

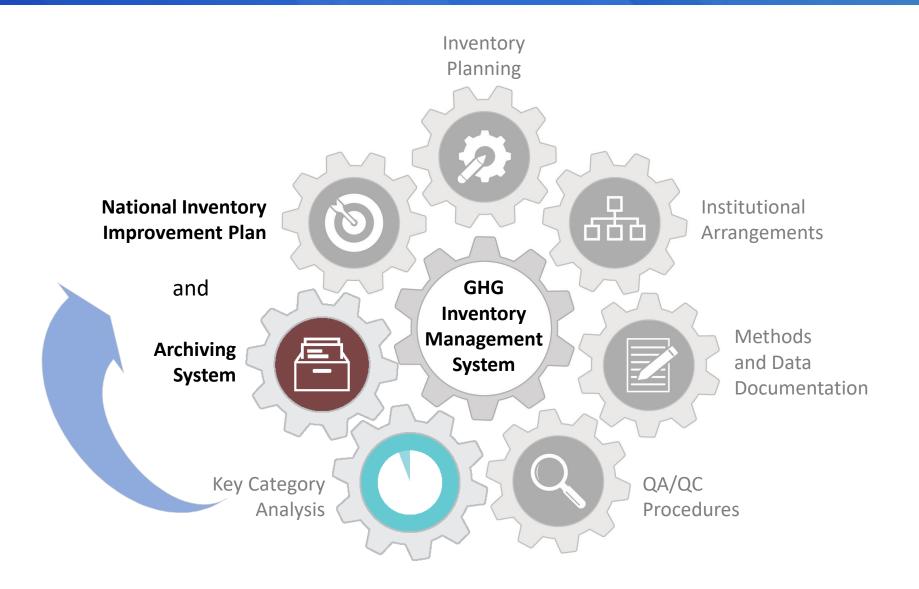
This template identifies the sources and sinks that make the greatest contribution to national GHG emissions and removals. With this analysis of key categories, a GHG inventory team can prioritize over time the resources needed to implement the more impactful improvements to a national GHG inventory.

Key Category Analysis (12 pp, 124 K)

Key Category Analysis Tool

Key Category Analysis (PDF) (12 pp, 486 K)

MB)


Supporting Tool: The **Key Category Analysis Tool** enables a GHG inventory team to determine key categories of GHG emissions and removals from GHG inventory estimates.





#### Next template...





# 

#### **Thank You For Your Attention!**

# For questions & more information, email: ghgi.transparency@epa.gov



**Toolkit for Building National GHG Inventory Systems** <u>https://www.epa.gov/ghgemissions/toolkit-building-national-ghg-inventory-systems</u>