CYPRUS

National Greenhouse Gas Inventory 2025

2025 submission

under the United Nations Convention on Climate Change and the Paris Agreement

Title of Report	Cyprus National Greenhouse Gas Inventory 2025
Contact	Nicoletta Kythreotou
	Marios Papanicolaou
Institution	Department of Environment
	Ministry of Agriculture, Rural Development and Environment
Address	Department of Environment, 1498 Nicosia, Cyprus
Telephone	(+357) 22 408 960
Fax	(+357) 22 774 945
Email	nkythreotou@environment.moa.gov.cy
	mpapanicolaou@environment.moa.gov.cy
Version	1.1
Date of Submission	7 May 2025

Contents

List of Tables	8
List of Figures	14
EXECUTIVE SUMMARY	16
ES.1. Background information on greenhouse gas (GHG) inventories and climate change	16
ES.2. Summary of national emission and removal-related trends	
ES.3. Overview of source and sink category emission estimates and trends	
ES.4. Other information	
Chapter 1. Introduction	22
1.1. Background information on GHG inventories and climate change	22
1.1.1. Background information on climate change	23
1.1.2. Background information on greenhouse gas inventories	
1.2. A description of the national inventory arrangements	
1.2.1. Institutional, legal and procedural arrangements	
1.2.2. Overview of inventory planning, preparation and management	
1.2.3. Quality assurance, quality control and verification plan	
1.3. Brief general description of methodologies and data sources used	
1.3.1. Global Warming Potential	
1.4. Brief description of key categories	
1.5. General uncertainty evaluation	
1.6. General assessment of completeness	50
Chapter 2. Trends in greenhouse gas emissions	
2.1. Description and interpretation of emission trends for aggregated GHG emissions	
2.2. Description and interpretation of emission trends by sector	
2.3. Description and interpretation of emission trends by gas	55
Chapter 3. Energy (CRT sector 1)	58
3.1. Overview of sector	58
3.1.1. Trends	60
3.1.2. Methodology	
3.1.3. Completeness	
3.2. Fuel combustion (CRT 1.A)	
3.2.1. Source category description	
3.2.2. Methodological issues	
3.2.3. Energy industries (CRT 1A1)	
3.2.4. Manufacturing industries and construction (1A2)	
3.2.5. Transport (1A3)	
3.2.6. Other sectors (1A4)	
3.2.7. Non-Specified (1A5)	
3.2.8. Reference approach (1AB)	
3.2.10. Feedstocks and non-energy use of fuels (1AD)	
3.3. Fugitive emissions from solid fuels and oil and natural gas and other emissions from	
production (1B)	
3.3.1. Oil & natural gas and other emissions from energy production	
3.4. CO ₂ transport and storage (CRT 1.C)	
3.5. Memo items (1.D)	
3.5.1. International bunkers (1D1)	
3.5.2. CO ₂ emissions from biomass (1.D.3)	
Chapter 4. Industrial processes and product use (CRT sector 2)	111

4.1.1. Emissions trend	111
	111
4.1.2. Completeness	115
4.1.3. Methodology	115
4.2. Mineral products (2.A)	116
4.2.1. Cement production (2.A.1)	117
4.2.2. Lime Production (2.A.2)	120
4.2.3. Glass Production (2.A.3)	
4.2.4. Other Process Uses of Carbonates (2.A.4)	
4.3. Chemical Industry (2.B)	
4.3.1. Carbide production (2.B.5)	
4.4. Non-Energy Products from Fuels and Solvent Use (2.D)	
4.4.1. Category description	
4.4.2. Methodological issues	
4.4.3. Uncertainties and time-series consistency	
4.4.4. Category-specific QA/QC and verification	
4.4.5. Category-specific recalculations	
4.4.6. Category-specific planned improvements	
4.5. Electronic Industry Emissions (2.E)	
4.6. Product uses as substitutes for ozone depleting substances (2.F)	
4.6.1. Category description	
4.6.2. Methodological issues	
4.6.3. Uncertainties and time-series consistency	
4.6.4. Category-specific QA/QC and verification	
4.6.5. Category-specific recalculations	
4.6.6. Category-specific planned improvements	
4.7. Other Product Manufacture and Use (2G)	
4.7.1. Electrical Equipment (2G1)	
4.7.2. SF ₆ and PFCs from Other Product Uses (2G2)	
4.7.3. N ₂ O from Product Uses (2G3)	
4.7.4. Other product manufacture and use (2G4)	149
Chapter 5. Agriculture (CRT sector 3)	
5.1. Overview of sector	
5.1.1. Emission trends	
5.1.2. Methodology	
5.2. Enteric Fermentation (3A)	
5.2.1. Methodological issues	156
5.2.2. Uncertainties and time-series consistency	159
5.2.2. Uncertainties and time-series consistency	159 159
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification	159 159 159
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification. 5.2.4. Category-specific recalculations. 5.2.5. Category-specific planned improvements.	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B)	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification. 5.2.4. Category-specific recalculations. 5.2.5. Category-specific planned improvements.	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B)	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification. 5.2.4. Category-specific recalculations. 5.2.5. Category-specific planned improvements. 5.3. Manure Management (3B). 5.3.1. Category description.	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification. 5.2.4. Category-specific recalculations. 5.2.5. Category-specific planned improvements. 5.3. Manure Management (3B) 5.3.1. Category description. 5.3.2. Methodological issues. 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification.	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C)	159 159 159 160 160 160 168 168 168 168
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D)	159 159 159 160 160 160 168 168 168
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1)	159 159 160 160 160 168 168 168 168
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1) 5.5.2. Indirect N ₂ O emissions from managed soils (3D2)	159 159 159 160 160 160 168 168 168 168 168
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1) 5.5.2. Indirect N ₂ O emissions from managed soils (3D2) 5.5.3. Prescribed burning of savannas (3E)	159 159 159 160 160 160 168 168 168 168 168 168 168
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1) 5.5.2. Indirect N ₂ O emissions from managed soils (3D2) 5.5.3. Prescribed burning of savannas (3E) 5.5.4. Field burning of agricultural residues (3F)	159 159 159 159 160 160 160 168 168 168 168 168 168 182
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1) 5.5.2. Indirect N ₂ O emissions from managed soils (3D2) 5.5.3. Prescribed burning of savannas (3E) 5.5.4. Field burning of agricultural residues (3F) 5.5.5. Liming (3G)	
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification. 5.2.4. Category-specific recalculations. 5.2.5. Category-specific planned improvements. 5.3. Manure Management (3B). 5.3.1. Category description. 5.3.2. Methodological issues. 5.3.3. Uncertainties and time-series consistency. 5.3.4. Category-specific QA/QC and verification. 5.3.5. Category-specific recalculations. 5.3.6. Category-specific planned improvements. 5.4. Rice cultivation (CRT source category 3C). 5.5. Agricultural soils (3D). 5.5.1. Direct N ₂ O emissions from managed soils (3D1). 5.5.2. Indirect N ₂ O emissions from managed soils (3D2). 5.5.3. Prescribed burning of savannas (3E). 5.5.4. Field burning of agricultural residues (3F). 5.5.5. Liming (3G). 5.5.6. Urea application (3H).	159 159 159 160 160 160 160 168 168 168 168 168 168 182 182
5.2.2. Uncertainties and time-series consistency 5.2.3. Category-specific QA/QC and verification 5.2.4. Category-specific recalculations 5.2.5. Category-specific planned improvements 5.3. Manure Management (3B) 5.3.1. Category description 5.3.2. Methodological issues 5.3.3. Uncertainties and time-series consistency 5.3.4. Category-specific QA/QC and verification 5.3.5. Category-specific recalculations 5.3.6. Category-specific planned improvements 5.4. Rice cultivation (CRT source category 3C) 5.5. Agricultural soils (3D) 5.5.1. Direct N ₂ O emissions from managed soils (3D1) 5.5.2. Indirect N ₂ O emissions from managed soils (3D2) 5.5.3. Prescribed burning of savannas (3E) 5.5.4. Field burning of agricultural residues (3F) 5.5.5. Liming (3G)	159 159 159 160 160 160 168 168 168 168 168 182 182

Chapter 6. Land use, land-use change and forestry (CRT sector 4)	
6.1.1. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.1.2. Land-use definitions and the classification systems used and their correspondent	
LULUCF categories	
6.1.3. GHG emissions and removals in the LULUCF sector	
6.1.4. Emission Trends	
6.2. Forest land (4A)	
6.2.1. Description	
6.2.2. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.2.3. Land-use definitions and the classification systems used and their corresponden	
LULUCF categories	193
6.2.4. Methodological issues	195
6.2.5. Uncertainties and time-series consistency	198
6.2.6. Category-specific QA/QC and verification	200
6.2.7. Category-specific recalculations	201
6.2.8. Category-specific planned improvements	201
6.3. Cropland (4B)	
6.3.1. Description	
6.3.2. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.3.3. Land-use definitions and the classification systems used and their corresponden	
LULUCF categories	
6.3.4. Methodological issues	
6.3.5. Uncertainties and time-series consistency	
6.3.6. Category-specific QA/QC and verification	
6.3.7. Category-specific recalculations	
6.3.8. Category-specific planned improvements	
6.4. Grassland (4C)	
6.4.1. Description	
6.4.2. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.4.3. Land-use definitions and the classification systems used and their correspondent	
LULUCF categories	
6.4.4. Methodological issues	
6.4.5. Uncertainties and time-series consistency	
6.4.6. Category-specific QA/QC and verification.	
6.4.7. Category-specific recalculations	
6.4.8. Category-specific planned improvements	
6.5.1. Description	
6.5.2. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.5.3. Land-use definitions and the classification systems used and their correspondent	
LULUCF categories	
6.5.4. Methodological issues.	
6.5.5. Uncertainties and time-series consistency	
6.5.6. Category-specific QA/QC and verification	
6.5.7. Category-specific recalculations	
6.5.8. Category-specific planned improvements	
6.6. Settlements (4E)	
6.6.1. Description	
6.6.2. Information on approaches used for representing land areas and on land-use datab	
for the inventory preparation	
6.6.3. Land-use definitions and the classification systems used and their correspondent	
LULUCF categories	
6.6.4. Methodological issues	
6.6.5. Uncertainties and time-series consistency	

Chapter 11. Information on changes in national system	280
Chapter 12. Information on changes in national registry	281
Chapter 13. Information on minimising adverse impacts in accordance with article 3, paragraph 14	. 284
13.1. Introduction	284
13.2. Context	284
13.3. Specific Elements	284
Annexes to the national inventory report	286
Annex 1: Key categories	
Annex 2: Assessment of uncertainty	
A2.1: Description of methodology used for identifying uncertainties	295
Annex 3: Detailed methodological descriptions for individual source or sink categories	304
A.3.1. Fuel combustion (1A)	304
A.3.2. Solid waste management (5A)	315
Annex 4: The national energy balance for the most recent inventory year (2021)	
Annex 5: Indirect greenhouse gases and SO ₂	334
Annex 6: Implementation of recommendations and adjustments	
A6.1. EU review Process	
A6.2. UNFCCC/KP review Process	
Annex 7: Key actions of the National Inventory Improvement Plan	
References	361

List of Tables

Table 1.	GHG emissions trends by gas for the period 1990–2023	17
Table 2.	GHG emissions by sector for the period 1990–2023	20
Table 3.	NO _x , CO, NMVOCs and SOx emissions 1990–2023 (Gg)	21
Table 1.1.	QA/QC procedures for the GHG emissions inventory	35
Table 1.2.	Timing and responsibilities	37
Table 1.3.	Methodologies used for the preparation of Cyprus' GHG inventory	39
Table 1.4.	Data sources and data sets per IPCC sector, source category	
Table 1.5.	Direct Global Warming Potentials (mass basis) relative to carbon dioxide for the 100-	
	horizon	•
Table 1.6.	Key categories for Cyprus' inventory system without LULUCF for 2023	
Table 1.7.	Key categories for Cyprus' inventory system with LULUCF for 2023	
Table 2.1.	Main economic indicators	
Table 2.2.	Total GHG emissions trend for the period 1990–2023	
Table 2.3.	GHG emissions by sector for the period 1990–2023	
Table 2.4.	GHG emissions trends by gas for the period 1990–2023	
Table 3.1.	Emissions from energy 1990–2023	
Table 3.2.	Methodology for the estimation of emissions from energy	
Table 3.3.	Emissions from fuel combustion 1990–2023	
Table 3.4.	Emissions from energy industries 1990–2023	
Table 3.5.	Fuel consumption data obtained from the electricity production company in Cyprus (19	
	2004)	
Table 3.6.	Data collected through the ETS for electricity production in Cyprus (2005-2023)	
Table 3.7.	Fuel consumed for petroleum refining in Cyprus (1990–2004)	
Table 3.8.	Solid biomass consumed for the production of charcoal	
Table 3.9.	Emissions from manufacturing industries and construction 1990–2023	
Table 3.10.	Fuel consumption in manufacturing industries and construction 1990–2023	
Table 3.11.	Parameters used for the estimation of emissions.	
Table 3.12.	Impact of recalculations on CO ₂ eq. emissions for 1A2 Manufacturing industries	
	construction (1990-2022)	
Table 3.13.	Transport emissions 1990–2023	
Table 3.14.	International and domestic flights' fuel consumptions, EUROCONTROL data (20	
	2023)	
Table 3.15.	Share of domestic flights to the total fuel consumption, EUROCONTROL data (20	
	2023)	
Table 3.16.	Share of domestic flights to the total fuel consumption, consumption for domestic	
	international flights (1990–2004)	
Table 3.17.	Number of vehicles by type	
Table 3.18.	Fuel consumed by road transport (kt) during 1990–2023	
Table 3.19.	CO ₂ emissions from lubricant use in two-stroke engines (kt) during 1990-2023	
Table 3.20.	Fuel consumption by domestic water-borne navigation activities 1990-2023	
Table 3.21.	Impact of recalculations on CO ₂ eq. emissions for Domestic Aviation 1990-2022	
Table 3.22.	Impact of recalculations on CO ₂ eq. emissions for Road Transport 1990-2022	
Table 3.23.	GHG emissions from Other sectors 1990–2023	
Table 3.24.	Parameters used for the estimation of emissions from other sectors	
Table 3.25.	Impact of recalculations on CO ₂ eq. emissions for 1A4a, b, and c, 2008-2022	
Table 3.26.	Fuel consumption for "Other sectors" for the period 1990-2023	
Table 3.27.	GHG emissions from Other (Not elsewhere specified) 1990–2023	

Table 3.28.	Other non-specified fuel consumption 1990–2023	96
Table 3.29.	Parameters used for the estimation of other emissions	97
Table 3.30.	Impact of recalculations on CO2 eq. emissions for 1A5a	97
Table 3.31.	Net calorific value (TJ/kt) and carbon emission factors (t CO ₂ /kt) of fuels consume	ed in
	Cyprus used for the reference approach	99
Table 3.32.	Apparent consumption (TJ) and CO ₂ emissions (Gg) estimates according to the refer	ence
	approach 1990–2023	. 101
Table 3.33.	Difference between Reference and Sectoral Approach 1990–2023	. 102
Table 3.34.	Parameters used for the calculation of emissions	. 104
Table 3.35.	Fuel consumption, carbon stored and CO2 emissions for Feedstocks and non-energy u	
	fuels	
Table 3.36.	Fugitive emissions from oil during 1990–2023, in tons	
Table 3.37.	Oil refined during 1990–2004, kt	. 106
Table 3.38.	Emissions from memo items (Gg CO ₂ eq.)	
Table 3.39.	Emissions from international bunkers 1990–2023	. 107
Table 3.40.	Fuel consumption for international aviation and maritime activities 1990-2023 (kt)	. 108
Table 3.41.	Parameters used for the calculation of emissions	. 108
Table 3.42.	Activities consuming biomass in Cyprus	. 109
Table 3.43.	Emissions from CO ₂ from biomass 1990–2023	. 109
Table 4.1.	Total GHG emissions (in Gg CO ₂ eq) from Industrial Processes, 1990–2023	.113
Table 4.2.	Industrial Processes – completeness	. 115
Table 4.3.	Industrial processes – methodologies and emission factors applied	. 115
Table 4.4.	Emissions from mineral industry 1990–2023 (Gg CO ₂)	.116
Table 4.5.	CO ₂ emissions for Cement production (2.A.1) 1990–2023	.118
Table 4.6.	Total clinker production (kt) and CO ₂ process emissions (GgCO ₂) from cement produc	ction
		.119
Table 4.7.	CO ₂ emissions for Lime production (2.A.2) 1990–2023	. 120
Table 4.8.	Slaked lime production (t)	.121
Table 4.9.	CO ₂ emissions for Other Process Uses of Carbonates (2.A.4) 1990–2023	. 122
Table 4.10.	Ceramics production (kt)	. 124
Table 4.11.	CO ₂ process emissions of the ETS ceramics installations and estimated annual imp	plied
	emission factor (2001-2023)	. 124
Table 4.12.	Imports of Soda ash in Cyprus (t)	
Table 4.13.	CO ₂ emissions from non-energy Products from Fuels and Solvent Use	. 126
Table 4.14.	Emissions from the use of lubricants (2D1)	
Table 4.15.	Imports of paraffin wax in Cyprus (kt)	. 128
Table 4.16.	Activity data used for estimation of emissions from Urea used as a catalyst	. 130
Table 4.17.	2D3 Other: Urea used as a catalyst category recalculation	. 130
Table 4.18.	Emissions from consumption of halocarbons 1990–2023 (Gg CO ₂ eq.)	. 131
Table 4.19.	Average total population used for the estimation of per capita emissions from 2F (2F3, 2F4) activities (EUROSTAT)	
Table 4.20.	Per capital emissions by source from 2F (2F2, 2F3, 2F4) activities (kg CO ₂ eq./cap).	. 141
Table 4.21.	Total population of Cyprus used for the estimation of emissions from 2F (2F2, 2F3, activities	
Table 4.22.	Contribution of activities to 2F (2F2, 2F3, 2F4) emissions	
Table 4.23.	Total 2F (2F2, 2F3, 2F4) emissions from Stocks estimated for Cyprus (t CO ₂ eq.)	
Table 4.24.	2F Recalculations	
Table 4.25.	Emissions from Other Product Manufacture and Use (2G)	
Table 4.26.	SF ₆ emissions (in t) from electrical equipment for the period 1990–2023	
Table 4.27.	N ₂ O emissions (Gg) from Product Uses	
Table 5.1.	GHG emissions from Agriculture, for the period 1990–2023	
Table 5.2.	Agriculture – methodologies and emission factors applied	

Table 5.3.	Agriculture – Inventory completeness	154
Table 5.4.	CH ₄ emissions from Enteric Fermentation (3A) 1990–2023	155
Table 5.5.	Animal population for 1990–2023 (in 1000s)	156
Table 5.6.	Information for the application of Tier 2 methodology for dairy cattle	158
Table 5.7.	Daily milk production per dairy cow (kg) and per cent pregnant population of Cyprus	
Table 5.8.	Gross energy (GE) and emissions factor (EF) for dairy cattle for the period 199	0-2023
Table 5.9.	Methane emission factor applied for enteric fermentation, according to animal	
Table 5.10.	CH ₄ and N ₂ O emissions from manure management for 1990–2023	161
Table 5.11.	Emission factors used for the estimation of methane emissions from manure mana	
		162
Table 5.12.	Volatile substance excretion (VS) and Bo for T2 methodology (2006 IPCC Guid	delines,
	vol. 4, Annex 10A.2)	163
Table 5.13.	Waste management per technology contribution	163
Table 5.14.	Default values for Nitrogen excretion rate (IPCC 2006 guidelines, volume 4, table pg. 10.59)	
Table 5.15.	kg N ₂ O-N/kg N ex coefficients per technology used	
Table 5.16.	Default values for volatilisation N losses.	
Table 5.17.	N ₂ O emissions from agricultural soils for 1990–2023	
Table 5.18.	N input from application of inorganic fertilizers for the period (in kt) 1990–2023	
Table 5.19.	Default values for nitrogen loss due to volatilisation of NH ₃ and NO _x from	
	management	
Table 5.20.	Volatilisation N-losses (kg N)	
Table 5.21.	Dry sludge applied to soils and nitrogen in sewage sludge (kg)	
Table 5.22.	Activity data used for the calculation of N ₂ O emissions from Other organic fe	
	applied to soils (3D1.2c)	
Table 5.23.	Crop production (t/yr), cultivated area (ha), Crop yield (kg/ha), CropT (kg dm/ha)	
	ground residue dry matter AGDM _T (kg/ha), ratio of above-ground residues dm to ha	
	crop RAGT (kg/dm), Area Burnt (ha/yr) and FCR (kg N/yr) per crop	175
Table 5.24.	Default dry matter fraction (DRY), Slope, Intercept, NAGT, RBGT, NBGT per cr	ор. 179
Table 5.25.	Crop residue that is burned (FracBURN)	179
Table 5.26.	Combustion factor (C _f)	179
Table 5.27.	FON and N ₂ O(ATD) –N (kg N/yr)	181
Table 5.28.	Impact of recalculations on N ₂ O emissions from managed soils (3D) (1990-2021).	182
Table 5.29.	Field burning of agricultural residues emissions, 1990–2023	182
Table 5.30.	Urea application emissions, 1990–2023	184
Table 5.31.	Urea consumption in Cyprus (t) and total CO ₂ –C emission (tC/yr)	185
Table 6.1.	The correspondence between the CORINE land cover categories identified in Cyp	rus and
	the 2006 IPCC land-use categories as implemented in the Cyprus' conditions	189
Table 6.2.	Land-use categories and sub-categories area data based on the CORINE data se	ets. The
	resolution for detection of individual land use categories is 25 ha. The data cover the	
	under the effective control of the Cyprus Government (managed land) and the area	a which
	is not under the effective control of the Cyprus Government (unamanaged land)	190
Table 6.3.	Emissions and removals (+/-) from LULUCF categories (kt CO ₂ eq)	191
Table 6.4.	Areas of land remaining in the same land use subcategory (broadleaved rer	naining
	broadleaved forests) and of land converted to broadleaved forests from other land-to-	ıse sub-
	categories.	193
Table 6.5.	Areas of land remaining in the same land use subcategory (coniferous ren	naining
	coniferous forests) and of land converted to coniferous forests from other land-u	ıse sub-
	categories.	194
Table 6.6.	National data on growing stock and annual increment	195

Table 6.7.	Annual harvest in forest land	196
Table 6.8.	BCEF values used in carbon stock changes estimation in living biomass	197
Table 6.9.	Input data uncertainties.	198
Table 6.10.	Areas of land remaining in the same land use subcategory (annual cropland re	maining
	annual cropland) and of land converted to annual cropland from other land-	use sub-
	categories	202
Table 6.11.	Areas of land remaining in the same land use subcategory (woody cropland re	
	woody cropland) and of land converted to woody cropland from other land-	_
	categories.	
Table 6.12.	The IPCC default relative soil organic carbon stock change factors	
Table 6.13.	Input data uncertainties.	
Table 6.14.	Areas of land remaining in the same land use subcategory (grass grassland remaini	
	grassland) and of land converted to grass grassland from other land-use sub-cat	
	6	-
Table 6.15.	Areas of land remaining in the same land use subcategory (woody grassland re	
14010 01101	woody grassland) and of land converted to woody grassland from other land-	_
	categories.	
Table 6.16.	Areas of land remaining in the same land use subcategory (wetlands remaining w	
14010 0.10.	and of land converted to wetlands from other land-use sub-categories	
Table 6.17.	Areas of land remaining in the same land use subcategory (settlements re	
1 4010 0.17.	settlements) and of land converted to settlements from other land-use sub-categor	_
Table 6.18.	Areas of land remaining in the same land use subcategory (other land remaining oth	
1 aoic 0.10.	and of land converted to other land from other land-use sub-categories	
Table 6.19.	The FAO items and their codes that were the source of numerical data for all calc	
1 aute 0.17.	relating to the HWP GHG contribution	
Table 6.20.	The default half-lives and associated decay rates for solid wood products an	
1 able 0.20.		
Table 7.1	Total CHC emissions (in Ca CO as) from wests 1000 2022	
Table 7.1.	Total GHG emissions (in Gg CO ₂ eq) from waste, 1990–2023	
Table 7.2.	Waste methodologies and emission factors applied	
Table 7.3.	Waste – completeness	
Table 7.4.	Total GHG emissions from solid waste disposal sites for the period 1990–2023	
Table 7.5.	Total population, annual per capita production (kg/cap), total MSW production	
T 11 7 6	E d CMOW I' I d OWING (MOW) CMOW I' I I I'	
Table 7.6.	Fraction of MSW disposed at SWDS (MSW _F), mass of MSW disposed to dispo	
T 11 77	(1000t) and other practices.	
Table 7.7.	Allocation of waste to types waste disposal sites	
Table 7.8.	Urban and Rural population of Cyprus per district at the end of the year (1000s)	
Table 7.9.	Amount of waste generated per district and type of waste disposal site (kt)	
Table 7.10.	Allocation of population and waste to types waste disposal sites	
Table 7.11.	Composition of MSW disposed at SWDS	
Table 7.12.	Total waste disposal – landfilled for non-municipal solid waste (in tonnes)	
Table 7.13.	Gross Domestic Product (GDP) at Constant market prices of 2005 (1990–2011)	
Table 7.14.	Solid waste production per waste stream 1990–2023 (in tonnes)	
Table 7.15.	Number of Establishments by Economic Activity NACE (Rev. 2) and District for	-
	2017 associated with the production Industrial effluent sludges, Wood wastes,	
	wastes and Animal and vegetal wastes	
Table 7.16.	Amount of non-municipal solid waste generated per district (tonnes)	
Table 7.17.	Total quantities of solid waste disposed per type of waste and waste disposal site	
Table 7.18.	Emissions from biological treatment of solid waste, 1990–2023	
Table 7.19.	The amount of solid waste composted for the period 2010–2023	
Table 7.20.	Composting (5B1) recalculations	248

Table 7.21.	The amount of sludge transported for anaerobic treatment for biogas production for the period 2009-2023249
Table 7.22.	Activity data used for estimate emissions from open burning of agriculture waste 250
	arameters used for estimate emissions from open burning of agriculture waste
Table 7.23. 1 Table 7.24.	Emissions from Wastewater treatment and discharge (5D) 1990–2023
Table 7.25.	Wastewater treatment technologies implemented in Cyprus for the treatment of urban wastewaters
Table 7.26.	Utilisation of sludge produced by the wastewater treatment plants in Cyprus (t of dry matter/yr)253
Table 7.27.	Load entering the Urban Waste Water Treatment Plants (UWWTP) (p.e.)254
Table 7.28.	Total emissions from Domestic wastewater 1990–2023
Table 7.29.	Distribution of wastewater to septic tanks and central treatment stations Ui and estimated TOW
Table 7.30.	Parameters used for the estimation of CH ₄ emissions from wastewater treatment 257
Table 7.31.	CH ₄ emissions from domestic wastewater treatment 1990–2023257
Table 7.32.	Annual per capita protein consumption and resulting NEFFLUENT (kg/person/yr) 258
Table 7.33.	N ₂ O emissions from advanced centralised wastewater treatment plants, NWWT and resulting NEFFLUENT
Table 7.34.	Total emissions from industrial wastewater 1990–2023
Table 7.34.	Industrial production 1990–2023 (Gg)
Table 7.36.	Wastewater generation coefficient (m³ /t product) and COD concentration (kg COD/m³) according to industrial product
Table 7.37.	Total organically degradable material (Gg), 1990–2023
Table 7.38.	Treatment of waste by anaerobic treatment according to industrial production, 1990–2023
Table 7.39.	Methane emission factor estimated according to waste stream (kg CH ₄ /kg COD), 1990–2023
Table 7.40.	Total industrial wastewater production (1000 m ³ /year), 1990–2023266
Table 9.1.	CO ₂ emissions from Solvent and Other Product Use (2.D.3. and 2.G.4.)270
Table 9.2.	NMVOCs emissions used for the estimation of CO ₂ emissions from Solvent use (2D3)
Table 9.3.	NMVOCs emissions used for the estimation of CO ₂ emissions from Other Product Use (2G4)
T-1-1-0-4	
Table 9.4.	Recalculations from Indirect CO ₂ emissions (Gg CO ₂ eq.)
Table 10.1.	Comparison of NIR2024 to NIR2025, in kt CO ₂ eq
Table A1.1.	Key categories analysis without/with LULUCF – Level and trend assessment for 2023
Table A1.2.	Key categories analysis without/with LULUCF – Level assessment for 1990292
Table A2.1.	Reasoning for activity data and emission factor uncertainty value
Table A2.2.	Analytical calculations of uncertainty, with LULUCF 2022
Table A3.1.1.	Contribution of different activities to LPG consumption (2006) used to allocate
	consumption to different sectors for 1990-2005
Table A3.1.2.	International and domestic flights' fuel consumptions, EUROCONTROL data (2005-2023)
Table A3 1 3	Fuel consumption according to the National Energy balance 2023 in kt (1990–2023) . 305
	Share of domestic flights to the total fuel consumption, EUROCONTROL data (2005-
T-11 4217	2023)
Table A3.1.5.	Share of domestic flights to the total fuel consumption, consumption for domestic and international flights (1990–2004)
Table A3.1.6.	Contribution of different activities to gas-diesel oil consumption (2012) used to allocate
	consumption to Chemical and petrochemical Non-ferrous metals Non-metallic minerals

Mining and Quarrying, Food, beverages and tobacco, Construction, Not elsewhere
specified (Industry) for 2006–201131
Table A3.1.7. Contribution of different activities to gas-diesel oil consumption (2012) used to allocate
consumption to Chemical and petrochemical, Non-ferrous metals, Non-metallic minerals
Mining and Quarrying, Food, beverages and tobacco, Construction, Not elsewhere
specified (Industry), Commercial and public services, Not elsewhere specified (Other
from Not elsewhere specified (Industry) for 2005
Table A3.1.8. Contribution of different activities to gas-diesel oil consumption (2012) used to allocate
consumption to from Not elsewhere specified (Industry) for 1990–2004312
Table A3.1.9. Consumption diesel for Water-borne navigation activities
Table A3.1.10. Contribution of different activities to solid biofuels consumption (2007) used to allocate
consumption to commercial and public services, and residential for 1990-2005314
Table A3.2.1. Data used for fitting and extrapolating GDP and waste activity is tabulated by year31:
Table A.4.1. Energy balance 2023 - Liquid Fuels (LPG, Non-bio gasoline, Non-bio jet kerosene, Othe
kerosene, Road diesel, Heating and other gas oil, Total gas/diesel oil, Biodiesel), in kt320
Table A.4.2. Energy balance 2023 - Liquid Fuels (Non-bio gas/diesel oil, Total fuel oil, Lubricants
Bitumen, Pet-coke), in kt
Table A.4.3. Energy balance 2023 - Industrial waste (non-renewable), Municipal waste (renewable)
Municipal waste (non-renewable), Solid biofuels, Charcoal, Biogases, in TJ332
Table A5.1. NO _x emissions 1990-2023 (as Gg NO _x)
Table A5.2. CO emissions 1990–2023 (Gg)
Table A5.3. NMVOCs emissions 1990-2023 (Gg)
Table A5.4. SO _x emissions 1990–2023 (as Gg SO ₂)
Table A6.1. Summary of Recommendations from the TERT and status of implementation346
Table A6.2. Summary of Recommendations from the ERT and status of implementation
Table A7.1 Key actions of the National Inventory Improvement Plan 350

List of Figures

Figure 1.	Overview of the organisational structure of the National Inventory System	17
Figure 2.	GHG emissions by sector for the period 1990–2023	21
Figure 1.1.	Overview of the organisational structure of the National Inventory System	28
Figure 1.2.	GHG emissions inventory preparation process in Cyprus	32
Figure 1.3.	Timetable for inventory preparation	33
Figure 1.4.	Flow chart of activities concerning emissions inventory	34
Figure 1.5.	QA/QC process and procedures and inventory related activities	36
Figure 1.6.	Timing and responsibilities of QA/QC tasks	38
Figure 2.1.	Total GHG emissions trend for the period 1990–2023	53
Figure 2.2.	GHG emissions by sector for the period 1990–2023	55
Figure 3.1.	Emissions from the energy sector 1990–2023	61
Figure 3.2.	Emissions from fuel combustion 1990–2023	65
Figure 3.3.	Energy industries emissions (1A1) 1990–2023	67
Figure 3.4.	Emissions from energy use in manufacturing industries and construction (1A2) 1990-	
Figure 3.5.	Transport (1A3) emissions 1990–2023	
Figure 3.6.	Smaller aircrafts LTOs and EUROCONTROL data for domestic flights	
Figure 3.7.	Trend of vehicles population in the Road transport sector	
Figure 3.7.	Other sectors (1A4) emissions 1990–2023	
Figure 3.9.	GHG emissions from Other (Not elsewhere specified) (1A5) 1990–2023	
Figure 3.10.	CO ₂ emissions from fuel combustion using sectoral and reference approach	
Figure 3.11.	Emissions from international bunkers 1990–2023	
Figure 3.11.	Emissions from biomass 1990–2023	
Figure 4.1.	GHG emissions from Industrial Processes (sector 2) for the period 1990–2023	
Figure 4.2.	GHG emissions from Mineral products (2A) for the period 1990–2023	
Figure 4.3.	CO ₂ emissions for Cement production (2.A.1) 1990–2023	
Figure 4.4.	CO ₂ emissions for Lime production (2.A.2) 1990–2023	
Figure 4.5.	CO ₂ emissions for Other Process Uses of Carbonates (2.A.4) 1990–2023	
Figure 4.6.	Emissions from non-energy Products from Fuels and Solvent Use (2D) 1990–2023	
Figure 4.7.	Lubricant consumption 1990–2023 (kt)	
Figure 4.8.	Emissions from consumption of halocarbons 1990–2023	
Figure 4.9.	Emissions from Other Product Manufacture and Use (2G)	
Figure 5.1.	Emissions from Agriculture, 1990–2023	
Figure 5.2.	CH ₄ emissions from Enteric Fermentation (3A) 1990–2023 in Gg CO ₂ eq	
Figure 5.3.	Emissions from manure management, 1990–2023	
Figure 5.4.	N ₂ O emissions from agricultural soils 1990–2023 (Gg CO ₂ eq.)	
Figure 5.5.	Field burning of agricultural residues emissions, 1990–2023 (Gg CO ₂ eq.)	
Figure 5.6.	Urea application emissions, 1990–2023 (Gg CO ₂ eq.)	
Figure 6.1.	Emissions/removals trend in the LULUCF sector in the period 1990–2023	
Figure 6.2.	Forest land remaining forest land: Net carbon stock changes (blue line) and emissions	
1 15u1C U.Z.	forest fires (red line) during the period 1990 – 2023	
Figure 6.3.	Land converted to forest land: Net removals during the period 1990–2023	
Figure 6.3. Figure 6.4.	Forest land remaining forest land and land converted to forest land contribution: net	
1 1guil 0.4.	emissions/removals during the period 1990 – 2023	
Figure 6.5.	Net emissions/removals in cropland category and its subcategories during the period	
1 1guic 0.5.	- 2023 (note: indirect N ₂ O emissions are included in the net emissions)	

Figure 6.6.	Net emissions/removals in grassland remaining grassland and land converted to gras	sland
	subcategories during the period 1990 – 2023	210
Figure 6.7.	Map of Cyprus, indicating the 373 wetlands identified and studied during the "Inve	ntory
	of Cyprus Wetlands" project.	211
Figure 6.8.	Categories of natural wetlands in Cyprus	212
Figure 6.9.	Categories of artificial wetlands in Cyprus	212
Figure 6.10.	Net emissions/removals in land converted to wetlands during the period 1990 – 2023	3.214
Figure 6.11.	Net emissions/removals in land converted to settlements during the period 1990 -	2023
	(note: indirect N ₂ O emissions are included in the net emissions)	217
Figure 6.12.	Net emissions/removals in land converted to other land during the period 1990 -	2023
	(note: indirect N ₂ O emissions are included in the net emissions).	220
Figure 6.13.	Carbon stock changes in sawnwood, wood-based panels, paper and paperboard durin	ıg the
	period 1990-2023	222
Figure 7.1.	GHG emissions from waste for the period 1990–2023	225
Figure 7.2.	Years of activity of active Uncontrolled Waste Disposal Sites	227
Figure 7.3.	Starting year of activity for all Uncontrolled Waste Disposal Sites	227
Figure 7.4.	Total GHG emissions from solid waste disposal sites for the period 1990–2023	229
Figure 7.5.	Plot used to estimate the annual per capita production for 1990-1995 (kg/cap)	230
Figure 7.6.	Emissions from biological treatment of solid waste 1990–2023	247
Figure 7.7.	Wastewater treatment systems and discharge pathways in Cyprus	251
Figure 7.8.	Total emissions from Wastewater treatment and discharge (5D) 1990–2023	252
Figure 7.9.	Domestic Wastewater treatment in Cyprus 1990–2023	252
Figure 7.10.	Total emissions from Domestic wastewater (5D1) 1990–2023	255
Figure 7.11.	Emissions from industrial wastewater 1990–2023	
Figure 9.1.	Emissions from Solvent and Other Product Use (2.D.3. and 2.G.4.) 1990–2023	271
Figure 9.2.	Recalculations from Indirect CO ₂ emissions (Gg CO ₂ eq.)	274
Figure 10.1.	Comparison of NIR2024 to NIR2025, LULUCF excluded [kt CO ₂ eq.]	278
Figure A.3.2.	1. GDP data 1960-2014 (CYSTAT) extrapolated for the years of 1950-59	317
Figure A.3.2.	2. Plotting the linear period of waste activity data from 1996-2009 against	their
	corresponding annual GDP, and fitting to an exponential model	318
Figure A.3.2.	3. Waste per capita derived from annual GDP data and hind casts	318

EXECUTIVE SUMMARY

ES.1. Background information on greenhouse gas (GHG) inventories and climate change

The Republic of Cyprus ratified the UNFCCC in 1997 with Law No. 19(III) / 1997 as a non-Annex I party. The Kyoto Protocol was ratified by the Republic of Cyprus in 2003 with Law No. 29(III) / 2003. According to decision 10/CP.17 of COP17, as of 9 January 2013, the status of Cyprus changed from a non-Annex I to an Annex I party to the UNFCCC. As part of the EU, Cyprus has taken up commitments for the CP2 of the KP through the Doha amendment. The Republic of Cyprus ratified the Paris Agreement on 4 January 2017 with Law No. 30(III)/2016.

The first national inventory report for Cyprus was prepared in 2001 and covered the period 1990-1998. The inventory was prepared in the framework of the project "Strategic Plan for the Limitation of Greenhouse Gas Emissions in Cyprus".

The first Inventory report submitted by Cyprus to the European Commission for the purposes of Decision no. 280/2004/EC was in 2006 for the period 1990–2004. Cyprus at the time was a non-Annex I party and therefore had no obligation to submit annual inventories to the UNFCCC secretariat.

The first submission of a national inventory report to the UNFCCC secretariat as an Annex I party was made in April 2013.

The Department of Environment of the Ministry of Agriculture, Rural Development and Environment (DoE) is the governmental body responsible for the development and implementation of environmental policy in Cyprus, as well as for the provision of information concerning the state of the environment in Cyprus in compliance with relevant requirements defined in international conventions, protocols and agreements. Moreover, the DoE is responsible for the co-ordination of all involved ministries, as well as any relevant public or private organization, in relation to the implementation of the provisions of the Kyoto Protocol, according to the Law 29(III)/2009 with which Cyprus ratified the Kyoto Protocol.

In this context, the DoE has the overall responsibility for the national GHG inventory, and the official consideration and approval of the inventory prior to its submission. (Contact person: Dr. Nicoletta Kythreotou, Environment Officer, Department of Environment, Ministry of Agriculture, Rural Development and Environment, Offices' address: 20-22 28th Oktovriou Ave., Engomi, 2414, Nicosia, Cyprus, Postal address: Department of Environment, 1498 Nicosia, Cyprus, Tel. +357 22 408 947, Fax. +357 22 774 945, Web. www.moa.gov.cy/environment).

Figure 1 provides an overview of the organisational structure of the National Inventory System. The entities participating in the National Inventory System are:

- The DoE, designated as the national entity responsible for the national inventory, holds the overall responsibility and maintains an active role in the inventory planning, preparation and management, including technical and scientific responsibility for the compilation of the annual inventory.
- Governmental ministries and agencies ensure the data provision through their appointed focal persons.

International or national associations, along with individual public or private industrial companies contribute to data gathering and development of methodological issues as appropriate.

[16]

¹ For 2017, there is a contract with an external expert for scientific and technical support to the inventory team of the DoE and the QA of the GHG inventory. As of 2018, according to the Council of Ministers' Decision of 15/11/2017, the technical and scientific responsibility for the compilation of the annual inventory for all sectors will be assigned, on a contract basis, to an independent consultant by the DoE.

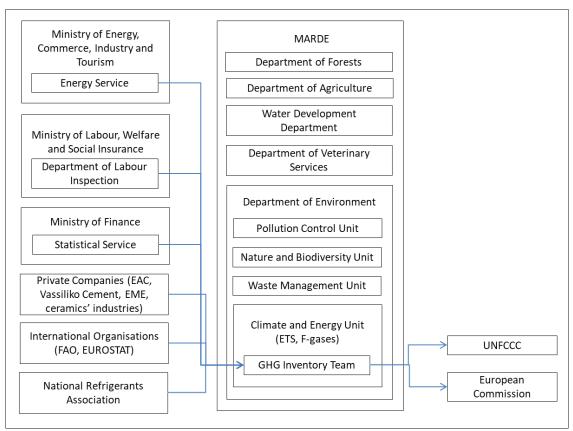


Figure 1. Overview of the organisational structure of the National Inventory System

The legal framework defining the roles, responsibilities, and the co-operation between the DoE Inventory team and the designated contact points of the competent Ministries was formalized by the Council of Ministers' Decision adopted 15 November 2017, entitled "Structure and operation of the National Greenhouse Gases Inventory System- Roles and Responsibilities". The above-mentioned Decision includes a description of each entity's responsibilities concerning the inventory preparation, data providing or other relative information. This formal framework has improved the collaboration between the entities involved, assuring the timely collection and quality of the required activity data and solving data access restriction problems raised due to confidentiality issues.

ES.2. Summary of national emission and removal-related trends

GHG emissions trends by gas for the period 1990-2023 are presented in Table 1.

Table 1. GHG emissions trends by gas for the period 1990–2023

	1990	1991	1992	1993	1994
CO ₂ emissions without LULUCF	4647.76	5136.10	5508.84	5752.78	5994.99
CO ₂ emissions with LULUCF	4494.63	4968.94	5336.11	5577.54	5810.59
CH ₄ emissions without LULUCF	776.43	791.34	816.41	847.23	861.42
CH ₄ emissions with LULUCF	776.46	791.44	816.44	847.49	862.07
N ₂ O emissions without LULUCF	146.17	145.94	160.59	169.35	164.69
N ₂ O emissions with LULUCF	146.20	146.01	160.64	169.53	165.09
HFCs	NA,NE,NO	NA,NE,NO	23.04	24.62	26.27
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF_6	2.73	3.37	4.01	4.65	5.29
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	5573.09	6076.75	6512.90	6798.63	7052.66
Total (with LULUCF)	5420.02	5909.76	6340.25	6623.82	6869.31

Total (without LULUCF, with indirect)	5580.67	6083.71	6520.14	6805.92	7060.44
Total (with LULUCF, with indirect)	5427.61	5916.72	6347.49	6631.12	6877.09
	1007	1007	1005	1000	1000
CO ₂ emissions without LULUCF	1995 5865.76	1996 6215.68	1997 6302.38	1998 6596.85	1999 6863.43
CO ₂ emissions without LULUCF	5685.27	6029.59	6117.14	6403.08	6664.92
CH ₄ emissions with LULUCF	887.53	909.43	914.84	917.52	919.68
CH ₄ emissions with LULUCF	887.79	909.45	915.45	917.52	919.08
N ₂ O emissions without LULUCF	178.14	171.66	165.60	173.79	172.42
N ₂ O emissions with LULUCF	178.35	171.96	166.01	174.98	172.55
HFCs	28.48	33.57	38.61	46.75	53.50
PFCs	NO NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	5.93	6.57	7.21	7.85	8.49
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	6965.84	7336.90	7428.64	7742.75	8017.53
Total (with LULUCF)	6785.81	7151.54	7244.43	7552.26	7819.15
Total (without LULUCF, with	6973.05	7344.16	7436.28	7750.19	8025.32
indirect)					
Total (with LULUCF, with indirect)	6793.01	7158.80	7252.07	7559.70	7826.94
	2000	2001	2002	2003	2004
CO ₂ emissions without LULUCF	7106.90	6979.66	7171.94	7560.77	7787.10
CO ₂ emissions with LULUCF	6957.46	6808.50	6969.52	7345.91	7571.28
CH ₄ emissions without LULUCF	938.26	975.82	1003.66	994.67	985.00
CH ₄ emissions with LULUCF	942.73	977.33	1003.70	994.86	985.37
N ₂ O emissions without LULUCF	174.20	191.66	195.84	192.06	183.41
N ₂ O emissions with LULUCF	176.67	192.72	196.28	192.71	184.30
HFCs	61.52	69.94	79.29	90.60	107.26
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	9.13	9.80	10.45	11.11	11.76
NF ₃	NO 0200.01	NO	NO	NO	NO
Total (without LULUCF)	8290.01	8226.88	8461.18	8849.20	9074.54
Total (with LULUCF)	8147.51	8058.28	8259.24	8635.19	8859.99
Total (without LULUCF, with indirect)	8298.25	8234.86	8470.77	8860.05	9087.14
Total (with LULUCF, with indirect)	8155.74	8066.27	8268.83	8646.03	8872.59
Total (Will Belle et) Will Haireet)	0100.71	0000.27	0200.03	0010.05	0072.09
	2005	2006	2007	2008	2009
CO ₂ emissions without LULUCF	7951.67	8183.13	8475.07	8691.64	8437.99
CO ₂ emissions with LULUCF	7729.81	7959.17	8286.46	8440.57	8158.95
CH ₄ emissions without LULUCF	960.16	962.47	964.66	963.70	964.68
CH ₄ emissions with LULUCF	960.29	962.79	967.74	963.81	964.87
N ₂ O emissions without LULUCF	169.30	172.05	169.72	162.12	159.40
N ₂ O emissions with LULUCF	170.20	173.20	172.35	163.24	160.59
HFCs	121.85	137.15	153.22	171.91	181.73
PFCs	3.70	NO	NO	NO	NO
	NO			NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	
Unspecified mix of HFCs and PFCs SF ₆	NO 12.42	NO 11.47	11.78	12.09	12.39
Unspecified mix of HFCs and PFCs SF ₆ NF ₃	NO 12.42 NO	NO 11.47 NO	11.78 NO	12.09 NO	12.39 NO
Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF)	NO 12.42 NO 9215.40	NO 11.47 NO 9466.28	11.78 NO 9774.43	12.09 NO 10001.45	12.39 NO 9756.19
Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF) Total (with LULUCF)	NO 12.42 NO 9215.40 8994.57	NO 11.47 NO 9466.28 9243.79	11.78 NO 9774.43 9591.55	12.09 NO 10001.45 9751.61	12.39 NO 9756.19 9478.54
Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF)	NO 12.42 NO 9215.40	NO 11.47 NO 9466.28	11.78 NO 9774.43	12.09 NO 10001.45	12.39 NO 9756.19
Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF) Total (with LULUCF) Total (without LULUCF, with	NO 12.42 NO 9215.40 8994.57	NO 11.47 NO 9466.28 9243.79	11.78 NO 9774.43 9591.55	12.09 NO 10001.45 9751.61	12.39 NO 9756.19 9478.54

	2010	2011	2012	2013	2014
CO ₂ emissions without LULUCF	8071.82	7792.36	7261.67	6578.17	6929.79
CO ₂ emissions with LULUCF	7804.55	7489.50	6965.82	6279.34	6629.09
CH ₄ emissions without LULUCF	973.80	972.61	962.67	947.60	948.16
CH ₄ emissions with LULUCF	974.52	973.22	963.35	947.84	948.43
N ₂ O emissions without LULUCF	168.54	166.08	163.09	147.99	145.44
N ₂ O emissions with LULUCF	170.05	167.55	164.63	149.30	146.76
HFCs	198.03	216.05	220.76	224.32	231.73
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	12.70	14.36	14.97	15.58	16.18
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	9424.88	9161.46	8623.16	7913.67	8271.30
Total (with LULUCF)	9159.84	8860.68	8329.54	7616.38	7972.20
Total (without LULUCF, with indirect)	9437.36	9168.98	8630.62	7923.67	8279.10
Total (with LULUCF, with indirect)	9172.32	8868.20	8337.00	7626.39	7979.99
	2015	2016	2017	2018	2019
CO ₂ emissions without LULUCF	6952.48	7349.93	7469.28	7324.20	7324.48
CO ₂ emissions with LULUCF	6655.04	7145.75	7160.68	7019.96	7025.73
CH ₄ emissions without LULUCF	955.51	978.91	997.53	1011.69	1032.22
CH ₄ emissions with LULUCF	955.60	986.85	997.78	1012.19	1032.57
N ₂ O emissions without LULUCF	150.87	152.95	158.82	160.87	166.63
N ₂ O emissions with LULUCF	152.10	158.29	160.14	162.31	168.00
HFCs	243.96	264.78	285.96	305.83	330.00
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	16.79	15.61	15.80	16.00	15.44
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	8319.60	8762.17	8927.40	8818.59	8868.78
Total (with LULUCF)	8023.49	8571.28	8620.37	8516.28	8571.74
Total (without LULUCF, with indirect)	8325.88	8770.07	8935.54	8825.81	8875.62
Total (with LULUCF, with indirect)	8029.77	8579.18	8628.51	8523.50	8578.58
					Change
					from
					1990 to 2023
	2020	2021	2022	2023	(%)
CO ₂ emissions without LULUCF	6903.17	6950.78	7070.78	7188.09	54.66
CO ₂ emissions with LULUCF	6602.80	6706.06	6770.05	6876.22	52.99
CH ₄ emissions without LULUCF	1062.76	1083.51	1075.68	1080.76	39.20
CH ₄ emissions with LULUCF	1063.19	1088.98	1075.96	1081.09	39.23
N ₂ O emissions without LULUCF	171.07	172.71	171.48	171.80	17.53
N ₂ O emissions with LULUCF	172.47	176.62	172.55	172.76	18.16
HFCs	336.65	364.61	394.92	414.96	100
PFCs	NO	NO	NO	NO	0.00
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	0.00
SF ₆	18.74	17.58	17.84	17.84	553.28
NF ₃	NO	NO	NO	NO	0.00
Total (without LULUCF)	8492.39	8589.18	8730.70	8873.45	59.22
Total (with LULUCF)	8193.85	8353.86	8431.31	8562.87	57.99
Total (without LULUCF, with indirect)	8501.10	8597.20	8736.79	8880.10	59.12
Total (with LULUCF, with indirect)	8202.56	8361.87	8437.40	8569.52	57.89
					·

ES.3. Overview of source and sink category emission estimates and trends

Energy, with $6266\,\text{Gg}\,\text{CO}_2\,\text{eq.}$, continues to be the largest contributor to the total national GHG emissions (73.2% compared to the total without LULUCF). 3050 Gg CO₂ eq. of these emissions is from the production of electricity, while another 2146 Gg CO₂ eq. is from transport. Table 2 and Figure 2 present the emissions for the period 1990–2023 by sector.

Table 2. GHG emissions by sector for the period 1990–2023

Γ <u>able 2. G</u>	HG emissions by sector for the period 1990–2023								
	Energy	IPPU	Agriculture	LULUCF	Waste	Total (excl. LULUCF)	Total (incl. LULUCF)		
1990	3955.24	727.93	454.74	-153.07	435.18	5573.09	5420.02		
1991	4486.90	687.86	461.29	-166.98	440.71	6076.75	5909.76		
1992	4810.19	762.12	491.51	-172.65	449.08	6512.90	6340.25		
1993	4985.64	833.49	519.70	-174.80	459.80	6798.63	6623.82		
1994	5195.44	870.23	514.25	-183.35	472.74	7052.66	6869.31		
1995	5100.38	839.71	544.36	-180.03	481.39	6965.84	6785.81		
1996	5393.40	904.12	551.74	-185.36	487.64	7336.90	7151.54		
1997	5514.13	876.05	541.38	-184.22	497.08	7428.64	7244.43		
1998	5854.56	840.12	543.56	-190.49	504.51	7742.75	7552.26		
1999	6116.57	852.94	534.94	-198.38	513.07	8017.53	7819.15		
2000	6341.69	882.17	542.91	-142.51	523.24	8290.01	8147.51		
2001	6231.79	875.27	586.21	-168.60	533.60	8226.88	8058.28		
2002	6391.43	918.24	609.97	-201.94	541.54	8461.18	8259.24		
2003	6779.11	932.75	592.67	-214.02	544.68	8849.20	8635.19		
2004	6938.54	1014.78	572.69	-214.55	548.53	9074.54	8859.99		
2005	7129.10	1003.19	525.54	-220.83	557.57	9215.40	8994.57		
2006	7317.73	1059.55	531.15	-222.49	557.86	9466.28	9243.79		
2007	7612.99	1072.03	529.50	-182.89	559.92	9774.43	9591.55		
2008	7829.24	1093.84	508.12	-249.84	570.25	10001.45	9751.61		
2009	7748.43	929.89	500.49	-277.65	577.38	9756.19	9478.54		
2010	7516.29	809.86	514.80	-265.04	583.92	9424.88	9159.84		
2011	7254.07	811.54	506.90	-300.78	588.96	9161.46	8860.68		
2012	6767.31	772.13	484.68	-293.62	599.05	8623.16	8329.54		
2013	5842.15	1013.20	449.17	-297.29	609.15	7913.67	7616.38		
2014	5973.19	1241.75	437.17	-299.11	619.19	8271.30	7972.20		
2015	6097.70	1157.02	441.85	-296.11	623.02	8319.60	8023.49		
2016	6488.46	1185.18	462.38	-190.89	626.15	8762.17	8571.28		
2017	6568.77	1248.89	476.12	-307.03	633.61	8927.40	8620.37		
2018	6495.10	1198.37	481.79	-302.31	643.33	8818.59	8516.28		
2019	6548.31	1170.76	495.52	-297.04	654.18	8868.78	8571.74		
2020	6039.19	1268.32	531.54	-298.54	653.35	8492.39	8193.85		
2021	6092.14	1290.19	546.27	-235.33	660.59	8589.18	8353.86		
2022	6210.45	1324.48	528.61	-299.39	667.16	8730.70	8431.31		
2023	6265.97	1404.72	530.45	-310.58	672.31	8873.45	8562.87		
Change 1990–2023	58.42	92.98	16.65	102.90	54.49	59.22	57.99		

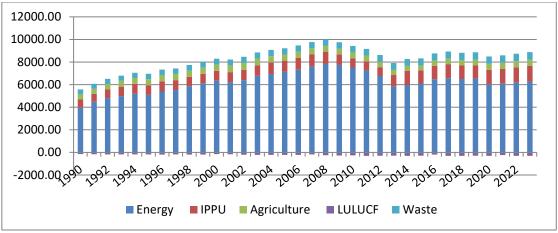


Figure 2. GHG emissions by sector for the period 1990–2023

ES.4. Other information

The role of carbon monoxide (CO), nitrogen oxides (NO_x) and non-methane organic volatile compounds (NMVOC) is important for climate change as these gases act as precursors of tropospheric ozone. In this way, they contribute to ozone formation and alter the atmospheric lifetimes of other greenhouse gases. For example, CO interacts with the hydroxyl radical (OH), the major atmospheric sink for methane, to form carbon dioxide. Therefore, increased atmospheric concentration of CO limits the number of OH compounds available to destroy methane, thus increasing the atmospheric lifetime of methane.

The emissions for these gases have been estimated by the Department of Labour Inspection, which is the competent authority for the preparation of air pollutants inventories under Directive 2001/81/EC. An overview of the period is presented in the following Tables.

Table 3. NOx, CO, NMVOCs and SOx emissions 1990–2023 (Gg)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
NO_x	17.89	17.67	19.86	20.36	20.94	20.81	20.99	21.37	21.81	22.07
CO	44.83	43.41	42.39	40.51	40.83	39.11	37.77	36.25	34.18	32.34
NMVOCs	14.13	13.74	13.96	13.92	14.40	14.05	13.92	14.08	13.66	13.50
SO _x	31.92	32.78	37.61	39.91	41.85	39.63	41.63	43.98	47.34	49.57
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
NO_x	22.36	22.36	22.01	22.32	22.12	21.78	21.40	21.11	19.74	19.91
CO	29.71	28.36	26.78	26.24	24.89	23.40	21.35	19.32	16.89	15.27
NMVOCs	13.21	13.05	13.51	14.14	14.05	13.71	12.89	13.38	12.28	11.66
SO_x	47.41	45.09	45.26	47.00	40.32	37.84	31.32	29.18	22.24	17.60
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NO _x	2010 18.63	2011 21.39	2012 20.74	2013 15.18	2014 15.89	2015 13.63	2016 13.36	2017 13.33	2018 12.98	2019 14.07
NO _x										
	18.63	21.39	20.74	15.18	15.89	13.63	13.36	13.33	12.98	14.07
CO	18.63 14.55	21.39 13.23	20.74 12.25	15.18 11.54	15.89 11.75	13.63 11.23	13.36 11.18	13.33 10.89	12.98 10.11	14.07 9.80
CO NMVOCs	18.63 14.55 11.85	21.39 13.23 9.37	20.74 12.25 9.07	15.18 11.54 9.84	15.89 11.75 9.69	13.63 11.23 9.93	13.36 11.18 7.66	13.33 10.89 8.60	12.98 10.11 8.04	14.07 9.80 7.87
CO NMVOCs	18.63 14.55 11.85	21.39 13.23 9.37	20.74 12.25 9.07	15.18 11.54 9.84	15.89 11.75 9.69	13.63 11.23 9.93	13.36 11.18 7.66	13.33 10.89 8.60	12.98 10.11 8.04	14.07 9.80 7.87
CO NMVOCs	18.63 14.55 11.85 21.77	21.39 13.23 9.37 20.77	20.74 12.25 9.07 16.05	15.18 11.54 9.84 13.50	15.89 11.75 9.69	13.63 11.23 9.93	13.36 11.18 7.66	13.33 10.89 8.60	12.98 10.11 8.04	14.07 9.80 7.87
CO NMVOCs SO _x	18.63 14.55 11.85 21.77 2020	21.39 13.23 9.37 20.77 2021	20.74 12.25 9.07 16.05	15.18 11.54 9.84 13.50 2023	15.89 11.75 9.69	13.63 11.23 9.93	13.36 11.18 7.66	13.33 10.89 8.60	12.98 10.11 8.04	14.07 9.80 7.87
CO NMVOCs SO _x	18.63 14.55 11.85 21.77 2020 12.11	21.39 13.23 9.37 20.77 2021 12.46	20.74 12.25 9.07 16.05 2022 11.98	15.18 11.54 9.84 13.50 2023 12.10	15.89 11.75 9.69	13.63 11.23 9.93	13.36 11.18 7.66	13.33 10.89 8.60	12.98 10.11 8.04	14.07 9.80 7.87

Chapter 1. Introduction

1.1. Background information on GHG inventories and climate change

A greenhouse gas (GHG) is a gas in the atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. The primary natural greenhouse gases in Earth's atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone. Hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulphur hexafluoride (SF $_6$) and nitrogen trifluoride (NF $_3$) are man-made GHG and are mainly used in a number of industrial activities in replacement of CFCs. Other naturally occurring gases, which do not contribute directly to the greenhouse effect are carbon monoxide (CO), oxides of nitrogen (NO $_x$), non-methane volatile organic compounds (NMVOC) and sulphur dioxide (SO $_2$).

Human activities since the beginning of the Industrial Revolution have produced an increase in the atmospheric concentration of carbon dioxide. This increase has occurred despite the uptake of a large portion of the emissions by various natural "sinks" involved in the carbon cycle. Anthropogenic carbon dioxide (CO₂) emissions (i.e., emissions produced by human activities) come predominately from combustion of fossil fuels and deforestation.

In 1992, countries joined an international treaty, the United Nations Framework Convention on Climate Change, as a framework for international cooperation to combat climate change by limiting average global temperature increases, and coping with impacts.

The objective of the United Nations Framework Convention on Climate Change (UNFCCC) is to stabilise greenhouse gas (GHG) concentrations in the atmosphere at a level that would prevent and reduce dangerous human-induced interference with the climate system. The ability of the international community to achieve this objective is dependent on accurate knowledge of GHG emissions trends, and on our collective ability to alter these trends.

In accordance with Articles 4 and 12 of the Convention and the relevant decisions of the Conference of the Parties (COP), Annex I Parties to the Convention compile national emission inventories of anthropogenic sources and sinks of all greenhouse gases not controlled by the Montreal protocol, and submit them to the Climate Change secretariat. These inventories are subject to an annual technical review process.

By 1995, countries had launched negotiations to strengthen the global response to climate change, and, two years later, adopted the Kyoto Protocol. The Kyoto Protocol legally binds developed country Parties to emission reduction targets. The Protocol's first commitment period started in 2008 and ended in 2012. The second commitment period began on 1 January 2013 and ended in 2020.

There are now 197 Parties to the Convention and 192 Parties to the Kyoto Protocol.

The 2015 Paris Agreement, adopted in Paris on 12 December 2015, marks the latest step in the evolution of the UN climate change regime and builds on the work undertaken under the Convention. The Paris Agreement charts a new course in the global effort to combat climate change.

1.1.1. Background information on climate change

International framework

<u>United Nations Framework Convention on Climate Change²</u>

In response to the emerging evidence that climate change could have a major global impact, the United Nations Framework Convention on Climate Change (henceforth the Convention) was adopted on 9 May 1992 and was opened for signature in Rio de Janeiro in June 1992.

The ultimate objective of the Convention is the stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. The Convention recognises that the developed countries should take the lead in combating climate change and calls these countries to:

- Adopt policies and measures to mitigate climate change.
- Return, individually or jointly, to 1990 levels of carbon dioxide and other greenhouse gas by the year 2000.
- Provide technology transfer and financial resources to help developing countries so as to confront climate change impacts and to develop, ensuring at the same time the environmental protection through the restraint of GHG emissions.

Kyoto Protocol³

Recognising early the need for an effective instrument to provide confidence in addressing the climate change challenge, the Parties at the third meeting of the Conference of the Parties (COP) to the Convention, held in Kyoto (1-11 December 1997), finalised negotiations related to the establishment of such a legal instrument, the Kyoto Protocol on Climate Change (KP). The KP established, for the first time, legally binding targets for the reduction of greenhouse gas emissions. The KP provides a foundation upon which future action can be intensified, and also confirms the capacity of the international community to cooperate in action to deal with a major global environmental problem.

The KP called for legally binding commitments of the developed countries to individually or jointly reduce emissions of 6 greenhouse gases (CO₂, CH₄, N₂O, HFC, PFC and SF₆) in the period 2008 to 2012 by more than 5% compared with 1990 levels. The EU and its Member States at the time agreed to an 8% reduction. For the achievement of these targets, the Protocol provided the use of the following:

- Adoption of national policies and measures,
- Establishment of an emissions trading regime,
- Establishment of the joint implementation mechanism,
- Establishment of a clean development mechanism, and
- Protection and promotion of sinks to enhance CO₂ removals.

Detailed rules for the implementation of the Protocol were set out at the 7th Conference of the Parties (in Marrakesh) and are described in the Marrakesh Accords adopted in 2001. The Protocol entered into force on 16 February 2005, after its ratification from 141 Parties (including developed countries with a contribution of more than 55% to global CO₂ emissions in 1990).

The Doha Amendment⁴

At the eighth session of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol held in Doha, Qatar, in December 2012, parties to the Kyoto Protocol adopted an amendment to the Kyoto Protocol by decision 1/CMP.8 in accordance with Articles 20 and 21 of the Kyoto Protocol.

Pursuant to Article 21, paragraph 7 and Article 20, paragraph 4, the amendment is subject to acceptance by Parties to the Kyoto Protocol. In accordance with Article 20, paragraph 4, the amendment will enter

² More information available at https://unfccc.int/essential_background/convention/items/6036.php

³ More information available at https://unfccc.int/essential_background/kyoto_protocol/items/6034.php

⁴ More information available at https://unfccc.int/kyoto_protocol/doha_amendment/items/7362.php

into force for those Parties having accepted it on the ninetieth day after the date of receipt by the Depositary of an instrument of acceptance by at least three fourths of the Parties to the Kyoto Protocol. A total of 144 instruments of acceptance are required for the entry into force of the amendment.

The Doha Amendment and the KP Decision set out the rules related to the second commitment period of the Kyoto Protocol (CP2). The key aspects of CP2 are as follows:

- CP2 will be eight years long, running from 1 January 2013 until 31 December 2020;
- Parties taking on commitments in CP2 (CP2 Parties) are required to reduce their aggregate emissions by 18% below 1990 levels in CP2. The commitments of individual Parties range from a 24% reduction (in the case of Ukraine) to a 0.5% reduction (in the case of Australia). The European Union, as a whole, is required to reduce its emissions by 20%;
- CP2 Parties are required to review their commitments by the end of 2014 with a view at increasing the level of their mitigation ambition;
- Notwithstanding the commitments set out in Annex B to the Kyoto Protocol (as amended), each CP2 Party's commitment in CP2 must be at least as ambitious as its actual annual average emissions between 2008 and 2010;
- CP2 Parties may carry over surplus CP1 AAUs into CP2 without limit, but may only use or acquire such AAUs in limited circumstances;
- Access to all of the Kyoto Protocol's market mechanisms remains uninterrupted for CP2 Parties;
- KP Parties agreed to the implementation of the Doha Amendment pending its formal entry into force, thus ensuring the Kyoto Protocol's operational continuity.

The Paris Agreement⁵

The 2015 Paris Agreement is a historically significant landmark in the global fight against climate change. The Paris Agreement entered into force on 4 November 2016. The Paris Agreement builds upon the Convention and – for the first time – brings all nations into a common cause to undertake ambitious efforts to combat climate change and adapt to its effects, with enhanced support to assist developing countries to do so. As such, it charts a new course in the global climate effort.

The key features of the Paris Agreement are as follows:

- It sets out a long term goal to put the world on track to limit global warming to well below 2°C above pre-industrial levels and pursue efforts to limit the temperature increase to 1.5°C; The aspirational goal of 1.5°C was agreed to drive greater ambition, and to highlight the concerns of the most vulnerable countries that are already experiencing the impacts of climate change.
- It sends a clear signal to all stakeholders, investors, businesses, civil society and policy-makers that the global transition to clean energy is here to stay and that resources have to shift away from fossil fuels; With 189 national climate plans covering some 98% of all emissions, tackling climate change is now become a truly global effort. With Paris, we are moving from action by a few to action by all.
- It provides a dynamic mechanism to take stock and strengthen ambition over time. Starting from 2023, Parties will come together every five years in a "global stocktake" to consider progress in emissions reductions, adaptation and support provided and received in view of the long-term goals of the Agreement.
- Parties have a legally binding obligation to pursue domestic mitigation measures, with the aim of achieving the objectives of their contributions.
- It sets up an enhanced transparency and accountability framework, including the biennial submission by all Parties of greenhouse gas inventories and the information necessary to track their progress, a technical expert review, a facilitative, multilateral consideration of Parties' progress and mechanism to facilitate implementation of and promote compliance.
- It provides an ambitious solidarity package with adequate provisions on climate finance and on addressing needs linked to adaptation and loss and damage associated with adverse effects of climate change. To promote individual and collective action on adaptation, the Paris Agreement establishes for the first time a global goal with the aim to enhance capacity, climate resilience and reduce climate vulnerability. Internationally, it encourages greater cooperation among Parties to share scientific

⁵ Available at https://unfccc.int/files/essential-background/convention/application/pdf/english-paris-agreement.pdf

knowledge on adaptation as well as information on practices and policies.

Climate change and Cyprus

The Republic of Cyprus ratified the UNFCCC in 1997 with Law No. 19(III) / 1997 as a non-Annex I party. The Kyoto Protocol was ratified by the Republic of Cyprus in 2003 with Law No. 29(III) / 2003. According to decision 10/CP.17 of COP17, as of 9 January 2013, the status of Cyprus changed from a non-Annex I to an Annex I party to the UNFCCC. As part of the EU, Cyprus has taken up commitments for the CP2 of the KP through the Doha amendment. The Republic of Cyprus ratified the Paris Agreement on 4 January 2017 with Law No. 30(III)/2016.

1.1.2. Background information on greenhouse gas inventories

International framework

Annual inventories of greenhouse and other gas emissions form an essential element of each national environmental policy-making process. They can be used to derive information on emissions trends with reference to a pre-selected base year, and can assist in monitoring the progress of existing abatement measures for the reduction of greenhouse gas emissions and the fulfilment of the KP target.

According to Article 4 of the Convention, Annex I Parties have the obligation to submit national inventories of GHG emissions and removals. At COP2, the annual submission of inventories was decided (Decision 9/CP.2). The Conference of the Parties (COP), by decision 24/CP.19⁶, adopted the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories" (UNFCCC Annex I inventory reporting guidelines) and tables of the common reporting format to implement the use of the 2006 IPCC Guidelines for National Greenhouse Gas inventories⁷.

The UNFCCC Annex I inventory reporting guidelines also cover the establishment and maintenance of national inventory arrangements for the purpose of the continued preparation of timely, complete, consistent, comparable, accurate and transparent annual GHG inventories.

An annual GHG inventory submission consists of an NID and the CRT tables, as set out in annexes I and II to decision 24/CP.19. The annual submission also comprises information provided by an Annex I Party in addition to its submitted NID and CRT tables.

Cyprus

The first national inventory report for Cyprus was prepared in 2001 and covered the period 1990-1998. The inventory was prepared in the framework of the project "Strategic Plan for the Limitation of Greenhouse Gas Emissions in Cyprus".

The first Inventory report submitted by Cyprus to the European Commission for the purposes of Decision no. 280/2004/EC, was in 2006 for the period 1990–2004. Cyprus at the time was a non-Annex I party and therefore had no obligation to submit annual inventories to the UNFCCC secretariat.

The first submission of a national inventory report to the UNFCCC secretariat as an Annex I party was made in April 2013.

1.2. A description of the national inventory arrangements

According to decision 24/CP.19, each Annex I Party should implement and maintain national inventory arrangements for the estimation of anthropogenic GHG emissions by sources and removals by sinks. The national inventory arrangements include all institutional, legal and procedural arrangements made within

6

⁶ Available at http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf

⁷ Available at https://www.ipcc-nggip.iges.or.jp/public/2006gl/

an Annex I Party for estimating anthropogenic emissions by sources and removals by sinks of all GHGs not controlled by the Montreal Protocol, and for reporting and archiving inventory information.

National inventory arrangements should be designed and operated:

- (a) To ensure the transparency, consistency, comparability, completeness and accuracy of inventories;
- (b) To ensure the quality of inventories through the planning, preparation and management of inventory activities. Inventory activities include collecting AD, selecting methods and EFs appropriately, estimating anthropogenic GHG emissions by sources and removals by sinks, implementing uncertainty assessment and QA/QC activities, and carrying out procedures for the verification of the inventory data at the national level, as described in the UNFCCC Annex I inventory reporting guidelines.

In the implementation of its national inventory arrangements, each Annex I Party should perform the following general functions:

- (a) Establish and maintain the institutional, legal and procedural arrangements necessary to perform the functions defined in decision 24/CP.19, as appropriate, between the government agencies and other entities responsible for the performance of all functions defined in these reporting guidelines;
- (b) Ensure sufficient capacity for the timely performance of the functions defined in these reporting guidelines, including data collection for estimating anthropogenic GHG emissions by sources and removals by sinks and arrangements for the technical competence of the staff involved in the inventory development process;
- (c) Designate a single national entity with overall responsibility for the national inventory;
- (d) Prepare national annual GHG inventories in a timely manner in accordance with these reporting guidelines and relevant decisions of the COP, and provide the information necessary to meet the reporting requirements defined in these reporting guidelines and in relevant decisions of the COP;
- (e) Undertake specific functions relating to inventory planning, preparation and management.

1.2.1. Institutional, legal and procedural arrangements

In article 5, paragraph 1 of the Protocol, it is specified that "Each Party included in Annex I shall have in place, no later than one year prior to the start of the first commitment period, a national system for the estimation of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol". A national system includes all institutional, legal and procedural arrangements made within an Annex I Party of the Convention that is also a Party to the Protocol for estimating anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol, and for reporting and archiving inventory information.

The Department of Environment of the Ministry of Agriculture, Rural Development and Environment (DoE), is the governmental body responsible for the development and implementation of environmental policy in Cyprus, as well as for the provision of information concerning the state of the environment in Cyprus in compliance with relevant requirements defined in international conventions, protocols and agreements. Moreover, the DoE is responsible for the co-ordination of all involved ministries, as well as any relevant public or private organization, in relation to the implementation of the provisions of the Kyoto Protocol, according to the Law 29(III)/2009 with which Cyprus ratified the Kyoto Protocol.

In this context, the DoE has the overall responsibility for the national GHG inventory, and the official consideration and approval of the inventory prior to its submission. (Contact person: Dr. Nicoletta Kythreotou, Environment Officer, Department of Environment, Ministry of Agriculture, Rural Development and Environment, Offices' address: 20-22 28th Oktovriou Ave., Engomi, 2414, Nicosia, Cyprus, Postal address: Department of Environment, 1498 Nicosia, Cyprus, Tel. +357 22 408 947, Fax. +357 22 774 945, Web. www.moa.gov.cy/environment).

Figure 1.1 provides an overview of the organisational structure of the National Inventory System. The entities participating in the National Inventory System are:

- The DoE, designated as the national entity responsible for the national inventory, holds the overall responsibility and maintains an active role in the inventory planning, preparation and management, including technical and scientific responsibility for the compilation of the annual inventory.
- The 2020 submission was the first submission for which a team of external experts from the Cyprus Institute⁹ worked for the preparation of the emissions and the reporting, under the guidance of the DoE (contractor).
- Governmental ministries and agencies through their appointed focal persons, ensure the data provision.

International or national associations, along with individual public or private industrial companies contribute to data providing and development of methodological issues as appropriate.

The legal framework defining the roles-responsibilities and the co-operation between the DoE Inventory team and the designated contact points of the competent Ministries was formalized by Council of Ministers' Decision adopted 15/11/2017 entitled "Structure and operation of the National Greenhouse Gases Inventory System- Roles and Responsibilities". The above-mentioned Decision includes a description of each entity's responsibilities, concerning the inventory preparation, data providing or other relative information. This formal framework has improved the collaboration between the entities involved, assuring the timely collection and quality of the activity data required and solving data access restriction problems raised due to confidentiality issues.

1.2.1.1. Roles and responsibilities for inventory preparation

Department of Environment

The DoE is the Single National Entity with the overall responsibility for the national GHG inventory. Among its responsibilities are the following:

- The co-ordination of all ministries and other institutions involved, as well as any relevant public or private organization. In this context, it oversees the operation of the National System and decides on the necessary arrangements to ensure compliance with relevant decisions of the COP and the COP/CMP.
- The official consideration and approval of the inventory prior to its submission.
- The response to any issues raised by the inventory review process under Article 8 of the Kyoto Protocol¹⁰.
- The timely submission of the GHG inventory to the European Commission and to the UNFCCC Secretariat.
- The keeping of the Centralised Inventory File, which is delivered to the inventory team which has the technical responsibility for the inventory planning, preparation and management at the beginning of each inventory cycle. The Centralised Inventory File is kept at the premises of the DoE.
- The administration of the National Registry. Cyprus cooperates with the Member States of the European Union and with the supplementary transaction log and the registry of the European Community by maintaining the national registries in a consolidated system.
- The supervision and implementation of Quality Assurance/Quality Control Plan (QA/QC)

⁸ For 2017, there is a contract with an external expert for scientific and technical support to the inventory team of the DoE and the QA of the GHG inventory. As of 2018, according to the Council of Ministers' Decision of 15/11/2017, the technical and scientific responsibility for the compilation of the annual inventory for all sectors will be assigned, on a contract basis, to an independent consultant by the DoE.

⁹ The Cyprus Institute (CyI) is a non-profit research and educational institution with a strong scientific and technological orientation, addressing issues of regional interest but of global significance, with an emphasis on cross-disciplinary research and international collaborations. The team of experts is working at the Energy, Environment and Water Research Center (EEWRC) of the CyI, of which the work and collaborations focus on societally relevant issues related to Energy and Renewables, Environment, Atmosphere and Climate, Water and Natural Resources (www.cyi.ac.cy). ¹⁰ in co-operation with future technical and scientific consultants

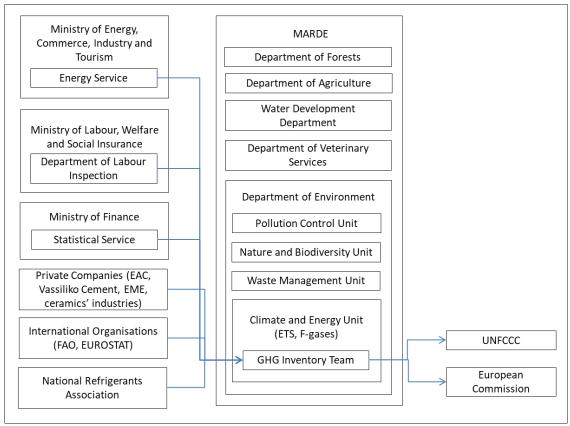


Figure 1.1. Overview of the organisational structure of the National Inventory System

In addition, DoE, in close collaboration with the contractor, currently has the technical and scientific responsibility for the planning, preparation and management of the annual national inventory, which includes the following tasks:

- 1. Data collection (activity data and emission factors) for all source categories that are Energy, Industrial Processes, Solvents and Other Product Use, Agriculture, Waste and LULUCF.
- 2. Reliability check of input data through
 - the comparison of the same or similar data from alternative data sources and
 - time-series assessment in order to identify changes that cannot be explained.
- 3. Selection of the appropriate methodologies according to the 2006 IPCC guidelines, preparation of GHG emissions estimates by applying the methodologies and models having been selected.
- 4. Data processing and archiving.
- 5. Assessment of the consistency of the methodologies applied, inventory improvement recalculations.
- 6. Reliability check of results.
- 7. Key categories analysis.
- 8. Uncertainty assessment.
- 9. Preparation of Common Reporting Format (CRT) tables.
- 10. Preparation of National Inventory Document (NID).
- 11. Reporting of the required information according to Regulation 525/2013 of the European Parliament and of the Council and its implementing acts.
- 12. Preparation and keeping of annual Centralised Inventory File.
- 13. Development of QA/QC procedures.
- 14. Implementing the QA/QC procedures.
- 15. Training the representatives of data providing agencies on inventory issues.

The names and contact details of the DoE inventory team follows:

(a) Dr. Nicoletta Kythreotou

Environment Officer, Department of Environment, Ministry of Agriculture, Rural Development and Environment, Offices' address: 20-22 28th Oktovriou Ave., Engomi, 2414, Nicosia, Cyprus, Postal address: Department of Environment, 1498 Nicosia, Cyprus, Tel. +357 22 408 947, Email. nkythreotou@environment.moa.gov.cy

BSc Environmental Science, MSc Environmental Engineering, PhD Mechanical Engineering

(b) Mr. Marios Papanicolaou

Environmental Officer, Department of Environment, Ministry of Agriculture, Rural Development and Environment, Offices' address: 20-22 28th Oktovriou Ave., Engomi, 2414, Nicosia, Cyprus, Postal address: Department of Environment, 1498 Nicosia, Cyprus, Tel. +357 22 408 954, Email. mpapanicolaou@environment.moa.gov.cy

BSc Physics, BSc Mechanical Engineering, MSc Renewable Energy Technology

(c) Mr. Iordanis Tzamtzis

Accel – I. Tzamtzis & Co G.P., address: 27, Chrisostomou Smirnis str., 17237, Imittos, Attica, Greece, Tel. +30 6972 730430, Email. i.tzamtzis@accel.gr BSc Forest Engineer, MSc Environmental Protection and Sustainable Development

(d) Mr. Demetris Demetriou

Technical Research Specialist for Greenhouse Gases and Air Pollutants Inventory, the Cyprus Institute, address. 20, Konstantinou Kavafi Street, 2121, Nicosia, Cyprus, Tel. +357 22 397 559 Email. d.demetriou@cyi.ac.cy

BSc Mechanical Engineering, MSc Environmental Science, Policy and Management, MSc Environmental Dynamics and Climate Change.

(e) Ms. Corey Evans McClintock

Research Assistant, the Cyprus Institute, address. 20, Konstantinou Kavafi Street, 2121, Nicosia, Cyprus, Tel. +357 22 397 589 Email. c.mcclintock @cyi.ac.cy BSc Chemistry, Med Science Education.

(f) Mr. Marios Christoforides

Technical Research Specialist in Data Science, The Cyprus Institute, address. 20 Konstantinou Kavafi Street, 2121, Nicosia, Cyprus, Tel: +357 22 397 513, Email: m.christoforides@cyi.ac.cy BSc Statistics and Financial Mathematics, MSc Statistics and Data Science

Government Ministries/ Government agencies

Data from all the involved parties come in MS Excel spread-sheets and any other additional descriptive information in word documents. The main database maintained by the inventory compiler is also in the form of MS Excel spread-sheets. The collected data is transferred to the main database of the inventory compiler. No special software is used or applied for processing or storage of the data used in the inventory.

The inventory compiler has one MS Excel spread-sheet containing all the data collected and one MS Excel spread-sheet containing the calculations performed for the estimation of the GHG emissions.

Contact points for data collection

Data from the annual ETS submissions from installations participating is the EU-ETS scheme has been obtained since 2006 from the ETS team, which is also part of the Climate Action Unit of the Department of Environment (contact point Ms. Chrystalla Papastavrou, tel. no. +357 22 408962, cpapastavrou@environment.moa.gov.cy). Apart from the fuel consumption data is also obtained for CO_2 emissions (combustion and process emissions) and net calorific value (NCV) of fuels consumed.

The energy balance is obtained from the Energy Service of the Ministry of Commerce, Industry and Tourism. The contact point is Dr. Christina Karapitta–Zachariadou (tel. no. +357 22409388,

ckarapitta@mcit.gov.cy).

Information on vehicle registration for the estimation of emissions from road transport is obtained from the Department of Road Transport, Ministry of Transport, Communications and Works (Mr. Renos Venezis, tel. +357 22807002, rvenezis@rtd.mcw.gov.cy).

The contact point for the energy balance prepared by the National Statistical Service (CYstat) for the submission to EUROSTAT is Ms. Nafsika Apostolou (tel. no. +357 22602199, napostolou@cystat.mof.gov.cy). Other contacts at CYstat are: for waste data Mrs. Marilena Kythreotou (tel. no. +357 22602137, mkythreotou@cystat.mof.gov.cy), for population data Ms. Loukia Makri (tel. no.+357 22602150, lmakri@cystat.mof.gov.cy), for industrial production Mr. Charalambos Alkiviadous (tel. 22602189, calkiviadous@cystat.mof.gov.cy) and for agricultural data (cultivated areas and animal population) Mrs. Sofia Pelagia (spelagia@cystat.mof.gov.cy).

Department of Labour Inspection is the competent authority for the preparation of air pollutants inventories under Directive 2001/81/EC. The inventory is communicated to the GHG inventory compiler, Mr. Christos Papadopoulos (tel. no. +357 22405683, cpapadopoulos@dli.mlsi.gov.cy).

The activity data for the estimation of emissions from F-gases (sectors 2F) is obtained by Mr. Pavlos Pavlou, part of the Climate Action Unit, Department of Environment (tel. no. +357 24 202866, ppavlou@environment.moa.gov.cy), Department of Road Transport, Ministry of Transport, Communications and Works (Mr. Renos Venezis, tel. +357 22807002, rvenezis@rtd.mcw.gov.cy).

Other data on municipal solid waste management is obtained from Mrs. Elena Christodoulidou, part of the Waste Management Unit, at the Department of Environment (tel. no. +357 22408951, echristodoulidou@environment.moa.gov.cy).

Municipal liquid waste production and management data is obtained from Mrs. Stella Perikenti part of the Pollution Control Unit, Department of Environment (tel. no. +357 22408942, sperikenti@environment.moa.gov.cy) and Ms. Lia Georgiou, Senior Sanitary Engineer at the Water Development Department (tel. no. +357 22409186, lgeorgiou@wdd.moa.gov.cy)

Agricultural waste management information on practices applied is obtained from Mr. Antis Athanasiades part of the Pollution Control Unit, Department of Environment (tel. no. +357 22408935, aathanasiades@environment.moa.gov.cy).

Industrial liquid waste management data is obtained from Dr. Chrystalla Stylianou head of the Pollution Control Unit, Department of Environment (tel. no. +357 22408941, cstylianou@environment.moa.gov. cy).

Livestock population data is provided by Mr. Christodoulos Pipis, Veterinary Services (tel. no. $+357\ 22\ 80\ 52\ 00$).

Fertiliser consumption data is provided by Mr. George Theofanous, Department of Agriculture (tel. no. +357 22464028). Details necessary for the implementation of Tier 2 methodology for dairy cattle was obtained from Mr. Georgios Papaioannou, Department of Agriculture (tel. no. +357 22408566).

Land cover data (which includes forest cover data) is obtained from Mr. Andreas Antoniou, part of the Nature & Biodiversity Unit, Department of Environment (tel. no. +357 22408918, aantoniou@envrironment.moa.gov.cy).

Forest wildfire data is obtained from Ms. Areti Christodoulou, Department of Forests (tel. no. +357 22459003, archristodoulou@fd.moa.gov.cy).

Data is also obtained from International Organisations as the Food and Agricultural Organization of the United Nations (FAO) and EUROSTAT. This data is supplementary to the data collected from the aforementioned data providers. Furthermore, other government organisations, associations, and individual public and private industrial companies contribute to data providing and development of methodological issues as appropriate (Lime, cement and ceramics (bricks and tiles) production data is obtained directly from the installations).

1.2.2. Overview of inventory planning, preparation and management

1.2.2.1. GHG inventory, data collection, processing and storage

The preparation of the Cyprus' GHG emissions inventory is the responsibility of the Climate Action Unit of the Department of Environment of the Ministry of Agriculture, Rural Development and Environment.

The preparation of the Cyprus' GHG emissions inventory is primarily based on the application of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The compilation of the inventory is completed in three main stages (Figure 1.2).

The preparation of the Cyprus' GHG emissions inventory is based on the application of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The compilation of the inventory is completed in three main stages (Figure 1.2).

- Stage 1: The first stage consists of data collection and checks for all source/sink categories. The main data sources used are the National Statistical Service, the national energy balance, the government ministries/agencies involved, along with the verified reports from installations under the EU ETS. Quality control of activity data include the comparison of the same or similar data from alternative data sources (e.g. National Statistical Service, EU ETS reports and energy balance) as well as time-series assessment to identify changes that cannot be explained. In cases where problems and/or inconsistencies are identified, the agency's representative, responsible for data providing, is called to explain the inconsistency and/or help solving the problem.
- <u>Stage 2</u>: Once the reliability of input data is checked and certified, emissions/removals per source/sink category are estimated. Emissions estimates are then transformed to the format required by the CRT Reporter. This stage also includes the evaluation of the emission factors used and the assessment of the consistency of the methodologies applied in relation to the provisions of the 2006 IPCC Guidelines. Quality control checks, when at this stage, are related to time-series assessment as well as to the identification and correction of any errors/gaps while estimating emissions/removals and entering the data in the CRT Reporter.
- <u>Stage 3</u>: The last stage involves the compilation of the NID and its internal check. During this period, the Inventory Team must revise the report according to the observations and recommendations of the QA. Based on this interaction process, the final version of the report is compiled. The Director of the Department of Environment approves the inventory and then the contact points submit the NID to the European Commission for compliance with Regulation (EU) No 525/2013 and thereafter to the UNFCCC secretariat.

As shown in the timetable (Figure 1.3), the government ministries and agencies and the individual private or public industrial companies referred to previously should have collected and delivered to the Inventory Team ¹¹ the respective activity data needed for the inventory (for year X-2) and any changes in activity data for the period 1990 to year X-2, within the time period of May to November of year X-1 (X is the submission year of CRT tables and NID referred to X-2 GHG emissions inventory).

The information that is related to the annual GHG emissions inventory (activity data, emission factors, analytic results, compilation in the required analysis level of the CRT tables) is stored in MS Excel spreadsheets. Moreover, the final results (NID and CRT tables) are available in the DoE website¹².

In addition, and within the context of the Quality Assurance/Quality Control system developed, two master files have been organized aiming at the systematic and safe archiving of inventory information: the Input Data File and the Centralised Inventory File.

_

¹¹ and the technical consultants (in the future).

 $^{^{12}\} http://www.moa.gov.cy/moa/environment/environmentnew.nsf/All/21395032E3B9BB6CC225\ 7FF0003813DD?OpenDocument for the contraction of the c$

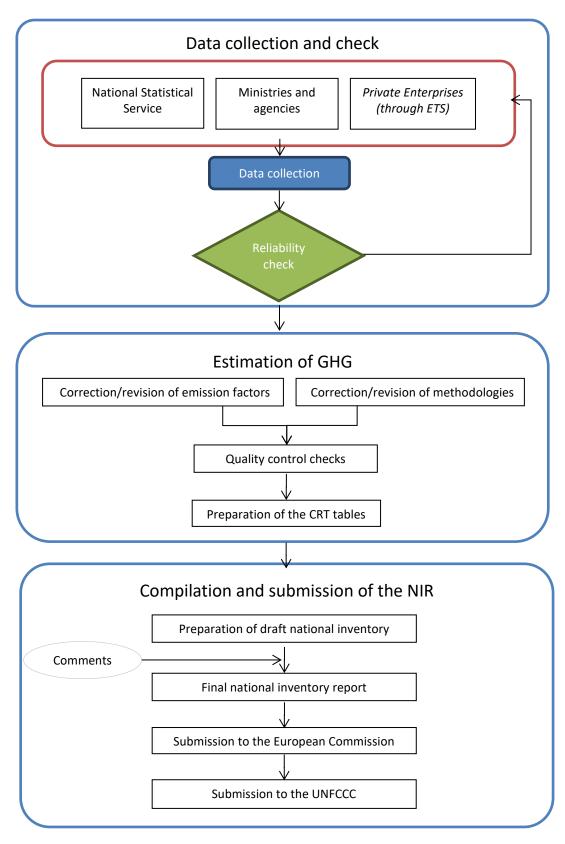


Figure 1.2. GHG emissions inventory preparation process in Cyprus

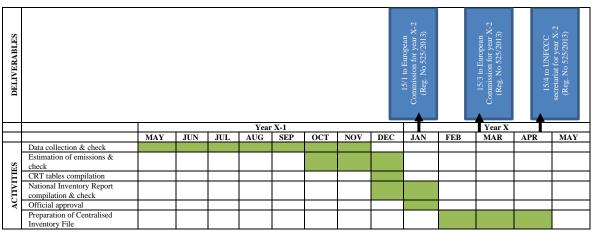


Figure 1.3. Timetable for inventory preparation

- The Input Data File contains (in electronic format and/or hard copy) all input data and parameters that are necessary for the estimation of GHG emissions/removals. Data is stored in sheets by sector and reference year.
- The Centralised Inventory File includes all information relevant to the GHG emissions/removals inventory. At the end of each cycle of the inventory preparation, all inventory related information is handled by the inventory team to the person responsible for keeping the Centralised Inventory File (member of the Climate Team) in the DoE, who in turn provides the latest version of all relevant files (calculation files and NID) to the Inventory Team at the beginning of the next inventory cycle.

More specifically the information stored in the Centralised Inventory Files includes:

- A list of the reports, the input data files and the calculation/estimation files.
- The members of the Inventory Team.
- Final versions, in electronic format and hard copy, of the NID.
- CRT tables in electronic format and a hard copy of the CRT tables for the last year covered by each submission.
- XML file and database of CRT reporter.
- Calculation files, including the uncertainty estimation files.
- Expert review reports.
- Any comments from the public review of the inventory.
- Documentation derived from the implementation of the QA/QC procedures.

1.2.3. Quality assurance, quality control and verification plan

A QA/QC plan is an internal document to organise and implement all activities across all of the emissions inventory activities including:

- Stakeholder engagement (stakeholders = e.g. suppliers of data, reviewers, recipients, other inventory compiling institutes (e.g. NFR))
- Data collection
- Data management
- Inventory compilation
- Consolidating the inventory estimates (e.g. into a single national database)
- Reporting

The QA/QC plan is a fundamental element of an inventory management system. The plan needs to clearly identify all important activities used by the inventory compiler and ensure that the minimum data quality objectives required under any relevant reporting obligations are met.

The development and the implementation of an inventory QA/QC plan represents a key tool for meeting the objectives of National Systems under Article 5 Paragraph 1 of the Protocol as described in Decision

20/CP.7.

Quality management is essential in order to comply with the requirements of (a) producing transparent, consistent, comparable, complete and accurate emissions estimates, (b) establishing a reliable central archiving system concerning all necessary information for GHG emissions inventories development and (c) compiling national reports according to the provisions of the CMP adopted decisions.

In this framework, a QA/QC system was first prepared in 2012, then revised to reflect 2016 and 2017 ERT recommendations.

Any external experts (through contracts) in close co-operation with the DoE are responsible for the implementation of the QA/QC system. The quality objectives of the system are the following:

- 1. Compliance with the 2006 IPCC guidelines and the UNFCCC reporting guidelines while estimating and reporting emissions/removals.
- 2. Continuous improvement of GHG emissions/removals estimates.
- 3. Timely submission of necessary information in compliance with relevant requirements defined in international conventions, protocols and agreements.

The accomplishment of these objectives can only be ensured by the implementation of the following QA/QC procedures, from all the members of the Inventory Team (see Figure 1.4 for the flow chart of activities concerning emissions inventory):

- Data collection and processing;
- Applying methods consistent with 2006 IPCC Guidelines for calculating/recalculating emissions or removals, and 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol;
- Making quantitative estimates of inventory uncertainty;
- Archiving information and record keeping; and,
- Compiling national inventory reports.

Figure 1.4. Flow chart of activities concerning emissions inventory

The QA/QC system developed covers the following processes:

- QA/QC system management, comprising all activities that are necessary for the management and

- control of the inventory team in order to ensure the accomplishment of the abovementioned quality objectives.
- *Quality control*, which is directly related to the estimation of emissions. The process includes activities related to (a) data inquiry, collection and documentation, (b) methodological choice in accordance with the 2006 IPCC Guidelines, (c) quality control checks for data from secondary sources and (d) record keeping.
- *Archiving inventory information*, comprising activities related to centralised archiving of inventory information and the compilation of the national inventory report.
- *Quality assurance*, comprising activities related to the different levels of review processes including the review of input data from experts, if necessary, and comments from the public
- *Estimation of uncertainties*, defining procedures for estimating and documenting uncertainty estimates per source / sink category and for the whole inventory.
- Inventory improvement, that is related to the preparation and the justification of any recalculations
 made.

Table 1.1 presents the list of procedures within each process and Figure 1.5 the relationship between the processes and the activities of the inventory team.

Table 1.1. QA/QC procedures for the GHG emissions inventory

Process	Procedure	Procedure
	code	
Quality	QM01	System review
management	QM02	System improvement
	QM03	Training
	QM04	Record keeping
	QM05	Internal reviews
	QM06	Non-compliance-corrective and preventing actions
	QM07	Quality management system
	QM08	Documents control
	QM09	Internal communication
Quality control	QC01	Data collection
	QC02	Estimation of emissions/removals
	QC03	Data quality control check
	QC04	Input data record keeping
Archiving of	AI01	Centralised archiving of inventory information
inventory	AI02	Compilation of reports
information		
Quality	QA01	Expert review of input data and parameters
assurance	QA02	Expert review of GHG emissions/removals inventory
	QA03	Review from public
Uncertainty	UE01	Uncertainty analysis
estimation		
Inventory	II01	Recalculations management
improvement		

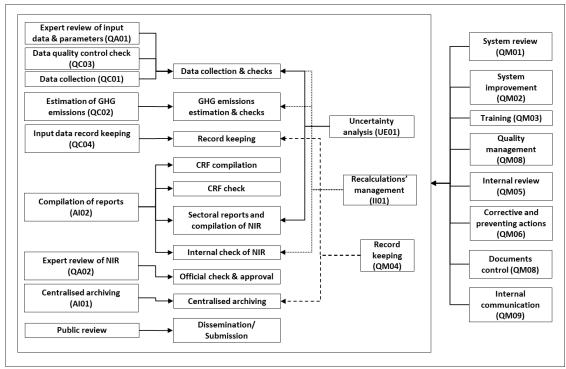


Figure 1.5. QA/QC process and procedures and inventory related activities

All the procedures described in the QA/QC manual are followed by any consultants (where applicable) and the DoE. Audits by independent local experts are planned and implemented at least once every five years.

Each year the EU performs QA/QC checks (called initial checks) to its Member States as a part of EU QA/QC system. These tests are performed annually between 15/1 and 28/2. These checks have been designed to verify the transparency, accuracy, consistency, comparability and completeness of the information submitted and include:

- (a) An assessment whether all emission source categories and gases required under Regulation (EU) No 525/2013 are reported;
- (b) An assessment whether emissions data time series are consistent;
- (c) An assessment whether implied emission factors across Member States are comparable taking the IPCC default emission factors for different national circumstances into account;
- (d) An assessment of the use of 'Not Estimated' notation keys where IPCC tier 1 methodologies exist and where the use of the notation key is not justified in accordance with paragraph 37 of the UNFCCC reporting guidelines on annual greenhouse gas inventories as included in Annex I to Decision 24/CP.19;
- (e) An analysis of recalculations performed for the inventory submission, in particular if the recalculations are based on methodological changes;
- (f) A comparison of the verified emissions reported under the Union's Emissions Trading System with the greenhouse gas emissions reported pursuant to Article 7 of Regulation (EU) No 525/2013 with a view of identifying areas where the emission data and trends as submitted by the Member State under review deviate considerably from those of other Member States;
- (g) A comparison of the results of Eurostat's reference approach with the Member States' reference approach;
- (h) A comparison of the results of Eurostat's sectoral approach with the Member States' sectoral approach;
- (i) An assessment whether recommendations from earlier Union or UNFCCC reviews, not implemented by the Member State could lead to a technical correction;
- (j) An assessment whether there are potential overestimations or underestimations relating to a key category in a Member State's inventory.

Moreover, EU carries out comprehensive reviews (similar to centralised UNFCCC reviews) of the

national inventory data submitted by Member States. Two comprehensive reviews of Cyprus' inventory, for all sectors except LULUCF, have been performed by the EU in 2012 and 2016.

1.2.3.1. Roles, responsibilities and timing

This section presents the allocation of inventory activities in relation to QA/QC activities to the members of the inventory team and other experts involved in the QA/QC process of Cyprus. The activities are presented schematically in Figure 4 and Figure 5.

Table 1.2 and Figure 1.6 present timing and responsibilities of team members.

Table 1.2. Timing and responsibilities

	Responsible	Timing
Data collection	Data providers	by 30/11 of year X-1
	Nicoletta Kythreotou ¹³	
Data check	Nicoletta Kythreotou ¹⁴	by 30/11 of year X-1
	Corey McClintock (Energy)	
	Demetris Demetriou (IPPU,	
	Agriculture)	
	Marios Christoforides (Waste)	
	Iordanis Tzamtzis (LULUCF)	
Emissions estimation	Nicoletta Kythreotou	1/10-15/12 of year X-1
	Corey McClintock (Energy)	
	Demetris Demetriou (IPPU,	
	Agriculture)	
	Marios Christoforides (Waste)	
	Iordanis Tzamtzis (LULUCF)	
Check of estimates	Corey McClintock	1/10-15/12 of year X-1
Uncertainty estimations	Nicoletta Kythreotou (Energy, IPPU,	1-30/12 of year X-1
	Agriculture, Waste)	
	Iordanis Tzamtzis (LULUCF)	
Recalculations	Corey McClintock (Energy)	1-30/12 of year X-1
	Demetris Demetriou (IPPU,	
	Agriculture)	
	Marios Christoforides (Waste)	
	Iordanis Tzamtzis (LULUCF)	
Record keeping	Corey McClintock (Energy)	1/10-30/12 of year X-1
	Demetris Demetriou (IPPU,	
	Agriculture)	
	Marios Christoforides (Waste)	
	Iordanis Tzamtzis (LULUCF)	
	Angelos Violaris (checks)	
CRT compilation	Nicoletta Kythreotou (Energy, IPPU,	1-27/12 of year X-1
	Agriculture, Waste)	
	Iordanis Tzamtzis (LULUCF)	
CRT check	Demetris Demetriou	27-30/12 of year X-1
	Marios Christoforides	
	Corey McClintock	
Sectoral reports	Corey McClintock (Energy)	1-30/12 of year X-1
	Demetris Demetriou (IPPU,	
	Agriculture)	
	Marios Christoforides (Waste)	
	Iordanis Tzamtzis (LULUCF)	
Compilation of NID	Angelos Vilaris	20-30/12 of year X-1
Check of NID		
- internal	Nicoletta Kythreotou	31/12 of year X-1 – $5/1$

¹³ According to the relevant Council of Ministers' Decision, all data shall be sent electronically/via email to the email addresses info@environment.moa.gov.cy, nkythreotou@environment.moa.gov.cy and tmesimeris@environment.moa.gov.cy. ¹⁴ If any discrepancies exist/ noticed, these are discussed with the data providers for explanations/correction.

	Responsible	Timing
		of year X
→ correction of any errors	Corey McClintock	5-8/1 of year X
found	Demetris Demetriou	
	Marios Christoforides	
	Iordanis Tzamtzis	
- official (expert review)		8-11/1 of year X
→ correction of any errors	Corey McClintock	11-13/1 of year X
found	Demetris Demetriou	
	Marios Christoforides	
	Iordanis Tzamtzis	
- Official check & approval	Theodoulos Mesimeris	13-15/1 of year X
Submission to European	Nicoletta Kythreotou	15/1 of year X
Commission	-	-
Centralised archiving	Angelos Violaris	15/1 of year X
EU QA/QC procedure		15/1-28/2 of year X
Review by stakeholders &		15/1-28/2 of year X
public		
Corrections to	Corey McClintock	28/2-15/3 of year X
NID/calculations	Demetris Demetriou	
	Marios Christoforides	
	Iordanis Tzamtzis	
Final Submission to European	Nicoletta Kythreotou	15/3 of year X
Commission		
Submission to UNFCCC	Nicoletta Kythreotou	15/4 of year X
secretariat		

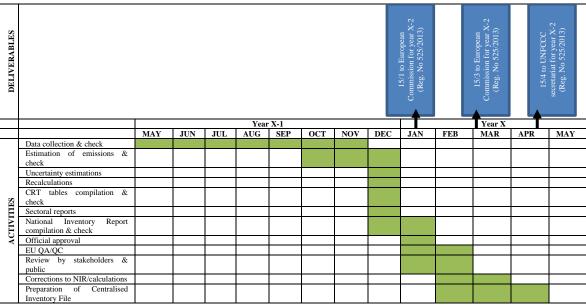


Figure 1.6. Timing and responsibilities of QA/QC tasks¹⁵

1.3. Brief general description of methodologies and data sources used

According to decision 24/CP.19, Annex I Parties should use the methodologies provided in the 2006 IPCC Guidelines, unless stated otherwise in the UNFCCC Annex I inventory reporting guidelines, and any supplementary methodologies agreed by the COP, and other relevant COP decisions to estimate anthropogenic emissions by sources and removals by sinks of GHGs not controlled by the Montreal

¹⁵ Shall be revised upon the recruitment on contract basis of the consultants for future submissions according to Council of Ministers' Decision.

Protocol.

Annex I Parties may use different methods (tiers) contained in the 2006 IPCC Guidelines, prioritising these methods in accordance with the 2006 IPCC Guidelines. Annex I Parties may also use national methodologies which they consider better able to reflect their national situation, provided that these methodologies are compatible with the 2006 IPCC Guidelines and are well documented and scientifically based.

For categories that are determined to be key categories, in accordance with the 2006 IPCC Guidelines, and estimated in accordance with the provisions in decision 24/CP.19, Annex I Parties should make every effort to use a recommended method, in accordance with the corresponding decision trees in the 2006 IPCC Guidelines. Annex I Parties should also make every effort to develop and/or select emission factors (EFs), and collect and select activity data (AD), in accordance with IPCC good practice. Where national circumstances prohibit the use of a recommended method, then the Annex I Party should explain in its annual GHG inventory submission the reason(s) as to why it was unable to implement a recommended method in accordance with the decision trees in the 2006 IPCC Guidelines.

The 2006 IPCC Guidelines provide default methodologies which include default EFs and in some cases default AD for the categories to be reported. As the assumptions implicit in these default data, factors and methods may not be appropriate for specific national circumstances, Annex I Parties should use their own national EFs and AD, where available, provided that they are developed in a manner consistent with the 2006 IPCC Guidelines and are considered to be more accurate than the defaults. If Annex I Parties lack country-specific information, they could also use EFs or other parameters provided in the IPCC Emission Factor Database¹⁶, where available, provided that they can demonstrate that those parameters are appropriate in the specific national circumstances and are more accurate than the default data provided in the 2006 IPCC Guidelines. Annex I Parties should transparently explain in their annual GHG inventory submissions what data and/or parameters have been used.

Parties are encouraged to refine estimates of anthropogenic emissions and removals in the land use, land-use change and forestry (LULUCF) sector through the application of tier 3 methods, provided that they are developed in a manner consistent with the 2006 IPCC Guidelines, and information for transparency is provided in accordance with decision 24/CP.19.

The estimation of GHG emissions / removals per source / sink category is predominately based on the methods described in the revised 2006 IPCC Guidelines. The emission factors used were derived from the 2006 IPCC Guidelines and special attention was paid in selecting the emission factors that are most representative of practices and conditions in Cyprus. Furthermore, emission factors were obtained from plant specific information contained in EU ETS reports. Due to data unavailability, for the estimation of the emissions of the sectors Refrigeration and Air Conditioning (2F1), Foam Blowing Agents (2F2), Fire Protection (2F3) and Metered Dose Inhalers (2F4a) the implied emission factors per capita from the average of Greece, Italy, Malta and Spain (NIR2015) have been used. For Use of Electrical Equipment (2G1) and N₂O from Product Uses (2G3), the implied emission factor per capita from Greece was used. Details on the methods applied for the calculation of emissions/removals are given the chapters that follow. The methodologies and EF used for the compilation of the 2018 GHG inventory submission are presented in Table 1.3.

The key categories analysis (see Section 1.4) constitutes the basic tool for methodological choice and for the prioritisation of the necessary improvements. In addition, the results of the various review processes (at national, EU and UNFCCC level) represent key input information for the identification of possible improvements. It should be mentioned however, that data availability as well as availability of resources (both human and financial) also have to be considered.

Table 1.3. Methodologies used for the preparation of Cyprus' GHG inventory

Category	y-Classification	Gas	EF	Method
1A1a.i	Energy Industries - Public electricity and heat	CO_2	CS	CS
	production – Energy generation - Liquid fuels			
1A1a.i	Energy Industries - Public electricity and heat	CH ₄ /N ₂ O	D	T1
	production – Energy generation Liquid fuels			

http://www.ipcc-nggip.iges.or.jp/EFDB/main.php

-

Category	y-Classification	Gas	EF	Method
1A1b	Energy Industries – Petroleum Refining –	CO ₂ /CH ₄ /N ₂ O	D	T1
	Liquid fuels			
1A1c.iv	Manufacture of solid fuels and Other Energy	CO ₂ /CH ₄ /N ₂ O	D	T1
	Industries – Charcoal production- biomass			
1A2b	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
	Non-ferrous Metals - Liquid fuels			
1A2c	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
	Chemicals – Liquid fuels			
1A2c	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
1.401	Chemicals – Biomass	GO /GIL AL O	ъ	TD:1
1A2d	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
1A2e.	Pulp, Paper and Print – Liquid fuels Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
TAZE.	Food processing, beverages and tobacco –	CO ₂ /Cn ₄ /N ₂ O	D	11
	Liquid fuels			
1A2e.	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
17120.	Food processing, beverages and tobacco –	CO2/C114/1\2O	D	11
	Biomass			
1A2f.	Manufacturing Industries and Construction –	CO_2	CS	CS
11121	Non-metallic minerals – Liquid fuel	232	0.0	0.0
1A2f.	Manufacturing Industries and Construction –	CH ₄ /N ₂ O	D	T1
	Non-metallic minerals – Liquid fuel			
1A2f.	Manufacturing Industries and Construction –	CO_2	CS	CS
	Non-metallic minerals – solid fuel			
1A2f.	Manufacturing Industries and Construction –	CH ₄ /N ₂ O	D	T1
	Non-metallic minerals – solid fuel			
1A2f.	Manufacturing Industries and Construction –	CO_2	CS	CS
	Non-metallic minerals – other fossil fuel			
1A2f.	Manufacturing Industries and Construction –	CH ₄ /N ₂ O	D	T1
	Non-metallic minerals – other fossil fuel			
1A2f.	Manufacturing Industries and Construction –	CO	CS	CS
	Non-metallic minerals – biomass (2000 and			
1 4 0 6	later)	CIL ALO	-	TD:1
1A2f.	Manufacturing Industries and Construction –	CH ₄ /N ₂ O	D	T1
	Non-metallic minerals – biomass (2000 and			
1A2g	later) Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
(iii).	Other - Mining (excluding fuels) and Quarrying	CO ₂ /Cn ₄ /N ₂ O	D	11
(111).	- liquid fuel			
1A2g	Manufacturing Industries and Construction -	CO ₂ /CH ₄ /N ₂ O	D	T1
(v).	Other - Construction – liquid fuel	202 2114/11/20	D	11
1A2g	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
(viii).	Other -Non-specified Industry – liquid fuel	2 - + .2-		
1A3a.	Transport - Domestic aviation – Jet kerosene	CO_2	M	Т3
1A3a.	Transport - Domestic aviation – Jet kerosene	CH ₄ /N ₂ O	D	T1
1A3bi.	Transport - Road transportation – Gasoline	CO ₂ /CH ₄ /N ₂ O	M	T2
1A3bi.	Transport - Road transportation - Diesel	CO ₂ /CH ₄ /N ₂ O	M	T2
1A3bi.	Transport - Road transportation - Biomass	CO ₂ /CH ₄ /N ₂ O	M	T1
1A3d	Transport - Domestic Navigation - Gas/Diesel	CO ₂ /CH ₄ /N ₂ O	D	T1
	Oil			
1A4a.	Other Sectors - Commercial/institutional -	CO ₂ /CH ₄ /N ₂ O	D	T1
	Liquid fuel			
1A4a.	Other Sectors - Commercial/institutional -	CO ₂ /CH ₄ /N ₂ O	D	T1
	Biomass			
1A4b.	Other Sectors - Residential – Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4b.	Other Sectors - Residential – Biomass	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4ci.	Agriculture/forestry/fishing - Stationary- Liquid	CO ₂ /CH ₄ /N ₂ O	D	T1
	fuel			

Category	y-Classification	Gas	EF	Method
1A4ci.	Agriculture/forestry/fishing – Stationary-	CO ₂ /CH ₄ /N ₂ O	D	T1
	Biomass			
1A4ciii	Agriculture/forestry/fishing – Fishing – Gas/Diesel Oil	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified - Stationary - Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified - Stationary - Solid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified – Stationary – Biomass	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5b	Other - Non-Specified – Mobile - Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1B2a4	Fugitive Emissions from Fuels- Oil and Natural	$\mathrm{CH_4}$	D	T1
	Gas and Other Emissions from Energy			
	Production- Oil -Refining/Storage			
1B2a4	Fugitive Emissions from Fuels- Oil and Natural Gas and Other Emissions from Energy Production- Oil -Refining/Storage	CO ₂ /N ₂ O	NA	NA
2A1.	Industrial Processes and Product Use – Mineral	CO_2	CS	CS
2111.	Industry - Cement production	202	CS	CS
2A2	Industrial Processes and Product Use – Mineral	CO_2	D	T1
	Industry - Lime Production	2 2 2		
2A4a	Industrial Processes and Product Use – Mineral	CO_2	CS	CS
	Industry - Other process uses of carbonates -			
	Ceramics			
2A4b	Industrial Processes and Product Use – Mineral	CO_2	D	T1
	Industry - Other process uses of carbonates -			
	Other uses of soda-ash			
2A4b	Industrial Processes and Product Use – Mineral	CH ₄ /N ₂ O	NA	NA
	Industry - Other process uses of carbonates -			
2D1	Other uses of soda-ash	00	D	TD1
2D1	Industrial Processes and Product Use – Non	CO_2	D	T1
	Energy Products from Fuels and Solvent Use- Lubricant Use			
2D1	Industrial Processes and Product Use – Non	CH ₄ /N ₂ O	NA	NA
201	Energy Products from Fuels and Solvent Use-	C114/11/20	1171	1171
	Lubricant Use			
2D2	Industrial Processes and Product Use – Non	CO_2	D	T1
	Energy Products from Fuels and Solvent Use -			
	Paraffin Wax Use			
2D2	Industrial Processes and Product Use – Non	CH ₄ /N ₂ O	NA	NA
	Energy Products from Fuels and Solvent Use -			
	Paraffin Wax Use	~~	~~	~~
2D3	Industrial Processes and Product Use – Non	CO_2	CS	CS
	Energy Products from Fuels and Solvent Use –			
	Other (Dry cleaning, coating applications, chemical products, asphalt roofing, domestic			
	solvent use including fungicides, road paving			
	with asphalt, printing)			
2D3	Industrial Processes and Product Use – Non	CH ₄ /N ₂ O	NA	NA
203	Energy Products from Fuels and Solvent Use –	C114/1120	1171	1171
	Other (Dry cleaning, coating applications,			
	chemical products, asphalt roofing, domestic			
	solvent use including fungicides, road paving			
	with asphalt, printing)			
2D3	Industrial Processes and Product Use – Non	CO_2	D	D
	Energy Products from Fuels and Solvent Use –			
47.6	Other - Urea-based catalysts			
2D3	Industrial Processes and Product Use – Non	CH ₄ /N ₂ O	NA	NA
	Energy Products from Fuels and Solvent Use –			
<u> </u>	Other - Urea-based catalysts		L	

Blowing Agents	Category	y-Classification	Gas	EF	Method
Product Uses as Substitutes for ODS - Foam HFCs CS CS	2F1	Product Uses as Substitutes for ODS -	HFCs	D	T2a
Blowing Agents		Refrigeration and air conditioning			
Product Uses as Substitutes for ODS - Fire Protection Protection Product Uses as Substitutes for ODS - Aerosols HFCs CS CS CG CG Electrical equipment SF ₆ D T1 CG CS CS D7 D7 D7 D7 D7 D7 D7 D	2F2	Product Uses as Substitutes for ODS - Foam	HFCs	CS	CS
Protection					
2F4	2F3		HFCs	CS	CS
Description					
2G3a	2F4.	Product Uses as Substitutes for ODS - Aerosols	HFCs	CS	CS
product uses — Medical Applications	2G1	Electrical equipment	SF_6	D	T1
2G3b	2G3a	Other Product Manufacture and Use - N ₂ O from	N_2O	CS	CS
product uses - Other - Propellant for pressure and aerosol products		product uses – Medical Applications			
and aerosol products	2G3b	Other Product Manufacture and Use - N ₂ O from	N_2O	CS	CS
SA		product uses – Other –Propellant for pressure			
Enteric Fermentation - Non-dairy cattle, sheep, goats, horses, mules and asses and swine CH4 D T2		and aerosol products			
goats, horses, mules and asses and swine SB1.1 Manure Management - Dairy Cattle and Nondairy cattle SB1.2 Manure Management - sheep, goats, horses, mules and asses, poultry SB1.3 Manure Management - swine (market & CH4 D T2 SB1.4 mules and asses, poultry SB1.3 Manure Management - swine (market & CH4 D T2 SB1.3 Manure Management - swine (market & CH4 D T2 SB1.3 Manure Management - swine (market & CH4 D T2 SB1.3 Manure Management - swine (market & CH4 D T2 SB1.3 Morses, poultry, mules and asses SB2.2 Cattle, Sheep, swine (market & breeding), goats, horses, poultry, mules and asses SB2.5 Indirect N2O emissions N2O D T1 Managed Soils - Direct N2O Emissions From Managed Soils - Direct N2O Emissions From Managed Soils - Organic Fertilizers SB1.2 Agricultural soils - Direct N2O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers SB1.2 Agricultural soils - Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils SB1.4 Agricultural soils - Direct N2O Emissions From Managed Soils - Crop residues SB1.4 Agricultural soils - Direct N2O Emissions From M2O D T1 Managed Soils - Crop residues SB1.4 Agricultural soils - Direct N2O Emissions From M2O D T1 Managed Soils - Crop residues SB1.4 Agricultural soils - Direct N2O Emissions From M2O D T1 T1 T1 T1 T1 T1 T1	3A	Enteric Fermentation – Dairy Cattle	CH_4	CS	T2
Manure Management - Dairy Cattle and Non-dairy cattle Manure Management - Sheep, goats, horses, and asses, poultry Manure Management - Sheep, goats, horses, and asses, poultry Manure Management - Sheep, goats, horses, breeding) Manure Management - Sheep, goats, horses, and asses, poultry Direct N2O emissions - Dairy and non-dairy N2O D T1	3A	Enteric Fermentation - Non-dairy cattle, sheep,	CH_4	D	T1
dairy cattle dairy cattle Manure Management – sheep, goats, horses, CH4 D T1		goats, horses, mules and asses and swine			
3B1.2 Manure Management – sheep, goats, horses, and should be mules and asses, poultry	3B1.1	Manure Management – Dairy Cattle and Non-	$\mathrm{CH_4}$	D	T2
3B1.4 mules and asses, poultry 3B1.3 Manure Management – swine (market & CH4 D T2					
Manure Management – swine (market & CH4 breeding) Direct N2O emissions – Dairy and non-dairy cattle, Sheep, swine (market & breeding), goats, horses, poultry, mules and asses M2O D T1	3B1.2	Manure Management – sheep, goats, horses,	CH_4	D	T1
Breeding		mules and asses, poultry			
3B2.1 Direct N2O emissions – Dairy and non-dairy cattle, Sheep, swine (market & breeding), goats, horses, poultry, mules and asses	3B1.3	Manure Management –swine (market &	CH_4	D	T2
3B2.2 cattle, Sheep, swine (market & breeding), goats, borses, poultry, mules and asses 3B2.4 dorses, poultry, mules and asses 3B2.5 Indirect N ₂ O emissions N ₂ O D T1 3D1.1 Agricultural soils- Direct N ₂ O Emissions From Managed Soils- Inorganic fertilizers N ₂ O Emissions From Managed Soils- Organic Net Ilizers N ₂ O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers N ₂ O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils N ₂ O Emissions From Managed Soils - Crop residues N ₂ O Emissions From Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - Crop residues N ₂ O D T1 Managed Soils - M ₂ O D Managed Soils - M ₂					
3B2.3 horses, poultry, mules and asses 3B2.4 Sab.4		Direct N ₂ O emissions – Dairy and non-dairy	N_2O	D	T1
3B2.4 3B2.5 Indirect N ₂ O emissions N ₂ O D T1 3D1.1 Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Inorganic fertilizers 3D1.2a Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers 3D1.2b Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D1.4 Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D2.1 Indirect N ₂ O emissions from managed soils - N ₂ O D T1 3D2.2 Indirect N ₂ O emissions from managed soils - N ₂ O D T1 3D2.2 Indirect N ₂ O emissions from managed soils N ₂ O D T1 3F1 Field Burning of Agricultural Residues - N ₂ O/CH ₄ D T1 3F2 Field Burning of Agricultural Residues - Pulses N ₂ O/CH ₄ D T1 3F3 Field Burning of Agricultural Residues - Pulses N ₂ O/CH ₄ D T1 3F4 Forest land remaining forest land CO ₂ CS,D T1,T2 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B2 Land converted to cropland N ₂ O D T1 4C2 Land converted to grassland CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2		cattle, Sheep, swine (market & breeding), goats,			
3B2.5 Indirect N2O emissions N2O D T1		horses, poultry, mules and asses			
3D1.1 Agricultural soils- Direct N2O Emissions From Managed Soils- Inorganic fertilizers N2O D T1	3B2.4				
Managed Soils- Inorganic fertilizers Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers	3B2.5	Indirect N ₂ O emissions	N_2O	D	T1
3D1.2a Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils Sudge applied to soils Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues N2O	3D1.1	Agricultural soils- Direct N ₂ O Emissions From	N_2O	D	T1
Managed Soils - Organic N fertilizers - Animal manure used as fertilizers 3D1.2b Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils - Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils - N2O D T1 Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils N2O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues - N2O/CH4 D T1 Cereals - Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues - Pulses - Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining cropland CO2 D T1 4B2 Land converted to cropland CO2 CS,D T1,T2 4B2 Land converted to cropland CO2 CS,D T1,T2 4B2 Land converted to grassland CO2 CS,D T1 4C2 Land converted to grassland CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2		i			
manure used as fertilizers 3D1.2b Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils - Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils N2O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues - N2O/CH4 D T1 Cereals - Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues - Pulses - Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining ropland CO2 CS,D T1,T2 4B2 Land converted to cropland N2O D T1 4C1 Grassland remaining grassland CO2 CS,D T1,T2 4C2 Land converted to grassland CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2	3D1.2a		N_2O	D	T1
3D1.2b Agricultural soils- Direct N2O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils - Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils					
Managed Soils - Organic N fertilizers - Sewage sludge applied to soils 3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils - Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils - N2O D T1 Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils N2O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues - N2O/CH4 D T1 Cereals - Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues - Pulses - Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining cropland CO2 D T1 4B2 Land converted to cropland CO2 CS,D T1,T2 4B2 Land converted to cropland N2O D T1 4C1 Grassland remaining grassland CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2					
sludge applied to soils 3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils - Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils N2O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues - N2O/CH4 D T1 Cereals - Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues - Pulses - Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining cropland CO2 D T1 4B2 Land converted to cropland CO2 CS,D T1,T2 4B1 Grassland remaining grassland CO2 CS,D T1 4C2 Land converted to grassland CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1,T2 4D2 Land converted to wetlands	3D1.2b		N_2O	D	T1
3D1.4 Agricultural soils- Direct N2O Emissions From Managed Soils - Crop residues 3D2.1 Indirect N2O emissions from managed soils — Atmospheric Deposition 3D2.2 Indirect N2O emissions from managed soils — N2O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues — N2O/CH4 D T1 Cereals — Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues — Pulses — Bean and Pulses — Bean and Pulses and Roots 3F3 Field Burning of Agricultural Residues — Tubers and Roots 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining cropland CO2 CS,D T1,T2 4B2 Land converted to cropland CO2 CS,D T1,T2 4B2 Land converted to cropland CO2 CS,D T1 4C1 Grassland remaining grassland CO2 CS,D T1,T2 4C2 Land converted to wetlands CO2 CS,D T1,T2 4D2 Land converted to wetlands					
Managed Soils - Crop residues 3D2.1 Indirect N ₂ O emissions from managed soils — Atmospheric Deposition 3D2.2 Indirect N ₂ O emissions from managed soils N ₂ O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues — N ₂ O/CH ₄ D T1 Cereals — Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues — Pulses — Bean and Pulses 3F3 Field Burning of Agricultural Residues — Tubers and Roots 3H Urea Application CO ₂ D T1 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B1 Cropland remaining cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1 4C1 Grassland remaining grassland CO ₂ CS,D T1 4C2 Land converted to wetlands CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2					
3D2.1 Indirect N ₂ O emissions from managed soils – Atmospheric Deposition Atmospheric Deposition 3D2.2 Indirect N ₂ O emissions from managed soils N ₂ O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues – Cereals – Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues – Pulses – Bean and Pulses - Bean and Pulses N ₂ O/CH ₄ D T1 3F3 Field Burning of Agricultural Residues – Tubers and Roots 3H Urea Application CO ₂ D T1 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B1 Cropland remaining cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B2 Land converted to grassland CO ₂ CS,D T1 4C2 Land converted to grassland CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2 4D3 CO ₂ CS,D T1,T2 4D4 CO ₂ CS,D T1,T2 4D5 Land converted to wetlands CO ₂ CS,D T1,T2 4D5 CO ₂ CS,D T1,T2 4D6 CO ₂ CS,D T1,T2 4D7 CO ₂ CS,D T1,T2 4D8 CO ₂ CS,D T1,T2 4D9 CO ₂ CS,D T1,T2 4D8 CO ₂ CS,D T1,T2 4D9 CO ₂ CS,D T1,T2 4D8 CO	3D1.4		N_2O	D	T1
Atmospheric Deposition 3D2.2 Indirect N ₂ O emissions from managed soils N ₂ O D T1 Nitrogen Leaching and run-off 3F1 Field Burning of Agricultural Residues - N ₂ O/CH ₄ D T1 Cereals - Wheat, Barley, Oats 3F2 Field Burning of Agricultural Residues - Pulses - Bean and Pulses - Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO ₂ D T1 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A1 Forest land remaining forest land N ₂ O/CH ₄ D T1 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B1 Cropland remaining cropland CO ₂ D T1 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B1 Grassland remaining grassland CO ₂ CS,D T1 4C1 Grassland remaining grassland CO ₂ CS,D T1 4C2 Land converted to wetlands CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2					
3D2.2 Indirect N2O emissions from managed soils Nitrogen Leaching and run-off Nitrogen Leaching and run-off 3F1	3D2.1		N_2O	D	T1
Nitrogen Leaching and run-off Field Burning of Agricultural Residues – Cereals – Wheat, Barley, Oats Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Tubers and Roots Hurea Application CO ₂ D T1 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B1 Cropland remaining cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B3 Cropland remaining grassland CO ₂ CS,D T1,T2 CO ₃ CS,D T1,T2 CO ₄ CS,D T1 CO ₅ CS,D T1 CO ₇ CS,D T1 CO ₈ CS,D T1 CO ₈ CS,D T1 CO ₉ CS,D T1 CO ₈ CS,D T1 CO ₉ CS,D T1		•			
Field Burning of Agricultural Residues – Cereals – Wheat, Barley, Oats Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Tubers and Roots Hurea Application GO2 T1 Forest land remaining forest land Forest land remaining forest land Forest land remaining forest land CO2 CS,D T1,T2 AA1 Forest land remaining forest land CO2 CS,D T1,T2 AB2 Land converted to forest land CO2 CS,D T1,T2 AB2 Land converted to cropland CO2 CS,D T1,T2 AB2 Land converted to cropland CO2 CS,D T1,T2 CO3 CS,D T1,T2 CO4 CS,D T1,T2 CO5 CS,D T1,T2 CO6 CS,D T1,T2 CO7 CS,D T1 CO8 CS,D T1 CO9 CS CS CS CS CS CS CS CS CS C	3D2.2		N_2O	D	T1
Cereals – Wheat, Barley, Oats Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Tubers and Roots Till All Forest land remaining forest land Forest land remaining forest land Forest land remaining forest land CO2 CS,D T1,T2 AA1 Forest land remaining forest land CO2 CS,D T1,T2 AA2 Land converted to forest land CO2 CS,D T1,T2 AB1 Cropland remaining cropland CO2 CS,D T1,T2 AB2 Land converted to cropland CO2 CS,D T1,T2 AB2 Land converted to cropland CO3 CS,D T1,T2 AB4 CO4 CS,D T1,T2 CO5 CS,D T1,T2 CO5 CS,D T1,T2 CO6 CS,D T1,T2 CO7 CS,D T1,T2 CO7 CS,D T1,T2 CO8 CS,D T1,T2 CO9 CS,D T1,T2					
Field Burning of Agricultural Residues – Pulses – Bean and Pulses Field Burning of Agricultural Residues – Tubers and Roots Hurea Application Goz Goz Goz T1 HA1 Forest land remaining forest land Forest land remaining forest land Goz Goz Goz Goz T1,T2 HA2 Land converted to forest land Goz Goz Goz Goz T1,T2 HB2 Land converted to cropland Goz Goz Goz Goz Goz Goz Goz Go	3F1		N_2O/CH_4	D	T1
- Bean and Pulses 3F3 Field Burning of Agricultural Residues - Tubers and Roots 3H Urea Application CO ₂ D T1 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A1 Forest land remaining forest land CO ₂ CS,D T1,T2 4A2 Land converted to forest land CO ₂ CS,D T1,T2 4B1 Cropland remaining cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B2 Land converted to cropland CO ₂ CS,D T1,T2 4B3 Converted to cropland CO ₂ CS,D T1,T2 4B4 CO ₂ CS,D T1,T2 4B5 Land converted to cropland CO ₂ CS,D T1,T2 4B6 CO ₂ CS,D T1,T2 4B7 CO ₂ CS,D T1 4C1 Grassland remaining grassland CO ₂ CS,D T1 4C2 Land converted to grassland CO ₂ CS,D T1,T2 4D2 Land converted to wetlands CO ₂ CS,D T1,T2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3F2		N_2O/CH_4	D	T1
and Roots CO2 D T1 3H Urea Application CO2 D T1 4A1 Forest land remaining forest land CO2 CS,D T1,T2 4A1 Forest land remaining forest land N2O/CH4 D T1 4A2 Land converted to forest land CO2 CS,D T1,T2 4B1 Cropland remaining cropland CO2 D T1 4B2 Land converted to cropland CO2 CS,D T1,T2 4B2 Land converted to cropland N2O D T1 4C1 Grassland remaining grassland CO2 CS,D T1 4C2 Land converted to grassland CO2 CS,D T1,T2 4D2 Land converted to wetlands CO2 CS,D T1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3F3		N_2O/CH_4	D	T1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4A1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4A2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4B1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4B2	Land converted to cropland	CO_2	CS,D	T1,T2
4C2Land converted to grasslandCO2CS,DT1,T24D2Land converted to wetlandsCO2CS,DT1	4B2	Land converted to cropland	$\overline{\mathrm{N_2O}}$	D	T1
4C2Land converted to grasslandCO2CS,DT1,T24D2Land converted to wetlandsCO2CS,DT1	4C1	Grassland remaining grassland	$\overline{\mathrm{CO}_2}$	CS,D	T1
4D2 Land converted to wetlands CO ₂ CS,D T1	4C2		CO_2	CS,D	T1,T2
	4D2	i i		-	
121 Settlements remaining settlements CO2 IVA II	4E1	Settlements remaining settlements	CO_2	NA	T1

y-Classification	Gas	EF	Method
Land converted to settlements	CO_2	CS,D	T1,T2
Land converted to settlements	N_2O	D	T1
Land converted to other land	CO_2	CS,D	T1,T2
Land converted to other land	N_2O	D	T1
Harvested wood products	CO_2	D	T2
Solid Waste Disposal - Managed waste disposal	$\mathrm{CH_{4}}$	D	T2
sites- Anaerobic			
Solid Waste Disposal - Managed waste disposal	CO_2	NA	NA
sites- Anaerobic			
Solid Waste Disposal - Unmanaged waste	$\mathrm{CH_4}$	D	T2
disposal sites			
Solid Waste Disposal - Unmanaged waste	CO_2	NA	NA
disposal sites			
Biological treatment of solid waste –	CH ₄ /N ₂ O	D	T1
Composting- municipal solid waste			
Biological treatment of solid waste – Anaerobic	CH_4	D	T1
digestion at biogas facilities			
Wastewater Treatment and Discharge -	CH ₄ /N ₂ O	CS	T1
Domestic wastewater			
Wastewater Treatment and Discharge -	$\mathrm{CH_4}$	D	T1
Industrial wastewater			
Wastewater Treatment and Discharge -	N_2O	OTH	OTH
Industrial wastewater			
	Land converted to settlements Land converted to other land Land converted to other land Harvested wood products Solid Waste Disposal - Managed waste disposal sites- Anaerobic Solid Waste Disposal - Managed waste disposal sites- Anaerobic Solid Waste Disposal - Unmanaged waste disposal sites- Anaerobic Solid Waste Disposal - Unmanaged waste disposal sites Solid Waste Disposal - Unmanaged waste disposal sites Biological treatment of solid waste — Composting- municipal solid waste Biological treatment of solid waste Biological treatment of solid waste — Anaerobic digestion at biogas facilities Wastewater Treatment and Discharge - Domestic wastewater Wastewater Treatment and Discharge - Industrial wastewater Wastewater Treatment and Discharge -	Land converted to settlements Land converted to settlements Land converted to other land CO2 Land converted to other land Harvested wood products Solid Waste Disposal - Managed waste disposal sites- Anaerobic Solid Waste Disposal - Managed waste disposal sites- Anaerobic Solid Waste Disposal - Unmanaged waste disposal sites- Solid Waste Disposal - Unmanaged waste disposal sites Solid Waste Disposal - Unmanaged waste disposal sites Solid Waste Disposal - Unmanaged waste CO2 disposal sites Biological treatment of solid waste - CH4/N2O Composting- municipal solid waste Biological treatment of solid waste - Anaerobic digestion at biogas facilities Wastewater Treatment and Discharge - CH4/N2O Domestic wastewater Wastewater Treatment and Discharge - CH4 Industrial wastewater Wastewater Treatment and Discharge - N2O Industrial wastewater	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

where: OTH = Other, D = Default, T1 = Tier 1, T2 = Tier 2, CS = Country Specific, NA = Not Applicable, M = COPERT

Data collection, processing and checks constitute the activity with the longest duration in the annual inventory cycle. The duration of this activity is related to the amount of the necessary data and the number of the entities involved. The on-time and successful completion of this activity has a major effect on the timeliness preparation and submission of the inventory as well as on its accuracy, completeness and consistency.

Table 1.4 gives an overview of the main data sets used for the estimation of GHG emissions/removals. Data from international organisations and databases are supplementary to the data collected from the listed data providers. Information and data collected (through questionnaires developed according to the guidelines described in the Commission Decision 2004/156/EC¹⁷) in the framework of the formulation of the National Allocation Plan (NAP) for the period 2005-2007, according to the Directive 2003/87/EC¹⁸ (and its transposition to the national Law, 110(I)/2011¹⁹) along with the data from the verified reports from installations under the EU ETS for years 2005-2015 constituted significant source of information and an additional quality control check.

Table 1.4. Data sources and data sets per IPCC sector, source category

	Data sources and data sets per 1Pt Classification	Data	Sources
1A1a.	Public electricity and heat production	Fuel consumption	ETS verified reports Statistical Service Department of Labour Inspection (DLI)
1A1b.	Petroleum Refining	Fuel consumption	Statistical Service
1A2b.	Non-ferrous metals	Fuel consumption	Statistical Service
1A2c.	Chemical and petrochemical	Fuel consumption	Statistical Service
1A2d.	Paper, pulp and printing	Fuel consumption	Statistical Service
1A2e.	Food processing, beverages and tobacco	Fuel consumption	Statistical Service
1A2f.	Non-metallic minerals – Liquid	Fuel consumption	ETS verified reports

 $^{^{17}\} Available\ at\ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004D0156\& from=EN\ (no\ longer\ in\ force)$

¹⁸ Available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0087&from=EN

¹⁹ Available at http://www.moa.gov.cy/moa/environment/environmentnew.nsf/All/E526DA8D521738B9C2258020002E364D? OpenDocument (in Greek)

Category-C	Classification	Data	Sources
	fuel		Statistical Service DLI
1A2f.	Non-metallic minerals – solid fuel	Fuel consumption	ETS verified reports Statistical Service DLI
1A2f.	Non-metallic minerals – other fuel	Fuel consumption	ETS verified reports Statistical Service DLI
1A2f.	Non-metallic minerals – biomass	Fuel consumption	ETS verified reports Statistical Service DLI
1A2g(iii).	Other - Mining (excluding fuels) and Quarrying – liquid fuel	Fuel consumption	Statistical Service
1A2g(v).	Other - Construction – liquid fuel	Fuel consumption	Statistical Service
1A2g(viii).	Other -Non-specified Industry – liquid fuel	Fuel consumption	Statistical Service
1A3a.	Domestic aviation – Jet kerosene	Fuel consumption	Statistical Service /EUROCONTROL
1A3bi.	Road transportation – Gasoline	Fuel consumption Vehicles registration	Statistical Service Dep. of Road Transport
1A3bi.	Road transportation - Diesel	Fuel consumption Vehicles registration	Statistical Service Dep. of Road Transport
1A3bi.	Road transportation - Biomass	Fuel consumption Vehicles registration	Statistical Service Dep. of Road Transport
1A3d	Domestic Navigation – Gas/Diesel Oil	Fuel consumption	Statistical Service
1A4a.	Commercial/institutional - Liquid fuel	Fuel consumption	Statistical Service DLI
1A4a.	Commercial/institutional - Biomass	Fuel consumption	Statistical Service DLI
1A4b.	Residential – Liquid fuel	Fuel consumption	Statistical Service DLI
1A4b.	Residential – Biomass	Fuel consumption	Statistical Service DLI
1A4ci.	Agriculture/forestry/fishing - Stationary- Liquid fuel	Fuel consumption	Statistical Service DLI
1A4ci.	Agriculture/forestry/fishing – Stationary- Biomass	Fuel consumption	Statistical Service DLI
1A4ciii	Agriculture/forestry/fishing – Fishing – Gas/Diesel Oil	Fuel consumption	Statistical Service
1A5a.	Other - Non-Specified – Stationary – Liquid fuel	Fuel consumption	Statistical Service
1A5a.	Other - Non-Specified – Stationary – Solid fuel	Fuel consumption	Statistical Service
1A5a.	Other - Non-Specified – Stationary – Biomass	Fuel consumption	Statistical Service
1A5b.	Other - Non-Specified – Liquid fuel	Fuel consumption	Statistical Service
1B2a4.	Fugitive Emissions from Fuels- Oil and Natural Gas and Other Emissions from Energy Production- Refining/Storage	Fuel consumption	Statistical Service
2A1.	Cement production	Clinker production	ETS verified reports Statistical Service DLI
2A2	Lime Production	Lime production	Statistical Service DLI Installation

Category-	Classification	Data	Sources
2A4a.	Other process uses of carbonates -	Bricks and Tiles	ETS verified reports
	Ceramics	Production	DLI
2A4b.	Other process uses of carbonates - Other uses of soda-ash	Soda – Ash Imports	Statistical Service
2D1.	Lubricant Use	Lubricants consumption	Statistical Service
2D2.	Paraffin Wax Use	Paraffin Wax Imports	Statistical Service
2D3.	Solvent Use (Dry cleaning, coating applications, chemical products, asphalt roofing, domestic solvent use including fungicides, road paving with asphalt, printing)	NMVOCs	DLI
2D3.	Solvent Use - Urea-based catalysts	Fuel consumption	Statistical Service
2F1.	Refrigeration and air conditioning	Commercial and industrial air-conditioning and refrigeration	Department of Environment – Inventory of equipment containing fluorinates and ozone depleting substances*
2F2	Foam Blowing Agents	Emissions Data	National Inventory of Malta, Spain, Italy, Greece
2F3	Fire Protection	Emissions Data	National Inventory of Malta, Spain, Italy, Greece
2F4.	Aerosols	Emissions Data	National Inventory of Malta, Spain, Italy, Greece
2G3a	N ₂ O from product uses	Population	Statistical Service
2G3b	N ₂ O from product uses	Population	Statistical Service
3A	Enteric Fermentation – Dairy Cattle	Livestock population milk yield* average weight*	Statistical Service DLI EUROSTAT Veterinary Services *Department of Agriculture
3A	Enteric Fermentation - Non-dairy cattle, sheep, goats, horses, mules and asses and swine	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services Department of Agriculture
3B1.1	Manure Management – Dairy Cattle and Non-dairy cattle	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services Department of Agriculture
3B1.2 3B1.4	Manure Management – sheep, goats, horses, mules and asses, poultry	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services Department of Agriculture
3B1.3	Manure Management –swine (market & breeding)	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services Department of Agriculture
3B2.1 3B2.2 3B2.3 3B2.4	Direct N ₂ O emissions – Dairy and non-dairy cattle, Sheep, swine (market & breeding), goats, horses, poultry, mules and asses	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services

Category-	Classification	Data	Sources
			Department of Agriculture
3B2.5	Indirect N ₂ O emissions	Livestock population	Statistical Service DLI EUROSTAT Veterinary Services Department of Agriculture
3D1.1	Agricultural soils- Inorganic fertilizers	Fertilizers use	Statistical Service Department of Agriculture
3D1.2a	Use of organic N fertilizers - Animal manure used as fertilizers	Fertiliser use Livestock population	Statistical Service Department of Agriculture
3D1.2b	Use of organic N fertilizers - Sewage sludge applied to soils	Fertiliser use Sewage sludge applied to soils	Statistical Service Department of Agriculture
3D1.4	Crop residues	Cultivated areas Crop production	Statistical Service
3D2.1	Indirect N ₂ O emissions from managed soils – Atmospheric Deposition	Fertiliser use	Statistical Service Department of Agriculture
3D2.2	Indirect N ₂ O emissions from managed soils Nitrogen Leaching and run-off	Fertiliser use Livestock population Sewage sludge applied to soils	Statistical Service Department of Agriculture
3F1	Field Burning of Agricultural Residues – Cereals – Wheat, Barley, Oats	Cultivated areas Crop production	Statistical Service
3F2	Field Burning of Agricultural Residues – Pulses – Bean and Pulses	Cultivated areas Crop production	Statistical Service
3F3	Field Burning of Agricultural Residues –Tubers and Roots	Cultivated areas Crop production	Statistical Service
3H	Urea Application	Urea use	Statistical Service
5A1.a	Managed waste disposal sites	Municipal solid waste production Recycling Population	Statistical Service Department of Environment
5A2.	Unmanaged waste disposal sites	Municipal solid waste production Population	Statistical Service Department of Environment
5B1	Biological treatment of solid waste – Composting- municipal solid waste	Composting	Statistical Service
5B2	Biological treatment of solid waste – Anaerobic digestion at biogas facilities	Composting	Statistical Service
5D1.	Wastewater Treatment and Discharge - Domestic wastewater	Population connected	Statistical Service Water Development Department Department of Environment
5D2.	Wastewater Treatment and Discharge - Industrial wastewater	Industrial production	Statistical Service Department of Environment

^{*}outsourced contract

1.3.1. Global Warming Potential

Emissions from anthropogenic activities affect the concentration and distribution of greenhouse gases in the atmosphere. These changes can potentially produce a radiative forcing of the Earth's surface and lower atmosphere, by changing either the reflection or absorption of solar radiation or the emissions and absorption of long-wave radiation. A simple measure of the relative radiative effects of the emissions of various greenhouse gases is the Global Warming Potential (GWP) index. This index is defined as the cumulative radiative forcing between the present and some chosen time-horizon caused by a unit mass of gas emitted now, expressed relative to that for some reference gas. The values for GWP for the greenhouse gases that are used in this inventory are according to Decision 18/CMA.1²⁰ (Annex II).

Corresponding values of GWP for other gases (NO_x , CO, NMVOC) are not given by the IPCC (nor by other sources for this purpose), since at present it is impossible to calculate the indirect results of these gases, as the scientific knowledge on their chemical reactions taking place in the atmosphere is not sufficient.

Table 1.5. Direct Global Warming Potentials (mass basis) relative to carbon dioxide for the 100year horizon

year norizon		
Gas	Chemical Compound	100-year Global Warming Potential
Carbon dioxide	CO_2	1
Methane	CH ₄	28
Nitrous Oxide	N_2O	265
HFC-32	CH_2F_2	677
HFC-125	CHF ₂ CF ₂	3170
HFC-134a	CH ₂ FCF ₃	1300
HFC-143a	CF ₃ CH ₃	4800
HFC-227ea	CF ₃ CHFCF ₃	3350
HFC-245fa	CH ₂ FCF ₂ CHF ₂	858
HCF-365mfc	CH ₃ CF ₂ CH ₂ CH ₂ CF ₃	804
Sulphur hexafluoride	SF_6	23500
Nitrogen trifluoride	NF ₃	16100

1.4. Brief description of key categories

The 2006 IPCC Guidelines define procedures (in the form of decision trees) for the choice of estimation methods within the context of the IPCC Guidelines. Decision trees formalize the choice of the estimation method most suited to national circumstances considering at the same time the need for accuracy and the available resources (both financial and human). It is considered good practice to identify those source categories (key source categories) that have the greatest contribution to overall inventory uncertainty in order to make the most efficient use of available resources.

In that context, a key source category is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of direct greenhouse gases in terms of the absolute level of emissions (level assessment) or/and to the trend of emissions (trend assessment). As far as possible, key source categories should receive special consideration in terms of two important inventory aspects:

1. The use of source category-specific good practice methods is preferable, unless resources are unavailable.

2. The key source categories should receive additional attention with respect to quality assurance (QA) and quality control (QC).

-

²⁰ Decision 18/CP.1 Modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement.

As a result of the adoption of the LULUCF Good Practice Guidance (Decision 13/CP.9) the concept of key sources has been expanded in order to cover LULUCF emissions by sources and removals by sinks. Therefore the term key category is used in order to include both sources and sinks.

The determination of the key categories for the Cyprus' inventory system is based on the application of the Tier 1 methodology (see Annex I for an analytic presentation of calculations) described in the 2006 IPCC Guidelines. Tier 1 methodology for the identification of key categories assesses the impacts of various source categories on the level and the trend of the national emissions inventory. Key categories are those which, when summed together in descending order of magnitude, add up to over 95% of total emissions (level assessment) or the trend of the inventory in absolute terms.

It should be mentioned that source category uncertainty estimates are not taken into consideration and base year estimates were calculated considering 1990 as base year.

The key categories for Cyprus' inventory system (without LULUCF) for the year 2023 are presented in Table 1.6. Nine key source categories are found in the energy sector, five in the IPPU sector, five in agriculture and five in waste sector in 2023 (without LULUCF). Detailed presentation of the key category analysis is presented in <u>Annex 1</u>.

Table 1.6. Key categories for Cyprus' inventory system without LULUCF for 2023

IPCC Source category	Direct GHG	Level	Trend
1.A.1 Fuel combustion - Energy Industries - Liquid			
Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Liquid Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Solid Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Other Fossil Fuels	CO_2	✓	✓
1.A.3.a Domestic Aviation	CO_2		✓
1.A.3.b Road Transportation	CO_2	✓	✓
1.A.4 Other Sectors - Liquid Fuels	CO_2	✓	✓
2A1. Cement production	CO_2	✓	✓
2A4. Othe process uses of carbonate	CO_2		✓
2F1. Refrigeration and air conditioning	HFCs	✓	✓
3.A Enteric Fermentation	CH ₄	✓	✓
3.B Manure Management	CH ₄	✓	✓
3.B Manure Management	N ₂ O		✓
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O		✓
5.A Solid Waste Disposal	CH ₄	✓	✓
5.D Wastewater Treatment and Discharge	CH ₄		✓

The methodology applied for the determination of the key categories with LULUCF is similar to the one presented above. The key categories identified for the year 2023 are presented in Table 1.7 (see Annex 1 for an analytical presentation of calculations). The comparison of the results of the analysis with and without LULUCF reveals no major differences in the source categories identified, apart from the categories from the LULUCF sector. In the analysis including LULUCF ten categories from the Energy Sector, five from the IPPU sector, five from agriculture, five from the waste sector and five from LULUCF have been identified as key.

Table 1.7. Key categories for Cyprus' inventory system with LULUCF for 2023

IPCC Source category	Direct GHG	Level	Trend
1A1a. Public electricity and heat production	CO_2	✓	✓
1A2e. Food processing, beverages and tobacco	CO_2	✓	✓
1A2f. Non-metallic minerals	CO_2	✓	✓
1A2g. Other (please specify)	CO_2	✓	✓

IPCC Source category	Direct GHG	Level	Trend
1A3a. Domestic aviation	CO_2		✓
1A3b. Road transportation	CO_2	✓	✓
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Liquid Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Solid Fuels	CO_2	✓	✓
1.A.2 Fuel combustion - Manufacturing Industries and			
Construction - Other Fossil Fuels	CO_2	✓	✓
1.A.3.a Domestic Aviation	CO_2		✓
1.A.3.b Road Transportation	CO_2	✓	✓
1.A.4 Other Sectors - Liquid Fuels	CO_2	✓	✓
2A1. Cement production	CO_2	✓	✓
2A4. Othe process uses of carbonate	CO_2		✓
2F1. Refrigeration and air conditioning	HFCs	✓	✓
2.G Other Product Manufacture and Use	HFCs		✓
3.A Enteric Fermentation	$\mathrm{CH_4}$	✓	✓
3.B Manure Management	$\mathrm{CH_4}$	✓	✓
3.B Manure Management	N_2O		✓
3.D.1 Direct N2O Emissions From Managed Soils	N_2O		✓
3D. Agricultural soils	N_2O	✓	✓
4A1. Forest land remaining forest land	CO_2	✓	✓
4A2. Land converted to forest land	CO_2		✓
4B1. Cropland remaining cropland	CO ₂	✓	✓
4G. Harvested wood products	CO_2		✓
5.A Solid Waste Disposal	CH ₄	✓	✓
5.D Wastewater Treatment and Discharge	CH ₄		✓

1.5. General uncertainty evaluation

To evaluate the accuracy of an emissions inventory, an uncertainty analysis has to be carried out for both annual estimates of emissions and emissions trends over time. The estimated uncertainty of emissions from individual sources is either a function of instrument characteristics, calibration and sampling frequency of direct measurements, or (more often) a combination of the uncertainties in the emission factors for typical sources and the corresponding activity data.

Emission factors reported in the literature usually derive from measurements at specific installations, the characteristics of which are judged to be typical for a set of similar installations. The validity of this assumption given the national circumstances represents the crucial factor determining uncertainty.

Activity data are more closely linked to economic activity than are emission factors. Therefore, there are often well-established incentives requirements for accurate accounting. As a result, activity data tend to have lower uncertainties and lower correlation between years. Data availability at the level of analysis required for the estimation of GHG emissions / removals as well as the definitions used by the statistical agencies represent some of the parameters affecting the uncertainty of activity data.

The uncertainty analysis for Cyprus' GHG inventory is based on Tier 1 methodology described in the 2006 IPCC Guidelines, with 1990 as base year for CO₂, CH₄, N₂O and 1995 for F-gases emissions. For the estimation of uncertainties per gas, a combination of the information provided by the IPCC and critical evaluation of information from indigenous sources was applied.

The total uncertainty with LULUCF in 2023 is 10.1% and the trend uncertainty 2.52% compared to 1.91% and 1.63% respectively in 1990. The uncertainty evaluation is also submitted in xls format. Detailed presentation of the assessment of uncertainty is presented in Annex 2.

1.6. General assessment of completeness

Where methodological or data gaps in inventories exist, information on these gaps should be presented in a transparent manner. Annex I Parties should clearly indicate the sources and sinks which are not considered in their inventories, but which are included in the 2006 IPCC Guidelines, and explain the reasons for such exclusion. Similarly, Annex I Parties should indicate the parts of their geographical area, if any, not covered by their inventory and explain the reasons for their exclusion. In addition, Annex I Parties should use the notation keys presented below to fill in the blanks in all the CRT tables. This approach facilitates the assessment of the completeness of an inventory. The notation keys are as follows:

- (a) "NO" (not occurring) for categories or processes, including recovery, under a particular source or sink category that do not occur within an Annex I Party.
- (b) "NE" (not estimated) for AD and/or emissions by sources and removals by sinks of GHGs which have not been estimated but for which a corresponding activity may occur within a Party.6 Where "NE" is used in an inventory to report emissions or removals, the Annex I Party shall indicate in both the NIR and the CRT completeness table why such emissions or removals have not been estimated. Furthermore, a Party may consider that a disproportionate amount of effort would be required to collect data for a gas from a specific category that would be insignificant in terms of the overall level and trend in national emissions and in such cases use the notation key "NE". The Party should in the NIR provide justifications for exclusion in terms of the likely level of emissions. An emission should only be considered insignificant if the likely level of emissions is below 0.05 per cent of the national total GHG emissions, and does not exceed 500 kt CO₂ eq. The total national aggregate of estimated emissions for all gases and categories considered insignificant shall remain below 0.1 per cent of the national total GHG emissions. Parties should use approximated AD and default IPCC EFs to derive a likely level of emissions for the respective category. Once emissions from a specific category have been reported in a previous submission, emissions from this specific category shall be reported in subsequent GHG inventory submissions.
- (c) "NA" (not applicable) for activities under a given source/sink category that do occur within the Party but do not result in emissions or removals of a specific gas. If the cells for categories in the CRT tables for which "NA" is applicable are shaded, they do not need to be filled in.
- (d) "IE" (included elsewhere) for emissions by sources and removals by sinks of GHGs estimated but included elsewhere in the inventory instead of under the expected source/sink category. Where "IE" is used in an inventory, the Annex I Party should indicate, in the CRT completeness table, where in the inventory the emissions or removals for the displaced source/sink category have been included, and the Annex I Party should explain such a deviation from the inclusion under the expected category, especially if it is due to confidentiality.
- (e) "C" (confidential) for emissions by sources and removals by sinks of GHGs of which the reporting could lead to the disclosure of confidential information, given the provisions of decision 24/CP.19. Annex I Parties are encouraged to estimate and report emissions and removals for source or sink categories for which estimation methods are not included in the 2006 IPCC Guidelines. If Annex I Parties estimate and report emissions and removals for country specific sources or sinks or of gases which are not included in the 2006 IPCC Guidelines, they should explicitly describe what source/sink categories or gases these are, as well as what methodologies, EFs and AD have been used for their estimation, and provide references for these data.

In the present inventory report, estimates of GHG emissions in Cyprus for the years 1990–2021 are presented. All major sources are reported including emissions estimates for indirect greenhouse gases and SO₂ (Annex 5).

The main deficiency identified is the lack of available data/methods to estimate emissions for Transport of oil (1.B.2.a.3) and Distribution of oil products (1.B.2.a.5). Moreover, there are still some empty cells in the xml. Work is in progress to fill all the cells and use the appropriate notation keys. Further details on deficiencies are provided in the appropriate chapter. A national inventory improvement plan is available and implemented.

Information related to the geographical scope

On July 20, 1974, the Turkish armed forces staged a full scale invasion against Cyprus. Turkey proceeded to occupy the northern part of the island and empty it of its Greek Cypriot inhabitants. By the end of the following year, the majority of the Turkish Cypriots living in the areas remaining under the control of the Republic of Cyprus had also made their way to the part of Cyprus occupied by the Turkish army.

On November 15, 1983, the Turkish Cypriot leadership unilaterally declared that area an independent state, and named it the "Turkish Republic of Northern Cyprus". Despite the fact that this act has been condemned by the UN and that no country other than Turkey has recognised this illegal secessionist entity, the situation continues.

For further information on this situation please refer to the website of the Ministry of Foreign Affairs of the Republic of Cyprus²¹.

As the secessionist area is not under the effective control of the Republic of Cyprus, no data from official sources are available for the activities taking place in the particular areas, and no emissions can be estimated for any activities.

This inventory estimates emissions only for areas under the effective control of the Republic of Cyprus.

Implementation of recommendations and adjustments

The implementation status of all the recommendations made to the 2024 NIR submission by the EU review team (TERT) during the two review processes are presented in Annex 6.

_

²¹ https://www.gov.cy/mfa/en/documents/turkish-military-invasion-and-occupation/

Chapter 2.

Trends in greenhouse gas emissions

The economy of Cyprus²²

The economic profile of a country has a strong link to greenhouse gas emissions, with the overall level and types of economic activity strongly correlated to energy use. However, this is also dependent on factors such as energy efficiency and the structure of the economy.

The economy of Cyprus can generally be characterized as small, open and dynamic, with services constituting its engine power. Since the accession of the country to the European Union on 1 May 2004 the subsequent participation to the ERMII on 29 April 2005 and finally membership to the EURO area as of January 1st, 2008, its economy has undergone significant economic and structural reforms that have transformed the economic landscape. Interest rates have been liberalized, exchange rates and monetary policy were undertaken by the ECB, while other wide-ranging structural reforms have been promoted, covering the areas of competition, the financial sector and the business sector.

The tertiary sector (services) is the biggest contributor to Gross Value Added (GVA), accounting for about 86.8% in 2023. This development reflects the gradual restructuring of the Cypriot economy from an exporter of minerals and agricultural products in the period 1961-73 and an exporter of manufactured goods in the later part of the 1970s and the early part of the 80s, to an international tourist, business and services center during the 1980s, 1990s and the 2000s. The secondary sector (manufacturing) accounted for around 11.9% of GVA in 2023. The primary sector (agriculture and fishing) is continuously shrinking and only reached 1.3% of GVA in 2023.

Table 2.1. Main economic indicators

	2018	2019	2020	2021	2022	2023
GDP (in € mln)	21,808	23,401	22,374	25,680	29,416	31,340
Real GDP growth rate	6.3	5.9	-3.2	11.4	7.4	2.6
Per capita GDP in PPS, (EU27_2020=100)	91	93	91	94	94	95
Rate of Inflation HICP	0.8	0.5	-1.1	2.3	8.1	3.9
Unemployment Rate	8.4	7.1	7.6	7.1	6.2	5.8

The private sector, which is dominated by small and medium-sized enterprises, has a leading role in the production process. On the other hand, the government's role is mainly to support the private sector and regulate the markets to maintain conditions of macroeconomic stability and a favourable business environment, via the creation of the necessary legal and institutional framework and secure conditions of fair competition.

The Cyprus economy, following the recession in 2014 had presented a positive growth path of five consecutive years, with an average annual real growth of 5.6% during the period 2015-2019. In 2020 due to the outbreak of the COVID-19 crisis the economy went into recession contracting at a rate of -3.2%. In 2021-2022, the economy rebounded significantly with a growth rate of 11.4% and 7.4% equivalently. In 2023 though, following the sanctions on Russia, the economy presented a slowdown with a growth rate of 2.6%. Robust economic activity levels are expected to be maintained over the medium-term.

Inflation in 2023 was reduced to 3.9% after increasing by 8.1% in 2022. Inflation is mainly driven by developments in international oil prices, with a significant impact on domestic prices of energy products. In the medium-term it will hover around 2%.

_

²² Mrs. Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs Ministry of Finance, 1439 Nicosia – Cyprus. Tel. no.: +357 22 60 1231 Telefax: +357 22 60 2750 Email: mmatsi@mof.gov.cy

In the labour market, unemployment has declined from its peak of 16.1% of the labour force in 2014 to 7.1% in 2019 following good economic performance. In 2020 it increased only to 7.6% and this was due to the timely and targeted measures taken by the Government to mitigate the repercussions caused by the pandemic. In 2021-2022, following the strong economic recovery it reduced to 7.1% and 6.2% and in 2023 it was reduced further to 5.8%. In the short to medium-term, it is expected to have a downward trend due to improved economic activity.

In 2023, the budget balance recorded a surplus of 2.0% of GDP from a surplus of 2.6% of GDP in 2022. This positive outcome was attributed to the significant economic performance. Consequently, in 2023 the general government's gross debt to GDP ratio has marked a significant decrease reaching 73.6% of GDP from 81.0% in 2022.

In the longer term, the recent explorations for hydrocarbon reserves that have taken place in the Exclusive Economic Zone of Cyprus have revealed positive prospects for the development of the industry, which will have significant implications for the Cyprus economy.

2.1. Description and interpretation of emission trends for aggregated GHG emissions

GHG emissions in 2023 were 8873 Gg CO_2 eq. excluding LULUCF. Total national emissions excluding LULUCF increased by 59.2% between 1990 and 2023 and increased by 1.6% between 2022 and 2023. The total GHG emissions trends for the period 1990–2023 are presented in Table 2.2 and Figure 2.1 in kt CO_2 eq.

The GWP values used for the conversion of emissions estimates into the common unit of carbon dioxide equivalent are presented in Table 1.4. Per the IPCC Guidelines, emissions estimates for international marine and aviation bunkers were not included in the national totals but rather reported separately as memo items.

Table 2.2. Total GHG emissions trend for the period 1990–2023

Total emissions (Gg CO ₂ eq.)	1990	2000	2005	2010	2015	2020	2021
With LULUCF	5420.02	8147.51	8994.57	9159.84	8023.49	8193.85	8353.86
Without LULUCF	5573.09	8290.01	9215.40	9424.88	8319.60	8492.39	8589.18

Total emissions (Gg CO ₂ eq.)	2022	2023			
With LULUCF	8431.31	8562.87			
Without LULUCF	8730.70	8873.45	•		

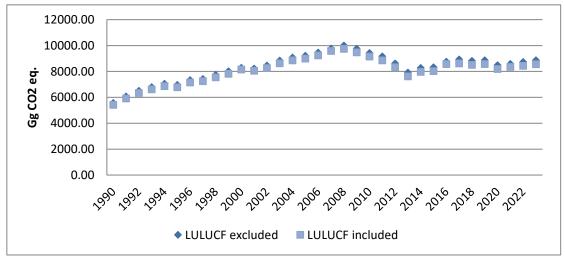


Figure 2.1. Total GHG emissions trend for the period 1990–2023

2.2. Description and interpretation of emission trends by sector

Energy, with $6266~Gg~CO_2~eq.$, continues to be the largest contributor to the total national GHG emissions (73.2% compared to the total without LULUCF). 3050 Gg $CO_2~eq.$ of these emissions is from the production of electricity, while another 2146 Gg $CO_2~eq.$ is from transport. Table 2 and Figure 2 present the emissions for the period 1990–2023 by sector.

Table 2.3. GHG emissions by sector for the period 1990–2023

able 2.5. G	HG emissions by sector for the period 1990–2023								
	Energy	IPPU	Agriculture	LULUCF	Waste	Total (excl. LULUCF)	Total (incl. LULUCF)		
1990	3955.24	727.93	454.74	-153.07	435.18	5573.09	5420.02		
1991	4486.90	687.86	461.29	-166.98	440.71	6076.75	5909.76		
1992	4810.19	762.12	491.51	-172.65	449.08	6512.90	6340.25		
1993	4985.64	833.49	519.70	-174.80	459.80	6798.63	6623.82		
1994	5195.44	870.23	514.25	-183.35	472.74	7052.66	6869.31		
1995	5100.38	839.71	544.36	-180.03	481.39	6965.84	6785.81		
1996	5393.40	904.12	551.74	-185.36	487.64	7336.90	7151.54		
1997	5514.13	876.05	541.38	-184.22	497.08	7428.64	7244.43		
1998	5854.56	840.12	543.56	-190.49	504.51	7742.75	7552.26		
1999	6116.57	852.94	534.94	-198.38	513.07	8017.53	7819.15		
2000	6341.69	882.17	542.91	-142.51	523.24	8290.01	8147.51		
2001	6231.79	875.27	586.21	-168.60	533.60	8226.88	8058.28		
2002	6391.43	918.24	609.97	-201.94	541.54	8461.18	8259.24		
2003	6779.11	932.75	592.67	-214.02	544.68	8849.20	8635.19		
2004	6938.54	1014.78	572.69	-214.55	548.53	9074.54	8859.99		
2005	7129.10	1003.19	525.54	-220.83	557.57	9215.40	8994.57		
2006	7317.73	1059.55	531.15	-222.49	557.86	9466.28	9243.79		
2007	7612.99	1072.03	529.50	-182.89	559.92	9774.43	9591.55		
2008	7829.24	1093.84	508.12	-249.84	570.25	10001.45	9751.61		
2009	7748.43	929.89	500.49	-277.65	577.38	9756.19	9478.54		
2010	7516.29	809.86	514.80	-265.04	583.92	9424.88	9159.84		
2011	7254.07	811.54	506.90	-300.78	588.96	9161.46	8860.68		
2012	6767.31	772.13	484.68	-293.62	599.05	8623.16	8329.54		
2013	5842.15	1013.20	449.17	-297.29	609.15	7913.67	7616.38		
2014	5973.19	1241.75	437.17	-299.11	619.19	8271.30	7972.20		
2015	6097.70	1157.02	441.85	-296.11	623.02	8319.60	8023.49		
2016	6488.46	1185.18	462.38	-190.89	626.15	8762.17	8571.28		
2017	6568.77	1248.89	476.12	-307.03	633.61	8927.40	8620.37		
2018	6495.10	1198.37	481.79	-302.31	643.33	8818.59	8516.28		
2019	6548.31	1170.76	495.52	-297.04	654.18	8868.78	8571.74		
2020	6039.19	1268.32	531.54	-298.54	653.35	8492.39	8193.85		
2021	6092.14	1290.19	546.27	-235.33	660.59	8589.18	8353.86		
2022	6210.45	1324.48	528.61	-299.39	667.16	8730.70	8431.31		
2023	6265.97	1404.72	530.45	-310.58	672.31	8873.45	8562.87		
Change 1990–2023	58.42	92.98	16.65	102.90	54.49	59.22	57.99		

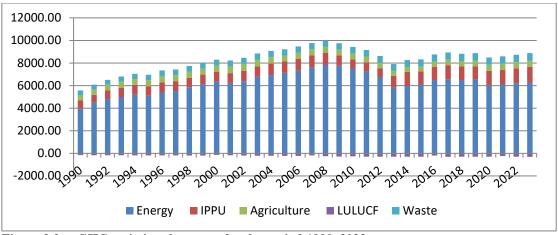


Figure 2.2. GHG emissions by sector for the period 1990–2023

2.3. Description and interpretation of emission trends by gas

GHG emissions trends by gas for the period 1990–2023 are presented in Table 2.4.

Table 2.4. GHG emissions trends by gas for the period 1990–2023

	1990	1991	1992	1993	1994
CO ₂ emissions without LULUCF	4647.76	5136.10	5508.84	5752.78	5994.99
CO ₂ emissions with LULUCF	4494.63	4968.94	5336.11	5577.54	5810.59
CH ₄ emissions without LULUCF	776.43	791.34	816.41	847.23	861.42
CH ₄ emissions with LULUCF	776.46	791.44	816.44	847.49	862.07
N ₂ O emissions without LULUCF	146.17	145.94	160.59	169.35	164.69
N ₂ O emissions with LULUCF	146.20	146.01	160.64	169.53	165.09
HFCs	NA,NE,NO	NA,NE,NO	23.04	24.62	26.27
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	2.73	3.37	4.01	4.65	5.29
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	5573.09	6076.75	6512.90	6798.63	7052.66
Total (with LULUCF)	5420.02	5909.76	6340.25	6623.82	6869.31
Total (without LULUCF, with	5580.67	6083.71	6520.14	6805.92	7060.44
indirect)					
Total (with LULUCF, with indirect)	5427.61	5916.72	6347.49	6631.12	6877.09
	1995	1996	1997	1998	1999
CO ₂ emissions without LULUCF	1995 5865.76	1996 6215.68	1997 6302.38	1998 6596.85	1999 6863.43
CO ₂ emissions with LULUCF					
	5865.76	6215.68	6302.38	6596.85	6863.43
CO ₂ emissions with LULUCF	5865.76 5685.27	6215.68 6029.59	6302.38 6117.14	6596.85 6403.08	6863.43 6664.92
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF	5865.76 5685.27 887.53	6215.68 6029.59 909.43	6302.38 6117.14 914.84	6596.85 6403.08 917.52	6863.43 6664.92 919.68
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF	5865.76 5685.27 887.53 887.79	6215.68 6029.59 909.43 909.85	6302.38 6117.14 914.84 915.45	6596.85 6403.08 917.52 919.60	6863.43 6664.92 919.68 919.70
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF	5865.76 5685.27 887.53 887.79 178.14	6215.68 6029.59 909.43 909.85 171.66	6302.38 6117.14 914.84 915.45 165.60	6596.85 6403.08 917.52 919.60 173.79	6863.43 6664.92 919.68 919.70 172.42
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF	5865.76 5685.27 887.53 887.79 178.14 178.35	6215.68 6029.59 909.43 909.85 171.66 171.96	6302.38 6117.14 914.84 915.45 165.60 166.01	6596.85 6403.08 917.52 919.60 173.79 174.98	6863.43 6664.92 919.68 919.70 172.42 172.55
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61 NO	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO NO 5.93	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO NO	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61 NO NO 7.21	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO NO 7.85	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO NO 8.49
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO NO 5.93 NO	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO NO 6.57	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61 NO NO 7.21	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO NO 7.85	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO NO 8.49
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF)	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO NO 5.93 NO 6965.84	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO NO 6.57 NO 7336.90	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61 NO NO 7.21 NO 7428.64	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO NO 7.85 NO 7742.75	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO NO 8.49 NO 8017.53
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF) Total (with LULUCF)	5865.76 5685.27 887.53 887.79 178.14 178.35 28.48 NO NO 5.93 NO 6965.84 6785.81	6215.68 6029.59 909.43 909.85 171.66 171.96 33.57 NO NO 6.57 NO 7336.90 7151.54	6302.38 6117.14 914.84 915.45 165.60 166.01 38.61 NO NO 7.21 NO 7428.64 7244.43	6596.85 6403.08 917.52 919.60 173.79 174.98 46.75 NO NO 7.85 NO 7742.75 7552.26	6863.43 6664.92 919.68 919.70 172.42 172.55 53.50 NO NO 8.49 NO 8017.53 7819.15

	2000	2001	2002	2003	2004
CO ₂ emissions without LULUCF	7106.90	6979.66	7171.94	7560.77	7787.10
CO ₂ emissions with LULUCF	6957.46	6808.50	6969.52	7345.91	7571.28
CH ₄ emissions without LULUCF	938.26	975.82	1003.66	994.67	985.00
CH ₄ emissions with LULUCF	942.73	977.33	1003.70	994.86	985.37
N ₂ O emissions without LULUCF	174.20	191.66	195.84	192.06	183.41
N ₂ O emissions with LULUCF	176.67	192.72	196.28	192.71	184.30
HFCs	61.52	69.94	79.29	90.60	107.26
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	9.13	9.80	10.45	11.11	11.76
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	8290.01	8226.88	8461.18	8849.20	9074.54
Total (with LULUCF)	8147.51	8058.28	8259.24	8635.19	8859.99
Total (without LULUCF, with	8298.25	8234.86	8470.77	8860.05	9087.14
indirect)					
Total (with LULUCF, with indirect)	8155.74	8066.27	8268.83	8646.03	8872.59
	2005	2006	2007	2008	2009
CO ₂ emissions without LULUCF	7951.67	8183.13	8475.07	8691.64	8437.99
CO ₂ emissions with LULUCF	7729.81	7959.17	8286.46	8440.57	8158.95
CH ₄ emissions without LULUCF	960.16	962.47	964.66	963.70	964.68
CH ₄ emissions with LULUCF	960.29	962.79	967.74	963.81	964.87
N ₂ O emissions without LULUCF	169.30	172.05	169.72	162.12	159.40
N ₂ O emissions with LULUCF	170.20	173.20	172.35	163.24	160.59
HFCs	121.85	137.15	153.22	171.91	181.73
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	12.42	11.47	11.78	12.09	12.39
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	9215.40	9466.28	9774.43	10001.45	9756.19
Total (with LULUCF)	8994.57	9243.79	9591.55	9751.61	9478.54
Total (without LULUCF, with	9228.59	9479.83	9788.60	10013.78	9767.91
indirect)					
Total (with LULUCF, with indirect)	9007.77	9257.34	9605.71	9763.94	9490.25
	2010	2011	2012	2013	2014
CO ₂ emissions without LULUCF	8071.82	7792.36	7261.67	6578.17	6929.79
CO ₂ emissions with LULUCF	7804.55	7489.50	6965.82	6279.34	6629.09
CH ₄ emissions without LULUCF	973.80	972.61	962.67	947.60	948.16
CH ₄ emissions with LULUCF	974.52	973.22	963.35	947.84	948.43
N ₂ O emissions without LULUCF	168.54	166.08	163.09	147.99	145.44
N ₂ O emissions with LULUCF	170.05	167.55	164.63	149.30	146.76
HFCs	198.03	216.05	220.76	224.32	231.73
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF ₆	12.70	14.36	14.97	15.58	16.18
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	9424.88	9161.46	8623.16	7913.67	8271.30
Total (with LULUCF)	9159.84	8860.68	8329.54	7616.38	7972.20
Total (without LULUCF, with	9437.36	9168.98	8630.62	7923.67	8279.10
indirect)					
Total (with LULUCF, with indirect)	9172.32	8868.20	8337.00	7626.39	7979.99
	2015	2016	2017	2018	2019
CO ₂ emissions without LULUCF	6952.48	7349.93	7469.28	7324.20	7324.48
CO ₂ emissions with LULUCF	6655.04	7145.75	7160.68	7019.96	7025.73

CH ₄ emissions without LULUCF	955.51	978.91	997.53	1011.69	1032.22
CH ₄ emissions with LULUCF	955.60	986.85	997.78	1012.19	1032.57
N ₂ O emissions without LULUCF	150.87	152.95	158.82	160.87	166.63
N ₂ O emissions with LULUCF	152.10	158.29	160.14	162.31	168.00
HFCs	243.96	264.78	285.96	305.83	330.00
PFCs	NO	NO	NO	NO	NO
Unspecified mix of HFCs and PFCs	NO	NO	NO	NO	NO
SF_6	16.79	15.61	15.80	16.00	15.44
NF ₃	NO	NO	NO	NO	NO
Total (without LULUCF)	8319.60	8762.17	8927.40	8818.59	8868.78
Total (with LULUCF)	8023.49	8571.28	8620.37	8516.28	8571.74
Total (without LULUCF, with	8325.88	8770.07	8935.54	8825.81	8875.62
indirect)					
Total (with LULUCF, with indirect)	8029.77	8579.18	8628.51	8523.50	8578.58
					Change
					from 1990 to
	2020	2021	2022	2023	2023
CO ₂ emissions without LULUCF	2020 6903.17	2021 6950.78	2022 7070.78	2023 7188.09	2023 (%)
CO ₂ emissions without LULUCF CO ₂ emissions with LULUCF					2023
	6903.17	6950.78	7070.78	7188.09	2023 (%) 54.66
CO ₂ emissions with LULUCF	6903.17 6602.80	6950.78 6706.06	7070.78 6770.05	7188.09 6876.22	2023 (%) 54.66 52.99 39.20
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF	6903.17 6602.80 1062.76	6950.78 6706.06 1083.51	7070.78 6770.05 1075.68	7188.09 6876.22 1080.76	2023 (%) 54.66 52.99
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF	6903.17 6602.80 1062.76 1063.19	6950.78 6706.06 1083.51 1088.98	7070.78 6770.05 1075.68 1075.96	7188.09 6876.22 1080.76 1081.09	2023 (%) 54.66 52.99 39.20 39.23
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF	6903.17 6602.80 1062.76 1063.19 171.07	6950.78 6706.06 1083.51 1088.98 172.71	7070.78 6770.05 1075.68 1075.96 171.48	7188.09 6876.22 1080.76 1081.09 171.80	2023 (%) 54.66 52.99 39.20 39.23 17.53
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF	6903.17 6602.80 1062.76 1063.19 171.07 172.47	6950.78 6706.06 1083.51 1088.98 172.71 176.62	7070.78 6770.05 1075.68 1075.96 171.48 172.55	7188.09 6876.22 1080.76 1081.09 171.80 172.76	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO NO	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO NO	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO NO 17.84	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO NO	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00 553.28
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO NO 18.74	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO NO 17.58	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO NO 17.84	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO NO 17.84	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00 553.28
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF)	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO NO 18.74 NO 8492.39	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO NO 17.58 NO 8589.18	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO NO 17.84 NO 8730.70	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO NO 17.84 NO 8873.45	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00 553.28 0.00 59.22
CO ₂ emissions with LULUCF CH ₄ emissions without LULUCF CH ₄ emissions with LULUCF N ₂ O emissions without LULUCF N ₂ O emissions with LULUCF HFCs PFCs Unspecified mix of HFCs and PFCs SF ₆ NF ₃ Total (without LULUCF)	6903.17 6602.80 1062.76 1063.19 171.07 172.47 336.65 NO NO 18.74 NO 8492.39 8193.85	6950.78 6706.06 1083.51 1088.98 172.71 176.62 364.61 NO NO 17.58 NO 8589.18	7070.78 6770.05 1075.68 1075.96 171.48 172.55 394.92 NO NO 17.84 NO 8730.70 8431.31	7188.09 6876.22 1080.76 1081.09 171.80 172.76 414.96 NO NO 17.84 NO 8873.45 8562.87	2023 (%) 54.66 52.99 39.20 39.23 17.53 18.16 100 0.00 553.28 0.00 59.22 57.99

Chapter 3. Energy (CRT sector 1)

3.1. Overview of sector

Energy systems are for most economies largely driven by the combustion of fossil fuels. During combustion the carbon and hydrogen of the fossil fuels are converted mainly into carbon dioxide (CO_2) and water (H_2O) , releasing the chemical energy in the fuel as heat. This heat is generally either used directly or used (with some conversion losses) to produce mechanical energy, often to generate electricity or for transportation. The energy sector is usually the most important sector in greenhouse gas emission inventories. The energy sector mainly comprises exploration and exploitation of primary energy sources, conversion of primary energy sources into more useable energy forms in refineries and power plants, and the transmission and distribution of fuels and use of fuels in stationary and mobile applications. Emissions arise from these activities by combustion and as fugitive emissions, or escape without combustion.

The energy sector in Cyprus²³

A key challenge for Cyprus is its high dependency on imported fossil fuels for energy, which makes it crucial for the country to develop both its hydrocarbon and renewable energy sources. The primary energy consumption in 2023 was 2.52 million tonnes of oil equivalent (Mtoe), a slight increase from 2.48 Mtoe in 2022.

In 2020 the Renewable Energy Sources (RES) share in gross final consumption of energy in Cyprus (1,64 Mtoe) was 17.04%, exceeding the national mandatory target of 13% RES in 2020, as set in the Directive 2009/28/EC ²⁴. This share comes from the use of solar water heaters, the installation of PV systems, wind parks, biomass/ biogas units and biofuels for transport sector, in combination with the use of heat pumps and biomass use for heating.

Additionally, RES accounted for 20.94% of electricity production in 2023, up from 16.96% in 2022. In 2023 the electricity from RES was 74% from photovoltaic systems, 21% from wind parks and 5% from biomass/biogas units.

Since 2015, electricity from renewable sources is no more promoted through feed-in-tariff schemes. Since 2013 is in operation a net metering, net-billing and self-consumption scheme and since 2022 a virtual net-metering scheme. Moreover, in the period 2018-2019 two schemes operated regarding the installation or RES units mainly PV parks that will eventually participate in the competitive electricity market.

Access of electricity from renewable energy sources to the grid is granted according to the principle of non-discrimination. Grid development is a matter of central planning (Transmission Grid Development Plan 2021-2030 by the Cyprus TSO). In addition, renewable heating and cooling (RES H&C) is promoted by support schemes offering subsidies to households for the installation of solar thermal systems.

However, the country's national grid system has certain intrinsic and technical limitations affecting RES penetration, and reliability of the energy system. The lack of electricity interconnections to the trans-

_

²³ Cyprus Profile, 2017, Energy and Environment, available at http://www.cyprusprofile.com/en/sectors/energy-and-environment (accessed 20/12/2017).

²⁴ Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance), OJ L 140, 5.6.2009, p. 16–62

European electricity networks, limits the amount of intermittent renewable energy that can be connected to the electricity system, and the lack of natural gas interconnections does not allow the supply of Cyprus with electricity produced from natural gas, a fuel that significantly contributes to the reduction of greenhouse gas emissions. In addition, there is a lack of centralised storage capability.

To tackle these problems the country is exploring ways to introduce smart grids in the national network and is on the look-out for projects that could facilitate energy storage, and ventures that have production on a 24-hour basis. Also, the EuroAsia Interconnector could bring more solutions in its wake.

The island is already one of the highest users per capita in the world of solar water heaters in households, with over 90% of households equipped with solar water heaters and over 50% of hotels using large systems of this kind. With almost year-round sunshine, Cyprus certainly has plenty of energy to harness, but competitive energy storing capabilities are crucial in order to fully tap into its solar potential and facilitate better RES penetration.

There continues to be much ground to cover in terms of renewable energy production, but international interest in developing the sector in Cyprus has been on the rise. In this respect, the production of renewable energy is expected to experience considerable growth in coming years, and significant investment is required in order Cyprus to achieve its targets – opening the field for companies with expertise in renewables.

The Cyprus Energy Regulatory Authority (CERA) has worked towards the full opening of the electricity market and enabling the consumers in exercising their right to choose their own supplier — with expectations of a full liberalisation in 2023. CERA has approved the Trade and Settlement Rules which are based on a 'net pool' model, i.e. a combination of bilateral agreements with centralized day-ahead, intra-day (at a later stage) and balancing markets. In addition, CERA has issued Regulatory Decisions with respect to the functional and accounting unbundling of the vertically integrated Electricity Authority of Cyprus.

In respect to the supply of natural gas to Cyprus, on 13 of December 2019, the tender for the engineering, construction, operation and maintenance of the LNG Import Terminal, was awarded by ETYFA (DEFA subsidiary) to the joint venture (consortium) China Petroleum Pipeline Engineering, Metron, Hudong-Zhongua Shipbuilding and Wilhelmsen Ship Management. On 28th September 2020 ETYFA approved the revised work program for the project, which is also considered as the official start date of the construction works. Due to the Covid-19 restrictions, which had several effects on the project due to an overall global impact on logistics and availability of materials and equipment, as well the price spike of certain goods, such as steel, the consortium submitted a revised wok program which indicates that project works will be completed by end H2 2023.

With respect to the supply of natural gas, on 4 June 2019, through a pre-qualification - Request for Expressions of Interest (RfEoI) process, DEFA invited prospective LNG suppliers to express an interest in supplying LNG to the LNG Import Terminal in order to be added to DEFA's list of pre-qualified LNG suppliers. DEFA intends to procure its LNG requirements through a combination of: (a) medium/long-term supply via one or more LNG Sales and Purchase Agreements (SPAs); and (b) supplemental cargos via multiple Master Sales Agreements (MSAs) and a bidding process. The deadline for submission of EoI was the 6 September 2019, and 25 companies submitted their interest. 16. This first stage of the above tender procedure was completed successfully in 21 December 2020. DEFA is expected to proceed to the next stage of the process within 2023 with the negotiation and execution of MSAs and with an RfP for the selection of the medium-term contract supplier of LNG.

Also the first Open Season process for the determination of the allocation of the demand (timely, spatially and quantitatively) of natural gas/LNG by potential buyers within Cyprus (distance of 5km radius from the LNG Import Terminal as per the guidelines set by CERA) was initiated in H1 2022 and is currently ongoing.

Cyprus is promoting the project of common interest «EuroAsia Interconnector», an electricity interconnection which is aiming to start commissioning in in the first half of 2026, and the electricity interconnection between Cyprus, Egypt and Greece, following the trilateral MOU that has been signed in October 2021. In addition, the promotion of the project of common interest «EastMed Pipeline», an offshore/onshore natural gas pipeline connecting East Mediterranean resources to Greece via Cyprus and

Crete is aiming to start commissioning in Q3 2027. These projects will effectively contribute to the internal energy market integration, security of energy supply by enhancing diversification of sources and routes and reduction of GHG emissions by allowing the countries in the region to use natural gas deposits and increase the RES electricity production, in the case of EuroAsia Interconnector.

3.1.1. Trends

The energy sector in Cyprus relies on fossil fuel combustion to meet the bulk of energy requirements. Final consumption in 2023 amounted to approximately 85 PJ, with 91.7% of the consumption coming from liquid fuels, 1.23% from solid fuels, 2.31% other fossil fuels and 4.77% from biomass. In comparison with 1990, total fuel consumption in 2023 (including biomass) increased by 63.3%.

After robust growth rates in the 1980s (average annual growth was 6.1%), economic performance in the 1990s was mixed: real GDP growth was 9.7% in 1992, 1.7% in 1993, 6.0% in 1994, 6.0% in 1995, 1.9% in 1996 and 2.3% in 1997. This pattern underlined the economy's vulnerability to swings in tourist arrivals (i.e. to economic and political conditions in Cyprus, Western Europe, and the Middle East) and the need to diversify the economy. Declining competitiveness in tourism and especially in manufacturing acted as a drag on growth prior to actualization of structural changes. This greatly affected the energy sector

The emissions from the energy sector in Cyprus increased by 58.5% during the period 1990-2023. The greatest increase in emissions was between 1990 and 2008 (97%), when the emissions reached their peak (7829 Gg CO₂ eq.). All the emissions in 2023 are from fuel combustion. The contribution of the emissions from the energy sector to the total without LULUCF in 2023 was 70.6% compared to 70.9% in 1990.

While energy is mainly responsible for carbon dioxide emissions, it also contributes to methane and nitrous oxide emissions. Fugitive emissions from fuels have not been estimated since 2004 when the refining activities stopped in Cyprus. The contribution of each source and gas to the total emissions of the energy sector over the period 1990 to 2023 are presented in Table 3.1 and Figure 3.1.

Table 3.1. Emissions from energy 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
1. Energy	3955	6342	7129	7516	7254	6767	5842	5973	6098
A. Fuel combustion (sectoral approach)	3955	6341	7129	7516	7254	6767	5842	5973	6098
Energy industries	1767	2964	3483	3880	3722	3557	2839	2950	3033
2. Manufacturing industries and	505	802	903	670	579	460	540	680	596
construction									
3. Transport	1238	1822	2113	2375	2304	2129	1916	1849	1911
4. Other sectors	434	731	610	571	622	600	521	457	532
5. Other	11	22	19	21	27	21	27	38	25
D. Fraitive emissions from fuels	0	1	NO,						
B. Fugitive emissions from fuels	U	1	NA						
1. Solid fuels	NO								
2. Oil and natural gas and other emissions	0	1	NO,						
from energy production	0	1	NA						
C. CO ₂ transport and storage	NO								
CO_2	3925	6298	7087	7478	7216	6731	5810	5941	6061
CH ₄	0.51	0.57	0.57	0.61	0.61	0.61	0.53	0.50	0.62
N_2O	0.06	0.10	0.10	0.08	0.08	0.07	0.07	0.07	0.07
Gg CO2 eq.	2016	2017	2018	2019	2020	2021	2022	2023	
1. Energy	6488	6569	6495	6548	6039	6092	6210	6266	
A. Fuel combustion (sectoral approach)	6488	6569	6495	6548	6039	6092	6210	6266	
Energy industries	3311	3298	3353	3293	3033	3088	3115	3060	
2. Manufacturing industries and	597	616	546	555	561	562	566	566	
construction									
3. Transport	2030	2094	2105	2132	1910	1937	1993	2161	

4. Other sectors	526	536	464	542	510	483	512	457	[[
5. Other	25	26	27	26	26	23	24	23	
	NO,N	NO,							
B. Fugitive emissions from fuels	A	NA							
1. Solid fuels	NO								
2. Oil and natural gas and other emissions	NO,N	NO,							
from energy production	A	NA							
C. CO2 transport and storage	NO								
CO2	6450	6528	6453	6505	5996	6049	6165	6222	
CH4	0.64	0.71	0.70	0.73	0.72	0.72	0.76	0.68	
N2O	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	

^{*} This category includes manufacturing of charcoal and other energy industries. Other energy industries only had emissions in 2020 and 2022. Manufacturing of charcoal does take place in Cyprus but only the small contribution from CH₄ and N₂O emissions appear in the table as the fuel consumed is solid biomass.

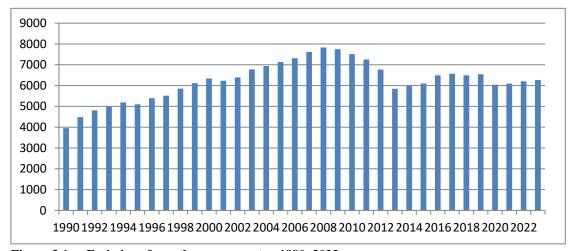


Figure 3.1. Emissions from the energy sector 1990–2023

3.1.2. Methodology

There are three methods provided in the IPCC Guidelines: two Tier 1 approaches (the 'Reference Approach' and the 'Sectoral Approach') and the Tier 2/Tier 3 approach (a detailed technology-based method, also called 'bottom-up' approach). For the Tier 1 Sectoral Approach, total CO₂ is summed across all fuels (excluding biomass) and all sectors. For Tiers 2 and 3, the Detailed Technology-Based Approach, total CO₂ is summed across all fuels and sectors, plus combustion technologies (e.g. stationary and mobile sources). Both approaches provide more disaggregated emission estimates, but also require more data. The sectoral approach is presented in this chapter. The estimation of emissions from Biodiesel throughout the whole sector was done using the methodology presented in the "Note on fossil carbon content in biofuels", prepared by Ioannis Sempos, with input from Graham Anderson, Marc Schuman, Nora Becker, Peter Brown, Jean-Pierre Chang, Ole-Kenneth Nielsen, Veronica Eklund, Edith Brodda, Fernando Diaz-Alonso, Andreas Gumbert (FCCC/ARR/2023/CYP(E.4)). The reference approach is presented in details in Section 3.2.8. A comparison of the results of the two approaches is presented in Section 3.2.9.

The calculation of GHG emissions from energy is based on the IPCC 2006 Guidelines. Where data is available for installations included in the Emissions Trading System of the EU, emission factors have been reported as country- or plant-specific. The methodologies applied for the calculation of emissions by source category are presented in Table 3.2.

Table 3.2. Methodology for the estimation of emissions from energy

IA1a.i Energy Industries - Public electricity and heat production — Energy generation - Liquid fuels Energy Industries - Public electricity and heat production — Energy generation - Liquid fuels CH ₄ /N ₂ O D T1	Category	y-Classification	Gas	EF	Method
Production - Energy generation - Liquid fuels					
1A1a_i		•	_		
1A1b Energy Industries — Petroleum Refining — Liquid fuels A1c.iv Manufacture of solid fuels and Other Energy Industries — Charcoal production — biomass Nanufacturing Industries and Construction — CO ₂ /CH ₄ /N ₂ O D T1	1A1a.i	Energy Industries - Public electricity and heat	CH ₄ /N ₂ O	D	T1
Liquid fuels Manufacture of solid fuels and Other Energy Industries - Charcoal production- biomass CO2/CH4/N2O D T1			G0 /GTT 0.7 0		
1A1c.iv Manufacture of solid fuels and Other Energy Industries - Charcoal production- biomass 1A2a Manufacturing Industries and Construction CO ₂ /CH ₄ /N ₂ O D T1	1A1b		CO ₂ /CH ₄ /N ₂ O	D	T1
1A2a	1A1c.iv	Manufacture of solid fuels and Other Energy	CO ₂ /CH ₄ /N ₂ O	D	T1
Iron and Steel - Liquid fuels					
Manufacturing Industries and Construction	1A2a	<u> </u>	CO ₂ /CH ₄ /N ₂ O	D	T1
Non-ferrous Metals - Liquid fuels	1 4 21-		CO /CII /N O	D	T-1
1A2c	1A20		CO ₂ /CH ₄ /N ₂ O	Ъ	11
Chemicals — Liquid fuels CO ₂ /CH ₄ /N ₂ O D T1	1A2c		CO ₂ /CH ₄ /N ₂ O	D	T1
Chemicals — Biomass					
Manufacturing Industries and Construction - Pulp, Paper and Print - Liquid fuels	1A2c	Manufacturing Industries and Construction –	CO ₂ /CH ₄ /N ₂ O	D	T1
Pulp, Paper and Print — Liquid fuels					
1A2e. Manufacturing Industries and Construction - Food processing, beverages and tobacco - Liquid fuels 1A2e. Manufacturing Industries and Construction - Food processing, beverages and tobacco - Biomass 1A2f. Manufacturing Industries and Construction - Food processing, beverages and tobacco - Biomass 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - Liquid fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - Liquid fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - solid fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - solid fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - solid fuel 1A2f. Manufacturing Industries and Construction - CO ₂	1A2d		CO ₂ /CH ₄ /N ₂ O	D	T1
Food processing, beverages and tobacco - Liquid fuels Manufacturing Industries and Construction - Food processing, beverages and tobacco - Biomass					
Liquid fuels Manufacturing Industries and Construction - CO2/CH4/N2O D T1	1A2e.		CO ₂ /CH ₄ /N ₂ O	D	T1
1A2E. Manufacturing Industries and Construction - Food processing, beverages and tobacco - Biomass					
Food processing, beverages and tobacco - Biomass Ha2f. Manufacturing Industries and Construction - CO2 CS CS	1.4.0		CO (CH ALO	- D	TD1
Biomass CO2	IA2e.		CO ₂ /CH ₄ /N ₂ O	D	11
1A2f. Manufacturing Industries and Construction - Non-metallic minerals - Liquid fuel Non-metallic minerals - Liquid fuel					
Non-metallic minerals – Liquid fuel Non-metallic minerals – Liquid fuel	1Δ2f		COa	CS	CS
1A2f. Manufacturing Industries and Construction - Non-metallic minerals - Liquid fuel CO2 CS CS	17121.		CO ₂	CS	CS
Non-metallic minerals - Liquid fuel 1A2f. Manufacturing Industries and Construction - CO2 CS CS Non-metallic minerals - solid fuel CH4/N2O D T1	1A2f.		CH ₄ /N ₂ O	D	T1
1A2f. Manufacturing Industries and Construction - Non-metallic minerals - solid fuel Non-metallic minerals - solid fuel			0.00,000	_	
Non-metallic minerals – solid fuel Non-metallic minerals – solid fuel	1A2f.		CO_2	CS	CS
Non-metallic minerals – solid fuel 1A2f. Manufacturing Industries and Construction – CO2 CS CS Non-metallic minerals – other fossil fuel 1A2f. Manufacturing Industries and Construction – CH4/N2O D T1 Non-metallic minerals – other fossil fuel 1A2f. Manufacturing Industries and Construction – CO2 CS CS Non-metallic minerals – biomass 1A2f. Manufacturing Industries and Construction – CO2 CS CS Non-metallic minerals – biomass 1A2f. Manufacturing Industries and Construction – CH4/N2O D T1 Non-metallic minerals – biomass 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1 Other - Mining (excluding fuels) and Quarrying – liquid fuel 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1 Other - Construction – liquid fuel 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1 Other - Non-specified Industry – liquid fuel 1A3a Transport – Domestic aviation – Jet kerosene CO2/CH4/N2O M T3 A3bi. Transport – Road transportation – Gasoline CO2/CH4/N2O M T2 A3bi. Transport – Road transportation – Diesel CO2/CH4/N2O M T2 A3bi. Transport – Road transportation – LPG CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – LPG CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – Biomass CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – Biomass CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – Gas/Diesel CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – Gas/Diesel CO2/CH4/N2O D T1 A3bi. Transport – Road transportation – Gas/Diesel CO2/CH4/N2O D T1 A3bi. Transport – Commercial/institutional – CO2/CH4/N2O D T1 Liquid fuel					
1A2f. Manufacturing Industries and Construction - Non-metallic minerals - other fossil fuel Non-metallic minerals - other fossil fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - other fossil fuel 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - biomass 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - biomass 1A2f. Manufacturing Industries and Construction - Non-metallic minerals - biomass 1A2g	1A2f.		CH ₄ /N ₂ O	D	T1
Non-metallic minerals – other fossil fuel 1A2f. Manufacturing Industries and Construction – Non-metallic minerals – other fossil fuel 1A2f. Manufacturing Industries and Construction – CO2 CS CS Non-metallic minerals – biomass 1A2f. Manufacturing Industries and Construction – Non-metallic minerals – biomass 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1 Non-metallic minerals – biomass 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1 Other - Mining (excluding fuels) and Quarrying – liquid fuel					
1A2f. Manufacturing Industries and Construction - Non-metallic minerals - other fossil fuel CO2	1A2f.		CO_2	CS	CS
Non-metallic minerals – other fossil fuel	1 4 0 0		CH ALO	D	TC1
1A2f. Manufacturing Industries and Construction – Non-metallic minerals – biomass 1A2f. Manufacturing Industries and Construction – Non-metallic minerals – biomass 1A2g Manufacturing Industries and Construction – Other - Mining (excluding fuels) and Quarrying – liquid fuel 1A2g Manufacturing Industries and Construction – Other - Mining (excluding fuels) and Quarrying – liquid fuel 1A2g Manufacturing Industries and Construction – Other - Construction – liquid fuel 1A2g Manufacturing Industries and Construction – Other - Non-specified Industry – liquid fuel 1A3a. Transport - Domestic aviation – Jet kerosene CO2/CH4/N2O M T3 1A3bi. Transport - Road transportation – Diesel CO2/CH4/N2O M T2 1A3bi. Transport – Road transportation – LPG CO2/CH4/N2O M T2 1A3bi. Transport – Road transportation – LPG CO2/CH4/N2O D T1 1A3bi. Transport – Road transportation – Biomass CO2/CH4/N2O D T1 1A3d Transport – Road transportation – Gas/Diesel CO2/CH4/N2O D T1 1A3d Transport – Domestic Navigation – Gas/Diesel CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional – CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional – CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional – CO2/CH4/N2O D T1	1A2I.		CH ₄ /N ₂ O	D	11
Non-metallic minerals – biomass CH ₄ /N ₂ O D T1 Non-metallic minerals – biomass CH ₄ /N ₂ O D T1 Non-metallic minerals – biomass CO ₂ /CH ₄ /N ₂ O D T1 Other - Mining (excluding fuels) and Quarrying – liquid fuel CO ₂ /CH ₄ /N ₂ O D T1 1A2g Manufacturing Industries and Construction – CO ₂ /CH ₄ /N ₂ O D T1 (v).	1 A 2f		COa	CS	CS
Nanufacturing Industries and Construction - Non-metallic minerals - biomass	17421.		CO_2	CS	CS
Non-metallic minerals – biomass 1A2g Manufacturing Industries and Construction – CO2/CH4/N2O D T1	1A2f.		CH ₄ /N ₂ O	D	T1
Manufacturing Industries and Construction – Other - Mining (excluding fuels) and Quarrying – liquid fuel CO2/CH4/N2O D			4 2		
(iii). Other - Mining (excluding fuels) and Quarrying — liquid fuel 1A2g	1A2g		CO ₂ /CH ₄ /N ₂ O	D	T1
Manufacturing Industries and Construction - CO2/CH4/N2O D T1	(iii).	Other - Mining (excluding fuels) and Quarrying			
(v).Other - Construction - liquid fuelCO2/CH4/N2ODT11A2gManufacturing Industries and Construction - Other -Non-specified Industry - liquid fuelCO2/CH4/N2ODT11A3a.Transport - Domestic aviation - Jet keroseneCO2/CH4/N2OMT31A3bi.Transport - Road transportation - GasolineCO2/CH4/N2OMT21A3bi.Transport - Road transportation - DieselCO2/CH4/N2OMT21A3bi.Transport - Road transportation - LPGCO2/CH4/N2ODT11A3dTransport - Road transportation - BiomassCO2/CH4/N2ODT11A3dTransport - Domestic Navigation - Gas/Diesel OilCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional - Liquid fuelCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional - CO2/CH4/N2ODT1					
1A2g Manufacturing Industries and Construction - Other -Non-specified Industry - liquid fuel CO2/CH4/N2O D T1	_		CO ₂ /CH ₄ /N ₂ O	D	T1
(viii).Other -Non-specified Industry – liquid fuelCO2/CH4/N2OMT31A3a.Transport - Domestic aviation – Jet keroseneCO2/CH4/N2OMT31A3bi.Transport - Road transportation – GasolineCO2/CH4/N2OMT21A3bi.Transport – Road transportation – LPGCO2/CH4/N2ODT11A3bi.Transport – Road transportation – BiomassCO2/CH4/N2ODT11A3d.Transport – Domestic Navigation – Gas/Diesel OilCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional – Liquid fuelCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional –CO2/CH4/N2ODT1	_ `				
1A3a.Transport - Domestic aviation – Jet keroseneCO2/CH4/N2OMT31A3bi.Transport - Road transportation – GasolineCO2/CH4/N2OMT21A3bi.Transport - Road transportation - DieselCO2/CH4/N2OMT21A3bi.Transport – Road transportation - LPGCO2/CH4/N2ODT11A3bi.Transport - Road transportation - BiomassCO2/CH4/N2ODT11A3dTransport - Domestic Navigation – Gas/DieselCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional - Liquid fuelCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional -CO2/CH4/N2ODT1	_		CO ₂ /CH ₄ /N ₂ O	D	T1
1A3bi.Transport - Road transportation - GasolineCO2/CH4/N2OMT21A3bi.Transport - Road transportation - DieselCO2/CH4/N2OMT21A3bi.Transport - Road transportation - LPGCO2/CH4/N2ODT11A3bi.Transport - Road transportation - BiomassCO2/CH4/N2ODT11A3dTransport - Domestic Navigation - Gas/DieselCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional - Liquid fuelCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional -CO2/CH4/N2ODT1			CO /CII AI O	3.6	TD2
1A3bi.Transport - Road transportation - DieselCO2/CH4/N2OMT21A3bi.Transport - Road transportation - LPGCO2/CH4/N2ODT11A3bi.Transport - Road transportation - BiomassCO2/CH4/N2ODT11A3dTransport - Domestic Navigation - Gas/Diesel OilCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional - Liquid fuelCO2/CH4/N2ODT11A4a.Other Sectors - Commercial/institutional -CO2/CH4/N2ODT1					
1A3bi. Transport – Road transportation – LPG CO2/CH4/N2O D T1 1A3bi. Transport – Road transportation – Biomass CO2/CH4/N2O D T1 1A3d Transport – Domestic Navigation – Gas/Diesel Oil CO2/CH4/N2O D T1 1A4a. Other Sectors – Commercial/institutional – Liquid fuel CO2/CH4/N2O D T1 1A4a. Other Sectors – Commercial/institutional – CO2/CH4/N2O D T1					
1A3bi. Transport - Road transportation - Biomass CO2/CH4/N2O D T1 1A3d Transport - Domestic Navigation - Gas/Diesel Oil CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional - Liquid fuel CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional - CO2/CH4/N2O D T1					
1A3d Transport - Domestic Navigation - Gas/Diesel Oil CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional - Liquid fuel CO2/CH4/N2O D T1 1A4a. Other Sectors - Commercial/institutional - CO2/CH4/N2O D T1					
Oil 1A4a. Other Sectors - Commercial/institutional - CO ₂ /CH ₄ /N ₂ O D T1 Liquid fuel 1A4a. Other Sectors - Commercial/institutional - CO ₂ /CH ₄ /N ₂ O D T1					
Liquid fuel 1A4a. Other Sectors - Commercial/institutional - CO ₂ /CH ₄ /N ₂ O D T1	11134		202/0114/11/20		11
Liquid fuel 1A4a. Other Sectors - Commercial/institutional - CO ₂ /CH ₄ /N ₂ O D T1	1A4a.		CO ₂ /CH ₄ /N ₂ O	D	T1
		Liquid fuel			
Biomass	1A4a.		CO ₂ /CH ₄ /N ₂ O	D	T1
		Biomass			

Category	y-Classification	Gas	EF	Method
1A4b.	Other Sectors - Residential – Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4b.	Other Sectors - Residential – Biomass	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4ci.	Agriculture/forestry/fishing - Stationary- Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4ci.	Agriculture/forestry/fishing – Stationary- Biomass	CO ₂ /CH ₄ /N ₂ O	D	T1
1A4ciii	Agriculture/forestry/fishing – Fishing – Gas/Diesel Oil	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified – Stationary – Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified – Stationary – Solid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5a	Other - Non-Specified – Stationary – Biomass	CO ₂ /CH ₄ /N ₂ O	D	T1
1A5b	Other - Non-Specified – Mobile - Liquid fuel	CO ₂ /CH ₄ /N ₂ O	D	T1
1B2a4	Fugitive Emissions from Fuels- Oil and Natural Gas and Other Emissions from Energy Production- Oil -Refining/Storage	CH ₄	D	T1
1B2a4	Fugitive Emissions from Fuels- Oil and Natural Gas and Other Emissions from Energy Production- Oil -Refining/Storage	CO ₂ /N ₂ O	NA	NA
1B2c1i	Fugitive Emissions from Fuels- Oil and Natural Gas and Other Emissions from Energy Production- Oil -Venting - tanker trucks	CH ₄	NA	NA

T1: IPCC methodology Tier 1; D: IPCC default methodology and emission factor; CS: Country specific emission factor; PS: Plant-specific emission factor; OTH: Other; NA: not available; T2: IPCC methodology Tier 2; T3: IPCC methodology Tier 3; M: COPERT.

Key categories

The results of the key categories assessment are presented in <u>Section 1.4</u>.

Uncertainty

The uncertainty analysis is presented in <u>Section 1.5</u>.

3.1.3. Completeness

The emissions from energy are complete.

3.2. Fuel combustion (CRT 1.A)

3.2.1. Source category description

The emissions from the fuel combustion in Cyprus contribute 70.6% to the total national emissions excluding LULUCF in 2023 and increased by 58.6% during the period 1990-2023. The greatest increase in emissions was between 1990 and 2008 (97%), when the emissions reached their peak (7810 Gg CO_2 eq.). The majority of energy related GHG emissions in 2023 were derived from energy industries (48.8%), while transport contributed 34.5%, manufacturing industries and construction 9.03%, other sectors 7.29% and other 0.37%, respectively.

Table 3.3. Emissions from fuel combustion 1990–2023

^{*} The fuel consumed for Manufacturing of charcoal is solid biomass.

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
A. Fuel combustion	3955	6341	7129	7516	7254	6767	5842	5973	6098

activities									
1. Energy industries	1767	2964	3483	3880	3722	3557	2839	2950	3033
a. Public	1681	2859	3483	3880	3722	3557	2839	2950	3032
electricity and	1001	2007	0.00	2000	0.22	000,	2007	2,00	2002
heat production									
b. Petroleum	86	104	NO	NO	NO	NO	NO	NO	NO
refining									
c. Manufacture of	0.2	0.5	0.3	0.1	0.1	0.2	0.1	0.1	0.2
solid fuels and									
other energy									
industries*									
Manufacturing	505	802	903	670	579	460	540	680	596
industries and									
construction									
a. Iron and steel	0.56	1.04	0.88	0.56	0.64	0.80	NO	NO	NO
b. Non-ferrous	4.39	6.04	5.56	4.66	4.90	5.38	NO	NO	2.99
metals									
c. Chemicals	2.21	4.30	3.58	2.13	2.44	3.20	NO	3.28	6.43
d. Pulp, paper and	4.84	9.15	5.17	3.69	6.27	3.51	3.01	3.14	3.14
print									
e. Food	73	131	82	60	95	53	43	44	56
processing,									
beverages and									
tobacco									
f. Non-metallic	382	577	718	526	395	334	443	560	483
minerals									
g. Other	38	73	89	74	76	60	51	69	45
3. Transport	1238	1822	2113	2375	2304	2129	1916	1849	1911
a. Domestic	26.24	17.88	12.26	7.83	2.50	1.85	1.41	1.06	1.19
aviation									
b. Road	1209	1802	2099	2364	2299	2125	1913	1846	1908
transportation									
c. Railways	NO	NO	NO	NO	NO	NO	NO	NO	NO
d. Domestic	2.23	1.72	2.36	3.06	2.87	2.02	1.53	1.81	2.05
navigation									
4. Other sectors	434	731	610	571	622	600	521	457	532
a. Commercial/	76	117	100	120	114	108	105	83	89
institutional									
b. Residential	302	508	421	373	425	412	339	307	360
c. Agriculture/	56	106	89	77	83	80	77	67	83
forestry/ fishing									
5. Other	11.1	21.6	19.2	20.5	26.9	20.5	26.7	38.2	25.4
a. Stationary	11.1	21.6	19.2	17.3	20.5	17.3	20.3	31.8	22.2
b. Mobile	NA,NO	NA,NO	NA,NO	3.2	6.3	3.2	6.3	6.3	3.2
CO ₂	6298	7087	7478	7216	6731	5810	5941	6061	6298
CH ₄	0.49	0.54	0.57	0.61	0.61	0.61	0.53	0.50	0.62
N ₂ O	0.06	0.10	0.10	0.08	0.08	0.07	0.07	0.07	0.07
	2016	2017	2018	2019	2020	2021	2022	2023	
A. Fuel combustion	6488	6569	6495	6548	6039	6092	6210	6266	
activities									
1. Energy industries	3311	3298	3353	3293	3033	3088	3115	3060	
a. Public electricity	3310	3298	3353	3292	3013	3087	3109	3060	
and heat production									
b. Petroleum	NO	NO	NO	NO	NO	NO	NO	NO	
refining									
c. Manufacture of	0.3	0.3	0.2	0.2	19.6	0.2	6.1	0.1	
solid fuels and other									
energy industries*									
2. Manufacturing	597	616	546	555	561	562	566	566	
industries and									
construction									
a. Iron and steel	0.80	0.12	0.10	0.01	0.02	NO	0.02	0.02	
b. Non-ferrous	5.38	2.06	2.09	2.15	3.30	2.75	2.22	1.95	
metals	l								

c. Chemicals	6.37	6.75	7.87	8.23	7.83	6.77	10.09	11.85	
d. Pulp, paper and print	3.14	2.73	2.61	3.08	3.12	3.50	1.65	1.98	
e. Food processing, beverages and tobacco	50	71	66	67	62	64	67	50	
f. Non-metallic minerals	481	475	416	408	427	417	401	412	
g. Other	51	58	52	67	58	68	84	89	
3. Transport	2030	2094	2105	2132	1910	1937	1993	2161	
a. Domestic aviation	0.78	1.24	0.88	0.36	0.52	1.28	1.15	1.07	
b. Road transportation	2027	2090	2102	2129	1908	1933	1988	2154	
c. Railways	NO	NO							
d. Domestic navigation	1.53	2.09	2.18	2.84	1.17	2.68	4.52	5.91	
4. Other sectors	526	536	464	542	510	483	512	457	
a. Commercial/ institutional	83	93	91	120	88	96	105	106	
b. Residential	363	358	293	337	333	302	325	278	
c. Agriculture/ forestry/ fishing	80	85	79	85	89	85	82	73	
5. Other	25.4	25.5	26.7	26.0	26.1	23.1	24.3	23.3	
a. Stationary	22.2	21.7	22.2	22.0	21.4	19.0	19.5	20.3	
b. Mobile	3.2	3.9	4.5	4.0	4.7	4.1	4.8	3.0	
CO ₂	6450	6528	6453	6505	5996	6049	6165	6222	
CH ₄	0.64	0.71	0.70	0.73	0.72	0.72	0.76	0.68	
N ₂ O	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	

The renewal of the passenger car fleet and the implied improvement of energy efficiency limit the increase of GHG emissions. The implemented, adopted and planned measures for the improvement of public transport are expected to moderate the high use of passenger cars. The contribution of each source and gas to the total of the sector is presented in Table 3.3. The trend of the emissions from fuel consumption (1A) is presented in Figure 3.2.

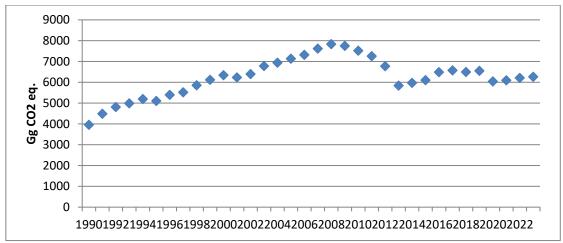


Figure 3.2. Emissions from fuel combustion 1990–2023

3.2.2. Methodological issues

Emission factors

The emission factors used are predominately the defaults proposed by the IPCC guidelines. Further

details on the emission factor are provided in the methodological issues Section of each source.

Activity data

The predominant source of the activity data is the national energy balance prepared by the Statistical Service²⁵. While data is available for all sources for the recent years, several assumptions have to be made to complete the time-series. Detailed presentation of the methodologies applied to complete the time-series for the years where data is not available is given in Annex 3.1. Other sources of data are the EU-ETS, EUROCONTROL, Department of Road Transport and Department of Labour Inspection. Data sets are compared to national data obtained from the Department of Labour Inspection, the energy balance prepared by the Energy Service, and international sources such as IEE and EUROSTAT. Detailed presentation of the data used is given in the respective section.

3.2.3. Energy industries (CRT 1A1)

Category Energy industries (1A1) comprises emissions from fuels combusted by the fuel extraction or energy-producing industries.

3.2.3.1. Category description

The Electricity Authority of Cyprus (EAC) was the sole provider of electrical energy in Cyprus until the introduction of electricity production from renewable energy sources. EAC remains the single electricity producer for the public. Heat production (included in 1A1a) does not occur in Cyprus. Refining activities in the country stopped in 2004 following a government decision not to upgrade it to EU standards, instead turning it into a fuel import and storage terminal. Consequently, emissions from petroleum refinery (1A1b) are reported for the years 1990–2004 only. Emissions from the manufacture of solid fuels and other energy industries (1A1c) are reported for the first time in 2017 (production of charcoal). Gas and Oil Extraction is reported for the first time in 2020 with no activity in 2021 or 2023, but some activity in 2022.

The consumption of fossil fuels by energy industries including biomass in 2023 (39.9 PJ) increased by 71.2% compared to 1990 (23.3 PJ). Since 2005, when the refinery stopped its operations, the emissions from energy industries are entirely caused by the production of electricity (1A1a). Emissions from energy industries account for 34.5% of total national emissions without LULUCF for 2023, while in 1990 the contribution was 31.7%. The total GHG emissions from energy industries in 2023 excluding biomass (3.06 Tg CO₂ eq.) increased by 73.1% compared to 1990 (1.77 Tg CO₂ eq). The emissions from energy industries are presented in Table 3.4. During the period 2009-2013, a decreasing trend of emissions has been observed, attributed to the penetration of renewable energy technologies to the energy mix, and to the economic recession that the country is facing since 2010. The trend changes in 2014 to an increasing trend with an annual average of 4%. The emissions from energy industries (1A1) for the period 1990–2023 are presented in Figure 3.3.

Table 3.4. Emissions from energy industries 1990–2023

Table 3.4. Elitissions from theig	ie 5.4. Emissions from energy muustries 1990–2025									
Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015	
1. Energy industries	1767	2964	3483	3880	3722	3557	2839	2950	3033	
a. Public electricity and heat production	1681	2859	3483	3880	3722	3557	2839	2950	3032	
b. Petroleum refining	86	104	NO							
c. Manufacture of solid fuels and other energy industries*	0.2	0.5	0.3	0.1	0.1	0.2	0.1	0.1	0.2	
CO2 (Gg)	1761	2955	3472	3868	3710	3546	2830	2940	3023	
CH4 (Gg)	0.07	0.12	0.14	0.15	0.15	0.14	0.11	0.11	0.12	
N2O (Gg)	0.01	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02	

²⁵ Ms. Nafsika Apostolou, Statistical Officer, Statistical Service, Ministry of Finance (+357 22602199, napostolou@cystat.mof.gov.cy)

Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023
1. Energy industries	3311	3298	3353	3293	3033	3088	3115	3060
a. Public electricity and heat	3310	3298	3353	3292	3013	3087	3109	3060
production								
b. Petroleum refining	NO							
c. Manufacture of solid fuels and	0.3	0.3	0.2	0.2	19.6	0.2	6.1	0.1
other energy industries*								
CO2 (Gg)	3300	3288	3342	3282	3023	3078	3105	3050
CH4 (Gg)	0.13	0.13	0.13	0.13	0.12	0.12	0.13	0.12
N2O (Gg)	0.03	0.03	0.03	0.03	0.02	0.02	0.03	0.02

^{*} This category includes manufacturing of charcoal and other energy industries. Other energy industries only had emissions in 2020 and 2022. Manufacturing of charcoal does take place in Cyprus but only the small contribution from CH_4 and N_2O emissions appear in the table as the fuel consumed is solid biomass.

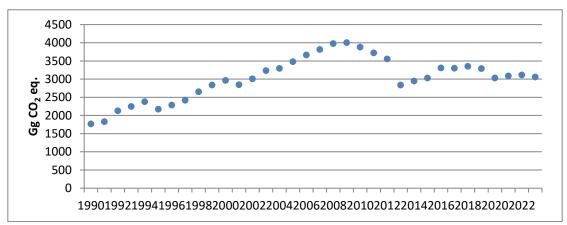


Figure 3.3. Energy industries emissions (1A1) 1990–2023

3.2.3.2. Methodological issues

Main activity electricity and heat production (1A1a)

The IPCC approach to the calculation of emission inventories encourages the use of fuel statistics collected by an officially recognised national body, as this is usually the most appropriate and accessible activity data. As already mentioned, there is only one electricity-producing company in Cyprus, therefore the fuel consumption for public electricity and heat production was obtained from this one company.

The fuel consumption data for all the years was obtained in kt. The fuel consumption data used for the years 1990–2004 is presented in Table 3.5. Fuel consumption for the period 1990–2004 was converted from kt to TJ using the NCV of 2005 (40.446 TJ/kt for HFO and 42.815 TJ/kt for diesel) which is the earliest available country specific NCV. The emissions for 1990–2004 were estimated using the implied emission factors derived from the annual report of the company for 2005 (earliest available) in compliance with the ETS law: 76.67 t CO₂/TJ HFO and 72.43 t CO₂/TJ diesel. The emission factor was multiplied with the fuel consumption of the respective fuel. This method and the EF are considered as country specific method, since it does not follow the methodologies proposed by the IPCC guidelines.

The estimation of country- or plant-specific EF for these years (1990–2004) is not possible since the necessary information is not available ²⁶.

Table 3.5. Fuel consumption data obtained from the electricity production company in Cyprus (1990–2004)

(1770-2004)	<u>, </u>							
	1990	1991	1992	1993	1994	1995	1996	1997

²⁶ Information provided by Mr. George Platides, Assistant Generation Manager, Generation & Supply Business Unit | Generation Department, Electricity Authority of Cyprus | t: +357 22 201521 | m: +357 99 428064 | f: +357 22 201509 | georgeplatides@eac.com.cy.

Fuel consumption (kt)								
HFO	540.4	560.5	644.6	694.8	726.4	661.2	702.5	742.9
Diesel	0.0	0.0	10.5	3.5	2.0	8.2	5.9	5.8
Net calorific value (TJ/	kt)*							
HFO	40.446	40.446	40.446	40.446	40.446	40.446	40.446	40.446
Diesel	42.815	42.815	42.815	42.815	42.815	42.815	42.815	42.815
CO ₂ emissions (Gg)								
HFO	1675.8	1738.0	1999.0	2154.5	2252.6	2050.5	2178.5	2303.7
Diesel	0.0	0.0	32.62	10.79	6.09	25.45	18.39	17.83
	1998	1999	2000	2001	2002	2003	2004	
Fuel consumption (kt)								
HFO	810.9	856.1	900.5	893.8	930.8	1000.3	1042.1	
Diesel								
Diesei	11.6	21.0	18.7	3.7	1.6	5.1	8.4	
Net calorific value (TJ/		21.0	18.7	3.7	1.6	5.1	8.4	
		21.0 40.446	18.7	3.7	1.6	5.1	8.4	
Net calorific value (TJ/	kt)*							
Net calorific value (TJ/	/kt)* 40.446	40.446	40.446	40.446	40.446	40.446	40.446	
Net calorific value (TJ/ HFO Diesel	/kt)* 40.446	40.446	40.446	40.446	40.446	40.446	40.446	

^{*} NCV of 2005 data submitted through ETS.

Detailed data on fuel consumption and other parameters have been submitted annually by the installation since 2005, in compliance with the national Emissions Trading System law (110(I)/2011). The data collected through the ETS for the period 2005-2023 and used for the estimation of the emissions is presented in Table 3.6. For the years 2005-2015, the CO_2 emissions used are those reported by the installation in compliance with the ETS law.

Table 3.6. Data collected through the ETS for electricity production in Cyprus (2005-2023)

	2005	2006	2007	2008	2009	2010	2011	2012
Fuel consumption (k	ct)							
HFO	1103.2	1137.3	1174.7	1218.5	1163.1	1053.0	1057.8	895.5
Diesel	16.3	6.9	16.0	22.9	91.9	157.5	111.7	213.9
Net calorific value (TJ/kt)*							
HFO	40.446	40.460	40.463	40.690	40.795	40.641	40.741	40.791
Diesel	42.815	42.821	42.806	42.598	42.660	42.938	42.714	42.715
CO ₂ emissions (Gg)								
HFO	3421.2	3632.1	3751.9	3896.3	3707.6	3377.5	3373.4	2869.8
Diesel	50.60	21.28	49.72	70.98	284.84	490.53	336.65	676.13
Implied EF (Gg CO	₂ /TJ)							
HFO	76.672	78.935	78.938	78.582	78.141	78.919	78.274	78.562
Diesel	72.431	72.421	72.444	72.798	72.640	72.532	70.572	74.018
	2012	2011	0045	2016	0045	0010	0040	2020
	2013	2014	2015	2016	2017	2018	2019	2020
Fuel consumption (l								
HFO	649.3	793.3	857.9	882.7	777.9	804.3	770.9	602.5
Diesel	237.5	123.6	89.4	150.0	255.2	246.1	258.6	342.3
Net calorific value (TJ/kt)*							
HFO	40.613	40.691	40.880	40.646	40.632	40.559	40.630	40.688
Diesel	42.580	42.354	42.709	42.717	42.668	42.657	42.580	42.603
CO ₂ emissions (Gg)								
HFO	2085.9	2553.1	2742.3	2828.1	2489.3	2570.7	2473.1	1935.4
Diesel	743.85	387.23	280.73	471.94	798.54	771.62	808.93	1068.31
Implied EF (Gg CO	₂ /TJ)							
HFO	79.098	79.089	78.196	78.827	78.753	78.807	78.95	78.95
Diesel	73.571	73.980	73.560	73.670	73.330	73.499	73.47	73.25
	2021	2022	2023					
Fuel consumption (k		2022	2023					
1 del consumption (F	11)							

HFO	679.6	658.6	668.4			
Diesel	289.3	320.3	289.6			
Net calorific value (TJ/kt)*					
HFO	40.58	41.08	41.08			
Diesel	42.66	42.62	42.62			
CO ₂ emissions (Gg)						
HFO	2176.3	2094.8	2141.1			
Diesel	901.37	1004.1	908.9			
Implied EF (Gg CO	₂ /TJ)					
HFO	78.92	77.42	77.97			
Diesel	73.04	73.56	73.56			
			·			

^{*} weighted average based on consumption

The overall implied emission factor for CO_2 emissions during the period 2005-2023 shows fluctuations that have been caused by (a) change in the consumption of each fuel; i.e. in years that more diesel is consumed the IEF reduces, while when more HFO consumed the IEF increases; (b) fluctuations in fuel quality and therefore NCV (whereas in previous years it is considered constant); (c) the age and efficiency of the electricity productions used.

Non-CO₂ emissions were estimated using the default EF proposed by the IPCC 2006 guidelines (vol.2, pg. 2.16); i.e. 3 kg CH₄ /TJ and 0.6 kg N_2O /TJ for both fuels.

Petroleum refining (1Ab)

Data for the consumption of fuel for petroleum refining was obtained from the National Statistical Service in kt (Table 3.7). No information is available on the characteristics of the consumption reported as other oil products. The fuel consumption was converted to TJ using the default NCVs of 40.4 TJ/kt RFO, 40.2 TJ/kt other oil product and 49.5 TJ/kt refinery gas which is the default proposed by the 2006 IPCC guidelines (vol.2, pg. 1.18). CO₂ emission factors are also the defaults proposed by the revised IPCC 2006 guidelines (vol. 2, pg. 2.16); i.e. 77.4 t CO₂/TJ RFO, 73.3 t CO₂/TJ other oil product and 57.6 t CO₂/TJ refinery gas.

Table 3.7. Fuel consumed for petroleum refining in Cyprus (1990–2004)

Fuel consumption (kt)	1990	1991	1992	1993	1994	1995	1996	1997
RFO	11	12	13	13	14	17	16	14
Other products	0	0	0	0	0	0	0	0
Refinery gas	18	17	17	13	24	13	12	16

	1998	1999	2000	2001	2002	2003	2004	
RFO	15	16	16	0	0	0	0	
Other products	0	0	0	0	16	16	0	
Refinery gas	16	20	19	19	21	21	9	

Non-CO₂ emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines for energy industries (vol. 2, pg. 2.16); i.e. 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for RFO and other oil products and 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for Refinery gas.

Manufacture of Solid Fuels and Other energy industries (1A1c)

The solid fuel produced in Cyprus is charcoal. The amount of wood (biomass) consumed for the production of charcoal is obtained by the Statistical Service (national energy balance) in TJ and is presented in Table 3.8. Table 3.8 also presents the amount of charcoal produced (TJ) and the conversion efficiency.

Emissions are estimated using the T1 methodology and the default EF proposed by the IPCC 2006 guidelines for wood (vol.2, pg. 2.17): $112000 \text{ kg CO}_2/\text{TJ}$, $30 \text{ kg CH}_4/\text{TJ}$ and $4 \text{ kg N}_2\text{O/TJ}$.

Table 3.8. Solid biomass consumed for the production of charcoal

	1990	1991	1992	1993	1994	1995	1996
Solid biomass (TJ)	112	112	112	112	405	388	328
Charcoal produced (TJ)	29.5	29.5	29.5	29.5	147.5	118	118
Conversion efficiency	26.34%	26.34%	26.34%	26.34%	36.42%	30.41%	35.98%

	1997	1998	1999	2000	2001	2002	2003
Solid biomass (TJ)	288	314	281	248	253	235	209
Charcoal produced (TJ)	88.5	118	118	88.5	88.5	88.5	88.5
Conversion efficiency	30.73%	37.58%	41.99%	35.69%	34.98%	37.66%	42.34%

	2004	2005	2006	2007	2008	2009	2010
Solid biomass (TJ)	184	174	135	274	211	47	48
Charcoal produced (TJ)	59.0	59.0	59.0	118	88.5	29.5	29.5
Conversion efficiency	32.07%	33.91%	43.70%	43.07%	41.94%	62.77%	61.46%

	2011	2012	2013	2014	2015	2016	2017
Solid biomass (TJ)	45	82	71	58	94	163	172
Charcoal produced (TJ)	29.5	29.5	29.5	29.5	29.5	59.0	73.5
Conversion efficiency	65.56%	35.98%	41.55%	50.86%	31.38%	36.20%	42.75%
	2018	2019	2020	2021	2022	2023	
Solid biomass (TJ)	112	93	80	91	142	77	
Charcoal produced (TJ)	47.7	39.8	34.2	38.7	60.5	33.0	
Conversion efficiency	42.75%	42.75%	42.7%	42.8%	42.8%	42.7%	

Oil and Gas Extraction(1A1cii)

Diesel consumption for Oil and Gas extraction was reported for the first time in 2020. The consumption includes technical support for the extraction. It does not include the extraction itself. The are no emissions related to transmission or pipeline leakage since the transport of the extracted oil and gas did not start yet.

Emissions are estimated using the T1 methodology and the default EF proposed by the IPCC 2006 for guidelines for diesel-oil consumption (vol.2, pg. 2.18): $74100 \text{ kg CO}_2/\text{TJ}$, $3 \text{ kg CH}_4/\text{TJ}$ and $0.6 \text{ kg N}_2/\text{TJ}$. The consumption for 2020 was 261.5 TJ. There was no activity reported for 2021, but some activity took place in 2022.

3.2.3.3. Uncertainties and time-series consistency

In general, the uncertainty of emissions from the stationary combustion sector is relatively small. The uncertainty associated with activity data (i.e. fuel consumption) is less than 5%, since the AD are obtained from the national energy balance and are cross-checked with data from other sources (e.g. plant specific data). On the other hand, the uncertainty associated with emission factors is also very low for the case of CO_2 , less than 5%, since plant and country specific EFs are mainly applied. For the case of CH_4 and N_2O EFs, the uncertainty is higher, about 100 and 300% respectively, since IPCC defaults emission factors per technology/activity are applied. The results of the uncertainty analysis are presented in Table 1.9. The detailed calculations of uncertainty are presented in Annex 2.

The time-series consistency of emissions is controlled by applying consistent methodologies and verified activity data in-line with IPCC guidelines. In case of changes or refinements in methodologies and EFs based on plant-specific data, e.g. from the European Union emissions trading scheme (EU ETS) reports, time-series consistency is ensured by performing recalculations according to the IPCC good practice guidance, if sufficient data is available.

3.2.3.4. Category-specific QA/QC and verification

The following source-specific QC procedures are applied to the stationary combustion sector. These procedures are based on the plant-specific data that become available through the ETS reports. It should

be mentioned that ETS reports have been both verified by external verification bodies and reviewed by the competent authorities of the Department of Environment.

- 1. Activity data comparison: Cross-checking between energy consumption data derived from the national energy balance and plant-specific energy consumption data of major industrial plants derived from verified ETS reports is performed. The findings of the above quality check are communicated to the competent department of Department of Environment. In this way both the national energy balance and the energy consumption used in emission calculations are verified and improved.
- 2. Emissions comparison: Verified ETS reports were used for the computation of plant-specific CO_2 EFs and NCVs. For quality control purposes emissions calculated by applying plant-specific EFs and NCVs are compared with the emissions calculated by using IPCC default EFs and NCVs.

3.2.3.5. Category-specific recalculations

No recalculations to report.

3.2.3.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

3.2.4. Manufacturing industries and construction (1A2)

3.2.4.1. Category description

Emissions from energy consumption for the production of steam and process heat are mainly reported under Manufacturing industry and construction.

Even though the shock inflicted on the manufacturing sector by the Turkish invasion of 1974 was severe, recovery during the period 1975-1983 was remarkable. By 2002 the sector accounted for about 10% of GDP and 12% of employment. However, during the past decade, the manufacturing industry of Cyprus has been going through difficult times, experiencing a fall in the growth of production, exports and employment. This development is the result of erosion in competitiveness, both abroad and in the local market, at a time of increasingly intensified, international competition. At the root of these problems lie the structural weaknesses of the sector, the drastic reduction of tariff protection due to the participation of Cyprus in the World Trade Organization, the rising labour costs and low productivity. As a result the share of the manufacturing sector in the Gross Domestic Product and in employment remained stagnant. International competition is increasingly intensified mainly from two directions: the high-wage producers, who have combined design, quality and new forms of flexible production to cut working and capital costs and improve response times; and the low-wage mass producers of South-East Asia. The main industrial activities that take place in Cyprus are food and beverage processing, cement and gypsum production, light chemicals (predominately pharmaceuticals), metal and wood products.

The GHG emissions caused by energy consumption in manufacturing industries and construction in 2023 were 566 Gg CO_2 eq, representing 9.0% of the emissions from the energy sector, and 6.4% of total emissions, excluding LULUCF. The total GHG emissions from manufacturing industries and construction in 2023 increased by 12.1% compared to 1990. There is no available information to explain the large change in emissions between 1990 and 1991. The emissions from manufacturing industries and construction 1990–2023 are presented in Figure 3.4 and Table 3.9.

Table 3.9. Emissions from manufacturing industries and construction 1990–2023

tuble 5.5. Emissions it on manufacturing madstres and construction 1550 2025									
Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
2. Manufacturing industries	505	802	903	670	579	460	540	680	596
and construction									
a. Iron and steel	0.56	1.04	0.88	0.56	0.64	0.80	NO	NO	NO
b. Non-ferrous metals	4.39	6.04	5.56	4.66	4.90	5.38	NO	NO	2.99
c. Chemicals	2.21	4.30	3.58	2.13	2.44	3.20	NO	3.28	6.43
d. Pulp, paper and print	4.84	9.15	5.17	3.69	6.27	3.51	3.01	3.14	3.14

e. Food processing, beverages	73	131	82	60	95	53	43	44	56
and tobacco									
f. Non-metallic minerals	382	577	718	526	395	334	443	560	483
g. Other	38	73	89	74	76	60	51	69	45
CO_2 (Gg)	502	799	900	667	577	459	538	677	593
CH ₄ (Gg)	0.03	0.04	0.05	0.05	0.03	0.02	0.02	0.04	0.05
$N_2O(Gg)$	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023	
2. Manufacturing industries and	597	616	546	555	561	562	566	566	
construction									
a. Iron and steel	0.80	0.12	0.10	0.01	0.02	NO	0.02	0.02	
b. Non-ferrous metals	5.38	2.06	2.09	2.15	3.30	2.75	2.22	1.95	
c. Chemicals	6.37	6.75	7.87	8.23	7.83	6.77	10.09	11.85	
d. Pulp, paper and print	3.14	2.73	2.61	3.08	3.12	3.50	1.65	1.98	
e. Food processing, beverages	50	71	66	67	62	64	67	50	
and tobacco									
f. Non-metallic minerals	481	475	416	408	427	417	401	412	
g. Other	51	58	52	67	58	68	84	89	
CO_2 (Gg)	593	611	540	549	553	553	558	558	
CH ₄ (Gg)	0.05	0.07	0.09	0.09	0.11	0.13	0.13	0.12	
N ₂ O (Gg)	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	

3.2.4.2. Methodological issues

Data

The data used to estimate the emissions for the industrial activities from energy consumption in manufacturing industries and construction 1990–2023 is presented in Table 3.10. Consumption for Iron and steel (1A2a) was included in Non-ferrous metals (1A2b) until last 2019. It has reported separately for the first time for 2020. Consumption for RFO (1A2b) is reported for the first time in 2022. Consumption for LPG (1A2g) is reported for the first time in 2022. Biodiesel consumption is included for the first time in 2020. Consumption for Autoproducer electricity plants and CHP plants is included in Non-specified Industry (1A2m).

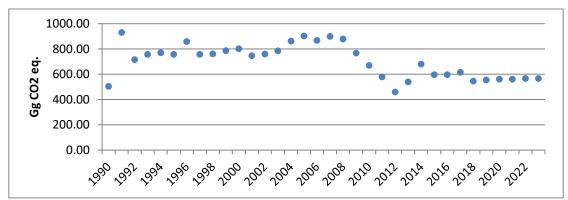


Figure 3.4. Emissions from energy use in manufacturing industries and construction (1A2) 1990–2023

Data for other bituminous coal in source category 1A2f for the years 2005-2023 is from reports submitted for ETS purposes by the cement installations. Waste (non-renewable) in source category 1A2f includes both industrial and municipal waste.

Table 3.10. Fuel consumption in manufacturing industries and construction 1990–2023 (a) 1990-2003

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1A2a Iron and Steel														
Diesel/gasoil (kt)	0.176	0.201	0.226	0.251	0.251	0.276	0.276	0.302	0.327	0.327	0.327	0.352	0.327	0.327
1A2b Non-ferrous metals														
LPG (kt)	0.9	0.9	1.0	0.9	0.9	0.9	0.9	1.0	0.9	0.9	1.0	1.0	1.0	1.1
Diesel/gasoil (kt)	0.52	0.60	0.67	0.75	0.75	0.82	0.82	0.90	0.97	0.97	0.97	1.05	0.97	0.97
1A2c Chemical and petrochemical														
RFO (kt)														
Diesel/gasoil (kt)	0.7	0.8	0.9	1.0	1.0	1.1	1.1	1.2	1.3	1.3	1.3	1.4	1.3	1.3
Solid biofuels (TJ)														
1A2d Paper, pulp and printing														
RFO (kt)	1.5	5.2	4.9	4.2	4.6	4.0	4.6	2.9	2.8	2.8	2.9	2.3	2.3	2.6
1A2e Food, beverages and tobacco														
Diesel/gasoil (kt)	2.1	2.3	2.8	2.9	3.0	3.2	3.4	3.6	3.8	3.9	4.0	4.1	3.9	4.0
RFO (kt)	18.5	62.0	59.0	50.0	55.0	48.5	55.5	35.0	34.0	34.0	35.0	27.0	27.5	31.0
LPG (kt)	2.7	2.7	3.1	2.8	2.8	2.8	2.8	2.9	2.8	2.7	2.9	2.9	3.0	3.2
Solid biofuels (TJ)														
1A2f Non-Metallic Minerals														
Pet-coke (kt)	40.0	93.0	85.0	114.0	112.0	125.0	147.0	152.0	150.0	154.0	141.0	133.0	139.0	137.0
RFO (kt)	9.3	31.0	29.5	25.0	27.5	24.3	27.8	17.5	17.0	17.0	17.5	13.5	13.8	15.5
diesel (kt)	2.1	2.3	2.8	2.9	3.0	3.2	3.4	3.6	3.8	3.9	4.0	4.1	3.9	4.0
LPG (kt)	0.9	0.9	1.0	0.9	0.9	0.9	0.9	1.0	0.9	0.9	1.0	1.0	1.0	1.1
Other bituminous coal (kt)	97.0	97.0	26.0	31.0	27.0	20.0	18.0	19.0	26.0	30.0	49.0	53.0	53.0	53.0
Solid biomass (TJ)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.0	70.0	90.0	211.0
Waste (non-renewable) (TJ)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.0	0.0	15.0
1A2i Mining and Quarrying														
Diesel (kt)	3	4	5	5	5	5	6	6	6	7	7	7	7	7
1A2k Construction														
Diesel (kt)	3	4	5	5	5	5	6	6	6	7	7	7	7	7
RFO (kt)														
1A2m Non-specified Industry														
Diesel (kt)	2.1	2.3	2.8	2.9	3.0	3.2	3.4	3.6	3.8	3.9	4.0	4.1	3.9	4.0
RFO (kt)	6.2	20.7	19.7	16.7	18.3	16.2	18.5	11.7	11.3	11.3	11.7	9.0	9.2	12.3
Other oil products (kt)	0.0	5.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
White spirit (kt)	0.0	0.0	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0
Other kerosene (kt)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LPG (kt)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

(b) 2004-2020

(b) 2004-2020	2004	2005	2006	2007	2008	2009	2010	2011	2012	2012	2014	2015	2016	2017	2019	2019	2020
	2004	2005	2000	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1A2a Iron and Steel																	
Diesel/gasoil(kt)	0.302	0.276	0.276	0.251	0.226	0.226	0.176	0.201	0.251	0.000	0.000	0.000	0.251	0.038	0.033	0.003	0.007
1A2b Non-ferrous metals	0.302	0.270	0.270	0.231	0.220	0.220	0.170	0.201	0.231	0.000	0.000	0.000	0.231	0.036	0.033	0.003	0.007
LPG (kt)	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	NO	NO	1.0	1.0	0.569	0.594	0.658	0.764
Diesel/gasoil (kt)	0.90	0.82	0.82	0.75	0.67	0.67	0.52	0.60	0.75	NO	NO	NO.	0.75	0.11	0.10	0.059	0.317
Biodiesel (kt)	0.70	0.02	0.02	0.73	0.07	0.07	0.32	0.00	0.75	110	110	110	0.73	0.11	0.10	0.037	0.001
1A2c Chemical and petrochemical																	0.001
LPG (kt)														0.21	0.22	0.24	0.29
RFO (kt)												1.0	1.0	0.775	1.235	0.979	0.25
Diesel/gasoil (kt)	1.2	1.1	1.1	1.0	0.9	0.9	0.7	0.8	1.0	NO	1.0	1.0	1.0	1.143	1.036	1.377	1.24
Solid biofuels (TJ)	1.2	1.1	1.1	1.0	0.7	0.7	0.7	0.0	1.0	110	42	52	21	21.6	18	18	14
Biodiesel (kt)											72	32	21	21.0	10	10	0.03
1A2d Paper, pulp and printing																	0.03
1712d Laper, purp and printing																	
LPG (kt)														0.285	0.297	0.329	0.142
RFO (kt)	2.8	1.6	1.1	1.6	1.5	1.0	1.2	2.0	1.1	1.0	1.0	1.0	1.0	0.57	0.52	0.492	0.674
Diesel/gasoil (kt)														0.03	0.03	0.172	0.183
Biodiesel (kt)																	0.001
1A2e Food, beverages and tobacco																	
Diesel/gasoil	3.6	3.4	3.4	2.9	2.6	2.6	2.0	2.3	3.0	2.0	2.0	4.0	3.0	4.863	4.012	4.278	4.171
RFO	34.0	19.8	13.4	19.1	17.6	12.0	14.1	24.0	9.0	8.0	8.0	9.0	9.0	12.45	11.34	10.72	10.09
LPG	3.1	2.9	3.0	3.0	3.0	3.0	3.0	4.0	5.0	4.0	4.0	5.0	4.0	5.515	5.757	6.372	5.716
Solid biofuels (TJ)											44	7	36	50.15	67.19	99.15	68.94
Biogases (TJ)						15	30	67	70	68	67	69	68	68.28	66.18	64.85	65.82
Other kerosene (TJ)														1.314	1.01	4.073	0.525
Biodiesel (kt)																	0.004
1A2f Non-Metallic Minerals																	
Pet-coke (kt)	146.0	154.0	146.0	143.0	152.0	144.0	116.0	100.0	94.0	135.0	162.0	128.0	123.0	108.7	74.5	55.6	62.7
RFO (kt)	17.0	37.0	35.0	38.0	38.0	30.0	25.0	15.0	13.0	8.0	7.0	8.0	10.0	10.0	14.5	15.4	13.4
diesel (kt)	3.6	3.4	3.4	2.9	2.6	2.6	2.0	2.3	3.0	1.0	1.0	2.0	2.0	0.8	1.4	1.8	2.7
LPG (kt)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.4	0.4	0.7
other bituminous coal (kt)	57.0	54.7	54.3	49.5	44.6	23.5	27.4	12.3	0.0	0.0	4.2	6.0	0.8	5.1	22.6	27.7	22.4
Other kerosene (kt)														0.061	0.047	0.018	0.02
Solid biomass (TJ)	127.00	38.00	61.00	133.00	281.00	304.00	347.00	306.00	29.00	28.00	116.00	95.00	55.00	85.51	78.36	126.1	204.9
Waste (non-renewable) (TJ)	71.0	138.0	73.0	288.0	239.0	276.0	299.0	56.2	24.0	45.0	316.0	516.0	663.0	837.5	961.1	1289	1457
Waste (biomass fraction) (TJ)									88.0	150.0	161.0	325.0	427.0	752.0	1156.7	937.8	1377
Biodiesel (kt)																	0.095
1A2j Wood and wood products																	
LPG (kt)														0.003	0.003	0.003	0.006

Diesel/gasoil kt)											1			0.025	0.023	0.025	0.03
Biodiesel (kt)																	0.001
1A2i Mining and Quarrying																	
																	4.65
Diesel (kt)	6	6	6	5	4	4	3	4	5	2	1	3	2	3.75	3.66	7.08	
RFO (kt)														0.12	0.11	0	0
Other Kerosene (kt)																	0.111
Biodiesel (kt)																	0.298
1A2g Transport Equipment																	
Diesel (kt)														0.005	0.006	0.001	0.001
1A2h Machinery																	
LPG (kt)														0.082	0.086	0.095	0.26
Diesel/Gasoil (kt)														0.257	0.224	0.248	0.278
RFO (kt)														0.117	0.107	0.101	0
Biodiesel (kt)																	0.008
1A2k Construction																	
Diesel (kt)	6	6	6	5	4	4	3	4	5	5	6	6	7	8.845	7.17	8.334	7.751
RFO (kt)									1.0	1.0	3.0	2.0	3	2.42	2.2	2.086	1.94
1A2l Textiles and Leather																	
Diesel (kt)														0.027	0.023	0.018	0.017
Biodiesel (kt)																	0.001
1A2m Non-specified Industry																	
Diesel (kt)	3.6	3.4	3.4	3.9	2.6	2.6	2.0	4.3	5.0	3.0	2.0	2.0	2.0	1.852	2.18	2.24	2.05
RFO (kt)	16.3	12.6	11.5	24.4	20.9	17.0	14.7	12.0	3.0	5.0	7.0	1.0	2.0	1.287	0.44	0.449	0.987
Other oil products (kt)	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
White spirit (kt)	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Other kerosene (kt)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	0.0	0.0	0.007	0.005	0.005	0.002
LPG (kt)	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.23	0.24	0.26	0.14
Biodiesel (kt)																	0.003

(c) 2021-2023

(c) 2021-2023	2021	2022	2023
	2021	2022	2023
1A2a Iron and Steel			
Diesel/gasoil(kt)	0.000	0.006	0.007
1A2b Non-ferrous metals			
LPG (kt)	0.758	0.724	0.636
Diesel/gasoil (kt)	0.152	0.010	0.012
RFO (kt)		0.008	0.004
Biodiesel (kt)	0.001	NO	NO
1A2c Chemical and petrochemical			
LPG (kt)	0.27	0.03	0.029
RFO (kt)	0.37	1.83	2.46
Diesel/gasoil (kt)	1.5	1.32	1.26
Solid biofuels (TJ)	11	11	5.3
Biodiesel (kt)	0.03	0.003	0.111
1A2d Paper, pulp and printing			
LPG (kt)	0.125	0.046	1.9
RFO (kt)	0.811	0.305	0.426
Diesel/gasoil (kt)	0.181	0.175	0.165
Biodiesel (kt)	0.001	NO	NO
1A2e Food, beverages and tobacco			
Diesel/gasoil	5.18	5.57	5.25
RFO	10.13	10.21	5.61
LPG	5.29	5.75	5.05
Solid biofuels (TJ)	47.65	179.9	130.0
Biogases (TJ)	67.36	64.57	67.4
Other kerosene (TJ)	0.263	0.088	NO
Biodiesel (kt)	0.006	0.028	0.025
1A2f Non-Metallic Minerals			
Pet-coke (kt)	12.59	15.4	28.7
RFO (kt)	12.52	12.73	10.8
diesel (kt)	4.86	2.93	3.04
LPG (kt)	0.65	0.53	0.46
other bituminous coal (kt)	66.4	52.7	48.0
Other kerosene (kt)	NO	NO	NO
Solid biomass (TJ)	279	314	250
Waste (non-renewable) (TJ)	1692	1948	1922

Waste (biomass fraction) (TJ)	1481	1121	1088
Biodiesel (kt)	0.219	0.058	0.053
1A2j Wood and wood products			
LPG (kt)	0.01	0.003	0.003
Diesel/gasoil kt)	0.047	0.036	0.037
Biodiesel (kt)	0.001	0.001	0.001
1A2i Mining and Quarrying			
-	5.39	8.25	9.34
Diesel (kt)			
RFO (kt)	NO	NO	NO
Other Kerosene (kt)	NO	0.013	NO
Biodiesel (kt)	0.245	0.398	0.365
1A2g Transport Equipment			
Diesel (kt)	0.001	0.058	0.055
LPG (kt)	NO	0.037	0.033
1A2h Machinery			
LPG (kt)	0.206	0.194	0.170
		0.314	0.352
Diesel/Gasoil (kt)	0.272		
RFO (kt)	0	NO	NO
Biodiesel (kt)	0.001	0.014	0.013
1A2k Construction			
Diesel (kt)	9.11	9.50	8.94
RFO (kt)	0.507	3.35	4.23
1A2l Textiles and Leather			
Diesel (kt)	0.01	0.006	0.006
Biodiesel (kt)	NO	NO	NO
1A2m Non-specified Industry			
Diesel (kt)	2.399	3.069	3.709
RFO (kt)	0.582	1.357	0.722
Other oil products (kt)	NO	NO	NO
White spirit (kt)	NO	NO	NO
Other kerosene (kt)	NO	NO	NO
LPG (kt)	0.13	0.13	0.12
Biodiesel (kt)	0.002	0.013	0.012

Methodology

The emissions from energy use in manufacturing industries and construction were estimated using predominately the IPCC 2006 guidelines. Details for each industrial activity are presented below.

Iron and Steel (1A2a)

The liquid fuels consumed for iron and steel is Gas-Diesel oil. No data was available for Iron and Steel separately before 2019 and was included in Non-ferrous metals 1A2b. In 2023, the share of the diesel consumption in Iron and Steel to Non- ferrous metals was calculated for the last three years where data was available. The average of these years was then considered as the share to use for the rest of the timeseries, and this was reported in the 2024 NIR. This amount was subtracted from the non-ferrous metals consumption from 1990-2018 to avoid double counting (FCCC/ARR/2023/CYP(E.8)). In the 2025 NIR, this method was updated to use the five years of available data, with an adjustment then made according to both the 1A2a and 1A2b timeseries from 1990-2018. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO_2 , CH_4 and N_2O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100 kg CO_2 /TJ, 3 kg CH_4 /TJ and 0.6 kg N_2O /TJ.

Non-ferrous metals (1A2b)

The liquid fuels consumed by non-ferrous metals are LPG and Gas-Diesel oil (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO_2 , CH_4 and N_2O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 63100 kg CO_2/TJ , 1 kg CH_4/TJ and 0.1 kg N_2O/TJ for LPG and 74100 kg CO_2/TJ , 3 kg CH_4/TJ and 0.6 kg N_2O/TJ for Gas-Diesel oil.

Biodiesel consumption was reported for the first time in 2020 for this category. Biofuels in Cyprus are 100% FAME. Emissions from the fossil part of the fuel have been calculated as follows: The default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N_2O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH4/TJ and 3.9 kg N_2O /TJ for both fossil and biogenic parts. As described in the section above on Iron and Steel, from 1990-2018 part of the diesel consumption from this category is allocated to diesel consumption of 1A2a Iron and Steel.

Even though activity for Non-ferrous metals has been reported as 'NO' for 2013 and 2014, operation of the installations continued during those years with the use of other energy sources, i.e. electricity from the main supply.

Chemicals (1A2c)

According to the energy balance, gas-diesel oil, LPG, RFO, biodiesel and solid biomass are consumed by chemical industries (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO₂, CH₄ and N₂O emissions from all fuels were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100 kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for gas-diesel oil, 63100 kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG and 77400 kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for RFO. Consumption of solid biomass is reported for the first time in 2014. The CO₂, CH₄ and N₂O emissions from solid biomass were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.19); i.e. 100000 kg CO₂/TJ, 30 kg CH₄/TJ and 4 kg N₂O/TJ. For 2013, the emissions are reported as "NO". There was some potential consumption of liquid fuels by chemical industries, but due to the number formats and the rounding of the values in the energy balance the consumption appears as 0. Biodiesel consumption was reported for the first time in 2020 for this category. Biofuels in Cyprus are 100% FAME. Emissions from the fossil part of the fuel have been calculated as follows: The default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Pulp, Paper and Print (1A2d)

Fuel consumption for this category was reported for the first time in the 2014 energy balance. However, the activity did take place in previous years. Therefore, assumptions have been made to estimate the fuel consumption of the category (see previous Section) for the complete period. Consumption of RFO was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO₂, CH₄ and N₂O emissions from RFO were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 77400 kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ. According to the energy balance LPG and Diesel were also consumed by pulp, paper and print for the first time in 2017. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO₂, CH₄ and N₂O emissions from all fuels were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100 kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for gas-diesel oil, 63100 kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG. Biodiesel consumption was reported for the first time in 2020 for this category. Biofuels in Cyprus are 100% FAME. Emissions from the fossil part of the fuel have been calculated as follows: The default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Food processing, beverages and tobacco (1A2e)

According to the energy balance, the fuels consumed by food processing, beverages and tobacco industries are LPG, gas-diesel, RFO and other kerosene (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 63100 kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG, 74100 kg CO₂/TJ, 3 kg CH₄/TJ, 0.6 kg N₂O/TJ for Gas-Diesel oil, 77400 kg CO₂/TJ, 3 kg CH₄/TJ, 0.6 kg N₂O/TJ for RFO and 71900 kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for other kerosene. Consumption of solid biomass was reported for the first time in 2014. The CO₂, CH₄ and N₂O emissions from solid biomass were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.19); i.e. 100000 kg CO₂/TJ, 30 kg CH₄/TJ and 4 kg N₂O/TJ. Consumption of gas biomass was reported for the first time in 2009. The CO₂, CH₄ and N₂O emissions from gas biomass were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.19) assuming another biogas; i.e. 54600 kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic

Non-metallic minerals (1A2f)

According to the energy balance, the non-metallic minerals industries consume LPG, gas-diesel oil, RFO, other kerosene, pet-coke, other bituminous coal, solid biomass, biodiesel and municipal and industrial waste (non-renewable), as well as biomass fraction of waste (renewable) (Table 3.10). RFO consumption for 1990–2004 has been revised due to the addition of Pulp, Paper and Print industries.

All liquid fuel consumption (LPG, gas-diesel oil, RFO, other kerosene and pet-coke) was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). Pet-coke is consumed only by two cement producing installations during 1990-2011, which merged into one in 2011. These installations have been submitting annual emissions' report according to the requirements of the ETS law 110(I)/2011, since 2005. The CO₂ emissions from pet-coke for the period 2005- 2023 were used as reported for the ETS. CO₂ emissions for the period 1990–2004 were estimated using the IEF of 2005, resulting from the division of CO₂ emissions by the TJ fuel consumed (84.51 t CO₂/TJ). CH₄ and N₂O emissions for fuels were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for gas-diesel oil, RFO and pet-coke and 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG. Most liquid fuel consumption was accounted for by petroleum coke, whose default CO₂ EF of 97.5 t CO₂/TJ in the 2006 IPCC Guidelines (vol. 2, chap. 2) and this explains the high CO₂ IEF (FCCC/ARR/2020/CYP/E.8).

Other bituminous coal was consumed during the period 1990-2011 by only one cement-producing

installation, which has been submitting annual emissions' report according to the requirements of the ETS law 110(I)/2011, since 2005. The new installation (after 2011) consumed other bituminous coal in 2014 and 2015. Fuel consumption for the period 2005-2015 was obtained in TJ from the annual ETS reports. Fuel consumption for the period 1990–2004 was converted to TJ with the NCV of the first ETS report submitted (i.e. 2005), which was 29.824 TJ/kt. The CO₂ emissions from other bituminous coal for the period 2005-2013 were used as reported for the ETS. CO₂ emissions for the period 1990–2004 were estimated using the IEF of 2005, resulting from the division of CO₂ emissions by the TJ fuel consumed (92.60 t CO₂/TJ). CH₄ and N₂O emissions for other bituminous coal were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 10 kg CH₄/TJ and 1.5 kg N₂O/TJ.

Biomass consumption data (solid biomass, biomass fraction municipal waste) was available in TJ. Solid biomass is consumed by only one cement-producing installation, which has been submitting an annual emissions report since 2005, in accordance with the requirements of the ETS law 110(I)2011. In the renewable waste category we report the biomass fraction of biomass incinerated; sewage sludge, woodchips, tires, ASF, MBM, compost and PU Foam. As an update to previous submissions, the CO₂ emissions from biomass for the period 2005-2023 were used as reported for the ETS. The CO₂ emissions for 2001–2004 were estimated using the implied emission factors derived from the CO₂ emissions from the annual report of the company for 2005 (earliest available) in compliance with the ETS law, and the consumption from the national statistics agency: 105 t CO2/TJ biomass fraction waste. There were no emissions in this category prior to 2000. The consumption was used from the national statistics agency to be consistent across the timeseries. This method and the EF are considered as country specific method, since it does not follow the methodologies proposed by the IPCC guidelines. CH₄ and N₂O emissions for solid biomass were estimated using the default emission factors proposed by the IPCC 2006 guidelines for "other primary solid biomass" (volume 2, pg. 2.19); i.e. 100000 kg CO₂/TJ, 30 kg CH₄/TJ and 4 kg N₂O/TJ.

Non-renewable waste (industrial waste, non-renewable municipal waste) consumption data was available in TJ. Non-renewable waste is consumed by only one cement-producing installation, which has been submitting an annual emissions report since 2005, in accordance with the requirements of the ETS law 110(I)2011. In the non-renewable waste category we report the non-biomass fraction of biomass incinerated; sewage sludge, woodchips, tires, ASF, MBM, compost and PU Foam. The waste is incinerated for production of thermal energy in the furnace which burns the raw material to produce the cement. This is the first submission where CO₂ for non-renewable waste from the period 2005-2023 were used as reported for the ETS. The CO₂ emissions for 2001–2004 were estimated using the implied emission factors derived from the CO₂ emissions from the annual report of the company for 2005 (earliest available) in compliance with the ETS law and the consumption from the national statistics agency: 82 t CO2/TJ non-renewable waste. There were no emissions in this category prior to 2001. The consumption was used from the national statistics agency in order to be consistent across the timeseries. This method and the EF are considered as country specific method, since it does not follow the methodologies proposed by the IPCC guidelines.

The CH_4 and N_2O emissions for non-renewable waste, both industrial and municipal, were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.19); i.e. 30 kg CH_4/TJ and 4 kg N_2O/TJ .

Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME , as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. $3.9~kg~CH_4/TJ$ and $3.9~kg~N_2O/TJ$ for both fossil and biogenic parts.

Transport Equipment (1A2g)

According to the energy balance, transport equipment consume diesel (Table 3.10). Fuel consumption in the energy balance was reported for the first time in 2017 and has been desegregated for the 2020 submission. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11.). CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ.

Machinery (1A2h)

According to the energy balance, machinery consume diesel, LPG and RFO (Table 3.10). Fuel consumption in the energy balance was reported for the first time in 2017 and was desegregated for the 2020 submission. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11.). CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for diesel oil, 63100kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG and 77400kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Mining (excluding fuels) and Quarrying (1A2i)

According to the energy balance, mining and quarrying industries consume diesel. RFO and for the first time in 2021 other Kerosene. (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11.). CO_2 , CH_4 and N_2O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO_2/TJ , 3 kg CH_4/TJ and 0.6 kg N_2O/TJ for gas – diesel oil, 77400 kg CO_2/TJ , 3 kg CH_4/TJ and 0.6 kg N_2O/TJ for RFO and 71900 kg CO_2/TJ , 3 kg CH_4/TJ and 0.6 kg N_2O/TJ for Other Kerosene. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME , as well as 5,4% of carbon content fossil part. The CH_4 and N_2O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.8 kg CH_4/TJ and 5.7 kg N_2O/TJ for both fossil and biogenic parts.

Wood and wood products (1A2j)

Fuel consumption for this category was reported for the first time in 2017 in the energy balance. Wood and wood products consume diesel oil and LPG and biodiesel. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11.). CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ for diesel oil and 63100kg CO₂/TJ, 1 kg CH₄/TJ and 0.1 kg N₂O/TJ for LPG. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Construction (1A2k)

According to the energy balance, construction industries consume only diesel (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). CO_2 , CH_4 and N_2O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO_2 /TJ, 3 kg CH_4 /TJ and 0.6 kg N_2O /TJ for gas – diesel oil.

Textile and Leather (1A21)

According to the energy balance, Textile and Leather industries consume biodiesel and diesel oil: Diesel oil was reported for the first time in 2017. (Table 3.10). Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100kg CO₂/TJ, 3 kg CH₄/TJ and 0.6 kg N₂O/TJ. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Non-specified Industry (1A2m)

According to the energy balance, the fuels consumed by Non-specified industries are gas-diesel oil, RFO, other oil products and white spirit and biodiesel (Table 3.10). Other kerosene has been consumed in 2014, 2017 and 2018 by the gas exploration platforms. RFO consumption for 1990-2014 has been revised due to the addition of Pulp, Paper and Print industries. Gas-diesel oil consumption for 2017 has been revised due to the addition of Transport Equipment, Machinery, Wood and wood products, and Textile and leather industries. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.11). The CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.18); i.e. 74100 kg CO₂/TJ for Gas-Diesel oil, 77400 kg CO₂/TJ for RFO, 71900 kg CO₂/TJ for other kerosene, 73300 kg CO₂/TJ for white spirit and other oil products. The emission factors for CH₄ and N₂O are 3 kg CH₄/TJ, 0.6 kg N₂O/TJ for all fuels. Biodiesel consumption was reported for the first time in 2020: Default total carbon content has been used 76.5% kgC/kgFAME , as well as 5.4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.8 kg CH₄/TJ and 5.7 kg N₂O/TJ for both fossil and biogenic parts.

Table 3.11. Parameters used for the estimation of emissions

	NCV (TJ/kt)	IEF (tCO ₂ /TJ)*
Gas-diesel oil	43.0	
RFO	40.4	
Other oil products	40.2	
White spirit	40.2	
Pet-coke	32.5	84.505
LPG	47.3	
Other kerosene	43.8	
Other bituminous coal	25.8	92.600
Biodiesel	37.0	

^{*} based on the ETS 2005 report; used for the years 1990-2004

3.2.4.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.2.4.4. Category-specific QA/QC and verification

Fuel consumption data for 1A2f is compared between data from the Department of Labour Inspection, the ETS and the Statistical Service.

3.2.4.5. Category-specific recalculations

Recalculations have been carried out for various subcategories in 1A2. These impacts are presented in the Table 3.12.

Diesel for 1990-2018 in 1A2a and 1A2b was recalculated to first correct the allocation of consumption between the two categories in the inventory file, and then update the calculation by including the more recent years of data in the average (described in full detail in the methodologies for the respective subcategories). In addition, RFO (1A2b) was recalculated for 2022 to reflect the addition of these fuels to the 2022 energy balance, as it was not included in the 2024 NIR. Non-renewable and renewable waste (1A2f) were both recalculated for 2000-2022 due to an update in methodology (described in full detail in the 1A2f methodology for these fuels).

LPG was recalculated for 2022 in 1A2g, 2022 in 1A2i, and 2021-2022 in 1A2l, to reflect the addition of these fuels to the 2022 energy balance, as they were not included in the 2024 NIR.

Table 3.12. Impact of recalculations on CO_2 eq. emissions for 1A2 Manufacturing industries and construction (1990-2022)

a. 1A2a, 1A2b, 1A2f

Gg CO ₂	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
eq.	1990	1991	1992	1993	1994	1995	1990	1997	1990	1999	2000
1A2a											
NIR 2025	0.562	0.643	0.723	0.803	0.803	0.884	0.884	0.964	1.044	1.044	1.044
NIR 2024	0.013	0.015	0.018	0.019	0.019	0.021	0.022	0.023	0.024	0.025	0.026
Change(%)	4138%	4255%	3946%	4231%	4108%	4166%	3954%	4113%	4186%	4070%	3939%
1A2b											
NIR 2025	4.39	4.63	5.20	5.21	5.16	5.45	5.45	5.75	5.88	5.82	6.04
NIR 2024	3.27	3.33	3.79	3.60	3.56	3.69	3.73	3.83	3.79	3.76	4.01
Change(%)	34.3%	39.0%	37.1%	45.0%	44.7%	47.9%	46.1%	49.9%	55.2%	54.9%	50.6%
1A2f											
NIR 2025	-	-	-	-	-	-	-	-	-	-	-
NIR 2024	-	-	-	-	-	-	-	-	-	-	-
Change(%)	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
1A2a											
NIR 2025	1.124	1.044	1.044	0.964	0.884	0.884	0.803	0.723	0.723	0.562	0.643
NIR 2024	0.026	0.025	0.026	0.023	0.083	0.085	0.071	0.064	0.064	0.050	0.057
Change(%)	4204%	4070%	3960%	4064%	959%	937%	1031%	1031%	1031%	1031%	1031%
1A2b											
NIR 2025	6.28	6.10	6.32	5.97	5.56	5.62	5.38	2.15	5.14	4.66	4.90
NIR 2024	4.03	4.04	4.29	4.07	6.43	6.56	5.96	2.68	5.66	5.07	5.37
Change(%)	56.1%	51.1%	47.5%	46.8%	-13.4%	-14.3%	-9.73%	-19.50%	-9.22%	-8.01%	-8.65%
1A2f											
NIR 2025	553.8	569.2	571.2	613.3	717.7	702.3	681.5	692.7	608.7	525.5	395.0
NIR 2024	554.8	569.0	571.7	617.6	726.1	706.4	712.7	720.0	643.4	554.8	389.8
Change(%)	-0.18%	0.03%	-0.10%	-0.69%	-1.16%	-0.58%	-4.38%	-3.79%	-5.39%	-5.28%	1.32%
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1A2a											
NIR 2025	0.803	0.000	0.000	0.000	0.803	0.120	0.104	0.010	0.022	0.000	0.019
NIR 2024	0.075	0.000	0.000	0.000	0.075	0.011	0.010	0.010	0.022	0.000	0.019
Change(%)	977%				977%	977%	977%	0.00%	0.00%	#DIV/0!	0.00%
1A2b											
NIR 2025	5.38	0.00	0.00	2.99	5.38	2.06	2.09	2.15	3.30	2.75	2.22
NIR 2024	6.11	0.00	0.00	2.99	6.11	2.17	2.18	2.15	3.30	2.75	2.19
Change(%)	-11.93%			0.00%	-11.93%	-5.04%	-4.34%	0.00%	0.00%	0.00%	1.14%
1A2f											
NIR 2025	334.2	442.8	560.5	483.1	480.6	475.0	415.7	408.1	426.7	416.7	400.6
NIR 2024	334.1	442.6	576.4	492.9	482.4	476.0	422.5	418.6	439.4	430.2	415.2
Change(%)	0.03%	0.05%	-2.76%	-1.99%	-0.37%	-0.21%	-1.61%	-2.49%	-2.91%	-3.14%	-3.53%

b. 1A2g, 1A2i, 1A2l

Gg CO ₂	2021	2022
eq.	2021	2022
1A2g		
NIR 2025	-	0.296
NIR 2024	-	0.185
Change(%)	-	59.6%
1A2i		
NIR 2025	-	26.83
NIR 2024	-	26.49
Change(%)	-	1.28%
1A21		
NIR 2025	0.03	0.03
NIR 2024	0.03	0.02
Change(%)	9.34%	31.15%

3.2.4.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

3.2.5. Transport (1A3)

3.2.5.1. Category description

The activity category of transport should include emissions from the combustion and evaporation of fuel for all transport activity (excluding military transport), regardless of the sector, specified by subcategories below. Emissions from fuel sold to any air or marine vessel engaged in international transport (1A3ai and 1A3di) should, as far as possible, be excluded from the totals and subtotals in this category and should be reported separately.

Mobile sources produce direct greenhouse gas emissions of carbon dioxide (CO_2) , methane (CH_4) and nitrous oxide (N_2O) from the combustion of various fuel types, as well as several other pollutants such as carbon monoxide (CO), Non-methane Volatile Organic Compounds (NMVOCs), sulphur dioxide (SO_2) , particulate matter (PM) and oxides of nitrate (NO_x) , which cause or contribute to local or regional air pollution. Greenhouse gas emissions from mobile combustion are most easily estimated by major transport activity, i.e., road, off-road, air, railways, and water-borne navigation. For Cyprus' inventory, emissions of off-road activities are included in road. Railways do not exist in Cyprus.

This is the fifth year for which emissions are estimated from road transport with COPERT 5 and are therefore disaggregated into the appropriate vehicle type. Further details are given in the methodology section.

Between 1990 and 2023 emissions from transport increased by 74.6%. There was a notable decrease in emissions in 2020 due to the restrictions to movement during the COVID-19 pandemic (Table 3.13). In 2023 transport contributed 24.4% to the total emissions of the country without LULUCF and 34.5% to the emissions from the energy sector. Transport (1A3) emissions are also presented in Figure 3.5.

Table 3.13. Transport emissions 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
3. Transport	1238	1822	2113	2375	2304	2129	1916	1849	1911
a.Domestic aviation	26.2	17.9	12.3	7.83	2.50	1.85	1.41	1.06	1.19
b.Road transportation	1209	1802	2099	2364	2299	2125	1913	1846	1908
c. Railways	NO								
d.Domestic navigation	2.23	1.72	2.36	3.06	2.87	2.02	1.53	1.81	2.05
CO_2	1219	1798	2092	2359	2289	2115	1903	1836	1899
CH ₄	0.28	0.23	0.23	0.19	0.17	0.17	0.14	0.14	0.13
N_2O	0.04	0.07	0.06	0.04	0.04	0.04	0.03	0.03	0.03
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023	
3. Transport	2030	2094	2105	2132	1910	1937	1993	2161	
a.Domestic aviation	0.78	1.24	0.88	0.36	0.52	1.28	1.15	1.07	
b.Road transportation	2027	2090	2102	2129	1908	1933	1988	2154	
c. Railways	NO								
d.Domestic navigation	1.53	2.09	2.18	2.84	1.17	2.68	4.52	5.91	
-									
CO_2	2017	2080	2092	2118	1896	1924	1980	2146	
CH ₄	0.13	0.13	0.12	0.12	0.10	0.10	0.10	0.09	
N ₂ O	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	

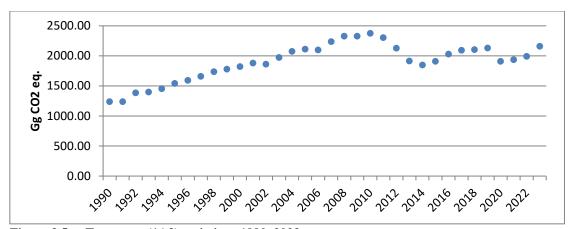


Figure 3.5. Transport (1A3) emissions 1990–2023

3.2.5.2. Methodological issues

Civil aviation (1A3a)

Civil aviation emissions should include emissions from international and domestic civil aviation, including take-offs and landings. Civil aviation comprises civil commercial use of airplanes, including scheduled and charter traffic for passengers and freight, air taxiing, and general aviation. This is the first year that CO2 emissions from civil aviation were estimated using a Tier 3 method, in line with recommendation FCCC/ARR/2023/CYP (E.8) to move to a higher tier. Although CO₂ emissions from civil aviation make a very small contribution to total emissions, they are a key category in the emissions trend. However, the implementation of the Tier 3 methodology had only a very small impact on the emissions, ranging from -0.10% to -0.16%. The Tier 1 methodology for 1990-2004 was thus not adjusted. As CH₄ and N₂O emissions from civil aviation were not a key category, they are estimated with Tier 1 methodology across the timeseries. The default EF proposed by the IPCC 2006 guidelines used are 44.1 TJ/kt, 71.5 t CO₂/TJ, 0.5 kg CH₄/TJ and 2 kg N₂O/TJ.

Information on fuel consumption for domestic flights is not available from national statistics. To estimate the emissions from available information on fuel consumption from EUROCONTROL was used (Table 3.14) for 2005-2023. This is the first year that consumption from the EUROCONTROL undetermined category has been included with the domestic consumption, based on a conversation with EUROCONTROL and national experts from other member states in a European Environment Agency webinar.

Table 3.14. International and domestic flights' fuel consumptions, EUROCONTROL data (2005-2023)

Fuel consumption (kt)	2005	2006	2007	2008	2009	2010	2011	2012
Domestic	3.863	3.289	2.937	2.839	2.321	2.467	0.787	0.583
International	263.3	265.2	261.2	269.8	255.2	260.2	269.7	260.4
	2013	2014	2015	2016	2017	2018	2019	2020
Domestic	0.445	0.333	0.374	0.246	0.391	0.279	0.114	0.163
International	243.5	244.0	238.1	278.1	316.5	326.9	319.9	101.0
	2021	2022	2023					
Domestic	0.403	0.361	0.338					
International	175.1	250.4	302.3					

The share of domestic flights to the total fuel consumption is presented in Table 3.15. It can be noticed that there is a decreasing trend in the share of domestic flights to the total fuel consumption. The trend for these years can be represented by the equation $y=9E-05x^2-0.0026x+0.018$. This equation was used to estimate the share of domestic flights to the total for the years 1990-2004 (Table 3.16), the period for which data is not available for domestic flights. The fuel consumption of domestic flights was estimated

by multiplying the share of domestic flights by the total fuel consumption reported under all international flights by the Statistical Service for 1990–2004. The international flights consumption for 1990–2004 was revised by subtracting the estimated fuel consumption for domestic flights. The resulting fuel consumption for domestic and international flights for the years 1990–2004 is presented in Table 3.15. Fuel consumption obtained from the Statistical Service is in kt, and converted to TJ using the default NCV proposed by the 2006 IPCC Guidelines, i.e. 44.1 TJ/Gg (Table 1.2, pg.1.18, vol.2).

It was not possible to use LTOs data for the backcasting of the trend of the domestic/international aviation split, since there was no correlation between the available data and the LTOs (Figure 3.6).

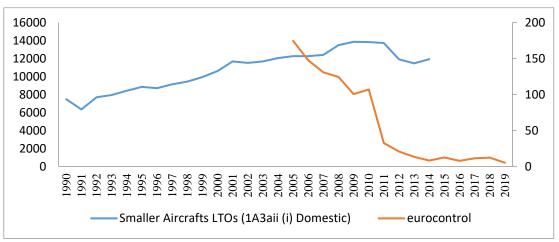


Figure 3.6. Smaller aircrafts LTOs and EUROCONTROL data for domestic flights

Table 3.15. Share of domestic flights to the total fuel consumption, EUROCONTROL data (2005-2023)

2023)								
	2005	2006	2007	2008	2009	2010	2011	2012
Share of domestic to total	1.45%	1.22%	1.11%	1.04%	0.90%	0.94%	0.29%	0.22%
	2013	2014	2015	2016	2017	2018	2019	2020
Share of domestic to total	0.18%	0.14%	0.16%	0.09%	0.12%	0.09%	0.04%	0.16%
	2021	2022	2023					
Share of domestic to total	0.23%	0.14%	0.11%					

Table 3.16. Share of domestic flights to the total fuel consumption, consumption for domestic and international flights (1990–2004)

international inglies (2		,						
	1990	1991	1992	1993	1994	1995	1996	1997
Share of domestic to total	3.50%	3.36%	3.22%	3.08%	2.94%	2.80%	2.66%	2.52%
Domestic consumption (TJ)	364	415	386	314	307	321	292	272
International consumption (TJ)	10043	11933	11609	9873	10144	11145	10689	10532
TOTAL (TJ)	10408	12348	11995	10187	10452	11466	10981	10805
	1998	1999	2000	2001	2002	2003	2004	
Share of domestic to total	2.38%	2.24%	2.10%	1.96%	1.82%	1.68%	1.54%	
Domestic consumption (TJ)	271	261	248	271	242	239	200	
International consumption (TJ)	11107	11382	11571	13576	13076	14005	12809	
TOTAL (TJ)	11378	11642	11819	13847	13318	14244	13010	

Road transport (1A3b)

Road transport emissions should include all combustion and evaporative emissions arising from fuel use in road vehicles, including the use of agricultural vehicles on paved roads. GHG emissions from road transport were estimated using the COPERT 5.8 software. COPERT 5.8 is a MS Windows software program. In principle, COPERT 5.8 has been developed for use by the National Experts in order to

estimate emissions from road transport which will be included in official annual national inventories. The use of a software tool to calculate road transport emissions allows for a transparent and standardized, hence consistent and comparable data collecting and emissions reporting procedure, in accordance with the requirements of international conventions and protocols and EU legislation.

The COPERT 5.8 methodology is part of the EMEP/CORINAIR Emission Inventory Guidebook 2016²⁷. The Guidebook, developed by the UNECE Task Force on Emissions Inventories and Projections, is intended to support reporting under the UNECE Convention on Long-Range Transboundary Air Pollution and the EU directive on national emission ceilings.

COPERT 5.8 estimates emissions of all major air pollutants and GHG produced by different vehicle categories (passenger cars, light duty vehicles, heavy duty vehicles, mopeds and motorcycles). Emissions estimated are distinguished in three sources:

- Emissions produced during thermally stabilized engine operation (hot emissions),
- emissions occurring during engine start from ambient temperature (cold-start and warming-up effects) and
- NMVOC emissions due to fuel evaporation.

Non-exhaust particulate emissions from tyre and brake wear are also included. The total emissions are calculated as a product of activity data provided by the user and speed-dependent emission factors calculated by the software.

In addition, the fuel consumed in this sector is taken into consideration. The COPERT 5.8 run estimates the fuel consumption (diesel and gasoline). These values are then compared to statistical fuel sold and the annual mileage values are corrected on the basis of the differences between calculated and statistical fuel consumption. A new COPERT run is performed with the adjusted data and all emissions are calculated.

COPERT 5.8 has been used for the calculations of the whole timeseries (1990 – 2023). The total number of road vehicles by type for the period 1990-2023 is shown in Table 3.17 and the corresponding trend is shown in Figure 3.7. Fuel consumption data was obtained from the energy balance prepared by the Statistical Service and is presented in Table 3.18. The calorific value used to convert mass to energy unit are according to the national energy balance; i.e. Diesel 43.0 TJ/kt, Gasoline 44.3 TJ/kt and Biodiesel 37.0 TJ/kt.

For the estimation of N2O emissions from diesel consumption by light duty vehicles, there is a fault in the COPERT 5.8 output files and the emissions are missing for 1990-1994. When the fault will be fixed, the emissions will be recalculated normally with the software (FCCC/ARR/2023/CYP (E.2)).

The emissions from vehicles consuming LPG and Biodiesel have not been calculated using COPERT 5.8. They have been calculated with a Tier 1 method due to the lack of activity data regarding the fleet. Fuel consumption obtained from the Statistical Service is in kt, and converted to TJ using the default NCV proposed by the 2006 IPCC Guidelines, i.e. 47.3 TJ/Gg (Table 1.2, pg.1.18, vol.2). For the estimation of emissions, the default EF proposed by the IPCC 2006 guidelines are used; 63100 kg CO₂/TJ, 62 kg CH₄/TJ and 0.2 kg N₂O/TJ (IPCC 2006, page 3.21, vol.2).

Biofuels have been first introduced to the national energy mix in late 2007. Biofuel is mixed with diesel to a contribution ranging from 3-6.5%. During the first years (2007-2012), biofuels were solely from oil seeds. Since 2013 however, biodiesel used in Cyprus has an increasing contribution of used cooking oils (8.5% in 2013, 61.3% in 2014, 63.2% in 2015 and 97.1% in 2016). 28 According to the certificates of sustainability criteria which accompanied imported biofuels, all biofuels consumed in Cyprus were from biomass. The raw material used was cooking oil or oil crops.

The emissions from vehicles consuming Biofuels have not been calculated using COPERT 5.8. They have been calculated with a Tier 1 method. After the TERT recommendation, REVIEW 2020 (EU) (CY-1A3-2020-0001), emissions from the fossil part of the fuel have been calculated after Ioannis Sempos

²⁷ EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016 – September 2016, EEA Technical Report No. 21/2016

²⁸ Christina Karapitta, Energy Officer A', Energy Service, Ministry of Energy, Commerce and Industry (tel. 22409388, ckarapitta@mcit.gov.cy)

note. Biofuels in Cyprus are 100% FAME. The default total carbon content has been used 76.5% kgC/kgFAME, as well as 5,4% of carbon content fossil part. The CH₄ and N_2O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N_2O /TJ for both fossil and biogenic parts.

Table 3.17. Number of vehicles by type

	1990	2000	2005	2010	2015	2020	2021	2022	2023
Buses	2308	2949	3217	3403	2712	2646	2770	2899	3099
Heavy Duty Trucks	9633	11174	13605	16265	13142	13372	11473	11715	12165
Mopeds & Motorcycles	50953	43315	40381	40272	39282	41676	41189	40938	43253
Light Commercial Vehicles	64644	103436	104711	104437	90673	104576	104119	106858	119917
Passenger Cars	178602	267589	342146	462562	487692	575907	595771	601131	614805

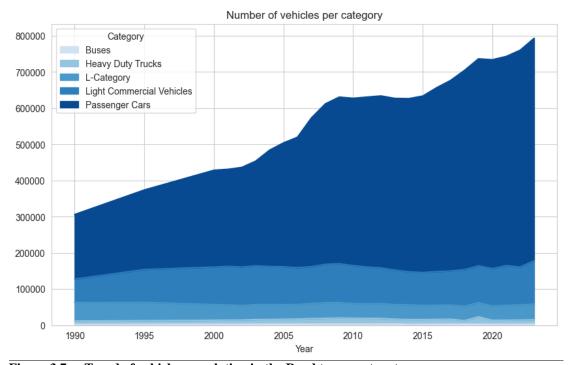


Figure 3.7. Trend of vehicles population in the Road transport sector

Table 3.18. Fuel consumed by road transport (kt) during 1990-2023

kt	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Gasoline	210	202	246	255	261	285	298	314	334	340
Diesel	163	170	172	169	180	183	186	191	195	203
Biodiesel	0	0	0	0	0	0	0	0	0	0
LPG	0	0	0	0	0	0	0	0	0	0

kt	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Gasoline	350	355	341	351	354	346	323	338	344	336
Diesel	206	219	228	252	282	303	323	352	373	383
Biodiesel	0	0	0	0	0	0	0	1	16	17
LPG	0	0	0	0	0	0	0	0	0	0

kt	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Gasoline	344	328	287	246	233	250	277	300	313	325
Diesel	390	385	372	349	341	345	353	350	341	336
Biodiesel	17	18	18	17	11	11	10	10	10	12
LPG	0	0	0	0	0	0	0	0	0.4	0.5

kt	2020	2021	2022	2023			
Gasoline	307	328	314	318			
Diesel	285	305	310	290			
Biodiesel	27	28	26	24			
LPG	0.4	0.5	0.5	0.4			

After the TERT recommendation (CY-1A3b-2021-0002), emissions from lubricants combusted in two-stroke engines have been calculated with COPERT 5.8 and are reported separately for the first year in accordance with the IPCC 2006 Guidelines. The emissions are presented in table 3.19.

Table 3.19. CO₂ emissions from lubricant use in two-stroke engines (kt) during 1990-2023

kt	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Lubricants	0.648	0.640	0.641	0.612	0.638	0.629	0.608	0.591	0.570	0.563	0.550
kt	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Lubricants	0.568	0.523	0.566	0.549	0.527	0.498	0.605	0.590	0.548	0.502	0.459
kt	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Lubricants	0.442	0.381	0.361	0.355	0.310	0.303	0.283	0.262	0.198	0.209	0.210
kt	2023										
Lubricants	0.248										

Domestic water-borne navigation (1A3d(ii))

Domestic water-borne navigation emissions should include emissions from fuels used by vessels of all flags that depart and arrive in the same country (excluding fishing, which should be reported under 1A4ciii, and military, which should be reported under 1A5b).

Estimation of emission from domestic water-borne navigation activities has been made possible due to data obtained from the Statistical Service on fuel consumption for the years 1998-2015 (Table 3.20). The consumption for remaining years has been estimated assuming the following: (a) for the years 1990-1997, the fuel consumption was estimated assuming that the contribution of domestic water-borne navigation activities to road transport remained the same as 1998 (0.33%). Indeed, in the energy balance, for 1990-1997, only one value was available for total transport and it was the same as the road transport one. There was no breakdown to domestic navigation or other subcategories. Note that international navigation was reported separately and was excluded from the total transport consumption.(FCCC/ARR/2023/CYP(E.3)). (b) for 2017 and 2018, activity data has been obtained from the Statistical Service. 2017 activity data has been revised.

Calorific values and emission factors of road diesel for the estimation of emissions from domestic waterborne navigation are according to IPCC 2006: NCV 43 TJ/kt (volume 2, pg. 1.18), 74100 kg CO₂/TJ (volume 2, pg. 3.50), 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ (assumed same as road - default, volume 2, pg. 3.21). Biodiesel consumption was reported for the first time in 2020:Default total carbon content has been used 76.5% kgC/kgFAME , as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Table 3.20. Fuel consumption by domestic water-borne navigation activities 1990-2023

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Diesel (kt)	0.69	0.66	0.81	0.84	0.86	0.94	0.98	1.03	1.10	1.24
Biodiesel(kt)	NO									

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Diesel (kt)	0.53	0.43	0.56	0.43	0.60	0.73	0.56	0.63	0.76	1.49
Biodiesel(kt)	NO									

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Diesel (kt)	0.95	0.89	0.63	0.47	0.56	0.63	0.47	0.65	0.67	0.88
Biodiesel(kt)	NO									

	2020	2021	2022	2023			
Diesel (kt)	0.36	0.83	1.39	1.82			
Biodiesel(kt)	0.03	0.07	0.13	0.12			

3.2.5.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.2.5.4. Category-specific QA/QC and verification

As described above, fuel consumption from EUROCONTROL and national statistics service is compared.

3.2.5.5. Category-specific recalculations

Recalculations have been performed for 1A3d ii Domestic aviation for the years 2005-2022 due to the update in Tier methodology, and a revision to the methodology for fuel consumption during these years. The impact of these recalculations is presented in Table 3.21 below.

Recalculations have also been performed for 1A3b Road Transport for the whole time-series due to revised data from the department of Road Transport. The impact of the recalculations is presented in Table 3.22 below.

Table 3.21. Impact of recalculations on CO₂ eq. emissions for Domestic Aviation 1990-2022

Gg CO ₂ eq.	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
NIR 2025	12.261	10.439	9.323	9.009	7.367	7.831	2.499	1.849	1.413	1.057
NIR 2024	12.576	10.623	9.427	8.970	7.252	7.716	2.348	1.495	0.968	0.606
Change (%)	-2.51%	-1.73%	-1.11%	0.44%	1.59%	1.49%	6.43%	23.65%	46.02%	74.53%
	2015	2016	2017	2018	2019	2020	2021	2022		
NIR 2025	1.187	0.781	1.240	0.884	0.362	0.518	1.278	1.146		
NIR 2024	0.910	0.567	0.827	0.895	0.377	0.096	0.356	1.249		
Change (%)	30.43%	37.70%	49.94%	-1.21%	-4.16%	441%	259%	-8.21%		

Table 3.22. Impact of recalculations on CO₂ eq. emissions for Road Transport 1990-2022

CO2 eq. (kt)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
NIR 2025	1,209	1,207	1,355	1,374	1,430	1,517	1,569	1,636	1,713	1,758
NIR 2024	1211	1209	1359	1380	1438	1527	1581	1650	1728	1776
Difference (%)	0.15%	0.20%	0.26%	0.40%	0.55%	0.65%	0.77%	0.83%	0.88%	1.01%
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
NIR 2025	1,802	1,860	1,844	1,954	2,058	2,099	2,088	2,226	2,316	2,317
NIR 2024	1820	1881	1866	1978	2059	2100	2089	2226	2313	2316
Difference (%)	0.97%	1.11%	1.17%	1.21%	0.05%	0.06%	0.04%	0.00%	0.11%	0.03%
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NIR 2025	2,364	2,299	2,125	1,913	1,846	1,908	2,027	2,090	2,102	2,129
NIR 2024	2364	2299	2126	1916	1851	1918	2031	2097	2108	2134
Difference (%)	0.00%	0.01%	0.03%	0.16%	0.28%	0.51%	0.18%	0.32%	0.27%	0.23%
	2020	2021	2022							
NIR 2025	1,908	1,933	1,988							
NIR 2024	1908	2041	2126							
Difference (%)	0.00%	5.30%	6.51%							

3.2.5.6. Category-specific planned improvements

Please refer to <u>Annex 7</u> for the National Inventory Improvement Plan.

3.2.6. Other sectors (1A4)

3.2.6.1. Category description

Other sectors source category (1A4) should include emissions from combustion activities in the sectors Commercial/Institutional (1A4a), Residential (1A4b) and Agriculture/Forestry/Fishing/Fish farms (1A4c), including combustion for the generation of electricity and heat for own use in these sectors. Thermal needs in these sectors are covered mainly by liquid fossil fuels, while the contribution of biomass (fuel wood), especially in the residential sector, is also significant (mainly in mountainous areas).

Due to the unavailability of consumption data for several years and sectors, using the fuel consumption data as published by the Statistical Service would create issues of consistency and comparability. Therefore, it was decided to complete the period using assumptions.

GHG emissions from other sectors in 2023 increased by 5.17% compared to 1990 emissions (from 434 Gg CO₂ eq in 1990 to 457 Gg CO₂ eq in 2023). Table 3.23 presents the trend between 1990 and 2023. Other sectors contributed 5.14% to the total emissions of the country in 2023 without LULUCF and 7.29% to the emissions from the energy sector. The emissions from Other sources (1A4) are presented in Figure 3.8.

Table 3.23.	CHC	emissions	from	Other	sectors	1990-2023

Tubic 5:25: GIIG cillibbiolib I			10 1// 0						
Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
4. Other sectors	434	731	610	571	622	600	521	457	532
a. Commercial/ institutional	76	117	100	120	114	108	105	83	89
b. Residential	302	508	421	373	425	412	339	307	360
c. Agriculture/ forestry/ fishing	56	106	89	77	83	80	77	67	83
CO_2	430	725	605	563	613	591	513	450	522
CH ₄	0.10	0.14	0.15	0.22	0.25	0.27	0.25	0.21	0.32
N_2O	0.003	0.005	0.004	0.005	0.006	0.006	0.005	0.004	0.006
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023	
4. Other sectors	526	536	464	542	510	483	512	457	
a. Commercial/ institutional	83	93	91	120	88	96	105	106	
b. Residential	363	358	293	337	333	302	325	278	
c. Agriculture/ forestry/ fishing	80	85	79	85	89	85	82	73	
CO_2	515	523	452	530	497	471	499	446	
CH ₄	0.32	0.37	0.36	0.38	0.39	0.37	0.40	0.34	
N ₂ O	0.006	0.007	0.006	0.007	0.007	0.006	0.007	0.006	

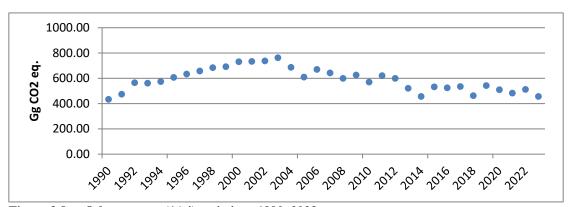


Figure 3.8. Other sectors (1A4) emissions 1990–2023

3.2.6.2. Methodological issues

As mentioned above, the unavailability of consumption data for several years and sectors mandated the

use of assumptions to ensure consistency across the period. The activity data used for the estimation of GHG emissions of other sectors is presented at the end of the section in Table 3.26.

Gas biomass consumed by agriculture includes all biogas consumption. Diesel consumption by agriculture was revised to exclude diesel consumed for fishing (in red). Fuel consumption for fishing is added. Moreover RFO consumption by Off-road Vehicles and Other Machinery (1A4c ii) consumption is included in road transport (1A3b). The consumption of biogas by autoproducers is accounted for under category 1.A.4.c.i, as all the production and consumption of biogas occurs at farms with anaerobic digesters.

The GHG emissions from "other sectors" were estimated according to the IPCC 2006 guidelines. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 3.24). The oxidation factor used is 1, as proposed by the IPCC 2006 guidelines (pg. 1.20). The CO_2 , CH_4 and N_2O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (IPCC 2006, pg. 2.20-2.22, oil) as presented in Table 3.24.

Table 3.24. Parameters used for the estimation of emissions from other sectors

Fuel	NCV (TJ/kt)	kg CO ₂ /TJ	kg CH4/TJ	kg N ₂ O /TJ
Diesel	43.0	74100	10	0.6
Other Kerosene	43.8	71900	10	0.6
LPG	47.3	63100	5	0.1
RFO	40.4	77400	10	0.6
Solid Biomass		100000	300	4
Charcoal	29.5	112000	200	1
Biodiesel	37.0		3.8	5.7
Gas biomass		54600	5	0.1

3.2.6.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.2.6.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

3.2.6.5. Category-specific recalculations

Recalculation was performed for Other Kerosene in the category 1A4a Commercial/Institutional from 2017-2022 due to a correction to the inventory files. There are also revisions to biomass in 1A4ci (2008-2022) for the same reason. The impact of these recalculations are shown below in Table 3.25.

Table 3.25. Impact of recalculations on CO₂ eq. emissions for 1A4a, b, and c, 2008-2022

Gg CO ₂ eq.	2008	2009	2010	2011	2012	2013	2014	2015
1A4								
NIR 2025	ı	ı	ı	ı	-	-	-	-
NIR 2024	ı	ı	ı	ı	-	-	-	-
Change (%)	ı	ı	ı	ı	-	-	-	i
1A4ci-Biomass								
NIR 2025	4.4	10.3	12.9	20.5	21.9	21.4	21.9	21.7
NIR 2024	4.3	10.0	12.7	20.3	21.6	21.2	21.7	21.4
Change (%)	2.56%	2.81%	1.18%	0.95%	1.06%	0.91%	0.63%	1.41%
	2016	2017	2018	2019	2020	2021	2022	
1A4	ı	105	5199	7021	7154	6407	6562	
NIR 2025	ı	113	5615	7582	7726	6919	7086	
NIR 2024	-	-7.40%	-7.40%	-7.40%	-7.40%	-7.40%	-7.40%	
Change (%)								

1A4ci-Biomass	22.6	23.3	24.6	25.8	26.2	25.8	24.8	
NIR 2025	22.3	23.0	24.2	25.4	25.8	25.7	23.5	
NIR 2024	1.30%	1.65%	1.60%	1.66%	1.63%	0.60%	5.66%	
Change (%)	22.6	23.3	24.6	25.8	26.2	25.8	24.8	

3.2.6.6. Category-specific planned improvements

Please refer to <u>Annex 7</u> for the National Inventory Improvement Plan.

Table 3.26. Fuel consumption for "Other sectors" for the period 1990-2023

Table 3.26. Fuel consumption	on for "O	tner seci	tors" for t	ne perio	u 1990-2	023												
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
1A4a Commercial /																		1
Institutional																		<u> </u>
Gas-diesel oil (kt)	11	12	15	15	16	17	18	19	20	21	22	22	21	21	19	18	19	18
RFO (kt)	2	5	5	4	5	4	5	3	3	3	3	2	2	3	3	1	2	2
LPG (kt)	12	12	13	12	12	12	12	13	12	12	13	13	13	14	13	13	13	13
Solid biofuels (TJ)	19	15	15	15	11	12	17	9	8	11	10	10	10	9	8	7	5	14
Biogas (TJ)																		
Charcoal (kt)	1	1	1	1	1	4	4	4	4	4	3	3	4	4	4	5	5	7
1A4b Residential																		
Other kerosene (kt)	12	12	17	16	17	17	18	20	21	20	24	24	31	31	24	16	16	16
Gas-diesel oil (kt)	52	58	71	73	75	82	86	90	96	99	102	103	99	102	92	83	98	89
LPG (kt)	32	32	36	33	32	33	33	34	32	32	34	34	35	38	36	34	35	36
Solid biofuels (TJ)	126	105	103	102	74	79	119	61	56	77	68	70	64	58	53	51	74	95
Charcoal (kt)	1	1	1	1	1	4	4	4	4	4	3	3	4	4	4	5	5	6
1A4c Agriculture /																		
Forestry / Fishing / Fish																		
farms																		
1A4c i Stationary																		
Gas-diesel oil (kt)	14	16	20	20	21	23	24	25	27	27	28	29	27	28	25	24	25	25
LPG (kt)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Biogas (TJ)																		15
1A4c iii Fishing																		
Gas-diesel oil (kt)	2	2	3	3	3	3	3	4	4	4	4	4	4	4	4	3	3	3

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1A4a Commercial /																
Institutional																
										18.18	16.33	16.41	11.63	13.79	15.26	16.00
Gas-diesel oil (kt)	20	19	23	20	16	17	13	13	15			1				
RFO (kt)	2	2	2	2	4	4	2	3	4	4.21	3.2	3.6	2.4	4.3	3.9	4.5
LPG (kt)	14	13	13	14	14	12	11	12	11	13.17	13.75	15.53	11.12	9.71	11.54	10.74
Other kerosene (kt)										0.03	1.64	2.21	2.59	2.02	2.07	2.01
Solid biofuels (TJ)	15	15	15	13	16	16	16	15	15	17	17	17	132	126	166	106
Biogas (TJ)		11	12	11	11	11	11	11	12	17	45	54	20	24	27	37
Charcoal (kt)	7	6	6	6	6	6	6	7	7	7.07	5.98	5.63	5.46	5.82	6.49	5.91
Biodiesel (kt)													0.11	0.17	0.15	0.13
1A4b Residential																
Other kerosene (kt)	14	19	14	16	17	12	9	14	14	14.25	9.30	12.56	12.79	11.46	11.74	8.05
Gas-diesel oil (kt)	78	83	70	80	76	62	57	65	65	65.04	53.44	60.44	59.7	49.49	54.59	45.31
LPG (kt)	34	36	34	38	37	33	31	34	35	32.47	28.45	32.15	31.31	33.46	35.18	33.60
Solid biofuels (TJ)	123	500	260	339	419	353	2491	551	531	691.3	709.2	769	644	610	634	538
Charcoal (kt)	6	5	5	6	6	6	6	7	8	8.64	8.51	8.4	10.2	8.7	9.7	8.9
1A4c Agriculture /																
Forestry / Fishing / Fish																
farms																
1A4c i Stationary																
Gas-diesel oil (kt)	23	20	19	22	21	21	19	22	21	22.11	20.57	21.98	23.78	22.69	21.12	18.7
LPG (kt)	1	1	1	1	1	1	0	2	2	2.42	2.53	2.86	2.58	2.41	2.80	2.59
Biogas (TJ)	78	198	262	437	465	455	464	460	475	419.4	442.7	463.7	470.9	468.7	429.3	403.8
1A4c iii Fishing																
Gas-diesel oil (kt)	3	4	4	3	3	2	2	2	2	2	1.79	1.91	1.48	1.62	1.65	1.58

3.2.7. Non-Specified (1A5)

3.2.7.1. Category description

All remaining emissions from fuel combustion that are not specified elsewhere should be reported under Non-Specified (1A5). Emissions from fuel delivered to the military in the country and delivered to the military of other countries that are not engaged in multilateral operations should also be included. The emissions during the period 1990–2023 are presented in Table 3.27 and Figure 3.9.

Table 3.27. GHG emissions from Other (Not elsewhere specified) 1990–2023

14010012	0220 022	220020220 22 0		(110t cisewhere specifica) 1770–2025					
Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
5. Other	11.1	21.6	19.2	20.5	26.9	20.5	26.7	38.2	25.4
a. Stationary	11.1	21.6	19.2	17.3	20.5	17.3	20.3	31.8	22.2
b. Mobile	NA,NO	NA,NO	NA,NO	3.2	6.3	3.2	6.3	6.3	3.2
CO ₂	11.0	21.4	19.0	20.3	26.6	20.3	26.4	38.0	25.3
CH ₄	0.001	0.003	0.006	0.006	0.007	0.006	0.007	0.005	0.003
N ₂ O	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023	
5. Other	25.4	25.5	26.7	26.0	26.1	23.1	24.3	23.3	
a. Stationary	22.2	21.7	22.2	22.0	21.4	19.0	19.5	20.3	
b. Mobile	3.2	3.9	4.5	4.0	4.7	4.1	4.8	3.0	
CO ₂	25.3	25.4	26.6	25.9	26.0	23.0	24.1	23.1	
CH ₄	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	
N ₂ O	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	

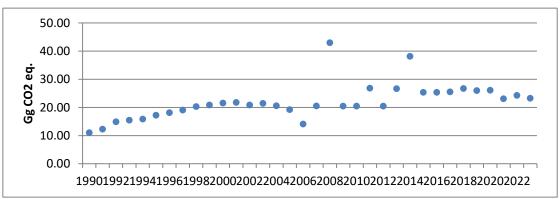


Figure 3.9. GHG emissions from Other (Not elsewhere specified) (1A5) 1990–2023

3.2.7.2. Methodological issues

Due to the unavailability of consumption data for several years and sectors, using the fuel consumption data as published by the Statistical Service would create issues of consistence and comparability. Therefore it was decided to complete the period using assumptions. Details on the methodology developed and applied are given in Annex 3. The activity data used for the estimation of GHG emissions of other sectors is presented in Table 3.28. Consumption of Gas-diesel oil, Lignite and LPG and biodiesel since 2020 is allocated to stationary combustion, whereas that of jet kerosene is allocated to mobile combustion.

Table 3.28. Other non-specified fuel consumption 1990-2023

abic 5.20. Other hon	able 5.20. Other non-specifica ruci consumption 1770 2025										
	1990	1991	1992	1993	1994	1995	1996	1997	1998		
Gas-diesel oil (kt)	3	4	5	5	5	5	6	6	6		
Lignite (kt)	0	0	0	0	0	0	0	0	0		

LPG (kt)	0	0	0	0	0	0	0	0	0
Jet kerosene (kt)	0	0	0	0	0	0	0	0	0
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Gas-diesel oil (kt)	7	7	7	7	7	6	6	4	6
Lignite (kt)	0	0	0	0	0	1	1	1	1
LPG (kt)	0	0	0	0	0	0	0	0	0
Jet kerosene (kt)	0	0	0	0	0	0	0	0	0
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Gas-diesel oil (kt)	13	5	5	6	5	5	9	6	6
Lignite (kt)	1	1	1	1	1	1	0	0	0
LPG (kt)	0	0	0	0	0	1	1	1	1
Jet kerosene (kt)	0	1	1	2	1	2	2	1	1
	2017	2018	2019	2020	2021	2022	2023		
Gas-diesel oil (kt)	6	6	6	6	5	5	5		
Lignite (kt)	0	0	0	0	0	0	0		
LPG (kt)0	1	1	1	1	1	1	1		
Jet kerosene (kt)	1	1	1	1	1	2	1	·	·
Biodiesel (kt)	NO	NO	NO	0.214	0.197	0.222	0.339	_	_

Methodology

The GHG emissions were estimated according to the IPCC 2006 guidelines. Fuel consumption was converted to TJ using the default NCV proposed by the IPCC 2006 guidelines (Table 1.23). The CO₂, CH₄ and N₂O emissions were estimated using the default emission factors proposed by the IPCC 2006 guidelines (volume 2, pg. 2.22) as presented in Table 3.29. Biodiesel consumption was reported for the first time in 2020:Default total carbon content has been used 76.5% kgC/kgFAME , as well as 5,4% of carbon content fossil part. The CH₄ and N₂O emissions have been been calculated using the EFs proposed by the 2006 IPCC Guidelines, i.e. 3.9 kg CH₄/TJ and 3.9 kg N₂O/TJ for both fossil and biogenic parts.

Table 3.29. Parameters used for the estimation of other emissions

Fuel	NCV (TJ/kt)	kg CO ₂ /TJ	kg CH ₄ /TJ	kg N ₂ O /TJ
Diesel	43.0	74100	10	0.6
LPG	47.3	63100	5	0.1
Jet kerosene	44.1	71500	10	0.6
Lignite	11.9	101000	300	1.5
Solid Biomass	11.6	100000	300	4.0
Biodiesel	37.0		3.9	3.9

3.2.7.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.2.7.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

3.2.7.5. Category-specific recalculations

Recalculation was performed for solid biomass in the category 1A5a for 2006, due to a correction in the inventory file. As shown in Table 3.30, this decreased CO₂ eq emissions from biomass from 0.6 to 0.

Table 3.30. Impact of recalculations on CO2 eq. emissions for 1A5a

Gg CO ₂ eq.	2006
NIR 2025	0
NIR 2024	0.6

3.2.7.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

3.2.8. Reference approach (1AB)

The Reference Approach is a top-down approach, using a country's energy supply data to calculate the emissions of CO_2 from combustion of mainly fossil fuels. The Reference Approach is a straightforward method that can be applied on the basis of relatively easily available energy supply statistics. Excluded carbon has increased the requirements for data to some extent. However, improved comparability between the sectoral and reference approaches continues to allow a country to produce a second independent estimate of CO_2 emissions from fuel combustion with limited additional effort and data requirements.

While the sectoral approach and the reference approach can each be used to estimate a country's CO₂ emissions from fuel combustion, the use of both allows the comparison of results from these two independent estimates. Significant differences may indicate possible problems/mistakes with the activity data, net calorific values, carbon content, excluded carbon calculation, etc.

The Reference Approach is designed to calculate the emissions of CO_2 from fuel combustion, starting from high level energy supply data. The assumption is that carbon is conserved so that, for example, carbon in crude oil is equal to the total carbon content of all the derived products. The Reference Approach does not distinguish between different source categories within the energy sector and only estimates total CO_2 emissions from Source category 1A, Fuel Combustion. Emissions derive both from combustion in the energy sector, where the fuel is used as a heat source in refining or producing power, and from combustion in final consumption of the fuel or its secondary products.

The estimation process is divided in six steps that are described below.

Step 1: Estimation of apparent consumption

This step concerns the estimation of apparent consumption in natural units or in the units commonly used for the recording of the relative fuel amounts. For secondary fuels production data are not included in the apparent consumption calculation, since they are already accounted for in the primary fuel consumption, from which they derive. Therefore, the apparent consumption of primary fuels is estimated by the following equation:

Apparent consumption = Primary production + Imports - Exports - International bunkers + Stock change

The apparent consumption of secondary fuels is estimated by the following equation:

Apparent consumption = Imports - Exports - International bunkers + Stock change

Step 2: Conversion of fuel data to a common energy unit

The values were multiplied by the net calorific values listed in Table 3.31 to provide the energy consumed in TJ. The NCV values used were the defaults proposed by the IPCC 2006 guidelines (volume 2, pg. 1.18) except for pet-coke and other bituminous coal. Pet-coke and other bituminous coal are consumed only from one cement producing installation. Therefore, in place of the default proposed by the IPCC, it was preferred to use the NCV implied by the annual reports submitted in accordance with national ETS legislation (law no. 110(I)/2011), which are available for the years 2000-2023. For the years 1990-1999 the NCV was assumed the same as 2000.

Step 3: Estimation of carbon content

Total carbon included in each fuel is calculated by multiplying energy consumption by an emission factor (Table 3.31) that reflects the amount of carbon per energy unit for each fuel. The result gives the

maximum amount of carbon that could be potentially released if all carbon in the fuels were converted to CO_2 . The carbon emission factor for fuels used in the reference approach are based predominately on the 2006 IPCC guidelines. The exceptions are pet-coke, other bituminous coal, waste (non-biomass fraction) and solid biomass. Pet-coke and other bituminous coal are consumed only from one cement producing installation. Therefore it was preferred to use the carbon emission factor implied by the annual reports submitted according to national ETS legislation (law no. 110(I)/2011), instead of the default proposed by the IPCC. Waste (non-biomass fraction) and solid biomass show annual variations because of the difference in ratios of the different types of waste and solid biomass consumed to the total.

Step 4: Estimation of carbon stored in products

Depending on the end use, non-energy uses of fuels can result in some or all of the carbon contained in the fuel being stored in the non-energy product. The non-energy consumption of fuels is multiplied by an emission factor that reflects the amount of the carbon content of the fuel stored in the non-energy product. The result is the maximum amount of carbon that could potentially be sequestered if that amount of carbon were stored in the non-energy product. By subtracting this amount from the total carbon calculated in step 3, the amount of carbon that could be theoretically converted to CO₂ is calculated.

Step 5: Estimation of carbon unoxidised during fuel use

The amount of carbon that was previously calculated is reduced by a fraction of 1%, in order to take account of the fact that a small part of the fuel carbon entering combustion escapes oxidation. It is assumed that the carbon that remains unoxidised is stored indefinitely.

Step 6: Estimation of CO₂ emissions

Carbon emissions from all fuels are multiplied by 44/12 to be converted to CO_2 emissions and are summed giving the total amount of CO_2 released in the atmosphere. The emissions estimated with the reference approach are presented in Table 3.32. Detailed presentation of the results is available in <u>Annex</u> 4

Table 3.31. Net calorific value (TJ/kt) and carbon emission factors (t CO₂/kt) of fuels consumed in Cyprus used for the reference approach

(a) Net calorific value (TJ/kt) and carbon emission factors (t CO_2/kt) that remain constant for the period 1990-2023

	Conversion factor (TJ/kt)	Carbon emission factor (tC/TJ)
Crude oil	42.3	20.0
Gasoline	44.3	18.9
Jet kerosene	44.1	19.5
Other kerosene	43.8	19.6
Gas-diesel oil	43.0	20.2
Residual fuel oil	40.4	21.1
Biodiesel	37.5	7.65
LPG	47.3	17.2
Bitumen	40.2	22.0
Lubricants	40.2	20.0
Pet-coke	32.5	table (b)
Other oil-refinery gas	49.5	15.7
Other oil-White spirit & SBP	40.2	20.0
Other bituminous coal	table (b)	table (b)
Lignite	11.9	27.6
Waste (non-biomass fraction)	NA	table (b)
Solid biomass	NA	table (b)

(b) Net calorific value (TJ/kt) and carbon emission factors (t CO_2/kt) that are not constant for the period 1990-2023

	1990	1991	1992	1993	1994	1995	1996
NCV (TJ/kt)							
Other bituminous coal	27.650	27.650	27.650	27.650	27.650	27.650	27.650
Implied CEF (tC/TJ)							
Pet-coke	23.047	23.047	23.047	23.047	23.047	23.047	23.047
Other bituminous coal	25.254	25.254	25.254	25.254	25.254	25.254	25.254
C EF (tC/TJ)							
Waste (non-biomass							
fraction)	NO						
Solid biomass	27.629	27.661	27.664	27.665	28.340	28.264	28.286

	1997	1998	1999	2000	2001	2002	2003
NCV (TJ/kt)							
Other bituminous coal	27.650	27.650	27.650	27.650	26.840	26.400	27.300
Implied CEF (tC/TJ)							
Pet-coke	23.047	23.047	23.047	23.047	23.047	23.047	23.047
Other bituminous coal	25.254	25.254	25.254	25.254	25.254	25.254	25.254
C EF (tC/TJ)							
Waste (non-biomass							
fraction)	NO	NO	NO	NO	39.00	NO	39.00
Solid biomass	28.471	28.530	28.448	28.217	28.157	28.391	28.253

	2004	2005	2006	2007	2008	2009	2010
NCV (TJ/kt)							
Other bituminous coal	28.621	28.621	29.995	28.360	25.950	26.080	26.819
Implied CEF (tC/TJ)							
Pet-coke	23.047	23.047	24.160	24.659	24.486	25.578	25.515
Other bituminous coal	25.254	25.254	25.156	22.815	25.788	25.661	25.794
C EF (tC/TJ)							
Waste (non-biomass							
fraction)	39.00	39.00	39.00	39.00	39.00	39.00	39.00
Solid biomass	28.542	28.971	28.956	28.664	28.351	28.172	28.344

	2011	2012	2013	2014	2015	2016	2017
NCV (TJ/kt)							
Other bituminous coal	25.517	NO	NO	23.210	25.675	25.675	24.680
Implied CEF (tC/TJ)							
Pet-coke	25.301	24.795	25.238	25.583	25.150	25.313	28.710
Other bituminous coal	25.620	NO	NO	25.890	25.876	25.877	25.563
C EF (tC/TJ)							
Waste (non-biomass	39.00	25.00	25.00	37.36	20.005	20.004	25.552
fraction)					30.996	30.996	27.553
Solid biomass	28.372	28.559	28.678	28.590	28.381	28.365	28.266

	2018	2019	2020	2021	2022	2023	
NCV (TJ/kt)							
Other bituminous coal	25.800	25.800	26.135	25.800	24.300	21.840	
Implied CEF (tC/TJ)							
Pet-coke	24.609	24.932	24.125	27.356	25.624	25.645	
Other bituminous coal	25.767	25.773	26.025	25.824	26.122	26.328	
C EF (tC/TJ)							
Waste (non-biomass fraction)	27.298	26.66	27.67	27.40	26.30	26.55	
Solid biomass	28.239	28.181	28.217	28.156	28.099	28.188	

Table 3.32. Apparent consumption (TJ) and CO₂ emissions (Gg) estimates according to the

reference app			1003	1002	1004	1005	1007
Linuid Decel	1990	1991	1992	1993	1994	1995	1996
Liquid Fuels	5.4075	7.6001	65101	60542	70207	60505	7.507
Apparent consumption	54375	56081	65181	69543	79397	68507	76527
CO ₂	4029	4186	4854	5185	5898	5088	5705
Solid Fuels	T		=10	2 1		1	
Apparent consumption	2682	2682	719	857	747	553	498
CO ₂	248	248	67	79	69	51	46
Waste (non-biomass fra	· · ·		1				
Apparent consumption	NO	NO	NO	NO	NO	NO	NO
CO ₂	NO	NO	NO	NO	NO	NO	NO
Biomass					1		
Apparent consumption	287	262	260	259	726	686	671
CO_2	29	27	26	26	75	71	70
	1997	1998	1999	2000	2001	2002	2003
Liquid Fuels			1	· · · · · · · · · · · · · · · · · · ·			
Apparent consumption	74737	79902	80448	86282	85126	86041	94229
CO ₂	5562	5965	6007	6442	6337	6425	7049
Solid Fuels							
Apparent consumption	525	719	830	1355	1423	1399	1447
CO ₂	49	67	77	125	132	130	134
Waste (non-biomass fra	ction)						
Apparent consumption	NO	NO	NO	NO	18	NO	15
CO ₂	NO	NO	NO	NO	3	NO	2
Biomass							
Apparent consumption	565	614	487	515	551	606	694
CO_2	59	64	51	53	57	63	72
	2004	2005	2006	2007	2008	2009	2010
Liquid Fuels							
Apparent consumption	87897	89758	93369	98156	103844	101715	97847
CO ₂	6579	6740	7051	7410	7837	7670	
Solid Fuels					, 00,	7679	
					7007	7679	
Apparent consumption	1643	1500	1632	1402	1050	560	7362
Apparent consumption	1643 152	1500 139	1632 151				7362 709
Apparent consumption CO ₂	152			1402	1050	560	7362 709
Apparent consumption CO ₂	152			1402	1050	560	7362 709 67
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption	152 ction)	139	151	1402 117	1050	560 53	7362 709 67 299
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂	152 ction) 71	139	151 73	1402 117 288	1050 99 239	560 53 276	7362 709 67 299
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass	152 ction) 71	139	151 73	1402 117 288	1050 99 239	560 53 276	7362 709 67 299 43
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption	152 ction) 71 10	139 138 20	73 10	1402 117 288 41	1050 99 239 34	560 53 276 39	7362 709 67 299 43
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption	152 ction) 71 10	139 138 20 565	73 10 570	1402 117 288 41	1050 99 239 34	560 53 276 39	7362 709 67 299 43
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption	152 ction) 71 10	139 138 20 565	73 10 570	1402 117 288 41	1050 99 239 34	560 53 276 39	7362 709 67 299 43 1728 152
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂	152 ction) 71 10 608 64	139 138 20 565 60	73 10 570 61	1402 117 288 41 915 95	1050 99 239 34 1678 157	560 53 276 39 1859 168	7362 709 67 299 43 1728 152
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂	152 ction) 71 10 608 64 2011	139 138 20 565 60 2012	73 10 570 61 2013	1402 117 288 41 915 95	1050 99 239 34 1678 157	560 53 276 39 1859 168	7362 709 67 299 43 1728 152 2017
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption	152 ction) 71 10 608 64 2011	139 138 20 565 60 2012 88673	73 10 570 61 2013	1402 117 288 41 915 95 2014	1050 99 239 34 1678 157 2015	560 53 276 39 1859 168 2016	7362 709 67 299 43 1728 152 2017
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂	152 ction) 71 10 608 64 2011	139 138 20 565 60 2012	73 10 570 61 2013	1402 117 288 41 915 95 2014	1050 99 239 34 1678 157	560 53 276 39 1859 168	7362 709 67 299 43 1728 152 2017
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels	152 ction) 71 10 608 64 2011 94738 7115	139 138 20 565 60 2012 88673 6631	73 10 570 61 2013 75925 5689	1402 117 288 41 915 95 2014 77428 5846	1050 99 239 34 1678 157 2015 78321 5884	560 53 276 39 1859 168 2016 84258 6331	7362 709 67 299 43 1728 152 2017 86839 6503
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels Apparent consumption	152 ction) 71 10 608 64 2011 94738 7115	139 138 20 565 60 2012 88673 6631	73 10 570 61 2013	1402 117 288 41 915 95 2014 77428 5846	1050 99 239 34 1678 157 2015 78321 5884	560 53 276 39 1859 168 2016 84258 6331	7362 709 67 299 43 1728 152 2017 86839 6503
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels Apparent consumption CO ₂	152 ction) 71 10 608 64 2011 94738 7115 318 30	139 138 20 565 60 2012 88673 6631	73 10 570 61 2013 75925 5689	1402 117 288 41 915 95 2014 77428 5846	1050 99 239 34 1678 157 2015 78321 5884	560 53 276 39 1859 168 2016 84258 6331	7362 709 67 299 43 1728 152 2017 86839 6503
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels Apparent consumption CO ₂ Waste (non-biomass fra	152 ction) 71 10 608 64 2011 94738 7115 318 30 ction)	139 138 20 565 60 2012 88673 6631 12 1	73 10 570 61 2013 75925 5689	1402 117 288 41 915 95 2014 77428 5846 157 15	1050 99 239 34 1678 157 2015 78321 5884 155 15	560 53 276 39 1859 168 2016 84258 6331 21 2	7362 709 67 299 43 1728 152 2017 86839 6503
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption	152 ction) 71 10 608 64 2011 94738 7115 318 30 ction) 56	139 138 20 565 60 2012 88673 6631 12 1	73 10 570 61 2013 75925 5689 12 1	1402 117 288 41 915 95 2014 77428 5846 157 15	1050 99 239 34 1678 157 2015 78321 5884 155 15	560 53 276 39 1859 168 2016 84258 6331 21 2	7362 709 67 299 43 1728 152 2017 86839 6503 125 12
Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂ Biomass Apparent consumption CO ₂ Liquid Fuels Apparent consumption CO ₂ Solid Fuels Apparent consumption CO ₂ Waste (non-biomass fra Apparent consumption CO ₂	152 ction) 71 10 608 64 2011 94738 7115 318 30 ction)	139 138 20 565 60 2012 88673 6631 12 1	73 10 570 61 2013 75925 5689	1402 117 288 41 915 95 2014 77428 5846 157 15	1050 99 239 34 1678 157 2015 78321 5884 155 15	560 53 276 39 1859 168 2016 84258 6331 21 2	7362 709 67 299 43 1728 152 2017 86839 6503 125 12
Apparent consumption CO2 Waste (non-biomass fra Apparent consumption CO2 Biomass Apparent consumption CO2 Liquid Fuels Apparent consumption CO2 Solid Fuels Apparent consumption CO2 Waste (non-biomass fra Apparent consumption CO2 Waste (non-biomass fra Apparent consumption CO2 Biomass	152 ction) 71 10 608 64 2011 94738 7115 318 30 ction) 56 8	139 138 20 565 60 2012 88673 6631 12 1 24 2	73 10 570 61 2013 75925 5689 12 1 1	1402 117 288 41 915 95 2014 77428 5846 157 15	1050 99 239 34 1678 157 2015 78321 5884 155 15	560 53 276 39 1859 168 2016 84258 6331 21 2 663 66	7362 709 67 299 43 1728 152 2017 86839 6503 125 12 902 91
Apparent consumption CO2 Waste (non-biomass fra Apparent consumption CO2 Biomass Apparent consumption CO2 Liquid Fuels Apparent consumption CO2 Solid Fuels Apparent consumption CO2 Waste (non-biomass fra Apparent consumption CO2	152 ction) 71 10 608 64 2011 94738 7115 318 30 ction) 56	139 138 20 565 60 2012 88673 6631 12 1	73 10 570 61 2013 75925 5689 12 1	1402 117 288 41 915 95 2014 77428 5846 157 15	1050 99 239 34 1678 157 2015 78321 5884 155 15	560 53 276 39 1859 168 2016 84258 6331 21 2	7362 709 67 299 43 1728 152 2017 86839 6503 125 12 902 91 3019 202

	2018	2019	2020	2021	2022	2023	
Liquid Fuels							
Apparent consumption	86965	84634	78297	77783	81428	80053	
CO_2	6496	6290	5809	5761	6020	5928	
Solid Fuels							
Apparent consumption	570	720	586	1679	1281	1048	
CO_2	54	68	56	159	123	101	
Waste (non-biomass fra	ction)						
Apparent consumption	962	1289	1457	1676	1947	1922	
CO_2	96	126	148	168	188	187	
Biomass							
Apparent consumption	3400	3395	4300	4388	4308	3882	·
CO_2	196	215	250	248	279	238	

3.2.9. Comparison of the sectoral approach with the reference approach (1AC)

The data used in the reference and the sectoral approach and the resulting emissions are presented in Annex 4. The comparison of the fuel consumption and the emissions is summarised in Table 3.33.

The small differences that occur between the two approaches have been caused (a) by the statistical difference that exists in the energy balance, between the Gross inland deliveries (Calculated) and the Gross inland deliveries (Observed) and (b) from differences in the data source used for sectoral approach. The statistical difference of the energy balance is presented in detail in Annex 4.

Table 3.33. Difference between Reference and Sectoral Approach 1990–2023

	1990	1991	1992	1993	1994	1995	1996
Fuel consumption (PJ)							
Sectoral approach	52.06	58.78	63.56	65.63	68.53	67.22	70.97
Apparent energy consumption*	55.45	57.72	63.61	67.71	77.38	66.57	74.34
Difference	6.50%	-1.81%	0.08%	3.18%	12.92%	-0.96%	4.75%
CO_2 (Gg)							
Reference approach	4278	4435	4921	5265	5967	5140	5751
Sectoral approach	3925	4454	4776	4951	5159	5063	5355
Difference	9.00%	-0.44%	3.04%	6.33%	15.66%	1.50%	7.40%

	1997	1998	1999	2000	2001	2002	2003
Fuel consumption (PJ)							
Sectoral approach	72.65	77.09	80.55	83.44	82.03	84.15	89.30
Apparent energy consumption*	72.42	77.33	77.55	83.95	83.04	83.75	92.60
Difference	-0.32%	0.32%	-3.73%	0.61%	1.23%	-0.47%	3.70%
CO_2 (Gg)							
Reference approach	5611	6031	6083	6568	6471	6554	7185
Sectoral approach	5476	5815	6076	6298	6189	6348	6734
Difference	2.47%	3.72%	0.12%	4.28%	4.56%	3.25%	6.70%

	2004	2005	2006	2007	2008	2009	2010
Fuel consumption (PJ)							
Sectoral approach	91.20	93.51	94.44	98.63	101.46	100.93	97.82
Apparent energy consumption*	86.56	88.31	92.22	97.20	102.12	100.02	95.64
Difference	-5.08%	-5.56%	-2.35%	-1.45%	0.66%	-0.90%	-2.22%
CO_2 (Gg)							
Reference approach	6741	6899	7212	7568	7970	7772	7472
Sectoral approach	6895	7087	7276	7572	7787	7707	7478
Difference	-2.23%	-2.65%	-0.88%	-0.05%	2.36%	0.84%	-0.07%

	2011	2012	2013	2014	2015	2016	2017
Fuel consumption (PJ)							
Sectoral approach	94.87	88.64	76.23	77.15	79.36	84.25	85.69
Apparent energy consumption*	92.30	87.11	74.78	76.86	77.99	83.34	86.16
Difference	-2.71%	-1.73%	-1.90%	-0.38%	-1.73%	-1.08%	0.55%
CO_2 (Gg)							
Reference approach	7153	6634	5695	5904	5957	6399	6606
Sectoral approach	7216	6731	5810	5941	6061	6450	6528
Difference	-0.87%	-1.43%	-1.98%	-0.62%	-1.73%	-0.80%	1.20%

	2018	2019	2020	2021	2022	2023	
Fuel consumption (PJ)							
Sectoral approach	84.82	85.62	79.15	81.06	82.07	81.36	
Apparent energy consumption*	86.74	84.84	78.76	79.13	83.02	81.16	
Difference	2.26%	-0.91%	-0.50%	-2.39%	1.16%	-0.24%	
CO_2 (Gg)							
Reference approach	6647	6484	6010	6088	6331	6217	
Sectoral approach	6453	6505	5996	6049	6165	6222	
Difference	2.99%	-0.32%	0.23%	0.65%	2.69%	-0.09%	

^{*} excluding non-energy use, reductants and feedstocks

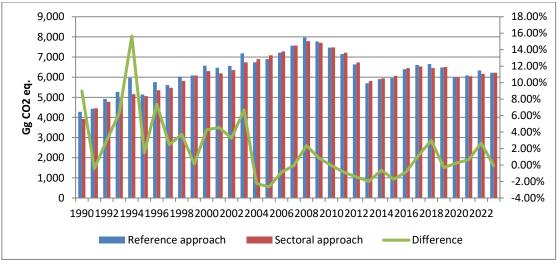


Figure 3.10. CO₂ emissions from fuel combustion using sectoral and reference approach

3.2.10. Feedstocks and non-energy use of fuels (1AD)

3.2.10.1. Category description

Carbon excluded from fuel combustion is either emitted in another sector of the inventory (for example as an industrial process emission) or is stored in a product manufactured from the fuel. The main flows of carbon concerned in the calculation of excluded carbon are those used as feedstock, reductant, or non-energy products. In Cyprus fuels that are used for non-energy uses are Lubricants and Bitumen.

Bitumen/asphalt is used for road paving and roof covering, where the carbon it contains remains stored for long periods of time. Consequently, there are no fuel combustion emissions arising from the deliveries of bitumen within the year of the inventory. Lubricating oil statistics usually cover not only use of lubricants in engines but also oils and greases for industrial purposes and heat transfer and cutting oils. All deliveries of lubricating oil should be excluded from the Reference Approach.

Non-energy use of fuels in Cyprus refers to the consumption of lubricants in transport and bitumen in construction. Data on the non-energy consumption of fuels was obtained from the national energy balance (Gross inland deliveries (Calculated)).

3.2.10.2. Methodological Issues

 CO_2 emissions from non-energy use of fuels is calculated according to the methodology proposed by the IPCC 2006 guidelines. NCVs, carbon emission factor and fraction of C stored are also taken from the guidelines (Table 3.34) and after the TERT review recommendation (CY-1AB-2020-0001). Non-energy fuel use, carbon dioxide emissions and the amount of carbon stored in the final products are presented in Table 3.35.

The emissions are reported under 2D. The large difference that occurs for bitumen between the C stored estimated in Reference and 1AD between 1990–2004 is due to the production of bitumen by the refinery.

Consumption of lubricants is not available from the national energy balance for the years 1990-1992. These years have been completed using backwards extrapolation of activity data for 1993-1996. All the consumption has been assumed as imports of the purposes of the reference approach.

Table 3.34. Parameters used for the calculation of emissions

	Lubricants	Bitumen
NCV (TJ/kt)	40.2	40.2
Carbon emission factor (t/TJ)	20.00	0
Oxidation factor	1	1

Table 3.35. Fuel consumption, carbon stored and CO₂ emissions for Feedstocks and non-energy use of fuels

	1990	1991	1992	1993	1994	1995	1996	1997
Lubricants								
Consumption (kt)	7.00	7.00	7.00	7.81	10.81	10.81	11.81	10.82
Carbon excluded (Gg)	5.63	5.63	5.63	6.28	8.69	8.69	9.50	8.70
CO ₂ (Gg)	4.13	4.13	4.13	4.60	6.37	6.37	6.96	6.38
Bitumen								
Consumption (kt)	33	19	50	59	58	51	55	60
Carbon excluded (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO ₂ (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	1998	1999	2000	2001	2002	2003	2004	2005
Lubricants								
Consumption (kt)	6.82	6.83	6.83	6.84	7.86	7.85	9.85	5.86
Carbon excluded (Gg)	5.49	5.49	5.49	5.50	6.32	6.31	7.92	4.71
CO ₂ (Gg)	4.02	4.03	4.03	4.03	4.63	4.63	5.81	3.46
Bitumen								
Consumption (kt)	75	86	85	81	84	69	66	71
Carbon excluded (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO ₂ (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	2006	2007	2008	2009	2010	2011	2012	2013	2014
Lubricants									
Consumption (kt)	5.87	5.83	5.83	5.84	5.86	5.87	4.87	3.88	3.88
Carbon excluded (Gg)	4.72	4.69	4.69	4.70	4.71	4.72	3.92	3.12	3.12
CO ₂ (Gg)	3.46	3.44	3.44	3.45	3.46	3.46	2.87	2.29	2.29
Bitumen									
Consumption (kt)	65	60	69	57	74	64	35	26	22
Carbon excluded (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO ₂ (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Lubricants									
Consumption (kt)	3.89	3.90	3.60	3.52	7.66	7.34	7.59	7.94	8.31
Carbon excluded (Gg)	3.13	3.14	2.89	2.83	6.16	5.90	6.10	6.39	6.68
CO ₂ (Gg)	2.29	2.30	2.12	2.07	4.52	4.33	4.47	4.68	4.90
Bitumen									

Consumption (kt)	21	36	38.95	40.16	37.12	31.59	42.29	31.63	39.4
Carbon excluded (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO ₂ (Gg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

3.2.10.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.2.10.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

3.2.10.5. Category-specific recalculations

No recalculations are noted in the reference approach for this submission.

3.2.10.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

3.3. Fugitive emissions from solid fuels and oil and natural gas and other emissions from energy production (1B)

Activities related to primary production (extraction), processing, storage and transmission/distribution of fossil fuels should be included in this sector. GHG released in the atmosphere during these operations is the direct result of leaks, disruptions and maintenance procedures. Moreover, the sector should also include emissions resulting from venting and flaring of gases that cannot be controlled by other means.

In Cyprus, there is no primary production of fuels or processing. There was one refinery in the country, which ceased its operation in 2004. Since then all fuels are imported. All transport of liquid fuels in Cyprus takes place by road transport. No central pipeline system is in place.

3.3.1. Oil & natural gas and other emissions from energy production

3.3.1.1. Category description

Based on the above, the fugitive emissions from oil for Cyprus are caused by refining. For refining, no emissions are reported after 2004 when the refinery stopped operating (NO). Table 3.36 presents the emissions of the source. Methane emissions from refining activities (1.B.2.A.4) only occurred during 1990–2004 when the refinery was operating.

Transport of oil (1.B.2.a.3), as defined in the IPCC 2006 Guidelines, only took place during the time the refinery was operating; i.e. 1990–2004. As there is no activity data to estimate emissions for the years when the refinery was in operation, NE is used for this period. As no transport operations have taken place since the refinery closed, NO is used for the period after 2004.

Flaring (1.B.2.c.2.i) was taking place at the refinery, which ceased its operation in 2004. For the period the refinery was operating there is no activity data available to estimate emissions, therefore NE is used, while NO is used for the period after 2004.

Venting (1.B.2.c.1.i) occurs due to transport via Tanker Trucks from secondary fuel products. There is no primary production of fuel in Cyprus and the refining activities stopped in 2004. According to the definition of the IPCC 2006 Guidelines and the TERT recommendation CY-1B2C-2020-001, these emissions are included as "NA".

Table 3.36. Fugitive emissions from oil during 1990–2023, in tons

Tuble 5.50. Tugletve	1990	1991	1992	1993	1994	1995	1996	1997	1998
Refining (t CH ₄)	16.2	19.43	18.51	19.89	23.07	21.09	19.36	26.56	27.56
Venting (t CO ₂)	NA								
Venting (t CH ₄)	NA								
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Refining (t CH ₄)	30.05	29.87	29.44	27.66	24.73	7.11	NO	NO	NO
Venting (t CO ₂)	NA								
Venting (t CH ₄)	NA								
	2008	2009	2010	2011	2012	2013	2014	2015	2015
Refining (t CH ₄)	NO								
Venting (t CO ₂)	NA								
Venting (t CH ₄)	NA								
	2017	2018	2019	2020	2021	2022	2023		
Refining (t CH ₄)	NO								
Venting (t CO ₂)	NA								
Venting (t CH ₄)	NA								

3.3.1.2. Methodological issues

Refining activities (1.B.2.A.4)

GHG emissions from oil when the refinery was operating (through 2004) are estimated according to the Tier 1 methodology described in the IPCC 2006 guidelines. $0.0218 \text{ kg CH}_4/\text{m}^3$ is used as the emission factor, ²⁹ which is the default for oil refined from the IPCC 2006 guidelines (Table 4.2.4, pg. 4.53). The activity data used is from the energy balance of the National Statistical Service, and is presented in Table 3.37.

Table 3.37. Oil refined during 1990-2004, kt

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Oil refined, kt	743	891	849	912	1058	967	888	1218	1264	1379
	2000	2001	2002	2003	2004					
Oil refined, kt	1370	1350	1269	1134	326					

3.3.1.3. Uncertainties and time-series consistency

The uncertainty analysis of all sectors is presented in <u>Section 1.5</u>. Time-series consistency is ensured by (a) using the same source of data for all years and (b) using the same methodology for the estimation of emissions for all years.

3.3.1.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

3.3.1.5. Category-specific recalculations

There are no reclaculations to be reported for this category.

3.3.1.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

-

²⁹(2.6+4.1)/2=3.35 kg/m³

3.4. CO₂ transport and storage (CRT 1.C)

Not occurring

3.5. Memo items (1.D)

All emissions from fuels used for international aviation (bunkers) and multilateral operations pursuant to the Charter of UN are to be excluded from national totals, and reported separately as memo items. Memo items are emissions that have to be estimated and reported but do not count towards the national total. The activities that occur in Cyprus under this category are International bunkers (1D1) and CO₂ from biomass (1D3). The emissions during the period 1990–2023 are presented below in Table 3.38.

Table 3.38. Emissions from memo items (Gg CO₂ eq.)

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015	
1D1. International bunkers	909	1447	1764	1422	1490	1455	1538	1517	1533	
1D3. CO ₂ from biomass	30	57	64	165	175	178	173	164	217	
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023		
1D1. International bunkers	1800	1820	1906	1910	1206	1366	1716	1709		
1D3. CO ₂ from biomass	230	285	315	309	401	406	401	350		

3.5.1. International bunkers (1D1)

3.5.1.1. Category description

Emissions from flights and vessels of all flags that are engaged in international water-borne navigation that depart in one country and arrive in a different country should be included in international bunkers. Emissions from international bunkers as estimated for the period 1990–2023 are presented in Table 3.39.

Table 3.39. Emissions from international bunkers 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013	2014	2015
International bunkers	909	1447	1764	1422	1490	1455	1538	1517	1533
Aviation	724	834	837	827	857	827	774	775	757
Navigation	185	613	927	595	633	627	764	742	776
CO_2 (Gg)	901	1434	1747	1408	1476	1441	1523	1503	1518
CH ₄ (Gg)	0.02	0.05	0.08	0.05	0.06	0.05	0.06	0.06	0.07
$N_2O(Gg)$	0.03	0.04	0.05	0.05	0.04	0.04	0.05	0.05	0.05
Gg CO ₂ eq.	2016	2017	2018	2019	2020	2021	2022	2023	
International bunkers	1800	1820	1906	1910	1206	1366	1716	1709	
Aviation	884	1006	1039	1016	321	556	796	961	
Navigation	917	814	867	893	885	810	921	748	
CO ₂ (Gg)	1783	1803	1888	1891	1193	1353	1699	1693	•
CH ₄ (Gg)	0.08	0.07	0.07	0.07	0.07	0.06	0.07	0.06	
$N_2O(Gg)$	0.06	0.06	0.06	0.06	0.04	0.05	0.06	0.05	

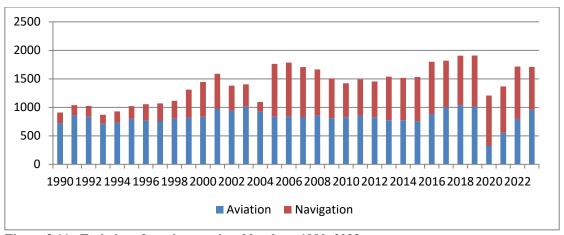


Figure 3.11. Emissions from international bunkers 1990–2023

3.5.1.2. Methodological issues

Activity data used for the estimation of emissions from bunkers is presented in Table 3.40. Data for all fuels except jet-kerosene was obtained from the energy balance of the national statistical service in kt of fuel consumed. Details on the method used to estimate the consumption of jet-kerosene are presented in section 3.2.5.2 and Annex 3. NCV and emission factors (Table 3.41) are the defaults proposed by the IPCC 2006 guidelines; i.e. 44.1 TJ/kt, 71.5 t CO₂/TJ, 0.5 kg CH₄/TJ and 2 kg N₂O/TJ.

Table 3.40. Fuel consumption for international aviation and maritime activities 1990-2023 (kt)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Jet Kerosene	228	271	263	224	230	253	242	239	252	258
Gas/Diesel Oil	24	20	21	14	12	15	25	27	35	46
RFO	34	36	38	36	50	54	65	71	63	108

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Jet Kerosene	262	308	297	318	290	263	265	261	270	255
Gas/Diesel Oil	50	47	33	36	27	67	106	104	88	73
RFO	143	145	105	88	27	225	190	171	165	146

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Jet Kerosene	260	270	260	243	244	238	278	317	327	320
Gas/Diesel Oil	53	58	69	83	80	75	95	101	117	123
RFO	134	141	128	157	153	169	193	154	154	156

	2020	2021	2022	2023			
Jet Kerosene	101	175	250	302			
Gas/Diesel Oil	119	113	123	87			
RFO	158	141	165	147			

Table 3.41. Parameters used for the calculation of emissions

Fuel	NCV (TJ/kt)	kg CO ₂ /TJ	kg CH4/ TJ	kg N2O/ TJ
Jet Kerosene	44.10	71500	0.5	2
Gas/Diesel Oil	43	74100	3.9	3.9
RFO	40.4	77400	3	0.6

3.5.1.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.5.1.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

3.5.1.5. Category-specific recalculations

An update to the methodology for fuel consumption in international aviation, as well as an update to Eurocontrol data from 2018 to 2023, resulted in some changes in emissions from 2005 to 2023, ranging from 0.0% to -2.5%.

3.5.1.6. Category-specific planned improvements

Please refer to <u>Annex 7</u> for the National Inventory Improvement Plan.

3.5.2. CO₂ emissions from biomass (1.D.3)

3.5.2.1. Category description

Biomass in the energy sector is consumed by the sectors presented in Table 3.42. The resulting emissions from combustion of biomass are presented in Table 3.43 and Figure 3.12.

Table 3.42. Activities consuming biomass in Cyprus

Source category	Solid biofuels	Charcoal	Liquid biofuels	Gas biofuels	Municipal Waste (Biomass Fraction)
1A1c Manufacture of solid fuels and other energy industries	✓				
1A2b Non-ferrous metals			✓		
1A2c Chemical and petrochemical	✓				
1A2d Pupl, paper and print			✓		
1A2e Food, beverages and tobacco	✓				
1A2f Non-metallic minerals	✓				✓
1A2g Other			✓		
1A2m Non-specified Industry			✓		
1A3b Road transport			✓		
1A4a Commercial and public services	✓	✓	✓	✓	
1A4b Residential	✓	√			
1A4c Agriculture/ Forestry				✓	

Table 3.43. Emissions from CO₂ from biomass 1990–2023

Tubic 5:15: Emissions from CO2 from biomass 1990 2025										
	1990	2000	2005	2010	2011	2012	2013	2014	2015	
CO ₂ from biomass (Gg)	30	57	64	165	175	178	173	164	217	
	2016	2017	2018	2019	2020	2021	2022	2023		
CO ₂ from biomass (Gg)	230	285	315	309	401	406	401	350		

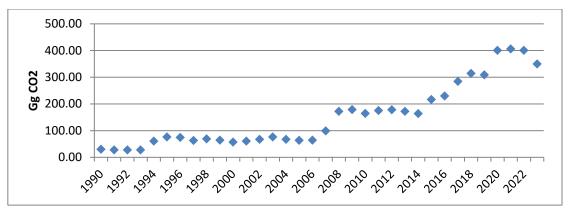


Figure 3.12. Emissions from biomass 1990-2023

3.5.2.2. Methodological issues

Already described in the Sections where the biomass consumption occurs.

3.5.2.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

3.5.2.4. Category-specific QA/QC and verification

Already described in the Sections where the biomass consumption occurs.

3.5.2.5. Category-specific recalculations

Already described in the Sections where the biomass consumption occurs.

3.5.2.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

Chapter 4.

Industrial processes and product use (CRT sector 2)

4.1. Overview of sector

The sector Industrial Processes and Product Use (IPPU) covers greenhouse gas emissions occurring from industrial processes, from the use of greenhouse gases in products, and from non-energy uses of fossil fuel carbon.

The main emission sources are releases from industrial processes that chemically or physically transform materials (for example, the cement industry is a notable example of industrial processes that release a significant amount of CO_2). During these processes, many different greenhouse gases, including carbon dioxide (CO_2), methane (CO_4), nitrous oxide (N_2O_4), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), can be produced.

In addition, greenhouse gases often are used in products such as refrigerators, foams or aerosol cans. For example, HFCs are used as alternatives to ozone depleting substances (ODS) in various types of product applications. Similarly, sulphur hexafluoride (SF₆) and N_2O are used in a number of products used in industry (e.g., SF₆ used in electrical equipment, N_2O used as a propellant in aerosol products primarily in food industry) or by end-consumers (e.g., SF₆ used in running-shoes, N_2O used during anaesthesia).

The main industrial activities that take place in Cyprus are food and beverage processing, cement and gypsum production, light chemicals (predominately pharmaceuticals), metal and wood products. Therefore, the source categories applicable for Cyprus in this sector are: Mineral products (2A), Non – energy products from Fuels and Solvent Use (2D), Product Uses as Substitutes for ODS (2F) and Other Product Manufacture and Use (2G).

4.1.1. Emissions trend

Historic evolution of industrial activity in Cyprus³⁰

After gaining its independence in 1960, Cyprus demonstrated a successful economic performance in terms of full employment and economic stability, apart from some isolated events. The underdeveloped rural economy inherited from colonialism was transformed into a modern economy with dynamic services, light industry, a very good agricultural sector and advanced physical and social infrastructure. Once traditionally agricultural, Cyprus embraced industrial development in the 1960s and today specializes in the manufacture of medium and high-technology products and semi-customized small-batch products. Industry grew in a sheltered environment with tariffs and quotas which were introduced to protect local production.

Major events that have affected the growth and structure of the economy and specifically of the industrial sector were the Turkish invasion in 1974, accession to the World Trade Organization (WTO), the Customs Union Agreement with the EU in 1988 and eventual membership to the EU in 2004.

The Protocol for the Customs Union and Accession to the EU eliminated all restrictions to trade and increased competition in the local market. This had a major impact on the industrial sector, which had to face fierce competition both from EU markets and third countries.

1990-2002

-

³⁰ Irene Mitsiga, Industry and Technology Service, Ministry of Energy, Commerce, Industry and Tourism, Tel. +357 22 867192, fax. +357 22 375120, e-mail: imitsinga@mcit.gov.cy

In 2002, distribution of Value Added in Manufacturing by Industry, showed Food, beverages and tobacco, as the largest group contributing 38,8% to the manufacturing value added, registered a 1,0% increase in volume of production. This was mainly due to the increase of domestic demand. Other contributing subsectors were as follows: Basic Metals and Metal Products; Machinery and Electrical and Optical Equipment and Manufacture of Transport Equipment; Other Non-Metallic Mineral Products; Refined Petroleum Products; Chemicals and Chemical Products and Rubber and Plastic Products; Manufacturing n.e.c; Pulp, Paper and Paper Products; Publishing and Printing; Wood and Wood Products; Textiles and Textile Products; and Manufacture of Leather and Leather Products. Large increases were recorded in the exports of pharmaceutical products, plastic products, dairy products and perfumes and toilet preparations. Decreases were recorded in the exports of cigarettes, apparel, footwear, electricity distribution and control apparatus, kitchen furniture, and jewellery and related articles.

2004-2009

On 1 May 2004, Cyprus, together with nine other countries, formally took its place alongside the 15 member-states already in the European Union. During 2004, the Cyprus economy exhibited an accelerated rate of growth, in contrast to the conditions of subdued growth observed during the previous two years. The gradual improvement of the overall climate of confidence, which followed the accession of Cyprus to the EU, and the improved external environment of Cyprus, which positively affected the external demand for goods and services, constituted the main contributing factors towards this development. The significant increase of the oil price in international markets constituted a restraining factor towards further growth of the Cyprus economy. In summary, the Cyprus economy exhibited conditions of acceleration of economic activity in 2004, mainly due to the strengthening of domestic demand, and in particular private consumption demand along with investment demand in machinery, transport equipment and construction works.

2009-2014

In 2009, the Cypriot economy began to shrink as the economic crisis in Europe and elsewhere began to bite. The industrial sector was hit the hardest. Local investment was negatively affected by the financial crisis in 2013 where industry found it difficult to secure funding from the local banks.

Cyprus has no heavy industry and the expansion of its light industry is limited by the lack of raw materials and the size of the domestic market. Cyprus is radically restructuring its manufacturing base and actively seeking to attract new high-tech and knowledge-based industries. Main growth industries have been the ICT sector, specifically in manufacturing parts, instruments and electronics, as well as consumer products such as food and cosmetics. Cyprus' key industrial products are pharmaceuticals, food, beverages, chemicals, mineral products, machinery and equipment. Of these, only pharmaceuticals and non-metallic minerals have experienced growth in recent years. Today, manufacturing contributes approximately 5% of GDP and accounts for 9% of people in employment.

The majority of manufacturers are small and medium-sized enterprises (SMEs), which employ less than 10 workers. This makes the sector flexible and open to innovation. The government is seeking to improve SMEs' access to finance and overseas markets, and to maximize the commercial potential of local research and development in order to open up untapped areas of productivity.

In 2014, a stabilization trend began to appear for the industrial sector. Even though there was still a negative growth rate of the industrial sector due to the continuing recession, its value decreased to 0, 3% in 2014, compared to decreases of 6.9% in 2013. Its contribution to the GDP reached 7.1%. A total of 5,387 enterprises were operating in the industrial sector, and main exports were pharmaceutical products, food, basic metals, non-metallic mineral products (i.e. cement), machinery and equipment, and recycled material.

2015-2022

In 2015, the industrial sector registered a positive growth rate in real terms after six years of recession, reaching a rate of 6.1%. Its contribution to the GDP reached 7.0%. This was due to an increase in growth rate in all industrial sectors (NACE Rev.2 Sectors B-E) but especially in the manufacturing sector, where there was an increase in gross output and labour productivity per hour and a small increase in employment.

In 2016, Cyprus reached the end of a three-year economic adjustment program, rebounding significantly from the economic crisis. The industrial sector registered a positive growth rate in real terms for a second year in a row. This rate for the whole of the sector recorded an increase of 6.3% in 2016, compared to an increase of 6.1% in 2015. Manufacturing, which constitutes the largest industrial sector, recorded an increase of 6.3% compared to an increase of 5.9% in 2015 (according to provisional figures). In 2016, domestic industrial output exports grew by 2.6% compared to 2015. The most important categories exported were pharmaceuticals, food, non-metallic mineral products, recycled products, and machinery and equipment. Compared to 2015, large increases were recorded in exports of dairy products and fruit and vegetable products, due to new bilateral agreements (e.g. China) and access to their trading markets, while significant decreases were recorded in exports of cement and base metals.

In 2017, for the third consecutive year, industry experienced positive growth in real terms. In the industrial sector as a whole, production value at current prices increased by 12.8% in 2017 compared to 2016. Employment in the broader industrial sector in 2017 increased by 6.7% compared to 2016. The contribution of the whole industrial sector to the GDP reached 7.9% and 8.8% in total employment.

2018 is the fourth consecutive year that industry experienced positive growth in real terms. According to preliminary estimates from the Cyprus Statistical Office, in the industrial sector as a whole, production value at current prices increased by 8.2% in 2018 compared to 2017. In manufacturing, production value increased by 7.8%, in mines and quarries by 9.3%, in electricity supply by 12.2% and in water supply, sewerage and waste management by 3.4%. Employment in the broader industrial sector in 2018 increased by 3.8% compared to 2017. The contribution of the whole industrial sector to the GDP reached 7.9% and 8.3% in total employment.

According to 2019 statistics, Cyprus Industrial base was mainly operating in light industrial activities. Industry contributed 7.9% to GDP and about 9% of the total employment. The majority of manufacturing units were small- and medium-sized enterprises (SMEs), which occupied less than 10 employees. Main growth sectors were, among others, the ICT sector, the pharmaceutical sector, and the food and drink sector.

In 2022, Cyprus' industrial sector's contribution to the GDP further increased, reaching 8.5% compared to the 2020 contribution of 8.1%. Employment in the industrial sector in 2022 reached 9% of the total employment, marking an increase from the 8.1% recorded in 2020.

The Competitiveness of the industrial sector has still a lot of potentials and is rather low. This is mainly due to low productivity, high production costs and, in general, increased supply chain costs resulting from the small size of the market, the insularity of the economy and its geographic and energy "isolation", its limited resources, its low capacity for innovation (mainly due to a low percent of investment in R&D and to the very small size of businesses), insufficient use and implementation of quality standards, and lack of adequate tangible and intangible infrastructure.

Cyprus implements the New Industrial Policy, a policy document aiming to develop more high-value-added and innovative products and services that will contribute to the competitiveness of the Cyprus economy over all. At the same time Cyprus is aiming to increase productivity by strengthening the industrial ecosystem and promote the investment in digitalisation, sustainability, innovation and circular economy.

Emissions

In 2023, GHG emissions from Industrial processes accounted for 15.8% of total emissions excluding LULUCF compared to 13.3% in 1990. The emissions increased by 93% compared to 1990 and 6.1% compared to 2022. 68.4% of the industrial processes emissions were from mineral production, 29.5% from consumption of Halocarbons, 1.7% from Other Product Manufacture and Use and the remaining 0.4% from non-energy products from fuels and solvent use.

Table 4.1. Total GHG emissions (in Gg CO₂ eq) from Industrial Processes, 1990–2023

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
	1990	2000	2005	2010	2011	2012	2013		
2. Industrial Processes	727.93	882.17	1003.19	809.86	811.54	772.13	1013.20		
A. Mineral industry	717.07	802.75	860.47	589.98	571.83	527.64	765.18		
B. Chemical industry	NO	NO	NO	NO	NO	NO	NO		

C. Metal industry	NO	NO	NO	NO	NO	NO	NO
D. Non-energy products							
from fuels and solvent use	4.19	4.10	3.46	3.53	3.53	2.96	2.37
E. Electronic industry	NO	NO	NO	NO	NO	NO	NO
F. Product uses as ODS							
substitutes	NO,NE	61.52	121.85	198.03	216.05	220.76	224.33
G. Other product							
manufacture and use	6.66	13.80	17.40	18.32	20.14	20.77	21.32
H. Other	NO	NO	NO	NO	NO	NO	NO

	2014	2015	2016	2017	2018	2019	2020
2. Industrial Processes	1241.75	1157.02	1185.18	1248.89	1198.37	1170.76	1268.32
A. Mineral industry	985.79	888.12	896.42	938.91	868.24	814.39	902.15
B. Chemical industry	NO						
C. Metal industry	NO						
D. Non-energy products							
from fuels and solvent use	2.38	2.47	2.66	2.43	2.44	4.97	4.78
E. Electronic industry	NO						
F. Product uses as ODS							
substitutes	231.73	243.96	264.78	285.96	305.83	330.00	336.65
G. Other product							
manufacture and use	21.86	22.47	21.33	21.59	22.76	21.39	24.74
H. Other	NO						

	2021	2022	2023		
2. Industrial Processes	1290.19	1324.48	1404.72		
A. Mineral industry	896.99	900.39	960.28		
B. Chemical industry	NO	NO	NO		
C. Metal industry	NO	NO	NO		
D. Non-energy products					
from fuels and solvent use	4.95	5.17	5.38		
E. Electronic industry	NO	NO	NO		
F. Product uses as ODS					
substitutes	364.61	394.92	414.96		
G. Other product					
manufacture and use	23.64	24.00	24.09		
H. Other	NO	NO	NO		

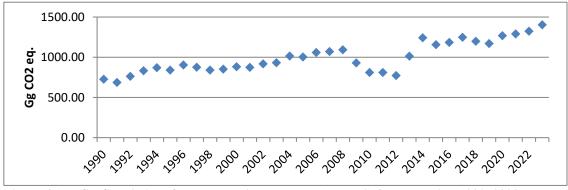


Figure 4.1. GHG emissions from Industrial Processes (sector 2) for the period 1990–2023

4.1.2. Completeness

Table 4.2 gives an overview of the IPCC source categories included in this chapter and presents the status of emissions estimates from all sub-sources in industrial processes.

Table 4.2. Industrial Processes – completeness

	CO ₂	CH ₄	N ₂ O	HFC	PFC	SF ₆
2A1.Cement production	✓	NE	NE	NE	NE	NE
2A2. Lime production	✓	NE	NE	NE	NE	NE
2A3. Glass production	NO	NE	NE	NE	NE	NE
2A4a. Other process Uses of Carbonates - Ceramics	✓	NE	NE	NE	NE	NE
2A4b. Other uses of soda ash	✓	NE	NE	NE	NE	NE
2B. Chemical industry	NO	NE	NE	NE	NE	NE
2C. Metal Industry	NO	NE	NE	NE	NE	NE
2D1. Non-energy Products from Fuels and Solvent Use – Lubricant Use	✓	NE	NE	NE	NE	NE
2D2. Paraffin wax Use	✓	NE	NE	NE	NE	NE
2D3. Non Energy Products from Fuels and Solvent Use	✓	NE	NE	NE	NE	NE
2E. Electronics Industry	NE	NE	NE	NO	NO	NO
2F1. Refrigeration & air conditioning	NE	NE	NE	✓	NO	NE
2F2. Foam blowing agents	NE	NE	NE	✓	NO	NE
2F3. Fire protection	NE	NE	NE	✓	NO	NE
2F4a. Metered dose inhalers	NE	NE	NE	✓	NO	NE
2F5. Solvents	NE	NE	NE	NO	NO	NE
2G1. Electrical equipment	NE	NE	NE	NE	NO	✓
2G3. N ₂ O from product uses	NE	NE	✓	NE	NE	NE
2G4. Other	✓	NE	NE	NE	NE	NE

NO: Not Occurring; NE: Not Emitted during the specific industrial process

4.1.3. Methodology

The calculation of GHG emissions is based on the methodologies and emission factors suggested by the IPCC 2006 Guidelines for lime production (2A2), Other uses of soda ash (2A4b), Lubricant Use (2D1) and Urea-based catalysts. The emissions for remaining sectors are estimated using country specific methodologies. The methodologies and emission factors used are summarised in Table 4.3.

Table 4.3. Industrial processes – methodologies and emission factors applied

Categor	y-Classification	Gas	EF	Method
2A1.	Industrial Processes and Product Use – Mineral Industry	CO_2	CS	CS
	- Cement production			
2A2	Industrial Processes and Product Use – Mineral Industry	CO_2	D	T1
	- Lime Production			
2A4a	Industrial Processes and Product Use – Mineral Industry	CO_2	CS	CS
	- Other process uses of carbonates - Ceramics			
2A4b	Industrial Processes and Product Use – Mineral Industry	CO_2	D	T1
	- Other process uses of carbonates - Other uses of soda-			
	ash			
2A4b	Industrial Processes and Product Use – Mineral Industry	CH ₄ /N ₂ O	NA	NA
	- Other process uses of carbonates - Other uses of soda-			
	ash			
2D1	Industrial Processes and Product Use – Non Energy	CO_2	D	T1
	Products from Fuels and Solvent Use- Lubricant Use			
2D1	Industrial Processes and Product Use – Non Energy	CH ₄ /N ₂ O	NA	NA
	Products from Fuels and Solvent Use- Lubricant Use			
2D2	Industrial Processes and Product Use – Non Energy	CO_2	D	T1

Categor	y-Classification	Gas	EF	Method
	Products from Fuels and Solvent Use - Paraffin Wax Use			
2D2	Industrial Processes and Product Use – Non Energy	CH ₄ /N ₂ O	NA	NA
	Products from Fuels and Solvent Use - Paraffin Wax Use			
2D3	Industrial Processes and Product Use – Non Energy	CO_2	D	D
	Products from Fuels and Solvent Use – Other - Urea-			
	based catalysts			
2D3	Industrial Processes and Product Use – Non Energy	CH ₄ /N ₂ O	NA	NA
	Products from Fuels and Solvent Use – Other - Urea-			
	based catalysts			
2F1	Product Uses as Substitutes for ODS - Refrigeration and	HFCs	D	T2a
	air conditioning			
2F2	Product Uses as Substitutes for ODS - Foam Blowing	HFCs	CS	CS
	Agents			
2F3	Product Uses as Substitutes for ODS - Fire Protection	HFCs	CS	CS
2F4.	Product Uses as Substitutes for ODS - Aerosols	HFCs	CS	CS
2G1	Other Product Manufacture and Use – Electrical	SF_6	D	T1
	Equipment			
2G3a	Other Product Manufacture and Use - N ₂ O from product	N ₂ O	CS	CS
	uses – Medical Applications			
2G3b	Other Product Manufacture and Use - N ₂ O from product	N ₂ O	CS	CS
	uses – Other –Propellant for pressure and aerosol			
	products			

T1: IPCC methodology Tier 1; D: IPCC default methodology and emission factor; CS: Country specific; T2a: IPCC methodology Tier 2a

4.2. Mineral products (2.A)

This chapter outlines process-related carbon dioxide (CO_2) emissions resulting from the use of carbonate raw materials in the production and use of a variety of mineral industry products. There are two broad pathways for release of CO_2 from carbonates: calcination and the acid-induced release of CO_2 . The primary process resulting in the release of CO_2 is the calcination of carbonate compounds, during which, through heating, a metallic oxide is formed.

The mineral products that are produced in Cyprus are cement, lime and ceramics. Other products that are consumed in Cyprus are limestone (only in cement and lime production - already accounted for in 2A1 and 2A2) and soda ash. According to the information obtained from the Customs, soda ash in Cyprus is imported for consumption by a bentonite quarry, lab supplies, swimming pools, production of building materials and cleaning products. The emissions estimated by product are presented in Table 4.4.

Emissions from mineral products in 2023 increased by 33.9% compared to 1990. An increase of emissions by 6.6% is observed in relation with the previous year (2022). The largest emitter continues to be cement production with 97.7% of the emissions (compared to 93.1% in 1990). The mineral materials produced in Cyprus are directly associated with the construction industry. Therefore, the economic situation in Cyprus after 2008 that directly affected constructions is also visible in the trend of the emissions of the sector. In 2013 however, even though the economic situation did not improve, emissions increase due to an increase in cement production caused by increase in exports.

Table 4.4. Emissions from mineral industry 1990–2023 (Gg CO₂)

		() 1>> 0 1010 (O g 0 0 1)					
Gg CO ₂	1990	2000	2005	2010	2011	2012	2013
A. Mineral industry	717.07	802.75	860.47	589.98	571.83	527.64	765.18
1. Cement production	667.66	762.71	788.18	555.05	546.04	504.54	752.29
2. Lime production	5.33	5.41	12.06	7.20	7.15	3.39	2.73
3. Glass production	NO	NO	NO	NO	NO	NO	NO
4. Other process uses of							
carbonates	44.08	34.63	60.23	27.74	18.63	19.72	10.16

CO ₂ (Gg)	717.07	802.75	860.47	589.98	571.83	527.64	765.18
Total (Gg CO ₂)	717.07	802.75	860.47	589.98	571.83	527.64	765.18

	2014	2015	2016	2017	2018	2019	2020
A. Mineral industry	985.79	888.12	896.42	938.91	868.24	814.39	902.15
1. Cement production	973.76	877.13	883.25	922.88	848.16	789.21	882.32
2. Lime production	2.45	2.36	2.38	3.18	5.33	3.93	3.11
3. Glass production	NO						
4. Other process uses of							
carbonates	9.58	8.64	10.78	12.86	14.74	21.24	16.72
CO_2 (Gg)	985.79	888.12	896.42	938.91	868.24	814.39	902.15
Total (Gg CO ₂)	985.79	888.12	896.42	938.91	868.24	814.39	902.15

	2021	2022	2023		
A. Mineral industry	896.99	900.39	960.28		
1. Cement production	878.81	879.61	938.19		
2. Lime production	3.99	3.91	5.96		
3. Glass production	NO	NO	NO		
4. Other process uses of					
carbonates	14.19	16.87	16.13		
CO ₂ (Gg)	896.99	900.39	960.28		
Total (Gg CO ₂)	896.99	900.39	960.28		

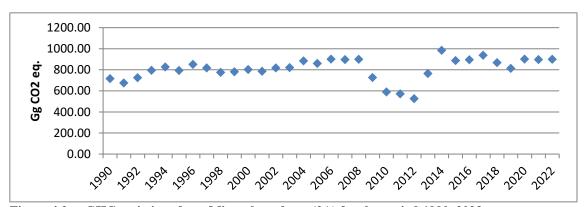


Figure 4.2. GHG emissions from Mineral products (2A) for the period 1990–2023

4.2.1. Cement production (2.A.1)

In cement manufacture, CO_2 is produced during the production of clinker, a nodular intermediate product that is then finely ground, along with a small proportion of calcium sulphate [gypsum ($CaSO_4 \cdot 2H_2O$) or anhydrite ($CaSO_4$)], into hydraulic (typically portland) cement. During the production of clinker, limestone, which is mainly calcium carbonate ($CaCO_3$), is heated, or calcined, to produce lime (CaO) and CO_2 as a by-product. The CaO then reacts with silica (SiO_2), alumina ($A_{12}O_3$), and iron oxide (Fe_2O_3) in the raw materials to make the clinker minerals (chiefly calcium silicates). The proportion in the raw materials of carbonates other than $CaCO_3$ is generally very small. The other carbonates, if present, exist mainly as impurities in the primary limestone raw material.

The emissions for the source category are presented in Table 4.5 and Figure 4.3. After 2008 there was sharp decrease in activity of the construction industry in Cyprus, which is reflected in the emissions. The sharp increase between 2013 and 2014 is due to an increase of exports, while between 2014 and 2015 there was a reduction in demand for exports, which caused a reduction in production.

Table 4.5. CO₂ emissions for Cement production (2.A.1) 1990–2023

	1990	2000	2005	2010	2011	2012	2013	2014	2015
$Gg CO_2$	667.66	762.71	788.18	555.05	546.04	504.54	752.29	973.76	877.13

		2016	2017	2018	2019	2020	2021	2022	2023	
I	$Gg CO_2$	883.25	922.88	848.16	789.21	882.32	878.81	879.61	938.19	

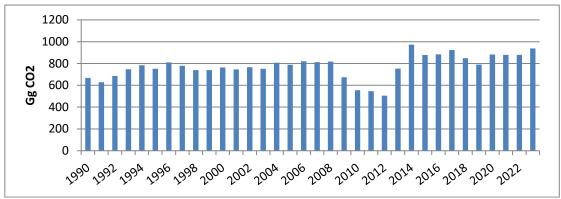


Figure 4.3. CO₂ emissions for Cement production (2.A.1) 1990–2023

In Cyprus, there is one cement producing installation, which provides information regarding CO₂ emissions in accordance with the EU-ETS legislation. Industrial installations covered by the EU ETS are required to have an approved monitoring plan for monitoring and reporting annual emissions. Every year, operators must submit an emissions report. The data for a given year must be verified by an accredited verifier by 31 March of the following year³¹. The EU ETS Directive was adopted in 2003 and the system was launched in 2005. The cap on allowances for the first trading period was set at national level through National Allocation Plans (NAPs)³². For the preparation of the NAP for the first trading period (2005-2007) historical data was collected for relevant installations. For the two cement installations that were operating at the time, data was available from 1997.

For the period 2012-2014 the clinker production increased annually due to an increase of exports to Lebanon. However, in 2015, the clinker production decreased 10% below the 2014 production. According to the information provided by the installation, two reasons accounted for this reduction: (a) there was a reduction in demand for exports; and (b) clinker production is regulated by available stocks, storage capacity and demand.

4.2.1.1. Methodological issues

Data for clinker production was obtained from the installations that operate in Cyprus (2 installations 1990-2011, one installation thereafter) (Table 4.6).

The estimation of emissions is based on a country-specific methodology.

Information regarding CO_2 emissions has been submitted annually since 2005, in accordance with the EU-ETS legislation. Emissions are estimated using Tier 3 methodologies. The CO_2 emissions are reported through templates provided by the European Commission for annual emission reports that are based on the Monitoring and Reporting Regulation³³. The emissions for 2005-2016 are used as submitted by the installations for the EU-ETS (Table 4.6) that are estimated according to EU legislation and are verified by external verifier accredited by the national authorities. The emissions for the period 1997-2004 are from the data submitted by the installations for the preparation of the National Allocation Plan.

³² More information available at https://ec.europa.eu/clima/policies/ets/pre2013/nap_en

³¹ Commission Regulation (EU) No 600/2012 of 21 June 2012 on the verification of greenhouse gas emission reports and tonne-kilometre reports and the accreditation of verifiers pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance, available at http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R0600.

⁻

³³ Commission Regulation (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance, available at http://eurlex.europa.eu/legal-content/EN/TXT/?uri=CEL EX:32012R0601.

For 1990-1996, the emission factor of $0.5347\ tCO_2/t$ clinker was used, which is the implied emission factor estimated from the CO_2 process emissions reported by the two cement producing installations for 1997. The emissions were estimated by multiplying the IEF by the clinker production (Table 4.6).

Table 4.6. Total clinker production (kt) and CO₂ process emissions (GgCO₂) from cement production

production								
	1990	1991	1992	1993	1994	1995	1996	1997
Clinker production (kt)								
Installation 1	353	390	380	382	383	369	359	374
Installation 2	895	786	902	1015	1083	1035	1158	1085
Total	1249	1176	1282	1397	1466	1405	1516	1459
CO ₂ process emissions								
(GgCO ₂)								
Installation 1								190
Installation 2								590
Total	668	629	686	747	784	751	811	780
	1000	4000	•000	2004	••••	2002	2004	•••
	1998	1999	2000	2001	2002	2003	2004	2005
Clinker production (kt)						2.12		
Installation 1	337	334	362	361	373	363	367	333
Installation 2	1045	1047	1065	1033	1059	1043	1142	1143
Total	1382	1382	1428	1394	1432	1405	1509	1473
CO ₂ process emissions								
(GgCO ₂)	100	400		400	• • • •		40-	101
Installation 1	180	180	193	193	200	194	197	181
Installation 2	560	560	569	552	566	557	610	607
Total	740	740	763	745	766	751	808	788
	•••	•••	•000	•000	2010	2011	•000	2000
	2006	2007	2008	2009	2010	2011	2008	2009
Clinker production (kt)	265	250	2.60	221	2.00	7.	2.60	221
Installation 1	365	350	368	231	260	76	368	231
Installation 2	1177	1166	1158	1033	783	961	1158	1033
Total	1542	1515	1526	1264	1043	1037	1526	1264
CO ₂ process emissions								
(Gg CO ₂) Installation 1	198	190	200	125	140	41	200	125
Installation 2	623	622	618	548	415	505	618	548
Total	821	812	818	673	555	546	818	673
Total	021	012	010	073	333	340	010	073
	2010	2011	2012	2013	2014	2015	2016	2017
Clinker production (kt)	2010	2011	2012	2013	2017	2013	2010	2017
Installation 1	260	76	0	0	0	0	0	0
Installation 2	783	961	953	1418	1822	1641	1648	1725
Total	1043	1037	953	1418	1822	1641	1648	1725
CO ₂ process emissions	1043	1037	755	1410	1022	1041	1040	1723
(GgCO ₂)								
Installation 1	140	41	0	0	0	0	0	0
Installation 2	415	505	505	752	974	877	883	923
Total	555	546	505	752	974	877	883	923
2001	555	2.10	200	,32		5,,	000	723
	2018	2019	2020	2021	2022	2023		
Clinker production (kt)	2010	_017	_0_0	_021	_022	_0_0		
Installation 1	0	0	0	0	0	0		
Installation 2	1603	1509	1694	1664	1650	1764		
Total	1603	1509	1694	1664	1650	1764		
CO ₂ process emissions	1003	1507	1074	1004	1000	1/04		
(GgCO ₂)								
(0,5002)		1	1	1	1	l .	1	

Installation 1	0	0	0	0	0	0	
Installation 2	848	789	882	879	880	938	
Total	848	789	882	879	880	938	

All the Cement kiln dust (CKD) is bound and recycled into the production process and no CKD is being exported from the system; therefore, emissions from CKD are not estimated. According to the ETS inspectors this is the case for the two installations that were operating before 2011 and the one installation that has been operating since. The two installations operating before 2011 have been using the same production technologies and process.

The possibility to use an installation-specific or a country-specific emission factor for the period 1990-1996 was investigated with the installations. However, no data is available.

4.2.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

4.2.1.3. Category-specific QA/QC and verification

Data for clinker production was compared to the data reported by the statistical service and the data used by the department of Labour Inspection for the preparation of air pollutants inventories under Directive 2001/81/EC.

Moreover, since 2005, all data associated with the calculations is undergoing external verification according to the provisions of the relevant ETS legislation.

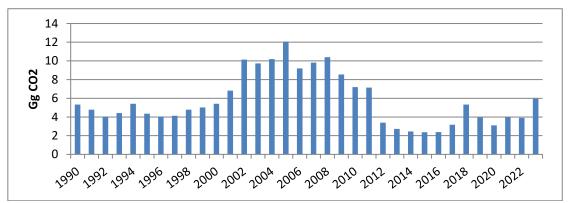
4.2.1.4. Category-specific recalculations

No recalculations to be reported.

4.2.1.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.2.2. Lime Production (2.A.2)


Calcium oxide (CaO or quicklime) is formed by heating limestone to decompose the carbonates. This is usually done in shaft or rotary kilns at high temperatures and the process releases CO₂. Dolomite and dolomitic (high magnesium) limestones may also be processed at high temperature to obtain dolomitic lime (and release CO₂). The production of lime involves a series of steps, including the quarrying of raw materials, crushing and sizing, calcining the raw materials to produce lime, and (if required) hydrating the lime to calcium hydroxide.

In Cyprus there is one installation producing slaked lime. The final use of the produced lime is predominately in the construction of roads; lime is used as an additive to increase flexibility and reduce cracks.

The emissions for the source category are presented in Table 4.7 and Figure 4.4. After 2008 there was decrease in activity of the construction industry in Cyprus, which is reflected in the amount of lime used (and therefore produced) and the emissions. The sharp decrease between 2011 and 2012 is due to a reduction in production caused by further reduction of activity of the constructions' industry.

Table 4.7. CO₂ emissions for Lime production (2.A.2) 1990–2023

	1990	2000	2005	2010	2011	2012	2013	2014	2015
Gg CO ₂	5.33	5.41	12.06	7.20	7.15	3.39	2.73	2.45	2.36
	2016	2017	2018	2019	2020	2021	2022	2023	

CO₂ emissions for Lime production (2.A.2) 1990-2023

4.2.2.1. Methodological issues

The activity data for lime production was obtained from the one installation in Cyprus that produces slaked lime (Table 4.8). The emission factor chosen is the default proposed for high calcium lime according to the 2006 IPCC Guidelines (volume 3, pg. 2.22, table 2.4), 0.75 t CO₂/t lime produced.

Slaked lime is hydrated lime and there is a correction factor for this lime in the 2006 IPCC Guidelines (see vol.3 chapter 2. Mineral Industry, page 2.24). Also, according with 2006 IPCC guidelines: "It is good practice to include a correction for hydrated lime under Tier 2, and where data are available, under Tier 1."

Table 4.8. Slak	able 4.8. Slaked lime production (t)													
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999				
Production (t)	7330	6570	5540	6080	7440	5980	5550	5688	6579	6907				
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009				
Production (t)	7439	9372	13934	13367	14004	16583	12640	13494	14285	11753				
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019				
Production (t)	9890	9829	4659	3746	3366	3244	3277	4369	7333	5407				
						•	•	•		•				

	2020	2021	2022	2023			
Production (t)	4274	5489	5375	8194			

4.2.2.2. Uncertainties and time-series consistency

Uncertainty estimates for lime production result predominantly from uncertainties associated with activity data, and to a lesser extent from uncertainty related to the emission factor. The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

4.2.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.2.2.4. Category-specific recalculations

No recalculations to be reported.

4.2.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.2.3. Glass Production (2.A.3)

The publication 'Industrial Statistics - 2016' (page 156), available on the website of the Statistical Service of Cyprus, presents the manufacture of flat glass, fibre glass and glass articles in Cyprus. However, from the information obtained by the Statistical Service it has been revealed that glass production does not take place in Cyprus; only shaping and processing of imported glass. Therefore glass production is not occurring in Cyprus.

4.2.4. Other Process Uses of Carbonates (2.A.4)

Limestone (CaCO₃), dolomite (CaMg(CO₃)₂) and other carbonates (e.g., MgCO₃ and FeCO₃) are basic raw materials having commercial applications in a number of industries. In addition to those industries already discussed individually, carbonates also are consumed in metallurgy (e.g., iron and steel), agriculture, construction and environmental pollution control (e.g., flue gas desulphurisation.). The calcination of carbonates at high temperatures yields CO₂.

The two activities that take place in Cyprus are production of ceramics and other uses of soda ash.

Ceramics industries in Cyprus produce bricks and roof tiles. Process-related emissions from ceramics result from the calcination of carbonates in the clay, as well as the addition of additives. Similar to the cement and lime production processes, carbonates are heated to high temperatures in a kiln, producing oxides and CO₂. The raw materials are collected and finely crushed in successive grinding operations. The ground particles are then fired in a kiln to produce a powder. Additives are subsequently added and the ceramic is formed or moulded and 'machined' to smooth rough edges and achieve the desired characteristics of the ceramic. After firing, some ceramics may undergo additional treatment to achieve the final desired quality. CO₂ emissions result from the calcination of the raw material and the use of limestone as a flux.

Soda ash production and consumption (including sodium carbonate, Na₂CO₃) results in the release of CO₂. According to information received by the customs office³⁴ soda ash in Cyprus is imported by a betonite quarry, lab supplies companies, swimming pools companies, building materials companies, and cleaning products companies.

The emissions for the source category are presented in Table 4.9 and Figure 4.5. After 2008 there was sharp decrease in activity of the construction industry in Cyprus, which is reflected in the amount of bricks and tiles used (and therefore produced) and the respective emissions. Another reason for the reduction of emissions since 2013 is that one ETS installation and the one non-ETS installation have ceased operation.

Table 4.9. CO₂ emissions for Other Process Uses of Carbonates (2.A.4) 1990–2023

20020 1070	O Z CIIIIODIO.	120 202 0 122		5 6565 62	CHI SOIIH	05 (=0110)		_	
Gg CO ₂	1990	2000	2005	2010	2011	2012	2013	2014	2015
Ceramics	43.82	34.07	59.95	27.44	18.31	19.49	10.02	9.41	8.51
Soda-ash	0.26	0.56	0.28	0.30	0.32	0.23	0.15	0.17	0.13
TOTAL	44.08	34.63	60.23	27.74	18.63	19.72	10.16	9.58	8.64

Gg CO ₂	2016	2017	2018	2019	2020	2021	2022	2023	
Ceramics	10.60	12.67	14.57	21.14	16.66	14.08	16.75	16.02	
Soda-ash	0.19	0.19	0.17	0.10	0.06	0.10	0.12	0.11	
TOTAL	10.78	12.86	14.74	21.24	16.72	14.19	16.87	16.13	

³⁴ email 28/9/2016, Solonas Papapolyviou

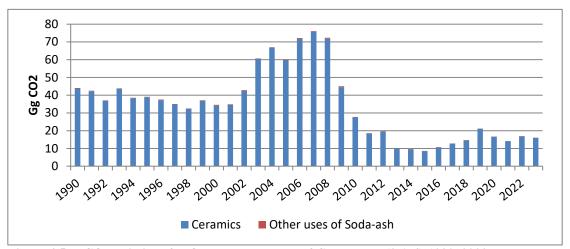


Figure 4.5. CO₂ emissions for Other Process Uses of Carbonates (2.A.4) 1990–2023

4.2.4.1. Ceramics

4.2.4.1.1. Methodological issues

In 2019, there were six ceramics-producing installations (comparing with five ceramics-producing installation in 2018), which provide information regarding CO₂ emissions in accordance to the EU-ETS legislation. Industrial installations covered by the EU ETS are required to have an approved monitoring plan for monitoring and reporting annual emissions. Every year, operators must submit an emissions report. The data for a given year must be verified by an accredited verifier by 31 March of the following year³⁵. The EU ETS Directive was adopted in 2003 and the system was launched in 2005. The cap on allowances for the first trading period was set at national level through National Allocation Plans (NAPs)³⁶. For the preparation of the NAP for the first trading period (2005-2007) historical data was collected for relevant installations. For the eight ceramics installations that were operating at the time, data was available from 2001.

Production data was obtained from the installations that operate in Cyprus (Table 4.10). For the period 1990-2015 there were eight installations in operation, seven in 2016, six in 2017, five in 2018 and six in 2019.

The estimation of emissions is based on a country-specific methodology.

Information regarding CO₂ emissions is annually submitted from 2005 in accordance with the EU-ETS legislation. Emissions are estimated using tier 3 methodologies. The CO₂ emissions are reported through templates provided by the European Commission for annual emission reports that are based on the Monitoring and Reporting Regulation³⁷. The emissions for 2005-2016 are used as submitted by the installations for the EU-ETS (Table 4.10), which are estimated according to EU legislation and are verified by external verifier accredited by the national authorities. The emissions for the period 2001-2004 the data submitted by the installations for the preparation of the National Allocation Plan.

For the period 2001-2012, the emissions of the non-ETS installation were estimated using the emission factor of $0.160~tCO_2/t$, which is the implied emission factor estimated from the CO_2 process emissions reported by the eight ceramics producing installations for 2003 (highest available). The highest emission factor was chosen, since as a non-ETS installation it does not have to regulate its emissions and therefore does not take any measures to reduce emissions. The emissions were estimated by multiplying the IEF

.

³⁵ Commission Regulation (EU) No 600/2012 of 21 June 2012 on the verification of greenhouse gas emission reports and tonne-kilometre reports and the accreditation of verifiers pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance, available at http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R0600
³⁶ More information available at https://ec.europa.eu/clima/policies/ets/pre2013/nap_en

³⁷ Commission Regulation (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance, available at http://eurlex.europa.eu/legal-content/EN/TXT/?uri=CEL EX:32012R0601

by the non-ETS ceramics production (Table 4.7). The additional, non-ETS installation ceased its operations, therefore there are no additional emissions to those reported under the ETS.

For 1990-2000, the emission factor of $0.123~tCO_2/t$ ceramics was used, which is the implied emission factor estimated from the CO_2 process emissions reported by the eight ceramics producing installations for 2001 (earliest available). The emissions were estimated by multiplying the IEF by the TOTAL ceramics production (Table 4.11); i.e. ETS and non-ETS production.

The possibility to use an installation-specific or a country-specific emission factor for the period 1990-2000 was investigated with the installations. However, no data is available.

Table 4.10. Ceramics production (kt)

Tubic iiioi ecrumes produce	(110)						
	1990	1991	1992	1993	1994	1995	1996
Total production (kt)	355.4	343.0	299.7	354.2	311.2	315.3	301.2
ETS production (kt)							
Non-ETS production (kt)							

	1997	1998	1999	2000	2001	2002	2003
Total production (kt)	281.7	261.3	297.9	276.3	277.8	332.4	377.9
ETS production (kt)					271.4	314.5	364.2
Non-ETS production (kt)					6.3	17.9	13.7

	2004	2005	2006	2007	2008	2009	2010
Total production (kt)	483.9	504.0	491.4	512.4	545.9	356.2	291.5
ETS production (kt)	470.4	493.2	483.6	500.4	532.9	338.4	282.1
Non-ETS production (kt)	13.6	10.8	7.8	12.0	13.0	17.8	9.3

	2011	2012	2013	2014	2015	2016	2017
Total production (kt)	223.0	168.0	90.0	83.7	84.5	111.6	152.6
ETS production (kt)	211.4	161.7	90.0	83.7	84.5	111.6	152.6
Non-ETS production (kt)	11.5	6.3	0	0	0	0	0

	2018	2019	2020	2021	2022	2023	
Total production (kt)	151.8	224.8	206.7	231.5	275.3	263.4	
ETS production (kt)	151.8	224.8	206.7	231.5	275.3	263.4	
Non-ETS production (kt)	0	0	0	0	0	0	

Table 4.11. CO₂ process emissions of the ETS ceramics installations and estimated annual implied emission factor (2001-2023)

	(
	2001	2002	2003	2004	2005	2006	2007
ETS CO ₂ emissions (GgCO ₂)	33.5	39.6	58.2	64.6	58.2	70.4	73.7
IEF (Gg CO ₂ /Gg product)	0.123	0.126	0.160	0.137	0.118	0.146	0.147

	2008	2009	2010	2011	2012	2013	2014
ETS CO ₂ emissions (Gg CO ₂)	69.7	41.6	25.9	16.5	18.5	10.0	9.4
IEF (Gg CO ₂ /Gg product)	0.131	0.123	0.092	0.078	0.114	0.111	0.112

	2015	2016	2017	2018	2019	2020	2021
ETS CO ₂ emissions (Gg CO ₂)	8.5	10.6	12.7	14.6	21.1	16.7	14.1
IEF (Gg CO ₂ /Gg product)	0.101	0.095	0.083	0.096	0.094	0.081	0.061
	2022	2023					
ETS CO ₂ emissions (Gg CO ₂)	16.7	16.0					
IEF (Gg CO ₂ /Gg product)	0.061	0.061					

4.2.4.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are

presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.2.4.1.3. Category-specific QA/QC and verification

Data for ceramics production was compared to the data reported by the statistical service and the data used by the department of Labour Inspection for the preparation of air pollutants inventories under Directive 2001/81/EC.

Moreover, since 2005, all data associated with the calculations is undergoing external verification according to the provisions of the relevant ETS legislation.

4.2.4.1.4. Category-specific recalculations

No recalculations to be reported.

4.2.4.1.5. Category-specific planned improvements

Please refer to <u>Annex 7</u> for the National Inventory Improvement Plan.

4.2.4.2. Other uses of soda ash

4.2.4.2.1. Methodological issues

The CO₂ emissions from other uses of soda-ash have been estimated using the T1 methodology proposed by the 2006 IPCC guidelines. Equation 2.14 (pg. 2.34, vol. 3, IPCC 2006 guidelines) was adopted for soda ash; i.e. CO₂ Emissions = Mc x EF

where:

CO₂ Emissions = emissions of CO₂ from other process uses of carbonates, tonnes;

Mc = mass of carbonate consumed, tonnes;

EF = emission factor for soda ash, tonnes CO₂/tonne carbonate (table 2.1, pg. 2.7, vol.3, 2006 IPCC guidelines), 0.41492 tCO₂/t CO₃ assuming 100% calcination.

Activity data (Table 4.12) was obtained from the imports statistics of the Statistical Service. It was assumed that all imported quantities have been consumed in the year the import has taken place. The imports of soda ash suffered a sharp increase for 2010 (1438 t), 51% above the 2009 value (711 t). For 2015 the imports are the lowest of the entire time series (326 t), which also affected the emissions. According to information obtained from the Customs Department, the main consumers of soda ash in Cyprus (90%) are engaged with the production of building materials. A large decline in the building industry began in 2010, and this is reflected in the consumption of building products and subsequently imports and use of soda ash.

Table 4.12. Imports of Soda ash in Cyprus (t)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Imports of Soda ash (t)	615	499	383	502	504	529	1063	789	808	832
	•		•	•						•
	•••									• • • •

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Imports of Soda ash (t)	1345	823	1003	813	837	664	1179	1132	1479	1438

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Imports of Soda ash (t)	711	771	560	353	401	322	447	449	402	247

	2020	2021	2022	2023			
Imports of Soda ash (t)	154	246	288	255			

4.2.4.2.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.2.4.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.2.4.2.4. Category-specific recalculations

No recalculations to be reported.

4.2.4.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.3. Chemical Industry (2.B)

4.3.1. Carbide production (2.B.5)

According to the imports statistics, there is import of carbides of calcium to Cyprus. According to information received by the customs office³⁸ carbides products are imported by a company importing raw materials for mattresses. Therefore, carbides of calcium are not used for the production of acetylene.

4.4. Non-Energy Products from Fuels and Solvent Use (2.D)

4.4.1. Category description

According to the 2006 Guidelines, "Non-energy products" are primary or secondary fossil fuels which are used directly for their physical or diluent properties. Examples are: lubricants, paraffin waxes, bitumen, and white spirits. In Cyprus there are imports and consumption of lubricants, paraffin waxes and bitumen. Lubricants in Cyprus are consumed by transport, while according to the information obtained from the Customs³⁹, paraffin wax is imported by dental and lab suppliers, importers of agricultural and beauty products and candle makers. The total CO₂ emissions from non-energy products from fuels and solvent use are presented in Table 4.13 and Figure 4.6.

Table 4.13. CO₂ emissions from non-energy Products from Fuels and Solvent Use

Gg CO ₂	1990	2000	2005	2010	2011	2012	2013
D. Non-energy products from fuels and solvent							
use	4.19	4.10	3.46	3.53	3.53	2.95	2.37
1. Lubricant use	4.13	4.03	3.45	3.46	3.46	2.87	2.29
2. Paraffin wax use	0.06	0.07	0.003	0.03	0.02	0.04	0.04
3. Other: Urea used as a							
catalyst	NO	NO	NO	0.04	0.04	0.04	0.03

Gg CO ₂	2014	2015	2016	2017	2018	2019	2020
D. Non-energy products from fuels and solvent							
use	2.38	2.47	2.66	2.43	2.44	4.98	4.92
1. Lubricant use	2.29	2.29	2.30	2.12	2.07	4.52	4.33

³⁸ email 28/9/2016, Solonas Papapolyviou, Department of Customs and Excise, Ministry of Finance (tel. +357 22 601756, spapapolyviou@customs.mof.gov.cy)

³⁶ email 28/9/2016, Solonas Papapolyviou, Department of Customs and Excise, Ministry of Finance (tel. +357 22 601756, spapapolyviou@customs.mof.gov.cy)

2. Paraffin wax use	0.06	0.08	0.19	0.06	0.06	0.07	0.07
3. Other: Urea used as a							
catalyst	0.03	0.10	0.17	0.25	0.31	0.39	0.53

Gg CO ₂	2021	2022	2023		
D. Non-energy products from fuels and solvent			5.38		
use	5.03	5.13			
1. Lubricant use	4.47	4.68	4.90		
2. Paraffin wax use	0.05	0.01	0.08		
3. Other: Urea used as a					
catalyst	0.51	0.44	0.40		

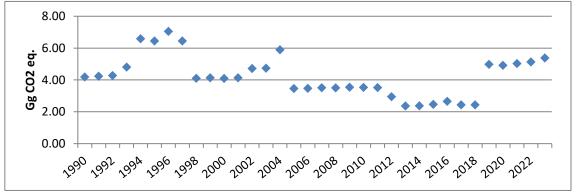


Figure 4.6. Emissions from non-energy Products from Fuels and Solvent Use (2D) 1990–2023

4.4.2. Methodological issues

The methods for calculating carbon dioxide (CO_2) emissions from non-energy product uses (paraffin waxes) follow a basic formula, in which the emission factor is composed of a carbon content factor and a factor that represents the fraction of fossil fuel carbon that is Oxidised During Use (ODU), e.g., actual co-combustion of the fraction of lubricants that slips into the combustion chamber of an engine. This concept is only applied to oxidation during first use of paraffin waxes, and not to subsequent uses (e.g., energy recovery). Emissions from the use of lubricants have been calculated with COPERT5.

The production and use of asphalt for road paving and roofing and the use of solvents derived from petroleum and coal are either not sources or are negligible sources of direct greenhouse gas emissions.

4.4.2.1. Lubricant Use (2D1)

The use of lubricants in engines is primarily for their lubricating properties and associated emissions are therefore considered as non-combustion emissions and are reported under this category. However, in the case of 2-stroke engines, where the lubricant is mixed with another fuel and thus on purpose co-combusted in the engine, the emissions are estimated and reported as part of the combustion emissions in the Energy Sector (1A3b).

Lubricating oil statistics usually cover not only use of lubricants in engines but also oils and greases for industrial purposes and heat transfer and cutting oils. After the TERT recommendation (CY-1A3b-2021-0002), emissions from the use of lubricants in engines have been calculated with COPERT 5. The emissions from the use of lubricants in two-stroke engines were reported under 1A3b (Table 3.20). The rest of the emissions are reported under this category (Table 4.14 and Table 3.33). Figure 4.7 shows the consumption of lubricants for non-energy product uses (COPERT5).

Table 4.14. Emissions from the use of lubricants (2D1)

	1990	1991	1992	1993	1994	1995	1996
Emissions (GgCO ₂)	4.13	4.13	4.13	4.60	6.37	6.37	6.96

	400=	4000	4000	***	0004	2002	2002
	1997	1998	1999	2000	2001	2002	2003
Emissions (GgCO ₂)	6.38	4.02	4.03	4.03	4.03	4.63	4.63
	2004	2005	2006	2007	2008	2009	2010
Emissions (GgCO ₂)	5.81	3.46	3.46	3.44	3.44	3.45	3.46
	2011	2012	2013	2014	2015	2016	2017
Emissions (GgCO ₂)	3.46	2.87	2.29	2.29	2.29	2.30	2.12
	2018	2019	2020	2021	2022	2023	
Emissions (GgCO ₂)	2.07	4.52	4.33	4.47	4.68	4.90	

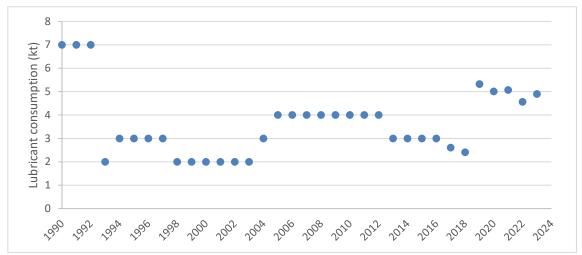


Figure 4.7. Lubricant consumption 1990–2023 (kt)

4.4.2.2. Paraffin Wax Use (2D2)

CO₂ emissions from use of paraffin wax have been estimated using the Tier 1 methodology proposed by the 2006 IPCC guidelines (eqn. 5.4, pg. 5.11, vol.3, IPCC 2006 guidelines):

 CO_2 Emissions = PW •CCWax •ODUWax • 44 /12

Where:

 CO_2 Emissions = CO_2 emissions from waxes, tonne CO_2 ;

PW = total wax consumption, TJ;

CCWax = carbon content of paraffin wax (20; default, 2006 IPCC guidelines, vol.2, pg.1.21), tonne C/TJ (= kg C/GJ) and

ODUWax = Oxidised During Use factor for paraffin wax, fraction (0.2; default, 2006 IPCC guidelines, vol.3, pg.5.12).

Activity data (Table 4.15) was obtained in kg from the imports' statistics of the Statistical Service. It was assumed that all imported quantities have been consumed in the year the import has taken place. Imports data was converted to TJ using the default NCV for paraffin wax of 40.2, as proposed by the 2006 IPCC guidelines (vol.2, pg.1.18).

Table 4.15. Imports of paraffin wax in Cyprus (kt)

	1990	1991	1992	1993	1994	1995	1996
Imports of paraffin wax (kt)	0.108	0.179	0.252	0.354	0.362	0.134	0.159
	1997	1998	1999	2000	2001	2002	2003
Imports of paraffin wax (kt)	0.117	0.147	0.179	0.111	0.178	0.155	0.185
	2004	2005	2006	2007	2008	2009	2010

Imports of paraffin wax (kt)	0.150	0.005	0.028	0.095	0.060	0.099	0.049
	2011	2012	2013	2014	2015	2016	2017
Imports of paraffin wax (kt)	0.035	0.071	0.074	0.099	0.131	0.320	0.100
	2018	2019	2020	2021	2022	2023	
Imports of paraffin wax (kt)	0.105	0.120	0.113	0.086	0.163	0.130	

4.4.2.3. Other Non-energy Products from Fuels and Solvent Use (2.D.3)

The use of solvents manufactured using fossil fuels as feedstocks can lead to evaporative emissions of various non-methane volatile organic compounds (NMVOC), which are subsequently further oxidised in the atmosphere.

Emissions of NMVOCs are reported in this category. NMVOCs are indirect greenhouse gases which result from the use of solvents and various other volatile compounds. The indirect CO_2 emissions associated with these NMVOC emissions are reported under this category. Previously, these estimates were reported in the CRT Tables as direct CO_2 and included in Cyprus' national total.

Methodologies for estimating these NMVOC emissions can be found in the EMEP/EEA Emission Inventory Guidebook (EEA, 2016). Further information on emissions of NMVOCs and indirect CO_2 emissions can be found in Chapter 9 of this report.

4.4.2.4. Other: Urea used as a catalyst (2.D.3)

Emissions of CO_2 are estimated from consumption of urea by road vehicles with relevant types of catalytic converters for control of pollutant emissions and are reported under 2D3. Selective catalytic reduction (SCR) technology was introduced in modern vehicles in order to ensure compliance with the EU regulations on air pollution reduction. The SCR technology injects urea solution into the exhaust line as a percentage of fuel use of a vehicle to curb NO_x emissions. The urea solution then releases small amounts of CO_2 and of NH_3 to make a reaction with NO_x to break it down into N_2 and H_2O . However, this small amount of CO_2 from this process causes an additional amount of CO_2 in the exhaust system.

The report considers SCR from Euro IV technologies and thus urea solution as an additive has been estimated for different years according to the penetration of technologies from Euro IV onwards for different categories of vehicles in Cyprus. Euro IV and V Coaches/Buses and HDV penetrated the Cypriot market in 2007 and 2008 respectively. Urea additive for passenger cars and LDVs have been included from 2015 onwards for Euro 6 vehicles.

The 2006 IPCC Guidelines specify two approaches for estimating CO_2 emissions from urea consumption. This is either from statistics on total urea sales or by estimating urea consumption as a proportion of the amount of fuel consumed. There are no statistics on urea sales in Cyprus, so the approach based on fuel consumption is used. Not all diesel vehicles use urea so it is necessary to know the amount of fuel consumed specifically from those vehicles with the relevant exhaust after treatment technology that require urea injection.

Urea is used by HGVs and buses in Cyprus manufactured to Euro IV, V and VI standards. An assumption was made that 75% of Euro IV and V buses and HGVs and 100% of Euro VI vehicles are equipped with SCR. Fuel consumption was calculated using the proportionality of these types of vehicles to the total Cypriot diesel fleet and diesel consumption from road transport data from the Energy Balance. Following the EMEP/EEA Guidebook, urea consumption is assumed to be 4% of fuel consumption for a Euro IV bus or HGV, 6% for Euro V and 3.5% for Euro VI.

Then the recommended equation by the 2006 IPCC guidelines was used:

$$Emissions = Activity * \frac{12}{60} * Purity * \frac{44}{12}$$

Here, Activity means amount of urea-based additive consumed for use in SCR; Purity means the mass fraction of Urea in the urea additive; and the Default value for Purity (if country specific value is not available) is 0.325.

The diesel consumption used is the same as presented in Table 3.18. The resulting activity data used is presented in Table 4.16.

Table 4.16. Activity data used for estimation of emissions from Urea used as a catalyst

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Activity (kt)	0	0	0	0	0	0	0	0	0	0

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Activity (kt)	0	0	0	0	0	0	0	0.079	0.112	0.154

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Activity (kt)	0.181	0.197	0.184	0.142	0.122	0.432	0.725	1.060	1.280	1.621

	2020	2021	2022	2023			
Activity (kt)	1.605	1.805	1.661	1.686			

4.4.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.4.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.4.5. Category-specific recalculations

Emissions for 2D3 Other: Urea used as a catalyst category have been recalculated for the time period 2020-2022 due to updated values of diesel consumption by vehicles using urea from COPERT.

The impact of recalculations is presented in the following table.

Table 4.17. 2D3 Other: Urea used as a catalyst category recalculation

2D3 (Gg CO ₂)	2020	2021	2022	
2024 submission	0.3789	0.4380	0.4384	
2025 submission	0.3825	0.4301	0.3959	
change	0.95%	-1.80%	-9.71%	

4.4.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.5. Electronic Industry Emissions (2.E)

This source category is not occurring in Cyprus.

4.6. Product uses as substitutes for ozone depleting substances (2.F)

Hydrofluorocarbons (HFCs) and, to a very limited extent, perfluorocarbons (PFCs), are serving as alternatives to ozone depleting substances (ODS) being phased out under the Montreal Protocol. Current and expected application areas of HFCs and PFCs include: refrigeration and air conditioning, fire suppression and explosion protection, aerosols, solvent cleaning, foam blowing; and other applications. HFCs and PFCs are not controlled by the Montreal Protocol because they do not contribute to depletion of the stratospheric ozone layer. HFCs are chemicals containing only hydrogen, carbon, and fluorine. HFCs and PFCs have high global warming potentials (GWPs) and, in the case of PFCs, long atmospheric residence times.

4.6.1. Category description

Emissions have been estimated for the following source categories of 2.F: 2F1 (Refrigeration and air conditioning), 2F2 (Foam Blowing Agents), 2F3 (Fire Protection), and 2F4 (Aerosols). Due to data unavailability, emissions have been estimated using a country-specific methodology for source categories 2F2, 2F3 and 2F4, while for source category 2F1 the calculation of emissions is based on Tier 2a methodology (see next section). According to the available information, manufacturing of refrigeration and air-conditioning equipment does not occur in Cyprus, therefore the activity is reported NO. Moreover, Solvents (2F5) and Other Applications (2F6) are also not occurring in Cyprus. The total emissions by gas and source for the period 1990–2021 are presented in Table 4.18 and Figure 4.8.

Table 4.18. Emissions from consumption of halocarbons 1990–2023 (Gg CO₂ eq.)

	1990	2000	2005	2010	2011	2012	2013
F. Product uses as substitutes for ODS	NO	61.52	121.85	198.03	216.05	220.76	224.32
1. Refrigeration and air							
conditioning	NO	58.74	114.66	185.48	202.41	206.48	210.55
2. Foam blowing agents	NO	0.08	0.46	0.92	1.01	1.08	1.02
3. Fire protection	NO	0.53	2.17	7.01	8.17	8.68	8.82
4. Aerosols	NO	2.18	4.56	4.62	4.46	4.52	3.93
5. Solvents	NO	NO	NO	NO	NO	NO	NO
6. Other applications	NO	NO	NO	NO	NO	NO	NO
HFC-32 (t)	NO	4.43	10.88	18.80	22.21	22.90	23.13
HFC-125 (t)	NO	4.98	12.42	21.37	25.09	25.98	26.31
HFC-134a (t)	NO	30.40	50.30	75.36	76.45	76.35	77.69
HFC-143a (t)	NO	0.56	1.57	2.62	2.90	3.12	3.22
HFC-227ea (t)	NO	0.16	0.65	2.09	2.44	2.59	2.63
Total (Gg CO ₂ eq.)	NO	61.52	121.85	198.03	216.05	220.76	224.32

	2014	2015	2016	2017	2018	2019	2020
F. Product uses as substitutes for ODS	231.73	243.96	264.78	285.96	305.83	330.00	336.65
1. Refrigeration and air conditioning	217.86	231.58	251.92	272.12	292.59	316.98	323.04
2. Foam blowing agents	1.03	1.05	1.07	1.10	1.14	1.20	1.21
3. Fire protection	9.32	8.21	8.90	9.57	8.80	8.57	9.31
4. Aerosols	3.52	3.12	2.89	3.17	3.29	3.26	3.10
5. Solvents	NO						
6. Other applications	NO						
HFC-32 (t)	24.11	26.45	29.88	33.06	36.37	40.59	41.43
HFC-125 (t)	27.41	30.03	33.96	37.51	41.07	45.59	46.31
HFC-134a (t)	79.34	80.97	83.25	87.37	91.97	96.56	99.57
HFC-143a (t)	3.34	3.62	4.12	4.48	4.72	4.98	4.80

HFC-227ea (t)	2.78	2.45	2.66	2.86	2.63	2.56	2.78
Total (Gg CO ₂ eq.)	231.73	243.96	264.78	285.96	305.83	330.00	336.65

	2021	2022	2023		
F. Product uses as substitutes for ODS	364.61	394.92	414.96		
	304.01	394.92	414.90		
1. Refrigeration and air	271.10	201.10	101.25		
conditioning	351.18	381.40	401.36		
2. Foam blowing agents	1.25	1.27	1.28		
3. Fire protection	9.40	9.27	9.35		
4. Aerosols	2.79	2.98	2.96		
5. Solvents	NO	NO	NO		
6. Other applications	NO	NO	NO		
HFC-32 (t)	47.53	52.88	55.80		
HFC-125 (t)	52.79	58.57	62.08		
HFC-134a (t)	100.92	106.05	108.99		
HFC-143a (t)	5.10	5.48	6.11		
HFC-227ea (t)	2.80	2.77	2.79		
Total (Gg CO ₂ eq.)	364.61	394.92	414.96		

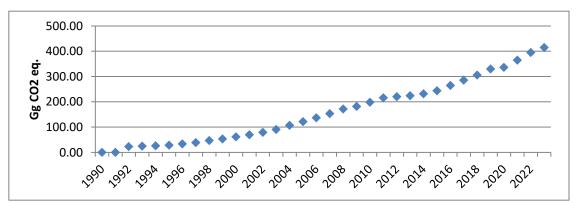


Figure 4.8. Emissions from consumption of halocarbons 1990–2023

4.6.2. Methodological issues

Due to insufficient information for a long period of time, it was decided to use a country-specific methodology for the estimation of the emissions from the sources 2F2, 2F3 and 2F4.

<u>2F1</u>

The calculation of GHG emissions from Refrigeration and Air Condition (RAC) systems is based on Tier 2a methodology suggested by the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC Guidelines). The Tier 2a methodology:

- a) Considers the phase out or the phase down of CFCs and HCFCs depending on the Montreal Protocol schedule and possible national or regional regulations, in order to establish the refrigerant choice for all applications;
- b) Defines the typical refrigerant charge and the equipment lifetime per sub-application;
- c) Defines the emission factors for refrigerant charge, during operation, at servicing and at end-of-life.

RAC systems have been classified into six sub-application categories, listed below:

i. Domestic refrigeration,

- ii. Commercial refrigeration including different types of equipment, from vending machines to centralised refrigeration systems in supermarkets,
- iii. Industrial refrigeration including food processing and cold storage,
- iv. Transport refrigeration including equipment and systems used in refrigerated trucks, containers, reefers, and wagons,
- v. Stationary air conditioning including air-to-air systems, heat pumps, and chillers for building and residential applications,
- vi. Mobile air-conditioning systems used in passenger cars, truck cabins, buses, and trains.

Refrigerant emissions at a year **t** from each of the six sub-applications of RAC systems were calculated separately. These emissions result from:

 $E_{containers,t}$ = emissions related to the management of refrigerant containers

 $E_{charge,t}$ = emissions related to the refrigerant charge: connection and disconnection of the refrigerant container and the new equipment to be charged

 $E_{lifetime,t}$ = annual emissions from the banks of refrigerants associated with the six sub-applications during operation (fugitive emissions and ruptures) and servicing

 $E_{end-of-life,t} = emissions$ at system disposal

Equations for estimating average emission rates for the above-mentioned sectors are outlined below and were calculated on a refrigerant-by-refrigerant basis for all equipment.

Refrigerant management of containers

$$E_{containers,t} = RM_t * \frac{c}{100}$$

Where:

E_{containers, t} = emissions from all HFC containers in year t, kg

 $RM_t = HFC$ market for new equipment and servicing of all refrigeration application in year t, kg c = emission factor of HFC container management of the current refrigerant market, percent

Refrigerant charge emissions of new equipment

$$E_{charge,t} = M_t * \frac{k}{100}$$

Where:

E_{charge, t} = emissions during system manufacture/assembly in year t, kg

M_t = amount of HFC charged into new equipment in year t (per sub-application), kg

k = emission factor of assembly losses of the HFC charged into new equipment (per sub-application), percent

Emissions during lifetime (operation and servicing)

$$E_{operation,2017} = B_{2017} * \frac{x}{100}$$

Where:

 $E_{lifetime, t}$ = amount of HFC emitted during system operation in year t, kg

B_t = amount of HFC banked in existing systems in year t (per sub-application), kg

x = annual emission rate (i.e., emission factor) of HFC of each sub-application bank during operation, accounting for average annual leakage and average annual emissions during servicing, percent

Emissions at end-of-life

$$E_{end-of-life,t} = M_{t-d} * \frac{p}{100} * (1 - \frac{n_{rec,d}}{100})$$

Where:

 $E_{end\text{-}of\text{-}life, t}$ = amount of HFC emitted at system disposal in year t, kg

 M_{t-d} = amount of HFC initially charged into new systems installed in year (t-d), kg

p = residual charge of HFC in equipment being disposed of expressed in percentage of full charge, percent $\eta_{rec,d}$ = recovery efficiency at disposal, which is the ratio of recovered HFC referred to the HFC contained in the system, percent

The emission factors used are predominately the defaults proposed by the IPCC guidelines. These default values reflect the current state of knowledge about the industry and are provided as ranges rather than point estimates.

Other data, assumptions and emission parameters used in preparation of RAC systems emissions inventory for each sub-category are listed below.

Mobile Air Conditioning (MAC) systems

Activity Data / Emission Factors	Source	
Registration of vehicles at the end of each year	Statistical Service of Cyprus	
Container Heels (c)		
Heels from service containers are recovered, therefore	IPCC guidelines	
$E_{containers,t} = 0$		
Nominal charge of each MAC (m _t)		
• For passenger cars m _t =0.7 kg,	IPCC guidelines	
• For trucks m _t =1.0 kg,	ircc guidennes	
• For buses m _t =10 kg		
Assembly Losses (k)		
• MAC systems are imported pre-charged, therefore E _{charge, t} =	IPCC guidelines	
0		
Lifetime (d)	IPCC guidelines	
• d = 12 years	if ee guidelines	
Annual Emission Rate (x)		
• This factor accounts for both leaks from equipment as well		
as any emissions during service	IPCC guidelines	
o Annual Emissions Rate from leaks = 10%	in de gardennes	
o Annual Emission Rate during servicing = 2%		
o x = 12%		
Residual Charge in MACs Disposed (p)	IPCC guidelines	
• p = 25%		
Recovery Efficiency (n _{rec}) [%]	IPCC guidelines	
$\bullet n_{\rm rec} = 25\%$	11 00 80100111100	

Other assumptions

- All new vehicles sold from January 2017 uses R1234yf or R774 as MAC refrigerant (MACs Directive 2006/40/EC⁴⁰)
- Introductory year of R134a as MAC refrigerant was 1992
- Vehicles with MAC systems for year 1996-2001 was 60% ⁴¹. The same percentage (60%) was kept for years 1992-1995. For the following years, linear interpolation was used.
- MACs are serviced every 5 years

Domestic Refrigeration (DR)

Activity Data / Emission Factors	Source
Number of households	Statistical Service of Cyprus
1	•

⁴⁰ https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0040

-

⁴¹ Establishing the Leakage Rates of MACs, 2013, DG Environment (EC)

Number of refrigerators per households	Demetriou, D., Polatides, H.,
1.17 refrigerators per household	Haralambopoulos, D, (2010).
1.17 Terrigerators per nouseriora	Integrated Energy Planning for the
	Residential Sector: The case-study
	of Cyprus. Energy Sources, Part B:
	Economics, Planning and Policy.
Number of freezers per households	Demetriou, D., Polatides, H.,
0.30 freezers per household	Haralambopoulos, D, (2010)
Container Heels (c)	
Generally refrigerators and freezers are not serviced during	IPCC guidelines
their lifetime, therefore $E_{containers,t} = 0$	
Nominal charge of each refrigerator and freezer (m _t)	IPCC guidelines
• m=0.3 kg	if CC guidennes
Assembly Losses (k)	
• Refrigerators and freezers are imported pre-charged,	IPCC guidelines
therefore $E_{charge, t} = 0$	
Lifetime (d)	IPCC guidelines
• d = 20 years	ii ee guidennes
Annual Emission Rate (x)	IPCC guidelines
• $x = 0.3\%$	if ee guidennes
Residual Charge in Refrigerators and Freezers Disposed (p)	IPCC guidelines
• p = 40%	ii ee guideiiies
Recovery Efficiency (n _{rec}) [%]	IPCC guidelines
$\bullet n_{\rm rec} = 35\%$	ii ee guidelliles

- Refrigerants used for domestic refrigerators and freezers (with bold the refrigerants used for the calculation of the emissions): **R134a**, R600a, R12
- Introductory year of R134a as DR refrigerant was 1992

Transport Refrigeration (TR)

Activity Data / Emission Factors	Source			
Number of TRs sold each year	Department of Road Transport,			
•	Cyprus			
Container Heels (c)				
Heels from service containers are recovered, therefore	IPCC guidelines			
$E_{containers,t} = 0$				
Nominal charge of each TR (m _t)	IPCC guidelines			
• m=4.5 kg	ii ee guideiiies			
Assembly Losses (k)	IPCC guidelines			
• TR systems are imported pre-charged, therefore $E_{charge, t} = 0$	if ee guidenies			
Lifetime (d)	IPCC guidelines			
• d = 15 years	ii ee guidennes			
Annual Emission Rate (x)				
• This factor accounts for both leaks from equipment as well				
as any emissions during service	IPCC guidelines			
 Annual Emissions Rate from leaks = 15% 	in the guidennes			
o Annual Emission Rate during servicing = 10%				
• x = 25%				
Residual Charge in TRs Disposed (p)	IPCC guidelines			
• p = 75%	in de gardennes			
Recovery Efficiency (n _{rec}) [%]	IPCC guidelines			
• $n_{rec} = 25\%$	If the guidennes			
Other assumptions				
• Refrigerants used for TRs: R134a, R404A				
TRs are serviced each year				

Industrial Refrigeration (IR)

Activity Data / Emission Factors	Source	
Bank in Existing Equipment (B _t) for the year 2023 (using	Maria Matsi, Economic Officer,	
national GDP)	Directorate of Economic Research	
• 12435 kg (R404A)	and EU Affairs, Ministry of	
• 108 kg (R134a)	Finance. Tel. no.: +357 22 60	
• 959 kg (R507A)	1231. Email: mmatsi@mof.gov.cy	
Bank in Existing Equipment (B _t) for the year 2017		
• 9016 kg (R404A)	Industrial and Commercial RAC	
• 341 kg (R134a)	Inventory 2017, Cyprus	
• 360 kg (R507A)		
Bank in Existing Equipment (B _t) for previous years	Maria Matsi, Economic Officer,	
• The national GDP was used to determine the banks for	Directorate of Economic Research	
previous years to complete the time-series	and EU Affairs, Ministry of	
	Finance. Tel. no.: +357 22 60	
	1231. Email: mmatsi@mof.gov.cy	
Container Heels (c)		
Heels from service containers are recovered, therefore	IPCC guidelines	
$E_{\text{containers},t} = 0$		
Nominal charge of each IR (m _t)	IPCC guidelines	
• m=100 kg		
Assembly Losses (k)	IPCC guidelines	
• IR systems are imported pre-charged, therefore $E_{charge, t} = 0$		
Lifetime (d)	IPCC guidelines	
• d = 20 years		
Annual Emission Rate (x)		
This factor accounts for both leaks from equipment as well		
as any emissions during service O Annual Emissions Rate from leaks = 10%	IPCC guidelines	
 Annual Emissions Rate from leaks = 10% Annual Emission Rate during servicing =5% 		
• x = 15%		
Residual Charge in IRs Disposed (p)		
• p = 75%	IPCC guidelines	
Recovery Efficiency (n _{rec}) [%]		
• $n_{rec} = 35\%$	IPCC guidelines	

Other assumptions

- Refrigerants used for IRs (with bold the refrigerants used for the calculation of the emissions): **R404A**, R22, **R134a**, **R507A**, R434A
- Introductory year of R404A as IR refrigerant was 1996
- Introductory year of R134a as IR refrigerant was 1992
- Introductory year of R507A as IR refrigerant was 2012
- IRs are serviced each year

Commercial Refrigeration (CR)

Activity Data / Emission Factors	Source
Bank in Existing Equipment (B _t) for the year 2023 (using national GDP)	
 46358 kg for Stand-alone Commercial Applications (R404A) 11589 kg for Medium & Large Commercial Refrigeration (R404A) 3810 kg for Stand-alone Commercial Applications (R134A) 952 kg for Medium & Large Commercial Refrigeration 	Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
(R134A)	

 2019 kg for Stand-alone Commercial Applications (R410A) 505 kg for Medium & Large Commercial Refrigeration (R410A) 3090 kg for Stand-alone Commercial Applications (R407C) 772 kg for Medium & Large Commercial Refrigeration (R407C) 3000 kg for Stand-alone Commercial Applications (R507A) 750 kg for Medium & Large Commercial Refrigeration (R507A) 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 1148 kg for Stand-alone Commercial Applications (R410A) 1142 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_i) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c) Heels from service containers are recovered, therefore IPCC guidelines
 505 kg for Medium & Large Commercial Refrigeration (R410A) 3090 kg for Stand-alone Commercial Applications (R407C) 772 kg for Medium & Large Commercial Refrigeration (R407C) 3000 kg for Stand-alone Commercial Applications (R507A) 750 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B₁) for the year 2017 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 1148 kg for Medium & Large Commercial Refrigeration (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium
 3090 kg for Stand-alone Commercial Applications (R407C) 772 kg for Medium & Large Commercial Refrigeration (R407C) 3000 kg for Stand-alone Commercial Applications (R507A) 750 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B₁) for the year 2017 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial R6
 772 kg for Medium & Large Commercial Refrigeration (R407C) 3000 kg for Stand-alone Commercial Applications (R507A) 750 kg for Medium & Large Commercial Refrigeration (R507A) 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B₁) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 3000 kg for Stand-alone Commercial Applications (R507A) 750 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_i) for the year 2017 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_i) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 750 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_t) for the year 2017 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_t) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
Bank in Existing Equipment (B ₁) for the year 2017 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B ₁) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 37862 kg for Stand-alone Commercial Applications (R404A) 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_t) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 9465 kg for Medium & Large Commercial Refrigeration (R404A) 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B₁) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 2851 kg for Stand-alone Commercial Applications (R134A) 713 kg for Medium & Large Commercial Refrigeration (R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B_t) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
(R134A) 790 kg for Stand-alone Commercial Applications (R410A) 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B ₁) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
(R410A) • 198 kg for Medium & Large Commercial Refrigeration (R410A) • 1148 kg for Stand-alone Commercial Applications (R407C) • 287 kg for Medium & Large Commercial Refrigeration (R407C) • 1122 kg for Stand-alone Commercial Applications (R507A) • 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B _t) for previous years • The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 198 kg for Medium & Large Commercial Refrigeration (R410A) 1148 kg for Stand-alone Commercial Applications (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (B₁) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c)
 (R407C) 287 kg for Medium & Large Commercial Refrigeration (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (Bt) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 (R407C) 1122 kg for Stand-alone Commercial Applications (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (Bt) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
 (R507A) 280 kg for Medium & Large Commercial Refrigeration (R507A) Bank in Existing Equipment (Bt) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c)
(R507A) Bank in Existing Equipment (B _t) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series The national GDP was used to determine the banks for previous years in order to complete the time-series Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c)
The national GDP was used to determine the banks for previous years in order to complete the time-series Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c)
previous years in order to complete the time-series and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy Container Heels (c)
$E_{\text{containers,t}} = 0$
Nominal charge of each CR (m _t)
- m-5 tra for Stand along Communical Applications
• m= 100 kg for Medium & Large Commercial
Refrigeration
Assembly Losses (k)
• Stand-alone Commercial Applications systems are
imported pre-charged, therefore E _{charge, t} = 0 Modium & Large Commercial Refrigeration systems are IPCC guidelines
Medium & Large Commercial Refrigeration systems are
charged on-site O Assembly Losses = 1.5%
Lifetime (d)
• d = 12 years IPCC guidelines
Annual Emission Rate (x)
This factor accounts for both leaks from equipment as
well as any emissions during service IPCC guidelines
Stand-alone Commercial Applications
o Annual Emissions Rate from leaks = 8%

0	Annual Emission Rate during servicing =2%					
0	100/					
 Mediur 	n & Large Commercial Refrigeration					
0	Annual Emissions Rate from leaks = 15%					
0	Annual Emission Rate during servicing =5%					
0	x = 20%					
Residual Ch	arge in CRs Disposed (p)					
• p = 409	6 for Stand-alone Commercial Applications	IPCC guidelines				
• p = 759	• p = 75% for Medium & Large Commercial Refrigeration					
Recovery E	fficiency (n _{rec}) [%]					
• $n_{rec} = 3$	• n _{rec} = 35% for Stand-alone Commercial Applications IPCC guidelines					
• $n_{rec} = 3$	• n _{rec} = 35% for Medium & Large Commercial					
Refrige	ration					

- Refrigerants used for IRs (with bold the refrigerants used for the calculation of the emissions):
 R404A, R134A, R22, R410A, R407C, R507A [Industrial and Commercial RAC Inventory 2017, Cyprus].
- Introductory year of R404A as CR refrigerant was 1996
- Introductory year of R134a as CR refrigerant was 1992
- Introductory year of R410A as CR refrigerant was 2012
- Introductory year of R407A as CR refrigerant was 2012
- Introductory year of R507A as CR refrigerant was 2012
- Stand-alone Commercial Applications accounts approximate 80% of the total CR systems [Industrial and Commercial RAC Inventory 2017, Cyprus]
- Medium & Large Commercial Refrigeration accounts approximate 20% of the total CR systems [Industrial and Commercial RAC Inventory 2017, Cyprus]
- Stand-alone Commercial Applications systems are serviced every 5 years
- Medium & Large Commercial Refrigeration systems are serviced each year

Stationary Air Conditioning systems

Residential A/C	
Activity Data / Emission Factors	Source
Number of households	Statistical Service of Cyprus
Percentage of households having split A/C units	Demetriou, D., Polatides, H.,
• 87%	Haralambopoulos, D, (2010).
	Integrated Energy Planning for the
	Residential Sector: The case-study
	of Cyprus. Energy Sources, Part
	B: Economics, Planning and
	Policy.
Number of A/C units per households	Demetriou, D., Polatides, H.,
• 2.65 A/C units per household	Haralambopoulos, D, (2010).
Container Heels (c)	
Heels from service containers are recovered, therefore	IPCC guidelines
$E_{containers,t} = 0$	
Nominal charge of each Residential A/C unit (m _t)	IPCC guidelines
• m=3 kg	If CC guidennes
Assembly Losses (k)	IDCC guidalines
• A/C units are imported pre-charged, therefore $E_{charge, t} = 0$	IPCC guidelines
Lifetime (d)	IPCC guidelines
• d = 15 years	If CC guidennes
This factor accounts for both leaks from equipment as	
well as any emissions during service	
 Annual Emissions Rate from leaks = 5% 	IPCC guidelines
 Annual Emission Rate during servicing =2% 	
• x = 7%	

Residual Charge in Residential A/C units Disposed (p) • p = 40%	IPCC guidelines
Recovery Efficiency (n _{rec}) [%] • n _{rec} = 40%	IPCC guidelines

- Refrigerants used for Residential A/C units (with bold the refrigerants used for the calculation
 of the emissions): R410A, R407C, R22 [Based on results from Industrial and Commercial RAC
 Inventory 2017, Cyprus]
- Introductory year of R407A as refrigerant was 1996
- Introductory year of R407C as refrigerant was 1996
- Residential A/C units are serviced every 5 years

Commercial A/C, including heat pumps	
Activity Data / Emission Factors	Source
Bank in Existing Equipment (B _t) for the year 2023 (using national GDP) • 33838 kg (R410A) • 23185 kg (R407C)	Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
Bank in Existing Equipment (B _t) for the year 2017 • 29763 kg (R410A) • 21923 kg (R407C)	Industrial and Commercial RAC Inventory 2017, Cyprus
Bank in Existing Equipment (B _t) for previous years The national GDP was used to determine the banks for previous years in order to complete the time-series	Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy
Container Heels (c) • Heels from service containers are recovered, therefore $E_{containers,t} = 0$	IPCC guidelines
Nominal charge of each Commercial A/C unit (m _t) • m=3 kg	IPCC guidelines
Assembly Losses (k) • A/C units are imported pre-charged, therefore E _{charge, t} = 0	IPCC guidelines
Lifetime (d) • d = 15 years	IPCC guidelines
 This factor accounts for both leaks from equipment as well as any emissions during service Annual Emissions Rate from leaks = 5% Annual Emission Rate during servicing =2% x = 7% 	IPCC guidelines
Residual Charge in Commercial A/C units Disposed (p) • p = 40%	IPCC guidelines
Recovery Efficiency (n_{rec}) [%] • $n_{rec} = 40\%$	IPCC guidelines

Other assumptions

- Refrigerants used for Commercial A/C units (with bold the refrigerants used for the calculation of the emissions): R410A, R407C, R22 [Industrial and Commercial RAC Inventory 2017, Cyprus]
- Introductory year of R407A as refrigerant was 1996
- Introductory year of R407C as refrigerant was 1996
- Commercial A/C units are serviced every 5 years

Chillers	
Activity Data / Emission Factors	Source

Bank in Existing Equipment (B _t) for the year 2023 (using	Maria Matsi, Economic Officer,
national GDP)	Directorate of Economic Research
• 136626 kg (R410A)	and EU Affairs, Ministry of
• 49077 kg (R407C)	Finance. Tel. no.: +357 22 60
• 38836 kg (R134A)	1231. Email: mmatsi@mof.gov.cy
Bank in Existing Equipment (B _t) for the year 2017	
• 78313 kg (R410A)	Industrial and Commercial RAC
• 28131 kg (R407C)	Inventory 2017, Cyprus
• 29063 kg (R134A)	
Bank in Existing Equipment (B _t) for previous years	Maria Matsi, Economic Officer,
The national GDP was used to determine the banks for	Directorate of Economic Research
previous years to complete the time-series	and EU Affairs, Ministry of
	Finance. Tel. no.: +357 22 60
	1231. Email: mmatsi@mof.gov.cy
Container Heels (c)	mag
Heels from service containers are recovered, therefore	IPCC guidelines
$E_{\text{containers,t}} = 0$	
Nominal charge of each chiller system (m _t)	IPCC guidelines
• m=50 kg	
Assembly Losses (k)	IDCC - 11-11
• Chiller systems are imported pre-charged, therefore E _{charge} ,	IPCC guidelines
t = 0 Lifetime (d)	
• d = 20 years	IPCC guidelines
 This factor accounts for both leaks from equipment as 	
well as any emissions during service	
• Annual Emissions Rate from leaks = 5%	IPCC guidelines
 Annual Emission Rate during servicing =5% 	in ee guidennes
• $x = 10\%$	
Residual Charge in Chiller systems Disposed (p)	
• p = 90%	IPCC guidelines
Recovery Efficiency (n _{rec}) [%]	mag
$\bullet n_{\rm rec} = 50\%$	IPCC guidelines

- Refrigerants used for Chiller systems (with bold the refrigerants used for the calculation of the emissions): R410A, R407C, R134a, R22 [Industrial and Commercial RAC Inventory 2017, Cyprus]
- Introductory year of R407A as refrigerant was 1996
- Introductory year of R407C as refrigerant was 1996
- Introductory year or R134a as refrigerant was 1992
- Chiller systems are serviced every year

The main deficiency identified in preparation of inventory is associated with the lack of reporting obligation for importers of bulk F-gases and F-gas equipment in the early years to establish the time-series for the categories of "Industrial Refrigeration", "Commercial Refrigeration" and "Stationary A/C systems". Data for these categories were established for each year going back to 1950 through a correlation to the annual national GDP.

2F2, 2F3 and 2F4

The methodology applied consisted of the following steps:

(a) The stock emissions from the four sources (2F2, 2F3 and 2F4) for Greece, Italy, Malta and Spain were obtained from the NIR2023 submissions to the UNFCCC for the years 1990-2021 (CRT – Table 2(II).B-H). The four countries were selected due to their similarity in social and economic conditions to Cyprus. Any fluorinated ozone-depleting substances (ODSs) not imported to Cyprus in bulk, as well as emissions other than those from stocks were disregarded in an effort to better historically match and appraise the situation. Therefore, only the following gases have been taken

- into account: HFC-32, HFC-125, HFC-134a, HFC-143a and HFC-227ea.
- (b) The amounts of substitutes of ODSs used by the four model countries were tabulated in tonnes and modified by their 100-year global warming potential (GWP) to calculate the t CO_2 eq. emissions from each source. The substitutes of ODSs applicable to the estimation of emissions from stocks in Cyprus are listed in Table 1.4 (Section 1.4.3). The equivalent emissions are thus calculated as: substitute of ODS amount (t) × GWP (t CO_2 eq/t).
- (c) The t CO₂ eq. emissions from each substance and subcategories are, then, summed per year and divided by the average total population of each country obtained from EUROSTAT (Table 4.19) to provide for the annual per capita emissions (Table 4.20) for the years 1990-2020.
- (d) The annual per capita emissions average of the four countries for 2F1 and only Spain, Italy and Greece for 2F2, 2F3 and 2F4 were, in turn, used to calculate the total t CO₂ equivalent annual emissions from stocks in Cyprus, based on the population of Cyprus for each corresponding year (Table 4.21).
- (e) The following have been taken into account during the calculations:
 - 2F2: According to the information submitted by the four countries and the imports of bulk gases in Cyprus, all emissions have been assumed to be HCF-134a and from closed cells.
 - 2F3: According to the information submitted by the Greece, Italy and Malta, all emissions have been assumed to be HFC-227ea.
 - 2F4: For the source MDI-aerosols, only the emissions from Metered Dose Inhalers have been taken into account, since Aerosols do not occur in Cyprus. Moreover, according to the information submitted by the four countries, all emissions have been assumed to be HFC-134a.

Table 4.19. Average total population used for the estimation of per capita emissions from 2F (2F2, 2F3, 2F4) activities (EUROSTAT)

	1990	1991	1992	1993	1994	1995	1996
Malta	352430	361908	365781	369455	373161	376433	378404
Spain	38853227	38881416	39051336	39264034	39458489	39639726	39808374
Italy	56694360	56744119	56772923	56821250	56842392	56844408	56844197
Greece	10120892	10272691	10367163	10430958	10489871	10535973	10588332

	1997	1998	1999	2000	2001	2002	2003
Malta	381405	384176	386397	388759	391415	394641	397296
Spain	39971329	40143449	40303568	40470182	40665545	41035278	41827838
Italy	56876364	56904379	56909109	56923524	56960692	56987507	57130506
Greece	10629267	10693250	10747768	10775627	10835989	10888274	10915770

	2004	2005	2006	2007	2008	2009	2010
Malta	399867	402668	404999	405616	407832	410926	414027
Spain	42547451	43296338	44009971	44784666	45668939	46239273	46486619
Italy	57495900	57874753	58064214	58223744	58652875	59000586	59190143
Greece	10940369	10969912	11004716	11036008	11060937	11094745	11119289

	2011	2012	2013	2014	2015	2016	2017
Malta	414989	417546	422509	429424	439691	450415	460297
Spain	46667174	46818219	46727890	46512199	46449565	46440099	46528024
Italy	59364690	59394207	59685227	60782668	60795612	60665551	60589445
Greece	11123392	11086406	11003615	10926807	10858018	10783748	10768193

	2018	2019	2020	2021	2022	2023	
Malta	475701	493559	514564	516100	520971	542051	
Spain	46658447	46937060	47332614	47398695	47432893	48085361	
Italy	60483973	59816673	59641488	59236213	59030133	58997201	
Greece	10741165	10724599	10718565	10678632	10459782	10413982	

Table 4.20. Per capital emissions by source from 2F (2F2, 2F3, 2F4) activities (kg CO₂ eq./cap)

	1990	1991	1992	1993	1994	1995	1996	1997
2F2								
Malta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spain	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

AVERAGE 2F2	2014	2015	2016	2017	2018	2019	2020	2021
AVERAGE	1.39	0.03	0.07	5.57	5.01	5.51	3.21	7.57
AMEDACE				1 1/	1 114	, , , , ,	1 /4	
GIECE	7.59	6.38	8.69	5.84	5.64	3.97 5.31	3.95 5.24	4.54
Italy Greece	5.19 8.73	4.99	4.74 9.56	4.63 5.84	4.32 5.62	3.84	3.35	3.13
Spain	7.61	7.65	7.59	6.90	6.47	6.46	5.96	5.75
Malta	8.83	8.37	12.89	4.90	6.15	6.98	7.71	5.61
2F4	0.02	0.65	12.00	4.00				
AVERAGE	3.54	5.14	4.63	8.05	8.56	9.73	10.07	10.18
Greece	11.71	13.50	15.11	16.64	18.12	19.44	20.66	21.64
Italy	1.95	2.32	2.68	9.52	10.49	11.41	12.21	12.94
Spain	0.50	0.60	0.70	0.80	0.91	1.03	1.16	1.26
Malta	0.00	4.14	0.04	5.23	4.73	7.02	6.26	4.90
2F3								
AVERAGE	0.73	0.83	0.91	1.04	1.13	1.20	1.25	1.30
Greece	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.11
Italy	2.18	2.47	2.72	2.94	3.12	3.26	3.37	3.43
Spain	0.15	0.18	0.21	0.21	0.22	0.23	0.24	0.24
ZF Z Malta	0.58	0.63	0.68	0.99	1.13	1.28	1.38	1.42
2F2	2006	2007	2008	2009	2010	2011	2012	2013
	***	606=					• • • •	
AVERAGE	2.38	2.82	3.15	3.11	2.77	3.98	5.32	6.22
Greece	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.46
Italy	0.00	0.71	1.86	2.82	3.01	3.72	4.79	5.02
Spain	9.53	10.56	10.74	9.63	8.07	12.21	9.01	7.81
Malta	0.00	0.00	0.00	0.00	0.00	0.00	7.47	9.57
AVERAGE 2F4	0.39	0.60	0.77	1.04	1.40	1.84	2.62	2.96
Greece	0.39	1.97	2.53 0.77	3.42	4.63 1.40	6.12	7.85	9.83
Italy Grane	0.00	0.31	0.42	0.58	0.75	0.96	1.26	1.60
Spain Italy	0.07	0.11	0.12	0.18	0.23	0.29	0.36	0.43
Malta	0.00	0.00	0.00	0.00	0.00	0.00	1.02	0.00
2F3	0.00	0.00	0.00	0.00	0.00	0.00	1.02	0.00
AVERAGE	0.00	0.02	0.05	0.11	0.19	0.27	0.37	0.52
Greece	0.00	0.00	0.00	0.00	0.01	0.03	0.03	0.03
Italy	0.00	0.09	0.21	0.36	0.54	0.78	1.09	1.47
Spain	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.06
Malta	0.00	0.00	0.00	0.10	0.20	0.29	0.38	0.51
2F2								
	1998	1999	2000	2001	2002	2003	2004	2005
AVERAGE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
AVERAGE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Italy Greece	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spain	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
Malta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2F4	0	0.5-	0.5-	2.5.	0.65	0.55	0.55	:
AVERAGE	0.00	0.00	0.01	0.01	0.03	0.06	0.10	0.15
Greece	0.00	0.00	0.02	0.05	0.13	0.24	0.39	0.57
Italy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spain	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.03
Malta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2F3								
AVERAGE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Italy Greece	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Malta	1.44	1.50	1.51	1.55	1.67	1.79	1.82	2.00
Spain	0.25	0.26	0.26	0.26	0.26	0.27	0.26	0.26
Italy	3.41	3.43	3.45	3.44	3.42	3.42	3.37	3.33
Greece	0.18	0.25	0.33	0.40	0.47	0.55	0.55	0.54
AVERAGE	1.32	1.36	1.39	1.41	1.46	1.50	1.50	1.53
2F3								
Malta	6.59	0.72	2.81	4.67	0.56	0.37	2.70	2.82
Spain	1.25	1.19	1.12	1.03	0.93	0.86	0.78	0.71
Italy	13.45	13.88	14.29	14.91	14.79	14.67	15.11	14.92
Greece	22.18	22.98	23.72	24.19	24.45	23.22	23.34	23.49
AVERAGE	10.87	9.69	10.49	11.20	10.18	9.78	10.48	10.49
2F4								
Malta	3.77	3.69	1.85	2.19	1.61	1.30	1.19	1.04
Spain	5.76	4.55	5.56	5.79	6.07	5.92	5.62	5.07
Italy	3.07	2.67	2.35	3.01	3.75	3.85	3.31	2.52
Greece	3.79	3.81	3.86	3.83	3.82	3.83	3.81	3.81
AVERAGE	4.10	3.68	3.41	3.70	3.81	3.72	3.49	3.11
	2022	2023						
2F2								
Malta	2.12	2.27						
Spain	0.26	0.25						
Italy	3.26	3.11						
Greece	0.53	0.50						
AVERAGE	1.54	1.53						
2F3								
Malta	2.33	2.12						
Spain	0.65	0.58						
Italy	14.61	14.71						
Greece	23.39	23.22						
AVERAGE	10.24	10.16						
2F4								
Malta	1.03	0.68						
Spain	5.89	5.55						
Italy	2.40	2.77						
Greece	3.88	3.88						
AVERAGE	3.30	3.22						

Table 4.21. Total population of Cyprus used for the estimation of emissions from 2F (2F2, 2F3, 2F4) activities

	21 1) West (1926)											
	1990	1991	1992	1993	1994	1995	1996	1997	1998			
Population	572655	587141	603069	619231	632944	645399	656333	666313	675215			

	1999	2000	2001	2002	2003	2004	2005	2006	2007
Population	682862	690497	697549	705539	713720	722893	733067	744013	757916

Ī		2008	2009	2010	2011	2012	2013	2014	2015	2016
	Population	776333	796930	819140	839751	862011	865878	858000	847008	848319

	2017	2018	2019	2020	2021	2022	2023	
Population	854802	864236	875899	888005	896007	904705	920701	

Table 4.22. Contribution of activities to 2F (2F2, 2F3, 2F4) emissions

	1990	1991	1992	1993	1994	1995	1996	1997		
2F2										
Closed cells	100%	100%	100%	100%	100%	100%	100%	100%		
2F3										
Fire protection	100%	100%	100%	100%	100%	100%	100%	100%		
2F4										

[143]

Metered dose inhalers	100%	100%	100%	100%	100%	100%	100%	100%
	1998	1999	2000	2001	2002	2003	2004	2005
2F2								
Closed cells	100%	100%	100%	100%	100%	100%	100%	100%
2F3								
Fire protection	100%	100%	100%	100%	100%	100%	100%	100%
2F4								
Metered dose inhalers	100%	100%	100%	100%	100%	100%	100%	100%
	2006	2007	2008	2009	2010	2011	2012	2013
2F2								
Closed cells	100%	100%	100%	100%	100%	100%	100%	100%
2F3								
Fire protection	100%	100%	100%	100%	100%	100%	100%	100%
2F4								
Metered dose inhalers	100%	100%	100%	100%	100%	100%	100%	100%
	2014	2015	2016	2017	2018	2019	2020	2021
2F2								
Closed cells	100%	100%	100%	100%	100%	100%	100%	100%
2F3								
Fire protection	100%	100%	100%	100%	100%	100%	100%	100%
2F4								
Metered dose inhalers	100%	100%	100%	100%	100%	100%	100%	100%
	2022	2023						
2F2	2022	2023						
Closed cells	100%	100%						
2F3	100%	100%						
Fire protection	100%	100%						
2F4	100%	100%						
Metered dose inhalers	100%	100%						
Metered dose illiaters	100%	100%						

Table 4.23. Total 2F (2F2, 2F3, 2F4) emissions from Stocks estimated for Cyprus (t CO₂ eq.)

	1990	1991	1992	1993	1994	1995	1996	1997	1998
2F2	0	0	0	0	0	0	0	0	16
2F3	0	0	3	8	20	41	66	100	261
2F4	0	0	0	0	0	0	1	12	1610

	1999	2000	2001	2002	2003	2004	2005	2006	2007
2F2	36	79	130	194	267	373	463	546	628
2F3	406	532	729	989	1314	1897	2173	2633	3893
2F4	1924	2175	2173	1956	2842	3843	4557	5647	5189

	2008	2009	2010	2011	2012	2013	2014	2015	2016
2F2	706	830	922	1006	1080	1126	1132	1153	1176
2F3	3596	6416	7012	8168	8680	8818	9324	8209	8896
2F4	6750	4436	4618	4461	4518	3933	3516	3116	2890

	2017	2018	2019	2020	2021	2022	2023	
2F2	1208	1259	1317	1332	1374	1394	1412	
2F3	9573	8798	8567	9310	9396	9267	9353	
2F4	3165	3295	3261	3095	2786	2985	2965	

4.6.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.6.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.6.5. Category-specific recalculations

Emissions for 2F category have been recalculated for:

- i. Commercial Refrigeration (2F1a) due to updated GDP values from the Statistical Service for the period 2018-2022,
- ii. Industrial Refrigeration (2F1c) due to updated GDP values from the Statistical Service for the period 2018-2022
- iii. Stationary A/C Systems (2F1f) due to updated GDP values from the Statistical Service for the period 2018-2022,
- iv. Updated data for categories 2F2, 2F3, 2F4 for 2021 and 2022.

The impact of recalculations is presented in the following table and figure.

Table 4.24. 2F Recalculations

2F (kt CO ₂ eq.)	2018	2019	2020	2021	2022	
2024 submission	304.75	328.20	334.51	359.20	383.73	
2025 submission	305.83	330.00	336.65	364.61	394.92	
change	0.35%	0.55%	0.64%	1.51%	2.92%	

4.6.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.7. Other Product Manufacture and Use (2G)

According to the 2006 IPCC Guidelines, the source category 2G should include emissions for the activities Electrical Equipment (2G1) (Manufacture, Use and Disposal of Electrical Equipment), SF_6 and PFCs from Other Product Uses (2G2) (Military Applications, Accelerators and other), N_2O from Product Uses (2G3) (Medical Applications, Propellant for Pressure and Aerosol Products and other) and Other (2G4). According to the available information the activities that take place in Cyprus are Use of Electrical Equipment (2G1b), Medical Applications of N_2O (2G3a) and Propellant for Pressure and Aerosol Products (2G3b). The total emissions by gas and source for the period 1990–2023 are presented in Table 4.25 and Figure 4.9.

Table 4.25. Emissions from Other Product Manufacture and Use (2G)

	1990	2000	2005	2010	2011	2012	2013
G. Other product manufacture							
and use (Gg CO ₂ eq.)	6.66	13.80	17.40	18.32	20.14	20.77	21.32
1. Electrical equipment	2.73	9.13	12.42	12.70	14.36	14.97	15.58
2. SF ₆ and PFCs from other							
product use	NO	NO	NO	NO	NO	NO	NO
3. N ₂ O from product uses	3.93	4.67	4.98	5.62	5.77	5.80	5.75

4. Other	NO						
$N_2O(t)$	14.84	17.63	18.80	21.22	21.78	21.88	21.68
SF ₆ (t)	0.12	0.39	0.53	0.54	0.61	0.64	0.66
Total (Gg CO ₂ eq.)	6.66	13.80	17.40	18.32	20.14	20.77	21.32

	2014	2015	2016	2017	2018	2019	2020
G. Other product manufacture							
and use (Gg CO ₂ eq.)	21.86	22.47	21.33	21.59	22.76	21.39	24.74
1. Electrical equipment	16.18	16.79	15.61	15.80	16.89	15.44	18.74
2. SF ₆ and PFCs from other							
product use	NO						
3. N ₂ O from product uses	5.67	5.68	5.72	5.79	5.87	5.95	6.00
4. Other	NO						
$N_2O(t)$	21.40	21.44	21.60	21.84	22.13	22.44	22.64
$SF_6(t)$	0.69	0.71	0.66	0.67	0.72	0.66	0.80
Total (Gg CO ₂ eq.)	21.86	22.47	21.33	21.59	22.76	21.39	24.74

	2021	2022	2023	
G. Other product manufacture				
and use (Gg CO ₂ eq.)	23.64	24.00	24.09	
1. Electrical equipment	17.58	17.84	17.84	
2. SF ₆ and PFCs from other				
product use	NO	NO	NO	
3. N ₂ O from product uses	6.06	6.16	6.25	
4. Other	NO	NO	24.09	
N ₂ O (t)	22.86	23.25	23.59	
$SF_6(t)$	0.75	0.76	0.76	
Total (Gg CO ₂ eq.)	22.64	24.00	24.09	

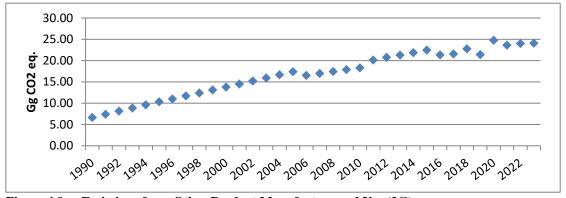


Figure 4.9. Emissions from Other Product Manufacture and Use (2G)

4.7.1. Electrical Equipment (2G1)

SF₆ is used for electrical insulation and for current interruption in equipment used in the transmission and distribution of electricity. The Electricity Authority of Cyprus (EAC) is the owner of both the high and low voltage distribution systems and the owner and operator of the medium and lower voltage distribution systems in Cyprus. SF₆ is used in equipment across all voltage ranges on both the Distribution and Transmission systems owned by EAC Networks.

Electrical equipment containing SF_6 is imported into Cyprus, and at time of purchase is added to the SF_6 installed inventory database. Quantities of SF_6 are needed for servicing and repair of existing equipment. There are no manufacturing emissions.

4.7.1.1. Methodological issues

In the context of the present inventory, emissions are estimated using a Tier 1 method (the default emission-factor approach). In this method, emissions are estimated by multiplying default regional emission factors by the nameplate SF_6 capacity of the equipment at each life cycle stage beyond manufacturing in the country. The following equation was used for the emissions:

Total Emission = Manufacturing Emissions + Equipment Installation Emissions + Equipment Use Emissions + Equipment Disposal Emissions

Where:

Manufacturing emissions = Manufacturing Emission Factor * Total SF₆ consumption by equipment manufacturers (there are no manufacturing emissions in Cyprus)

Equipment installation emissions = Installation Emission Factor * Total nameplate capacity of new equipment filled on site (not at the factory).

Equipment use emissions = Use Emission Factor * Total nameplate capacity of installed equipment. The 'use emission factor' includes emissions due to leakage, servicing, and maintenance as well as failures

Equipment disposal emissions = Total nameplate capacity of retiring equipment * Fraction of SF_6 remaining at retirement

Default emissions factors are taken from Table 8.2 to 8.4 (IPCC Guidelines, pgs. 8.15 & 8.16, volume 3, chapter 8).

SF₆ emissions from electrical equipment are presented in Table 4.26.

Table 4.26. SF₆ emissions (in t) from electrical equipment for the period 1990–2023

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
$SF_6(t)$	0.12	0.14	0.17	0.20	0.23	0.25	0.28	0.31	0.33	0.36	0.39

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
$SF_6(t)$	0.42	0.44	0.47	0.50	0.53	0.49	0.50	0.51	0.53	0.54	0.61

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
$SF_6(t)$	0.64	0.66	0.69	0.71	0.66	0.67	0.72	0.66	0.80	0.75	0.76
	2023										
$SF_6(t)$	0.76										

4.7.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.7.1.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.7.1.4. Category-specific recalculations

No recalculations to report.

4.7.1.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.7.2. SF₆ and PFCs from Other Product Uses (2G2)

No information is available to support that SF₆ and PFCs from Other Product Uses occurs in Cyprus.

4.7.3. N₂O from Product Uses (2G3)

Evaporative emissions of nitrous oxide (N_2O) can arise from various types of product use, including: Medical applications (anaesthetic use, analgesic use and veterinary use), Use as a propellant in aerosol products, primarily in food industry (pressure-packaged whipped cream, etc.), etc. In general, medical applications and use as a propellant in aerosol products are likely to be larger sources than others. In Cyprus these are the two activities identified as consumers of N_2O .

4.7.3.1. Methodological issues

Medical Applications (2G3a)

The necessary activity data is not available to estimate emissions according to the 2006 IPCC guidelines; therefore a country-specific methodology has been developed.

The method uses the total population of Cyprus and the emission factor of $0.00001532~t~N_2O$ per capita in the equation:

 N_2O emissions (Gg) = population * emission factor per capita $(t N_2O/capita)$

The emission factor is based on an average t N_2O /capita value from all EU Member States reporting country-specific data using amount of gas as activity data (0.00001532 t N_2O /capita in 2016).

Propellant for Pressure and Aerosol Products (2G3b)

The necessary activity data is not available to estimate emissions according to the 2006 IPCC guidelines; therefore a country specific methodology has been developed.

The method uses the total population of Cyprus and the emission factor of 0.00000995 t N_2O per capita in the equation:

 N_2O emissions (Gg) = population * emission factor per capita $(t N_2O/capita)$

The emission factor is based on an average t N_2O /capita value from all EU Member States reporting country-specific data using amount of gas as activity data (0.0000995 t N_2O /capita in 2016).

The results as reported in CRT reporter for N_2O emissions from Product Uses are presented in Table 4.27.

Table 4.27. N₂O emissions (Gg) from Product Uses

	1990	1991	1992	1993	1994	1995	1996
2G3a	0.0090	0.0092	0.0095	0.0097	0.0099	0.0101	0.0102
2G3b	0.0058	0.0060	0.0062	0.0063	0.0064	0.0065	0.0066
TOTAL	0.0148	0.0152	0.0156	0.0160	0.0163	0.0166	0.0168
	1997	1998	1999	2000	2001	2002	2003
2G3a	0.0103	0.0105	0.0106	0.0107	0.0108	0.0109	0.0111
2G3b	0.0067	0.0068	0.0069	0.0069	0.0070	0.0071	0.0072
TOTAL	0.0171	0.0173	0.0174	0.0176	0.0178	0.0180	0.0183

	2004	2005	2006	2007	2008	2009	2010
2G3a	0.0112	0.0114	0.0116	0.0119	0.0122	0.0125	0.0129
2G3b	0.0073	0.0074	0.0075	0.0077	0.0079	0.0082	0.0084
TOTAL	0.0185	0.0188	0.0192	0.0196	0.0201	0.0207	0.0212
	2011	2012	2013	2014	2015	2016	2017
2G3a	0.0132	0.0133	0.0131	0.0130	0.0130	0.0131	0.0132
2G3b	0.0086	0.0086	0.0085	0.0084	0.0084	0.0085	0.0086
TOTAL	0.0218	0.0219	0.0217	0.0214	0.0214	0.0216	0.0218
	2018	2019	2020	2021	2022	2023	
2G3a	0.0134	0.0136	0.0137	0.0139	0.0141	0.0143	
2G3b	0.0087	0.0088	0.0089	0.0090	0.0092	0.0093	
TOTAL	0.0221	0.0224	0.0226	0.0229	0.0233	0.0236	

4.7.3.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

4.7.3.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

4.7.3.4. Category-specific recalculations

No recalculations to report.

4.7.3.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

4.7.4. Other product manufacture and use (2G4)

Source category 2G4 in Cyprus includes the emissions associated with Tobacco combustion.

Emissions of NMVOCs are reported in this category. NMVOCs are indirect greenhouse gases which result from the use of tobacco. The indirect CO_2 emissions associated with these NMVOC emissions are reported under this category. Previously, these estimates were reported in the CRT Tables as direct CO_2 and included in Cyprus' national total.

4.7.3.1. Methodological issues

Methodologies for estimating these NMVOC emissions can be found in the EMEP/EEA Emission Inventory Guidebook (EEA, 2016). Further information on emissions of NMVOCs and indirect CO₂ emissions can be found in Chapter 9 of this report.

4.7.4.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

4.7.4.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and

verification activities are applied for this sector.

4.7.4.4. Category-specific recalculations

No recalculations to report.

4.7.4.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

Chapter 5. Agriculture (CRT sector 3)

5.1. Overview of sector

In agricultural activities there are many processes leading to emissions and removals of greenhouse gases, which can be widely dispersed in space and highly variable in time. The factors governing emissions and removals can be natural and anthropogenic, direct and indirect, and it can be difficult to clearly distinguish between causal factors.

Livestock production can result in methane (CH_4) emissions from enteric fermentation and both CH_4 and nitrous oxide (N_2O) emissions from livestock manure management systems. Cattle are an important source of CH_4 in many countries because of their large population and high CH_4 emission rate due to their ruminant digestive system. Methane emissions from manure management tend to be smaller than enteric emissions, with the most substantial emissions associated with confined animal management operations where manure is handled in liquid-based systems. Nitrous oxide emissions from manure management vary significantly between the types of management system used and can also result in indirect emissions due to other forms of nitrogen loss from the system.

According to the 2006 IPCC Guidelines, the following source categories are included in this sector: Enteric fermentation (3.A), Manure management (3.B), Rice cultivation (3.C), Agricultural soils (3.D), Prescribed burning of savannas (3.E), Field burning of agricultural residues (3.F), Liming (3.G), Urea Application (3.H), Other Carbon-containing fertilizers (3.I). In Cyprus, rice cultivation (3.C), prescribed burning of savannas (3.E) and Liming (3.G) do not take place and are therefore reported as NO.

5.1.1. Emission trends

The agricultural sector of Cyprus⁴²

Although abundant with fresh produce and a sunny climate, farming in Cyprus is faced with droughts and environmental challenges, as well as an ongoing struggle for economic relevance. In the early years of Cyprus' independence, the contribution of the agricultural sector to GDP was about 20%, whereas today it has dropped to around 1.7% and employs 4% of the workforce. However, the sector has tackled these trials and tribulations head-on by adopting new technologies, bringing new products to the market and widening its customer base.

Agriculture has shown remarkable resilience and production has remained at stable levels, despite recent macroeconomic challenges – proving there are positive future prospects for the sector if it continues to develop on a more professional, niche and scientific basis. New structural reforms are also set to increase competitiveness and productivity, allowing Cyprus to become more dynamic, export-oriented and most importantly to adopt a mentality of continuous modernisation.

Cyprus' agricultural share of total domestic exports is around 13.4%, and it is quintessentially Mediterranean with health-promoting foods such as citrus fruit, vegetables, grapes and potatoes. As for processed agricultural goods, Cyprus' key exports are halloumi, fruit and vegetable juices, meats and wines. The island's famous halloumi cheese has become one of the top export products for Cyprus.

The most important crops produced in Cyprus are: cereals (wheat, barley); melons (watermelons, sweet melons); vegetables (potatoes, carrots, tomatoes, cucumbers); and other fruit and tree crops, such as grapes, oranges, lemons, grapefruit, apples, pears, peaches, cherries, bananas, almonds, olives and

_

⁴² Cyprus Profile, 2017, Green Growth and Niche Products, available at http://www.cyprusprofile.com/en/sectors/agriculture-and-food (accessed 19/12/2017)

carobs. An area of success has been the marketing of the Cyprus potato – one of the most important agricultural export products and easily recognisable by its reddish peel and extraordinary taste. Thanks to climatic conditions, fresh new Cyprus potatoes intended for export are available to European markets far before the traditional continental season.

Emissions

Emissions from Agriculture accounted for 6.0% of total emissions in 2023 (without LULUCF), compared to 8.3% in 1990. Emissions increased by 16.65% compared to 1990. Agriculture is responsible for mainly methane and nitrous oxide emissions. In 2023 agriculture contributed 38.1% to the total methane emissions and 69% to the total nitrous oxide emissions. The total emissions by gas and source from agricultural activities for the period 1990–2023 in Cyprus are presented in Table 5.1 and Figure 5.1.

Table 5.1. GHG emissions from Agriculture, for the period 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013
3. Agriculture	454.74	542.91	525.54	514.80	506.90	484.68	449.17
A. Enteric fermentation	220.61	251.11	255.88	263.63	270.08	263.38	251.14
B. Manure management	172.45	231.25	212.23	193.35	181.91	165.66	149.33
C. Rice cultivation	NO						
D. Agricultural soils	56.90	57.72	55.31	56.33	53.17	54.10	47.27
E. Prescribed burning of							
savannas	NO						
F. Field burning of							
agricultural residues	2.96	1.16	1.15	0.76	0.83	0.98	0.64
G. Liming	NO						
H. Urea application	1.82	1.67	0.97	0.74	0.91	0.55	0.79
I. Other carbon-containing							
fertilizers	NO						
J. Other	NO						
CO ₂ (Gg)	1.82	1.67	0.97	0.74	0.91	0.55	0.79
CH ₄ (Gg)	12.03	14.70	14.24	13.87	13.70	13.01	12.17
N ₂ O (Gg)	0.44	0.49	0.47	0.47	0.46	0.45	0.41
Total (Gg CO ₂ eq.)	454.74	542.91	525.54	514.80	506.90	484.68	449.17

Gg CO ₂ eq.	2014	2015	2016	2017	2018	2019	2020
3. Agriculture	437.26	441.85	462.39	476.12	481.80	495.53	531.55
A. Enteric fermentation	249.45	251.32	273.00	286.37	292.99	303.26	329.63
B. Manure management	143.31	140.11	141.35	139.59	139.50	140.83	148.96
C. Rice cultivation	NO						
D. Agricultural soils	43.84	49.03	47.38	49.28	48.71	50.54	52.01
E. Prescribed burning of							
savannas	NO						
F. Field burning of							
agricultural residues	0.24	0.99	0.26	0.47	0.38	0.68	0.73
G. Liming	NO						
H. Urea application	0.41	0.40	0.39	0.42	0.22	0.23	0.22
I. Other carbon-containing							
fertilizers	NO						
J. Other	NO						
CO ₂ (Gg)	0.41	0.40	0.39	0.42	0.22	0.23	0.22
CH ₄ (Gg)	11.87	11.89	12.61	12.95	13.16	13.52	14.65
N ₂ O (Gg)	0.39	0.41	0.41	0.43	0.43	0.44	0.46
Total (Gg CO ₂ eq.)	437.26	441.85	462.39	476.12	481.80	495.53	531.55

Gg CO ₂ eq.	2021	2022	2023		
3. Agriculture	546.27	528.61	530.45		
A. Enteric fermentation	342.12	332.00	336.14		

B. Manure management	151.51	144.91	142.96		
C. Rice cultivation	NO	NO	NO		
D. Agricultural soils	51.71	50.76	50.55		
E. Prescribed burning of					
savannas	NO	NA	NA		
F. Field burning of					
agricultural residues	0.63	0.67	0.62		
G. Liming	NO	NO	NO		
H. Urea application	0.30	0.27	0.18		
I. Other carbon-containing					
fertilizers	NO	NO	NO		
J. Other	NO	NA	NA		
CO_2 (Gg)	0.30	0.27	0.18		
CH ₄ (Gg)	15.14	14.61	14.70		
$N_2O(Gg)$	0.46	0.46	0.45		
Total (Gg CO ₂ eq.)	626.2	528.61	530.45		

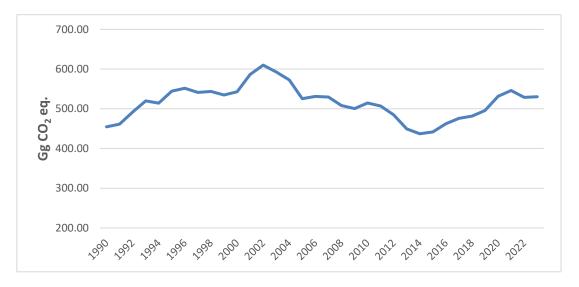


Figure 5.1. Emissions from Agriculture, 1990–2023

5.1.2. Methodology

The calculation of GHG emissions from Agriculture is based on the methodologies and emission factors suggested by the 2006 IPCC Guidelines. Data used for the estimation of the emissions was obtained from the National Statistical Service, the Department of Agriculture, the Veterinary services and other sources. Tier 1 method with default IPCC 2006 emission factors are used for all calculations except enteric fermentation emissions from cattle (3A1a), manure management of cattle (3B1.1) and swine (3B1.3) and direct N_2O emissions from managed soils from inorganic fertilizers (3D1.1) and organic fertilizers (3D1.2a, 3D1.2b, 3D12c) that are estimated using Tier 2. The methodologies and emission factors used are summarised in Table 5.2.

Table 5.2. Agriculture – methodologies and emission factors applied

Category	y-Classification	Gas	EF	Method
3A	Enteric Fermentation – Dairy Cattle	CH_4	CS	T2
3A	Enteric Fermentation - Non-dairy cattle, sheep, goats,	CH_4	D	T1
	horses, mules and asses and swine			
3B1.1	Manure Management – Dairy Cattle and Non-dairy cattle,	CH_4	D	T2
3B1.3	swine (market & breeding)			
3B1.2	Manure Management – sheep, goats, horses, mules and	CH_4	D	T1

[153]

Category	y-Classification	Gas	EF	Method
3B1.4	asses, poultry			
3B2.1	Direct N ₂ O emissions – Dairy and non-dairy cattle, Sheep,	N_2O	D	T1
3B2.2	swine (market & breeding), goats, horses, poultry, mules			
3B2.3	and asses			
3B2.4				
3B2.5	Indirect N ₂ O emissions	N ₂ O	D	T1
3D1.1	Agricultural soils- Direct N ₂ O Emissions From Managed Soils- Inorganic fertilizers	N ₂ O	CS	T2
3D1.2a	Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers - Animal manure used as fertilizers	N_2O	CS	T2
3D1.2b	Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers - Sewage sludge applied to soils	N ₂ O	CS	T2
3D1.2c	Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Organic N fertilizers – Other organic fertilizers applied to soils	N ₂ O	CS	T2
3D1.4	Agricultural soils- Direct N ₂ O Emissions From Managed Soils - Crop residues	N_2O	D	T1
3D2.1	Indirect N ₂ O emissions from managed soils – Atmospheric Deposition	N_2O	D	T1
3D2.2	Indirect N ₂ O emissions from managed soils Nitrogen Leaching and run-off	N_2O	D	T1
3F1	Field Burning of Agricultural Residues – Cereals – Wheat, Barley, Oats	N ₂ O/CH ₄	D	T1
3F2	Field Burning of Agricultural Residues – Pulses – Bean and Pulses	N ₂ O/CH ₄	D	T1
3F3	Field Burning of Agricultural Residues –Tubers and Roots	N ₂ O/CH ₄	D	T1
3H	Urea Application	CO_2	D	T1

T1, T2: IPCC methodology Tier 1, 2 respectively; D: IPCC default methodology and emission factor;

Key categories

The results of the key categories assessment are presented in <u>Section 1.4</u>.

Uncertainty

The uncertainty analysis is presented in <u>Section 1.5</u>.

Completeness

Table 5.3 gives an overview of the IPCC source categories included in this chapter and presents the status of emissions estimates from all sub-sources in agriculture. Methane emissions from agricultural soils are not estimated since appropriate methodologies have not been developed yet.

Table 5.3. Agriculture – Inventory completeness

Source category	CO ₂	CH ₄	N ₂ O
3A. Enteric fermentation		✓	
3B. Manure management		✓	✓
3C. Rice cultivation		NO	
3D. Agricultural soils		NE	✓
3E. Prescribed burning of savannahs		NO	NO
3F. Field burning of agricultural residues		✓	✓
3G. Liming	NO		
3H. Urea Application	✓		
3I. Other Carbon – containing Fertilizers	NO		

NO: Not occurring; NE: Not estimated due to method unavailability

5.2. Enteric Fermentation (3A)

Methane is produced in herbivores as a by-product of enteric fermentation, a digestive process by which carbohydrates are broken down by micro-organisms into simple molecules for absorption into the bloodstream. The amount of methane that is released depends on the type of digestive tract, age, and weight of the animal, and the quality and quantity of the feed consumed. Ruminant livestock (e.g., cattle, sheep) are major sources of methane with moderate amounts produced from non-ruminant livestock (e.g., pigs, horses). The ruminant gut structure fosters extensive enteric fermentation of their diet.

Methane emissions from enteric fermentation in 2023 accounted for 81.7% of total GHG emissions from Agriculture and 31.1% of the total methane emissions excluding LULUCF. Methane emissions from enteric fermentation are presented in Table 5.4 and Figure 5.2.

Table 5.4. CH₄ emissions from Enteric Fermentation (3A) 1990–2023

Gg CH ₄	1990	2000	2005	2010	2011	2012	2013
A. Enteric fermentation	7.88	8.97	9.14	9.42	9.65	9.41	8.97
1. Cattle	4.05	4.46	4.66	4.53	4.67	4.66	4.69
Dairy cattle	2.21	2.72	2.78	2.75	2.80	2.79	2.83
Non-dairy cattle	1.84	1.75	1.88	1.78	1.87	1.87	1.85
2. Sheep	2.32	1.97	2.15	2.63	2.85	2.78	2.51
3. Swine	0.42	0.61	0.64	0.70	0.66	0.59	0.54
4. Other livestock	1.09	1.92	1.68	1.56	1.47	1.38	1.24
Goats	1.03	1.89	1.65	1.54	1.45	1.36	1.22
Horses	0.01	0.02	0.02	0.01	0.01	0.01	0.01
Mules and Asses	0.05	0.02	0.01	0.01	0.01	0.01	0.01
Total CH4	7.88	8.97	9.14	9.42	9.65	9.41	8.97

Gg CH ₄	2014	2015	2016	2017	2018	2019	2020
A. Enteric fermentation	8.91	8.98	9.75	10.23	10.46	10.83	11.77
1. Cattle	4.87	4.88	5.54	5.82	6.16	6.44	7.29
Dairy cattle	2.92	3.01	3.49	3.74	3.94	4.22	4.82
Non-dairy cattle	1.95	1.86	2.05	2.09	2.22	2.21	2.47
2. Sheep	2.34	2.38	2.43	2.57	2.49	2.60	2.62
3. Swine	0.51	0.54	0.53	0.53	0.54	0.52	0.54
4. Other livestock	1.18	1.18	1.25	1.31	1.27	1.28	1.32
Goats	1.16	1.17	1.23	1.29	1.25	1.26	1.30
Horses	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mules and Asses	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Total CH4	8.91	8.98	9.75	10.23	10.46	10.83	11.77

Gg CH ₄	2021	2022	2023		
A. Enteric fermentation	12.22	11.94	12.00		
1. Cattle	7.56	7.31	7.52		
Dairy cattle	5.00	4.85	5.04		
Non-dairy cattle	2.80	2.46	2.48		
2. Sheep	0.54	2.79	2.83		
3. Swine	1.31	0.50	0.46		
4. Other livestock	1.29	1.33	1.20		
Goats	0.01	1.31	1.17		
Horses	0.01	0.01	0.01		
Mules and Asses	2.80	0.01	0.01		
Total CH4	12.22	11.94	12.00		

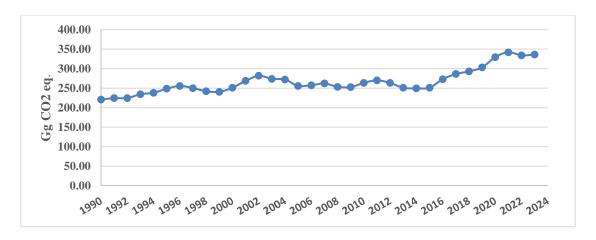


Figure 5.2. CH₄ emissions from Enteric Fermentation (3A) 1990–2023 in Gg CO₂ eq.

5.2.1. Methodological issues

Tier 1 methodology is applied and the default emission factors suggested by the IPCC Guidelines are used for the estimation of methane emissions from enteric fermentation for non-dairy cattle, sheep, goats, horses, mules and asses and swine. The emissions from dairy cattle are estimated using Tier 2 methodology. Poultry emissions were not estimated, since an emission factor is not available in the IPCC guidelines.

5.2.1.1. Activity data

The animal population used for the calculation of methane emissions from enteric fermentation is the annual average and it is presented in Table 5.5. The source of animal population is the Department of Agriculture, except for horses, mules and asses. Following a recommendation of the ERT in the Saturday Paper prepared during the in-country review of the 2016 submission to the UNFCCC, the population for horses, mules and asses was obtained from the Agricultural Censuses of the Statistical Service for the years 1985, 1994, 2002 and 2010 and linearly interpolated to complete the time series. Information after 2010 was available for the mules and asses by the Veterinary Services but was not available for the horses, therefore the decreasing trend that exists between 2003 and 2010 is used to extrapolate population for 2011–2016 using equation y=-58.571x+1220.6. Population for the years 2016–2022 was obtained by the veterinary services.

Table 5.5. Animal population for 1990–2023 (in 1000s)

Table 5.5	The state of the s										
	Dairy	Other	Sheep	Breeding	Market	Horses	Mules	Goats	Poultry		
	cattle	cattle		swine ^a	swine ^b		and Asses				
1990	22.4	32.3	290.0	33.8	244.2	0.46	5.03	205.0	3694		
1991	23.1	31.9	295.0	37.6	258.7	0.43	4.44	205.0	3403		
1992	23.9	31.9	285.0	42.4	299.5	0.41	3.85	200.0	3838		
1993	25.6	35.5	275.0	43.6	325.8	0.38	3.26	198.0	4551		
1994	27.6	36.8	255.0	48.0	308.2	0.35	2.67	210.0	4313		
1995	29.5	38.6	250.0	48.4	325.7	0.44	2.53	220.0	4460		
1996	27.3	42.8	252.0	48.9	350.7	0.53	2.39	240.0	4749		
1997	25.5	36.9	245.0	53.3	361.5	0.62	2.26	302.0	4816		
1998	23.8	32.0	240.0	49.8	381.5	0.71	2.12	322.0	4894		
1999	24.1	30.2	233.0	44.2	374.3	0.80	1.98	346.0	4823		
2000	23.5	30.7	246.0	52.1	356.3	0.89	1.84	378.6	4830		
2001	24.4	29.1	296.6	55.7	395.6	0.98	1.70	427.1	4873		
2002	26.2	31.9	294.0	56.3	435.1	1.07	1.56	459.5	5037		
2003	26.6	31.9	264.6	55.6	432.5	1.16	1.42	407.9	5015		
2004	26.1	34.2	279.0	51.7	418.8	1.10	1.29	378.0	4547		
2005	24.6	33.0	268.9	50.6	379.1	1.04	1.16	329.3	4419		
2006	23.9	32.2	272.2	53.0	399.7	0.99	1.03	344.9	3775		

	Dairy	Other	Sheep	Breeding	Market	Horses	Mules	Goats	Poultry
	cattle	cattle	_	swine ^a	swine ^b		and Asses		
2007	23.7	31.2	292.2	54.0	396.3	0.93	0.90	368.1	3978
2008	23.6	32.0	267.3	48.3	416.6	0.87	0.78	318.4	3892
2009	23.2	30.9	300.2	47.0	416.2	0.81	0.65	280.8	3793
2010	23.4	31.3	328.9	46.3	417.4	0.75	0.52	307.4	3793
2011	24.1	32.8	355.9	40.5	398.7	0.69	0.63	290.2	3678
2012	24.1	32.8	346.8	36.3	358.4	0.64	0.70	271.2	3488
2013	24.7	32.5	313.5	35.1	322.8	0.58	0.84	243.1	3091
2014	25.3	34.2	293.0	31.8	326.2	0.52	0.91	232.0	3677
2015	26.2	32.7	296.9	32.1	326.2	0.46	0.96	233.9	3154
2016	28.5	34.5	304.2	32.6	319.6	0.40	1.00	246.6	3261
2017	30.1	36.6	321.5	33.2	317.0	0.40	1.16	257.6	3360
2018	31.9	38.9	311	33.8	328.2	0.43	1.20	250.4	3475
2019	35.0	38.85	324.4	32.7	312.9	0.71	1.31	251.0	3604
2020	39.5	43.4	328.1	32.4	327.0	0.61	1.15	260.8	3588
2021	38.9	45.0	350.6	31.0	329.6	0.66	1.23	257.1	3625
2022	38.2	43.2	343.7	26.9	303.9	0.71	1.32	254.2	3553
2023	38.6	43.5	353.5	26.3	283.3	0.71	1.32	233.9	3639

^a sows; ^b all except sows

5.2.1.2. Methodological issues

Dairy cattle, Tier 2

Methane emissions from the enteric fermentation of dairy cattle are estimated according to the Tier 2 IPCC methodology, as it is described in the IPCC Guidelines (pg. 10.31, volume 4). The calculation of the CH₄ emission factor for is based on the following equation (eqn 10.21, pg. 10.30, volume 4):

$$EF = [[(GE * (YM/100) * 365 days/yr] / 55.65 MJ/kg CH_4]]$$

where EF is the estimated emission factor for CH₄ (kg CH₄/head/yr), GE is the gross energy intake (MJ/head/day) and Ym is the methane conversion rate which is the fraction of the gross energy in feed converted to CH₄.

The calculation of gross energy is based on the following equation (eqn 10.16, pg. 10.21, volume 4):

$$GE = \{ [(NE_m + NE_a + NE_l + NE_{work} + NE_p) / REM] + [(NE_g + NE_{wool}) / REG] \} / (DE\% / 100)$$

where NE_m is the net energy required for animal maintenance in MJ/day, NE_a is the net energy for animal activity in MJ/day, NE_l is the net energy for lactation in MJ/day, NE_{work} is the net energy for work, NE_p is the net energy required for pregnancy in MJ/day, REM is the ratio of the net energy available in a diet for maintenance to digestible energy consumed, NE_g is the net energy for growth in MJ/day, NE_{wool} is the net energy required to produce a year of wool, REG is the ratio of net energy available for growth in a diet to digestible energy consumed and DE% is the digestible energy expressed as a percentage of gross energy.

The dairy cattle population used for the calculation of methane emissions from enteric fermentation is presented in Table 5.6. Information for average weight (W), live body weight (BW), mature body weight (MW) and milk production has been obtained from the Department of Agriculture⁴³. The digestibility of feed was obtained after a recommendation of the review expert of the TERT (comment no. CY-3A-2016-0002). The remaining parameters use the default value proposed by the IPCC GPG. The fat percentage in milk is assumed to be 3.5%, based on the suggestion that was made during the volunteer participation of Cyprus in the Effort Sharing Decision review (ESD review) that took place in 2014. Table 5.6 presents the values used for the calculations, while Table 5.7 presents the daily milk production and the % pregnant population. The resulting Gross energy (GE) and the emissions factors (EFs) for the period

⁻

⁴³Mr. George Papaioannou, Agricultural Officer, Department of Agriculture, tel. no. +357 22408566

1990-2020 are presented in Table 5.8.

There is an ongoing survey conducted by the department of Agriculture regarding dairy cattle, pregnancy rates, feed and farming. It is expected that once the results available, there will be an upgrade in the methodology.

Table 5.6. Information for the application of Tier 2 methodology for dairy cattle

Parameter	Value	Source
Average weight (W), kg	550	Department of Agriculture
Net energy maintenance coefficient (Cf _i)	0.386	IPCC Guidelines (cattle, Table 10.4, pg. 10.16, vol. 4)
Activity coefficient (Ca)	0.00	IPCC Guidelines (stall, Table 10.5, pg. 10.17, vol. 4)
Live body weight (BW), kg	550	Department of Agriculture
Growth coefficient (C)	0.8	IPCC Guidelines (eqn.10.6, pg. 10.17, vol. 4)
Mature body weight of an adult animal (MW), kg	550	Department of Agriculture
Daily weight gain (WG), kg/day	0	IPCC Guidelines (footnote 1, pg. 10.12,vol.4)
Fat in milk	3.5%	Recommendation which was identified by technical Expert review team during the Review 2014
Hours of work / day	0	Department of Agriculture
Cpregnancy	0.10	IPCC Guidelines (table 10.7, pg.10.20, vol.4)
Digestibility of feed, DE	68	Recommendation of the review expert of the TERT (comment no. CY-3A-2016-0002)
CH ₄ conversion rate (Ym)	0.065	IPCC Guidelines (table 10.12, pg.10.30, vol.4)

Table 5.7. Daily milk production per dairy cow (kg) and per cent pregnant population of cows in Cyprus

m Cyprus									
Year	1990	1991	1992	1993	1994	1995	1996	1997	
Milk production (kg/day/cow)	12.22	12.30	12.25	12.60	12.49	12.90	13.84	14.30	
% pregnant population*	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	
	1	1	1	1	1	1	1		
Year	1998	1999	2000	2001	2002	2003	2004	2005	
Milk production (kg/day/cow)	15.40	15.07	17.07	15.89	14.77	16.71	15.86	16.41	
% pregnant population	81.3	81.3	81.3	81.3	81.3	81.3	81.3	80.3	
Year	2006	2007	2008	2009	2010	2011	2012	2013	
Milk production (kg/day/cow)	15.89	14.77	16.71	17.95	17.64	17.42	17.29	16.96	
% pregnant population	81.3	81.3	81.3	76.3	76.3	72.2	72.2	72.2	
	1	1	1	1	1	1	1	1	
Year	2014	2015	2016	2017	2018	2019	2020	2021	
Milk production (kg/day/cow)	17.18	17.08	19.26	19.68	19.60	18.68	19.08	20.99	
% pregnant population	72.2	72.2	72.2	72.2	72.2	72.2	72.2	72.2	
Year	2022	2023							
Milk production (kg/day/cow)	20.56	21.54							
% pregnant population	72.2	72.2							

 $[\]ast$ No data available for 1990–2003, 2010 and 2011. 1990–2003 assumed that is equal to 2004, 2010 assumed equal to 2009 and 2011, 2013 to 2020 assumed equal to 2012.

Table 5.8. Gross energy (GE) and emissions factor (EF) for dairy cattle for the period 1990–2023

Year	1990	1991	1992	1993	1994	1995	1996	1997
GE (MJ/head/day)	231.8	232.4	232.0	234.9	234.0	237.3	244.8	248.6
EF (kg CH ₄ /head/yr)	98.8	99.1	98.9	100.1	99.8	101.2	104.4	106.0

Year	1998	1999	2000	2001	2002	2003	2004	2005
GE (MJ/head/day)	257.4	254.7	270.9	261.4	252.3	268.0	261.2	265.5

EF (kg CH ₄ /head/yr)	109.7	108.6	115.5	111.4	107.6	114.3	111.3	113.2
Year	2006	2007	2008	2009	2010	2011	2012	2013
GE (MJ/head/day)	270.4	267.3	275.1	277.3	274.9	272.6	271.5	268.9
EF (kg CH ₄ /head/yr)	115.3	114.0	117.3	118.2	117.2	116.2	115.8	114.6
Year	2014	2015	2016	2017	2018	2019	2020	2021
GE (MJ/head/day)	270.7	269.9	287.5	290.8	290.2	282.8	286.1	301.4
EF (kg CH ₄ /head/yr)	115.4	115.1	122.5	124.0	123.7	120.5	122.0	128.5
Year	2022	2023						
GE (MJ/head/day)	297.9	305.8	·	·	·	·	·	·
EF (kg CH ₄ /head/yr)	127.0	130.4						

Non-dairy cattle, sheep, goats, horses, mules and asses and swine; Tier 1

The methane emission factors used for enteric fermentation of non-dairy cattle, sheep, goats, horses, mules and asses and swine for the application of the Tier 1 methodology are as defined in the IPCC 2006 guidelines (volume 4, pg. 10.29, Table 10.11) and are presented in Table 5.9. Poultry emissions were not estimated, since an emission factor is not available in the IPCC guidelines (volume 4, pg.10.28, Table 10.10). The animal populations used are presented in Table 5.5. Non-dairy cattle and sheeps are identified as key categories but no data are available currently in order to implement a Tier 2 methodology. After discussions with the Agricultural Research Institute in Cyprus, it will be attempted to improve the methodology for non-dairy-cattle. Unfortunately, regarding sheep it was considered unfeasible at the moment. We are keeping in mind to apply higher tiers when data will be available.

Table 5.9. Methane emission factor applied for enteric fermentation, according to animal

	Emission factor (kg CH4/head)	Source
Non-dairy cattle	57	IPCC 2006, pg. 10.29, volume 4, western Europe*
Sheep	8	IPCC 2006, pg. 10.28, volume 4, developed
Swine	1.5	IPCC 2006, pg. 10.28, volume 4, developed
Horses	18	IPCC 2006, pg. 10.28, volume 4, developed
Mules and asses	10	IPCC 2006, pg. 10.28, volume 4, developed
Goats	5	IPCC 2006, pg. 10.28, volume 4, developed

^{*} Milk production closer to North America but production system as Western Europe

5.2.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

5.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. Animal population is compared between four data sources: Statistical Service, DLI, EUROSTAT and Department of Agriculture.

5.2.4. Category-specific recalculations

There are minor recalculations for the year 2022 due to the updating number of sheep, swine and goat. These results in a decrease in emissions by 0.01%.

5.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

5.3. Manure Management (3B)

The term 'manure' is used here collectively to include both dung and urine (i.e., the solids and the liquids) produced by livestock. The decomposition of manure under anaerobic conditions (i.e., in the absence of oxygen) during storage and treatment, produces CH₄. Emissions of CH₄ related to manure handling and storage are reported under 'Manure Management.' The main factors affecting CH₄ emissions are the amount of manure produced and the portion of the manure that decomposes anaerobically. The former depends on the rate of waste production per animal and the number of animals, and the latter on how the manure is managed.

Direct N_2O emissions occur via combined nitrification and denitrification of nitrogen contained in the manure. The emission of N_2O from manure during storage and treatment depends on the nitrogen and carbon content of manure, and on the duration of the storage and type of treatment. The production and emission of N_2O from managed manures requires the presence of either nitrites or nitrates in an anaerobic environment preceded by aerobic conditions necessary for the formation of these oxidized forms of nitrogen.

5.3.1. Category description

5.3.1.1. Animal waste management in Cyprus⁴⁴

Most small-scale pig farms in Cyprus use mechanical separation for the treatment of their waste. The separated liquid is sent to evaporation lagoons or is used for irrigation, and the solid fraction is used as soil improver. Nine large pig farms have installed a combination of anaerobic/aerobic treatment plants (Anaerobic digestion). The treated liquid fraction is used for irrigation, washing the housing areas or is placed in evaporation lagoons. The produced biogas is combusted onsite by Combined Heat Power generators for the production of heat and electricity. Both heat and electricity are consumed at the farms. Any excess electricity is sold to the electricity provider and directed to the electricity distribution network. Heat is not distributed outside the farm because there is no heat distribution network in Cyprus. The emissions from the electrical energy from the biogas used onsite and offsite has been taken into account in the energy sector according to the national energy balance.

The waste from cattle, sheep, goats, horses, mules and asses are collected and left to dry before being applied on land for soil improver (Solid storage and dry lot). Poultry waste is characterised by high content of solids (almost dry) and it is collected, left to dry and then used as soil improver (Solid storage and dry lot).

Manure management is responsible for methane and nitrous oxide emissions. Methane is produced during the anaerobic decomposition of manure, while nitrous oxide is produced during the storage and treatment of manure before its use as fertilizer.

Emissions from manure management in 2023 accounted for 6.95% of the total methane emissions without LULUCF. CH_4 and N_2O from manure management in 2023 accounted for 18.2% and 57.3% of GHG emissions from Agriculture respectively. Total emissions in 2023 decreased by 17.1% compared to 1990 levels because of the improvement of waste management practices. CH_4 and N_2O emissions from manure management for the period 1990–2023 are presented in Table 5.10 and Figure 5.3.


-

⁴⁴ Kythreotou, N., G. Florides, S.A. Tassou, 2010. Production and management of biodegradable waste in Cyprus a paper published in the proceedings of SEEP2010 Conference Proceedings, June 29th–July 2nd 2010, Bari, Italy.

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013
B. Manure management	172.45	231.25	212.23	193.35	181.91	165.66	149.33
1. Cattle	26.76	28.94	30.28	28.61	28.78	28.63	28.18
Dairy cattle	16.14	19.00	19.56	18.71	18.67	18.64	18.52
Non-dairy cattle	10.61	9.94	10.71	9.90	10.11	9.99	9.66
2. Sheep	14.45	12.26	13.40	16.39	17.74	17.28	15.62
3. Swine	89.28	131.70	113.69	97.16	85.89	73.34	63.27
4. Other livestock	18.95	29.28	26.02	22.78	21.67	20.26	18.07
Goats	9.12	16.85	14.66	13.68	12.92	12.07	10.82
Horses	0.08	0.16	0.18	0.13	0.12	0.11	0.10
Mules and Asses	0.40	0.15	0.09	0.05	0.05	0.06	0.07
Poultry	9.35	12.13	11.08	8.91	8.58	8.03	7.08
Other	NO						
5. Indirect N ₂ O emissions	23.02	29.07	28.85	28.42	27.82	26.14	24.20
CH ₄ (Gg)	4.07	5.69	5.07	4.43	4.03	3.58	3.18
$N_2O(Gg)$	0.22	0.27	0.27	0.26	0.26	0.25	0.23
Total (Gg CO ₂ eq.)	172.45	231.25	212.23	193.35	181.91	165.66	149.33
				T		T	
Gg CO ₂ eq.	2014	2015	2016	2017	2018	2019	2020
B. Manure management	143.31	140.11	141.35	139.59	139.50	140.83	148.96
1. Cattle	29.27	28.72	32.36	33.17	35.14	36.96	41.84
Dairy cattle	19.09	19.22	21.92	22.81	24.09	25.95	29.52
Non-dairy cattle	10.18	9.50	10.43	10.36	11.05	11.00	12.31
2 Sheen	14 60	14 79	15 16	16.02	15.50	16 16	16 35

Gg CO ₂ eq.	2014	2015	2016	2017	2018	2019	2020
B. Manure management	143.31	140.11	141.35	139.59	139.50	140.83	148.96
1. Cattle	29.27	28.72	32.36	33.17	35.14	36.96	41.84
Dairy cattle	19.09	19.22	21.92	22.81	24.09	25.95	29.52
Non-dairy cattle	10.18	9.50	10.43	10.36	11.05	11.00	12.31
2. Sheep	14.60	14.79	15.16	16.02	15.50	16.16	16.35
3. Swine	56.07	54.89	50.64	45.87	43.87	41.92	43.42
4. Other livestock	18.72	17.58	18.26	18.91	18.70	19.10	19.43
Goats	10.33	10.41	10.98	11.47	11.15	11.17	11.61
Horses	0.09	0.08	0.07	0.07	0.07	0.12	0.11
Mules and Asses	0.07	0.08	0.08	0.09	0.10	0.10	0.09
Poultry	8.23	7.01	7.13	7.28	7.38	7.70	7.62
Other	NO						
5. Indirect N ₂ O emissions	24.65	24.14	24.95	25.62	26.29	26.69	27.93
CH ₄ (Gg)	2.96	2.89	2.85	2.71	2.68	2.67	2.85
$N_2O(Gg)$	0.23	0.22	0.23	0.24	0.24	0.25	0.26
Total (Gg CO ₂ eq.)	143.31	140.11	141.35	139.59	139.50	140.83	148.96

Gg CO ₂ eq.	2021	2022	2023	
B. Manure management	151.51	144.91	142.96	
1. Cattle	43.0	41.8	42.8	
Dairy cattle	30.3	29.5	30.4	
Non-dairy cattle	12.7	12.3	12.5	
2. Sheep	17.5	17.1	17.6	
3. Swine	43.5	39.8	37.3	
4. Other livestock	19.4	19.1	18.4	
Goats	11.4	11.3	10.4	
Horses	0.1	0.1	0.1	
Mules and Asses	0.1	0.1	0.1	
Poultry	7.7	7.5	7.7	
Other	NO	NO	NO	
5. Indirect N ₂ O emissions	28.2	27.1	26.9	
			·	
CH ₄ (Gg)	2.90	2.73	2.68	
$N_2O(Gg)$	0.26	0.26	0.26	

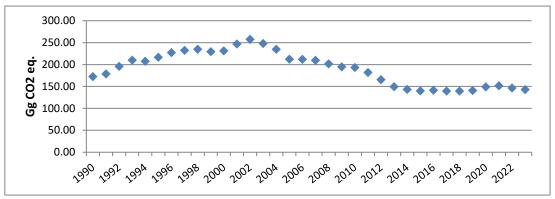


Figure 5.3. Emissions from manure management, 1990–2023

5.3.2. Methodological issues

5.3.2.1. CH₄ emissions (3B1)

The best way to determine emission factors is to conduct non-invasive or non-disturbing measurements of emissions in actual systems representative of those in use in the country. These field results can be used to develop models to estimate emission factors (Tier 3). Such measurements are difficult to conduct, and require significant resources and expertise, and equipment that may not be available. However, attempts will be made in order to carry out such surveys in the following years. There are two alternatives for developing emission factors, with the selection of emission factors depending on the method (i.e., Tier 1 or Tier 2) chosen for estimating emissions. Tier 2 methodology is applied for swine, dairy and other cattle, and Tier 1 applied for sheep, horses, goats, poultry mules and asses.

<u>Tier 1:</u> When using the Tier 1 method, methane emission factors by livestock category or subcategory are used (Table 5.11). The EFs for manure management were chosen according to the manure management practices that are applied in Cyprus for the particular specie⁴⁵. The animal population used is presented in Table 5.5.

Table 5.11. Emission factors used for the estimation of methane emissions from manure management

	anagement					
Animal	kg CH ₄ /head/yr	Source				
Classia	0.20	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
Sheep	0.28	developed countries, temperate				
Canta	0.20	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4–				
Goats	0.20	developed countries, temperate				
Поморо	2.24	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
Horses 2.34		leveloped countries, temperate				
Mules and	1.10	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
asses	1.10	developed countries, temperate				
Laying	0.03	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
chicken	0.03	developed countries, temperate/dry				
Broiler	0.02	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
chicken	0.02	developed countries, temperate				
Tuelcore	0.09	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
Turkeys	0.09	developed countries, temperate				
Other	0.03	Table 10.15, pg.10.40, IPCC 2006 guidelines, volume 4 –				
Poultry	0.03	developed countries, temperate/ducks				

⁴⁵The choice for the EFs was based on personal communication with Mr. Antis Athanasiades, the responsible officer for manure management at the Department of Environment (Pollution Prevention Unit, aathanasiades@environment.moa.gov.cy, +35722408935).

<u>Tier 2:</u> The Tier 2 method relies on two primary types of inputs that affect the calculation of methane emission factors from manure: Manure characteristics and Manure management system characteristics. Manure characteristics includes the amount of volatile solids (VS) produced in the manure and the maximum amount of methane able to be produced from that manure (Bo). Volatile substance excretion (VS) and Bo are as recommended for Eastern Europe by 2006 IPCC Guidelines in Annex 10A.2 (Table 5.12) except for Dairy cattle where it is calculated after the 2006 IPCC Guidelines, after the TERT recommendation CY_3B_2022_0005. Manure management system characteristics includes the types of systems used to manage manure and a system-specific methane conversion factor (MCF) that reflects the portion of Bo that is achieved. For the development of the EF equation 10.23 (pg. 10.41, vol. 4, 2006 IPCC guidelines) is applied. Waste management practices applied according to animal type is presented in Table 5.13. Information on waste management practices has been obtained from personal communication with Mr. Antis Athanasiades (Environment Officer, Pollution Control Unit⁴⁶), due to the unavailability of any other references on distribution of animal waste to waste management practice. The emissions are estimated by multiplying the developed EF by the animal population (Table 5.5).

Table 5.12. Volatile substance excretion (VS) and Bo for T2 methodology (2006 IPCC Guidelines, vol. 4, Annex 10A.2)

, 01, 1, 11111			
Animal	VS (kg/hd/day)	Bo (m ³ CH ₄ /kg VS)	Table
Dairy cows	CS	0.24	10A-4
Other cattle	2.7	0.17	10A-5
Market swine	0.3	0.45	10A-7
Breeding swine	0.5	0.45	10A-8

Table 5.13. Waste management per technology contribution

Animal	1990-2000	2001	2002	2003	2004	2005	2006
Dairy Cattle							
Liquid system	20%	20%	20%	20%	20%	20%	20%
Solid storage and dry lot	80%	80%	80%	80%	80%	80%	80%
Anaerobic digestion	0%	0%	0%	0%	0%	0%	0%
Non-Dairy Cattle							
Liquid system	20%	20%	20%	20%	20%	20%	20%
Solid storage and dry lot	80%	80%	80%	80%	80%	80%	80%
Anaerobic digestion	0%	0%	0%	0%	0%	0%	0%
Sheep							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Goats							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Horses							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Mules and asses							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Market Swine							
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	90%	87%	83%	80%	77%	73%	70%
Anaerobic digestion	0%	3%	7%	10%	13%	17%	20%
Breading Swine							
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	90%	87%	83%	80%	77%	73%	70%
Anaerobic digestion	0%	3%	7%	10%	13%	17%	20%
Poultry							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	98%
Anaerobic digestion	0%	0%	0%	0%	0%	0%	2%
Animal	2007	2008	2009	2010	2011	2012	2013
Dairy Cattle							
Liquid system	20%	20%	19%	19%	18%	18%	17%
Solid storage and dry lot	80%	80%	80%	80%	80%	80%	80%

^{46 15/11/2017,} Tel. +357 22 408935, email aathanasiades@environment.moa.gov.cy

_

Anaerobic digestion	0%	0%	1%	1%	2%	2%	3%
Non-Dairy Cattle	070	0 70	1 /0	1 /0	2/0	2/0	3 /0
Liquid system	20%	20%	19%	19%	18%	18%	17%
Solid storage and dry lot	100%	80%	99%	99%	99%	97%	97%
Anaerobic digestion	0%	0%	1%	1%	2%	2%	3%
Sheep	070	070	1 70	1 70	270	270	370
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Goats	10070	10070	10070	10070	10070	10070	10070
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Horses	100%	100%	100%	100%	100%	100%	100%
	100%	100%	1000/	100%	100%	1000/	1000/
Solid storage and dry lot Mules and asses	100%	100%	100%	100%	100%	100%	100%
	100%	100%	1000/	100%	100%	1000/	1000/
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Market Swine							
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	67%	63%	60%	57%	53%	50%	47%
Anaerobic digestion	23%	27%	30%	33%	37%	40%	43%
Breading Swine							
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	67%	63%	60%	57%	53%	50%	47%
Anaerobic digestion	23%	27%	30%	33%	37%	40%	43%
Poultry							
Solid storage and dry lot	97%	95%	94%	92%	91%	89%	88%
Anaerobic digestion	3%	5%	6%	8%	9%	11%	12%
Animal	2014	2015	2016	2017	2018	2019	2020
Dairy Cattle							
Liquid system	16%	16%	15%	15%	15%	15%	15%
Solid storage and dry lot	80%	80%	80%	80%	80%	80%	80%
Anaerobic digestion	4%	4%	5%	5%	5%	5%	5%
Non-Dairy Cattle							
Liquid system	16%	16%	15%	15%	15%	15%	15%
Solid storage and dry lot	80%	80%	80%	80%	80%	80%	80%
Anaerobic digestion	4%	4%	5%	5%	5%	5%	5%
Sheep							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Goats							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Horses							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Mules and asses							
Solid storage and dry lot	100%	100%	100%	100%	100%	100%	100%
Market Swine							
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	53%	50%	47%	43%	40%	40%	40%
Anaerobic digestion	47%	50%	53%	57%	60%	60%	60%
Breading Swine	.,,,	2070	00,0	0,7,0	0070	0070	0070
Solid storage and dry lot	10%	10%	10%	10%	10%	10%	10%
Aerobic treatment	43%	40%	37%	33%	30%	30%	30%
Anaerobic digestion	47%	50%	53%	57%	60%	60%	60%
Poultry	.,,,	2070	22.0	2.70	3070	3070	3070
Solid storage and dry lot	86%	85%	83%	82%	80%	80%	80%
Anaerobic digestion	16%	15%	17%	18%	20%	20%	20%
mideroore digestion	10/0	1.5 /0	1 / /0	10/0	20 /0	20/0	20/0
Animal	2021	2022	2023	1			
Dairy Cattle	2021	2022	2023				
Liquid system	15%	15%	15%				
Liquiu system	13%	13%	13%	I .	J	1	J

80%	80%	80%				
5%	5%	5%				
15%	15%	15%				
80%	80%	80%				
5%	5%	5%				
100%	100%	100%				
100%	100%	100%				
100%	100%	100%				
100%	100%	100%				
10%	10%	10%				
30%	30%	30%				
60%	60%	60%				
10%	10%	10%				
30%	30%	30%				
60%	60%	60%				
80%	80%	80%				
20%	20%	20%				
	5% 15% 80% 5% 100% 100% 100% 100% 10% 30% 60% 80%	5% 5% 15% 15% 80% 80% 5% 5% 100% 100% 100% 100% 100% 100% 10% 10% 30% 30% 60% 60% 80% 80%	5% 5% 5% 15% 15% 15% 80% 80% 80% 5% 5% 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 10% 10% 10% 30% 30% 30% 60% 60% 60% 60% 60% 60% 80% 80% 80%	5% 5% 5% 15% 15% 15% 80% 80% 80% 5% 5% 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 10% 10% 10% 30% 30% 30% 60% 60% 60% 80% 80% 80%	5% 5% 5% 15% 15% 15% 80% 80% 80% 5% 5% 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 10% 10% 10% 30% 30% 30% 60% 60% 60% 80% 80% 80%	5% 5% 5% 15% 15% 15% 80% 80% 80% 5% 5% 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 10% 10% 10% 30% 30% 30% 60% 60% 60% 80% 80% 80%

5.3.2.2. N₂O emissions (3B2)

The level of detail and methods chosen for estimating N_2O emissions from manure management systems depend upon national circumstances. Tier 2 methodology is applied for calculating direct N_2O emissions from manure management systems, and is described below.

Tier 2 entails multiplying the total amount of N excretion (from all livestock species/categories) in each type of manure management system by an emission factor for that type of manure management system (Equation 10.25, pg. 10.54, vol. 4, 2006 IPCC Guidelines). Emissions are then summed over all manure management systems. IPCC default N_2O emission factors and default nitrogen excretion data, whereas manure management system data is country-specific.

The annual nitrogen excretion rate per animal type using the nitrogen excretion rates (kg N ex/animal/year) is shown in Table 5.14. These are the defaults proposed by the IPCC methodologies. The Nitrogen excretion rate has been determined by using the IPPC 2006 Guidelines equation 10.30, pg. 10.57. The animal population used is presented in Table 5.5. It should be noted that Cyprus has used Western Europe default values for N excretion and Eastern Europe default values for CH₄ for manure management. The reason for the different approach is that manure management practices for cattle waste used in Cyprus are more appropriately categorised as Eastern European. However, for the calculation of the N₂O emissions from manure management, the high milk production resulted in the factor being changed to that of Western Europe, based on the comment received by the UNFCCC review team in 2013.

Table 5.14. Default values for Nitrogen excretion rate (IPCC 2006 guidelines, volume 4, table 10.19, pg. 10.59)

Animal	Default values for Nitrogen excretion rate (kg N /animal/day)
Dairy Cattle	0.48
Non-Dairy Cattle	0.33
Market swine	0.51
Breading swine	0.42
Sheep	0.85
Poultry	0.83

Goats	1.28
Horses	0.26
Mules and asses	0.26

The annual nitrogen excretion per waste management system is estimated by multiplying the % of waste allocated to a particular system by the estimated annual nitrogen excretion per animal type. The total annual nitrogen excretion per waste management system (regardless animal type) is then multiplied by the kgN₂O-N/kg Nex coefficient, to estimate the N₂O emissions. The kgN₂O-N/kg N ex coefficients used are presented in Table 5.15. After the TERT CY-3B-2023-0004, aerobic treatment for swine is considered without crust.

Table 5.15. kg N₂O-N/kg N ex coefficients per technology used

Animal	kgN ₂ O-N/kg N ex	Source
Solid storage	0.005	
Aerobic treatment (forced aeration)	0.005	2006 IPCC Guidelines, volume 4,
Liquid System without crust	0.000	pg. 10.62, table 10.21
Anaerobic digestion	0.000	

3B2.5. Indirect N₂O emissions from Manure Management

I. Indirect N2O emissions from volatilisation of N from Manure Management

To estimate the indirect N_2O emissions from manure management four steps were applied, according to the Tier 1 methodology: (a) Estimation of annual nitrogen excretion per animal type (kg N ex/year), (b) Allocation of waste to waste management system used, (c) Estimation of amount of manure nitrogen that is lost due to volatilisation, and (d) Estimation of N_2O emissions using the totals volatilisation N-losses (kg N/yr). The indirect N_2O emissions were estimated using the equation 10.27 (pg. 10.56, volume 4 2006 IPCC guidelines), as outlined below.

The annual nitrogen excretion per animal type using the nitrogen excretion rates (kg N ex/animal/year) is shown in Table 5.14. These are the defaults proposed by the IPCC methodologies. The animal population used is presented in Table 5.5.

The distribution of waste to the waste management systems has been estimated based on the information presented in Table 5.13.

The annual amount of manure nitrogen that is lost due to volatilisation ($N_{volatilisation - MMS}$) is estimated by multiplying the % of waste allocated to a particular waste management system by the annual nitrogen excretion per animal estimated in step (a) and by multiplying the % of managed manure nitrogen for livestock category T in the manure system S (Frac_{GASMS} (%)). The percent of managed manure nitrogen for livestock is presented in Table 5.16.

The total annual amount of manure nitrogen that is lost due to volatilisation ($N_{vol.atilization-MMS}$) is multiplied by the emission factor for N_2O emissions from atmospheric deposition of nitrogen on soils and water surfaces (EF₄) to estimate the N_2O emissions. The emission factor used is 0.01 kg N_2O -N (default value). The equation used to estimate the indirect N_2O emissions from volatilisation are summarised in the equation $N_2O_{G(mm)} = (N_{volatilisation-MMS} * EF_4) * 44/28$.

Table 5.16. Default values for volatilisation N losses.

Animal	Manure management	N volatilisation	Source
	system	losses	
	Solid storage	30%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
Dairy	Liquid system	40%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
cattle	Anaerobic digestion	40%	Assume same as liquid: based on recommendation from review during EU review 2018, according to a follow-up paper on N-cycle prepared

			by EU experts in Oct 2018
	Solid storage	45%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
Non-	Liquid system	40%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
dairy cattle	Anaerobic digestion	40%	Assume same as liquid: based on recommendation from review during EU review 2018, according to a follow-up paper on N-cycle prepared by EU experts in Oct 2018
Market swine	Anaerobic digestion	48%	Assume same as liquid: based on recommendation from review during EU review 2018, according to a follow-up paper on N-cycle prepared by EU experts in Oct 2018
Swille	Solid storage	45%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
	Aerobic treatment	48%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
Breeding swine	Anaerobic digestion	48%	Assume same as liquid: based on recommendation from review during EU review 2018, according to a follow-up paper on N-cycle prepared by EU experts in Oct 2018
swine	Solid storage	45%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
	Aerobic treatment	48%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines
Sheep	Solid storage	12%	No default available for this animal -
Goats	Solid storage	12%	use other. IPCC guidelines, volume
Horses	Solid storage	12%	4, pg. 10.65, table 10.22
Mules and Asses	Solid storage	12%	
	Solid storage	40%	Table 10.22, pg. 10.65, vol. 4, 2006 IPCC guidelines: Poultry with litter
Poultry	Anaerobic digestion	40%	Assume same as solid storage: based on recommendation from review during EU review 2018*

^{*}anaerobic digestion decreases the N losses from the poultry manure in form of NH₃. The time of the pre-storage is not too long and the digestate is stored covered.

II. Indirect N2O emissions from leaching and runoff of nitrogen from manure management

The Tier 2 calculation of N volatilisation in forms of NH_3 and NO_x from manure management systems is based on multiplication of the amount of nitrogen excreted (from all livestock categories) and managed in each manure management system by a fraction of volatilised nitrogen (see Equation 10.26, pg. 10.54, vol. 4, 200 IPCC Guidelines). N losses are then summed over all manure management systems. The Tier 2 method is applied using default nitrogen excretion data, default fractions of N losses and country-specific manure management system data.

Indirect N_2O emissions from leaching and runoff of nitrogen from manure management have been estimated using eqns. 10.28 and 10.29 (pg. 10.56–10.57, vol. 4) of the IPCC 2006 guidelines. The annual nitrogen excretion per animal type using the nitrogen excretion rates (kg N ex/animal/year) is shown in Table 5.13. These are the defaults proposed by the IPCC methodologies. The animal population used is presented in Table 5.5.

Due to fact that CY has (a) low precipitation during very little time period in a year, and (b) uncovered solid manure storage (therefore some leaching takes place), it was decided to change the Frac(leachMS) from 10% to the lowest recommended from the typical range of 1–20% proposed by the guidelines (pg.

10.56, vol. 4); i.e. 1%.

The default emission factor for N_2O emissions from nitrogen leaching and runoff, kg N_2O -N/kg N leached and runoff (EF5) proposed by the IPCC guidelines is used, 0.0075 kg N_2O -N (kg N leaching/runoff)-1 (vol. 4, Chapter 11, Table 11.3).

5.3.3. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

5.3.4. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. Animal population is compared between four data sources: Statistical Service, DLI, EUROSTAT and Department of Agriculture.

5.3.5. Category-specific recalculations

There are minor recalculations for the year 2022 due to the updating number of sheep, swine and goat. These results in a decrease in emissions of 1.05%.

5.3.6. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

5.4. Rice cultivation (CRT source category 3C)

Not occurring.

5.5. Agricultural soils (3D)

Nitrous oxide is produced naturally in soils through the processes of nitrification and denitrification. Nitrification is the aerobic microbial oxidation of ammonium to nitrate, and denitrification is the anaerobic microbial reduction of nitrate to nitrogen gas (N_2) . Nitrous oxide is a gaseous intermediate in the reaction sequence of denitrification and a by-product of nitrification that leaks from microbial cells into the soil and ultimately into the atmosphere. One of the main controlling factors in this reaction is the availability of inorganic N in the soil. This methodology, therefore, estimates N_2O emissions using human-induced net N additions to soils (e.g., synthetic or organic fertilizers, deposited manure, crop residues, sewage sludge). Direct emissions of N_2O from managed soils are estimated separately from indirect emissions, though using a common set of activity data.

Total emissions from agricultural soils in 2023 contributed 9.5% to the emissions from agriculture and 0.6% to the total emissions of the country (excluding LULUCF). Agricultural soils also contributed 29.4% to the N_2O emissions of the country excluding LULUCF. Total emissions from agricultural soils in 2023 reduced by 11.2% compared to 1990. Emissions from agricultural soils for the period 1990–2023 are presented in Table 5.17 and Figure 5.5.

Table 5.17. N₂O emissions from agricultural soils for 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012
3D1. Direct N ₂ O emissions from						
managed soils	40.25	39.09	37.75	38.06	35.82	36.98
1. Inorganic N fertilizers	15.52	13.16	10.74	11.70	8.92	10.39

2. Organic N fertilizers	17.21	21.37	20.96	21.55	21.55	20.47
a. Animal manure applied to						
soils	17.19	21.31	20.83	21.30	21.32	20.28
b. Sewage sludge applied to soils	0.02	0.06	0.12	0.20	0.15	0.10
c. Other organic fertilizers	0.02	0.06	0.13	0.20	0.15	0.10
applied to soils	NO	NO	NO	0.04	0.08	0.09
3. Urine and dung deposited by	110	110	110	0.04	0.00	0.07
grazing animals	NO	NO	NO	NO	NO	NO
4. Crop residues	7.52	4.55	6.05	4.79	5.33	6.09
5. Mineralization/						
immobilization associated with						
loss/gain of soil organic matter	0.00	0.00	0.00	0.02	0.02	0.03
6. Cultivation of organic soils	NO	NO	NO	NO	NO	NO
7. Other	NO	NO	NO	NO	NO	NO
3D2. Indirect N ₂ O Emissions from						
managed soils	16.65	18.64	17.55	18.27	17.34	17.12
1. Atmospheric deposition	16.65	18.64	17.55	18.26	17.34	17.11
2. Nitrogen leaching and run-off	0.00	0.00	0.00	0.00	0.01	0.01
T (L(C, N, O)	0.21	0.22	0.21	0.21	0.20	0.20
Total (GgN ₂ O)	0.21	0.22	0.21	0.21	0.20	0.20
Total (Gg CO ₂ eq.)	56.90	57.72	55.31	56.33	53.17	54.10
C ~ CO ~ ~ ~	2012	2014	2015	2016	2017	2018
Gg CO ₂ eq. 3D1. Direct N ₂ O emissions from	2013	2014	2015	2016	2017	2018
managed soils	31.83	28.83	33.72	31.33	32.83	32.26
1. Inorganic N fertilizers	8.81	8.36	9.41	10.09	9.80	9.77
2. Organic N fertilizers	18.75	18.33	18.25	18.98	19.74	19.74
a. Animal manure applied to	10.75	10.55	10.25	10.70	17.71	17.71
soils	18.57	18.23	18.15	18.84	19.61	19.59
b. Sewage sludge applied to						
soils	0.11	0.05	0.04	0.06	0.04	0.04
c. Other organic fertilizers						
applied to soils	0.06	0.05	0.07	0.09	0.09	0.12
3. Urine and dung deposited by						
grazing animals	NO	NO	NO	NO	NO	NO
4. Crop residues	4.24	2.09	6.00	2.20	3.22	2.66
5. Mineralization/						
immobilization associated with	0.04	0.05	0.06	0.07	0.00	0.00
loss/gain of soil organic matter 6. Cultivation of organic soils	0.04 NO	0.05 NO	0.06 NO	0.07 NO	0.08 NO	0.08 NO
7. Other	NO	NO	NO	NO	NO	NO
3D2. Indirect N ₂ O Emissions from	110	110	110	110	110	110
managed soils	15.44	15.02	15.32	16.04	16.44	16.44
1. Atmospheric deposition	15.43	15.01	15.30	16.02	16.43	16.42
2. Nitrogen leaching and run-off	0.01	0.01	0.01	0.01	0.02	0.02
Total (GgN ₂ O)	0.18	0.17	0.19	0.18	0.19	0.18
Total (Gg CO ₂ eq.)	47.27	43.84	49.03	47.37	49.27	48.70
Gg CO ₂ eq.	2019	2020	2021	2022	2023	
3D1. Direct N ₂ O emissions from						
managed soils	33.85	34.84	34.41	33.85	33.66	
1. Inorganic N fertilizers	9.37	9.37	8.94	8.84	9.11	
2. Organic N fertilizers	20.29	21.04	21.44	20.91	20.71	
a. Animal manure applied to soils	60	20.5-		• • = =		
	20.08	20.85	21.26	20.72	20.50	

b. Sewage sludge applied to						
soils	0.05	0.04	0.03	0.03	0.05	
c. Other organic fertilizers						
applied to soils	0.16	0.15	0.14	0.16	0.17	
3. Urine and dung deposited by						
grazing animals	NO	NO	NO	NO	NO	
4. Crop residues	4.10	4.33	3.92	3.98	3.72	
5. Mineralization/						
immobilization associated with						
loss/gain of soil organic matter	0.09	0.10	0.11	0.12	0.11	
6. Cultivation of organic soils	NO	NO	NO	NO	NO	
7. Other	NO	NO	NO	NO	NO	
3D2. Indirect N ₂ O Emissions from						
managed soils	16.67	17.17	17.30	16.92	16.87	
1. Atmospheric deposition	16.65	17.15	17.27	16.89	16.84	
2. Nitrogen leaching and run-off	0.02	0.02	0.03	0.03	0.03	
	_	_	_			
Total (GgN ₂ O)	0.19	0.20	0.20	0.19	0.19	
Total (Gg CO ₂ eq.)	50.53	52.01	51.71	50.76	50.53	

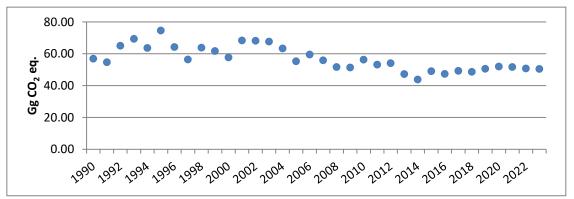


Figure 5.4. N₂O emissions from agricultural soils 1990–2023 (Gg CO₂ eq.)

5.5.1. Direct N₂O emissions from managed soils (3D1)

In most soils, an increase in available N enhances nitrification and denitrification rates which then increase the production of N_2O . Increases in available N can occur through human-induced N additions or change of land-use. The following N sources are included in the methodology for estimating direct N_2O emissions from managed soils: synthetic N fertilizers (FSN); organic N applied as fertiliser (e.g., animal manure, compost, sewage sludge, rendering waste) (FON); urine and dung N deposited on pasture, range and paddock by grazing animals (FPRP); N in crop residues (above-ground and belowground), including from N-fixing crops and from forages during pasture renewal (FCR); and for the first time in this inventory, N mineralisation associated with loss of soil organic matter resulting from change of land use or management of mineral soils (FSOM).

Drainage/management of organic soils (FOS) is not considered for the GHG inventory of Cyprus, as there is no management of organic soils in Cyprus.

5.5.1.1. Methodological issues

In its most basic form, direct N_2O emissions from managed soils are estimated using Equation 11.1 in the 2006 IPCC Guidelines (vol. 4, pg. 11.7), as described below.

Inorganic N fertilizers (3D1.1)

N₂O emissions from the use of inorganic N fertilizers were estimated using Tier 2 methodology suggested

by the 2006 IPCC Guidelines. Country specific emission factor EF (kg N₂O-N/kg N) is assumed 0.003 after the publication "The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean" in the Elsevier Journal⁴⁷. Activity data is obtained from the Department of Agriculture⁴⁸.

Table 5.18. N input from application of inorganic fertilizers for the period (in kt) 1990–2023

1 abie 5.18. N inpu	Table 5.18. N input from application of inorganic fertilizers for the period (in kt) 1990–2023								
Year	1990	1991	1992	1993	1994	1995	1996	1997	
Inorganic fertilizers									
(kg N)	12.426	12.169	14.760	16.189	14.289	20.526	13.628	11.126	
Year	1998	1999	2000	2001	2002	2003	2004	2005	
Inorganic fertilizers									
(kg N)	14.601	11.561	10.537	12.359	10.579	11.198	10.738	8.593	
Year	2006	2007	2008	2009	2010	2011	2012	2013	
Inorganic fertilizers									
(kg N)	11.291	8.198	7.499	7.674	9.369	7.138	8.319	7.051	
Year	2014	2015	2016	2017	2018	2019	2020	2021	
Inorganic fertilizers									
(kg N)	6.693	7.533	8.073	7.841	7.824	7.500	7.500	7.157	
Year	2022	2023							
Inorganic fertilizers									
(kg N)	7.075	7.289							

Organic N fertilizers - Animal Manure applied to soils (3D1.2a)

The Tier 2 methodology of the 2006 IPCC Guidelines is applied. The estimate of managed manure nitrogen available for application to managed soils is based on the equation 10.34 in the 2006 IPCC Guidelines (vol. 4, pg. 10.56). Animal population used is as presented in Table 5.5, annual average N excretion per animal of species/ category T in the country is based on defaults proposed by the 2006 IPCC Guidelines (Table 5.14 above), while the fraction of total annual nitrogen excretion for each livestock species/category T that is managed in manure management system S in the country is as presented in Table 5.19. The amount of managed manure nitrogen for livestock category T that is lost in the manure management system S Frac_{LossMS} (%) is shown in Table 5.19: Defaults recommended by the 2006 IPCC Guidelines (Table 10.22, pg. 10.65, vol. 4). The amount of estimated volatilisation N-losses is presented in Table 5.20. The values are recalculated for the whole timeseries due to the manure management recalculations described in the previous section. The amount of nitrogen from bedding is not known therefore assumed 0.

Managed manure nitrogen available for application to managed soils is then multiplied by the country-specific emission factor for N_2O emissions from N inputs EF (0.003 kg N_2O -N/kg N) after the publication "The effect of chemical and organic N inputs on N_2O emission from rain-fed crops in Eastern Mediterranean" in the Elsevier Journal⁴⁷, and converted to N_2O by multiplication with 44/28.

Table 5.19. Default values for nitrogen loss due to volatilisation of NH_3 and NO_x from manure management

Animal	Manure management	N loss due to volatilisation of NH ₃ and NO _x
	system	from manure management
	Solid storage	60%
Dairy cattle	Liquid system	60%
	Anaerobic digestion	60%
Non-dairy cattle	Solid storage	50%

⁴⁷ Michalis Omirou, Ioannis Anastopoulos, Dionysia A. Fasoula, Ioannis M. Ioannides, The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean, Journal of Environmental Management, Volume 270, 2020, 110755, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2020.110755.

[171]

⁴⁸ George Theophanous, Agriculture Officer, Department of Agriculture (tel. +357 22464028, gtheophanous@da.moa.gov.cy) – Fertilizer Control Board

	Liquid system	60%
	Anaerobic digestion	60%
	Anaerobic digestion	52%
Market swine	Solid Storage	50%
	Aerobic treatment	52%
	Anaerobic digestion	52%
Breeding swine	Solid storage	50%
	Aerobic treatment	52%
Sheep	Solid storage	85%
Goats	Solid storage	85%
Horses	Solid storage	85%
Mules and Asses	Solid storage	85%
Doulter	Solid storage	50%
Poultry	Anaerobic digestion	50%

Table 5.20. Volatilisation N-losses (kg N)

	1990	1991	1992	1993	1994	1995	1996	1997
Volatilisation N-losses								
(kg N)	13761	13869	14125	14552	14398	14779	15366	16126

	1998	1999	2000	2001	2002	2003	2004	2005
Volatilisation N-losses								
(kg N)	16236	16306	17059	19002	19909	18561	18000	16677

	2006	2007	2008	2009	2010	2011	2012	2013
Volatilisation N-losses								
(kg N)	16768	17538	16279	16129	17053	17067	16236	14869

	2014	2015	2016	2017	2018	2019	2020	2021
Volatilisation N-losses								
(kg N)	14593	14528	15079	15698	15680	16067	16686	17022
	2022	2023						
Volatilisation N-losses								
(kg N)	16589	16406						

Organic N fertilizers - Sewage sludge applied to soils (3D1.2b)

The Tier 2 methodology of the 2006 IPCC Guidelines is applied. The treated sewage sludge applied to land data was obtained from the national statistics and the relevant reports from the Department of Environment⁴⁹. Data was available for all wastewater treatment plants for the years 2004 and 2005. Data for the public waste water treatment plants was available for 2004–2012. All data was available in tonnes of dry matter. The sewage sludge used in agriculture during 1990–2003 and 2006–2014 was estimated using (a) the ratio of the public treatment plants compared to all treatment plants for 2004 and 2005, and (b) the percentage of the population served by a sewer system data for 1997 to 2004. The resulting data is presented in Table 5.21.

Nitrogen content per kg dry sludge was assumed to be 3% for all years and was obtained from S. Perikenti 50 . The resulting nitrogen in sewage sludge applied on land is presented in Table 5.23. The fraction of N input converted to N₂O (EF) is assumed to be 0.003 kg N₂O-N/kg sewage-N produced, after the publication "The effect of chemical and organic N inputs on N₂O emission from rain-fed crops in Eastern Mediterranean" in the Elsevier Journal⁴⁷.

Table 5.21. Dry sludge applied to soils and nitrogen in sewage sludge (kg)

1990 1991 1992	1993 1994	1995	1996

_

⁴⁹ Perikenti, S. 2011&2013. Questionnaire according to Commission Decision 94/741/EC for the report of the Member States on the transposition and implementation of Directive 86/278/EEC on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, amended by Directive 91/692/EEC. Department of Environment

 $^{^{50}}$ Environment Officer responsible for sewage treatment plants, email dated 18/10/2013

Dry sludge (kg)	517390	583589	704000	748000	737000	891000	1232000
N in sewage sludge (kg)	15522	17508	21120	22440	22110	26730	36960
	1997	1998	1999	2000	2001	2002	2003
Dry sludge (kg)	1320000	1408000	1463000	1573000	1749000	2013000	2530000
N in sewage sludge (kg)	39600	42240	43890	47190	52470	60390	75900
	2004	2005	2006	2007	2008	2009	2010
Dry sludge (kg)	3135000	3427000	3116000	5745000	6515000	7903000	5294000
N in sewage sludge (kg)	94050	102810	93480	172350	195450	237090	158820
	2011	2012	2013	2014	2015	2016	2017
Dry sludge (kg)	3912000	2756000	2924000	1391000	936000	1436000	1075000
N in sewage sludge (kg)	117360	82680	87720	41730	28080	43080	32250
	2018	2019	2020	2021	2022	2023	
Dry sludge (kg)	937000	1015000	1014000	867000	745000	1375000	

Other organic fertilizers applied to soils (3D1.2c)

28110

30450

N in sewage

sludge (kg)

Even though there is overproduction of compost in Cyprus, all produced compost is stored as there is no demand for application on land. Nevertheless, to exclude the possibility of underestimating emissions, it was assumed that all compost produced from waste management activities is consumed in-country by agriculture, for the purposes of estimation of emissions from this source. Data on composting in Cyprus was first collected in 2010 (Table 5.22). Composting started in 2010 in specific municipal waste management plants and in a compost plan. As a result, there is no data before 2010 available. Information on other qualitative parameters of the compost applied on land and used for the calculations has been obtained from one of the largest green waste management companies of Cyprus, indicating 96% dry matter and 1.0187% N. N₂O emissions are estimated by multiplying the calculated Ncomp by EF (0.003 after the publication "The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean" in the Elsevier Journal⁴⁷) and then by 44/28.

30420

26010

22350

41250

Table 5.22. Activity data used for the calculation of N₂O emissions from Other organic fertilizers applied to soils (3D1.2c)

	2010	2011	2012	2013	2014	2015
TOTAL						
composting (1000t						
wet mass)	7.89	14.95	16.20	11.67	8.72	12.05
wet compost (kg)	7890000	14950000	16200000	11670000	8720000	12050000
Dry compost (kg)	3156000	5980000	6480000	4668000	3488000	4820000
N COMP (kg N)	34306	65003	70438	50741	37915	52393

	2016	2017	2018	2019	2020	2021
TOTAL						
composting (1000t						
wet mass)	16.77	16.62	22.24	30.30	28.40	25.61

⁵¹ Personal communication with Constantinos Ioannides (10/11/2017), Waste management permitting officer, Pollution Prevention Unit, Department of Environment (tel. +357 22408958, cioannides@environment.moa.gov.cy).

wet compost (kg)	16770000	16620000	36520000	30300000	28404000	25610000
Dry compost (kg)	670800	6648000	14608000	12120000	11361600	10244000
N COMP (kg N)	72916	72264	158789	131744	123501	111352

	2022	2023		
TOTAL				
composting (1000t				
wet mass)	29.28	30.75		
wet compost (kg)	29284000	30746000		
Dry compost (kg)	11713600	12298400		
N COMP (kg N)	127327	133684		

Urine and dung deposited by grazing animals (3D1.3)

Not occurring: A very small percentage of the sheep and goats are grazing; however, no information is available to make an estimation of or an assumption for the grazing population⁵².

Crop residues (3D1.4)

The term FCR refers to the amount of N in crop residues (above-ground and below-ground) that is returned to soils annually, including N-fixing crops. The FCR is estimated from crop yield statistics, default factors for above-/below-ground residue to yield ratios, and residue N contents. In addition, the method accounts for the effect of residue burning or other removal of residues. Because different crop types vary in residue to yield ratios, renewal time and N contents, separate calculations are performed for major crop types, and then N values from all crop types are summed up. Equation 11.6 in the 2006 IPCC Guidelines (pg. 11.14, vol. 4) provides the equation to estimate N from crop residues and forage/pasture renewal, for a Tier 1 approach.

Crop production (t/yr) and cultivated area (ha) data per crop is obtained from Statistical Service (Table 5.23). Crop yield is estimated by dividing the crop production by the area; the results are tabulated in Table 5.23. Harvested annual dry matter yield per crop (Crop(T)) is estimated by multiplying the 2006 IPCC Guidelines default dry matter fraction (DRY) (Table 5.24 obtained from table 11.2, pg.11.17, vol.4) with the estimated Crop yield (YieldFresh) (eqn 11.7, pg.11.15, vol.4, 2006 IPCC Guidelines). Using the defaults values shown in Table 5.24 for Slope, Intercept, NAGT, RBGT and NBGT (table 11.2, pg.11.17, vol.4) above ground residue dry matter AGDM_T (kg/ha) and ratio of above-ground residues dm to harvested crop RAGT (kg/dm) are estimated.

FracBURN (kg N/kg crop-N), shown in Table 5.25, is considered as the default for developing countries (0.25) in 1990, then is linearly declined to the default for developed countries (0.1) in 2008. After that year, this factor has been kept constant. This assumption was based on general knowledge of the sector, and on the fact that a normative banning crop residues burning came into place in 2003. The relevant legislation is the Fire Prevention of Outdoors Law of 1988 (220/1988) as amended by 109(I)2002. 0.1 is used because according to the expert judgement of firefighters and their observations in the field, there is illegal burning of agricultural residues taking place, based. There are no statistics on this type of fires. No details are available to support any deviation from the 10% default.

The resulting estimations of area burnt are presented in Table 5.23. For the calculation of FCR, FracRenewT and FracRemoveT are assumed 1 and 0 respectively, as according to the defaults proposed by 2006 Guidelines (pg.11.14, vol.4).

Due to the unavailability of proposed defaults for Combustion factor (C_f) for Crops other than wheat in the 2006 IPCC Guidelines, a desk study was performed for the values used by countries with similar climatic conditions with Cyprus; i.e. Greece, Spain, Malta and Italy. Malta and Spain report C_f as NO. Values for Cf used are presented in Table 5.28. The values used by Greece were used for Barley and Oats, while for Beans & pulses (legumes) and Potatoes (tubers) 0.40 was used, based on the expert

_

⁵² Personal communication with Dr. Petros Mavromatis (22/11/2017), head of sheep and goat farming division, Department of Agriculture (tel. +357 22408555, pmavrommatis@da.moa.gov.cy)

judgement of Dr. Michalis Omirou⁵³.

 N_2O emissions are estimated by multiplying the calculated FCR by EF1 (0.01 default, table 11.1, pg. 11.11, vol.4, 2006 IPCC guidelines) and then by 44/28.

Table 5.23. Crop production (t/yr), cultivated area (ha), Crop yield (kg/ha), CropT (kg dm/ha), above ground residue dry matter AGDM_T (kg/ha), ratio of above-ground residues dm to harvested crop RAGT (kg/dm), Area Burnt (ha/yr) and FCR (kg N/yr) per crop

to harvested crop RAGT (kg/dm), Area Burnt (ha/yr) and FCR (kg N/yr) per crop											
	1990	1991	1992	1993	1994	1995	1996				
Crop production (t/yr)											
Wheat	10400	5600	10500	11700	8000	12297	13000				
Barley	98000	59500	17100 0	193000	15400 0	133818	12800 0				
Oats	100	80	145	100	150	174	190				
Beans & pulses (legumes)	3505	3000	3629	3607	3157	3992	3700				
Potatoes (tubers)	18590	17965	19540	199000	13500	207699	22800				
` ′	0	0	0		0		0				
Cultivated area (ha)	7100	4000	7 000	7 000	2200	2500	2500				
Wheat	5100	4900	5000	5000	3300	3500	3700				
Barley	52330	43790	60000	64000	60000	57500	55000				
Oats	100	100	110	140	200	220	240				
Beans & pulses (legumes)	1350	1173	1145	1103	810	1039	857				
Potatoes (tubers)	8000	8690	9625	8080	7500	8313	9125				
Crop yield (YieldFresh),											
kg/ha											
Wheat	2039	1143	2100	2340	2424	3514	3514				
Barley	1873	1359	2850	3016	2567	2327	2327				
Oats	1000	800	1318	714	750	792	792				
Beans & pulses (legumes)	2596	2558	3169	3270	3898	3842	4317				
Potatoes (tubers)	23238	20673	20301	24629	18000	24986	24986				
CropT (kg dm/ha)											
Wheat	1815	1017	1869	2083	2158	3127	3127				
Barley	1667	1209	2537	2684	2284	2071	2071				
Oats	890	712	1173	636	668	705	705				
Beans & pulses (legumes)	2363	2327	2884	2976	3547	3496	3929				
Potatoes (tubers)	5112	4548	4466	5418	3960	5497	5497				
above grou											
Wheat	3261	2056	3342	3665	3778	5242	5242				
Barley	2223	1775	3076	3220	2829	2620	2620				
Oats	1700	1538	1958	1469	1497	1531	1531				
Beans & pulses (legumes)	3520	3480	4109	4213	4858	4801	5290				
Potatoes (tubers)	1571	1515	1507	1602	1456	1610	1610				
Area Burnt (ha/yr)	1371	1313	1307	1002	1130	1010	1010				
Wheat	1275	1184	1167	1125	715	729	740				
Barley	13083	10583	14000	14400	13000	11979	11000				
Oats	25	24	26	32	43	46	48				
Beans & pulses (legumes)	338	283	267	248	176	216	171				
Potatoes (tubers)	2000	2100	2246	1818	1625	1732	1825				
` /	2000	2100	2240	1010	1023	1/32	1623				
FCR (kg N/yr) Wheat	122222	70022	125404	1.407.50	102525	150505	1,0000				
	133233	79822	135491	149750	102525	152707	162306				
Barley	1260233	829608	2060702	2317592	1903818	1689766	1623779				
Oats	1443	1295	1883	1740	2558	2905	3188				
Beans & pulses (legumes)	46283	39853	46298	45880	39098	49683	45372				
Potatoes (tubers)	364653	373456	410779	382605	303234	398454	438331				
TOTAL	1805846	1324033	2655153	2897566	2351234	2293515	2272975				

⁵³ Personal Communication 16/11/2017 Dr. Michalis Omirou, Agricultural Research Officer, Agricultural Research Institute (Tel. +357-22403146, michalis.omirou@ari.gov.cy)

	1996	1997	1998	1999	2000	2001	2002
Crop production (t/yr)							
Wheat	13000	11500	11500	14000	10000	10500	12900
Barley	12800 0	36000	54000	112700	37600	116500	12840 0
Oats	190	280	320	400	350	380	500
Beans & pulses (legumes)	3700	3558	3684	3764	3308	3383	3358
Potatoes (tubers)	22800 0	81500	13809 2	161500	11700 0	121000	14850 0
Cultivated area (ha)							
Wheat	3700	5250	5800	6600	6150	5400	5900
Barley	55000	37500	53000	52000	45000	50200	51300
Oats	240	270	290	340	330	370	400
Beans & pulses (legumes)	857	890	893	913	832	832	847
Potatoes (tubers)	9125	7000	7500	6800	6500	5715	5700
Crop yield (YieldFresh), kg/ha							
Wheat	3514	2190	1983	2121	1626	1944	2186
Barley	2327	960	1019	2167	836	2321	2503
Oats	792	1037	1103	1176	1061	1027	1250
Beans & pulses (legumes)	4317	3998	4125	4123	3976	4066	3965
Potatoes (tubers)	24986	11643	18412	23750	18000	21172	26053
CropT (kg dm/ha)	2127	1050	1765	1000	1 4 4 7	1721	1046
Wheat	3127	1950	1765	1888	1447	1731	1946
Barley	2071 705	854 923	907 982	1929 1047	744 944	2065 914	2228
Oats Beans & pulses (legumes)	3929	3638	3754	3752	3618	3700	1113 3608
Potatoes (tubers)	5497	2561	4051	5225	3960	4658	5732
above ground residue dry matte				3223	3700	+030	3132
Wheat	3464	3185	3371	2705	3133	3458	3464
Barley	1427	1479	2480	1319	2614	2773	1427
Oats	1730	1784	1843	1749	1722	1902	1730
Beans & pulses (legumes)	4961	5092	5089	4938	5031	4927	4961
Potatoes (tubers)	1316	1465	1583	1456	1526	1633	1316
Area Burnt (ha/yr)							
Wheat	740	1006	1063	1155	1025	855	885
Barley	11000	7188	9717	9100	7500	7948	7695
Oats	48	52	53	60	55	59	60
Beans & pulses (legumes)	171	171	164	160	139	132	127
Potatoes (tubers)	1825	1342	1375	1190	1083	905	855
FCR (kg N/yr)							
Wheat	151675	154544	187423	140009	143778	174771	151675
Barley	574295	848472	1468404	639644	1512694	1652986	574295
Oats	4144	4634	5668	5218	5782	7027	4144
Beans & pulses (legumes)	44246	45718	46840	41500	42409	42369	44246
Potatoes (tubers)	237627	309294	319762	266399	254137	283800	237627
TOTAL	1011987	1362662	2028096	1092771	1958800	2160952	1011987
	2003	2004	2005	2006	2007	2008	2009
Crop production (t/yr)		0.0.7.7				- 1====	
Wheat	14280	9930	9249	7520	10712	24720	14690
Barley	15000 0	10099 0	60286	58372	52007	34960	40092
Oats	410	490	650	943	814	373	2038
Beans & pulses (legumes)	2410	3280	3291	3348	3318	3312	3312
Potatoes (tubers)	12750 0	13165 0	15250 0	127500	15550 0	115000	11250 0
Cultivated area (ha)							

		5.45 0	7 2.54	72 00	5205	1000	
Wheat	7225	7450	5264	5389	5287	4990	5761
Barley	65007	58448	52517	48914	34019	30680	22444
Oats	513	808	4368	4919	4250	3034	2950
Beans & pulses (legumes)	834	808	796	855	737	554	614
Potatoes (tubers)	5511	5380	6190	4290	6290	5110	4970
Crop yield (YieldFresh), kg/ha							
Wheat	1976	1333	1757	1395	2026	4954	2550
Barley	2307	1728	1148	1193	1193	1140	1786
Oats	799	606	149	192	192	123	691
Beans & pulses (legumes)	2890	4059	4134	3916	3916	5978	5394
Potatoes (tubers)	23136	24470	24637	29720	29720	22505	22636
CropT (kg dm/ha)	20100	2	2.007	27,20	27120	22000	22000
Wheat	1759	1186	1564	1242	1803	4409	2269
Barley	2054	1538	1022	1062	1361	1014	1590
Oats	711	540	132	171	170	109	615
Beans & pulses (legumes)	2630	3694	3762	3563	4097	5440	4909
Potatoes (tubers)	5090	5383	5420	6538	5439	4951	4980
above ground residue dry matt				0330	3137	1731	1700
Wheat	3176	2311	2881	2395	3243	7178	3947
Barley	2603	2097	1591	1631	1923	1584	2148
Oats	1537	1381	1011	1045	1045	990	1450
Beans & pulses (legumes)	3821	5024	5101	4877	5479	6998	6397
Potatoes (tubers)	1569	1598	1602	1714	1604	1555	1558
Area Burnt (ha/yr)	1307	1370	1002	1/17	1004	1333	1336
Wheat	1024	993	658	629	573	499	576
Barley	9209	7793	6565	5707	3685	3068	2244
Oats	73	108	546	574	460	303	295
Beans & pulses (legumes)	118	108	100	100	80	55	61
Potatoes (tubers)	781	717	774	501	681	511	497
FCR (kg N/yr)	701	/1/	774	301	001	311	421
Wheat	197152	147198	121205	111657	150467	320440	201501
Barley	1967237	1410504	131305 942529	906124	757952	555379	565824
Oats	7131	9989	37445	44216	38427	25815	39448
Beans & pulses (legumes)	32230	41452	41586	42768	41635	40246	40715
Potatoes (tubers)	257728	259843	300697	232303	307409	238036	232217
TOTAL	2461477	1868987	1453562		1295890		1079705
TOTAL	2401477	1000907	1433302	1337068	1293690	1179916	1079703
	2010	2011	2012	2013	2014	2015	2016
Crop production (t/yr)							
Wheat	18889	23740	22923	15181	4445	35356	6902
Barley	46062	45716	67028	36006	2720	52175	2907
Oats	781	739	796	736	197	596	352
Beans & pulses (legumes)	4319	4204	4374	4428	4205	4905	4000
Potatoes (tubers)	82000	12608	82200	105480	11499	95921	12280
		0			7		3
Cultivated area (ha)							
Wheat	7833	10592	8550	6921	6135	11969	8386
Barley	24150	24955	28853	23534	18939	20560	14536
Oats	909	369	419	305	229	317	367
Beans & pulses (legumes)	523	618	727	654	639	715	498
Potatoes (tubers)	4255	5065	4550	4638	4912	4735	5041
Crop yield (YieldFresh),							
kg/ha	0.414	0241	0.001	0100	725	2051	022
Wheat	2411	2241	2681	2193	725	2954	823
Barley	1907	1832	2323	1530	144	2538	200
		111112	i ionn	1 2/112	1 860	1 1000	050
Oats Beans & pulses (legumes)	859 8258	2003 6803	1900 6017	2413 6771	860 6581	1880 6860	959 8032

Potatoes (tubers)	19271	24892	18066	22743	23411	20258	24361
CropT (kg dm/ha)							
Wheat	2146	1995	2386	1952	645	2629	733
Barley	1698	1630	2068	1362	128	2259	178
Oats	765	1782	1691	2148	766	1673	854
Beans & pulses (legumes)	7515	6190	5475	6161	5988	6243	7309
Potatoes (tubers)	4240	5476	3975	5003	5151	4457	5359
above ground residue dry matter AGDM_T (kg/ha)							
Wheat	3761	3532	4123	3468	1494	4490	1626
Barley	2254	2188	2616	1924	715	2803	764
Oats	1586	2512	2429	2844	1587	2413	1667
Beans & pulses (legumes)	9342	7845	7037	7812	7617	7904	9109
Potatoes (tubers)	1484	1608	1457	1560	1575	1506	1596
Area Burnt (ha/yr)							
Wheat	783	1059	855	692	614	1197	839
Barley	2415	2496	2885	2353	1894	2056	1454
Oats	91	37	42	31	23	32	37
Beans & pulses (legumes)	52	62	73	65	64	72	50
Potatoes (tubers)	426	507	455	464	491	474	504
FCR (kg N/yr)							
Wheat	260783	330717	312689	212069	78373	477458	117177
Barley	640951	641640	897600	527002	135564	688099	113052
Oats	13466	9080	9941	8577	3395	7468	5751
Beans & pulses (legumes)	50923	50419	53115	53130	50594	58779	47269
Potatoes (tubers)	183365	248987	190160	217239	233617	209089	244916
TOTAL	1149488	1280844	1463505	1018017	501544	1440893	528165
1011112							
	2017	2018	2019	2020	2021	2022	2023
Crop production (t/yr)							
Wheat	16592	14991	28412	33555	25139	30150	27850
Barley	18754	7727	29243	25664	25478	23817	21490
Oats	490	396	209	347	379	415	410
Beans & pulses (legumes)	4389	3307	2786	3209	2865	2665	2952
	10992	10532	82100	91880	98984	85160	83226
Potatoes (tubers)	3	5	02100	71000	, , , , ,	00100	00220
Cultivated area (ha)	_						
Wheat	8678	10197	10589	12970	12321	13314	12700
Barley	10953	12795	11576	12524	12833	10683	10000
Oats	248	219	223	334	303	248	300
Beans & pulses (legumes)	528	460	416	453	412	435	406
Potatoes (tubers)	4219	4536	3883	3797	3991	3786	3700
Crop yield (YieldFresh),	,		2002	0,7,	0,,,1	2,00	2,00
kg/ha							
Wheat	1912	1470	2683	2587	2040	2265	2193
Barley	1712	604	2526	2049	1985	2229	2149
Oats	1976	1808	937	1039	1251	1673	1367
Beans & pulses (legumes)	8313	7189	6695	7084	6954	6126	7279
Potatoes (tubers)	26054	23220	21143	24198	24802	22493	22493
CropT (kg dm/ha)	2005-	23220	21173	21170	21002	22173	22173
Wheat	1702	1308	2388	2303	1816	2015	1952
Barley	1524	537	2248	1824	1767	1984	1913
Oats	1758	1609	834	925	1113	1489	1216
Beans & pulses (legumes)	7564	6542	6092	6446	6328	5575	6624
Potatoes (tubers)	5732	5108	4652	5324	5456	4949	4949
above ground residue dry matte		T (kg/ha)		3324	2420	ーフサ フ	マクサフ
Wheat	3089	2496	4126	3997	3262	3563	3467
Barley	2083	1117	2793	2377	2322	2535	2464
	2490	2354	1649	1731	1903	2245	1997
Oats	∠49U	2334	1049	1/31	1703	4 4 43	177/

Beans & pulses (legumes)	9398	8243	7734	8134	8001	7150	8335
Potatoes (tubers)	1633	1571	1525	1592	1606	1555	1555
Area Burnt (ha/yr)							
Wheat	868	1020	1059	1297	1232	1331	1270
Barley	1095	1280	1158	1252	1283	1068	1000
Oats	25	22	22	33	30	25	30
Beans & pulses (legumes)	53	46	42	45	41	44	41
Potatoes (tubers)	422	454	388	380	399	379	370
FCR (kg N/yr)							
Wheat	236193	222739	387529	459519	354584	419467	389060
Barley	267213	156308	385956	351916	351596	321346	291963
Oats	6046	5024	3451	5462	5505	5403	5748
Beans & pulses (legumes)	51721	39457	33465	38339	34289	32300	35183
Potatoes (tubers)	212688	214797	175176	183810	195801	176314	172309
TOTAL	773860	638325	985576	103904 6	941775	954831	894263

Table 5.24. Default dry matter fraction (DRY), Slope, Intercept, NAGT, RBGT, NBGT per crop

Crop	DRY	Slope	Intercept	NAGT	RBGT	NBGT	
Wheat	0.89	1.51	0.52	0.006	0.24	0.009	
Barley	0.89	0.98	0.59	0.007	0.22	0.014	
Oats	0.89	0.91	0.89	0.007	0.25	0.008	
Beans & pulses (legumes)	0.91	1.13	0.85	0.008	0.19	0.008	
Potatoes (tubers)	0.22	0.10	1.06	0.019	0.20	0.014	

Table 5.25. Crop residue that is burned (FracBURN)

Year	1990	1991	1992	1993	1994	1995	1996	1997
FracBURN	0.25	0.24	0.23	0.23	0.22	0.21	0.20	0.19
Year	1998	1999	2000	2001	2002	2003	2004	2005
FracBURN	0.18	0.18	0.17	0.16	0.15	0.14	0.13	0.13
Year	2006	2007	2008					
FracBURN	0.12	0.11	0.10					

Table 5.26. Combustion factor (C_f)

Crop	Cf	Source
Wheat	0.90	default - table 2.6, pg.2.49, vol.4, IPCC 2006
Barley	0.89	Greece - NIR2017
Oats	0.89	Greece - NIR2017
Beans & pulses (legumes)	0.40	expert judgement - Michalis Omirou tel. 16/11/2017
Potatoes (tubers)	0.40	expert judgement - Michalis Omirou tel. 16/11/2017

Mineralization/immobilization associated with loss/gain of soil organic matter (3D1.5)

Cyprus reported in 2023 for the first time direct N_2O emissions associated with N mineralised in mineral soils resulting from carbon losses in mineral soils in cropland remaining cropland due to management changes. The carbon losses in mineral soils in cropland remaining cropland are reported in the LULUCF sector, however the associated N_2O emissions are to be reported in CRT table 3.D. The Tier 1 method of the 2006 IPCC guidelines with default parameters were used to estimate direct N_2O emissions. More specifically, for the direct N_2O emissions, the C/N ratio equal to 10 and the emission factor of 0.01 kg N_2O –N/kg N were used.

Cultivation of organic soils (3D1.6)

Not Occurring

Other (3D1.7)

Not Occurring

5.5.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

5.5.1.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

5.5.1.4. Category-specific recalculations

Please refer to paragraph 5.5.2.4 below.

5.5.1.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

5.5.2. Indirect N₂O emissions from managed soils (3D2)

In addition to the direct emissions of N_2O from managed soils that occur through a direct pathway, emissions of N_2O also take place through two indirect pathways. The first of these pathways is the volatilisation of N as NH3 and oxides of N (NO_x), and the deposition of these gases and their products NH_4^+ and NO_3^- onto soils and the surface of lakes and other waters. The second pathway is the leaching and runoff from land of N from synthetic and organic fertiliser additions, crop residues, mineralisation of N associated with loss of soil C in mineral and drained/managed organic soils through land-use change or management practices, and urine and dung deposition from grazing animals.

The methodology described in this section addresses the following N sources of indirect N_2O emissions from managed soils arising from agricultural inputs of N: synthetic N fertilizers (FSN); organic N applied as fertiliser (e.g., applied animal manure, compost, sewage sludge, rendering waste and other organic amendments) (FON); urine and dung N deposited on pasture, range and paddock by grazing animals (FPRP); N in crop residues (above- and below-ground), including N-fixing crops and forage/pasture renewal returned to soils (FCR). N mineralisation associated with loss of soil organic matter resulting from change of land use or management on mineral soils (FSOM) because it does not occur in Cyprus.

5.5.2.1. Methodological issues

For both Atmospheric deposition (3D2.1) and Leaching/Runoff (3D2.2) the Tier 1 methodology according to 2006 IPCC Guidelines is applied.

Atmospheric deposition (3D2.1)

The N_2O emissions from atmospheric deposition of N volatilised from managed soil are estimated with Equation 11.9 in the 2006 IPCC Guidelines (pg. 11.21, vol.4), using the following data and parameters:

- FSN, annual amount of synthetic fertiliser N applied to soils (kg N/yr): same as presented in Table 5.18:
- FracGASF, fraction of synthetic fertiliser N that volatilises as NH₃ and NO_x, kg N volatilised/kg of N applied: default of 0.1 as proposed by the 2006 IPCC Guidelines (table 11.3, pg.11.24, vol.4);
- FON, annual amount of managed animal manure, compost, sewage sludge and other organic N additions applied to soils, kg N/yr: the total nitrogen input to the soil from the categories animal manure applied to soils and sewage sludge, as estimated for category Organic N fertilizers (3D1.2) total FON presented in Table 5.27.
- FPRP, annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock (kg N/yr): considered 0 for Cyprus. A very small percentage of the sheep and goats are grazing; however, no information is available to make an estimation or an assumption on the

- population grazing⁵⁴
- FracGASM, fraction of applied organic N fertiliser materials (FON) and of urine and dung N deposited by grazing animals (FPRP) that volatilises as NH₃ and NO_x, kg N volatilised/kg of N applied or deposited: default of 0.2 as proposed by the 2006 IPCC Guidelines (table 11.3, pg.11.24, vol.4);
- EF4, emission factor for N₂O emissions from atmospheric deposition of N on soils and water surfaces, kg N–N₂O/kg NH₃–N + NO_x–N volatilized: default of 0.01 as proposed by the 2006 IPCC Guidelines (table 11.3, pg.11.24, vol.4, IPCC 2006)

The resulting $N_2O(ATD)$ –N is presented in Table 5.27. $N_2O(ATD)$ –N is converted to N_2O by multiplication with 44/28.

Table 5.27. FON and N₂O(ATD) –N (kg N/yr)

Year	1990	1991	1992	1993	1994	1995
FON	13776101	13886045	14146482	14574230	14420441	14805742
N ₂ O(ATD) –N	39978	39941	43053	45337	43130	50137

Year	1996	1997	1998	1999	2000	2001
FON	15403224	16165623	16277873	16349470	17106399	19054024
N ₂ O(ATD) –N	44434	43457	47157	44260	44750	50467

Year	2002	2003	2004	2005	2006	2007
FON	19968932	18637054	18094102	16779359	16861458	17709868
N ₂ O(ATD) –N	50517	48472	46926	42152	45014	43618

Year	2008	2009	2010	2011	2012	2013
FON	16474832	16365643	17245915	17249039	16385200	15005878
N ₂ O(ATD) –N	40449	40405	43861	41636	41089	37063

Year	2014	2015	2016	2017	2018	2019
FON	14672154	14608032	15201961	15801430	15806903	16244042
$N_2O(ATD) - N$	36037	36749	38477	39444	39438	39988
Year	2020	2021	2022	2023		
FON	16839529	17158882	16739009	16580673		
N ₂ O(ATD) -N	41179	41475	40553	40450		

Leaching/Runoff (3D2.2)

Cyprus reported in 2023 for the first time indirect N_2O emissions associated with N mineralised in mineral soils resulting from carbon losses in mineral soils in cropland remaining cropland due to management changes. The carbon losses in mineral soils in cropland remaining cropland are reported in the LULUCF sector, however the associated N_2O emissions are to be reported in CRT table 3.D. The Tier 1 method of the 2006 IPCC guidelines with default parameters were used to estimate indirect N_2O emissions. More specifically, for the indirect N_2O emissions, the emission factor of 0.0075 kg N_2O –N/kg N and the fraction of 0.30 for the N mineralised that is lost through leaching/runoff were used.

5.5.2.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

5.5.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and

.

⁵⁴ Personal communication with Dr. Petros Mavromatis (22/11/2017), head of sheep and goat farming division, Department of Agriculture (tel. +357 22408555, pmavrommatis@da.moa.gov.cy).

verification activities are applied for this sector.

5.5.2.4. Category-specific recalculations

There have been recalculations for the category 3D (Direct N_2O emissions from managed soils (3D1) and Indirect Direct N_2O emissions from managed soils (3D2)) for the period 2016-2019 and the year 2022 due to:

- i. Updated data of dry sludge applied on land for the period 2016-2019 and 2022;
- ii. Updated data of animal manure applied to soils for 2022; and
- iii. Updated data of crop production and cultivated area per crop for 2022.

The impact is presented in Table 5.28 below:

Table 5.28. Impact of recalculations on N₂O emissions from managed soils (3D) (1990-2021)

Gg CO2 eq.	2016	2017	2018	2019	2022
NIR 2025	47.37	49.27	48.70	50.53	50.76
NIR 2024	47.38	49.28	48.71	50.54	51.68
Difference (%)	-0.02%	-0.004%	-0.01%	0.01%	-1.78%

5.5.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

5.5.3. Prescribed burning of savannas (3E)

Not Occurring in Cyprus.

5.5.4. Field burning of agricultural residues (3F)

Large quantities of agricultural wastes are produced from farming systems world-wide, in the form of crop residue. Burning of crop residues is not thought to be a net source of carbon dioxide (CO₂) because the carbon released to the atmosphere during burning is reabsorbed during the next growing season. However, crop residue burning is a net source of CH₄, CO, NO_x, and N₂O. This section accounts for emissions of these non-CO₂ gases from field burning of agricultural crop residues. Burning of agricultural wastes in the fields is a common practice in the developing world; it is used primarily to clear remaining straw and stubble after harvest and to prepare the field for the next cropping cycle. In Cyprus, field burning of agricultural residues was a widespread practice until 2003, when a normative banning crop residues burning came into place (Fire Prevention of Outdoors Law of 1988 [220/1988] as amended by 109(I)/2002). Total emissions from field burning of agricultural residues for the period 1990–2023 are presented in Table 5.29 and Figure 5.5.

Table 5.29. Field burning of agricultural residues emissions, 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013
3F	2.96	1.16	1.15	0.76	0.83	0.98	0.64
3.F.1 Cereals	2.79	1.07	1.08	0.72	0.78	0.94	0.59
3.F.2 Pulses	0.04	0.03	0.02	0.02	0.02	0.02	0.02
3.F.3 Tubers and Roots	0.12	0.06	0.05	0.02	0.03	0.02	0.03
CH ₄ (t)	84.78	33.18	32.92	21.79	23.84	28.22	18.26
$N_2O(t)$	2.20	0.86	0.85	0.56	0.62	0.73	0.47
Total (Gg CO ₂ eq.)	2.96	1.16	1.15	0.76	0.83	0.98	0.64

Gg CO ₂ eq. 2014 2015 2016 2017 2018 2019 2020

3F	0.24	0.99	0.26	0.47	0.38	0.68	0.73
3.F.1 Cereals	0.19	0.94	0.21	0.42	0.34	0.64	0.69
3.F.2 Pulses	0.02	0.02	0.02	0.02	0.01	0.01	0.01
3.F.3 Tubers and Roots	0.03	0.03	0.03	0.03	0.03	0.02	0.02
$\mathrm{CH_{4}}\left(\mathrm{t}\right)$	6.93	28.47	7.49	13.43	10.92	19.46	20.94
$N_2O(t)$	0.18	0.74	0.19	0.35	0.28	0.50	0.54
Total (Gg CO ₂ eq.)	0.24	0.99	0.26	0.47	0.38	0.68	0.73

Gg CO ₂ eq.	2021	2022	2023		
3F	0.63	0.67	0.62		
3.F.1 Cereals	0.60	0.63	0.58		
3.F.2 Pulses	0.01	0.01	0.01		
3.F.3 Tubers and Roots	0.02	0.02	0.02		
CH ₄ (t)	18.1	19.1	17.7		
$N_2O(t)$	0.47	0.50	0.46		
Total (Gg CO ₂ eq.)	0.63	0.67	0.62		

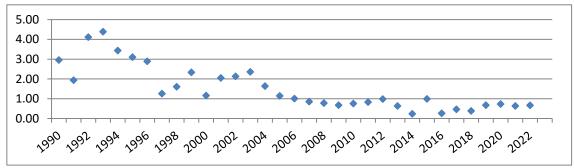


Figure 5.5. Field burning of agricultural residues emissions, 1990–2023 (Gg CO₂ eq.)

5.5.4.1. Methodological issues

A generic methodology to estimate the emissions of individual greenhouse gases for any type of fire is summarised in Equation 2.27 (pg. 2.42, vol. 4, 2006 IPCC Guidelines) using the following:

- A, area burnt, ha: data already presented in Table 5.2
- M_B, mass of fuel available for combustion, tonnes/ha: data already presented in Table 5.25 (above ground residue dry matter AGDM_T)
- C_f, combustion factor, dimensionless: data already presented in Table 5.29
- Gef, emission factor, g/kg dry matter burnt: 2.7 g CH₄/kg DM burnt, 0.07 g N₂O/kg DM burnt (according to default values in Table 2.5, pg. 2.47, vol. 4, 2006 IPCC Guidelines). According to the 2006 IPCC guidelines for combustion of non-woody biomass in Grassland and Cropland, CO₂ emissions do not need to be estimated and reported, because it is assumed that annual CO₂ removals (through growth) and emissions (whether by decay or fire) by biomass are in balance.

5.5.4.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

5.5.4.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

5.5.4.4. Category-specific recalculations

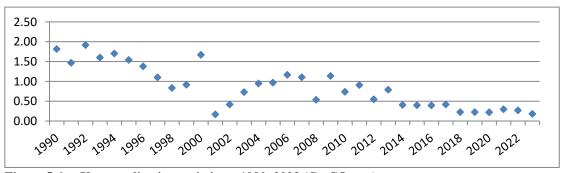
Recalculations were made because of recalculations in 3.D.1.4 (updated values for production and cultivated area of crops for 2022). This results in an increase in emissions of 0.071 ktCO₂eq. or 10.6%.

5.5.4.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

5.5.5. Liming (**3G**)

Soils on Cyprus vary between lithosols, leptosols, regosols, gypsisols, solonchaks, solonetz, vertisols, and cambisols, as according to the World Reference Base of Food and Agriculture Organization of the United Nations soil classification system⁵⁵. All of these soils have a pH of 7 or above. Additionally, according to information provided by the Department of Agriculture⁵⁶, there is no information, data or documents to support that liming does take place in Cyprus. The expert judgement of Mr. Mousouliotis is to report liming activities as NO.


5.5.6. Urea application (3H)

Adding urea to soils during fertilisation leads to a loss of CO₂ that was fixed in the industrial production process. Urea (CO(NH₂)₂) is converted into ammonium (NH₄⁺), hydroxyl ion (OH⁻), and bicarbonate (HCO₃⁻) in the presence of water and urease enzymes. Similar to the soil reaction following addition of lime, bicarbonate that is formed evolves into CO2 and water. This source category is included because the CO₂ removal from the atmosphere during urea manufacturing is estimated in the Industrial Processes and Product Use Sector (IPPU Sector). The GHG inventory is developed using a Tier 1 approach. Total emissions from urea application for the period 1990–2023 are presented in Table 5.30 and Figure 5.6.

Table 5.30. Urea application emissions, 1990–2023

Urea application (Gg CO ₂)	1990	2000	2005	2010	2011	2012	2013
	1.82	1.67	0.97	0.74	0.91	0.55	0.79
Urea application (Gg CO ₂)	2014	2015	2016	2017	2018	2019	2020
	0.41	0.40	0.39	0.42	0.22	0.23	0.22

Urea application (Gg CO ₂)	2021	2022	2023		
	0.30	0.27	0.18		

Urea application emissions, 1990–2023 (Gg CO₂ eq.)

5.5.6.1. Methodological issues

⁵⁵ Zomeni A., Camera C., Bruggeman A., Zissimos A., Christoforou I., Noller J., 2014, Digital soil map of Cyprus (1:25,000); AGWATER - Options for sustainable agricultural production and water use in Cyprus under global change; Scientific Report 6; Deliverable D15, D16. The Cyprus Institute, Nicosia, p.15.

⁵⁶ Andreas Mousouliotis, Agriculture Officer, Department of Agriculture (tel. +357 22464016, amousouliotis@da.moa.gov.cy).

The steps for estimating CO₂–C emissions from urea applications are:

Step 1: Estimate the total amount of urea applied annually to a soil in the country (M); Data of urea sales in Cyprus is obtained from the Department of Agriculture⁵⁷ (Table 5.31). Activity data assumes that all sold urea in a given year is consumed in the same year.

Step 2: Apply an overall emission factor (EF) of 0.20 for urea, which is equivalent to the carbon content of urea on an atomic weight basis (20% for $CO(NH_2)_2$).

Step 3: Estimate the total CO_2 –C emission based on the product of the amount of urea applied, the emission factor, and Equation 11.13 in 2006 IPCC Guidelines (pg. 11.32, vol. 4). Total CO_2 –C emission estimated in presented in Table 5.34.

Step 4: Multiply by 44/12 to convert CO₂–C emissions into CO₂.

Table 5.31. Urea consumption in Cyprus (t) and total CO₂–C emission (tC/yr)

Tuble tiell clear consumption in cyprus (t) and total cost commission (tely)											
Year	1990	1991	1992	1993	1994	1995	1996	1997			
Urea consumption (t)	2475	2000	2615	2185	2323	2101	1879	1502			
CO ₂ –C emission (tC/yr)	495	400	523	437	465	420	376	300			

Year	1998	1999	2000	2001	2002	2003	2004	2005
Urea consumption (t)	1140	1250	2280	227	572	997	1291	1318
CO ₂ –C emission (tC/yr)	228	250	456	45	114	199	258	264

Year	2006	2007	2008	2009	2010	2011	2012	2013
Urea consumption (t)	1590	1508	732	1553	1006	1239	748.4	1078
CO ₂ –C emission (tC/yr)	318	302	146	311	201	248	150	216

Year	2014	2015	2016	2017	2018	2019	2020	2021
Urea consumption (t)	555	543	538	570	305	308	300	408
CO ₂ –C emission (tC/yr)	111	109	108	114	61	62	60	82

Year	2022	2023			
Urea consumption (t)	370	249.6			
CO ₂ –C emission (tC/yr)	74	50			

5.5.6.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

5.5.6.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

5.5.6.4. Category-specific recalculations

No recalculations to report for this category.

5.5.6.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

⁵⁷ George Theophanous, Agriculture Officer, Department of Agriculture (tel. +357 22464028, gtheophanous@da.moa.gov.cy) – Fertilizer Control Board.

5.5.7. Other carbon-containing fertilizers (3I)

NO

5.5.8. Other (please specify) (3J)

NO

Chapter 6.

Land use, land-use change and forestry (CRT sector 4)

6.1. Overview of sector

Cyprus is an island in the Mediterranean Sea. It measures 240 kilometers long from end to end and 100 kilometers wide at its widest point. It lies between latitudes 34° and 36° N, and longitudes 32° and 35° E. Since 1974 the northern part of Cyprus has been under occupation by Türkiye and **beyond the effective control of the Cyprus Government**. For comparability purposes with the rest of the National Inventory sectors of this report, following the recommendations of the UNFCCC Expert Review Team (September 2016 Saturday Paper Report), GHG emissions/removals are reported only for the lands under the effective control of the Government as managed land. The rest of the island is considered to be "unmanaged" and no GHG emissions/removals estimates are included in this report, even though the whole country land area is tracked and reported.

6.1.1. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Land areas are represented using the IPCC approach 2 (total land-use area, including changes between categories). The essential feature of approach 2 is that it provides an assessment of both the net losses or gains in the area of specific land-use categories and what these conversions represent (i.e., gross changes both from and to a land-use category) but without spatially-explicit location data. The final result of this approach is presented as a non-spatially explicit land-use conversion matrix covering the period 1990 until the latest reported year.

Land use area data for Cyprus are sourced from the CORINE land cover (CLC) inventory⁵⁸ data (for details see Chapter 6.2.3). Five CORINE data sets covering the years 1990, 2000, 2006, 2012 and 2018 were considered in the preparation of this inventory. In order to retain consistency among GHG estimates reported for different years the total land area from the 2018 data set was taken as the total country area, and for the previous data sets a proportional approach was used to adjust the areas to the total country area. The complete data sets allowed for the establishment of the respective land use matrices for the periods 1990-2000, 2000–2006, 2006–2012 and 2012-2018. All matrices were linearly interpolated/extrapolated to obtain annual land use change data for all individual years within these periods. Due to the lack of measured data before 1990, it was assumed that for all reported lands the pre-1990 land uses were not different from the land use in 1990. From 2018 onward, the same land-use changes that occurred (type and magnitude) in the period 2012–2018 were assumed in order to complete the land representation up to the latest reported year. Once a new CORINE land cover data set becomes available the land-use matrix from 2018 onward will be revised accordingly.

The surface area of the smallest unit mapped in the CORINE project is 25 hectares. However, the sensitivity for land cover change is 5 ha. As a first approximation, it is assumed that the possible overestimation and underestimation of the individual land use categories and land use changes among these land use categories within the smallest units mapped in the CORINE nullify within the reporting unit. This assumption will be checked against other data of sensitivity comparable to the threshold area used in the definition of forest when the data are available.

_

⁵⁸ http://land.copernicus.eu/pan-european/corine-land-cover/view

It should be noted, that in the current submission several QC checks have been implemented, regarding the land representation. More specifically, in the current submission the consistency in land representation and thus in the emissions/removals reported is ensured. This is verified by the fact that:

- The total managed and unmanaged areas remain constant throughout the time series, respectively, and therefore, the total country area remains constant for all inventory years as well.
- For every land-use category X, the final area reported in the year t-1 in CRT 4.1 equals the initial area reported in the year t in CRT 4.1 for the same land-use category X;
- For every land-use category X, and for every year Y in the inventory time series, the total area reported in the background CRTs 4.A-4.F equals the final area reported in CRT 4.1 for the same land-use category X in year Y.
- The 2006 IPCC guidelines default 20 years conversion and transition period is applied in all land-use categories.

6.1.2. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

The 2006 IPCC guidelines identify six broad land-use categories for the purpose of estimating and reporting greenhouse gas emissions and removals from land use and land-use conversions: (i) forest land; (ii) cropland; (iii) grassland; (iv) wetlands; (v) settlements; and (vi) other land. In the preparation of this inventory the generic definitions of the categories referred to in the 2006 IPCC guidelines were implemented in a country-specific way, described below based on the national definition of forest.

6.1.2.1. Definition of forest

Cyprus adopted the following definition of forest for GHG reporting under the Convention (and the Kyoto Protocol in the past):

Forest comprises of land covered by forest trees which covers at least 0.3 hectares, where the tree crown cover is at least 10 per cent and the minimum tree height is of 5 meters (at maturity).

The forest definition adopted by Cyprus is in line with the Forest National Law of 2012 (25 (I)/2012) and in accordance with the definition used for its reporting for the Global Forest Resource assessment under the Food and Agriculture Organization of the United Nations (FAO FRA 2015). This definition is also consistent with the guidance of the national definition of forest contained in Decision 16/CMP.1.

It should be noted that the Department of Forests (Department of Forests, CY-1414 Nicosia, Cyprus) applied the following definition of forest in its reporting under the FRA 2015⁵⁹: Forest comprises land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds at maturity in situ. It does not include land that is predominantly under agricultural or urban land use.

It should also be noted that according to the Forest National Law of 2012 (25 (I)/2012), the area threshold of 0.3 hectare is to be implemented in all future reports covering any period since the year 2012.

6.1.2.2. The land-use categories for greenhouse gas inventory reporting

Subsequent to the guidance contained in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, the following national definitions of land-use categories were developed for the purpose of preparation of the GHG inventories:

(i) Forest land

-

This category contains all lands that meet the definition of forest. It also includes forest roads, cleared tracts, firebreaks and other small open areas within the forest as well as reforested areas or burnt areas or

⁵⁹ Forest Data Reporting Package for 2015, FAO, page 12, Table 1.2.1 Data sources.

other areas that temporarily have low plant cover due to human intervention or natural causes, but does not include municipal parks and gardens. Forest land contains only areas covered with trees that are considered as forest trees under the Forest National Law of 2012 (25 (I)/2012).

The forest land is further divided into two subcategories: coniferous forest and broadleaved forest, based on the dominant tree species.

(ii) Cropland

This category contains cropped land, including lands with woody vegetation (i.e. fruit trees) where the vegetation does not meet the definition of forest. In particular, this category includes land principally occupied by agriculture, including: arable land, annual and permanent crops as well as vineyards, fruit trees and berry plantations, olive groves and other similar types of cultivation.

The cropland is further divided into two subcategories: annual cropland and woody (perennial) cropland, based on the dominant type of cultivated vegetation.

(iii) Grassland

This category includes rangelands and pasture land that are not considered cropland. It also includes systems with woody vegetation and other non-grass vegetation such as bushes and sclerophyllous vegetation that fall below the threshold values used in the forest land category. The category also includes all pastures, natural grassland and scarcely vegetated areas.

The grassland is further divided into two subcategories: grass and woody (perennial) grassland, based on the dominant type of land cover.

(iv) Wetlands

This category contains areas of land that is covered or saturated by water for all or part of the year and that does not fall into the forest land, cropland, grassland or settlements categories. In particular, it contains: inland and salt marshes, water courses and water bodies.

(v) Settlements

This category contains all developed land, including transportation infrastructure and human settlements of any size. In particular, it contains: industrial and commercial units, urban areas, port areas, airports, construction, mineral extraction and waste dump sites.

(vi) Other land

This category includes bare soil, rock, beaches, dunes and sand plains and all land areas that do not fall into any of the other five categories. It allows the total of identified land areas to match the national area, i.e. to retain the entire Cyprus area constant among the reported years.

Table 6.1 presents the correspondence (mapping) of the CORINE land cover (CLC) data⁶⁰ to the land-use categories based on the 2006 IPCC guidelines.

Table 6.1. The correspondence between the CORINE land cover categories identified in Cyprus and the 2006 IPCC land-use categories as implemented in the Cyprus' conditions.

LULUCF Land-Use Categories	CORINE land cover	CLC code
Forest land/Broadleaved forest	Broad leaved forest	311
Forest land/Coniferous forest	Coniferous forest	312
Forest land/Coniferous forest	Mixed forest	313
Forest land/Coniferous forest	Transitional woodland/shrub	324
Cropland/Woody (Woody CL)	Vineyards	221
Cropland/Woody (Woody CL)	Fruit trees and berry plantations	222

⁶⁰ http://land.copernicus.eu/pan-european/corine-land-cover/view

-

LULUCF Land-Use Categories	CORINE land cover	CLC code
Cropland/Woody (Woody CL)	Olive groves	223
Cropland/Woody (Woody CL)	Complex cultivation	242
Cropland/Woody (Woody CL)	Land principally occupied by agriculture, with	243
	significant areas of natural vegetation	
Cropland/Annual (Annual CL)	Non-irrigated arable land	211
Cropland/Annual (Annual CL)	Permanently irrigated land	212
Cropland/Annual (Annual CL)	Annual crops associated with permanent crops	241
Grassland/Woody (Woody GL)	Sclerophyllous vegetation	323
Grassland/Grass (Grass GL)	Pastures	231
Grassland/Grass (Grass GL)	Natural grassland	321
Grassland/Grass (Grass GL)	Scarcely vegetated areas	333
Settlements (SL)	Continuous urban fabric	111
Settlements (SL)	Discontinuous urban fabric	112
Settlements (SL)	Industrial or commercial units	121
Settlements (SL)	Road and rail networks and associated land	122
Settlements (SL)	Port areas	123
Settlements (SL)	Airports	124
Settlements (SL)	Mineral extraction sites	131
Settlements (SL)	Dump sides	132
Settlements (SL)	Construction sites	133
Settlements (SL)	Green urban areas	141
Settlements (SL)	Sport and leisure facilities	142
Wetlands (WL)	Inland marshes	411
Wetlands (WL)	Salt marshes	421
Wetlands (WL)	Water courses	511
Wetlands (WL)	Water bodies	512
Other land (OL)	Beaches, dunes and sand plains	331
Other land (OL)	Bare rock	332
	Burnt areas*	334

^{*}Burned areas were distributed among the remaining land use categories based on the previous land use. In Cyprus, burning of vegetation does not lead to land use change.

The CORINE land cover (CLC) categories listed in Table 6 above exhaust all land uses existing in Cyprus. This ensures that the land categories system implemented in this inventory is complete, hence all country land area is classified into one of these categories in a unique way avoiding duplication.

All lands subject to the effective control of the Republic of Cyprus are considered as managed, whereas the rest of the land area is considered unmanaged. However unmanaged land area is tracked throughout time and reported in CRT 4.1 and therefore the total country area is reported annually.

Table 6.2 presents the areas of the 2006 IPCC land-use categories and sub-categories based on the different CORINE data sets.

Table 6.2. Land-use categories and sub-categories area data based on the CORINE data sets. The resolution for detection of individual land use categories is 25 ha. The data cover the areas under the effective control of the Cyprus Government (managed land) and the area which is not under the effective control of the Cyprus Government (unamanaged land).

(unumunagea lana).												
	Year 1990	Year 2000	Year 2006	Year 2012	Year 2018							
			kha									
Land-use categories												
Forest land/broadleaved	0.63	0.63	0.62	0.62	0.62							
Forest land/coniferous	157.49	157.58	157.73	157.81	158.17							
Cropland/annual	132.62	129.64	127.72	127.33	127.16							
Cropland/woody	123.65	124.95	123.77	122.89	122.44							
Grassland/grass	24.62	26.35	25.03	24.66	25.72							
Grassland/woody	107.00	106.52	104.95	104.81	103.35							

Wetlands	3.98	3.98	3.96	4.01	4.06
Settlements	48.90	49.20	55.07	56.72	57.36
Other land	2.92	2.96	2.96	2.96	2.94
Total managed land	601.82	601.82	601.82	601.82	601.82
Total unmanaged land	322.35	322.35	322.35	322.35	322.35
Total land	924.17	924.17	924.17	924.17	924.17

6.1.3. GHG emissions and removals in the LULUCF sector

The emissions and removals from the LULUCF sector by main land-use category for the whole inventory period are presented in Table 6.3.

Table 6.3. Emissions and removals (+/-) from LULUCF categories (kt CO₂ eq).

Table 6.3.	Emissions	and remov	als (+/-) fr	om LULU	CF categori	ies (kt CO ₂	eq).	
Year	Total	FL	CL	GL	WL	SL	OL	HWP
1990	-153.07	1.51	-134.23	-23.05	NO,NE	0.46	0.11	2.14
1991	-166.98	-18.24	-134.77	-23.53	NO,NE	0.45	0.14	8.97
1992	-172.65	-23.54	-135.31	-24.01	NO,NE	0.43	0.18	9.60
1993	-174.80	-11.81	-135.84	-24.49	NO,NE	0.41	0.21	-3.28
1994	-183.35	-23.10	-136.38	-24.96	NO,NE	0.39	0.24	0.46
1995	-180.03	-18.77	-136.92	-25.44	NO,NE	0.37	0.27	0.45
1996	-185.36	-22.26	-137.46	-25.92	NO,NE	0.36	0.30	-0.38
1997	-184.22	-29.88	-138.00	-26.40	NO,NE	0.34	0.34	9.38
1998	-190.49	-27.93	-138.53	-26.87	NO,NE	0.32	0.37	2.15
1999	-198.38	-33.17	-139.07	-27.35	NO,NE	0.30	0.40	0.51
2000	-142.51	9.92	-139.61	-27.83	NO,NE	0.29	0.44	14.30
2001	-168.60	-46.21	-139.59	-28.81	NO,NE	23.11	0.36	22.54
2002	-201.94	-81.47	-139.52	-28.75	NO,NE	23.59	0.36	23.86
2003	-214.02	-94.33	-139.45	-28.69	NO,NE	24.06	0.36	24.02
2004	-214.55	-95.72	-139.37	-28.63	NO,NE	24.53	0.36	24.29
2005	-220.83	-102.58	-139.30	-28.57	NO,NE	25.00	0.36	24.27
2006	-222.49	-103.97	-139.23	-28.52	NO,NE	25.45	0.36	23.42
2007	-182.89	-42.13	-140.95	-28.50	0.44	9.08	0.36	18.81
2008	-249.84	-108.26	-140.77	-28.50	0.45	9.23	0.36	17.64
2009	-277.65	-141.28	-140.58	-28.50	0.47	9.38	0.36	22.51
2010	-265.04	-130.19	-140.00	-28.02	0.48	9.54	0.32	22.82
2011	-300.78	-168.10	-139.43	-27.53	0.50	9.70	0.29	23.79
2012	-293.62	-162.14	-138.85	-27.05	0.52	9.85	0.26	23.78
2013	-297.29	-171.08	-131.99	-23.62	0.45	5.23	0.23	23.50
2014	-299.11	-173.38	-131.39	-23.07	0.46	5.16	0.19	22.91
2015	-296.11	-171.27	-130.78	-22.51	0.47	5.09	0.16	22.73
2016	-190.89	-66.95	-130.22	-21.97	0.47	5.07	0.13	22.57
2017	-307.03	-183.98	-129.65	-21.43	0.47	5.05	0.10	22.41
2018	-302.31	-180.14	-129.09	-20.89	0.47	5.03	0.06	22.24
2019	-297.04	-175.66	-128.47	-20.33	0.49	4.94	0.03	21.96
2020	-298.54	-177.58	-127.88	-19.78	0.50	4.89	NO	21.32
2021	-235.33	-112.90	-127.57	-19.73	0.50	4.46	NO	19.92
2022	-299.39	-177.18	-127.26	-19.68	0.50	4.02	NO	20.21
2023	-310.58	-187.42	-126.95	-19.62	0.50	3.59	NO	19.33

6.1.4. Emission Trends

The total LULUCF sector represents a GHG sink during the entire period 1990–2023. While the sink generally follows an upward trend, in years of exceptional extent of forest fires (2000, 2007, 2016 and

2021) the trend is visibly broken (see Figure 6.1). Overall, the sink in the total LULUCF increases from -153.1 kt CO₂ eq in 1990 to -310.6 kt CO₂ eq in 2023, representing an increase in net removals of 102.9%.

The forest land category is an important contributor to the sink in the LULUCF sector. The land converted to forest land represents a net sink for all inventoried years, while forest land remaining forest land represents sinks for all years, except some specific years in which represents a net source, primarily due to significant forest fire impacts.

The cropland remaining cropland and grassland remaining grassland categories are sinks over the entire period 1990–2023. For cropland remaining cropland national data are limited to area only, hence all emission/removal factors used in calculations of the GHG sources/sinks estimates are default data.

During the entire period 1990–2023, the wetlands category (land converted to wetlands) represents a minor source as well as the settlements category (land converted to settlements) does. Finally, the other land category represents a net source of emissions for the whole inventory period, except the last four years (2020-2023) in which emissions do not occur.

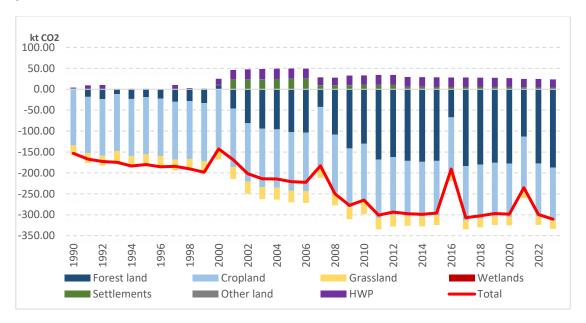


Figure 6.1. Emissions/removals trend in the LULUCF sector in the period 1990-2023

6.2. Forest land (4A)

6.2.1. Description

Area and ownership of Cyprus forest

The total forest land area in 2023 amounts to 159,08 ha covering approximately 26.4% of the total managed land area. Conifers represent the vast majority of the total managed forest land area, namely 99.6% while broadleaf forests are found only on 0.4% of the total managed forest land area in the country. Furthermore, according to a last survey, private forests and other forested State land cover 24.74% of the total area of Cyprus. Private forests are small holdings scattered all over Cyprus and are mainly located in distant mountainous and rural areas.

Floristic composition of Cyprus forests

Nearly half the area of the island is covered by tree vegetation that has been degraded by human activities. Forest is composed mainly of coniferous species like the Calabrian pine (*Pinus brutia*), the black pine (*Pinus nigra*), the Cedar (*Cedrus brevifolia*) and the Cypress (*Cypressus sempervirens*). Maquis

vegetation includes species like Lentisk (*Pistacia lentiscus*), Juniper (*Juniperus phoenicea*), Maple (*Acer obtusifolium*) and Strawberry tree (*Arbutus andrachne*), while garigue lands consist of the Rock rose (*Cistus spp.*), Thyme (*Thymus capitatus*), Thorny-broom (*Calycotome villosa*), Thorny gorse (*Genista fasselata*) and Spiny burnet (*Sarcopoterium spinosum*). There are also minor areas consisting of young coniferous plantations (source: Forest Department, Ministry of Agriculture, Rural Development and Environment, Cyprus).

6.2.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

The approach for representing land areas and land use databases is described in Chapter 6.1.1, "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.2.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting".

Table 6.4 below presents the area data on land remaining and converted to the broadleaved forest subcategory. Note that there are no conversions to broadleaved within the land converted to forest land category.

Table 6.4. Areas of land remaining in the same land use subcategory (broadleaved remaining broadleaved forests) and of land converted to broadleaved forests from other land-use sub-categories.

	Broadleaved		Land	converted	to broad	leaved for	est from	:		T-4-1
Year	remaining	Conif.	Annual	Woody	Grass	Woody	WL	SL	OL	Total area
1 ear	broadleaved	FL	CL	CL	GL	GL	WL	SL	OL	arca
					kha					
1990	0.631	0	0	0	0	0	0	0	0	0.631
1991	0.631	0	0	0	0	0	0	0	0	0.631
1992	0.631	0	0	0	0	0	0	0	0	0.631
1993	0.631	0	0	0	0	0	0	0	0	0.631
1994	0.631	0	0	0	0	0	0	0	0	0.631
1995	0.631	0	0	0	0	0	0	0	0	0.631
1996	0.631	0	0	0	0	0	0	0	0	0.631
1997	0.631	0	0	0	0	0	0	0	0	0.631
1998	0.631	0	0	0	0	0	0	0	0	0.631
1999	0.631	0	0	0	0	0	0	0	0	0.631
2000	0.631	0	0	0	0	0	0	0	0	0.631
2001	0.630	0	0	0	0	0	0	0	0	0.630
2002	0.628	0	0	0	0	0	0	0	0	0.628
2003	0.627	0	0	0	0	0	0	0	0	0.627
2004	0.626	0	0	0	0	0	0	0	0	0.626
2005	0.624	0	0	0	0	0	0	0	0	0.624
2006	0.623	0	0	0	0	0	0	0	0	0.623
2007	0.623	0	0	0	0	0	0	0	0	0.623
2008	0.623	0	0	0	0	0	0	0	0	0.623
2009	0.623	0	0	0	0	0	0	0	0	0.623
2010	0.623	0	0	0	0	0	0	0	0	0.623
2011	0.623	0	0	0	0	0	0	0	0	0.623
2012	0.623	0	0	0	0	0	0	0	0	0.623
2013	0.623	0	0	0	0	0	0	0	0	0.623
2014	0.623	0	0	0	0	0	0	0	0	0.623
2015	0.623	0	0	0	0	0	0	0	0	0.623
2016	0.623	0	0	0	0	0	0	0	0	0.623

2017	0.623	0	0	0	0	0	0	0	0	0.623
2018	0.623	0	0	0	0	0	0	0	0	0.623
2019	0.623	0	0	0	0	0	0	0	0	0.623
2020	0.623	0	0	0	0	0	0	0	0	0.623
2021	0.623	0	0	0	0	0	0	0	0	0.623
2022	0.623	0	0	0	0	0	0	0	0	0.623
2023	0.623	0	0	0	0	0	0	0	0	0.623

FL = forest land, CL = cropland, GL = grassland, WL= wetlands, SL= settlements, OL = other land

Table 6.5 presents the same kind of information for the case of the coniferous forest subcategory. As explained in section 6.1.1, in all land-use categories the 20 years conversion period is applied in the current inventory, namely, any piece of land remains in the 'conversion' subcategory for 20 years before transferred to the remaining subcategory.

Table 6.5. Areas of land remaining in the same land use subcategory (coniferous remaining coniferous forests) and of land converted to coniferous forests from other land-use

sub-categories.

sub-categories.							Total			
	Coniferous		Land	d converte	d to conif	ferous fore	st from:	:		area
Year	remaining coniferous	Broad. FL	Annua 1 CL	Woody CL	Grass GL	Woody GL	WL	SL	OL	
				I.	kha	l l	L. L.			
1990	157.486	0	0.000	0	0	0.009	0	0	0	157.495
1991	157.486	0	0.001	0	0	0.017	0	0	0	157.504
1992	157.485	0	0.001	0	0	0.026	0	0	0	157.512
1993	157.485	0	0.001	0	0	0.034	0	0	0	157.521
1994	157.485	0	0.002	0	0	0.043	0	0	0	157.530
1995	157.484	0	0.002	0	0	0.052	0	0	0	157.538
1996	157.484	0	0.003	0	0	0.060	0	0	0	157.547
1997	157.484	0	0.003	0	0	0.069	0	0	0	157.556
1998	157.484	0	0.003	0	0	0.078	0	0	0	157.564
1999	157.483	0	0.004	0	0	0.086	0	0	0	157.573
2000	157.483	0	0.004	0	0	0.095	0	0	0	157.582
2001	157.474	0	0.004	0	0.008	0.095	0	0.025	0	157.606
2002	157.466	0	0.004	0	0.016	0.095	0	0.049	0	157.630
2003	157.457	0	0.004	0	0.024	0.095	0	0.074	0	157.654
2004	157.449	0	0.004	0	0.032	0.095	0	0.099	0	157.678
2005	157.440	0	0.004	0	0.040	0.095	0	0.123	0	157.702
2006	157.431	0	0.004	0	0.048	0.095	0	0.148	0	157.726
2007	157.425	0	0.004	0	0.050	0.095	0	0.167	0	157.741
2008	157.419	0	0.004	0	0.052	0.095	0	0.186	0	157.756
2009	157.414	0	0.004	0	0.054	0.095	0	0.205	0	157.770
2010	157.417	0	0.004	0	0.056	0.086	0	0.223	0	157.785
2011	157.420	0	0.003	0	0.057	0.078	0	0.242	0	157.800
2012	157.423	0	0.003	0	0.059	0.069	0	0.261	0	157.815
2013	157.403	0	0.006	0.046	0.059	0.085	0	0.273	0	157.873
2014	157.383	0	0.010	0.092	0.059	0.102	0	0.286	0	157.931
2015	157.363	0	0.013	0.138	0.059	0.118	0	0.298	0	157.990
2016	157.343	0	0.017	0.184	0.059	0.135	0	0.310	0	158.048
2017	157.323	0	0.020	0.230	0.059	0.151	0	0.323	0	158.107
2018	157.303	0	0.023	0.276	0.059	0.168	0	0.335	0	158.165
2019	157.283	0	0.027	0.323	0.059	0.185	0	0.347	0	158.224
2020	157.264	0	0.030	0.369	0.059	0.201	0	0.359	0	158.282
2021	157.267	0	0.034	0.415	0.051	0.226	0	0.347	0	158.341
2022	157.271	0	0.038	0.461	0.043	0.251	0	0.335	0	158.399
2023	157.275	0	0.042	0.507	0.035	0.276	0	0.322	0	158.457

FL = forest land, CL = cropland, GL = grassland, WL= wetlands, SL= settlements, OL = other land

6.2.4. Methodological issues

Forest area is an area with vegetation cover that meets the national definition of forest. It includes stands of different ages, including areas transiently deprived of vegetation which are expected to revert to forest and lands recently afforested and reforested. All data collected by the Forest Department refer to the entire forest area. It also includes areas converted to forest, as defined by the 2006 IPCC guidelines in the 2006 IPCC sense. Consequently, all calculations involving biomass growth and losses are performed on the basis of the entire forest area. However, estimates relating specifically to the conversion process (e.g. accumulation/release of carbon from soil) are calculated specifically for the relevant conversion areas.

The growing stock and annual increment for all subcategories included in this category are defined as follows⁶¹:

Growing stock = Volume over bark of all living trees more than 12 cm in diameter at breast height. Includes the stem from stump height up to a top diameter of 7 cm. It does not include branches.

Annual increment = Average annual volume of increment over the given reference period net of natural losses on all trees, measured to minimum diameters as defined for "Growing stock". The annual increment is expressed on the per hectare basis.

National data on growing stock and annual increment are presented in Table 6.6.

Table 6.6. National data on growing stock and annual increment

Year	Growing stock	Coniferous forest	Broadleaved forest
	m ³ /ha	m ³ /ha/yr	m³/ha/yr
1990	45.96	0.58	
1991	45.96	0.58	
1992	45.95	0.57	
1993	45.94	0.57	
1994	45.94	0.56	
1995	45.93	0.56	
1996	45.92	0.56	
1997	45.92	0.55	
1998	45.91	0.55	
1999	45.90	0.54	
2000	45.90	0.54	
2001	46.42	0.59	
2002	46.94	0.65	
2003	47.46	0.70	
2004	47.98	0.70	2
2005	48.50	0.70	
2006	50.28	0.70	
2007	52.05	0.70	
2008	53.83	0.84	
2009	55.61	0.94	
2010	57.39	0.94	
2011	59.22	1.17	
2012	61.06	1.17	
2013	62.89	1.17	
2014	64.73	1.17	
2015	66.57	1.17	
2016	66.57	1.17	
2017	66.57	1.17	
2018	66.57	1.17	

⁶¹ FAO. Forest Data Reporting Package for 2015. Cyprus

2019	68.80	1.17
2020	69.90	1.17
2021	69.90	1.20
2022	69.90	1.20
2023	69.90	1.20

National data on the growing stock and volume increment are averaged over the entire net area of forest in the current year (that is the area of forest remaining forest plus the areas converted to forest minus areas converted from forest to other uses in that year).

National data on the volume of harvest is expressed as volume under bark. The volume of bark is assumed as 12% of the harvested volume based on forest expert advice. The annual harvest is provided for the total forest land area for each year (that is the area of forest remaining forest plus the areas converted to forest minus areas converted from forest to other uses in that year).

In Cyprus, salvage logging is part of the forest harvest. However, data on salvage logging are also published separately from data on forest harvest, and it is included in calculation of emissions from harvest.

Table 6.7. Annual harvest in forest land

	Coniferou	ıs forest	Broadleav	ed forest			
Year	Roundwood	Fuelwood	Roundwood	Fuelwood			
		m					
1990	46,305	14,194	1,518	465			
1991	35,341	10,831	1,506	462			
1992	32,339	10,550	1,511	493			
1993	36,529	11,910	1,433	467			
1994	31,395	5,397	1,449	249			
1995	34,216	8,866	1,505	390			
1996	32,366	6,460	1,508	301			
1997	26,984	4,683	1,437	249			
1998	18,840	-	1,158	-			
1999	26,780	7,497	1,590	445			
2000	15,859	3,524	1,442	320			
2001	11,919	4,723	1,246	494			
2002	9,997	3,174	1,290	409			
2003	6,981	2,060	1,252	369			
2004	5,756	1,004	1,320	230			
2005	4,388	725	1,065	176			
2006	2,879	-	1,063	-			
2007	11,794	5,124	1,132	492			
2008	13,585	4,161	1,163	356			
2009	4,483	586	1,536	201			
2010	5,636	3,007	537	287			
2011	5,015	2,802	683	382			
2012	4,121	5,571	971	1,313			
2013	3,020	4,191	1,159	1,609			
2014	3,419	3,644	1,062	1,131			
2015	3,050	7,30	820	1,966			
2016	1,923	4,955	227	584			
2017	579	4,324	72	540			
2018	1,727	4,012	248	575			
2019	2,401	7,417	74	1,772			
2020	2,758	6,503	64	1,407			
2021	1,964	5,904	192	575			
2022	2,524	12,640	392	1,344			

2023 1,	928 6,482	385	1,295
---------	-----------	-----	-------

The root/shoot ratio for all forest types is 0.28 (Table 4.4, of 2006 IPCC guidelines for subtropical dry forest, based on a previous ERT's advice).

The carbon fraction of wood is 0.47 t C/t d.m. for the whole inventory (based on a previous ERT's advice).

The biomass conversion and expansion factors used are the default ones from Table 4.5 of the 2006 IPCC guidelines, for the Mediterranean dry tropical, subtropical climatic zone, and for growing stock level 41–100 m³/ha. These factors are presented in Table 6.8 below

Table 6.8. BCEF values used in carbon stock changes estimation in living biomass.

Forest type	BCEF	Value used
	BCEFs	0.80 t biomass/m³ wood volume
Broadleaved forest	BCEFI	0.55 t biomass/m³ wood volume
	$BCEF_R$	0.89 t biomass/m³ wood volume
	BCEFs	0.60 t biomass/m³ wood volume
Coniferous forest	BCEF _I	0.45 t biomass/m³ wood volume
	BCEF _R	0.67 t biomass/m³ wood volume

Forest fires

All emissions from forest fires were attributed to the forest land remaining forest land category. The areas affected by fires are provided annually by the Forest Department of Cyprus. CO_2 emissions from forest fires in living biomass are estimated as part of the living biomass losses (equation 2.14, 2006 IPCC guidelines) and reported in CRT 4.A (carbon losses), aggregated with the losses from harvestings. In CRT 4(IV) however, non- CO_2 emissions from biomass burning in forest land are reported, applying equation 2.27 of the 2006 IPCC guidelines, with default emission factors (table 2.5 for extra tropical forest) for CH_4 and N_2O . Furthermore, the default combustion factor (Cf=0.45) from 2006 IPCC guidelines is used in all calculations relating to forest fires (Table 2.6 for all other temperate forests).

Land converted to forest land

Due to the lack of country-specific information on annual increment in above-ground biomass for land converted to forest land, the country specific values of growing stock that were presented previously were used to approximate the above-ground biomass growth. The 20 years default conversion and transition period was applied, while the BCEF, root-shoot ratio, and carbon fraction values used are the same as in the case of forest land remaining forest land.

With regard to carbon losses due to forest fires, as explained previously, all emissions from biomass burning are attributed to forest land remaining forest land, thus in CRT 4(IV) the 'IE' notation key is used for land converted to forest land and relevant information is reported in CRT 9.

Change in carbon in dead organic matter

In forest land remaining forest land, the tier 1 assumption from 2006 IPCC guidelines, that carbon stock changes in the dead organic matter (DOM) pool are zero is followed. In land converted to forest land, carbon stock changes in the DOM pool have been estimated and reported. For the whole inventory, carbon stocks in DOM pool in all non-forest land-use categories are taken equal to zero. For the litter carbon stocks in forest land, the default values from the 2006 IPCC guidelines are used for broadleaved and coniferous forests, namely, 2.8 t C/ha and 4.1 t C/ha (Table 2.2, for subtropical climate), respectively. In the current inventory, carbon stock changes in dead wood in land converted to forest land are reported for the first time. In the absence of default values for carbon stocks in dead wood in the 2006 IPCC guidelines, the default values from the 2019 Refinement to the 2006 IPCC Guidelines are used instead. More specifically, a unique value of 64.4 t C/ha (subtropical desert climate) for both broadleaved and coniferous forests is used.

The methodology applied is in accordance with equation 2.23 of the 2006 IPCC guidelines. Furthermore, the assumptions that DOM stocks are entirely lost in the year of conversion in the cases of forest land conversions to the other land-use categories, while DOM gains occur linearly from zero over the 20 years transition period in the cases of DOM buildup (i.e., land conversions to forest land) are applied.

Change in carbon stocks in soils

The reference carbon stock in mineral soils used in all land-use categories is the default one suggested by the 2006 IPCC Guidelines. More specifically, the whole country area in Cyprus is considered to be mineral high activity clay soils with a default reference carbon stock of 38 t C/ha (table 2.3, for tropical, dry climate).

In forest land remaining forest land, the tier 1 assumption from 2006 IPCC guidelines, that carbon stock changes in mineral soil (SOM) pool are zero is followed. In land converted to forest land, carbon stock changes were estimated applying formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period. For forest land, the stock change factors for land use, management and input were taken equal to 1, thus the carbon stocks at equilibrium in forest land equal the reference soil carbon stocks. Similarly, all three stock change factors were taken equal to 1 in the case of woody cropland (F_{LU} for perennial/tree crop, F_{MG} for full tillage, F_{I} for medium input), grass and woody grassland (F_{LU} for all grassland, F_{MG} for nominal managed grassland, F_{I} for medium input). In the case of annual cropland, the F_{LU} for long-term cultivated (tropical dry climate) equal to 0.58 is applied, together with the same F_{MG} , F_{I} used for woody cropland. For settlements, the default 0.8 product of all three stock change factors is applied, and for the other land category the carbon stocks in mineral soils are taken equal to zero.

6.2.5. Uncertainties and time-series consistency

In the previous submission for the first time the uncertainty analysis included the LULUCF sector.

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The uncertainties associated with the input data for forest land remaining forest land and land converted to forest land are presented in the table below.

Table 6.9. Input data uncertainties.

Input data	%
Area	15
Net annual increment (conifers)	65
Net annual increment (broadleaved)	20
BCEF (coniferous)	38
BCEF (broadleaved)	40
Annual roundwood, fuelwood	20
Area affected by wildfires	10
Litter stocks	20
Dead wood stocks	81
Reference soil carbon stocks	90
Annual & woody cropland biomass	
carbon stocks & biomass	75
accumulation rate for woody CL	
FL _U in annual cropland	61
FL _U in woody cropland	50
FL _U *FL _{MG} *FL _I in settlements	61
Average forest growing stock	20

Average above-ground growing stock in woody grassland	50
MB*Cf (biomass burning)	213
Root-shoot ratio (R)	2
Carbon fraction (CF)	2
CH ₄ EF for biomass burning	81
N ₂ O EF for biomass burning	54

The overall uncertainty for forest land remaining forest land is equal to 62%, 230%, 220% for CO_2 , CH_4 , N_2O emissions respectively, while for land converted to forest land associated uncertainties equal to 43% for CO_2 emissions. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

The time series of emissions/removals for the land-use categories forest land remaining forest land and land converted to forest land (for coniferous and broadleaved forest together) is presented in figure 6.2 and figure 6.3.

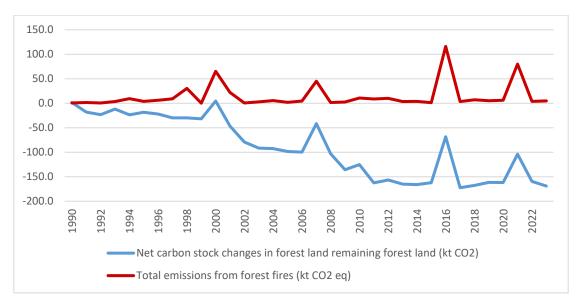


Figure 6.2. Forest land remaining forest land: Net carbon stock changes (blue line) and emissions from forest fires (red line) during the period 1990 – 2023.

In figure 6.2 the trend of an increasing sink in forest land remaining forest land is evident. The trend is transiently broken in years of exceptional forest fire events.

Figure 6.3 presents the increasing sink trend in land converted to forest land reflecting the increasing trend in areas under land converted to forest land. In land converted to forest land there are not any peaks/valleys due to disturbances, since all emissions from forest fires are included in forest land remaining forest land.

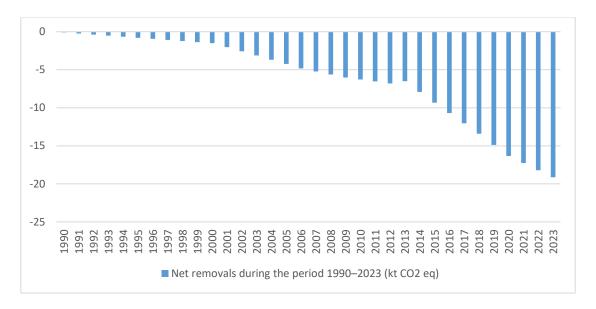


Figure 6.3. Land converted to forest land: Net removals during the period 1990–2023

Figure 6.4 presents the total contribution of the forest land remaining forest land and land converted to forest land categories to the GHG emissions/sources in the LULUCF sector.

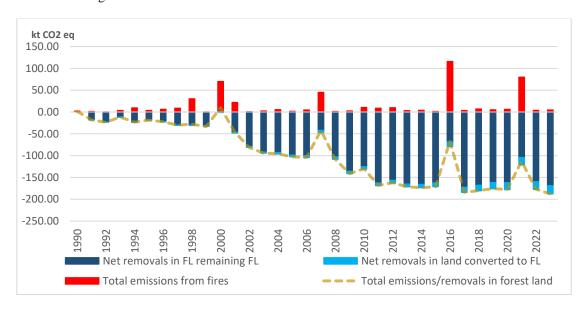


Figure 6.4. Forest land remaining forest land and land converted to forest land contribution: net CO₂ emissions/removals during the period 1990 – 2023

6.2.6. Category-specific QA/QC and verification

The following category specific QA/QC and verification approaches were implemented during preparation of this NID:

- Check of correctness/plausibility of the land representation, activity data and emission factors used in calculations and their units;
- Check of plausibility of input data;
- Check of completeness of data;
- Check of correctness of the methodologies applied and plausibility of results;
- Check of references and assumptions applied in processing of the data;

- Check of the consistency of the total area of the lands under the effective control of the Republic of Cyprus in all years of the reported period.
- Check of the correct use of notation keys in CRT tables and the complete and correct filling of the CRT tables.

6.2.7. Category-specific recalculations

No recalculations were implemented.

6.2.8. Category-specific planned improvements

The improvements considered related to this category include:

- Investigate options for developing more accurate net annual increment values for land conversions to forest land.
- Analyse further the CORINE data sets together with additional country data sources in order to refine
 equilibrium carbon stocks in mineral soils in cropland, grassland and settlements, to be used in land
 converted to forest land.
- An approach should be developed to obtain a numerical assessment of land use changes involving individual areas from 0.3 ha to 5 ha and their impact on the numerical estimates of land use changes obtained at the 5 ha resolution. The national definition of forest requires assessment of land use changes at the resolution of 0.3 ha. This may be achieved by means of establishing a correlation between the area of land use changes detected at the resolution of 5 ha and "true" area of land use changes estimated based on the threshold of 0.3 ha.
- Collect further information in order to distinguish forest land areas affected by fires between forest land remaining forest land and land converted to forest land, and between the forest types.
- Assess the appropriateness of the IPCC default dead wood stock value used for both broadleaved and coniferous forests and identify more accurate one.

6.3. Cropland (4B)

6.3.1. Description

6.3.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Approach for representing land areas and land use databases are described in Chapter 6.1.1 "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.3.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting". Table 6.10 presents data on lands converted to annual cropland. Note that the only conversions to annual cropland are from coniferous forests, perennial cropland, woody and grass grassland, and settlements. Similarly, table 6.11 presents data on lands converted to woody cropland.

Table 6.10. Areas of land remaining in the same land use subcategory (annual cropland remaining annual cropland) and of land converted to annual cropland from other land-use sub-categories.

	Annual	Land converted to annual cropland from:								
Year	cropland remaining annual cropland	Woody CL	Broad. FL	Conif . FL	Grass GL	Woody GL	WL	SL	OL	Total area
					kha					
1990	132.596	0.001	0	0	0	0.025	0	0	0	132.622
1991	132.273	0.001	0	0	0	0.050	0	0	0	132.324
1992	131.950	0.002	0	0	0	0.074	0	0	0	132.026
1993	131.626	0.003	0	0	0	0.099	0	0	0	131.728
1994	131.303	0.004	0	0	0	0.124	0	0	0	131.430
1995	130.979	0.004	0	0	0	0.149	0	0	0	131.132
1996	130.656	0.005	0	0	0	0.174	0	0	0	130.835
1997	130.333	0.006	0	0	0	0.198	0	0	0	130.537
1998	130.009	0.006	0	0	0	0.223	0	0	0	130.239
1999	129.686	0.007	0	0	0	0.248	0	0	0	129.941
2000	129.362	0.008	0	0	0	0.273	0	0	0	129.643
2001	128.953	0.009	0	0	0.088	0.273	0	0	0	129.322
2002	128.543	0.010	0	0	0.175	0.273	0	0	0	129.001
2003	128.134	0.011	0	0	0.263	0.273	0	0	0	128.681
2004	127.724	0.013	0	0	0.350	0.273	0	0	0	128.360
2005	127.315	0.014	0	0	0.438	0.273	0	0	0	128.039
2006	126.905	0.015	0	0	0.525	0.273	0	0	0	127.718
2007	126.828	0.026	0	0	0.525	0.273	0	0.001	0	127.654
2008	126.750	0.038	0	0	0.525	0.273	0	0.002	0	127.589
2009	126.673	0.050	0	0	0.525	0.273	0	0.003	0	127.524
2010	126.621	0.061	0	0	0.525	0.248	0	0.004	0	127.459
2011	126.569	0.071	0	0	0.525	0.223	0	0.005	0	127.395
2012	126.517	0.082	0	0	0.525	0.198	0	0.007	0	127.330
2013	126.471	0.111	0	0.010	0.525	0.177	0	0.007	0	127.301
2014	126.424	0.140	0	0.020	0.525	0.156	0	0.007	0	127.272
2015	126.378	0.169	0	0.029	0.525	0.136	0	0.007	0	127.244
2016	126.332	0.198	0	0.039	0.525	0.115	0	0.007	0	127.215
2017	126.285	0.226	0	0.049	0.525	0.094	0	0.007	0	127.186
2018	126.239	0.255	0	0.059	0.525	0.073	0	0.007	0	127.157
2019	126.192	0.284	0	0.068	0.525	0.052	0	0.007	0	127.129
2020	126.146	0.313	0	0.078	0.525	0.031	0	0.007	0	127.100
2021	126.163	0.341	0	0.088	0.438	0.035	0	0.007	0	127.071
2022	126.179	0.370	0	0.098	0.350	0.039	0	0.007	0	127.042
2023	126.196	0.398	0	0.107	0.263	0.042	0	0.007	0	127.014

 $FL = forest\ land,\ CL = cropland,\ GL = grassland,\ WL = wetlands,\ SL = settlements,\ OL = other\ land$

Table 6.11. Areas of land remaining in the same land use subcategory (woody cropland remaining woody cropland) and of land converted to woody cropland from other land-use sub-categories.

land-use sub-categories.										
	Woody	y Land converted to woody cropland from:								
Year	cropland remaining woody cropland	Annua 1 CL	Broad. FL	Conif . FL	Grass GL	Woody GL	WL	SL	OL	Total area
	kha									
1990	123.514	0.137	0	0	0	0.002	0	0	0	123.653
1991	123.504	0.274	0	0	0	0.004	0	0	0	123.782
1992	123.495	0.411	0	0	0	0.006	0	0	0	123.912
1993	123.486	0.548	0	0	0	0.008	0	0	0	124.041
1994	123.477	0.685	0	0	0	0.010	0	0	0	124.171
1995	123.467	0.821	0	0	0	0.012	0	0	0	124.300
1996	123.458	0.958	0	0	0	0.014	0	0	0	124.430
1997	123.449	1.095	0	0	0	0.016	0	0	0	124.560
1998	123.439	1.232	0	0	0	0.018	0	0	0	124.689

1999	123.430	1.369	0	0	0	0.020	0	0	0	124.819
2000	123.421	1.506	0	0	0	0.022	0	0	0	124.948
2001	123.024	1.598	0	0	0.007	0.087	0	0.036	0	124.752
2002	122.627	1.689	0	0	0.014	0.153	0	0.073	0	124.555
2003	122.230	1.781	0	0	0.020	0.219	0	0.109	0	124.359
2004	121.833	1.872	0	0	0.027	0.284	0	0.145	0	124.162
2005	121.436	1.964	0	0.001	0.034	0.350	0	0.182	0	123.965
2006	121.038	2.055	0	0.001	0.041	0.416	0	0.218	0	123.769
2007	120.884	2.059	0	0.001	0.041	0.419	0	0.218	0	123.622
2008	120.730	2.063	0	0.001	0.041	0.422	0	0.218	0	123.475
2009	120.576	2.066	0	0.001	0.041	0.426	0	0.218	0	123.328
2010	120.560	1.933	0	0.001	0.041	0.427	0	0.218	0	123.180
2011	120.545	1.800	0	0.001	0.041	0.429	0	0.218	0	123.033
2012	120.529	1.667	0	0.001	0.041	0.430	0	0.218	0	122.886
2013	120.567	1.534	0	0.010	0.041	0.438	0	0.218	0.003	122.811
2014	120.605	1.402	0	0.018	0.042	0.447	0	0.218	0.005	122.737
2015	120.642	1.269	0	0.027	0.042	0.455	0	0.218	0.008	122.662
2016	120.680	1.136	0	0.036	0.042	0.464	0	0.218	0.011	122.587
2017	120.718	1.003	0	0.045	0.043	0.472	0	0.218	0.014	122.512
2018	120.755	0.870	0	0.054	0.043	0.481	0	0.218	0.016	122.438
2019	120.793	0.738	0	0.062	0.043	0.489	0	0.218	0.019	122.363
2020	120.831	0.605	0	0.071	0.044	0.497	0	0.218	0.022	122.288
2021	120.930	0.518	0	0.080	0.037	0.442	0	0.182	0.024	122.213
2022	121.029	0.430	0	0.088	0.031	0.387	0	0.145	0.027	122.138
2023	121.129	0.343	0	0.097	0.024	0.332	0	0.109	0.030	122.064

The decreasing tendency in the area of cropland in Cyprus is consistent with international data provided, i.e., by the World Bank⁶².

6.3.4. Methodological issues

The tier 1 method following the guidance contained in the 2006 IPCC Guidelines was applied due to the lack of national data (except activity data). In particular, all stock change factors are the default provided by the 2006 IPCC Guidelines.

Annual cropland remaining annual cropland

By definition this land-use category contains no woody vegetation. Due to the lack of data on changes in management in annual cropland, it is assumed that the management has remained constant since before 1990, hence the annual vegetation component does not affect the GHG sinks and sources on annual basis. It is further assumed that dead wood, litter and soil organic carbon stocks remain unchanged due to the lack of changes in the management of these lands.

Use of fire is not a part of management in lands classified as annual cropland.

Land converted to annual cropland

Lands converted to annual cropland are subject to changes in woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method was implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. It should be noted that in the current inventory, carbon stock changes in mineral soils in cropland remaining cropland associated with woody cropland conversions to annual cropland are reported for the first time.

Use of fire is not a part of management in lands classified as lands converted to annual cropland.

-

⁶² http://www.factfish.com/statistic-country/cyprus/permanent+crops+area+of+total+area

Woody cropland remaining woody cropland

Woody cropland differs from annual cropland due to the presence of the woody vegetation (as detected using the CORINE land cover data). However, there is no national data on stock and net annual increment of this type of vegetation. Consequently, the default data provided in Table 5.1 of the 2006 IPCC Guidelines have been used in the GHG sink/source estimation for this land-use sub-category, namely 9 t C ha⁻¹ and 1.8 t C ha⁻¹yr⁻¹ for above-ground biomass carbon stock and biomass accumulation rate, respectively.

It is further assumed that dead wood, litter and soil organic carbon stocks remain unchanged due to the lack of changes in the management of these lands.

Use of fire is not a part of management in lands classified as woody cropland. Due to the lack of data it is assumed that wild fires do not occur in woody cropland (this assumption is further justified by the fact that woody vegetation is sparse in this land that prevents initiation and propagation of fire).

Land converted to woody cropland

Lands converted to woody cropland are subject to changes in woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method was implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. As explained previously, the DOM pool carbon stocks in all non-forest land-use categories were taken equal to zero. It should be noted that in the current inventory, carbon stock changes in mineral soils in cropland remaining cropland associated with annual cropland conversions to woody cropland are reported for the first time.

Use of fire is not a part of management in lands classified as lands converted to woody cropland.

Organic carbon in soil

For estimating carbon stock changes in both cropland remaining cropland and land converted to cropland, formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period was applied. The 2006 IPCC default reference carbon stock for mineral soils and the stock change factors presented in section 6.2.4 were applied, which are also noted in table 6.12 below.

Table 6.12. The IPCC default relative soil organic carbon stock change factors.

Sub-category	Carbon stock change factor	Description
Annual CL & woody CL	Reference SOC _{REF} = 38 t C/ha	High activity soils in tropical dry climate
Annual CL	Land use F _{LU} = 0.58	tropical dry moisture regime, long term annual cultivation
Ailliual CL	Tillage F_{MG} = 1.0	full level tillage
	Input F _I = 1.0	medium level residue return for tropical dry climate
Was de CI	Land use $F_{LU}=1.0$	all temperature regimes, perennial tree crops
Woody CL	Tillage F _{MG} = 1.0	full level tillage
	Input F _I = 1.0	medium level residue return for tropical dry climate

 N_2O emissions from N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils

In the current submission, N_2O emissions from N mineralization associated with mineral soil carbon loss as a result of land-use change to cropland are reported for the first time. These emissions are a consequence of the enhanced mineralisation (conversion to inorganic form) of soil organic matter (SOM) that normally takes place as a result of that conversion.

Both direct and indirect N₂O emissions are reported following the tier 1 method of the 2006 IPCC guidelines with default emission factors. More specifically equations 11.1, 11.8 and 11.10 from chapter

11 were applied. The C/N ratio equal to 15 for forest land, grassland and settlements conversions to cropland, the emission factor (EF1) equal to 0.01 kg N_2O -N/kg N for direct N_2O emissions, and the emission factor (EF5) equal to 0.0075 kg N_2O -N/kg N and the Frac_{LEACH} equal to 0.3 for indirect N_2O emissions are applied. N_2O emissions from N mineralization occur due to land conversions to annual cropland only.

6.3.5. Uncertainties and time-series consistency

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The associated uncertainties with the input data for cropland remaining cropland and land converted to cropland are presented in table 6.9 above and in table 6.13.

Table 6.13. Input data uncertainties.

Input data	%
EF1 (direct N ₂ O from N	82
mineralization)	62
EF5 (indirect N ₂ O from	96
leaching/run off)	90
Frac _{LEACH} (indirect N ₂ O from	78
leaching/run off)	/8

The overall uncertainty for cropland land remaining cropland is equal to 67% for CO_2 , while for land converted to cropland associated uncertainties equal to 96% and 176% for CO_2 and N_2O emissions, respectively. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

The time series of GHG emissions/removals for the land-use categories cropland remaining cropland, land converted to annual cropland and land converted to woody cropland is presented in figure 6.5.

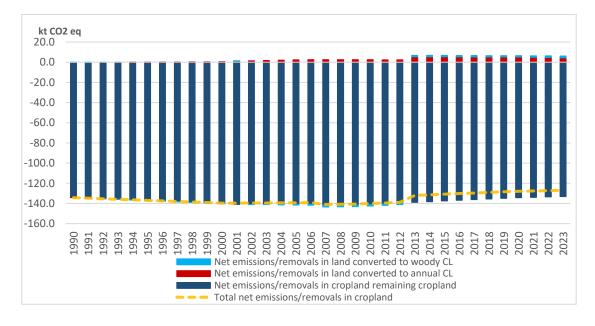


Figure 6.5. Net emissions/removals in cropland category and its subcategories during the period 1990 – 2023 (note: indirect N₂O emissions are included in the net emissions).

6.3.6. Category-specific QA/QC and verification

See paragraph 6.2.6 above.

6.3.7. Category-specific recalculations

No recalculations were implemented.

6.3.8. Category-specific planned improvements

The improvements considered related to this category include:

- The applicability of default biomass data for woody cropland (stocks and growth) provided in the 2006 IPCC Guidelines should be further examined. In particular, the default data result in carbon stock changes comparable to those of forest land, which is unlikely for the national circumstances.
 Therefore, it is needed to either investigate options for developing national data or using regional data that represent more accurately the national circumstances.
- Investigate options for developing data on management and management changes in cropland areas (annual cropland and woody cropland), such as tillage and input application, rotation cycles, etc.
- Analyse further the CORINE data sets together with additional country data sources in order to refine equilibrium carbon stocks in mineral soils in cropland.

6.4. Grassland (4C)

6.4.1. Description

6.4.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

The approach for representing land areas and land use databases is described in Chapter 6.1.1 "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.4.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting".

Table 6.14 presents numerical data on the area of grass grassland remaining grass grassland and of land converted to grass grassland in the period 1990–2023. Note that no conversions from broadleaved forests, wetlands, settlements and other land to grass grassland occur during the whole inventory period.

Table 6.14. Areas of land remaining in the same land use subcategory (grass grassland remaining grass grassland) and of land converted to grass grassland from other land-use subcategories.

	Grass	Land converted to grass grassland from:									
Year	grassland remaining grass grassland	Woody GL	Broad. FL	Conif. FL	Annual CL	Woody CL	WL	SL	OL	Total area	
					kha						
1990	24.451	0.040	0	0	0.132	0.000	0	0	0	24.623	
1991	24.451	0.081	0	0	0.264	0.001	0	0	0	24.796	
1992	24.451	0.121	0	0	0.395	0.001	0	0	0	24.968	
1993	24.451	0.161	0	0	0.527	0.001	0	0	0	25.141	
1994	24.451	0.202	0	0	0.659	0.002	0	0	0	25.313	
1995	24.451	0.242	0	0	0.791	0.002	0	0	0	25.485	
1996	24.451	0.282	0	0	0.923	0.002	0	0	0	25.658	
1997	24.451	0.323	0	0	1.054	0.003	0	0	0	25.830	
1998	24.451	0.363	0	0	1.186	0.003	0	0	0	26.003	
1999	24.451	0.403	0	0	1.318	0.003	0	0	0	26.175	
2000	24.451	0.444	0	0	1.450	0.004	0	0	0	26.348	
2001	24.232	0.444	0	0	1.450	0.004	0	0	0	26.129	
2002	24.012	0.444	0	0	1.450	0.004	0	0	0	25.909	
2003	23.793	0.444	0	0	1.450	0.004	0	0	0	25.690	
2004	23.574	0.444	0	0	1.450	0.004	0	0	0	25.471	
2005	23.355	0.444	0	0	1.450	0.004	0	0	0	25.252	
2006	23.135	0.444	0	0	1.450	0.004	0	0	0	25.032	
2007	23.073	0.444	0	0	1.450	0.004	0	0	0	24.970	
2008	23.011	0.444	0	0	1.450	0.004	0	0	0	24.908	
2009	22.949	0.444	0	0	1.450	0.004	0	0	0	24.846	
2010	23.059	0.403	0	0	1.318	0.003	0	0	0	24.783	
2011	23.169	0.363	0	0	1.186	0.003	0	0	0	24.721	
2012	23.279	0.323	0	0	1.054	0.003	0	0	0	24.659	
2013	23.431	0.476	0	0.005	0.923	0.002	0	0	0	24.836	
2014	23.582	0.629	0	0.010	0.791	0.002	0	0	0	25.014	
2015	23.733	0.782	0	0.015	0.659	0.002	0	0	0	25.191	
2016	23.884	0.936	0	0.020	0.527	0.001	0	0	0	25.369	
2017	24.036	1.089	0	0.025	0.395	0.001	0	0	0	25.546	
2018	24.187	1.242	0	0.030	0.264	0.001	0	0	0	25.724	
2019	24.338	1.396	0	0.035	0.132	0	0	0	0	25.901	
2020	24.489	1.549	0	0.040	0	0	0	0	0	26.078	
2021	24.468	1.743	0	0.045	0	0	0	0	0	26.256	
2022	24.447	1.936	0	0.050	0	0	0	0	0	26.433	
2023	24.426	2.130	0	0.055	0	0	0	0	0	26.611	

 $FL = forest\ land,\ CL = cropland,\ GL = grassland,\ WL = wetlands,\ SL = settlements,\ OL = other\ land$

Table 6.15 presents the same information for the case of woody grassland for the period 1990–2023. Note that no conversions from broadleaved forests, wetlands and other land to woody grassland occur during the whole inventory period.

Table 6.15. Areas of land remaining in the same land use subcategory (woody grassland remaining woody grassland) and of land converted to woody grassland from other land-use sub-categories.

	Woody	Land converted to woody grassland from:										
Year	grassland remaining woody grassland	Grass GL	Broad. FL	Conif . FL	Annua l CL	Woody CL	W L	SL	OL	Total area		
					kha							
1990	106.959	0	0	0.000	0.035	0.003	0	0	0	106.997		
1991	106.873	0	0	0.001	0.070	0.007	0	0	0	106.950		
1992	106.787	0	0	0.001	0.105	0.010	0	0	0	106.903		
1993	106.701	0	0	0.001	0.140	0.014	0	0	0	106.856		

1994	106.615	0	0	0.001	0.175	0.017	0	0	0	106.808
1995	106.529	0	0	0.002	0.209	0.021	0	0	0	106.761
1996	106.443	0	0	0.002	0.244	0.024	0	0	0	106.714
1997	106.357	0	0	0.002	0.279	0.028	0	0	0	106.667
1998	106.272	0	0	0.003	0.314	0.031	0	0	0	106.619
1999	106.186	0	0	0.003	0.349	0.034	0	0	0	106.572
2000	106.100	0	0	0.003	0.384	0.038	0	0	0	106.525
2001	105.837	0	0	0.003	0.384	0.038	0	0	0	106.263
2002	105.575	0	0	0.003	0.384	0.038	0	0	0	106.000
2003	105.312	0	0	0.003	0.384	0.038	0	0	0	105.738
2004	105.050	0	0	0.003	0.384	0.038	0	0	0	105.475
2005	104.788	0	0	0.003	0.384	0.038	0	0	0	105.213
2006	104.525	0	0	0.003	0.384	0.038	0	0	0	104.950
2007	104.452	0.043	0	0.003	0.384	0.038	0	0.006	0	104.927
2008	104.379	0.086	0	0.003	0.384	0.038	0	0.013	0	104.903
2009	104.306	0.129	0	0.003	0.384	0.038	0	0.019	0	104.879
2010	104.272	0.171	0	0.003	0.349	0.034	0	0.025	0	104.855
2011	104.238	0.214	0	0.003	0.314	0.031	0	0.032	0	104.832
2012	104.203	0.257	0	0.002	0.279	0.028	0	0.038	0	104.808
2013	103.967	0.278	0	0.002	0.244	0.036	0	0.038	0	104.566
2014	103.731	0.299	0	0.002	0.209	0.044	0	0.038	0	104.323
2015	103.495	0.320	0	0.001	0.175	0.052	0	0.038	0	104.081
2016	103.259	0.340	0	0.001	0.140	0.060	0	0.038	0	103.839
2017	103.023	0.361	0	0.001	0.105	0.069	0	0.038	0	103.596
2018	102.787	0.382	0	0.001	0.070	0.077	0	0.038	0	103.354
2019	102.551	0.403	0	0.000	0.035	0.085	0	0.038	0	103.112
2020	102.315	0.424	0	0	0	0.093	0	0.038	0	102.870
2021	102.040	0.444	0	0	0	0.105	0	0.038	0	102.627
2022	101.765	0.465	0	0	0	0.117	0	0.038	0	102.385
2023	101.490	0.486	0	0	0	0.128	0	0.038	0	102.143

FL = forest land, CL = cropland, GL = grassland, WL= wetlands, SL= settlements, OL = other land

6.4.4. Methodological issues

A combination of tier 1 and tier 2 methods with country-specific information and default data following the guidance contained in the 2006 IPCC guidelines is applied in the grassland category.

Grass grassland remaining grass grassland

By definition this land-use category contains no woody vegetation, therefore biomass carbon stocks are taken equal to zero, and following the tier 1 method, carbon stock changes are assumed to be zero. The tier 1 method is applied for the DOM pool, thus carbon stock changes in litter and dead wood pools are considered to be zero. Regarding the SOM mineral pool, grassland areas in Cyprus do not experience significant management changes, consequently, carbon stock changes are assumed to be zero without introducing significant error.

The use of fire is not a part of management in lands classified as grass grassland.

Land converted to grass grassland

Lands converted to grass grassland are subject to changes in biomass when the land before the conversion had woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method is implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. The living biomass carbon stocks of grass grassland after the conversion is taken equal to zero, and in the cases where woody vegetation existed in the previous land-use category (e.g., forest land), carbon stock changes are estimated by accounting the loss of total biomass stocks in the year of conversion. The total carbon loss in the year of conversion is applied in the DOM pool as well, where in the previous land-use category the DOM pool was not zero (e.g. forest land). It is noted, that in this submission dead wood carbon stock changes due to forest land conversion to grass grassland are estimated for the first time. Regarding the SOM pool, in the particular case of

changes between grass grassland and woody grassland, carbon stock changes are estimated to be equal to zero since both sub-categories are associated with the same carbon stock equilibrium levels (i.e. 38 t C/ha). With regard to carbon stock changes in SOM in land-use conversions to grass grassland other than from woody grassland, these are estimated using the tier 1 method from 2006 IPCC guidelines by applying formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period and the reference carbon stocks and stock change factors that have already been presented in section 6.2.4 and 6.3.4 for the respective land-use categories.

Use of fire is not a part of management in lands classified as lands converted to grass grassland.

Woody grassland remaining woody grassland

Woody grassland differs from the grass grassland due to the presence of the woody vegetation (as detected using the CORINE land cover data). A country-specific net annual increment value is applied in estimating carbon stock changes in living biomass equal to 0.2 m³ha⁻¹yr⁻¹ (for *Quercus alnifolia*) with default BCEF_I (0.5 for hardwoods related to 21-40 growing stock level) and root-shoot ratio (i.e., 0.28) values. The tier 1 method is applied for the DOM pool, thus carbon stock changes in litter and dead wood pools are considered to be zero. Regarding the SOM mineral pools, grassland areas in Cyprus do not experience significant management changes, consequently, carbon stock changes are assumed to be zero.

Use of fire is not a part of management in lands classified as woody grassland. Furthermore, due to the lack of data, it is further assumed that wild fires do not occur on woody grassland (this assumption is further justified by the fact that woody vegetation is sparse in this land that prevents initiation and propagation of fire).

Land converted to woody grassland

Lands converted to woody grassland are subject to changes in biomass when the land before the conversion had woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method is implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. In the cases where woody vegetation existed in the previous land-use category (e.g., forest land), carbon stock changes are estimated by accounting the loss of total biomass stocks in the year of conversion. The total carbon loss in the year of conversion is applied in the DOM pool as well, where in the previous land-use category the DOM pool was not zero (e.g. forest land). It is noted, that in this submission dead wood carbon stock changes due to forest land conversion to woody grassland are estimated for the first time. Regarding the SOM pool, in the particular case of changes between grass grassland and woody grassland, carbon stock changes are estimated to be equal to zero since both sub-categories are associated with the same carbon stock equilibrium levels (i.e. 38 t C/ha). With regard to carbon stock changes in SOM in land-use conversions to woody grassland other than from grass grassland, these are estimated using the tier 1 method from 2006 IPCC guidelines by applying formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period and the reference carbon stocks and stock change factors that have already been presented in section 6.2.4 and 6.3.4 for the respective land-use categories

Use of fire is not a part of management in lands classified as lands converted to woody grassland.

6.4.5. Uncertainties and time-series consistency

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The associated uncertainties with the input data for grassland remaining grassland and land converted to grassland are presented in table 6.9 above.

The overall uncertainty for grassland remaining grassland is equal to 38% for CO₂, while for land converted to grassland associated uncertainties equal to 52% for CO₂. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

Figure 6.6 presents the emissions/removals time series for the grassland category for the period 1990–2023.

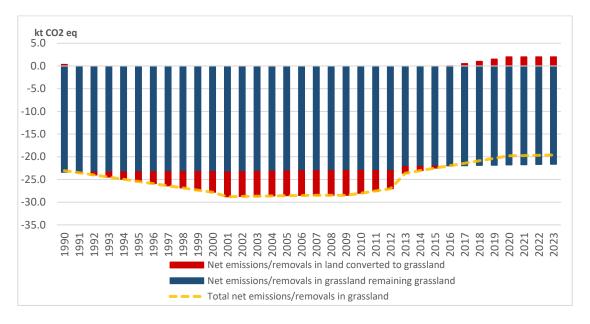


Figure 6.6. Net emissions/removals in grassland remaining grassland and land converted to grassland subcategories during the period 1990 – 2023

6.4.6. Category-specific QA/QC and verification

See paragraph 6.2.6 above.

6.4.7. Category-specific recalculations

No recalculations were implemented.

6.4.8. Category-specific planned improvements

The improvements considered related to this category include:

- Continue the land monitoring for detecting fires that may affect areas with woody grassland vegetation.
- Investigate further the net annual increment for woody grassland by exploring additional data sources.

6.5. Wetlands (4D)

6.5.1. Description⁶³

Even though many wetlands in Cyprus are known to the public and can be visited, information about their condition and their total number was, until recently, scattered or even non-existent. In order to tackle this lack of knowledge and decentralised information, Terra Cypria, a local environmental NGO⁶⁴, conducted a complete Inventory of Cyprus Wetlands⁶⁵ using a Rapid Assessment methodology during a two-year period (2014-2015). This effort was funded by the MAVA Fondation pour la Nature. During the course of the project, all wetlands in Cyprus with an area >1.000 m² (0.1 ha) were visited and recorded - with the exception of those located within military zones, which were included in the inventory but not visited. The total number of 373 areas have been identified as meeting the qualification criteria set for wetlands outlined in the RAMSAR Convention and MedWet's guidelines; 315 wetlands are artificial and natural (Figure

Many of the island's wetlands are in continuous degradation, facing various pressures. The main causes that have been identified leading to degradation according to the team that conducted the research were: i) development pressures from the housing and tourist industry (especially on coastal areas), ii) dam construction halting water supply at downstream wetlands, iii) lack of specific legislation targeting the protection of wetland biodiversity, iv) unsatisfactory implementation of existing legislation which offers direct or indirect protection at specific wetlands and v) lack of knowledge from some government departments and citizens regarding the presence, importance and value of wetlands.

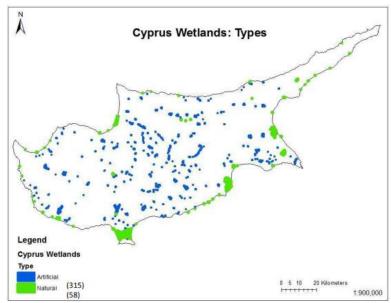


Figure 6.7. Map of Cyprus, indicating the 373 wetlands identified and studied during the "Inventory of Cyprus Wetlands" project.

Most of the natural wetlands are estuaries (68%) followed by marsh/swamps (16%). The rest of the natural wetlands (16%) are divided in four categories including wetlands systems, lakes, salt lakes and lagoons (Figure 6.8).

Almost half of artificial wetlands (48%) are river recharge barriers and reservoirs. One third (28%) are ponds (earth or concrete made). The rest of the artificial wetlands (24%) are divided into seven categories

⁶³ Zotos S., L. Sergides, A. Papatheodoulou; 2019. Conservation of the Island Wetlands of the Mediterranean Basin

[&]quot;Mediterranean Island Wetlands" project; The wetlands of Cyprus technical report; available on https://mava-foundation.org/wpcontent/uploads/2020/07/Final-Inventory-Report-final-20.3.20-3-compressed.pdf (accessed 14/2/2021)
⁶⁴ https://terracypria.org/

⁶⁵ www.cypruswetlands.org

including mine ponds, membrane covered ponds, quarry ponds, tertiary treated waters, off-stream ponds, excavations ponds and wastewater treatment pools (figure 6.9).

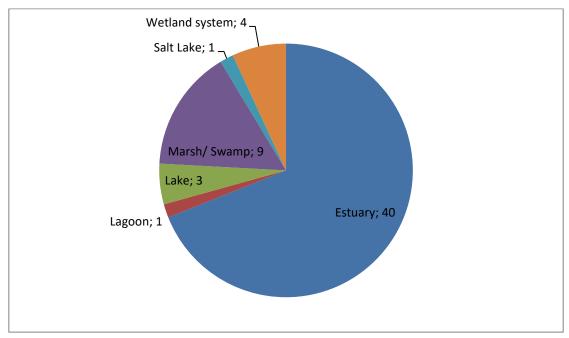


Figure 6.8. Categories of natural wetlands in Cyprus

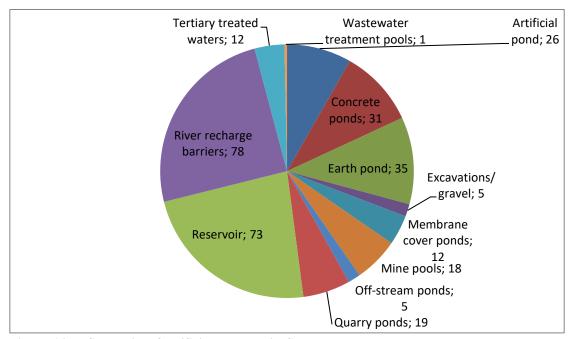


Figure 6.9. Categories of artificial wetlands in Cyprus

6.5.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

Approach for representing land areas and land use databases are described in Chapter 6.1.1 "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.5.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting".

Table 6.16 provides data on area of wetlands remaining wetlands and of lands converted to wetlands during the period 1990–2023.

Table 6.16. Areas of land remaining in the same land use subcategory (wetlands remaining wetlands) and of land converted to wetlands from other land-use sub-categories.

	Wetlands Land converted to wetlands from other land-use sub-categori										
	remaining	Broad.	Conif.	Annua	Woody	Grass	Woody			Total	
Year	wetlands	FL	FL	1 CL	CL	GL	GL	SL	OL	area	
					kha			<u> </u>			
1990	3.977	0	0	0	0	0	0	0	0	3.977	
1991	3.977	0	0	0	0	0	0	0	0	3.977	
1992	3.977	0	0	0	0	0	0	0	0	3.977	
1993	3.977	0	0	0	0	0	0	0	0	3.977	
1994	3.977	0	0	0	0	0	0	0	0	3.977	
1995	3.977	0	0	0	0	0	0	0	0	3.977	
1996	3.977	0	0	0	0	0	0	0	0	3.977	
1997	3.977	0	0	0	0	0	0	0	0	3.977	
1998	3.977	0	0	0	0	0	0	0	0	3.977	
1999	3.977	0	0	0	0	0	0	0	0	3.977	
2000	3.977	0	0	0	0	0	0	0	0	3.977	
2001	3.975	0	0	0	0	0	0	0	0	3.975	
2002	3.972	0	0	0	0	0	0	0	0	3.972	
2003	3.970	0	0	0	0	0	0	0	0	3.970	
2004	3.968	0	0	0	0	0	0	0	0	3.968	
2005	3.966	0	0	0	0	0	0	0	0	3.966	
2006	3.963	0	0	0	0	0	0	0	0	3.963	
2007	3.957	0	0.006	0	0	0	0	0.009	0	3.972	
2008	3.951	0	0.012	0	0	0	0	0.017	0	3.980	
2009	3.945	0	0.018	0	0	0	0	0.026	0	3.989	
2010	3.939	0	0.024	0	0	0	0	0.034	0	3.997	
2011	3.933	0	0.030	0	0	0	0	0.043	0	4.005	
2012	3.927	0	0.036	0	0	0	0	0.052	0	4.014	
2013	3.927	0	0.041	0	0	0	0.001	0.053	0	4.021	
2014	3.927	0	0.046	0	0	0	0.001	0.054	0	4.028	
2015	3.927	0	0.051	0	0	0	0.002	0.055	0	4.035	
2016	3.927	0	0.057	0	0	0	0.003	0.056	0	4.042	
2017	3.927	0	0.062	0	0	0	0.004	0.057	0	4.049	
2018	3.927	0	0.067	0	0	0	0.004	0.058	0	4.056	
2019	3.927	0	0.073	0	0	0	0.005	0.059	0	4.063	
2020	3.927	0	0.078	0	0	0	0.006	0.059	0	4.070	
2021	3.927	0	0.083	0	0	0	0.006	0.060	0	4.077	
2022	3.927	0	0.088	0	0	0	0.007	0.061	0	4.084	
2023	3.927	0	0.094	0	0	0	0.008	0.062	0	4.091	

FL = forest land, CL = cropland, GL = grassland, WL= wetlands, SL= settlements, OL = other land

6.5.4. Methodological issues

Wetlands remaining wetlands

In Cyprus, peat extraction does not occur.

2006 IPCC guidelines do not provide methodologies for estimating emissions/removals from wetlands remaining wetlands (other than peat extraction), thus associated emissions and removals have not been

estimated and in this context the 'NE' notation key is used in CRT table 4.D for all carbon pools and relevant information is reported in CRT table 9.

Land converted to wetlands

For lands converted wetlands, the 2006 IPCC guidelines provide methodology for estimating carbon stock changes only in the living biomass pool, when land is converted to flooded land. The tier 1 method is followed, with the living biomass carbon stocks after the conversion assumed to be zero, and in the cases where woody vegetation existed in the previous land-use category (e.g., forest land), carbon stock changes are estimated by accounting a total loss of biomass stocks in the year of conversion.

For the DOM, and SOM mineral pools, the 2006 IPCC guidelines do not provide methodologies for estimating associated emissions/removals thus the 'NE' notation key is used in CRT table 4.D for these carbon pools and relevant information is reported in CRT table 9.

6.5.5. Uncertainties and time-series consistency

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The associated uncertainties with the input data for land converted to wetlands are presented in table 6.9 above.

The overall uncertainty for land converted to wetlands is equal to 52% for CO₂. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

Figure 6.10 presents the total net emissions/removals time series for the land converted to wetlands for the period 1990–2023.

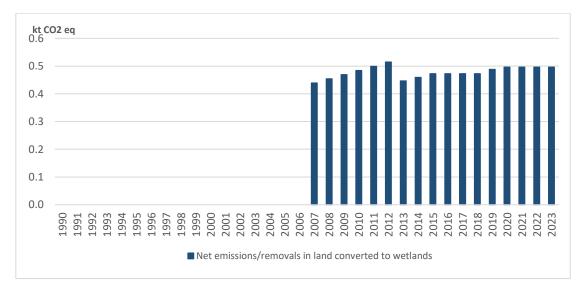


Figure 6.10. Net emissions/removals in land converted to wetlands during the period 1990 – 2023.

6.5.6. Category-specific QA/QC and verification

See para 6.2.6 above.

6.5.7. Category-specific recalculations

No recalculations were implemented.

6.5.8. Category-specific planned improvements

There are not any improvements planned for this category.

6.6. Settlements (4E)

6.6.1. Description

6.6.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

The approach for representing land areas and land use databases are described in Chapter 6.1.1 "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.6.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting". Table 6.17 provides data on area of settlements remaining settlements and lands converted to settlements during the period 1990–2023.

Table 6.17. Areas of land remaining in the same land use subcategory (settlements remaining settlements) and of land converted to settlements from other land-use sub-categories.

	Settlements	Land converted to settlements from:									
Year	remaining settlements	Broad. FL	Conif. FL	Annua 1 CL	Woody CL	Grass GL	Woody GL	WL	OL		
					kha						
1990	48.871	0	0	0.019	0.003	0	0.008	0	0	48.902	
1991	48.871	0	0	0.039	0.005	0	0.016	0	0	48.932	
1992	48.871	0	0	0.058	0.008	0	0.024	0	0	48.962	
1993	48.871	0	0	0.078	0.011	0	0.033	0	0	48.992	
1994	48.871	0	0	0.097	0.014	0	0.041	0	0	49.023	
1995	48.871	0	0	0.117	0.016	0	0.049	0	0	49.053	
1996	48.871	0	0	0.136	0.019	0	0.057	0	0	49.083	
1997	48.871	0	0	0.155	0.022	0	0.065	0	0	49.113	
1998	48.871	0	0	0.175	0.024	0	0.073	0	0	49.144	
1999	48.871	0	0	0.194	0.027	0	0.081	0	0	49.174	
2000	48.871	0	0	0.214	0.030	0	0.089	0	0	49.204	
2001	48.810	0.001	0.008	0.532	0.426	0.117	0.286	0.002	0	50.183	
2002	48.749	0.003	0.017	0.850	0.821	0.234	0.483	0.005	0	51.161	
2003	48.688	0.004	0.025	1.168	1.217	0.350	0.680	0.007	0	52.139	
2004	48.627	0.005	0.034	1.486	1.613	0.467	0.877	0.009	0	53.118	
2005	48.566	0.006	0.042	1.804	2.009	0.584	1.073	0.011	0	54.096	
2006	48.505	0.008	0.051	2.122	2.405	0.701	1.270	0.014	0	55.075	
2007	48.470	0.008	0.051	2.195	2.548	0.718	1.340	0.020	0	55.350	
2008	48.435	0.008	0.051	2.269	2.690	0.736	1.409	0.026	0	55.624	
2009	48.400	0.008	0.051	2.343	2.833	0.754	1.479	0.032	0	55.899	

2010	48.396	0.008	0.051	2.397	2.973	0.771	1.540	0.038	0	56.174
2011	48.391	0.008	0.051	2.451	3.113	0.789	1.602	0.044	0	56.448
2012	48.387	0.008	0.051	2.505	3.253	0.806	1.663	0.050	0	56.723
2013	48.404	0.008	0.051	2.550	3.264	0.806	1.696	0.050	0	56.829
2014	48.421	0.008	0.051	2.594	3.275	0.806	1.729	0.050	0	56.934
2015	48.438	0.008	0.051	2.639	3.287	0.806	1.762	0.050	0	57.040
2016	48.455	0.008	0.051	2.684	3.298	0.806	1.795	0.050	0	57.146
2017	48.471	0.008	0.051	2.728	3.309	0.806	1.828	0.050	0	57.252
2018	48.488	0.008	0.051	2.773	3.320	0.806	1.860	0.050	0	57.357
2019	48.505	0.008	0.051	2.817	3.331	0.806	1.893	0.050	0	57.463
2020	48.522	0.008	0.051	2.862	3.343	0.806	1.926	0.050	0	57.569
2021	49.549	0.006	0.042	2.608	2.961	0.689	1.771	0.048	0	57.674
2022	50.575	0.005	0.034	2.354	2.579	0.573	1.615	0.046	0	57.780
2023	51.601	0.004	0.025	2.100	2.197	0.456	1.459	0.044	0	57.886

FL = forest land, CL = cropland, GL = grassland, WL = wetlands, SL = settlements, OL = other land

6.6.4. Methodological issues

In Cypriot conditions the settlements land-use category contains all developed land, including transportation infrastructure and human settlements of any size. In particular, it contains: industrial and commercial units, urban areas, port areas, airports, construction, mineral extraction and waste dump sites. Urban areas contain densely and sparsely populated areas (e.g. cities and villages). The category also includes lands covered with woody vegetation typical for inhabited areas that were not classified as forest, woody cropland and woody grassland. It also includes lands containing annual vegetation present in urban areas.

Settlements remaining settlements

The tier 1 assumption of the 2006 IPCC guidelines that carbon stock changes in living biomass, dead wood, litter and SOM mineral pools are zero is applied.

Land converted to settlements

Lands converted to settlements are subject to changes in woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method was implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. It should be noted that in the current inventory, carbon stocks in dead wood and litter in settlements after the conversion are taken equal to zero. Furthermore, both the living biomass and DOM stocks that were present before the conversion are assumed to be totally lost in the year of conversion as a result of the land-use change.

For estimating carbon stock changes in SOM mineral, formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period was applied. In the current inventory, the carbon stock equilibrium level of settlements is taken equal to 80% of the reference carbon stocks, following the tier 1 assumption, while in the previous inventories the 83.4% of the reference carbon stocks was applied based on assumptions. However, until further analysis is done on these assumptions, it has been decided to use the tier 1 value instead. The stock change factors that are applied for the respective land-use categories converted to settlements are the ones presented in section 6.2.4.

Use of fire is not a part of management in lands classified as lands converted to settlements.

N₂O emissions from N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils

In the current submission, N_2O emissions from N mineralization associated with mineral soil carbon loss as a result of land-use change to settlements are reported for the first time. These emissions are a consequence of the enhanced mineralisation (conversion to inorganic form) of soil organic matter (SOM) that normally takes place as a result of that conversion.

Both direct and indirect N_2O emissions are reported following the tier 1 method of the 2006 IPCC guidelines with default emission factors. More specifically equations 11.1, 11.8 and 11.10 from chapter 11 were applied. The C/N ratio equal to 15 for forest land and grassland conversions to settlements, the C/N ratio equal to 10 for cropland conversions to settlements, the emission factor (EF1) equal to 0.01 kg N_2O -N/kg N for direct N_2O emissions, and the emission factor (EF5) equal to 0.0075 kg N_2O -N/kg N and the Frac_{LEACH} equal to 0.3 for indirect N_2O emissions are applied.

6.6.5. Uncertainties and time-series consistency

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The associated uncertainties with the input data for land converted to settlements are presented in table 6.9 and in table 6.13 above.

The overall uncertainty for land converted to settlements equals to 350% and 380% for CO_2 and N_2O emissions, respectively. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

The time series of GHG emissions/removals for land converted to settlements is presented in figure 6.11.

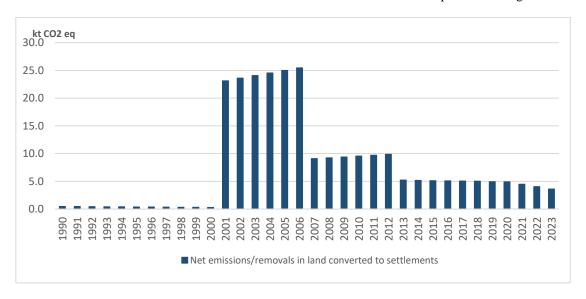


Figure 6.11. Net emissions/removals in land converted to settlements during the period 1990 – 2023 (note: indirect N₂O emissions are included in the net emissions)

Figure 6.11 presents the total net emissions/removals time series for land converted to settlements during the period 1990–2023.

6.6.6. Category-specific QA/QC and verification

See para 6.2.6 above.

6.6.7. Category-specific recalculations

No recalculations were implemented.

6.6.8. Category-specific planned improvements

The improvements considered related to this category include:

- Investigate alternative data sources in order to refine the equilibrium carbon stocks in mineral soils in settlements.
- Investigate options for estimating carbon stock changes in living biomass in settlements remaining settlements and apply tier 2 of the 2006 IPCC guidelines.

6.7. Other land (4F)

6.7.1. Description

This land-use category includes bare soil, rock, beaches, dunes and sand plains and all land areas that couldn't be classified into any of the other five land-use categories by means of interpretation of the CORINE land cover data. It also allows the total of identified land areas to match the national area, i.e. to retain the entire Cyprus area unchanged among the reported years.

6.7.2. Information on approaches used for representing land areas and on land-use databases used for the inventory preparation

The approach for representing land areas and land use databases are described in Chapter 6.1.1 "Information on approaches used for representing land areas and on land-use databases used for the inventory preparation".

6.7.3. Land-use definitions and the classification systems used and their correspondence to the LULUCF categories

Land-use definitions are provided in Chapter 6.1.2.2 "The land-use categories for greenhouse gas inventory reporting".

Table 6.18 presents numerical data on the area of other land remaining other land and of land converted to other land in the period 1990–2023.

Table 6.18. Areas of land remaining in the same land use subcategory (other land remaining other land) and of land converted to other land from other land-use sub-categories.

	Other land	,		Land conv						U
Year	remaining other land	Broad. FL	Conif.	Annual	Woody	Grass	Woody	WL	SL	Total area
	other fand	FL	FL	CL	CL kha	GL	GL			
1990	2.915	0	0	0	0.002	0	0.002	0	0	2.919
1991	2.915	0	0	0	0.004	0	0.004	0	0	2.923
1992	2.915	0	0	0	0.006	0	0.006	0	0	2.927
1993	2.915	0	0	0	0.008	0	0.008	0	0	2.931
1994	2.915	0	0	0	0.011	0	0.010	0	0	2.936
1995	2.915	0	0	0	0.013	0	0.012	0	0	2.940
1996	2.915	0	0	0	0.015	0	0.014	0	0	2.944
1997	2.915	0	0	0	0.017	0	0.017	0	0	2.948
1998	2.915	0	0	0	0.019	0	0.019	0	0	2.952
1999	2.915	0	0	0	0.021	0	0.021	0	0	2.957
2000	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2001	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2002	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2003	2.915	0	0	0	0.023	0	0.023	0	0	2.961

2004	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2005	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2006	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2007	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2008	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2009	2.915	0	0	0	0.023	0	0.023	0	0	2.961
2010	2.919	0	0	0	0.021	0	0.021	0	0	2.961
2011	2.923	0	0	0	0.019	0	0.019	0	0	2.961
2012	2.927	0	0	0	0.017	0	0.017	0	0	2.961
2013	2.929	0	0	0	0.015	0	0.014	0	0	2.958
2014	2.930	0	0	0	0.013	0	0.012	0	0	2.955
2015	2.932	0	0	0	0.011	0	0.010	0	0	2.953
2016	2.933	0	0	0	0.008	0	0.008	0	0	2.950
2017	2.935	0	0	0	0.006	0	0.006	0	0	2.947
2018	2.936	0	0	0	0.004	0	0.004	0	0	2.944
2019	2.938	0	0	0	0.002	0	0.002	0	0	2.942
2020	2.939	0	0	0	0	0	0	0	0	2.939
2021	2.936	0	0	0	0	0	0	0	0	2.936
2022	2.934	0	0	0	0	0	0	0	0	2.934
2023	2.931	0	0	0	0	0	0	0	0	2.931

FL = forest land, CL = cropland, GL = grassland, WL= wetlands, SL= settlements, OL = other land

It is evident from the information in table 6.18 above that the conversions to other land are very limited in Cyprus, and they are associated only with changes from woody cropland and grassland land.

6.7.4 Methodological issues

Other Land remaining Other land

No guidance is provided in the 2006 IPCC guidelines for other land remaining other land.

Land converted to other land

Lands converted to other land are subject to changes in woody vegetation, dead wood, litter and soil organic carbon. The tier 2 method was implemented to calculate carbon stock changes in living biomass (equation 2.15 of the 2006 IPCC guidelines) and the tier 1 method for the DOM and SOM mineral pools. It should be noted that carbon stocks in living biomass, dead wood and litter in other land after the conversion are taken equal to zero in accordance with the 2006 IPCC guidelines. Furthermore, both the living biomass and DOM stocks that were present before the conversion are assumed to be totally lost in the year of conversion as a result of the land-use change.

For estimating carbon stock changes in SOM mineral, formulation B of equation 2.25 of the 2006 IPCC guidelines with the default 20 years transition period is applied. In the current inventory, the carbon stock equilibrium level of other land is taken equal to zero, following the tier 1 assumption, while in the previous inventories mineral soil carbon stocks for other land were not taken equal to zero. The stock change factors that are applied for the respective land-use categories converted to other land are the ones presented in section 6.2.4.

N_2O emissions from N mineralization/immobilization associated with loss/gain of soil organic matter resulting from change of land use or management of mineral soils

In the current submission, N_2O emissions from N mineralization associated with mineral soil carbon loss as a result of land-use change to other land are reported for the first time. These emissions are a consequence of the enhanced mineralisation (conversion to inorganic form) of soil organic matter (SOM) that normally takes place as a result of that conversion.

Both direct and indirect N_2O emissions are reported following the tier 1 method of the 2006 IPCC guidelines with default emission factors. More specifically equations 11.1, 11.8 and 11.10 from chapter 11 were applied. The C/N ratio equal to 15 (for grassland) and 10 (for cropland) conversions to other

land, the emission factor (EF1) equal to $0.01 \text{ kg N}_2\text{O-N/kg N}$ for direct $N_2\text{O}$ emissions, and the emission factor (EF5) equal to $0.0075 \text{ kg N}_2\text{O-N/kg N}$ and the Frac_{LEACH} equal to 0.3 for indirect $N_2\text{O}$ emissions are applied.

6.7.5. Uncertainties and time-series consistency

Uncertainties for the whole inventory period (1990-2023) have been assessed following the error propagation (approach 1) and equations 3.1, 3.2 contained in volume 1 of the 2006 IPCC guidelines. Input uncertainties related to activity data and emission factors have been assessed on the basis of information provided in the 2006 IPCC guidelines and country specific information.

The associated uncertainties with the input data for land converted to other land are presented in table 6.9 and in table 6.13 above.

The overall uncertainty for land converted to other land equals to 34% and 81% for CO_2 and N_2O emissions, respectively. A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

Figure 6.12 presents the total net emissions/removals associated with the land converted to other land during the period 1990–2023.

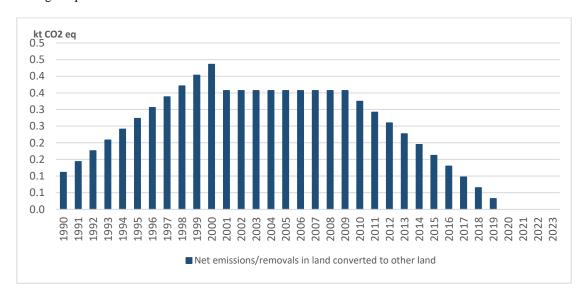


Figure 6.12. Net emissions/removals in land converted to other land during the period 1990 – 2023 (note: indirect N₂O emissions are included in the net emissions).

6.7.6. Category-specific QA/QC and verification

See paragraph 6.2.6 above.

6.7.7. Category-specific recalculations

No recalculations were implemented.

6.7.8. Category-specific planned improvements

There are not any improvements planned for this category.

6.8. Harvested Wood Products (4G)

6.8.1. Description

Harvested Wood Products (HWP) include all wood material (including bark) that leaves harvest sites. Slash and other material left at harvest sites are regarded as dead organic matter in the associated landuse category.

In Cyprus, all domestically produced HWP originate only from harvest occurring in forest land category.

6.8.2. Information on approaches used and on databases used for the inventory preparation

Annual carbon stock changes in HWP pool are estimated following the production approach as it is described in the 2006 IPCC guidelines in order to estimate CO₂ emissions and removals from HWP originating from the country's land.

Three harvested wood products categories have been considered, namely sawnwood, wood-based panels, and paper and paperboard.

All relevant data were collected from the FAO database "Forestry Production and Trade".

6.8.3. Category specific definitions and the classification systems used

Definitions contained in "FAO Forest Products Definitions" are used in this inventory.

6.8.4. Methodological issues

The tier 2 of the 2006 IPCC guidelines is applied for estimating the HWP contribution in the total net emissions/removals in the LULUCF sector. More specifically, the first order decay function presented in equation 12.6 is used.

Furthermore, the following elements of the 2006 IPCC guidelines are considered:

- 1. All CO₂ released/removed from HWP is included in the LULUCF sector;
- 2. CO₂ released from wood burnt for energy in the energy sector is not included in the energy sector totals (although CO₂ emissions from biofuels are reported as a memo item for QA/QC purposes). CH₄ and other gases from HWP used for energy is included in the energy sector;
- 3. CO₂ released from HWP in SWDS is not included in the waste sector totals although CH₄ emissions from HWP are included.

6.8.4.1. Data for the calculation of an estimate of HWP Contribution under the Convention

The necessary activity data for all three categories, namely data for production, import and export, have been obtained from FAO statistics database "Forestry Production and Trade" (date of data download: 28 December 2022)⁶⁷. Table 6.19 lists the FAO items and their codes that were the source of numerical data for all calculations in this chapter.

۷,

 $^{^{66}\} available\ at:\ http://www.fao.org/forestry/34572-0902b3c041384fd87f2451da2bb9237.pdf$

⁶⁷ available at http://www.fao.org/faostat/en/#data/FO

Table 6.19. The FAO items and their codes that were the source of numerical data for all calculations relating to the HWP GHG contribution.

Item	Item Code
Sawnwood	1872
Wood-Based Panels	1873
Paper+Paperboard	1876
Wood Pulp	1875
Industrial Roundwood	1865

In the current submission, the activity data used for estimating the HWP contribution are extrapolated back to 1900, in accordance with the 2006 IPCC guidelines. More specifically, equation 12.6 is applied with the estimated continuous rate of change equal to 0.0151 (that of industrial roundwood production increase). The carbon stocks in 1900 are assumed to be equal to zero. It is noted that for wood-based panels a complete time series for production is available only for the period 1982-2023 in FAOSTAT. Thus, the extrapolation back from 1982 to 1900 is approximated by means of equation 12.6.

As it has been already indicated, in the current submission the carbon stock changes for solid wood are disaggregated between sawnwood and wood panels compared to previous submission in which aggregated estimates only for solid wood were reported. The default half-lives used for the estimation of "products in use" and associated fraction retained each year are the disaggregated ones for the three HWP categories from the 2013 IPCC KP Supplement presented in table 6.20 below.

Table 6.20. The default half-lives and associated decay rates for solid wood products and paper products

produces.			
	Sawnwood	Wood-based panesl	Paper products
Half-life (years)	35 yr	25	2 yr
Decay rate $k (k = ln(2)/$	0.020 yr ⁻¹	0.028	0.347 yr ⁻¹
half-life)			

The conversion factors used in the calculation of the HWP contribution are taken from table 12.4 of the 2006 IPCC and are reported in CRT table 4.Gs2.

Figure 6.13 below presents the annual carbon stock changes in the period 1990-2023 for each HWP category.

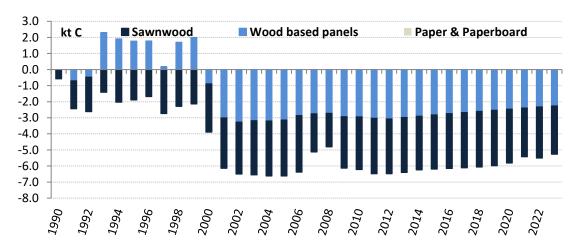


Figure 6.13. Carbon stock changes in sawnwood, wood-based panels, paper and paperboard during the period 1990-2023.

6.8.5. Uncertainties and time-series consistency

The uncertainty associated with this category is based on information provided by the 2006 IPCC guidelines, namely an overall uncertainty equal to 52% for CO_2 . A more detailed description of the results of the uncertainty analysis is reported in Annex 2.

6.8.6. Category-specific QA/QC and verification

See paragraph 6.2.6 above.

6.8.7. Category-specific recalculations

No recalculations were implemented.

6.8.8. Category-specific planned improvements

There are not any improvements planned for this category.

Chapter 7. Waste (CRT sector 5)

7.1. Overview of sector

Disposal and treatment of industrial and municipal wastes can produce emissions of GHG. Typically, CH₄ emissions from SWDS are the largest source of greenhouse gas emissions in the Waste Sector. CH₄ emissions from wastewater treatment and discharge may also be important.

Solid wastes can be disposed of through landfilling, recycling, incineration or waste-to-energy. Incineration and waste-to-energy technologies are not implemented for the management of municipal solid waste in Cyprus. This chapter will deal with CH₄ and N₂O emissions resulting from solid waste disposal, biological treatment of solid waste and wastewater treatment and discharge. The most important gas produced in this source category is methane (CH₄). Emissions from incineration and open burning of waste are reported as NO as incineration does not take place in Cyprus.

7.1.1. Emissions trends

Emissions from the Waste Sector in 2023 contributed 7.5% of the total emissions without LULUCF, 59.7% to the total methane emissions of the country without LULUCF and 12.6% to the total N_2O emissions without LULUCF. In 2023, 86.1% of the waste sector emissions are from solid waste disposal, 2.8% from biological treatment of solid waste and 11.1% from waste water treatment and discharge. The emissions from waste have changed considerably between 1990 and 2023 due to changes that are taking place in the waste and wastewater management practices of the country. Recycling and composting have been reducing the amount of waste disposal on land since 2010.

Table 7.1. Total GHG emissions (in Gg CO₂ eq) from waste, 1990–2023

Gg CO ₂ eq.	1990	2000	2005	2010	2011	2012	2013
Total waste	435.18	523.24	557.57	583.92	588.96	599.05	609.15
A. Solid waste							
disposal	295.37	369.73	420.35	482.17	494.71	506.10	518.69
B. Biological							
treatment of solid							
waste	NO	NO	NO	4.71	8.55	10.35	8.85
C. Incineration and							
open burning of							
waste	NO						
D. Wastewater							
treatment and							
discharge	139.82	153.51	137.22	97.04	85.70	82.60	81.60
E. Other	NO						
CH ₄ (Gg)	15.19	18.25	19.48	20.30	20.45	20.78	21.17
$N_2O(Gg)$	0.04	0.05	0.05	0.06	0.06	0.07	0.06
Total (Gg CO ₂ eq.)	435.18	523.24	557.57	583.92	589.71	599.76	609.81

Gg CO ₂ eq.	2014	2015	2016	2017	2018	2019	2020
Total waste	619.19	623.02	626.15	633.61	643.33	654.18	653.35
A. Solid waste							
disposal	527.87	533.77	540.47	547.74	554.51	561.03	567.35
B. Biological							
treatment of solid	10.55	11.48	11.63	11.88	15.11	17.94	17.26

waste							
C. Incineration and							
open burning of							
waste	NO						
D. Wastewater							
treatment and							
discharge	80.77	77.76	74.05	74.00	73.72	75.21	68.74
E. Other	NO						
CH ₄ (Gg)	21.52	21.66	21.76	22.02	22.31	22.67	22.66
N ₂ O (Gg)	0.07	0.07	0.07	0.07	0.08	0.08	0.08
Total (Gg CO ₂ eq.)	620.38	624.81	627.76	635.25	644.93	656.42	656.09

Gg CO ₂ eq.	2021	2022	2023		
Total waste	660.59	665.31	672.31		
A. Solid waste					
disposal	571.59	574.88	578.85		
B. Biological					
treatment of solid					
waste	17.89	18.67	19.19		
C. Incineration and					
open burning of					
waste	NO	NO	NO		
D. Wastewater					
treatment and					
discharge	71.11	71.76	74.27		
E. Other	NO	NO	NO		
CH ₄ (Gg)	22.86	22.98	23.22		
$N_2O(Gg)$	0.08	0.08	0.08		
Total (Gg CO ₂ eq.)	662.56	665.31	672.31		

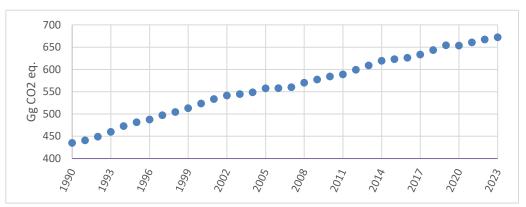


Figure 7.1. GHG emissions from waste for the period 1990–2023

7.1.2. Methodology

The calculation of GHG emissions from Waste is based on the methodologies and emission factors suggested by the IPCC Guidelines. Data used for the estimation of the emissions was obtained from the National Statistical Service. The Tier 2 method with default IPCC 2006 emission factors and parameters is implemented for Solid Waste Disposal (5A) and Tier 1 for Biological Treatment of Solid Waste (5B) and Wastewater Treatment and Discharge (5D).

The methodologies and emission factors used are summarised in Table 7.2.

Table 7.2. Waste- methodologies and emission factors applied

Category	y-Classification	Gas	EF	Method
5A1.a	Solid Waste Disposal - Managed waste disposal	CH ₄	D	T2
	sites- Anaerobic			
5A1.a	Solid Waste Disposal - Managed waste disposal	CO_2	NA	NA
	sites- Anaerobic			
5A2.	Solid Waste Disposal - Unmanaged waste	CH_4	D	T2
	disposal sites			
5A2.	Solid Waste Disposal - Unmanaged waste	CO_2	NA	NA
	disposal sites			
5B1a	Biological treatment of solid waste –	CH ₄ /N ₂ O	D	T1
	Composting- municipal solid waste			
5B2	Anaerobic Digestion at Biogas Facilities	CH_4	D	T1
5D1.	Wastewater Treatment and Discharge -	CH ₄ /N ₂ O	CS	T1
	Domestic wastewater			
5D2.	Wastewater Treatment and Discharge -	CH_4	D	T1
	Industrial wastewater			
5D2.	Wastewater Treatment and Discharge -	N_2O	OTH	OTH
	Industrial wastewater			

T1: IPCC methodology Tier 1; D: IPCC default methodology and emission factor; OTH: other methodology – EMEP/CORINAIR 2007

Key categories

The results of the key categories assessment are presented in <u>Section 1.4</u>.

Uncertainty

The uncertainty analysis is presented in Section 1.5.

Completeness

Table 7.3 gives an overview of the IPCC source categories included in this chapter and presents the status of emissions estimates from all sub-sources in the sector of waste.

Table 7.3. Waste – completeness

_	CO ₂	CH ₄	N ₂ O
5A. Solid Waste Disposal	NA	✓	NA
5B. Biological Treatment of Solid Waste		✓	✓
5D. Wastewater Treatment and Discharge		✓	✓

NA: Not applicable

7.2. Solid Waste Disposal (5A)

Treatment and disposal of municipal, industrial and other solid waste produces significant amounts of methane (CH_4). In addition to CH_4 , solid waste disposal sites (SWDS) also produce biogenic carbon dioxide (CO_2) and non-methane volatile organic compounds (NMVOCs) as well as smaller amounts of nitrous oxide (N_2O), nitrogen oxides (NO_x) and carbon monoxide (N_2O). In Cyprus, as in many other industrialised countries, waste management has changed much over the last decade. Waste minimisation and recycling/reuse policies have been introduced to reduce the amount of waste generated, and increasingly, alternative waste management practices to solid waste disposal on land have been implemented to reduce the environmental impacts of waste management.

Decomposition of organic material derived from biomass sources (e.g., crops, wood) is the primary

source of CO₂ released from waste. These CO₂ emissions are not included in national totals, because the carbon is of biogenic origin and net emissions are accounted for under the LULUCF Sector.

Municipal solid waste management in Cyprus

In Cyprus, household waste is collected by local authorities or individuals and disposed of in sites of different characteristics. In 2005⁶⁸ five disposal sites were in operation, of which none met the standards for landfills in accordance with the requirements of the relevant EU Directives. The landfills in Nicosia and Limassol operated with controlled drop while the other three sites operate under semi-controlled deposition conditions. These sites have been categorised as deep unmanaged for the purposes of inventory preparation.

Up until 2010, also in operation were 113 sites of uncontrolled disposal of household and other solid waste. These sites have been categorised as shallow unmanaged. Most active UWDS have been active for more than 25 years, while the smallest portion of the active UWDS were active for less than 5 years (Figure 7.2). Approximately half of UWDS (48%) started their operation during 1990-2000, while a significant number became operational during 1980–1990. Before 1970 only two sites operated, one of which was closed in the mid 1990s, while the other is still in operation (Figure 7.3).

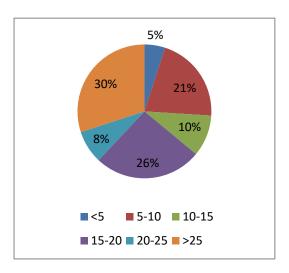


Figure 7.2. Years of activity of active
Uncontrolled Waste Disposal
Sites

Figure 7.3. Starting year of activity for all Uncontrolled Waste Disposal Sites

The situation started changing in 2006 when the first managed waste disposal site started its operation in Pafos. Then the second managed waste disposal site started its operation in 2010, serving the districts of Larnaca and Ammochostos. For Limassol and Nicosia, the new facilities are under construction and all the municipal solid wastes produced are transferred to the existing deep unmanaged sites⁶⁹. The national municipal waste Management Plant of 2015–2021 (MWMP) contains quantitative and qualitative targets and enumerates specific measures and actions to be taken in order for the EU targets to be reached. One of the quantitative targets is that no more than 95,000 tonnes of biodegradable waste is to be disposed in landfills (represents the 35% target of the 1999/31/EC directive). In addition, the Legal Measures will be focused on the:

- Development of local waste prevention and management schemes

68 In 2005 a census of all the solid waste disposal sites took place in Cyprus through the study "Παροχή συμβουλευτικών υπηρεσιών για την ετοιμασία στρατηγικού σχεδίου, περιβαλλοντικής και τεχνοοικονομικής μελέτης και εγγράφων προσφορών για την αποκατάσταση και μετέπειτα φροντίδα των χώρων ανεξέλεγκτης απόρριψης απορριμμάτων στην Κύπρο" ("Consultancy services for the preparation of the strategic plan, environmental and techno-economic studies and tender documents for the rehabilitation

and aftercare of uncontrolled waste disposal sites in Cyprus").

⁶⁹ Athena Papanastasiou, Environment Officer, Waste Management Unit, Department of Environment, Tel.: +357 22 866231, E-mail: apapanastasiou@environment.moa.gov.cy

- Mandatory obligation for establishing separate collection systems by local authorities,
- Establishment of extended producer responsibility (EPR) in streams other than packaging waste,
- Establishment of a landfill tax/levy,
- Banning the disposal of certain waste streams from entering into landfills (e.g. green waste, high calorific value waste, etc.)

The adaptations of the strategy that are envisaged:

- One Sanitary Landfill and one Residual Sanitary Landfill (supplementing MBT unit at Koshi) were constructed and operated (both meet the requirements of directive 99/31/EC). The MBT unit was constructed and operated from 01/04/2010 servicing Larnaca-Ammochostos districts. The Plant was designed in a way that a high separation of recycled and biodegradable material is achieved. Another I.W.M.P (Integrated Waste Management Plant) servicing Limassol district is expected to be operated by the year 2018.
- The construction of the Green Point Network (22 collection points for the depositing of various waste streams out of households bulky waste, green, textile, furniture, weee, etc.) is completed. The 4 Green Points servicing Paphos district are in operation and the rest are expected to be in operation by 2018.
- Separate collection at source was promoted at households, from the existing collective system for
 the packing waste servicing and also all types of paper created under the packaging directive, while
 the competent authority promotes the separate collection from other household streams such as other
 organic waste, eg. food and green waste.
- The construction works for the rehabilitation/restoration of the old non approved landfills, which are closed at Paphos and Larnaca-Ammochostos districts, were completed. The preparation of studies/documents regarding the rehabilitation/restoration of the 20 non sanitary landfills of Nicosia district and the 44 sanitary landfills of the Limassol district will be completed within 2018, and after that the construction works will begin.

A comprehensive study was undertaken in 2005 for the elaboration of a Strategic Plan, an Environmental study and a Feasibility study for the restoration and management of landfills. The purpose of the study was to record all landfills, assess their status and level of risk, create a restoration priority list based on pollution risk assessments, and undertake the appropriate environmental studies as well as feasibility studies for the restoration of the prioterized landfills. These studies were a necessary step for the restoration of all landfills recorded.

Two (2) landfills are still active in Cyprus but arrangements have been made in order for them to be closed and restored. According to recent data, these two landfills are fed with approximately 155,000 tonnes and 200,000 tonnes of municipality waste each year, respectively (reference year 2012).

Sixty-two (62) non sanitary landfills are planned to be restored appropriately within the following years. According to the preliminary study contacted in 2005, these landfills contain approximately 597,269 m³ of solid waste, excluding 2 major landfills that have not been closed yet.

Fifty-three (53) landfills have been restored the last five years and are being monitored. During their restoration a total of 4,902,000 m³ of solid waste were reallocated and properly buried using composite liners and leakage collection systems.

The EU landfill directive is fully harmonized in the national legislation but not fully implemented. Cyprus didn't manage to seize the operation of non-compliant landfills by 2009. Also, Cyprus has rehabilitated only 46% of its closed landfills.

Emission trends

Methane emissions were calculated using the Tier 2 method proposed by the IPCC 2006 guidelines using the IPCCWasteModel excel spreadsheet provided with the 2006 IPCC guidelines.

Carbon dioxide emissions occur during flaring of biogas released from the decomposition of waste. These emissions should not be included in the total GHG emissions of this source as they are of biogenic origin. Nevertheless, recovery and flaring of biogas do not occur in Cyprus and is therefore reported as NO.

CH₄ emissions from solid waste disposal on land in 2023 accounted for 86.4% of total GHG emissions from Waste sector, 6.5% of total national emissions without LULUCF and 53.3% of the total CH₄ emissions without LULUCF. Total emissions increased by 95.6% between 1990 and 2023. Emissions from Solid Waste Disposal Sites are presented in Table 7.4 and Figure 7.4.

Table 7.4. Total GHG emissions from solid waste disposal sites for the period 1990-2023

Gg CH ₄	1990	2000	2005	2010	2011	2012	2013
A. Solid waste disposal	10.55	13.20	15.01	17.22	17.67	18.07	18.52
1. Managed waste disposal sites	NO	NO	NO	0.58	1.03	1.47	1.86
2. Unmanaged waste disposal							
sites	10.55	13.20	15.01	16.64	16.63	16.61	16.66
3. Uncategorised waste disposal							
sites	NO						
A. Solid waste disposal (Gg							
CO ₂ eq.)	295.37	369.73	420.35	482.17	494.71	506.10	518.69

Gg CH ₄	2014	2015	2016	2017	2018	2019	2020
A. Solid waste disposal	18.85	19.06	19.30	19.56	19.80	20.04	20.26
1. Managed waste disposal sites	2.21	2.49	2.78	3.06	3.33	3.92	4.86
2. Unmanaged waste disposal							
sites	16.65	16.57	16.52	16.50	16.47	16.12	15.40
3. Uncategorised waste disposal							
sites	NO						
A. Solid waste disposal (Gg							
CO ₂ eq.)	527.87	533.77	540.47	547.74	554.51	561.03	567.35

Gg CH ₄	2021	2022	2023	
A. Solid waste disposal	20.41	20.53	20.67	
1. Managed waste disposal sites	5.69	6.46	7.22	
2. Unmanaged waste disposal				
sites	14.72	14.07	13.45	
3. Uncategorised waste disposal				
sites	NO	NO	NO	
A. Solid waste disposal (Gg				
CO ₂ eq.)	571.59	574.88	578.76	

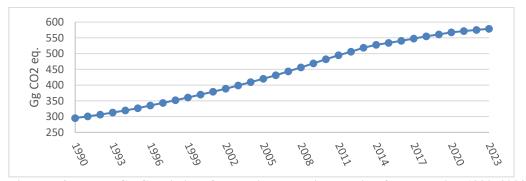


Figure 7.4. Total GHG emissions from solid waste disposal sites for the period 1990-2023

7.2.1. Methodological issues

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC Guidelines) outlines three

methods to estimate CH₄ emissions from solid waste disposal sites: (a) the Tier 1 method based on the IPCC First Order Decay method (FOD), (b) the Tier 2 method using the IPCC FOD method, some default parameters and good quality country specific activity data and (c) the Tier 3 method using good quality country specific activity data and either the FOD IPCC FOD method with country specific key parameters or measurement derived county-specific parameters. According to the 2006 IPCC Guidelines, it is good practice to use the FOD method in order to account for time dependence of the emissions. The Tier 2 methodology was implemented for the estimation of emissions from land disposal of solid waste through the use of the IPCCWasteModel excel spreadsheet. The parameters are set to Southern Europe region, the DOC is calculated based on waste by composition and the methane generation constant is the default for dry temperate.

Total municipal solid waste (MSW_T)

Data on total MSW production and annual per capita production are available for the period 1996-2016 from the National Statistical Service. The data for the period 1990-1995 was obtained using the linear trend equation of 1996-2008 that was obtained from plotting the annual per capita production against time as shown in Figure 7.5. The years 2009 to 2016 were excluded from the trend, because during those years there are considerable changes in (a) the economy of the country and (b) the waste management practices of the country, which resulted in a decrease of the waste production. The total municipal solid waste production (MSW_T) was then estimated by multiplying the annual per capita production by the total population at the end of the year.

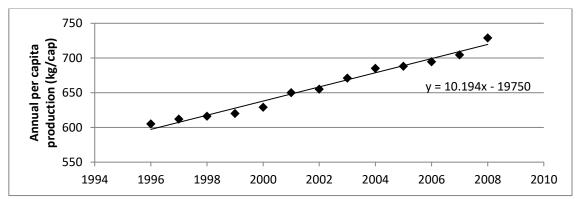


Figure 7.5. Plot used to estimate the annual per capita production for 1990-1995 (kg/cap)

The total population used, the annual per capita production and the resulting municipal solid waste production for the whole reporting period are presented in Table 7.5. Population data is according to national statistics published annually by the Statistical Service⁷⁰.

The population reported by the Statistical Service and used for the purposes of the GHG inventory of Cyprus is the population for the areas under the effective control of the Republic of Cyprus⁷¹. The reduction in population during the period 2012–2015 has been caused by negative net migration due to the economic crisis experienced during that period.

Table 7.5. Total population, annual per capita production (kg/cap), total MSW production (1000t)

(10000)			
	Total population	Annual per capita production (kg/cap)	Total MSW production (1000t)
1990	587100	536.1	314.7
1991	603100	546.3	329.4
1992	619200	556.4	344.6
1993	632900	566.6	358.6

⁷⁰ The 2017 publication, which includes data for the years 1996-2016 is available at http://www.mof.gov.cy/mof/cystat/statistics.nsf/All/ACC6EE0E5A63FE79C225703C001EC792/\$file/POP-DISTRICT-A96_16-EN-281117.xls?OpenElement; contact person for population statistics at the Statistical Service is Loukia Makri, +357 22602150,

lmakri@cystat.mof.gov.cy

⁷¹ http://www.mof.gov.cy/mof/cystat/statistics.nsf/All/4756DB2E6CAEB256C22581E200378EA0?OpenDocument&sub=1&sel=1&e=&print

1994	645400	576.8	372.3
1995	656300	587.0	385.3
1996	666300	605.0	400.1
1997	675200	612.0	410.5
1998	682900	616.0	418.2
1999	690500	620.0	425.8
2000	697500	629.0	436.1
2001	705500	650.0	456.1
2002	713700	655.0	464.6
2003	722900	671.0	481.4
2004	733000	685.0	498.1
2005	744000	688.0	507.9
2006	757900	694	522.2
2007	776400	704	539.8
2008	796900	729	573.4
2009	819100	730	589.1
2010	839800	696	589.77
2011	862000	694	588.84
2012	865900	681	588.33
2013	858000	635	546.97
2014	847000	618	527.39
2015	848300	640	539.75
2016	854800	651	552.94
2017	864200	641	551.39
2018	875900	661	575.63
2019	888000	665	585.73
2020	896000	625	557.73
2021	904705	650	585.24
2022	920211	673	614.62
2023	933505	674	625.08

Determining Historical Waste per Capita Data

Please refer to Annex 3.2 for the methodology used to estimate Historical Waste per Capita Data.

Fraction of MSW disposed at SWDS (MSW_F)

Data on MSW disposed at SWDS is available for the period 1996–2019 from the National Statistical Service 72 . For the period 1990–1995 it was assumed that the fraction of waste disposed to SWDS is the same as 1996. The MSW_F and the corresponding mass of MSW disposed to disposal sites are presented in Table 7.6. In Table 7.6 data on other waste management practices are also presented for years that data is available. MSW to disposal sites for 1950–1989 is assumed 100%.

Table 7.6. Fraction of MSW disposed at SWDS (MSW_F), mass of MSW disposed to disposal sites (1000t) and other practices

	Composting	Recycling	MSW to disposal sites	MSW to disposal
	(1000t)*	(1000t)	(1000t)	sites
1990			305.97	97.2%
1991			320.29	97.2%
1992			334.98	97.2%
1993			348.66	97.2%
1994			361.94	97.2%
1995			387.00	97.2%
1996		11.12	389.00	97.2%
1997	_	12.54	398.00	96.9%

⁷² The 2017 publication, which includes data for the years 1996-2016 is available at http://www.cystat.gov.cy/mof/cystat/stati stics.nsf/energy_environment_82main_gr/energy_environment_82m

	Composting	Recycling	MSW to disposal sites	MSW to disposal
	(1000t)*	(1000t)	(1000t)	sites
1998		12.17	406.00	97.1%
1999		12.76	413.00	97.0%
2000		13.11	423.00	97.0%
2001		14.1	442.00	96.9%
2002		14.61	450.00	96.9%
2003		14.73	466.63	96.9%
2004		16.48	481.59	96.7%
2005		18.61	489.30	96.3%
2006		21.50	499.49	95.9%
2007		27.59	512.19	94.9%
2008		42.09	530.59	92.7%
2009		49.39	539.67	91.6%
2010	26.31	63.72	497.86	84.4%
2011	47.92	74.98	475.91	80.8%
2012	57.77	72.20	467.48	79.5%
2013	49.10	72.10	434.49	79.4%
2014	58.79	72.38	398.67	75.6%
2015	64.05	75.14	409.99	76.0%
2016	64.83	80.43	424.44	76.8%
2017	58.75	82.97	423.16	76.7%
2018	73.89	82.99	392.86	68.2%
2019	91.06	100.03	379.39	64.8%
2020	86.41	93.70	364.14	65.3%
2021	90.21	95.62	354.30	60.5%
2022	93.34	97.41	363.34	59.1%
2023	96.33	95.73	381.05	61.0%

^{*} includes Compost for backfilling

Assumptions for allocation have been based on the information provided by the Solid Waste Management Unit of the Department of Environment⁷³, presented below (Table 7.7). Managed-semi-aerobic is not used in Cyprus. The categorisation is based on the disposal of the waste according to their origin; i.e. urban or rural. Based on this categorisation, the amount of waste disposed per type of disposal site was estimated using the urban and rural population of each district at the end of the year (Table 7.8) and the waste generation per capita (Table 7.5). The resulting amount of waste generated per district and type of waste disposal site are presented in Table 7.9. The resulting total quantities of municipal solid waste disposed per type of waste disposal site and the population served per technology are presented in Table 7.10. Managed-semi-aerobic is not used in Cyprus and therefore not included in the table.

Table 7.7. Allocation of waste to types waste disposal sites

	Deep unmanaged	Shallow unmanaged	Managed-anaerobic
Nicosia	all urban until 2011; all from 2012 to 2018	all rural until 2011	all from 2019
Ammochostos	all urban until 2009	all rural until 2009	all from 2010
Larnaca	all urban until 2009	all rural until 2009	all from 2010
Limassol	all urban until 2011; all from 2012 to 2017	all rural until 2011	all from 2018
Pafos	all urban until 2005	all rural until 2005	all from 2006

Table 7.8. Urban and Rural population of Cyprus per district at the end of the year (1000s)

	F-F		- 3 1				- 0 (,
	1990	1991	1992	1993	1994	1995	1996	1997
Regional Population								
Nicosia	238.6	244.9	251.3	256.3	260.8	264.6	268	271
Ammochostos	30.3	31.0	31.7	32.7	33.6	34.4	35.1	35.8
Larnaca	98.0	100.8	103.5	105.8	107.8	109.6	111.2	112.6

⁷³ Mrs. Elena Christodoulidou, Environment Officer, Solid Waste Management Unit, Department of Environment, tel. +357 22866248, email echristodoulidou@environment.moa.gov.cy

	2014	2015	2016	2017	2018	2019		Ì
TOTAL	241.1	248.3	256.1	264.5	272.6	281.2	283.8	281.3
Pafos	22.7	23.5	24.3	25.2	26.1	26.9	27.1	26.9
Limassol	46.6	48.3	50.3	52.4	54.4	56.7	57.8	57.3
Larnaca	50.8	52.4	54.2	56.1	58.0	59.9	60.5	60
Ammochostos	41.6	42.7	43.8	45.1	46.3	47.6	47.9	47.4
Nicosia	79.4	81.4	83.5	85.7	87.8	90.1	90.5	89.7

	2014	2015	2016	2017	2018	2019	
Regional Population							
Nicosia	329.5	330	332.2	335.9	341.7	346.4	
Ammochostos	46.8	46.9	47	47.5	48.2	48.9	
Larnaca	144	144.2	144.9	146.5	147.0	149.0	
Limassol	236.6	237	239.4	242.0	244.9	248.3	
Pafos	90.1	90.2	91.3	92.3	94.1	95.4	
TOTAL	847	848.3	854.8	864.2	875.9	888.0	
Urban Population							
Nicosia	241	241.4	244.2	246.9	252.9	256.4	
Ammochostos	0	0	0	0	0	0.0	
Larnaca	84.8	84.9	85.7	86.6	87.0	88.2	
Limassol	180	180.3	182.6	184.6	187.0	189.6	
Pafos	63.5	63.6	64.4	65.1	66.9	67.8	
TOTAL	569.3	570.2	576.9	583.2	593.8	602.0	
Rural population							
Nicosia	88.5	88.6	88	89.0	88.8	90.0	
Ammochostos	46.8	46.9	47	47.5	48.2	48.9	
Larnaca	59.2	59.3	59.2	59.9	60.0	60.8	
Limassol	56.6	56.7	56.8	57.4	57.9	58.7	
Pafos	26.6	26.6	26.9	27.2	27.2	27.6	
TOTAL	277.7	278.1	277.9	281.0	282.1	286.0	

Table 7.9. Amount of waste generated per district and type of waste disposal site (kt)

	1990	1991	1992	1993	1994	1995	1996	1997
Nicosia								
deep unmanaged	89.4	94.0	98.7	102.7	106.5	110.1	115.1	117.6
shallow unmanaged	34.9	36.1	37.2	38.5	39.8	40.9	42.5	43.2
managed-anaerobic	0	0	0	0	0	0	0	0
Ammochostos								
deep unmanaged	0	0	0	0	0	0	0	0
shallow unmanaged	15.8	16.5	17.1	18.0	18.8	19.6	20.6	21.2
managed-anaerobic	0	0	0	0	0	0	0	0
Larnaca								
deep unmanaged	30.4	32.1	33.9	35.3	36.7	38.0	39.8	40.7
shallow unmanaged	20.7	21.4	22.1	23.0	23.8	24.5	25.6	26.1
managed-anaerobic	0	0	0	0	0	0	0	0
Limassol								
deep unmanaged	68.1	71.9	75.9	79.1	82.2	85.2	89.2	91.3
shallow unmanaged	19.9	20.3	20.7	21.4	22.0	22.6	23.4	23.8
managed-anaerobic	0	0	0	0	0	0	0	0
Pafos								
deep unmanaged	15.7	16.9	18.1	19.3	20.5	21.7	23.4	24.4
shallow unmanaged	11.1	11.2	11.1	11.4	11.7	11.9	12.2	12.3
managed-anaerobic	0	0	0	0	0	0	0	0
	1998	1999	2000	2001	2002	2003	2004	2005
Nicosia								
deep unmanaged	119.7	121.7	124.5	129.9	132.5	136.8	140.9	142.8
shallow unmanaged	43.8	44.2	45.0	46.7	47.3	49.4	50.9	51.8
managed-anaerobic	0	0	0	0	0	0	0	0

Ammochostos							1	
1 1	0	0	0	0	0	0	0	0
deep unmanaged	0	0	0	0	0	25.0	0	0
shallow unmanaged	21.8	22.3	23.1	24.3	24.8	25.8	26.6	27.0
managed-anaerobic	0	0	0	0	0	0	0	0
Larnaca	41.6	10.2	12.4	45.4	46.4	47.0	40.2	50 O
deep unmanaged	41.6	42.3	43.4	45.4	46.4	47.8	49.3	50.0
shallow unmanaged	26.6	26.9	27.5	28.7	29.2	30.8	32.1	32.7
managed-anaerobic Limassol	0	0	0	0	0	0	0	0
	02.1	04.7	07.1	101.5	1040	106.1	100.0	100.0
deep unmanaged	93.1	94.7	97.1	101.5	104.0	106.1	108.8	109.8
shallow unmanaged	24.0	24.2	24.6	25.4	25.8	27.7	29.0	29.9
managed-anaerobic	0	0	0	0	0	0	0	0
Pafos	25.5	26.6	27.0	20.9	20.6	22.2	22.6	24.5
deep unmanaged	25.5	26.6	27.9	29.8	30.6	32.2	33.6	34.5
shallow unmanaged	12.3	12.3	12.4	12.8	12.9	13.7	14.3	14.6
managed-anaerobic	0	0	0	0	0	0	0	0
	2006	2007	2008	2009	2010	2011	2012	2013
Nicosia	2000	2007	2000	2007	2010	#U11	2012	2013
deep unmanaged	145.4	149.4	154.5	157.1	144.4	137.8	182.2	168.3
shallow unmanaged	52.7	54.4	56.3	57.3	52.8	50.5	0	0
managed-anaerobic	0	0	0	0	0	0	0	0
Ammochostos				-	-	-		
deep unmanaged	0	0	0	0	0	0	0	0
shallow unmanaged	27.6	28.5	29.5	30.2	0	0	0	0
managed-anaerobic	0	0	0	0	27.8	26.7	25.9	23.9
Larnaca				-				
deep unmanaged	50.8	52.4	54.2	55.1	0	0	0	0
shallow unmanaged	33.7	35.0	36.6	37.5	0	0	0	0
managed-anaerobic	0	0	0	0	85.6	82.0	79.6	73.6
Limassol		_	_	-				
deep unmanaged	111.3	114.0	117.4	118.9	108.9	103.5	130.8	120.9
shallow unmanaged	30.9	32.3	33.9	35.0	32.7	31.8	0	0
2	1		0		0	0	0	0
managed-anaerobic	0	0		0		0	U	U
managed-anaerobic Pafos	0	0	Ü	0	Ü	0	U	0
	0	0	0	0	0	0	0	0
Pafos deep unmanaged	0	0	0	0	0	0	0	
Pafos		0	_	-		-	-	0
Pafos deep unmanaged shallow unmanaged	0 0	0	0	0	0	0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic	0 0	0	0	0	0	0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia	0 0 50.6 2014	0 0 52.6 2015	0 0 55.0 2016	0 0 56.6 2017	0 0 52.7 2018	0 0 50.9	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged	0 0 50.6 2014	0 0 52.6 2015	0 0 55.0 2016 165.9	0 0 56.6 2017 165.3	0 0 52.7 2018	0 0 50.9 2019	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged	0 0 50.6 2014 153.9	0 0 52.6 2015 160.5	0 0 55.0 2016 165.9	0 0 56.6 2017 165.3	0 0 52.7 2018 154.0 0	0 0 50.9 2019 0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic	0 0 50.6 2014	0 0 52.6 2015	0 0 55.0 2016 165.9	0 0 56.6 2017 165.3	0 0 52.7 2018	0 0 50.9 2019	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos	0 0 50.6 2014 153.9 0	0 0 52.6 2015 160.5 0	0 0 55.0 2016 165.9	0 0 56.6 2017 165.3 0	0 0 52.7 2018 154.0 0	0 0 50.9 2019 0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged	0 0 50.6 2014 153.9	0 0 52.6 2015 160.5 0	0 0 55.0 2016 165.9 0 0	0 0 56.6 2017 165.3	0 0 52.7 2018 154.0 0 0	0 0 50.9 2019 0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged	0 0 50.6 2014 153.9 0 0	0 0 52.6 2015 160.5 0 0	0 0 55.0 2016 165.9 0 0	0 0 56.6 2017 165.3 0 0	0 0 52.7 2018 154.0 0 0	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged managed-anaerobic	0 0 50.6 2014 153.9 0 0	0 0 52.6 2015 160.5 0	0 0 55.0 2016 165.9 0 0	0 0 56.6 2017 165.3 0 0	0 0 52.7 2018 154.0 0 0	0 0 50.9 2019 0	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged Larnaca	0 0 50.6 2014 153.9 0 0 0 21.9	0 0 52.6 2015 160.5 0 0 0 22.8	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4	0 0 52.7 2018 154.0 0 0 0 21.7	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged Larnaca deep unmanaged	0 0 50.6 2014 153.9 0 0 0 21.9	0 0 52.6 2015 160.5 0 0 0 22.8	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4	0 0 52.7 2018 154.0 0 0 0 21.7	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged canaerobic Larnaca deep unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged	0 0 50.6 2014 153.9 0 0 0 21.9	0 0 52.6 2015 160.5 0 0 0 22.8	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4	0 0 52.7 2018 154.0 0 0 0 21.7	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged managed-anaerobic	0 0 50.6 2014 153.9 0 0 0 21.9	0 0 52.6 2015 160.5 0 0 0 22.8	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4	0 0 52.7 2018 154.0 0 0 0 21.7	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged managed-anaerobic Limassol	0 0 50.6 2014 153.9 0 0 0 21.9 0 67.3	0 0 52.6 2015 160.5 0 0 22.8	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4	0 0 52.7 2018 154.0 0 0 21.7 0 66.3	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged canaerobic Larnaca deep unmanaged shallow unmanaged managed-anaerobic Limassol deep unmanaged	0 0 50.6 2014 153.9 0 0 0 21.9 0 67.3	0 0 52.6 2015 160.5 0 0 22.8 0 70.1	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4 0 72.1	0 0 52.7 2018 154.0 0 0 0 21.7 0 66.3	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged	0 0 50.6 2014 153.9 0 0 0 21.9 0 67.3	0 0 52.6 2015 160.5 0 0 0 22.8 0 70.1	0 0 55.0 2016 165.9 0 0 0 23.5 0 0 72.4 119.6 0	0 0 56.6 2017 165.3 0 0 0 23.4 0 72.1 119.1 0	0 0 52.7 2018 154.0 0 0 0 21.7 0 66.3	0 0 50.9 2019 0 0 149.2 21.1	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged shallow unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged shallow unmanaged managed-anaerobic Limassol deep unmanaged shallow unmanaged managed-anaerobic	0 0 50.6 2014 153.9 0 0 0 21.9 0 67.3	0 0 52.6 2015 160.5 0 0 22.8 0 70.1	0 0 55.0 2016 165.9 0 0 0 23.5	0 0 56.6 2017 165.3 0 0 0 23.4 0 72.1	0 0 52.7 2018 154.0 0 0 0 21.7 0 66.3	0 0 50.9 2019 0 0 149.2	0	0
Pafos deep unmanaged shallow unmanaged managed-anaerobic Nicosia deep unmanaged shallow unmanaged managed-anaerobic Ammochostos deep unmanaged shallow unmanaged shallow unmanaged managed-anaerobic Larnaca deep unmanaged shallow unmanaged	0 0 50.6 2014 153.9 0 0 0 21.9 0 67.3	0 0 52.6 2015 160.5 0 0 0 22.8 0 70.1	0 0 55.0 2016 165.9 0 0 0 23.5 0 0 72.4 119.6 0	0 0 56.6 2017 165.3 0 0 0 23.4 0 72.1 119.1 0	0 0 52.7 2018 154.0 0 0 0 21.7 0 66.3	0 0 50.9 2019 0 0 149.2 21.1	0	0

shallow unmanaged	0	0	0	0	0		
managed-anaerobic	42.1	43.9	45.6	45.4	42.4	41.1	

Table 7.10. Allocation of population and waste to types waste disposal sites

able 7.10. Allocation of po	•			1				1
	1990	1991	1992	1993	1994	1995	1996	1997
Population (10 ⁶)								
Un-managed, deep	0.391	0.405	0.419	0.429	0.439	0.447	0.455	0.462
Un-managed, shallow	0.196	0.198	0.200	0.204	0.207	0.209	0.212	0.213
Managed, anaerobic	0	0	0	0	0	0	0	0
TOTAL	0.587	0.603	0.619	0.633	0.645	0.656	0.666	0.675
Waste production (Gg)								
Un-managed, deep	203.6	214.9	226.6	236.4	245.9	255.1	267.4	274.0
Un-managed, shallow	102.4	105.4	108.4	112.3	116.0	119.5	124.5	126.6
Managed, anaerobic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	306.0	320.3	335.0	348.7	361.9	374.6	391.9	400.6
	1998	1999	2000	2001	2002	2003	2004	2005
Population (10 ⁶)								
Un-managed, deep	0.468	0.474	0.480	0.487	0.494	0.496	0.502	0.509
Un-managed, shallow	0.215	0.216	0.217	0.219	0.221	0.227	0.231	0.236
Managed, anaerobic	0	0	0	0	0	0	0	0
TOTAL	0.683	0.691	0.698	0.706	0.715	0.723	0.733	0.744
Waste production (Gg)								
Un-managed, deep	280.0	285.3	292.9	306.6	313.6	322.9	332.6	337.0
Un-managed, shallow	128.5	130.0	132.6	137.8	140.1	147.3	152.9	156.1
Managed, anaerobic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	408.4	415.3	425.5	444.4	453.7	470.2	485.5	493.1
	2006	2007	2008	2009	2010	2011	2012	2013
Population (10 ⁶)								
Un-managed, deep	0.463	0.473	0.484	0.495	0.421	0.431	0.579	0.574
Un-managed, shallow	0.218	0.225	0.232	0.239	0.142	0.147	0	0
Managed, anaerobic	0.076	0.079	0.082	0.085	0.276	0.285	0.287	0.285
TOTAL	0.758	0.776	0.797	0.819	0.840	0.862	0.866	0.858
Waste production (Gg)								
Un-managed, deep	307.6	315.8	326.1	331.1	253.3	241.3	313.0	289.2
Un-managed, shallow	145.0	150.2	156.4	160.0	85.5	82.3	0.0	0.0
Managed, anaerobic	50.6	52.6	55.0	56.6	166.1	159.6	155.3	143.5
TOTAL	503.1	518.6	537.5	547.8	504.9	483.1	468.3	432.7
	2014	2015	2016	2017	2018	2019	2020	2021
Population (10 ⁶)								
Un-managed, deep	0.566	0.567	0.572	0.578	0.342	0	0	0
Un-managed, shallow	0	0	0	0	0	0	0	0
Managed, anaerobic	0.281	0.281	0.283	0.286	0.534	0.888	0.896	0.905
TOTAL	0.847	0.848	0.855	0.864	0.876	0.888	0.896	0.905
Waste production (Gg)								
Un-managed, deep	264.5	275.7	285.5	284.2	154.1	0.0	0.0	0.0
Un-managed, shallow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Managed, anaerobic	131.2	136.8	141.5	140.8	241.0	382.5	365.7	356.0
TOTAL	395.7	412.5	427.0	425.1	395.1	382.5	365.7	356.0
	2022	2023						
Population (10 ⁶)								
Un-managed, deep	0	0						
Un-managed, shallow	0	0						
Managed, anaerobic	0.920	0.934						
TOTAL	0.920	0.934						

Waste production					
<u>(Gg)</u>					
Un-managed, deep	0.0	0			
Un-managed, shallow	0.0	0			
Managed, anaerobic	366.3	383.6			
TOTAL	366.3	383.6			

Composition of MSW disposed at SWDS

In previous inventories, the breakdown on composition of MSW to disposal sites was based on evaluations that took place years ago, hence not reflecting the implementation of the latest years' waste policy in Cyprus. In this report, an assumption of constant waste composition for the years 2005–2021 was reported based on the 2020 review. A new study is expected to take place this year to reflect on the implementation of waste policy in Cyprus and to provide more accurate results on composition of MSW to disposal sites.

Table 7.11. Composition of MSW disposed at SWDS

Paper	able 7.1	1. Composition	of MSW d	isposed at	SWDS		
1991 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1992 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1993 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1994 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1995 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.34% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.44% 2.32% 6.43% 18.68% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.76% 2002 <th< th=""><th></th><th>Paper</th><th>Textiles</th><th>Wood</th><th>Food waste</th><th>Garden</th><th>Plastics, other inert</th></th<>		Paper	Textiles	Wood	Food waste	Garden	Plastics, other inert
1992 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1993 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1994 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1995 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.43% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.70% 2002 38.1% 6.32% 27.42% 2.33% 6.43% 18.70% 2003	1990	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1993 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1994 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1995 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.43% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.43% 2.33% 6.43% 18.71% 2004 38.75% 6.31% 27.43% 2.33% 6.42% 18.75% 2005 <th< th=""><th>1991</th><td>38.58%</td><td>6.28%</td><td>27.58%</td><td>2.31%</td><td>6.39%</td><td>18.86%</td></th<>	1991	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1994 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1995 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.43% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.44% 2.33% 6.42% 18.73% 2004 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 <th< th=""><th>1992</th><td>38.58%</td><td>6.28%</td><td>27.58%</td><td>2.31%</td><td>6.39%</td><td>18.86%</td></th<>	1992	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1995 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.34% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 <th< th=""><th>1993</th><td>38.58%</td><td>6.28%</td><td>27.58%</td><td>2.31%</td><td>6.39%</td><td>18.86%</td></th<>	1993	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1996 38.58% 6.28% 27.58% 2.31% 6.39% 18.86% 1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.43% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 <th< th=""><th>1994</th><td>38.58%</td><td>6.28%</td><td>27.58%</td><td>2.31%</td><td>6.39%</td><td>18.86%</td></th<>	1994	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1997 38.80% 6.32% 27.62% 2.32% 6.43% 18.52% 1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.34% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.70% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 <th< th=""><th>1995</th><th>38.58%</th><th>6.28%</th><th>27.58%</th><th>2.31%</th><th>6.39%</th><th>18.86%</th></th<>	1995	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.34% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.70% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 <th< th=""><th>1996</th><td>38.58%</td><td>6.28%</td><td>27.58%</td><td>2.31%</td><td>6.39%</td><td>18.86%</td></th<>	1996	38.58%	6.28%	27.58%	2.31%	6.39%	18.86%
1998 38.68% 6.30% 27.41% 2.31% 6.41% 18.89% 1999 38.75% 6.31% 27.43% 2.32% 6.42% 18.77% 2000 38.76% 6.31% 27.34% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.70% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 <th< th=""><th>1997</th><td>38.80%</td><td>6.32%</td><td>27.62%</td><td>2.32%</td><td>6.43%</td><td>18.52%</td></th<>	1997	38.80%	6.32%	27.62%	2.32%	6.43%	18.52%
2000 38.76% 6.31% 27.34% 2.32% 6.42% 18.85% 2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.42% 18.73% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.75% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 <th< th=""><th>1998</th><td></td><td>6.30%</td><td>27.41%</td><td>2.31%</td><td>6.41%</td><td>18.89%</td></th<>	1998		6.30%	27.41%	2.31%	6.41%	18.89%
2001 38.82% 6.32% 27.42% 2.32% 6.43% 18.68% 2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.43% 2.33% 6.42% 18.73% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 <th< th=""><th>1999</th><td>38.75%</td><td>6.31%</td><td>27.43%</td><td>2.32%</td><td>6.42%</td><td>18.77%</td></th<>	1999	38.75%	6.31%	27.43%	2.32%	6.42%	18.77%
2002 38.81% 6.32% 27.42% 2.32% 6.43% 18.70% 2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.44% 2.33% 6.42% 18.73% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 <th< th=""><th>2000</th><td>38.76%</td><td>6.31%</td><td>27.34%</td><td>2.32%</td><td>6.42%</td><td>18.85%</td></th<>	2000	38.76%	6.31%	27.34%	2.32%	6.42%	18.85%
2003 38.79% 6.31% 27.43% 2.33% 6.43% 18.71% 2004 38.77% 6.31% 27.43% 2.33% 6.42% 18.73% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 <th< th=""><th>2001</th><th>38.82%</th><th>6.32%</th><th>27.42%</th><th>2.32%</th><th>6.43%</th><th>18.68%</th></th<>	2001	38.82%	6.32%	27.42%	2.32%	6.43%	18.68%
2004 38.77% 6.31% 27.43% 2.33% 6.42% 18.73% 2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 <th< th=""><th>2002</th><td>38.81%</td><td>6.32%</td><td>27.42%</td><td>2.32%</td><td>6.43%</td><td>18.70%</td></th<>	2002	38.81%	6.32%	27.42%	2.32%	6.43%	18.70%
2005 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 <th< th=""><th>2003</th><td>38.79%</td><td>6.31%</td><td>27.43%</td><td>2.33%</td><td>6.43%</td><td>18.71%</td></th<>	2003	38.79%	6.31%	27.43%	2.33%	6.43%	18.71%
2006 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 <th< th=""><th>2004</th><td>38.77%</td><td>6.31%</td><td>27.43%</td><td>2.33%</td><td>6.42%</td><td>18.73%</td></th<>	2004	38.77%	6.31%	27.43%	2.33%	6.42%	18.73%
2007 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 <th< th=""><th>2005</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2005	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2008 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 <th< th=""><th>2006</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2006	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2009 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 <th< th=""><th>2007</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2007	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2010 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 <th< th=""><th>2008</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2008	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2011 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 <th< th=""><th>2009</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2009	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2012 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 <th< th=""><th>2010</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2010	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2013 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 <th< th=""><th>2011</th><td>38.75%</td><td>6.31%</td><td>27.44%</td><td>2.33%</td><td>6.42%</td><td>18.75%</td></th<>	2011	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2014 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2012	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2015 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2013	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2016 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2014	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2017 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2015	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2018 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2016	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2019 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2017	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2020 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2018	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2021 38.75% 6.31% 27.44% 2.33% 6.42% 18.75% 2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2019	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2022 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2020	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
	2021	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
2023 38.75% 6.31% 27.44% 2.33% 6.42% 18.75%	2022	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%
	2023	38.75%	6.31%	27.44%	2.33%	6.42%	18.75%

Total non-municipal solid waste

In addition to the municipal solid waste production data presented above, data has been obtained for the following additional solid waste categories: Animal and vegetal wastes, paper and cardboard wastes, Wood wastes, Textile wastes and Industrial effluent sludges. Data was obtained from the National

Statistical Service⁷⁴. The Statistical Service has collected the data for the purposes of compliance with Regulation (EC) No 2150/2002 of 25 November 2002 on waste statistics, by the application of the methodologies presented in the relevant manuals published by EUROSTAT⁷⁵.

The available data for the pre-mentioned categories is presented in Table 7.12.

Table 7.12. Total waste disposal – landfilled for non-municipal solid waste (in tonnes)

Category	2010	2012	2014	2016	2018	2020	2022	2023
Industrial								
effluent								
sludges	299	177	539	672	211	0	0	0
Wood wastes	17481	10589	8769	5415	4426	0	0	0
Textile wastes	:	14	13	13	12	0	0	0
Animal and								
vegetal wastes	201439	17941	11913	10434	9613	5476	3229	1933

The first reference year for which data for Generation and Treatment of Waste is available is 2004, in accordance with the provisions of the Waste Statistics Regulation (EC) No 2150/2002. No data are available for Cyprus before 2004. The methodology applied may differ between years, due to the amendment of the Regulation (data 2010 and onwards), and moreover due to improved methods of reporting waste following Eurostat's recommendations. Data revisions were applied from 2012 onwards.

An estimation of the activity data for the years 2013, 2015, 2017 and 2019 was made by obtaining the average of the years before and after; i.e. 2012 and 2014; 2014 and 2016; 2016 and 2018; 2018 and 2020 respectively.

The annual change of the Gross Domestic Product at Constant market prices of 2005 to estimate activity data for 2023.

To estimate the activity data for the years prior to 2012, going back to the year 1950 (see Annex 3.2), the annual change of the Gross Domestic Product at Constant market prices of 2005 was used, as published by the Statistical Service in the Statistical Abstract⁷⁶ (Table 7.13 for the period 1990–2011).

Table 7.13. Gross Domestic Product (GDP) at Constant market prices of 2005 (1990–2011)

1 abic 7.13. G105	5 Domesia	crioduct	(ODI) at v	constant n	nai ket pi i	ccs of 200c	, (1770—20	11 <i>)</i>
	1990	1991	1992	1993	1994	1995	1996	1997
GDP (€mn)	7650	7704	8428	8487	8988	10191	10355	10603
Annual change		0.7%	9.4%	0.7%	5.9%	13.4%	1.6%	2.4%
	1998	1999	2000	2001	2002	2003	2004	2005
GDP (€mn)	11139	11663	12330	12773	13186	13556	14180	14731
Annual change	5.1%	4.7%	5.7%	3.6%	3.2%	2.8%	4.6%	3.9%
	2006	2007	2008	2009	2010	2011		
GDP (€mn)	15397	16156	16747	16407	16631	16698		
Annual change	4.5%	4.9%	3.7%	-2.0%	1.4%	0.4%		

The resulting waste production per waste stream obtained from the application of the assumptions and methods presented above is presented in Table 7.14 for the complete time series.

Table 7.14. Solid waste production per waste stream 1990–2023 (in tonnes)

	1990	1991	1992	1993	1994	1995	1996	1997
Industrial effluent sludges	64	64	71	72	76	104	105	108
Wood wastes	3831	3858	4259	4289	4558	6217	6296	6466

⁷⁴ Ms. Marilena Kythreotou, Statistical Officer A', tel. +357 22 602317, mkythreotou@cystat.mof.gov.cy

 $\frac{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat.gov.cy/mof/cystat/statistics.nsf/All/9707F78B64756B8AC225809700377869/\$file/ABSTRACT-2014-EN-281215.pdf?OpenElement}{\text{http://www.cystat/statistics.nsf/All/9707F78B64756B8AC225809}{\text{http://www.cystat/statistics.nsf/All/9707F78B64756B8AC225809}{\text{http://www.cystat/statistics.nsf/All/9707F78B64756B8AC225809}{\text{http://www.cystat/statistics.nsf/All/9707F78B64756B8AC225809}{\text{htt$

⁷⁵ Manual on waste statistics, available at http://ec.europa.eu/eurostat/product?code=KS-RA-13-015&language=en; Waste generation and treatment (ESMS metadata file — env_wasgt_esms), available at http://ec.europa.eu/eurostat/cache/metadata/en/env_wasgt_esms.htm

⁷⁶ Available at

Textile wastes	5	5	6	6	6	8	8	9
Animal and vegetal wastes	6491	6537	7216	7267	7722	10534	10667	10956
	1998	1999	2000	2001	2002	2003	2004	2005
Industrial effluent sludges	115	121	129	134	139	143	151	158
Wood wastes	6887	7250	7710	8027	8337	8562	9015	9475
Textile wastes	9	10	10	11	11	11	12	13
Animal and vegetal wastes	11669	12283	13062	13600	14126	14506	15274	16053
	2006	2007	2008	2009	2010	2011	2012	2013
Industrial effluent sludges	166	175	182	178	182	183	177	358
Wood wastes	9943	10478	10874	10659	10908	10954	10589	9679
Textile wastes	13	14	14	14	14	14	14	14
Animal and vegetal wastes	16847	17752	18424	18060	18482	18559	17941	14927
	2014	2015	2016	2017	2018	2019	2020	2021
Industrial effluent sludges	539	605.5	672	442	211	106	0	0
Wood wastes	8769	7092	5415	4921	4426	2213	0	0
Textile wastes	13	13	13	13	12	6	0	0
Animal and vegetal wastes	11913	11173.5	10434	10024	9613	7545	5476	4525
	2022	2023						
Industrial effluent sludges	0.0	0			-		-	
Wood wastes	0.0	0						
Textile wastes	0.0	0						
Animal and vegetal wastes	3229	1933					-	

Reservations and reflections on the methodology applied

- (a) The backcasting of the waste production using a purely economic indicator shows the weakness that it does not represent the changes in the waste management practices that have been occurring after 2004, when Cyprus joined the European Union.
- (b) During the period 1990–2000 Cyprus had considerably higher industrial activity than today, which started decreasing during the late 1990s. During the start of 2000s and especially after Cyprus joined the European Union, the economy of Cyprus focused more on services. These conditions cannot be represented in the backcasting with the GDP applied.

However, given the information available, this is the only methodology that can be applied to complete the series. Attempts will be made to improve the estimation of waste production through the examination of other available data and methods for future submission.

Allocation of waste to types of waste disposal sites

For the allocation of solid waste estimated to different types of waste disposal sites, it was decided to use the Number of Establishments by Economic Activity NACE (Rev. 2) and District for the year 2017, published by the Statistical Service in 2018⁷⁷ (Table 7.15).

_

https://www.mof.gov.cy/mof/cystat/statistics.nsf/All/8E65F57AC6EB3259C22583590036DE1F/\$file/ESTABLISMENTS_NACE2_DISTRICT-2017-041218.pdf?OpenElement

⁷⁷ Available a

Table 7.15. Number of Establishments by Economic Activity NACE (Rev. 2) and District for the year 2017 associated with the production Industrial effluent sludges, Wood wastes, Textile wastes and Animal and vegetal wastes

Number of Establishments by Economic Activity NACE (Rev. 2) and District (2017)	Nicosia	Ammochostos	Larnaca	Limassol	Pafos	TOTAL
WOOD WASTES						
16 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles	264	51	164	297	85	
of straw and plaiting materials						
31091 Manufacture of wooden furniture	80	5	25	29	10	
43321 Installation of non self-manufactured doors, windows, kitchens, frames and the like of wood or	25	6	9	29	9	
other materials						
46731 Wholesale of wood	28	4	8	16	5	
47524 Retail sale of wood	10	2	4	7	2	
TOTAL wood	407	68	210	378	111	1174
contribution of district to total	35%	6%	18%	32%	9%	
TEXTILE WASTES						
13 Manufacture of textiles	52	4	23	22	7	
46161 Agents involved in the sale of textiles, clothing, fur, footwear and leather goods	8	0	4	8	0	
4641 Wholesale of textiles	32	1	7	18	0	
4751 Retail sale of textiles in specialized stores	43	6	19	48	13	
46411 Wholesale of textiles (e.g fabrics, yarn, household linen, sewing thread, etc.)	32	1	7	18	0	
47511 Retail sale of fabrics	13	1	3	15	4	
TOTAL textile	180	13	63	129	24	409
contribution of district to total	44%	3%	15%	32%	6%	
ANIMAL AND VEGETAL WASTES						
014 Animal production	343	70	363	190	110	
0162 Support activities for animal production	2	0	0	2	0	
104 Manufacture of vegetable and animal oils and fats	13	3	10	3	6	
103 Processing and preserving of fruit and vegetables	14	1	8	18	4	
104 Manufacture of vegetable and animal oils and fats	13	3	10	3	6	
105 Manufacture of dairy products	30	7	25	33	9	
10611 Production of flour from cereals and vegetables	4	1	1	2	0	
4631 Wholesale of fruit and vegetables	57	18	39	46	18	
4721 Retail sale of fruit and vegetables in specialized stores	58	8	36	35	10	
0113 Growing of vegetables and melons, roots and tubers	155	387	321	134	117	
TOTAL Animal and vegetal products	689	498	813	466	280	2746
contribution of district to total	25%	18%	30%	17%	10%	
INDUSTRIAL EFFLUENT SLUDGES						
total establishments	39966	6865	16308	30444	11436	105019
contribution of district to total	38%	7%	16%	29%	11%	

Assumptions for allocation have been based on the information provided by the Solid Waste Management Unit of the Department of Environment, which is the same as for municipal solid waste (see Table 7.7). The categorization is based on the disposal of the waste according to their origin; i.e. urban or rural. All waste generated by industrial activities are assumed as urban waste that is transferred to either deep unmanaged of managed-anaerobic sites.

The resulting amount of waste generated per district is presented in Table 7.16, while the total quantities of solid waste disposed per type of waste and waste disposal site are presented in Table 7.17.

Table 7.16. Amount of non-municipal solid waste generated per district (tonnes)

Table 7.10. Amoun	1990	1991	1992	1993	1994	1995	1996	1997
Nicosia	1770	1771	1772	1773	1777	1773	1770	1771
Industrial effluent sludges	24.4	24.5	27.1	27.3	29.0	39.5	40.0	41.1
Wood wastes	1328.2	1337.6	1476.4	1486.9	1580.0	2155.3	2182.6	2241.8
Textile wastes	2.2	2.2	2.5	2.5	2.7	3.6	3.7	3.8
Animal and vegetal wastes	1628.8	1640.3	1810.5	1823.3	1937.5	2643.0	2676.4	2749.0
Ammochostos								
Industrial effluent sludges	4.2	4.2	4.7	4.7	5.0	6.8	6.9	7.1
Wood wastes	221.9	223.5	246.7	248.4	264.0	360.1	364.7	374.5
Textile wastes	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3
Animal and vegetal wastes	1177.3	1185.6	1308.6	1317.9	1400.4	1910.3	1934.5	1986.9
Larnaca								
Industrial effluent sludges	9.9	10.0	11.1	11.1	11.8	16.1	16.3	16.8
Wood wastes	685.3	690.2	761.8	767.2	815.2	1112.1	1126.1	1156.7
Textile wastes	0.8	0.8	0.9	0.9	0.9	1.3	1.3	1.3
Animal and vegetal wastes	1921.9	1935.5	2136.3	2151.4	2286.2	3118.6	3158.1	3243.7
Limassol								
Industrial effluent sludges	18.6	18.7	20.6	20.8	22.1	30.1	30.5	31.3
Wood wastes	1233.6	1242.3	1371.2	1380.9	1467.4	2001.7	2027.0	2082.0
Textile wastes	1.6	1.6	1.8	1.8	1.9	2.6	2.6	2.7
Animal and vegetal wastes	1101.6	1109.4	1224.5	1233.2	1310.4	1787.6	1810.2	1859.3
Dofos								
Pafos	7.0	7.0	7.0	7.0	0.2	11.2	11.5	11.0
Industrial effluent sludges	7.0	7.0	7.8	7.8	8.3	11.3	11.5	11.8
Wood wastes	362.2	364.8	402.7	405.5	430.9	587.8	595.2	611.4
Textile wastes	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.5
Animal and vegetal wastes	661.9	666.6	735.8	741.0	787.4	1074.1	1087.6	1117.2

	1998	1999	2000	2001	2002	2003	2004	2005
Nicosia								
Industrial effluent sludges	43.8	46.1	49.0	51.1	53.0	54.5	57.3	60.3
Wood wastes	2387.7	2513.3	2672.7	2782.7	2890.3	2968.2	3125.3	3284.7
Textile wastes	4.0	4.2	4.5	4.7	4.9	5.0	5.2	5.5
Animal and vegetal wastes	2927.9	3081.9	3277.5	3412.3	3544.3	3639.8	3832.4	4027.9
Ammochostos								
Industrial effluent sludges	7.5	7.9	8.4	8.8	9.1	9.4	9.9	10.4
Wood wastes	398.9	419.9	446.5	464.9	482.9	495.9	522.2	548.8
Textile wastes	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
Animal and vegetal wastes	2116.3	2227.6	2368.9	2466.4	2561.8	2630.8	2770.0	2911.3

Larnaca								
Industrial effluent sludges	17.9	18.8	20.0	20.8	21.6	22.2	23.4	24.6
Wood wastes	1232.0	1296.8	1379.0	1435.8	1491.3	1531.5	1612.5	1694.8
Textile wastes	1.4	1.5	1.6	1.6	1.7	1.7	1.8	1.9
Animal and vegetal wastes	3454.8	3636.6	3867.3	4026.5	4182.1	4294.8	4522.1	4752.8
Limassol								
Industrial effluent sludges	33.4	35.1	37.4	38.9	40.4	41.5	43.7	45.9
Wood wastes	2217.5	2334.2	2482.3	2584.4	2684.4	2756.7	2902.6	3050.6
Textile wastes	2.9	3.0	3.2	3.3	3.5	3.6	3.8	4.0
Animal and vegetal wastes	1980.3	2084.5	2216.7	2307.9	2397.1	2461.7	2592.0	2724.2
Pafos								
Industrial effluent sludges	12.5	13.2	14.0	14.6	15.2	15.6	16.4	17.2
Wood wastes	651.2	685.4	728.9	758.9	788.3	809.5	852.3	895.8
Textile wastes	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7
Animal and vegetal wastes	1189.9	1252.5	1331.9	1386.7	1440.3	1479.2	1557.4	1636.9

	2006	2007	2008	2009	2010	2011	2012	2013
Nicosia								
Industrial effluent sludges	63.3	66.6	69.2	67.8	69.4	69.7	67.4	136.2
Wood wastes	3447.2	3632.3	3769.8	3695.3	3781.7	3797.5	3671.0	3355.5
Textile wastes	5.8	6.1	6.3	6.2	6.3	6.4	6.2	5.9
Animal and vegetal wastes	4227.1	4454.2	4622.8	4531.5	4637.4	4656.8	4501.6	3745.3
Ammochostos								
Industrial effluent sludges	10.9	11.4	11.9	11.6	11.9	12.0	11.6	23.4
Wood wastes	575.9	606.9	629.8	617.4	631.8	634.5	613.3	560.6
Textile wastes	0.4	0.4	0.5	0.4	0.5	0.5	0.4	0.4
Animal and vegetal wastes	3055.3	3219.4	3341.3	3275.3	3351.8	3365.9	3253.7	2707.1
Larnaca	1							
Industrial effluent sludges	25.8	27.2	28.2	27.7	28.3	28.4	27.5	55.6
Wood wastes	1778.6	1874.2	1945.1	1906.7	1951.2	1959.4	1894.1	1731.3
Textile wastes	2.0	2.1	2.2	2.2	2.2	2.2	2.2	2.1
Animal and vegetal wastes	4987.9	5255.8	5454.8	5347.0	5472.0	5494.9	5311.7	4419.4
Limassol								
Industrial effluent sludges	48.2	50.8	52.7	51.7	52.9	53.1	51.3	103.8
Wood wastes	3201.5	3373.5	3501.2	3432.0	3512.2	3526.9	3409.4	3116.4
Textile wastes	4.1	4.4	4.5	4.4	4.5	4.6	4.4	4.3
Animal and vegetal wastes	2859.0	3012.6	3126.6	3064.8	3136.4	3149.6	3044.6	2533.1
Pafos								
Industrial effluent sludges	18.1	19.1	19.8	19.4	19.9	19.9	19.3	39.0
Wood wastes	940.1	990.6	1028.1	1007.8	1031.4	1035.7	1001.2	915.1
Textile wastes	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Animal and vegetal wastes	1717.8	1810.1	1878.6	1841.5	1884.6	1892.4	1829.4	1522.1

	2014	2015	2016	2017	2018	2019	2020	2021
Nicosia								
Industrial effluent sludges	205.1	230.4	255.7	168.0	80.3	40.1	0.0	0.0
Wood wastes	3040.0	2458.6	1877.3	1705.8	1534.4	767.2	0.0	0.0
Textile wastes	5.7	5.7	5.7	5.5	5.3	2.6	0.0	0.0
Animal and vegetal wastes	2989.1	2803.5	2618.0	2515.0	2412.0	1893.0	1374.0	1135.4

								1
Ammochostos								
Industrial effluent sludges	35.2	39.6	43.9	28.9	13.8	6.9	0.0	0.0
Wood wastes	507.9	410.8	313.6	285.0	256.4	128.2	0.0	0.0
Textile wastes	0.4	0.4	0.4	0.4	0.4	0.2	0.0	0.0
Animal and vegetal wastes	2160.5	2026.4	1892.3	1817.8	1743.4	1368.2	993.1	820.7
Larnaca								
Industrial effluent sludges	83.7	94.0	104.4	68.6	32.8	16.4	0.0	0.0
Wood wastes	1568.6	1268.6	968.6	880.2	791.7	395.9	0.0	0.0
Textile wastes	2.0	2.0	2.0	1.9	1.8	0.9	0.0	0.0
Animal and vegetal wastes	3527.0	3308.1	3089.2	2967.6	2846.1	2233.7	1621.3	1339.8
Limassol								
Industrial effluent sludges	156.3	175.5	194.8	128.0	61.2	30.6	0.0	0.0
Wood wastes	2823.4	2283.5	1743.5	1584.3	1425.1	712.5	0.0	0.0
Textile wastes	4.1	4.1	4.1	3.9	3.8	1.9	0.0	0.0
Animal and vegetal wastes	2021.7	1896.2	1770.7	1701.0	1631.3	1280.3	929.3	767.9
miniai and vegetal wastes	2021./	1090.2	1//0./	1/01.0	1031.3	1200.3	149.3	101.7
Pafos								
Industrial effluent sludges	58.7	65.9	73.2	48.1	23.0	11.5	0.0	0.0
Wood wastes	829.1	670.5	512.0	465.2	418.5	209.2	0.0	0.0
Textile wastes	0.8	0.8	0.8	0.7	0.7	0.4	0.0	0.0
Animal and vegetal wastes	1214.7	1139.3	1063.9	1022.1	980.2	769.3	558.4	461.4
	2022	2023						
Nicosia								
Industrial effluent sludges	0.0	0.0						
Wood wastes	0.0	0.0						
Textile wastes	0.0	0.0						
Animal and vegetal wastes	810.3	485.1						
Ammochostos								
Industrial effluent sludges	0.0	0.0						
Wood wastes	0.0	0.0						
Textile wastes	0.0	0.0						
Animal and vegetal wastes	585.6	350.6						
Larnaca								
Industrial effluent sludges	0.0	0.0						
Wood wastes	0.0	0.0						
Textile wastes	0.0	0.0						
Animal and vegetal wastes	956.1	572.4						
Limassol								
Industrial effluent sludges	0.0	0.0						
Wood wastes	0.0	0.0						
Textile wastes	0.0	0.0						
Animal and vegetal wastes	548.0	328.1						
D-6								
Pafos Industrial effluent sludges	0.0	0.0						
Wood wastes	0.0	0.0						
Textile wastes	0.0	0.0						-

0.0

329.3

Textile wastes

Animal and vegetal wastes

0.0

197.1

Table 7.17. Total quantities of solid waste disposed per type of waste and waste disposal site (tonnes)

	1990	1991	1992	1993	1994	1995	1996	1997
Deep unmanaged								
Industrial effluent sludges	64.0	64.5	71.2	71.7	76.2	103.9	105.2	108.1
Wood wastes	3831.3	3858.4	4258.8	4288.9	4557.6	6217.1	6295.6	6466.4
Textile wastes	5.1	5.1	5.6	5.7	6.0	8.2	8.3	8.5
Animal and vegetal wastes	6491.5	6537.3	7215.7	7266.7	7722.0	10533.6	10666.7	10956.1
Managed anaerobic								
Industrial effluent sludges	NO	NO	NO	NO	NO	NO	NO	NO
Wood wastes	NO	NO	NO	NO	NO	NO	NO	NO
Textile wastes	NO	NO	NO	NO	NO	NO	NO	NO
Animal and vegetal wastes	NO	NO	NO	NO	NO	NO	NO	NO

	1998	1999	2000	2001	2002	2003	2004	2005
Deep unmanaged								
Industrial effluent sludges	115.1	121.2	128.9	134.2	139.4	143.1	150.7	158.4
Wood wastes	6887.3	7249.6	7709.5	8026.8	8337.1	8561.8	9014.9	9474.7
Textile wastes	9.1	9.6	10.2	10.6	11.0	11.3	11.9	12.5
Animal and vegetal wastes	11669.1	12283.1	13062.3	13599.8	14125.7	14506.2	15274.0	16053.0
Managed anaerobic								
Industrial effluent sludges	NO							
Wood wastes	NO							
Textile wastes	NO							
Animal and vegetal wastes	NO							

	2006	2007	2008	2009	2010	2011	2012	2013
Deep unmanaged								
Industrial effluent sludges	148.1	156.1	162.0	158.8	122.2	122.8	118.7	240.0
Wood wastes	9003.3	9486.9	9846.0	9651.5	7293.9	7324.5	7080.4	6471.9
Textile wastes	12.4	13.0	13.5	13.3	10.9	10.9	10.6	10.2
Animal and vegetal wastes	15129.3	15942.0	16545.5	16218.5	7773.8	7806.3	7546.2	6278.5
Managed anaerobic								
Industrial effluent sludges	18.1	19.1	19.8	19.4	60.1	60.3	58.3	118.0
Wood wastes	940.1	990.6	1028.1	1007.8	3614.5	3629.6	3508.6	3207.1
Textile wastes	0.8	0.8	0.8	0.8	3.5	3.5	3.4	3.3
Animal and vegetal wastes	1717.8	1810.1	1878.6	1841.5	10708.3	10753.2	10394.8	8648.5

	2014	2015	2016	2017	2018	2019	2020	2021
Deep unmanaged								
Industrial effluent sludges	361.4	406.0	450.5	296.0	141.5	0	0	0
Wood wastes	5863.4	4742.1	3620.8	3290.1	1534.4	0	0	0
Textile wastes	9.8	9.8	9.8	9.4	5.3	0	0	0
Animal and vegetal wastes	5010.7	4699.7	4388.7	4216.0	2412.0	0	0	0
Managed anaerobic								
Industrial effluent sludges	177.6	199.5	221.5	145.5	130.7	105.5	0.0	0.0
Wood wastes	2905.6	2349.9	1794.2	1630.4	2891.6	2213.0	0.0	0.0
Textile wastes	3.2	3.2	3.2	3.1	6.7	6.0	0.0	0.0
Animal and vegetal wastes	6902.3	6473.8	6045.3	5807.5	7201.0	7544.5	5476.0	4525.3

	2022	2023			
Deep unmanaged					
Industrial effluent sludges	0	0			
Wood wastes	0	0			
Textile wastes	0	0			

Animal and vegetal wastes	0	0			
Managed anaerobic					
Industrial effluent sludges	0.0	0.0			
Wood wastes	0.0	0.0			
Textile wastes	0.0	0.0			
Animal and vegetal wastes	3229.3	1933.3			

Estimation of CH₄ from waste disposal on land

For the purpose of estimation of emissions, the default IPCC parameters have been used, assuming that waste streams have the same characteristics as the MSW component and the IPCC waste model excel template. Therefore, the quantities presented in Table 7.17 have been added to the quantities of the MSW in the model.

Degradable organic carbon (DOC) has been estimated using the following equation (equation 3.7, volume 5, pg. 3.13 of IPCC 2006 guidelines using default carbon content values (0.15 for food waste, 0.43 for wood, 0.24 for textiles and 0.05 for Sewage sludge)).

$$DOC = \Sigma_i (DOC_i * W_i)$$

Fraction of degradable organic carbon which decomposes (DOC_F) is assumed as 0.5, which is the default value proposed by the 2006 IPCC guidelines (pg. 3.13, volume 5).

The CH₄ fraction F value used is the default proposed by the IPCC guidelines, i.e. 0.5. The oxidation factors (OX) used are the defaults proposed by the IPCC guidelines (Table 3.2, pg. 3.15, vol. 5, 2006 IPCC guidelines); i.e. 0 for deep unmanaged and 0.1 for managed anaerobic. No methane is recovered from SWDS in Cyprus, therefore recovery (R) is assumed 0.

The defaults used by the IPCC waste model for Methane generation rate constant (k) are according to dry temperate climate; i.e. 0.06 for food waste, 0.02 for wood and straw and 0.04 for textiles.

According to the consultations with the Waste Management Unit of the Department of Environment, and according to the 2006 IPCC Guidelines, all SWDS not meeting the criteria of managed SWDS and which have depth smaller than 5m are classified as unmanaged disposal sites, and are therefore assumed to be shallow. The value for the methane correction factor for shallow unmanaged disposal sites is assumed to be 0.4, per the default from the IPCC 2006 guidelines (pg. 3.14, volume 5). Moreover, all SWDS not meeting the criteria of managed SWDS and which have depth greater than or equal to 5m are classified as unmanaged disposal sites, and assumed to be deep. The value for the methane conversion factor for deep unmanaged disposal sites is assumed to be 0.8, per the default from the IPCC 2006 guidelines (pg. 3.14, volume 5).

Other parameters used for the calculation of methane emissions by the IPCC waste model are Delay time of 6 months; Fraction of methane (F) in developed gas of 0.5; and Conversion factor, for C to CH, of 1.33.

The resulting CH_4 emissions for the <u>total solid waste</u>, including both municipal and non-municipal solid wastes as estimated by the IPCC Waste Model, are presented in Table 7.18.

7.2.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

7.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and

verification activities are applied for this sector.

7.2.4. Category-specific recalculations

There are not any improvements planned for this category.

7.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

7.3. Biological Treatment of Solid Waste (5B)

Composting and anaerobic digestion of organic waste, such as food waste, garden (yard) and park waste and sludge, is common both in developed and developing countries. Advantages of the biological treatment include: reduced volume in the waste material, stabilisation of the waste, destruction of pathogens in the waste material, and production of biogas for energy use. The end products of the biological treatment can, depending on its quality, be recycled as fertiliser and soil amendment, or be disposed in SWDS.

Emissions from biological treatment of solid waste in 2023 accounted for 2.8% of total GHG emissions from Waste sector, and 0.21% of total national emissions without LULUCF. 99.6% of the emissions are from composting (5B1) and 0.4% from anaerobic digestion at biogas facilities (5B2). The emissions from biological treatment of solid waste (5B) are presented in Table 7.18 and Figure 7.7.

Table 7.18. Emissions from biological treatment of solid waste, 1990–2023

	1990	2000	2005	2010	2011	2012	2013
CH ₄ (Gg)	NO	NO	NO	0.11	0.20	0.24	0.20
$N_2O(Gg)$	NO	NO	NO	0.01	0.01	0.01	0.01
Total (Gg CO ₂ eq.)	NO	NO	NO	4.71	8.55	10.35	8.85

	2014	2015	2016	2017	2018	2019	2020
CH ₄ (Gg)	0.24	0.26	0.27	0.27	0.35	0.41	0.39
N_2O (Gg)	0.01	0.02	0.02	0.02	0.02	0.02	0.02
Total (Gg CO ₂ eq.)	10.55	11.48	11.63	11.88	15.11	17.94	17.26

	2021	2022	2023		
CH ₄ (Gg)	0.41	0.43	0.44		
$N_2O(Gg)$	0.02	0.03	0.026		
Total (Gg CO ₂ eq.)	17.89	18.67	19.21		

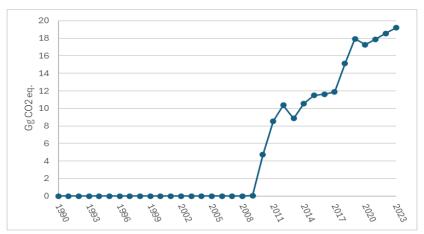


Figure 7.6. Emissions from biological treatment of solid waste 1990–2023

7.3.1. Composting (5B1)

Composting is an aerobic process and a large fraction of the degradable organic carbon (DOC) in the waste material is converted into carbon dioxide (CO_2). CH_4 is formed in anaerobic sections of the compost, but it is oxidised to a large extent in the aerobic sections of the compost. Composting can also produce emissions of N_2O .

7.3.1.1. Methodological issues

The estimation of CH_4 and N_2O emissions from biological treatment of solid waste according to the 2006 IPCC Guidelines (chapter 4, vol. 5) involves the following steps:

Step 1. Activity data

Collect data on the amount and type of solid waste which is treated biologically. The amount of solid waste composted is presented in Table 7.19 and is according to the national statistics on production and management of municipal solid waste. Activity data includes the amount of composting material that is used for backfilling and sludge transported for composting.

Table 7.19. The amount of solid waste composted for the period 2010–2023

	2010	2011	2012	2013	2014	2015
Composting (1000t on a wet weight basis)	0.00	0.00	6.78	7.95	16.03	17.89
Compost from MTB Koshi (1000t on a wet						
weight basis)	26.31	47.92	50.99	41.15	42.76	46.16
Sludge transported for composting (1000t on a						
dry weight basis)						

	2016	2017	2018	2019	2020	2021
Composting (1000t on a wet weight basis)	16.20	7.56	9.30	8.08	5.77	6.87
Compost from MTB Koshi (1000t on a wet						
weight basis)	48.63	51.19	64.59	82.98	80.64	83.35
Sludge transported for composting (1000t on a						
dry weight basis)		3.43	4.71	4.29	4.68	4.55

	2022	2023		
Composting (1000t on a wet weight basis)	10.14	18.51		
Compost from MTB Koshi (1000t on a wet				
weight basis)	83.20	77.82		
Sludge transported for composting (1000t on a				
dry weight basis)	4.80	5.05		

Step 2. Estimation of emissions

The CH_4 and N_2O emissions of composting have been estimated using the default method, i.e. equations 4.1 and 4.2 of the 2006 IPCC guidelines (volume 5, page 4.5). The emission factor for N_2O emissions is assumed to be 0.24 g/kg for wet waste and 0.6 g/kg for dry waste, while the CH_4 emission factor as 4 g/kg wet waste and 10 g/kg for dry waste (IPCC 2006, vol.5, pg. 4.6, table 4.1).

Step 3. Subtraction of recovered gas

According to the guidelines, the amount of recovered gas from the amount of CH₄ generated to estimate net annual CH₄ emissions should be subtracted. No recovery takes place in Cyprus therefore amount of recovered gas is 0.

7.3.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

7.3.1.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

7.3.1.4. Category-specific recalculations

Emissions from composting (5B1) were recalculated for the 2022 due to change of activity data.

The impact of recalculations is presented in the following table.

Table 7.20. Composting (5B1) recalculations

5B1 (Gg CH ₄)	2022			
2024 submission	5.00			
2025 submission	4.81			
change	-3.8%			

7.3.1.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

7.3.2 Anaerobic Digestion at Biogas Facilities (5B2)

Anaerobic digestion of organic waste expedites the natural decomposition of organic material without oxygen by maintaining the temperature, moisture content and pH close to their optimum values. Emissions of CH_4 from such facilities due to unintentional leakages during process disturbances or other unexpected events will generally be between 0 and 10 percent of the amount of CH_4 generated. In the absence of further information, use 5 percent as a default value for the CH_4 emissions. N_2O emissions from the process are assumed to be negligible.

7.3.2.1. Methodological issues

The estimation of CH₄ emissions from biological treatment of solid waste as according to the 2006 IPCC Guidelines (chapter 4, vol. 5) involves the following steps:

Step 1. Activity data

Collect data on the amount of sludge transported for anaerobic treatment for biogas production. The amount of sludge transported for anaerobic treatment for biogas production is presented in Table 7.21 and is according to data provided by the Pollution Control Unit of Department of Environment under the

provisions of the Urban Waste Water Treatment Directive 91/271/EEC.

Table 7.21. The amount of sludge transported for anaerobic treatment for biogas production for the period 2009-2023

the period 2009 2020						
	2009	2010	2011	2012	2013	2014
Sludge transported for anaerobic treatment for						
biogas production (1000t on a dry weight basis)	620	1549	2478	3682	4117	4061

	2015	2016	2017	2018	2019	2020
Sludge transported for anaerobic treatment for						
biogas production (1000t on a dry weight basis)	4221	4380	1044	1281	1192	508

	2021	2022	2023		
Sludge transported for anaerobic treatment for					
biogas production (1000t on a dry weight basis)	866	1110	1301		

Step 2. Estimation of emissions

The CH_4 emissions of anaerobic digestion at biogas facilities have been estimated using the default method, i.e. equations 4.1 and 4.2 of the 2006 IPCC guidelines (volume 5, page 4.5). The emission factor for CH_4 is assumed to be 2 g/kg dry waste (IPCC 2006, vol.5, pg. 4.6, table 4.1). The N_2O emission factor for anaerobic digestion at biogas facilities is assumed as negligible.

7.3.2.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

7.3.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

7.3.2.4. Category-specific recalculations

7.3.2.5. Category-specific planned improvements

Please refer to Annex 7 for the National Inventory Improvement Plan.

7.4. Incineration and Open Burning of Waste (5C)

7.4.1. Incineration of waste (5C1)

According to data from Eurostat, there was an amount of waste for the period 2004-2014 that was incinerated without recovery. Following the recommendation FCCC/ARR/2019/CYP (W14) of the TERT review, Cyprus estimated the emissions from waste incineration without energy recovery for those years based on Eurostat AD, Equation 5.2 (IPCC 2006, vol.5, chap.5, pg. 5.7), Equation 5.4 (IPCC 2006, vol.5, chap.5, pg. 5.12), and Equation 5.5 (IPCC 2006, vol.5, chap.5, pg. 5.14), and default values for parameters related to EF (IPCC 2006, vol.5, chap.5, Table 5.2 and vol. 5, chap.2, Table 2.4). The estimated emissions increased by 0.0019-1.3555 kt CO2 eq., or 0.00002-0.0145 per cent of the national total, which is below the significance threshold of 0.05 per cent of the national total (3.90-4.93 kt CO2 eq), or 500 kt CO₂ eq. Cyprus decided, since the emissions are below the significance threshold, to report these emissions as "NE" due to the high uncertainties of both the activity data and emission factors accompanied the estimation of the emissions.

7.4.2. Open burning of waste (5C2)

Fire Prevention of Outdoors Law of 1988 (220/1988) as amended by 109(I)2002 prohibits any open burning of waste or any other material by the population, including waste. There is a provision to the law that for the months December and January, orchards, olive and vineyard waste can be burned with the permission and supervision of local authorities.

Following the recommendation of ESD experts (2024), Cyprus estimated the emissions from open burning of agriculture waste for the period 2009-2023 based on areas of orchard, olive groves and vineyards from Statistical Service of Cyprus (Table 7.23) and the assumptions, made by Portugal (2023-NIR of Portugal, page 5-86 to 87) on the share of plantations open burning its prunings and the mass of biomass generated per ha (Table 7.24). The CH₄ emission factor for open burning is 6.5 kg CH₄ per ton of wet waste, which is (assuming 65% dry matter in prunings) 10 kg CH₄ per ton of dry waste; the N2O emission factor is 0.15 kg per ton of dry waste (IPCC 2006, vol.5, chap.5, pg. 5.20-5.22).

The estimated emissions increased by 1.925-3.14 kt CO2eq., or 0.022-0.033 per cent of the national total, which is below the significance threshold of 0.05 per cent of the national total (3.90-4.83 kt CO2 eq), or 500 kt CO₂ eq. Cyprus decided, since the emissions are below the significance threshold, to report these emissions as "NE" due to the high uncertainties of both the activity data and emission factors accompanied the estimation of the emissions.

Table 7.22. Activity data used for estimate emissions from open burning of agriculture waste

Table 7.22. Activity data used for estimate emissions from open burning of agriculture waste											
Area (ha)	2009	2010	2011	2012	2013	2014	2015	2016			
Apple - pear	1333	870	946	957	715	689	683	597			
Citrus	3884	2783	3063	3214	2629	2686	2840	3408			
Peaches	724	534	540	560	408	444	462	404			
Olives	12019	11645	10762	10465	10653	10889	10012	10612			
Wine	8892	7620	7693	6790	5906	6142	6584	6052			

Area (ha)	2017	2018	2019	2020	2021	2022	2023	
Apple - pear	438	434	427	486	495	508	470	
Citrus	2891	3053	3203	3033	2908	2944	2920	
Peaches	297	291	310	339	354	371	240	
Olives	10830	10761	11063	9687	9978	10586	10530	
Wine	5921	6658	6654	6155	6144	5872	5940	

Table 7.23. Parameters used for estimate emissions from open burning of agriculture waste

	% burnt	M _B (ton dm/ha)
Apple -pear	22	1.69
Citrus	22	1.69
Peaches	22	1.69
Olives	65	0.27
Wine	52	1.19

7.5. Wastewater Treatment and Discharge (5D)

Wastewater can be a source of methane (CH_4) when treated or disposed anaerobically. It can also be a source of nitrous oxide (N_2O) emissions. Wastewater originates from a variety of domestic, commercial and industrial sources and may be treated on site (uncollected), sewered to a centralized plant (collected) or disposed untreated nearby or via an outfall. In Cyprus there is no disposal of untreated wastewater nearby or via an outfall. Wastewater treatment systems and discharge pathways in Cyprus are presented in Figure 7.7.

Emissions from Wastewater treatment and discharge accounted for 10.8% of the total GHG emissions

from the Waste sector in 2023 and 0.81% of total national emissions without LULUCF. The emissions from Wastewater treatment and discharge between 1990 and 2023 decreased by 52.9%, mainly due to the shift from septic tanks to centralised aerobic treatment systems for the treatment of domestic wastewater. The emissions from these sources are presented in Table 7.24 and Figure 7.8.

Table 7.24. Emissions from Wastewater treatment and discharge (5D) 1990-2023

	1990	2000	2005	2010	2011	2012	2013	2014	2015
D. Wastewater treatment and discharge	139.82	153.51	137.22	97.04	85.70	82.60	81.60	80.77	77.76
1. Domestic wastewater	112.44	121.97	108.02	66.24	52.64	52.66	51.96	51.08	45.65
2. Industrial wastewater	27.10	31.23	28.95	30.55	32.79	29.70	29.41	29.46	31.87
CH ₄ (Gg)	4.64	5.04	4.47	2.98	2.56	2.45	2.41	2.39	2.28
N_2O (Gg)	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total (Gg CO ₂ eq.)	139.82	153.51	137.22	97.04	85.70	82.60	81.60	80.77	77.76

	2016	2017	2018	2019	2020	2021	2022	2023	
D. Wastewater treatment and discharge	74.05	74.00	73.72	75.21	68.74	71.11	73.44	73.99	
1. Domestic wastewater	40.45	39.30	39.03	39.57	37.45	37.82	38.47	39.02	
2. Industrial wastewater	33.36	34.43	34.42	35.37	31.04	31.04	34.98	34.98	
CH ₄ (Gg)	2.15	2.14	2.12	2.17	1.93	2.01	2.10	2.11	
N_2O (Gg)	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	•
Total (Gg CO ₂ eq.)	74.05	74.00	73.72	75.21	68.74	71.11	73.44	73.99	

Figure 7.7. Wastewater treatment systems and discharge pathways in Cyprus⁷⁸

⁷⁸ Stella Perikenti, Environment Officer, National expert on urban wastewater management, Pollution Control Unit, Department of Environment (+35726804573, sperikenti@environment.moa.gov.cy)



Figure 7.8. Total emissions from Wastewater treatment and discharge (5D) 1990–2023

7.5.1. Domestic Wastewater Treatment and Discharge (5D1)

According to the 2006 IPCC Guidelines, Domestic wastewater is defined as "wastewater from household water use, while industrial wastewater is from industrial practices only". Sewers in Cyprus are closed and underground, which is not believed to be a significant source of CH₄. An overview of most wastewater treatment methods and pathways in Cyprus is presented in Figure 7.8. All information presented regarding urban wastewater has been obtained from Ms. Stella Perikenti (Pollution Control Unit, Department of Environment) and Ms. Lia Georgiou (Division of Waste Water and Reuse, Water Development Department).

To meet regulatory standards, many large industrial facilities pre-treat their wastewater before releasing it into the sewage system. Domestic wastewater is also treated in on-site septic systems. These are advanced systems that may treat wastewater from one household. They consist of an anaerobic underground tank and a drainage field for the treatment of effluent from the tank. This used to be a common practice in the 1990s, but gradually decreased due to the construction of the wastewater collection systems and treatment stations (Figure 7.10). 10% of wastewater disposed in septic tanks is collected by authorised wastewater collectors and transported to aerobic wastewater treatment plants. Some industrial wastewater may be discharged into municipal sewer lines, where it combines with domestic wastewater, provided that the organic load of the wastewater is reduced to the limits set in the wastewater disposal permit issued by the Department of Environment.

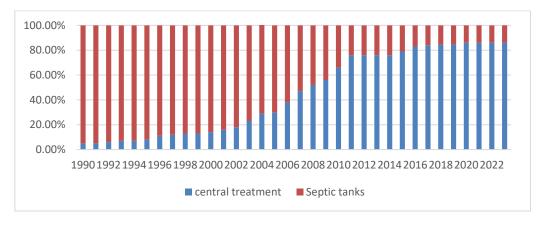


Figure 7.9. Domestic Wastewater treatment in Cyprus 1990–2023

⁷⁹ 2006 IPCC Guidelines, 2015 Corrigendum, Volume 5, pg. 6.6

Centralised wastewater treatment methods can be classified as primary, secondary, and tertiary treatment. In primary treatment, physical barriers remove larger solids from the wastewater. Remaining particulates are then allowed to settle. Secondary treatment consists of a combination of biological processes that promote biodegradation by micro-organisms. Tertiary treatment processes are used to further purify the wastewater of pathogens, contaminants, and remaining nutrients such as nitrogen and phosphorus compounds. This is achieved using one or a combination of processes that can include biological processes, advanced filtration, carbon adsorption, UV and disinfection. Details on the technologies used in Cyprus are presented in Table 7.25.

Table 7.25. Wastewater treatment technologies implemented in Cyprus for the treatment of urban wastewaters

Wastewater treatment plant	Capacity	Primary	Secondary	Tertiary	N Removal	P Removal	UV	Chlorination	Sand Filtration	MBR Technology
Kakopetria	2200	√	V							
Paralimni	68750	V	√	√	√	√		V	√	
Ayia Napa	56250		$\sqrt{}$	$\sqrt{}$		√		V		
Livadhia Refugee Camp	2000									
Larnaca	70000									
Kyperounda	3500									
Platres	3500									
Agros	5250									
Limassol	272000				\checkmark	V				
Paphos	162500									
Dhali	5000	V	V	V				V		
Mia Milia	160000	V	V							
Central Vathia Gonia	45765	V	1	1				V		
Anthoupolis-A	7200	V	V	V				V		
Anthoupolis-B	130000	V	1	1	V	1				
Vathia-Gonia-A	201667	V	V	V		V	V			
Pelendri	3000	V	1	1				V		
Lythrodontas	3500	1	1	1				V		
Mia Milia B	269117	1	1	1		V				
Astromeritis	14767	V	V	V				V		

Sludge is produced in all of the primary, secondary and tertiary stages of treatment. Sludge that is produced in primary treatment consists of solids that are removed from the wastewater and is not accounted for in this category. Sludge produced in secondary and tertiary treatment results from biological growth in the biomass, as well as the collection of small particles. This sludge is treated further before it can be safely disposed of. Methods of sludge treatment include aerobic and anaerobic stabilisation (digestion), centrifugation, composting, and drying. The utilization of sludge produced by the wastewater treatment plants in Cyprus is shown in Table 7.26. Table 7.27 shows the load entering the UWWTPs currently in operation in population equivalent.

CH₄ emissions and N₂O emissions from this source are presented in Table 7.28 and Figure 7.11.

Table 7.26. Utilisation of sludge produced by the wastewater treatment plants in Cyprus (t of dry matter/yr)

matter/yr)									
Year	2007	2008	2009	2010	2011	2012	2013	2014	2015
Sludge production	8035	7974	9163	7083	6815	6533	6123	6160	6695
Sludge used in agriculture	5745	6515	7903	5294	3912	2756	2924	1391	936
Sludge transported for anaerobic									
treatment for biogas production			620		2478			4061	
Sludge stored at the plants					425			621	

Incineration			640					
Sludge transported for								
composting								
Others (green areas)								
Year	2016	2017	2018	2019	2020	2021		
Sludge production	6850	7166	8406	8681	8216	8832		
Sludge used in agriculture	1436	1075	937	1015	1014	867		
Sludge transported for anaerobic								
treatment for biogas production	4380	1044	1281	1192	508	866		
Sludge stored at the plants	309	781	1062	1504	1728	2083		
Incineration	608	788	266	479	284	464		
Sludge transported for								
composting		3425	4705	4293	4682	4552		
Others (green areas)	117	53	155	198	0	0		

Table 7.27. Load entering the Urban Waste Water Treatment Plants (UWWTP) (p.e.)

UWW Name or IAS	2007	2009	2011	2014	2016	2020
Kakopetria	1200	1200	1200	1200	1200	1200
Paralimni	60107	62700	52665	53500	68750	68750
Ayia Napa	68487	62700	37500	37500	56250	56250
Livadhia Refugee	2000	2000	2000	2000	2000	2000
Camp	2000	2000				
Larnaca	39090	68000	70000	70000	70000	80800
Kyperounda	2068	2068	2200	2200	2200	2200
Platres	1820	1820	2000	2000	2000	2000
Agros	2400	2400	2500	2500	2500	2500
Limassol	131178	130000	182926	193417	225989	240800
Paphos	50000	85300	123925	119611	120100	120100
Dhali	4710	4710	5000	N/O	N/O	N/O
Mia Milia	140000	140000	140000	N/O	N/O	N/O
Central Vathia Gonia	9240	13900	20068	1230	14857	7391
Anthoupolis-A	4800	N/O	N/O	N/O	N/O	N/O
Anthoupolis-B	N/O	26500	37706	34132	35983	44476
Vathia-Gonia-A	N/O	N/O	39781	57252	63187	63202
Pelendri	N/O	2200	2200	2200	2200	2200
Lythrodontas	N/O	2100	3500	3500	3500	3500
Mia Milia B	N/O	N/O	N/O	157116	156330	156322
IAS	9240	13900	26328	16219	34117	24865
Astromeritis	N/O	N/O	N/O	N/O	N/O	7700

 $N/O-not\ operated$

Table 7.28. Total emissions from Domestic wastewater 1990–2023

	1990	2000	2005	2010	2011	2012	2013
CH ₄ (Gg)	3.68	3.93	3.43	1.88	1.39	1.38	1.36
N ₂ O (Gg)	0.04	0.05	0.05	0.05	0.05	0.05	0.05
Total (Gg CO ₂ eq.)	112.44	121.97	108.02	66.24	52.64	52.66	51.96

	2014	2015	2016	2017	2018	2019	2020
CH ₄ (Gg)	1.34	1.14	0.95	0.91	0.89	0.90	0.82
N_2O (Gg)	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total (Gg CO ₂ eq.)	51.08	45.65	40.45	39.30	39.03	39.57	37.45

	2021	2022	2023		
CH ₄ (Gg)	0.83	0.85	0.86		
N ₂ O (Gg)	0.05	0.06	0.06		
Total (Gg CO ₂ eq.)	37.82	38.47	39.02		

[254]

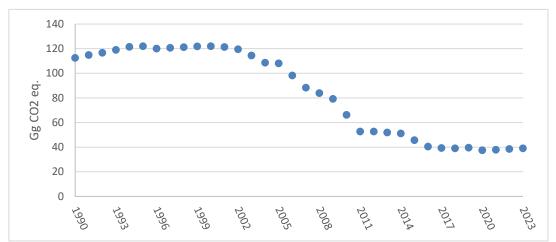


Figure 7.10. Total emissions from Domestic wastewater (5D1) 1990–2023

7.5.1.1. Methodological Issues

Methane emissions from wastewater

Emissions are a function of the amount of organic waste generated and an emission factor that characterises the extent to which this waste generates CH₄. Three tier methods for CH₄ from this category. Tier 1 methodology is applied for estimation of Methane emissions from wastewater in Cyprus.

The steps for inventory preparation for CH₄ from domestic wastewater are as follows:

Step 1: Use Equation 6.3 (2006 IPCC Guidelines, vol. 5, pg. 6.13) to estimate total organically degradable carbon in wastewater (TOW).

BOD is country-specific, and according to Ms. Stella Perikenti 60 g/person/day should be used⁸⁰. Country population has already been presented in Table 7.5. It is assumed as 1.00 for waste disposed in septic tanks (assuming default for uncollected; IPCC 2006, vol.5, pg. 6.14), eqn.6.3; and 1.25 for wastewater treated in central wastewater treatment stations (assuming default for collected; IPCC 2006, vol.5, pg. 6.14). Distribution of wastewater to septic tanks and central treatment stations (Ui) is presented in Table 7.29, along with the estimated TOW for the whole period.

Ui has been recalculated after meetings with representatives of the Water Development Department (responsible department for the construction and management of the Urban Wastewater Treatment Units)⁸¹ and the Pollution Prevention Unit of the Department of Environment on completion of the time series. Data on population equivalents served by wastewater treatment plants (on the basis of the actual BOD loads) was available for the years 1992-2005 from the Statistical Service⁸² and for 2007, 2009, 2011, 2014 and 2016 from the Pollution Control Unit of the Department of Environment. 1990-1991 has been estimated from the trend of 1992-2005 (y=0.0417e^{0.1204x}, $R^2 = 0.9706$), years 2006, 2008, 2010, 2012, 2013 and 2015 from the average of the years before and after. For the period 2017-2019 an exponential smoothing forecast based on 1990-2016 values was used (function forecast.ets in excel). The population served by septic tanks has been estimated by subtracting the connected population from 100%.

-

⁸⁰ Stella Perikenti, Environment Officer, National expert on urban wastewater management, Pollution Control Unit, Department of Environment (+35726804573, sperikenti@environment.moa.gov.cy)

⁸¹ Lia Georgiou, Senior Sanitary Engineer, Division of Waste Water and Reuse, Water Development Department (+357 22609186-185, lgeorgiou@wdd.moa.gov.cy)

⁸² resident population connected to wastewater collecting system and wastewater treatment plants, 2007, available at http://www.mof.gov.cy/mof/cystat/statistics.nsf/All/CB1FB8138D95CBB5C22573210044E253/\$file/WASTEWATER_TREAT MENT-EN-240707.xls?OpenElement

Table 7.29. Distribution of wastewater to septic tanks and central treatment stations Ui and estimated TOW

	1990	1991	1992	1993	1994	1995	1996
Septic							
Ui	95.3%	94.7%	93.6%	93.2%	93.3%	91.9%	88.8%
TOW (kt BOD/yr)	12.25	12.51	12.69	12.92	13.19	13.21	12.96
Treatment							
Ui	4.7%	5.3%	6.4%	6.8%	6.7%	8.1%	11.2%
TOW (kt BOD/yr)	0.76	0.88	1.08	1.18	1.18	1.46	2.04

	1997	1998	1999	2000	2001	2002	2003
Septic							
Ui	88.0%	87.2%	86.7%	85.7%	84.1%	81.7%	77.0%
TOW (kt BOD/yr)	13.01	13.04	13.11	13.09	12.99	12.77	12.19
Treatment							
Ui	12.0%	12.8%	13.3%	14.3%	15.9%	18.3%	23.0%
TOW (kt BOD/yr)	2.22	2.39	2.51	2.73	3.07	3.58	4.55

	2004	2005	2006	2007	2008	2009	2010
Septic							
Ui	71.5%	70.2%	61.7%	53.1%	48.5%	43.8%	34.2%
TOW (kt BOD/yr)	11.48	11.44	10.24	9.04	8.46	7.86	6.28
Treatment							
Ui	28.5%	29.8%	38.3%	46.9%	51.5%	56.2%	65.8%
TOW (kt BOD/yr)	5.72	6.07	7.95	9.96	11.24	12.59	15.14

	2011	2012	2013	2014	2015	2016	2017
Septic							
Ui	24.5%	24.3%	24.2%	24.1%	20.5%	17%	16%
TOW (kt BOD/yr)	4.62	4.61	4.55	4.46	3.81	3.18	3.03
Treatment							
Ui	75.5%	75.7%	75.8%	75.9%	79.5%	83%	84%
TOW (kt BOD/yr)	17.82	17.94	17.80	17.61	18.45	19.42	19.87

	2018	2019	2020	2021	2022	2023	
Septic							
Ui	15.5%	15.5%	14.0%	14.0%	14.0%	14.0%	
TOW (kt BOD/yr)	2.97	3.01	2.75	2.77	2.82	2.86	
Treatment							
Ui	84.5%	84.5%	86.0%	86.0%	86.0%	86.0%	
TOW (kt BOD/yr)	20.26	20.54	21.09	21.30	21.66	21.98	

Step 2: Select the pathway and systems according to country activity data. Use Equation 6.2 (2006 IPCC Guidelines, vol. 5, pg. 6.12) to obtain the emission factor for each domestic wastewater treatment/discharge pathway or system.

Bo is considered as $0.6 \text{ kgCH}_4/\text{kgBOD}$ (default proposed by IPCC, 2006 guidelines, vol.5, pg. 6.12, table 6.2). MCFj is 0.5 for septic tanks and 0 for central wastewater treatment units, as recommended by the IPCC (2006 guidelines, vol.5, pg. 6.13, table 6.3). 0 was chosen for MCF for WWTP, since the information available indicated that they are well managed.

According to further investigation from TERT during the 2017 annual review of the issue it was found that the European Commission published a database on all waste water treatment plants, which shows the status of compliance of those plants with EU legislation. This source also contains information on the

Cypriot plants⁸³. According to this website, all but one of the Cypriot waste water treatment plants are fully compliant with UWWTD (Urban Waste Water Treatment Directive) standards. Most important is the compliance on DOC5. DOC5 is the biodegradable part of the organic load into the waste water treatment plant. All experts in the TERT agree that when a plant is overloaded or not well managed, an increase in DOC5 is expected before an increased methane emissions becomes apparent. The single plant that is not compliant with legislation in Cyprus still complies with the DOC5-criterion. For the TERT the information provided on this website seems to prove that all Cypriot waste water treatment plants are well-managed, and therefore a MCF=0 for collected waste water is justified. This is independent EU information demonstrating compliance of wastewater treatment plants in Cyprus, justifying an MCF of 0.

The resulting EFs are 0.3 kgCH₄/kgBOD for septic and 0 kgCH₄/kgBOD for centralised treatment.

Step 3: Use Equation 6.1 (2006 IPCC Guidelines, vol. 5, pg. 6.11) to estimate emissions, adjust for possible sludge removal and/or CH_4 recovery and sum the results for each pathway/system. CH_4 Emissions (Table 7.31) have been estimated using the parameters listed in Table 7.30.

Table 7.30. Parameters used for the estimation of CH₄ emissions from wastewater treatment

Parameter	Value
Total organics in wastewater in inventory year, kg BOD/yr (TOW)	Table 7.29
Fraction of population in income group i in inventory year (Ui)	Table 7.29
Degree of utilisation of treatment/discharge pathway or system, j, for	100%
each income group (Ti,j) fraction i in inventory year	
EFj = emission factor, kg CH ₄ / kg BOD	Septic: 0.3 kgCH ₄ /kgBOD
	Centralised treatment: 0
	kgCH4/kgBOD
R = amount of CH ₄ recovered in inventory year, kg CH ₄ /yr	0

Table 7.31. CH₄ emissions from domestic wastewater treatment 1990–2023

	1990	1991	1992	1993	1994	1995	1996
CH ₄ – septic (t)	3676	3752	3808	3875	3956	3963	3887
CH ₄ – centralized (t)	0	0	0	0	0	0	0
Total (t)	3676	3752	3808	3875	3956	3963	3887

	1997	1998	1999	2000	2001	2002	2003
CH ₄ – septic (t)	3904	3912	3933	3927	3898	3831	3657
CH ₄ – centralized (t)	0	0	0	0	0	0	0
Total (t)	3904	3912	3933	3927	3898	3831	3657

	2004	2005	2006	2007	2008	2009	2010
CH ₄ – septic (t)	3443	3431	3071	2711	2539	2359	1885
CH ₄ – centralized (t)	0	0	0	0	0	0	0
Total (t)	3443	3431	3071	2711	2539	2359	1885

	2011	2012	2013	2014	2015	2016	2017
CH ₄ – septic (t)	1386	1384	1364	1339	1144	955	908
CH ₄ – centralized (t)	0	0	0	0	0	0	0
Total (t)	1386	1384	1364	1339	1144	955	908

	2018	2019	2020	2021	2022	2023	
CH ₄ – septic (t)	892	904	824	832	846	859	
CH ₄ – centralized (t)	0	0	0	0	0	0	
Total (t)	892	904	824	832	846	859	

-

⁸³ http://uwwtd.oieau.fr/Cyprus/uwwtps/compliance

Nitrous oxide emissions from wastewater

The activity data that are needed for estimating N_2O emissions are nitrogen content in the wastewater effluent, country population and average annual per capita protein generation (Table 7.32). Per capita protein generation consists of intake (consumption) which has been obtained from the Food and Agriculture Organization⁸⁴, multiplied by factors to account for additional 'non-consumed' protein and for industrial protein discharged into the sewer system. Food (waste) that is not consumed may be washed down the drain (e.g., as result of the use of garbage disposals in some developed countries), bath and laundry water can also be expected to contribute to nitrogen loadings. Wastewater from industrial or commercial sources that is discharged into the sewer may contain protein (e.g., from grocery stores and butchers).

The total nitrogen in the effluent is estimated using equation 6.8 (pg. 6.25, vol. 5, 2006 IPCC guidelines), with human population as presented in Table 7.5 and annual per capita protein consumption as presented in Table 7.32. Data is not available after 2007 and therefore considered constant for the remaining years, due to an unclear trend. The following defaults are used: fraction of nitrogen in protein (FNPR), 0.16 kg N/kg protein; factor for non-consumed protein added to the wastewater (FNON-CON), 1.1; default factor for industrial and commercial co-discharged protein into the sewer system (FIND-COM), 1.25; and default nitrogen removed with sludge (NSLUDGE), 0.03 kg N/yr.

Table 7.32. Annual per capita protein consumption and resulting NEFFLUENT (kg/person/yr)

	1990	1991	1992	1993	1994	1995
Protein consumption (kg/person/yr)	35.4	35.4	35.4	36.1	36.1	36.9
NEFFLUENT (kg N/yr)	4572981	4697606	4823011	5031365	5130736	5322790

	1996	1997	1998	1999	2000	2001
Protein consumption (kg/person/yr)	36.9	36.9	37.2	37.2	37.6	37.6
NEFFLUENT (kg N/yr)	5403893	5476075	5593361	5655609	5768953	5835120

	2002	2003	2004	2005	2006	2007
Protein consumption (kg/person/yr)	37.6	36.3	36.3	35.0	35.0	35.0
NEFFLUENT (kg N/yr)	5902941	5775863	5856560	5735347	5842500	5985112

	2008	2009	2010	2011	2012	2013
Protein consumption (kg/person/yr)	35.0	35.0	35.0	35.0	35.0	35.0
NEFFLUENT (kg N/yr)	6143143	6314278	6473850	6644986	6675050	6614150

	2014	2015	2016	2017	2018	2019
Protein consumption (kg/person/yr)	35.0	35.0	35.0	35.0	35.0	35.0
NEFFLUENT (kg N/yr)	6529354	6539375	6589482	6661945	6752138	6845414

	2020	2021	2022	2023	
Protein consumption (kg/person/yr)	35.0	35.0	35.0	35.0	
NEFFLUENT (kg N/yr)	6907085	6974190	7093723	7196203	

After the collection of the information presented above regarding wastewater treatment, it appeared that emissions from advanced centralised wastewater treatment plants should also be estimated and subtracted from the overall emissions. Thus, the emissions have been estimated using the overall emission factor to estimate N_2O emissions from such plants as 3.2 g N_2O /person/year, recommended in the 2006 IPCC Guidelines (Box 6.1, pg. 6.26, vol. 5). The population used is the population presented in Table 7.5. The

⁸⁴ FAOSTAT, 2009, Food consumption, Dietary Protein Consumption (g/person/day), available from http://www.fao.org/filead min/templates/ess/documents/food_security_statistics/FoodConsumptionNutrients_en.xls

resulting emissions are presented in Table 7.33. The amount of nitrogen associated with these emissions (NWWT, Table 7.34) have been back calculated and subtracted from the NEFFLUENT. The NWWT is calculated by multiplying N_2 OPLANTS by 28/44.

The resulting N₂O emissions from wastewater are also presented in Table 7.34.

Table 7.33. N_2O emissions from advanced centralised was tewater treatment plants, NWWT and resulting NEFFLUENT

	1990	1991	1992	1993	1994	1995	1996
N ₂ OPLANTS (t)	35.92	36.90	37.89	39.52	40.30	41.81	42.45
NWWT (kg N/yr)	1196	1228	1261	1289	1314	1336	1357
NEFFLUENT – NWWT (kg N/yr)	4571785	4696378	4821750	5030076	5129422	5321453	5402536
N ₂ O emissions (t)	35.92	36.90	37.89	39.52	40.30	41.81	42.45

	1997	1998	1999	2000	2001	2002	2003
N ₂ OPLANTS (t)	43.02	43.94	44.43	45.32	45.84	46.37	45.37
NWWT (kg N/yr)	1375	1391	1406	1420	1437	1453	1472
NEFFLUENT – NWWT (kg N/yr)	5474700	5591970	5654203	5767532	5833683	5901488	5774390
N ₂ O emissions (t)	43.02	43.94	44.43	45.32	45.84	46.37	45.37

	2004	2005	2006	2007	2008	2009	2010
N ₂ OPLANTS (t)	46.00	45.05	45.89	47.01	48.25	49.60	50.85
NWWT (kg N/yr)	1493	1515	1543	1581	1623	1668	1710
NEFFLUENT – NWWT (kg N/yr)	5855067	5733832	5840956	5983531	6141520	6312610	6472140
N ₂ O emissions (t)	46.00	45.05	45.89	47.01	48.25	49.60	50.85

	2011	2012	2013	2014	2015	2016	2017
N ₂ OPLANTS (t)	52.20	52.43	51.95	51.29	51.37	51.76	52.33
NWWT (kg N/yr)	1755	1763	1747	1725	1727	1741	1760
NEFFLUENT – NWWT (kg N/yr)	5855067	5733832	5840956	5983531	6141520	6312610	6472140
N ₂ O emissions (t)	52.20	52.43	51.95	51.29	51.37	51.76	52.33

	2018	2019	2020	2021	2022	2023	
N ₂ OPLANTS (t)	53.04	53.77	54.26	54.78	55.72	56.53	
NWWT (kg N/yr)	1784	1808	1825	1842	1874	1901	
NEFFLUENT – NWWT (kg N/yr)	6750354	6843606	6905260	6972348	7091849	7194302.4	
N ₂ O emissions (t)	53.04	53.77	54.26	54.78	55.72	56.53	

7.5.1.2 Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

7.5.1.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

7.5.1.4. Category-specific recalculations

No recalculations to be reported.

7.5.1.5. Category-specific planned improvements

Efforts are in place to move in higher Tier methodology but for now no data are available. Please refer to Annex 7 for the National Inventory Improvement Plan.

7.5.2. Industrial wastewater (5D2)

The principal factor that determines methane generation potential of wastewater is the amount of organic material in the wastewater stream. For industrial wastewater, this is indicated by the Chemical Oxygen Demand (COD). COD indicates the total amount of carbon, biodegradable and non-biodegradable, that is available for oxidation. According to the IPCC guidelines, industrial production should be grouped according to their methane production potential. The main groups are paper and pulp manufacture, slaughterhouses, alcohol, beer, starch, organic chemicals and others (vegetable oil production, textiles, rubber, petroleum refineries, fruits and vegetables). The industrial activities taking place in Cyprus are predominately food and drink industries.

Regarding the treatment of wastewaters produced by the manufacturing processes implemented, the following apply:

- Alcohol Cyprus has one installation producing alcohol. Its wastewater is treated by anaerobic
 digestion, followed by further aerobic treatment before the final effluent is discharged into the
 local municipal sewerage system.
- Beer Wastewater derived from two brewery installations are also treated by anaerobic digestion and subsequently by further aerobic treatment. One brewery discharges the final effluent into the local municipal sewerage system, while the other uses the effluent for irrigation.
- Dairy products Wastewater derived from one dairy installation is treated by anaerobic digestion
 and subsequently by further aerobic treatment before the final effluent is discharged into the local
 municipal sewerage system.
- Meat and Poultry Wastewater derived from meat and poultry installations are treated by anaerobic digestion plants that treat mainly pig slurry, and subsequently treated by further aerobic treatment before their final disposal to evaporation lagoons.
- Vegetable oils Cyprus has several olive oil mills. A portion of the produced wastewater is treated
 by anaerobic digestion plants that treat mainly pig slurry. In addition, during the process of
 producing biodiesel from used cooking oils, glycerol is produced and it is mainly treated by
 anaerobic digestion.
- Veg., fruits and juices, and soft drinks. Cyprus has one installation that is treating wastewater and
 other waste derived from the production of vegetables, fruits, juices and soft drinks. The treatment
 uses anaerobic digestion.

Emissions from industrial wastewater increased by 29.1% between 1990 and 2023 (Table 7.34, Figure 7.13). Emission estimates from this source have been revised due to the availability of new data for 2020.

Table 7.34. Total emissions from industrial wastewater 1990–2023

	1990	2000	2005	2010	2011	2012	2013
CH ₄ (t)	967.9	1115.2	1033.8	1091.1	1171.2	1060.7	1050.3
$N_2O(t)$	0.001042	0.001175	0.000958	0.000926	0.000991	0.000890	0.000870
Total (Gg							
CO ₂ eq.)	27.10	31.23	28.95	30.55	32.79	29.70	29.41

	2014	2015	2016	2017	2018	2019	2020
$CH_4(t)$	1052.2	1138.2	1191.3	1229.6	1229.3	1263.1	1108.7
$N_2O(t)$	0.000862	0.000914	0.000955	0.000991	0.001003	0.001038	0.000918
Total (Gg							
CO ₂ eq.)	29.46	31.87	33.36	34.43	34.42	35.37	31.04

	2021	2022	2023		
$CH_4(t)$	1179.8	1249.0	1249.0		
$N_2O(t)$	0.00098	0.00104	0.00104		
Total (Gg					
CO ₂ eq.)	31.04	34.97	34.97		

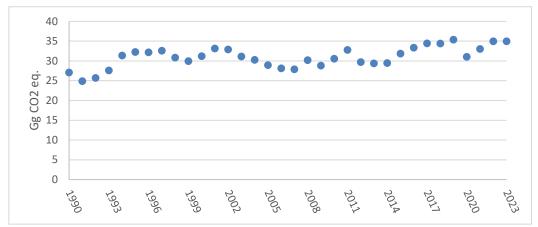


Figure 7.11. Emissions from industrial wastewater 1990–2023

7.5.2.1. Methodological Issues

Methane emissions

According to the IPCC guidelines, to estimate total emissions from wastewater the selected emissions factors are multiplied by the associated organic wastewater production and summed. The amount of CH_4 recovered and thus not emitted into the atmosphere for each handling method should be subtracted: no methane recovery takes place in Cyprus, therefore recovery is assumed to be 0. The sum of the emissions for each handling method provides the total CH_4 emissions from industrial wastewater. In equation form, the estimate of total CH_4 emissions from wastewater handling is as follows (equation 6.4, 2006 IPCC guidelines, volume 5 pg. 6.20):

$$CH_4 Emissions = \Sigma[(TOW_i - S_i) * EF_i - R_i]$$

where CH_4 emissions is the total methane emissions from wastewater in kg CH_4 , TOWi is the total organically degradable material in wastewater from industry i in kg COD/yr, Si is the organic component removed as sludge in inventory year in kg COD/yr, EF_i is the emission factor for industry i in kg CH_4/kg COD, and Ri is the total amount of methane recovered in kg CH_4/yr .

To estimate total organic wastewater (TOW) for a particular industry the following equation should be used (equation 6.6, IPCC 2006 guidelines, volume 5, pg. 6.22):

$$TOWi = Pi x Wi x COD$$

where TOW is the total industrial organically material in wastewater for industry in kg COD/yr, P is the total industrial product for industrial sector W is the wastewater generated in m³/tonne of product, and COD is the chemical oxygen demand (industrial degradable organic component in kg COD/m³ wastewater).

To estimate the emission factor for industrial wastewater, the following equation is proposed by the IPCC guidelines (Equation 6.5, IPCC 2006 guidelines, volume 5,pg. 6.21):

$$EF_j = B_o \times MCF_j$$

where EF_j is the emission factor (kg CH_4 /kg DC) for each treatment (e.g. aerobic treatment, anaerobic digester for sludge, etc.), Bo is the maximum methane producing capacity (kg CH_4 /kg DC), and MCF_j is the methane correction factor. Since no country specific data is available, Bo is considered to be 0.25 (2006 IPCC guidelines, volume 5, pg. 6.21).

A verbal description of the methodology applied for the estimation of methane emissions from industrial wastewater is as follows:

- (a) Collection of data for industrial production (Table 7.36).
- (b) Total industrial organic wastewater was estimated by multiplying the industrial production by the wastewater generation coefficients and by COD in Table 7.37 (2006 IPCC guidelines, volume 5, pg. 6.22, Table 6.8).
- (c) Organically Degradable material (TOW) in Gg is the sum of the TOW of each industrial product divided by 1,000,000 (Table 7.38).
- (d) The wastewater generated was categorised as either anaerobic or aerobic treatment according to the assumptions of Table 7.39.
- (e) The methane correction factor (MCF) was assumed to be 0.3 for aerobic treatment, following a recommendation of the ERT during the in-country review of the 2016 submission. In the initial submission, the MCF used was 0, which is the default for centralised. 0.3, which is currently used, is the default for not well managed, centralised, overloaded aerobic treatment (table 6.3, pg. 6.13, volume 5, 2006 IPCC guidelines). This change has been made until sufficient information is available for the wastewater treatment plants in Cyprus to justify the use of 0. Per the defaults provided in the 2006 IPCC guidelines, a MCF of 0.8 was used for anaerobic treatment, while maximum producing capacity was assumed to be 0.25 kg CH₄/kg COD (pg. 6.21, volume 5). The resulting methane emission factor estimated according to the waste stream is presented in Table 7.38.
- (f) The emission factor for each waste streams was multiplied by the TOW (kg COD/ year) of the respective waste stream to estimate the annual emissions of methane per waste stream. The total CH₄ emissions are the sum of the CH₄ emitted per waste stream.

Data for industrial production

Detailed statistics on industrial production in Cyprus do not exist. Therefore, data on industrial consumption is used instead. Another issue associated with the national statistics on industrial activity is that the sales of industrial products for the year x-2 (which in this case is 2023) are completed and published in the summer after the inventory has to be submitted (which in this case is summer 2025). Therefore, the 2023 "production" is assumed to be equal to the 2022 "production". The industrial production data used is presented in Table 7.35.

Table 7.35. Industrial production 1990–2023 (Gg)

Gg product	1990	1991	1992	1993	1994	1995	1996
Alcohol	1.0	1.0	1.0	1.0	1.0	1.1	0.9
Beer	33.1	34.8	36.6	36.1	35.6	35.2	33.1
Soft drinks	46.6	50.5	54.7	55.4	56.2	56.9	57.5
Dairy products	60.7	64.6	68.8	71.2	73.9	76.7	81.1
Meat & poultry	64.4	63.1	67.7	76.0	80.9	81.0	88.0
Refinery	635.3	763.2	727.1	781.2	896.8	827.9	760.0
Soaps & detergents	12.1	12.9	13.8	10.9	9.8	9.5	9.0
Vegetable oils	21.7	24.9	28.6	27.5	26.5	25.7	28.1
Vegetables, fruits & juices	47.9	34.9	34.0	38.0	52.1	56.3	53.0
Wine	49.4	52.8	56.5	56.3	56.0	55.8	54.3

Gg product	1997	1998	1999	2000	2001	2002	2003
Alcohol	1.0	1.0	2.1	2.6	3.9	3.8	2.5
Beer	33.3	36.5	40.5	40.9	40.4	38.3	36.7
Soft drinks	58.3	59.3	60.0	60.9	62.7	62.3	62.1
Dairy products	81.4	86.3	84.1	83.3	89.5	92.4	93.2
Meat & poultry	97.0	93.7	69.5	80.5	87.8	90.0	92.4
Refinery	1042.7	1082.6	1140.4	1134.8	1115.1	1045.5	931.9
Soaps & detergents	7.1	7.2	7.2	7.0	7.8	8.1	6.2
Vegetable oils	26.3	22.7	23.2	21.8	20.1	21.3	19.4
Vegetables, fruits & juices	52.5	48.0	49.0	49.9	51.6	48.7	44.2
Wine	42.0	30.9	43.2	37.4	34.5	37.5	35.5

Gg product	2004	2005	2006	2007	2008	2009	2010
Alcohol	1.9	1.3	1.2	1.0	0.9	0.7	0.7
Beer	37.1	37.7	37.4	39.8	42.7	35.7	34.3
Soft drinks	60.5	66.6	58.3	62.5	62.9	59.4	57.9

Dairy products	93.9	96.3	99.5	97.8	112.1	104.1	106.0
Meat & poultry	93.4	95.5	94.0	94.5	102.1	99.1	105.6
Refinery	269.2	0.0	0.0	0.0	0.0	0.0	0.0
Soaps & detergents	7.4	6.1	6.2	6.3	6.8	6.9	7.1
Vegetable oils	19.6	19.3	19.1	18.1	18.2	16.3	16.9
Vegetables, fruits & juices	42.1	37.6	34.4	35.4	40.6	40.4	45.5
Wine	31.7	29.8	26.5	20.2	15.9	12.4	11.1

Gg product	2011	2012	2013	2014	2015	2016	2017
Alcohol	0.6	0.7	0.7	0.6	0.57	0.61	0.65
Beer	32.2	33.0	32.9	32.8	34.18	37.55	39.43
Soft drinks	54.6	35.6	26.0	10.8	11.13	14.46	14.57
Dairy products	109.3	106.2	100.9	99.8	100.12	103.73	108.45
Meat & poultry	103.6	96.0	83.6	79.7	82.43	84.72	87.47
Refinery	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soaps & detergents	6.7	7.1	6.5	7.3	6.79	8.20	7.30
Vegetable oils	15.7	14.3	12.2	12.6	12.06	11.72	13.97
Vegetables, fruits & juices	56.5	48.0	54.5	57.9	68.46	72.93	74.90
Wine	14.2	10.9	11.5	11.0	8.95	8.45	9.27

Gg product	2018	2019	2020	2021	2022	2023	
Alcohol	0.55	0.55	0.48	0.53	0.73	0.73	
Beer	41.07	40.41	31.06	35.79	41.67	41.67	
Soft drinks	13.76	13.17	8.05	10.73	12.55	12.55	
Dairy products	117.81	123.70	126.00	124.70	128.40	128.40	
Meat & poultry	87.59	92.12	87.53	90.96	91.19	91.19	
Refinery	0.00	0.00	0.00	0.00	0.00	0.00	
Soaps & detergents	8.23	9.13	9.37	8.47	11.18	11.18	
Vegetable oils	13.74	15.67	14.66	12.05	13.87	13.87	
Vegetables, fruits & juices	72.75	73.52	57.82	63.83	69.69	69.69	
Wine	9.95	10.75	8.59	11.10	11.77	11.77	

Industrial organic wastewater

Wastewater production was estimated by multiplying the industrial production by the wastewater generation coefficients in Table 7.36 (volume 5, pg. 6.22, Table 6.8). Information in the 2006 guidelines is not available for soft drinks, soaps and detergents, and COD of vegetable oils. For these categories, the values recommended in the 2000 IPCC Good Practice Guide (pg.5.22) are used.

Table 7.36. Wastewater generation coefficient (m³/t product) and COD concentration (kg COD/m³) according to industrial product

	Wastewater generation (m ³ /t)	COD (kg/m³)
Alcohol	24	11
Beer	6.3	2.9
Soft drinks	2 a	2 a
Dairy products	7	2.7
Meat& poultry	13	4.1
Refinery	0.6	1.0
Soaps& detergents	3.0 a	0.9 a
Vegetable oils	3.1	0.9 a
Vegetables, fruits & juices	20.0	5.0
Wine	23.0	1.5

^a 2000 IPCC Good Practice Guide, pg. 5.22

Total organic wastewater

Total organically degradable material in wastewater in kg COD/year per industrial product was then estimated by multiplying the industrial production by the wastewater generated and by the COD

coefficient of each industrial product in Table 7.36 (2006 IPCC guidelines, p.6.22). The sum of the TOW of each industrial product divided by 10⁶ is presented in Table 7.37.

Table 7.3	7. Total o	rganicall	ly degrad	able mat	erial (Gg)), 1990–2	023			
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Gg DC	12.61	11.55	11.96	12.85	14.64	15.07	15.04	15.22	14.40	13.98
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Gg DC	14.58	15.49	15.38	14.53	13.72	13.08	12.53	12.42	13.51	12.86
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Gg DC	13.68	14.75	13.28	13.14	13.16	14.31	15.02	15.53	15.52	15.98
	2020	2021	2022	2023						
Gg DC	13.92	14.87	15.79	15.79						

Categorisation of wastewater treatment to aerobic and anaerobic

The wastewater generated was categorised as either anaerobic or aerobic treatment according to the assumptions of Table 7.38. The assumptions were prepared in collaboration with the Pollution Prevention Unit of the Department of Environment.

Methane emission factor

The methane conversion factor was assumed to be 0 for aerobic treatment and 0.8 for anaerobic treatment, as according to the 2006 IPCC guidelines (volume 5, pg. 6.21, Table 6.7). Maximum producing capacity was assumed to be 0.25 kg CH₄/kg COD, also as according to the 2006 IPCC guidelines (pg. 6.21, volume 5). The resulting methane emission factor estimated according to the waste stream is presented in Table 7.39.

The aggregate MCF for all waste streams was multiplied by the total annual organic wastewater generation (kg COD/year) to estimate the annual emissions of methane.

Table 7.38. Treatment of waste by anaerobic treatment according to industrial production, 1990-2023

	1990	1991	1992	1993	1994	1995	1996
alcohol	2.0%	2.1%	2.1%	2.0%	1.9%	1.9%	2.2%
beer	20%	19%	18%	18%	19%	19%	20%
soft drinks	1.00%	0.92%	0.85%	0.84%	0.83%	0.82%	0.81%
dairy products	0	0	0	0	0	0	0
meat & poultry	0	0	0	0	0	0	0
refinery	0	0	0	0	0	0	0
soaps & detergents	0	0	0	0	0	0	0
vegetable oils	0	0	0	0	0	0	0
veg., fruits & juices	1.0%	1.4%	1.4%	1.3%	0.9%	0.9%	0.9%
wine	0	0	0	0	0	0	0

	1997	1998	1999	2000	2001	2002	2003
alcohol	2.1%	2.0%	1.0%	0.8%	0.5%	0.5%	0.8%
beer	20%	18%	16%	16%	16%	17%	18%
soft drinks	0.80%	0.79%	0.78%	0.76%	0.74%	0.75%	0.75%
dairy products	0	0	0	0	0	0	0
meat & poultry	0	0	0	0	0	0	0
refinery	0	0	0	0	0	0	0
soaps & detergents	0	0	0	0	0	0	0
vegetable oils	0	0	0	0	0	0	0
veg., fruits & juices	0.9%	1.0%	1.0%	1.0%	0.9%	1.0%	1.1%
wine	0	0	0	0	0	0	0

	2004	2005	2006	2007	2008	2009	2010
alcohol	1.1%	1.5%	1.8%	2.1%	2.3%	2.8%	2.8%
beer	18%	18%	18%	17%	15%	19%	19%
soft drinks	0.77%	0.70%	0.80%	0.75%	0.74%	0.78%	0.80%
dairy products	0	0	5.00%	5.09%	4.44%	4.78%	4.69%
meat & poultry	5.00%	4.89%	4.97%	4.95%	4.57%	4.71%	4.42%
refinery	0	0	0	0	0	0	0
soaps & detergents	0	0	0	0	0	0	0
vegetable oils	0	0	0.5%	0.5%	0.5%	0.6%	0.5%
veg., fruits & juices	1.1%	1.3%	1.4%	1.4%	1.2%	1.2%	1.1%
wine	0	0	0	0	0	0	0

	2011	2012	2013	2014	2015	2016	2017
alcohol	3.5%	3.1%	3.1%	3.2%	3.6%	3.4%	3.1%
beer	21%	20%	20%	20%	19%	18%	17%
soft drinks	0.85%	1.31%	1.79%	4.31%	4.19%	3.22%	3.20%
dairy products	4.55%	4.69%	4.93%	4.99%	4.97%	4.80%	4.59%
meat & poultry	4.51%	4.86%	5.59%	5.86%	5.67%	5.51%	5.34%
refinery	0	0	0	0	0	0	0
soaps & detergents	0	0	0	0	0	0	0
vegetable oils	0.6%	0.6%	0.7%	0.7%	0.7%	0.8%	0.6%
veg., fruits & juices	0.8%	1.0%	0.9%	0.8%	0.7%	0.7%	0.6%
wine	0	0	0	0	0	0	0

	2018	2019	2020	2021	2022	2023	
alcohol	3.7%	3.7%	4.3%	3.8%	2.8%	2.8%	
beer	16%	16%	21%	18%	16%	16%	
soft drinks	3.39%	3.54%	5.79%	4.34%	3.71%	3.71%	
dairy products	4.22%	4.02%	3.95%	3.99%	3.87%	3.87%	
meat & poultry	5.33%	5.07%	5.34%	5.14%	5.07%	5.07%	
refinery	0	0	0	0	0	0	
soaps & detergents	0	0	0	0	0	0	
vegetable oils	0.7%	0.6%	0.6%	0.7%	0.6%	0.6%	
veg., fruits & juices	0.7%	0.7%	0.8%	0.8%	0.7%	0.7%	
wine	0	0	0	0	0	0	

Table 7.39. Methane emission factor estimated according to waste stream (kg CH₄/kg COD), $1990{-}2023\,$

1770 2023							
	1990	1991	1992	1993	1994	1995	1996
alcohol	0.078	0.078	0.078	0.078	0.077	0.077	0.078
beer	0.100	0.099	0.098	0.098	0.098	0.099	0.100
soft drinks	0.076	0.076	0.076	0.076	0.076	0.076	0.076
dairy products	0.075	0.075	0.075	0.075	0.075	0.075	0.075
meat & poultry	0.075	0.075	0.075	0.075	0.075	0.075	0.075
refinery	0.075	0.075	0.075	0.075	0.075	0.075	0.075
soaps & detergents	0.075	0.075	0.075	0.075	0.075	0.075	0.075
vegetable oils	0.075	0.075	0.075	0.075	0.075	0.075	0.075
veg., fruits & juices	0.076	0.077	0.077	0.077	0.076	0.076	0.076
wine	0.075	0.075	0.075	0.075	0.075	0.075	0.075

	1997	1998	1999	2000	2001	2002	2003
alcohol	0.078	0.078	0.076	0.076	0.076	0.076	0.076
beer	0.100	0.098	0.095	0.095	0.095	0.097	0.098
soft drinks	0.076	0.076	0.076	0.076	0.076	0.076	0.076
dairy products	0.075	0.075	0.075	0.075	0.075	0.075	0.075
meat & poultry	0.075	0.075	0.075	0.075	0.075	0.075	0.075

	2004	2005	2006	2007	2008	2009	2010
			•	•	•		
wine	0.075	0.075	0.075	0.075	0.075	0.075	0.075
veg., fruits & juices	0.076	0.076	0.076	0.076	0.076	0.076	0.076
vegetable oils	0.075	0.075	0.075	0.075	0.075	0.075	0.075
soaps & detergents	0.075	0.075	0.075	0.075	0.075	0.075	0.075
refinery	0.075	0.075	0.075	0.075	0.075	0.075	0.075

	2004	2005	2006	2007	2008	2009	2010
alcohol	0.076	0.077	0.077	0.078	0.078	0.079	0.078
beer	0.097	0.097	0.097	0.096	0.094	0.098	0.099
soft drinks	0.076	0.076	0.076	0.076	0.076	0.076	0.076
dairy products	0.075	0.075	0.081	0.081	0.081	0.081	0.081
meat & poultry	0.081	0.081	0.081	0.081	0.081	0.081	0.081
refinery	0.075	0.075	0.075	0.075	0.075	0.075	0.075
soaps & detergents	0.075	0.075	0.075	0.075	0.075	0.075	0.075
vegetable oils	0.075	0.075	0.076	0.076	0.076	0.076	0.076
veg., fruits & juices	0.076	0.077	0.077	0.077	0.076	0.076	0.076
wine	0.075	0.075	0.075	0.075	0.075	0.075	0.075

	2011	2012	2013	2014	2015	2016	2017
alcohol	0.079	0.079	0.079	0.079	0.080	0.079	0.079
beer	0.101	0.100	0.100	0.100	0.099	0.097	0.096
soft drinks	0.076	0.077	0.077	0.080	0.080	0.079	0.079
dairy products	0.081	0.081	0.081	0.081	0.081	0.081	0.081
meat & poultry	0.081	0.081	0.082	0.082	0.082	0.082	0.082
refinery	0.075	0.075	0.075	0.075	0.075	0.075	0.075
soaps & detergents	0.075	0.075	0.075	0.075	0.075	0.075	0.075
vegetable oils	0.076	0.076	0.076	0.076	0.076	0.076	0.076
veg., fruits & juices	0.076	0.076	0.076	0.076	0.076	0.076	0.076
wine	0.075	0.075	0.075	0.075	0.075	0.075	0.075

	2018	2019	2020	2021	2022	2023	
alcohol	0.080	0.080	0.080	0.080	0.079	0.079	
beer	0.095	0.095	0.102	0.098	0.095	0.095	
soft drinks	0.079	0.079	0.082	0.080	0.080	0.080	
dairy products	0.080	0.080	0.080	0.080	0.080	0.080	
meat & poultry	0.082	0.081	0.082	0.081	0.081	0.081	
refinery	0.075	0.075	0.075	0.075	0.075	0.075	
soaps & detergents	0.075	0.075	0.075	0.075	0.075	0.075	
vegetable oils	0.076	0.076	0.076	0.076	0.076	0.076	
veg., fruits & juices	0.076	0.076	0.076	0.076	0.076	0.076	
wine	0.075	0.075	0.075	0.075	0.075	0.075	

Estimation of N2O emissions

The nitrous oxide emissions were estimated by multiplying the total annual industrial wastewater production (Table 7.40) by the default emission factor of $0.25~g~N_2O/m^3$ wastewater, as according to the EMEP/CORINAIR 2007 methodology⁸⁵.

Table 7.40. Total industrial wastewater production (1000 m³/year), 1990–2023

table : viol 10tal massiful waste water production (1000 m / jear), 1220 2020								
	1990	1991	1992	1993	1994	1995	1996	1997
Alcohol	24	24	23	24	25	26	22	23
Beer	208	219	231	227	225	222	208	210
Soft drinks	93	101	109	111	112	114	115	117
Dairy products	425	452	481	499	517	537	568	570

 $^{^{85}}$ EMEP/CORINAIR Emission Inventory Guidebook $-\,2007,$ Group 9: Waste treatment and disposal; 091001 - Waste water treatment in industry, EEA Technical report No 16/2007, available at https://www.eea.europa.eu/publications/EMEPCORINAIR 5/B9101vs1.pdf, table 2, pg. B9101-2.

Meat & poultry	837	820	880	987	1052	1052	1145	1261
Refinery	381	458	436	469	538	497	456	626
Soaps &detergents	36	39	41	33	29	29	27	21
Vegetable oils	67	77	89	85	82	80	87	82
Veg., fruits & juices	959	698	680	759	1041	1127	1060	1050
Wine	1136	1215	1300	1295	1289	1283	1250	965
						•		
	1998	1999	2000	2001	2002	2003	2004	2005
Alcohol	24	50	61	94	92	59	46	32
Beer	230	255	257	255	242	231	234	238
Soft drinks	119	120	122	125	125	124	121	133
Dairy products	604	589	583	626	647	652	657	674
Meat & poultry	1218	903	1047	1142	1170	1202	1214	1242
Refinery	650	684	681	669	627	559	161	0
Soaps &detergents	22	22	21	23	24	19	22	18
Vegetable oils	70	72	68	62	66	60	61	60
Veg., fruits & juices	961	980	999	1031	974	884	842	751
Wine	711	993	860	793	863	817	730	685
	•006	***	****	****	****	****		
41 1 1	2006	2007	2008	2009	2010	2011	2012	2013
Alcohol	28	24	21	17	18	14	16	16
Beer	236	251	269	225	216	203	208	207
Soft drinks	117	125	126	119	116	109	71	52
Dairy products	696	684	785	729	742	765	743	706
Meat & poultry	1222	1228	1327	1289	1373	1347	1248	1086
Refinery	0	0	0	0	0	0	0	0
Soaps &detergents Vegetable oils	19 59	19 56	21 56	21 50	21 52	20 49	21 44	20 38
Veg., fruits & juices	687	708	812	808	911	1129	960	1090
Wine	609	465	366	285	254	327	250	265
Wille	009	403	300	203	234	321	230	
	2014	2015	2016	2017	2018	2019	2020	2021
Alcohol	15	14	15	16	13	13	11	13
Beer	206	215	237	248	259	255	196	225
Soft drinks	22	22	29	29	28	26	16	21
Dairy products	698	701	726	759	825	866	882	873
Meat & poultry	1037	1072	1101	1137	1139	1197	1138	1182
Refinery	0	0	0	0	0	0	0	0
Soaps &detergents	22	20	25	22	25	27	28	25
Vegetable oils	39	37	36	43	43	49	45	37
Veg., fruits & juices	1157	1369	1459	1498	1455	1470	1156	1277
Wine	253	206	194	213	229	247	197	255
						1		
41 1 1	2022	2023						
Alcohol	11	13					+	
Beer Soft drinks	196	225						
Soft drinks	16	21						
Dairy products	882	873					+	
Meat & poultry	1138	1182					+	
Refinery Soaps &detergents	28	25					+	
Vegetable oils	45	37						
Veg., fruits & juices	1156	1277					+	
veg., muits & juices								
Wine	197	255		I	l		J	

7.5.2.2 Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in <u>Section 1.5</u>, while the detailed calculations are presented in <u>Annex 2</u>.

7.5.2.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

7.5.2.4. Category-specific recalculations

Emissions from Industrial Wastewater Treatment and Discharge (5D2) were recalculated for the year 2021 due to revision of the activity data of solid waste production by the Statistical Service. Emissions increased for the particular year from 31.04 to 33.03 Gg CO_2 eq., which corresponds to an increase of emissions by 6.41%.

7.5.2.5. Category-specific planned improvements

Efforts are in place to move in higher Tier methodology but for now no data are available. Please refer to Annex 7 for the National Inventory Improvement Plan.

7.6. Other (5E)

Not occurring.

Chapter 8. Other (CRT sector 6)

Not applicable

Chapter 9.

Indirect CO₂ and N₂O emissions

9.1 Description of Sources of Indirect Emissions in GHG Inventory

The use of solvents manufactured using fossil fuels as feedstocks can lead to evaporative emissions of various non-methane volatile organic compounds (NMVOC), which are subsequently further oxidised in the atmosphere. The IPCC source sector 2.D.3, Solvent and Other Produce Use, is important in relation to the emissions of NMVOC. NMVOC are indirect greenhouse gases which result from the use of solvents and various other volatile compounds, and are therefore reported as CO₂ equivalent emissions included in national totals.

Categories present in 2.D.3 include:

- Dry cleaning
- Coating Applications
- Chemical products
- Asphalt roofing
- Domestic solvent use including fungicides
- Road paving with asphalt
- Printing
- Other solvent use (glue consumption).

Also included are emissions from sector 2.G.4 Other product use (Use of tobacco).

Indirect CO_2 emissions from NMVOC accounted for 0.14% (7.362 kt of CO_2 equivalent) and 0.07% (6.653 kt of CO_2 equivalent) of total national emissions in 1990 and 2023, respectively. The total CO_2 emissions from solvent use are presented in Table 9.1 and Figure 9.1.

Table 9.1. CO₂ emissions from Solvent and Other Product Use (2.D.3. and 2.G.4.)

Gg CO ₂ eq.	1990	2000	2005	2010	2015	2020	2021
2.D.3. Solvent and Other Product Use	7.321	7.608	12.624	11.848	10.610	8.708	8.015
Dry cleaning	0.440	0.445	0.425	0.133	0.116	0.058	0.059
Coating applications	3.825	3.524	8.393	7.699	2.359	3.166	3.365
Chemical products	0.910	1.097	1.164	1.301	4.487	0.442	0.412
Asphalt roofing	0.095	0.107	0.086	0.155	0.025	0.030	0.030
Domestic solvent use	1.204	1.452	1.541	1.722	2.723	4.114	3.139
Road paving with asphalt	0.014	0.015	0.012	0.022	0.004	0.004	0.004
Printing	0.642	0.738	0.758	0.542	0.556	0.343	0.353
Other (glue consumption)	0.191	0.230	0.244	0.273	0.341	0.551	0.653
2.G.4 Other product use		·			·		
(Use of tobacco)	0.041	0.115	0.031	0.023	0.012	0.010	0.010
Total Indirect Emissions	7.362	7.723	12.655	11.871	10.622	8.718	8.026

Gg CO ₂ eq.	2022	2023			
2.D.3. Solvent and Other					
Product Use	6.078	6.644			
Dry cleaning	0.052	0.081			
Coating applications	3.395	3.733			
Chemical products	0.167	0.245			
Asphalt roofing	0.003	0.003			

Domestic solvent use	1.871	1.938			
Road paving with asphalt	0.000	0.000			
Printing	0.357	0.359			
Other (glue consumption)	0.232	0.285			
2.G.4 Other product use					
(Use of tobacco)	0.010	0.009			
Total Indirect Emissions	6.088	6.653			

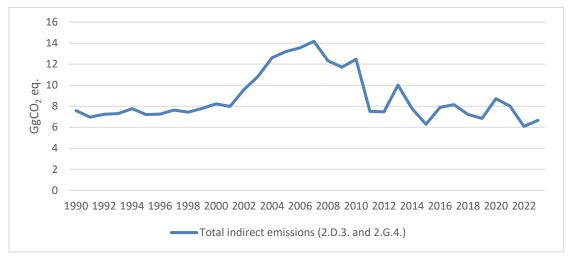


Figure 9.1. Emissions from Solvent and Other Product Use (2.D.3. and 2.G.4.) 1990–2023

9.1.1 Methodological Issues

2.D.3. Solvent and Other Product Use

Carbon dioxide emissions from other product use are calculated from NMVOC emissions (Table 9.2), assuming that the carbon content of NMVOC (C) is 60% (carbon content fractions for NMVOCs from road paving with asphalt is 50% and from asphalt roofing is 80% 86). NMVOC emissions are obtained from the Department of Labour Inspection, which is responsible for the preparation of the air pollutants inventory for Directive 2001/81/EC. The estimation of NMVOC emissions is based on the CONINAIR methodology. Therefore, the equation applied for the estimation of the CO₂ emissions is the following:

 CO_2 emissions (Gg) = C * NMVOC emissions (Gg) * 44/12

Table 9.2. NMVOCs emissions used for the estimation of CO₂ emissions from Solvent use (2D3)

	1990	1991	1992	1993	1994	1995
Dry cleaning	0.2002	0.2003	0.2003	0.2004	0.2005	0.2006
Coating applications	1.7387	1.4241	1.5170	1.5202	1.7083	1.4102
Chemical products	0.4134	0.4239	0.4354	0.4470	0.4569	0.4659
Asphalt roofing	0.0325	0.0325	0.0325	0.0325	0.0325	0.0325
Domestic solvent use	0.5472	0.5611	0.5763	0.5917	0.6048	0.6167
Road paving with						
asphalt	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
Printing	0.2920	0.2920	0.2920	0.2920	0.2920	0.2920
Other (glue						
consumption)	0.0867	0.0889	0.0914	0.0938	0.0959	0.0978

	1996	1997	1998	1999	2000	2001
Dry cleaning	0.2007	0.2008	0.2009	0.2012	0.2021	0.2005
Coating applications	1.4097	1.5604	1.4476	1.4578	1.6020	1.4785

⁸⁶ 2006 IPCC Guidelines volume 3, p. 5.16.

-

<u></u>	1 1		T		T	
Chemical products	0.4738	0.4810	0.4874	0.4930	0.4985	0.5036
Asphalt roofing	0.0325	0.0325	0.0325	0.0325	0.0366	0.0298
Domestic solvent use	0.6272	0.6367	0.6452	0.6525	0.6598	0.6666
Road paving with						0.00.10
asphalt	0.0075	0.0075	0.0075	0.0075	0.0084	0.0069
Printing	0.2920	0.2920	0.2920	0.3273	0.3355	0.3801
Other (glue	0.0004	0.1000	0.1022	0.1024	0.1046	0.1055
consumption)	0.0994	0.1009	0.1023	0.1034	0.1046	0.1057
	2002	2002	2004	2005	2006	2007
Der alaanina	2002 0.2004	2003 0.2001	2004 0.1998	2005 0.1930	2006	2007
Dry cleaning Coating applications	2.2579	2.8364	3.5522	3.8150	0.1100 4.0272	0.1110 4.3205
Chemical products	0.5093	0.5152	0.5219	0.5292	0.5371	0.5472
Asphalt roofing	0.3093	0.0308	0.0368	0.0293	0.0265	0.0246
Domestic solvent use	0.6742	0.6820	0.6908	0.0293	0.0203	0.0240
Road paving with	0.0742	0.0820	0.0908	0.7003	0.7110	0.7243
asphalt	0.0075	0.0071	0.0085	0.0068	0.0061	0.0057
Printing	0.3075	0.2884	0.3399	0.3446	0.3628	0.3195
Other (glue	0.5075	0.2004	0.3377	0.5440	0.3020	0.3173
consumption)	0.1069	0.1081	0.1095	0.1110	0.1127	0.1148
consumption)	0.1007	0.1001	0.1073	0.1110	0.1127	0.1140
	2008	2009	2010	2011	2012	2013
Dry cleaning	0.0789	0.0602	0.0605	0.0600	0.0539	0.0265
Coating applications	3.3507	3.1421	3.4997	1.1160	1.1342	0.9821
Chemical products	0.5604	0.5753	0.5914	0.6062	0.6223	2.0852
Asphalt roofing	0.0233	0.0396	0.0529	0.0516	0.0403	0.0213
Domestic solvent use	0.7419	0.7615	0.7828	0.8025	0.8237	1.2035
Road paving with	0.7417	0.7013	0.7020	0.0023	0.0237	1.2033
asphalt	0.0054	0.0091	0.0122	0.0119	0.0093	0.0049
Printing	0.4469	0.3260	0.2464	0.3347	0.2658	0.2072
Other (glue	011105	0.0200	0.2.0.	0.00 . ,	0.2000	0.2072
consumption)	0.1176	0.1207	0.1241	0.1272	0.1306	0.0029
,						
	2014	2015	2016	2017	2018	2019
Dry cleaning	0.0262	0.0527	0.0261	0.0132	0.0262	0.0267
Coating applications	0.8677	1.0721	1.1182	1.2681	1.4052	1.4971
Chemical products	2.0662	2.0397	0.0645	0.9791	0.3118	0.1231
Asphalt roofing	0.0098	0.0086	0.0089	0.0111	0.0145	0.0112
Domestic solvent use	1.1925	1.2378	0.9291	0.9011	0.9794	1.0068
Road paving with						
asphalt	0.0023	0.0020	0.0020	0.0026	0.0033	0.0026
Printing	0.2618	0.2526	0.2650	0.2655	0.2273	0.2458
Other (glue						
\0						
consumption)	0.0029	0.1548	0.2332	0.2131	0.3030	0.1910
	0.0029	0.1548	0.2332	0.2131	0.3030	0.1910
consumption)	2020	2021	2022	2023	0.3030	0.1910
consumption) Dry cleaning	2020 0.0265	2021 0.0269	2022 0.0239	2023 0.0367	0.3030	0.1910
consumption) Dry cleaning Coating applications	2020 0.0265 1.4389	2021 0.0269 1.5295	2022 0.0239 1.5430	2023 0.0367 1.6967	0.3030	0.1910
Coating applications Chemical products	2020 0.0265 1.4389 0.2009	2021 0.0269 1.5295 0.1872	2022 0.0239 1.5430 0.0760	2023 0.0367 1.6967 0.1112	0.3030	0.1910
Consumption) Dry cleaning Coating applications Chemical products Asphalt roofing	2020 0.0265 1.4389 0.2009 0.0103	2021 0.0269 1.5295 0.1872 0.0103	2022 0.0239 1.5430 0.0760 0.0011	2023 0.0367 1.6967 0.1112 0.0011	0.3030	0.1910
Consumption) Dry cleaning Coating applications Chemical products Asphalt roofing Domestic solvent use	2020 0.0265 1.4389 0.2009	2021 0.0269 1.5295 0.1872	2022 0.0239 1.5430 0.0760	2023 0.0367 1.6967 0.1112	0.3030	0.1910
Consumption) Dry cleaning Coating applications Chemical products Asphalt roofing Domestic solvent use Road paving with	2020 0.0265 1.4389 0.2009 0.0103 1.8700	2021 0.0269 1.5295 0.1872 0.0103 1.4268	2022 0.0239 1.5430 0.0760 0.0011 0.8503	2023 0.0367 1.6967 0.1112 0.0011 0.8808	0.3030	0.1910
consumption) Dry cleaning Coating applications Chemical products Asphalt roofing Domestic solvent use Road paving with asphalt	2020 0.0265 1.4389 0.2009 0.0103 1.8700 0.0024	2021 0.0269 1.5295 0.1872 0.0103 1.4268	2022 0.0239 1.5430 0.0760 0.0011 0.8503	2023 0.0367 1.6967 0.1112 0.0011 0.8808	0.3030	0.1910
consumption) Dry cleaning Coating applications Chemical products Asphalt roofing Domestic solvent use Road paving with asphalt Printing	2020 0.0265 1.4389 0.2009 0.0103 1.8700	2021 0.0269 1.5295 0.1872 0.0103 1.4268	2022 0.0239 1.5430 0.0760 0.0011 0.8503	2023 0.0367 1.6967 0.1112 0.0011 0.8808	0.3030	0.1910
consumption) Dry cleaning Coating applications Chemical products Asphalt roofing Domestic solvent use Road paving with asphalt	2020 0.0265 1.4389 0.2009 0.0103 1.8700 0.0024	2021 0.0269 1.5295 0.1872 0.0103 1.4268	2022 0.0239 1.5430 0.0760 0.0011 0.8503	2023 0.0367 1.6967 0.1112 0.0011 0.8808	0.3030	0.1910

2.G.4. Other Product Use

Carbon dioxide emissions from Other product use are calculated from NMVOC emissions (Table 9.3), assuming that the carbon content of NMVOC is 60% ⁸⁷. NMVOC emissions are obtained from the Department of Labour Inspection, which is responsible for the preparation of the air pollutants inventory for Directive 2001/81/EC. The estimation of NMVOC emissions is based on the CONINAIR methodology. Therefore, the equation applied for the estimation of the CO₂ emissions is the following:

 CO_2 emissions (Gg) = 60% * NMVOC emissions (Gg) * 44/12

Table 9.3. NMVOCs emissions used for the estimation of CO_2 emissions from Other Product

	Use (2G4)							
Gg	1990	1991	1992	1993	1994	1995	1996	1997
Other	0.0185	0.0185	0.0202	0.0056	0.0056	0.0163	0.0173	0.0193
	1998	1999	2000	2001	2002	2003	2004	2005
Other	0.0197	0.0275	0.0518	0.0159	0.0149	0.0107	0.0160	0.0139
	2006	2007	2008	2009	2010	2011	2012	2013
Other	0.0087	0.0091	0.0088	0.0098	0.0105	0.0086	0.0093	0.0073
	2014	2015	2016	2017	2018	2019	2020	2021
Other	0.0029	0.0054	0.0051	0.0056	0.0049	0.0051	0.0044	0.0047
	2022	2023						
Other	0.0044	0.0041						

9.1.2. Uncertainties and time-series consistency

The results of the uncertainty analysis undertaken for the GHG emissions inventory of Cyprus are presented in Section 1.5, while the detailed calculations are presented in Annex 2.

9.1.3. Category-specific QA/QC and verification

QA/QC and verification activities are presented in Section 1.2.3. No sector-specific QA/QC and verification activities are applied for this sector.

9.1.4. Category-specific recalculations

2.D.3. Solvent and Other Product Use

 CO_2 emissions have been recalculated mainly with reference to 2.D.3. (Domestic Solvent Use). The values of NMVOCS are taken from the Cyprus Informative Inventory Report. The impact of recalculations on emissions is shown in Table 9.4 and Figure 9.2.

Table 9.4. Recalculations from Indirect CO₂ emissions (Gg CO₂ eq.)

	1990	1991	1992	1993	1994	1995	1996
NIR2024	7.58	6.96	7.25	7.30	7.78	7.20	7.26
NIR2025	7.36	6.73	7.00	7.04	7.51	6.93	6.97
Change	-2.9%	-3.3%	-3.4%	-3.5%	-3.4%	-3.8%	-3.9%
	1997	1998	1999	2000	2001	2002	2003
NIR2024	7.64	7.44	7.79	8.23	7.99	9.59	10.84

 $^{^{87}}$ 2006 IPCC Guidelines volume 3, p. 5.17, the default fossil carbon content fraction of NMVOC is 60 per cent by mass

-

NIR2025	7.35	7.14	7.29	7.72	7.47	9.07	10.31
Change	-3.8%	-4.0%	-6.5%	-6.2%	-6.5%	-5.4%	-4.9%
	2004	2005	2006	2007	2008	2009	2010
NIR2024	12.61	13.20	13.55	14.17	12.32	11.71	12.48
NIR2025	12.07	12.65	13.00	13.60	11.75	11.12	11.87
Change	-4.2%	-4.1%	-4.1%	-4.0%	-4.7%	-5.0%	-4.9%
	2011	2012	2013	2014	2015	2016	2017
NIR2024	7.52	7.46	10.00	7.79	6.28	7.90	8.14
NIR2025	6.89	6.82	10.00	9.76	10.62	5.84	8.06
Change	-8.3%	-8.6%	0.0%	25.2%	69.2%	-26.1%	-1.1%
	2018	2019	2020	2021	2022		
NIR2024	7.22	6.85	8.71	8.02	6.18		
NIR2025	7.22	6.85	8.72	8.03	6.09		
Change	0.0%	0.0%	0.1%	0.1%	-1.5%		

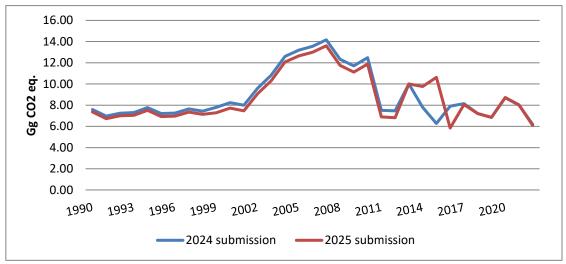


Figure 9.2. Recalculations from Indirect CO₂ emissions (Gg CO₂ eq.)

Chapter 10.

Recalculations and improvements

10.1. Explanations and justifications for recalculations

The recalculations made are driven by the results of the various review processes, QC checks and internal audits, and the ERT reviews of the annual submissions of Cyprus by the nominated experts from the UNFCCC. In the 2023 submission, several recalculations were implemented as a result of the following:

- Changes or refinements in methods: A methodological change occurs when an inventory agency uses a different tier to estimate emissions from a source category (e.g. for key source categories) or when it moves from a tier described in the IPCC Guidelines to a national method. Methodological changes are often driven by the development of new and different data sets. A methodological refinement occurs when an inventory agency uses the same tier to estimate emissions but applies it using a different data source or a different level of aggregation.
- <u>Inclusion of new sources:</u> A new source is defined as a source for which estimates (all or some gases) did not exist in previous inventories either due to lack of data or because it has just been identified.
- <u>Allocation</u>: Changes in allocation of emissions to different sectors or sources/sub-sources.
- <u>Correction of errors:</u> This case concerns errors during calculating emissions (e.g. transcript errors)
 or while filling in the required information in the CRT tables. Resolving inconsistencies is also
 included in this category.
- Updated activity data.
- Change of GWP values of gases according to the new Assessment Report (AR5)

10.2. Implications for emission levels

The justification of the recalculations made in the present submission as far as the preparation of GHG inventory is concerned has been presented in details in Chapters 3-7. In Table 10.1 the effect of the recalculations made on the total GHG emissions in Cyprus on a per sector basis is presented.

Table 10.1. Comparison of NIR2024 to NIR2025, in kt CO2 eq.

NIR2024	1990	1991	1992	1993	1994	1995
1. Energy	3952.50	4485.04	4808.67	4985.59	5197.89	5105.05
2. IPPU	727.93	687.86	762.12	833.50	870.22	839.71
3. Agriculture	454.74	461.29	491.51	519.70	514.25	544.36
4. LULUCF	-153.07	-166.99	-172.65	-174.81	-183.36	-180.05
5. Waste	435.18	440.71	449.08	459.80	472.74	481.39
Total (incl. LULUCF)	5570.35	6074.90	6511.38	6798.58	7055.11	6970.52
Total (excl. LULUCF)	5417.28	5907.91	6338.73	6623.77	6871.75	6790.48
NIR2025	1990	1991	1992	1993	1994	1995
1. Energy	3955.24	4486.90	4810.19	4985.64	5195.44	5100.38
2. IPPU	727.93	687.86	762.12	833.49	870.23	839.71
3. Agriculture	454.74	461.29	491.51	519.70	514.25	544.36
4. LULUCF	-153.07	-166.98	-172.65	-174.80	-183.35	-180.03
5. Waste	435.18	440.71	449.08	459.80	472.74	481.39
Total (incl. LULUCF)	5573.09	6076.75	6512.90	6798.63	7052.66	6965.84
Total (excl. LULUCF)	5420.02	5909.76	6340.25	6623.82	6869.31	6785.81
Difference						
1. Energy	0.07%	0.04%	0.03%	0.00%	-0.05%	-0.09%
2. IPPU	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
3. Agriculture	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
4. LULUCF	0.00%	0.00%	0.00%	0.00%	-0.01%	-0.01%

5. Waste	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total (incl. LULUCF)	0.05%	0.03%	0.00%	0.00%	-0.03%	-0.07%
Total (excl. LULUCF)	0.05%	0.03%	0.02%	0.00%	-0.04%	-0.07%
Total (cael. Ec Ec Cl)	0.0570	0.0370	0.0270	0.0070	0.0170	0.0770
NIR2024	1996	1997	1998	1999	2000	2001
1. Energy	5400.03	5523.11	5865.32	6130.61	6355.20	6249.67
2. IPPU	904.12	876.05	840.12	852.95	882.17	875.28
3. Agriculture	551.74	541.38	543.56	534.94	542.91	586.21
4. LULUCF	-185.37	-184.23	-190.51	-198.40	-142.53	-168.62
5. Waste	487.64	497.08	504.51	513.07	523.24	533.60
Total (incl. LULUCF)	7343.52	7437.62	7753.51	8031.57	8303.52	8244.76
Total (excl. LULUCF)	7158.15	7253.39	7563.01	7833.17	8160.99	8076.14
NIR2025	1996	1997	1998	1999	2000	2001
1. Energy	5393.40	5514.13	5854.56	6116.57	6341.69	6231.79
2. IPPU	904.12	876.05	840.12	852.94	882.17	875.27
3. Agriculture	551.74	541.38	543.56	534.94	542.91	586.21
4. LULUCF	-185.36	-184.22	-190.49	-198.38	-142.51	-168.60
5. Waste	487.64	497.08	504.51	513.07	523.24	533.60
Total (incl. LULUCF)	7336.90	7428.64	7742.75	8017.53	8290.01	8226.88
Total (excl. LULUCF)	7151.54	7244.43	7552.26	7819.15	8147.51	8058.28
Difference	0.4204	0.4.50/	0.400/	0.220/	0.2104	0.2004
1. Energy	-0.12%	-0.16%	-0.18%	-0.23%	-0.21%	-0.29%
2. IPPU	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
3. Agriculture	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
4. LULUCF	-0.01%	-0.01%	-0.01%	-0.01%	-0.01%	-0.01%
5. Waste	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total (incl. LULUCF)	-0.09% -0.09%	-0.12% -0.12%	-0.14% -0.14%	-0.17% -0.18%	-0.16% -0.17%	-0.22%
Total (excl. LULUCF)	-0.09%	-0.12%	-0.14%	-0.18%	-0.17%	-0.22%
NIR2024	2002	2003	2004	2005	2006	2007
1. Energy	2002 6410.69	2003 6801.44	2004 6941.75	2005 7139.72	2006 7324.45	2007 7646.31
1. Energy 2. IPPU	6410.69 918.24	6801.44 932.75	6941.75 1014.78	7139.72 1003.19	7324.45 1059.55	7646.31 1072.03
1. Energy 2. IPPU 3. Agriculture	6410.69 918.24 609.97	6801.44 932.75 592.67	6941.75 1014.78 572.69	7139.72 1003.19 525.54	7324.45 1059.55 531.15	7646.31 1072.03 529.50
1. Energy 2. IPPU 3. Agriculture 4. LULUCF	6410.69 918.24 609.97 -201.96	6801.44 932.75 592.67 -214.05	6941.75 1014.78 572.69 -214.59	7139.72 1003.19 525.54 -220.87	7324.45 1059.55 531.15 -222.53	7646.31 1072.03 529.50 -182.94
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	6410.69 918.24 609.97 -201.96 541.54	6801.44 932.75 592.67 -214.05 544.68	6941.75 1014.78 572.69 -214.59 548.53	7139.72 1003.19 525.54 -220.87 557.57	7324.45 1059.55 531.15 -222.53 557.86	7646.31 1072.03 529.50 -182.94 559.92
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44	6801.44 932.75 592.67 -214.05 544.68 8871.55	6941.75 1014.78 572.69 -214.59 548.53 9077.76	7139.72 1003.19 525.54 -220.87 557.57 9226.01	7324.45 1059.55 531.15 -222.53 557.86 9473.01	7646.31 1072.03 529.50 -182.94 559.92 9807.77
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Difference 1. Energy	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% 0.00%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% 0.00%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% 0.00%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% 0.00%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.00%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% -0.00% -0.02%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.00%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.00%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.01% 0.00%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% 0.00% -0.02% 0.00%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02% 0.00%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02% 0.00%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.02% 0.00%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.03% 0.00%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.00% -0.01% 0.00% -0.23% -0.23%	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% 0.00% -0.02% 0.00% -0.25% -0.26%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02% 0.00% -0.02% -0.04% -0.04%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02% 0.00% -0.12% -0.12%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.00% -0.00% -0.07% -0.07%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.00% -0.03% 0.00% -0.34% -0.35%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Uifference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.01% 0.00% -0.23% -0.23% 2008	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% 0.00% -0.02% 0.00% -0.25% -0.26%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02% 0.00% -0.02% -0.04% -0.04% -0.04%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02% 0.00% -0.12% -0.12%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.00% -0.00% -0.07% -0.07% -0.07%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.03% 0.00% -0.34% -0.35%
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.01% 0.00% -0.23% -0.23% 2008 7859.01	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% -0.00% -0.02% 0.00% -0.25% -0.26% 2009 7788.16	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02% 0.00% -0.02% -0.04% -0.04% -0.04%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02% 0.00% -0.12% -0.12% 2011 7255.22	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.02% 0.00% -0.07% -0.07% 2012 6772.66	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.03% 0.00% -0.34% -0.35% 2013 5849.91
1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) Uifference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF) 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	6410.69 918.24 609.97 -201.96 541.54 8480.44 8278.47 2002 6391.43 918.24 609.97 -201.94 541.54 8461.18 8259.24 -0.30% 0.00% -0.01% 0.00% -0.23% -0.23% 2008	6801.44 932.75 592.67 -214.05 544.68 8871.55 8657.49 2003 6779.11 932.75 592.67 -214.02 544.68 8849.20 8635.19 -0.33% 0.00% 0.00% -0.02% 0.00% -0.25% -0.26%	6941.75 1014.78 572.69 -214.59 548.53 9077.76 8863.17 2004 6938.54 1014.78 572.69 -214.55 548.53 9074.54 8859.99 -0.05% 0.00% -0.02% 0.00% -0.02% -0.04% -0.04% -0.04%	7139.72 1003.19 525.54 -220.87 557.57 9226.01 9005.14 2005 7129.10 1003.19 525.54 -220.83 557.57 9215.40 8994.57 -0.15% 0.00% -0.02% 0.00% -0.12% -0.12%	7324.45 1059.55 531.15 -222.53 557.86 9473.01 9250.47 2006 7317.73 1059.55 531.15 -222.49 557.86 9466.28 9243.79 -0.09% 0.00% -0.00% -0.00% -0.07% -0.07% -0.07%	7646.31 1072.03 529.50 -182.94 559.92 9807.77 9624.83 2007 7612.99 1072.03 529.50 -182.89 559.92 9774.43 9591.55 -0.44% 0.00% -0.00% -0.03% 0.00% -0.34% -0.35%

4. LULUCF	-249.89	-277.70	-265.08	-300.82	-293.66	-297.33
5. Waste	570.25	577.38	583.92	588.96	599.05	609.15
Total (incl. LULUCF)	10031.23	9795.93	9460.23	9162.61	8628.51	7921.43
Total (excl. LULUCF)	9781.34	9518.23	9195.15	8861.79	8334.85	7624.11
NIR2025	2008	2009	2010	2011	2012	2013
1. Energy	7829.24	7748.43	7516.29	7254.07	6767.31	5842.15
2. IPPU	1093.84	929.89	809.86	811.54	772.13	1013.20
3. Agriculture	508.12	500.49	514.80	506.90	484.68	449.17
4. LULUCF	-249.84	-277.65	-265.04	-300.78	-293.62	-297.29
5. Waste	570.25	577.38	583.92	588.96	599.05	609.15
Total (incl. LULUCF)	10001.45	9756.19	9424.88	9161.46	8623.16	7913.67
Total (excl. LULUCF)	9751.61	9478.54	9159.84	8860.68	8329.54	7616.38
Difference						
1. Energy	-0.38%	-0.51%	-0.47%	-0.02%	-0.08%	-0.13%
2. <i>IPPU</i>	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
3. Agriculture	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
4. LULUCF	-0.02%	-0.02%	-0.02%	-0.01%	-0.01%	-0.01%
5. Waste	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total (incl. LULUCF)	-0.30%	-0.41%	-0.37%	-0.01%	-0.06%	-0.10%
Total (excl. LULUCF)	-0.30%	-0.42%	-0.38%	-0.01%	-0.06%	-0.10%
, , , , , , , , , , , , , , , , , , , ,						
NIR2024	2014	2015	2016	2017	2018	2019
1. Energy	5997.56	6121.94	6498.48	6581.02	6515.56	6570.34
2. IPPU	1241.76	1157.03	1185.19	1248.90	1197.29	1168.96
3. Agriculture	437.17	441.85	462.39	476.12	481.80	495.53
4. LULUCF	-299.15	-296.14	-190.93	-307.07	-302.35	-297.07
5. Waste	619.19	623.02	626.15	633.61	643.33	654.18
Total (incl. LULUCF)	8295.68	8343.85	8772.20	8939.65	8837.98	8889.02
Total (excl. LULUCF)	7996.53	8047.70	8581.27	8632.58	8535.63	8591.94
, _ com (cheil Lolloci)	1770.33	0077.70	0301.27	0032.30	6555.05	0571.74
NIR2025	2014	2015	2016	2017	2018	2019
NIR2025	2014	2015	2016	2017	2018	2019
NIR2025 1. Energy	2014 5973.19	2015 6097.70	2016 6488.46	2017 6568.77	2018 6495.10	2019 6548.31
NIR2025 1. Energy 2. IPPU	2014 5973.19 1241.75	2015 6097.70 1157.02	2016 6488.46 1185.18	2017 6568.77 1248.89	2018 6495.10 1198.37	2019 6548.31 1170.76
NIR2025 1. Energy 2. IPPU 3. Agriculture	2014 5973.19 1241.75 437.17	2015 6097.70 1157.02 441.85	2016 6488.46 1185.18 462.38	2017 6568.77 1248.89 476.12	2018 6495.10 1198.37 481.79	2019 6548.31 1170.76 495.52
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF	2014 5973.19 1241.75 437.17 -299.11	2015 6097.70 1157.02 441.85 -296.11	2016 6488.46 1185.18 462.38 -190.89	2017 6568.77 1248.89 476.12 -307.03	2018 6495.10 1198.37 481.79 -302.31	2019 6548.31 1170.76 495.52 -297.04
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	2014 5973.19 1241.75 437.17 -299.11 619.19	2015 6097.70 1157.02 441.85 -296.11 623.02	2016 6488.46 1185.18 462.38 -190.89 626.15	2017 6568.77 1248.89 476.12 -307.03 633.61	2018 6495.10 1198.37 481.79 -302.31 643.33	2019 6548.31 1170.76 495.52 -297.04 654.18
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% 0.00% -0.01%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00%	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% -0.00%	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% 0.00% -0.01% 0.00%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00%	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00%	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.01% 0.00%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.01%	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11%	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% 0.00% -0.01% 0.00% -0.29% -0.30%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30%	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12%	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.01% 0.00%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2021	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11%	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% 0.00% -0.01% 0.00% -0.29% -0.30%	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Total (excl. LULUCF)	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79 8216.22	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55 8482.19	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29 8472.88	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF SIPPU 3. Agriculture 4. LULUCF Total (excl. LULUCF) Total (excl. LULUCF) Total (incl. LULUCF) 5. Waste	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79 8216.22 2020	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55 8482.19 2021	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29 8472.88 2022	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF NIR2024 1. Energy 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79 8216.22 2020 6039.19	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55 8482.19 2021 6092.14	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29 8472.88 2022 6210.45	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) NIR2025 1. Energy 2. IPPU NIR2025 1. Energy 2. IPPU	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79 8216.22 2020 6039.19 1268.32	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55 8482.19 2021 6092.14 1290.19	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29 8472.88 2022 6210.45 1324.48	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00% -5.31%
NIR2025 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) Difference 1. Energy 2. IPPU 3. Agriculture 4. LULUCF 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2024 1. Energy 2. IPPU 3. Agriculture 4. LULUCF NIR2024 1. Energy 5. Waste Total (incl. LULUCF) Total (excl. LULUCF) NIR2025 1. Energy	2014 5973.19 1241.75 437.17 -299.11 619.19 8271.30 7972.20 -0.41% 0.00% -0.00% -0.01% 0.00% -0.29% -0.30% 2020 6063.73 1266.17 531.54 -298.58 653.35 8514.79 8216.22 2020 6039.19	2015 6097.70 1157.02 441.85 -296.11 623.02 8319.60 8023.49 -0.40% 0.00% -0.01% 0.00% -0.29% -0.30% 2021 6225.90 1284.79 546.27 -235.35 660.59 8717.55 8482.19 2021 6092.14	2016 6488.46 1185.18 462.38 -190.89 626.15 8762.17 8571.28 -0.15% 0.00% 0.00% -0.02% 0.00% -0.11% -0.12% 2022 6260.04 1313.34 533.60 -299.41 665.31 8772.29 8472.88 2022 6210.45	2017 6568.77 1248.89 476.12 -307.03 633.61 8927.40 8620.37 -0.19% 0.00% -0.00% -0.01% 0.00% -0.14%	2018 6495.10 1198.37 481.79 -302.31 643.33 8818.59 8516.28 -0.31% 0.09% -0.01% 0.00% -0.01%	2019 6548.31 1170.76 495.52 -297.04 654.18 8417.41 8120.37 -0.34% 0.15% 0.00% -0.01% 0.00%

5. Waste	653.35	660.59	667.16		
Total (incl. LULUCF)	8061.10	8177.02	8336.76		
Total (excl. LULUCF)	7762.56	7941.69	8037.37		
Difference					
1. Energy	-0.40%	-2.15%	-0.79%		
2. IPPU	0.17%	0.42%	0.85%		
3. Agriculture	0.00%	0.00%	-0.94%		
4. LULUCF	-0.01%	-0.01%	-0.01%		
5. Waste	0.00%	0.00%	0.28%		
Total (incl. LULUCF)	-5.33%	-6.20%	-4.96%		
Total (excl. LULUCF)	-5.52%	-6.37%	-5.14%		

10.3. Implications for emission trends

The emission trends for the period 1990 –2022 according to the inventories submitted in 2025 and 2024 are shown in Figure 10.1 (LULUCF excluded). Emission trends for the period have not been affected significantly by the recalculations because in most cases the recalculations concerned the whole period.

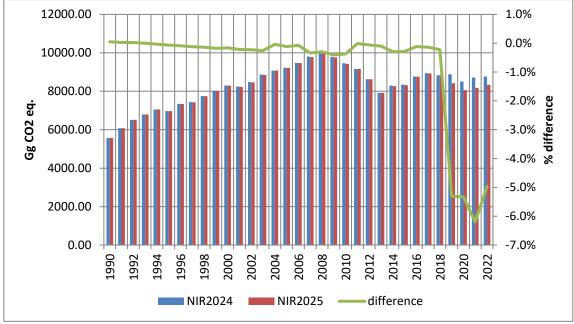


Figure 10.1. Comparison of NIR2024 to NIR2025, LULUCF excluded [kt CO2 eq.]

10.4. Planned improvements

An inventory improvement procedure is in place, which utilises:

- the recommendations from UNFCCC ERT reports,
- the annual QA/QC checks of the inventory by EU under the Monitoring Mechanism Regulation (MMR),
- the recommendations of 2017 comprehensive review of national greenhouse gas inventory data pursuant to Article 19(1) of Regulation (EU) No 525 (MMR),
- the findings of independent audits carried out by local experts at the end of each year,
- the output of key category analysis, uncertainty analysis and QA/QC procedures.

These serve as a basis to prioritise, plan and materialize future improvements and recalculations. As mentioned above, details on the resultant recalculations and improvements planned per source/sink category have been presented in the respective chapters (Chapters 3-7).

Finally, it should be mentioned that the results and the proposals that will arise from the review of the present inventory, within the technical review process defined in relevant decisions of the Conference of the Parties, will be integrated in the plan for the improvement of the GHG emissions inventory.

Chapter 11.

Information on changes in national system

The national inventory arrangements and the QA/QC procedures have been restructured in 2017, to meet the requirements of CMP and COP Decisions relevant to national systems and QA/QC. The most important change is that the legal framework defining the roles-responsibilities and the co-operation between the DoE Inventory team and the designated contact points of the competent Ministries was formalized by the Council of Ministers' Decision adopted 15/11/2017 and entitled "Structure and operation of the National Greenhouse Gases Inventory System- Roles and Responsibilities". The abovementioned Decision includes a description of each entity's responsibilities concerning the inventory preparation, data providing or other relative information. This formal framework has improved the collaboration between the entities involved, assuring the timely collection and quality of the activity data required and solving data access restriction problems raised due to confidentiality issues.

Chapter 12.

Information on changes in national registry

The information regarding the National Registry that should be included in the NIR in accordance decision 5/CMP.1 and the annex to decision 13/CMP.1 in conjunction with decision 3/CMP.11 and other relevant provisions and standards are presented in the following table.

Cyprus national registry has been fully connected to the ITL.

Also, about the national registry:

- No discrepancies have been identified by the transaction log pursuant to paragraph 43 of the annex to decision 13/CMP.1 and paragraph 54 of the annex to decision 5/CMP.1.
- No notification has been received from the Executive Board of the clean development mechanism (CDM) directing the Party to replace ICERs in accordance with paragraph 49 of the annex to decision 5/CMP.1.
- No notification has been received from the Executive Board of the clean development mechanism (CDM) directing the Party to replace ICERs in accordance with paragraph 50 of the annex to decision 5/CMP 1
- No record to report of non-replacement identified by the transaction log in accordance with paragraph 56 of the annex to decision 5/CMP.1.
- All ERUs, CERs, tCERs, ICERs, AAUs and RMUs held in the national registry at the end of 2021 are valid for use towards compliance with commitments under Article 3, paragraph 1, pursuant to paragraph 43 (b) of the annex to decision 13/CMP.1.
- The SEF tables have been completed and submitted as part of the national 2023 GHG NIR submission,
- Publicly accessible registry information is available on the following website http://www.moa.gov.cy/moa/environment/environmentnew.nsf/All/121CAE00B02167ACC22588 B1004174FB?OpenDocument.

Cyprus commitment period reserve (CPR) is 42 705 115 t CO2 eq. which corresponds to 90% of Cyprus' assigned amount calculated pursuant to Article 3, paragraphs 7 and 8, of the Kyoto Protocol. The CPR was calculated in accordance with the annex to decision 18/CP.7, the annex to decision 11/CMP.1 and decision 1/CMP.8, paragraph 18, and can be found in table 4 of Annex I of the review of the report to facilitate the calculation of the assigned amount for the second commitment period of the Kyoto Protocol of Cyprus.

The CPR of Cyprus has not changed since the previous submission, and initial report, as 100 % of eight times Cyprus' most recently reviewed inventory emains higher than 90 % of the assigned amount.

1 Registry Organization & Country or organization? Cyprus 1.1 By what name is your organization known? Department of	FEnvironment
	Finvironment
	griculture, Rural Development and Environment
By what name is your Registry system known? CY Union Reg	
	s: Department of Environment
(Please provide your full address for 1498, Nicosia,	
	2 28th Oktovriou Ave., Engomi, 2414, Nicosia,
Cyprus	: 01 1 1 CG : 1 M T'
	e is 2 hours ahead of Greenwich Mean Time
1.5 Days/hours of Please indicate periods when the system will be	
Days/hours of Please indicate periods when the system will be operation operational, including uptime / downtime.	
1.6 Calendar constraints Please identify critical dates/periods (e.g. service	
deadlines, holidays/reduced service, etc.)	
	Theodoulos MESIMERIS
	tle: Senior Environment Officer /Head of
	n Unit/ National Administrator
the Registry: • Telephone no	umber: +357 22408948
	ss tmesimeris@environment.moa.gov.cy
	ning / expertise in registry system (e.g.
	ministrator, user): National Administrator
• Telephone number • Competence	level in English (e.g. native, fluent, proficient,
• Email address etc.): Proficien	
• Level of training / expertise in registry system	
(e.g. developer, administrator, user)	
• Competence level in English (e.g. native, fluent,	
proficient, etc.)	
Considers Discount 14 to Calle See A to 15 Conserve	
2.2 Secondary Please provide the following details for your technical support. This is the person responsible	
for technical support of your infrastructure and	
networking operation of the Registry:	
networking operation of the Registry.	
• Name	

		 Role / Job title Telephone number Email address Level of training / expertise in registry system (e.g. developer, administrator, user) Competence level in English (e.g. native, fluent, proficient, etc.) 	
2.3	Other possible contacts?	How many other members of staff are regularly involved on a frequent basis?	Two other members of staff are regularly involved on a frequent basis. Person 1: Name: Nicoletta Kythreotou Role / Job title: Environment Officer Telephone number: +357 22408947 Email address: nkythreotou@environment.moa.gov.cy Level of training / expertise in registry system (e.g. developer, administrator, user): National Administrator (2) Competence level in English (e.g. native, fluent, proficient, etc.): Proficient user Person 2: Name: Niki Papaki Role / Job title: Environment Technician Telephone number: +357 22408946 Email address: npapaki@environment.moa.gov.cy Level of training / expertise in registry system (e.g. developer, administrator, user): National Administrator (3) Competence level in English (e.g. native, fluent, proficient, etc.): Independent user

Chapter 13.

Information on minimising adverse impacts in accordance with article 3, paragraph 14

13.1. Introduction

Article 3, paragraph 14, of the Kyoto Protocol requires that Annex I Parties shall strive to meet their commitments under Article 3, paragraph 1 of the Kyoto Protocol in such a way as to minimize adverse social environmental and economic impacts on developing country Parties, particularly those Parties identified in Article 4, paragraphs 8 and 9, of the Convention. Information on how commitments under Article 3, paragraph 14, are being implemented is to be prioritised under a number of actions as set down in section H of the annex to guidelines for the preparation of supplementary information required under Article 7, paragraph 1, of the Kyoto Protocol (Decision 15/CMP.1). These requirements are addressed in this chapter.

13.2. Context

As a Member State of the European Union, Cyprus commitments under the Kyoto Protocol are being implemented under Decision 2005/166/EC, governing joint fulfilment under Article 4, and Decision 280/2004/EC, which covers specific emissions monitoring and reporting requirements. In this context, the minimization of adverse impacts on developing countries is also largely dictated by the European Commission's policy on climate change and by its policies and programmes affecting developing countries. Regulation at the European level also controls or influences market conditions, fiscal incentives, tax and duty exemptions and subsidies in all economic sectors in Member States.

The impact assessment of new policy initiatives has been established in the European Union, which allows their potential adverse social, environmental and economic impacts on various stakeholders, including developing country Parties, to be identified and limited at an early stage within the legislative process. Impact Assessment Guidelines specifically address impacts on third countries and also issues related to international relations. This provides a framework in which Member States like Cyprus can also ensure a high level of protection of the environment and contribute to the integration of environmental considerations into the preparation and adoption of specified plans and programmes with a view to promoting sustainable development.

13.3. Specific Elements

a) The progressive reduction or phasing out of market imperfections, fiscal incentives, tax and duty exemptions and subsidies in all greenhouse-gas-emitting sectors, taking into account the need for energy price reforms to reflect market prices and externalities

The current paragraph includes information on the means used by the country in order to enhance the progressive reduction or phasing out of market imperfections, fiscal incentives, tax and duty exemptions and subsidies that run counter to the objectives of the Convention and on the application of market instruments.

Cyprus, as a Member of the EU, supports and makes the necessary steps to implement the EU Common Agricultural Policy. In the specific policy environmental concerns have been gradually incorporated. Such examples are the including "decoupled" direct payments which have replaced price support; environmental cross compliance; a substantial increase in budget for rural development. As part of 2008

Common Agriculture Policy Health Check, additional part of direct aid has been shifted to climate change, renewable energy, water management, biodiversity, innovation; - transparency of agricultural subsidies has improved. It is important to note that in the other areas most subsidies are within the competence of the country.

The energy market liberalisation (National Laws 122(I)/2003 and 183(I)/2004) has been an important step to create an original internal energy market and can be considered as a mean to address market imperfections and to reflect externalities. The existence of a competitive internal energy market is a strategic instrument both in terms of giving local consumers a choice between different companies supplying gas and electricity at reasonable prices, but also in terms of making the market accessible for all suppliers, especially the smallest and those investing in renewable forms of energy.

At the same time, Cyprus participates in the EU Emissions Trading Scheme, which constitutes an important market instrument to implement the objectives of the Convention and Article 3, paragraph 1 of the Kyoto Protocol which aims at creating the right incentives for forward looking low carbon investment decisions by reinforcing a clear, undistorted and long-term carbon price signal.

Finally, the taxation on energy products and electricity, as defined by the Directive 2003/96/EC, contribute to establishment of rules for the taxation of energy products used as motor or heating fuel, taxes on energy consumption, and common minimum levels of taxation. The Directive has been transposed into Cyprus legislation with Law 91(I)/2004.

(b) Cooperating in the development, diffusion, and transfer of less-greenhouse-gas emitting advanced fossil-fuel technologies, and/or technologies, relating to fossil fuels, that capture and store greenhouse gases, and encouraging their wider use; and facilitating the participation of the least developed countries and other non-Annex I Parties in this effort

Cyprus considers important that EU remains committed to the climate change mitigation, through the international funding. Therefore, Cyprus has already contributed through the direct funding of the EU, with the amount of 1.2 million € for two projects in Nepal and eastern Caribbean. In the fulfilment of the requirements of Article 16 of Regulation (EU) No 525/2013 of the European Parliament and of the Council of 21 May 2013 on a mechanism for monitoring and reporting greenhouse gas emissions and for reporting other information at national and Union level relevant to climate change and repealing Decision No 280/2004/EC, Cyprus submits reports including information regarding funding provided by the Republic of Cyprus to developing countries. No private funding, technology and capacity building have been provided to developing countries since 2013 due to the fact that Cyprus is implementing a macroeconomic adjustment program in order to improve key sectors of the economy as well as its public finances, pursuant to the provisions of the Memorandum of Understanding.

Annexes

to the national inventory report

Annex 1: Key categories

The 2006 IPCC Guidelines defines procedures (in the form of decision trees) for the choice of estimation methods within the context of the IPCC Guidelines. Decision trees formalize the choice of the estimation method most suited to national circumstances while simultaneously considering the need for accuracy and the available resources (both financial and human). It is considered good practice to identify those source categories (key source categories) that have the greatest contribution to overall inventory uncertainty in order to make the most efficient use of available resources.

In that context, a "key source category" is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of direct greenhouse gases in terms of the absolute level of emissions (level assessment) and/or to the trend of emissions (trend assessment).

As far as possible, key source categories should receive special consideration in terms of two important inventory aspects.

- 1. The use of source category-specific good practice methods is preferable, unless resources are unavailable.
- 2. The key source categories should receive additional attention with respect to quality assurance (QA) and quality control (QC).

The determination of the key categories without LULUCF for the Greek inventory system is based on the application of the Tier 1 methodology described in the 2006 IPCC Guidelines, adopting the categorization of sources that is presented in the GLs. Key categories are those which, when summed together in descending order of magnitude, add up to over 95% of total emissions (level assessment) or the trend of the inventory in absolute terms. It should be noted that according to the 2006 IPCC GLs, the trend is estimated on the basis of the base year (1990). The methodology for the determination of key categories with LULUCF is the same as for the one for key sources without LULUCF.

The key categories analysis has been performed for the years 1990 and 2023 on both level and trend analysis basis. Any differences between the key categories in the time-series are due to the fluctuation of the trend in specific categories and refer to trend analysis.

Table A1.1.Key categories analysis without/with LULUCF – Level and trend assessment for 2023

Key categories of emissions and removals	es of emissions and removals Gas Emissions/removals [2023]		Without LULUCF			With LULUCF		
		(ktCO₂ eq)	Level (%)	Trend (%)	Key category	Level (%)	Trend (%)	Key category
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	3,049.9	34.3	9.9	Х	33.0	9.5	х
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CH₄							
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	N ₂ O	3.3	0.0	0.0		0.0	0.0	
1.A.1 Fuel combustion - Energy Industries - Biomass	CH ₄	6.3	0.1	0.0		0.1	0.0	
1 A 1 Fuel combustion. From the dustries. Discusses	N O	0.1	0.0	0.0		0.0	0.0	
1.A.1 Fuel combustion - Energy Industries - Biomass	N₂O	0.1	0.0	0.0		0.0	0.0	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	286.2	3.2	5.7	х	3.1	5.0	х
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CH₄	0.3	0.0	0.0		0.0	0.0	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	N₂O	0.5	0.0	0.0		0.0	0.0	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	101.2	1.1	10.8	х	1.1	9.5	х
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CH ₄	0.3	0.0	0.0		0.0	0.0	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	N₂O	0.4	0.0	0.0		0.0	0.0	

1.A.2 Fuel combustion - Manufacturing Industries and Construction - Other Fossil Fuels	CO ₂	170.3	1.9	6.9	x	1.8	6.1	x
1.A.2 Fuel combustion - Manufacturing Industries and	CH₄	1/0.3	1.9	0.9	^	1.8	0.1	Λ
Construction - Other Fossil Fuels	CI 14	4.0	0.0	0.4		0.0	0.4	
	N O	1.6	0.0	0.1		0.0	0.1	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Other Fossil Fuels	N ₂ O							
		2.0	0.0	0.1		0.0	0.1	
1.A.2 Fuel combustion - Manufacturing Industries and	CH ₄							
Construction - Biomass		1.3	0.0	0.1		0.0	0.0	
1.A.2 Fuel combustion - Manufacturing Industries and	N₂O							
Construction - Biomass		1.6	0.0	0.1		0.0	0.1	
1.A.3.a Domestic Aviation	CO ₂	1.1	0.0	1.6	Х	0.0	1.4	Х
1.A.3.a Domestic Aviation	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.3.a Domestic Aviation	N ₂ O	0.0	0.0	0.0		0.0	0.0	
1.A.3.b Road Transportation	CO ₂	2,139.2	24.1	9.8	Х	23.1	9.2	Х
1.A.3.b Road Transportation	CH ₄	2.5	0.0	0.4		0.0	0.4	
1.A.3.b Road Transportation	N ₂ O	12.0	0.1	0.2		0.1	0.1	
1.A.3.d Domestic Navigation - Liquid Fuels	CO ₂	5.8	0.1	0.1		0.1	0.1	
1.A.3.d Domestic Navigation - Liquid Fuels	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Liquid Fuels	N ₂ O	0.1	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Other Fossil Fuels	CO ₂	0.0	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Other Fossil Fuels	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Other Fossil Fuels	N ₂ O	0.0	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Biomass Fuels	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.3.d Domestic Navigation - Biomass Fuels	N ₂ O	0.0	0.0	0.0		0.0	0.0	
1.A.4 Other Sectors - Liquid Fuels	CO ₂	445.5	5.0	9.7	х	4.8	8.4	Х
1.A.4 Other Sectors - Liquid Fuels	CH ₄	1.5	0.0	0.0		0.0	0.0	

1.A.4 Other Sectors - Liquid Fuels	N ₂ O	0.7	0.0	0.0		0.0	0.0	
1.A.4 Other Sectors - Other Fossil Fuels	CO ₂	0.0	0.0	0.0		0.0	0.0	
1.A.4 Other Sectors - Other Fossil Fuels	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.4 Other Sectors - Other Fossil Fuels	N ₂ O	0.0	0.0	0.0		0.0	0.0	
1.A.4 Other Sectors - Biomass	CH ₄	8.0	0.1	0.2		0.1	0.2	
1.A.4 Other Sectors - Biomass	N ₂ O	0.8	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CO ₂							
		23.1	0.3	0.2		0.2	0.2	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CH ₄							
		0.1	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	N ₂ O							
		0.0	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Other Fossil Fuels	CO ₂							
		0.1	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Other Fossil	CH₄							
Fuels		0.0	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Other Fossil	N ₂ O							
Fuels		0.0	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Biomass	CH ₄	0.0	0.0	0.0		0.0	0.0	
1.A.5 Other (Not specified elsewhere) - Biomass	N ₂ O	0.0	0.0	0.0		0.0	0.0	
2.A.1 Cement Production	CO ₂	938.2	10.6	5.1	х	10.1	4.2	Х
2.A.2 Lime Production	CO ₂	6.0	0.1	0.1		0.1	0.1	
2.A.4 Other Process Uses of Carbonates	CO ₂	16.1	0.2	2.2	Х	0.2	1.9	Х
2.D Non-energy Products from Fuels and Solvent Use	CO ₂							
		5.4	0.1	0.1		0.1	0.0	

2.F.1 Refrigeration and Air conditioning	Aggregate F-gases	401.4	4.5	16.2	x	4.3	14.4	x
2.F.2 Foam Blowing Agents	Aggregate	401.4	4.5	10.2	^	4.5	14.4	^
	F-gases	1.3	0.0	0.1		0.0	0.0	
2.F.3 Fire Protection	Aggregate	1.5	0.0	0.1		0.0	0.0	
	F-gases	9.4	0.1	0.4		0.1	0.3	
2.F.4 Aerosols	Aggregate	J. 1	0.1	0.4		0.1	0.5	
	F-gases	3.0	0.0	0.1		0.0	0.1	
2.G Other Product Manufacture and Use	N ₂ O	6.3	0.1	0.0		0.1	0.0	
2.G Other Product Manufacture and Use	Aggregate	0.5	0.1	0.0		0.1	0.0	
	F-gases	17.8	0.2	0.5		0.2	0.5	х
2. Industrial Proccesses and Produc Use (indirect CO ₂	CO ₂	17.0	0.2	0.5		0.2	0.5	
emissions)		6.7	0.1	0.2		0.1	0.2	
3.A Enteric Fermentation	CH ₄	336.1	3.8	0.6	х	3.6	0.4	Х
3.B Manure Management	CH ₄	75.0	0.8	4.3	Х	0.8	3.8	Х
3.B Manure Management	N ₂ O	68.0	0.8	1.0	Х	0.7	0.9	Х
3.D.1 Direct N2O Emissions From Managed Soils	N ₂ O	33.7	0.4	1.2	Х	0.4	1.1	Х
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O							
		16.9	0.2	0.4		0.2	0.3	
3.F Field burning of agricultural residues	CH₄	0.5	0.0	0.1		0.0	0.1	
3.F Field burning of agricultural residues	N ₂ O	0.1	0.0	0.0		0.0	0.0	
3.H Urea Application	CO ₂	0.2	0.0	0.1		0.0	0.1	
4.A.1 Forest Land Remaining Forest Land	CO ₂	-168.8				1.8	6.1	Х
4.A.2 Land Converted to Forest Land	CO ₂	-19.1				0.2	0.7	Х
4.B.1 Cropland Remaining Cropland	CO ₂	-133.1				1.4	2.8	Х
4.B.2 Land Converted to Cropland	CO ₂	6.1				0.1	0.2	

4.C.1 Grassland Remaining Grassland	CO ₂	-21.6				0.2	0.4	
4.C.2 Land Converted to Grassland	CO ₂	2.0				0.0	0.1	
4.D.2 Land Converted to Wetlands	CO ₂	0.5				0.0	0.0	
4.E.2 Land Converted to Settlements	CO ₂	2.9				0.0	0.1	
4.F.1 Other Land Remaining Other Land	CO ₂							
4.G Harvested Wood Products	CO ₂	19.3				0.2	0.6	Х
4(III).Direct and indirect N2O emissions from N mineralization/immobilization	N ₂ O	0.6				0.0	0.0	
4(IV) Biomass Burning	CH ₄	0.3				0.0	0.0	
4(IV) Biomass Burning	N ₂ O	0.2				0.0	0.0	
4.H Other	CO ₂							
4.H Other	CH₄							
5.A Solid Waste Disposal	CH₄	578.8	6.5	4.4	Х	6.3	4.0	Х
5.B Biological Treatment of Solid Waste	CH ₄	12.3	0.1	0.5		0.1	0.4	
5.B Biological Treatment of Solid Waste	N ₂ O	6.9	0.1	0.3		0.1	0.2	_
5.D Wastewater Treatment and Discharge	CH₄	59.0	0.7	6.0	х	0.6	5.2	Х
5.D Wastewater Treatment and Discharge	N ₂ O	15.3	0.2	0.0		0.2	0.0	

Table A1.2.Key categories analysis without/with LULUCF – Level assessment for 1990

Key categories of emissions and removals	Gas	Emissions/removals [1990]	Withou	it LULUCF	With LULUCF		
		(ktCO₂ eq)	Level (%)	Key category	Level (%)	Key category	
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CO ₂	1,761.5	31.6	Х	30.7	Х	
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	CH₄	1.9	0.0		0.0		
1.A.1 Fuel combustion - Energy Industries - Liquid Fuels	N₂O	3.5	0.1		0.1		
1.A.1 Fuel combustion - Energy Industries - Biomass	CH₄	0.1	0.0		0.0		
1.A.1 Fuel combustion - Energy Industries - Biomass	N₂O	0.1	0.0		0.0		
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CO ₂	270.6	4.8	х	4.7	X	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	CH₄	0.3	0.0		0.0		
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Liquid Fuels	N₂O	0.5	0.0		0.0		
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CO ₂	231.7	4.2	х	4.0	Х	
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	CH₄	0.7	0.0		0.0		
1.A.2 Fuel combustion - Manufacturing Industries and Construction - Solid Fuels	N₂O	1.0	0.0		0.0		
1.A.3.a Domestic Aviation	CO ₂	26.0	0.5		0.5		
1.A.3.a Domestic Aviation	CH₄	0.0	0.0		0.0		
1.A.3.a Domestic Aviation	N₂O	0.2	0.0		0.0		
1.A.3.b Road Transportation	CO ₂	1,191.2	21.3	Х	20.7	Х	
1.A.3.b Road Transportation	CH₄	7.9	0.1		0.1		

1.A.3.b Road Transportation	N ₂ O	10.1	0.2		0.2	
1.A.3.d Domestic Navigation - Liquid Fuels	CO ₂	2.2	0.0		0.0	
1.A.3.d Domestic Navigation - Liquid Fuels	CH₄	0.0	0.0		0.0	
1.A.3.d Domestic Navigation - Liquid Fuels	N ₂ O	0.0	0.0		0.0	
1.A.4 Other Sectors - Liquid Fuels	CO ₂	430.4	7.7	Х	7.5	Х
1.A.4 Other Sectors - Liquid Fuels	CH₄	1.4	0.0		0.0	
1.A.4 Other Sectors - Liquid Fuels	N ₂ O	0.7	0.0		0.0	
1.A.4 Other Sectors - Biomass	CH₄	1.4	0.0		0.0	
1.A.4 Other Sectors - Biomass	N ₂ O	0.2	0.0		0.0	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CO ₂	11.0	0.2		0.2	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	CH ₄	0.0	0.0		0.0	
1.A.5 Other (Not specified elsewhere) - Liquid Fuels	N ₂ O	0.0	0.0		0.0	
1.B.2.a Fugitive Emissions from Fuels - Oil and Natural Gas - Oil	CH ₄					
		0.5	0.0		0.0	
2.A.1 Cement Production	CO ₂	667.7	12.0	Х	11.6	Х
2.A.2 Lime Production	CO ₂	5.3	0.1		0.1	
2.A.4 Other Process Uses of Carbonates	CO ₂	44.1	0.8		0.8	
2.D Non-energy Products from Fuels and Solvent Use	CO ₂	4.2	0.1		0.1	
2.G Other Product Manufacture and Use	N ₂ O	3.9	0.1		0.1	
2.G Other Product Manufacture and Use	Aggregate F-gases	2.7	0.0		0.0	
2. Industrial Proccesses and Produc Use (indirect CO ₂ emissions)	CO ₂	7.6	0.1		0.1	
3.A Enteric Fermentation	CH ₄	220.6	4.0	Х	3.8	Х
3.B Manure Management	CH₄	113.9	2.0	Х	2.0	Х

3.B Manure Management	N ₂ O	58.5	1.0		1.0	Х
3.D.1 Direct N2O Emissions From Managed Soils	N₂O	40.3	0.7		0.7	
3.D.2 Indirect N2O Emissions From Managed Soils	N ₂ O	16.6	0.3		0.3	
3.F Field burning of agricultural residues	CH₄	2.4	0.0		0.0	
3.F Field burning of agricultural residues	N ₂ O	0.6	0.0		0.0	
3.H Urea Application	CO ₂	1.8	0.0		0.0	
4.A.1 Forest Land Remaining Forest Land	CO ₂	1.6			0.0	
4.A.2 Land Converted to Forest Land	CO ₂	-0.1			0.0	
4.B.1 Cropland Remaining Cropland	CO ₂	-134.0			2.3	Х
4.B.2 Land Converted to Cropland	CO ₂	-0.3			0.0	
4.C.1 Grassland Remaining Grassland	CO ₂	-23.4			0.4	
4.C.2 Land Converted to Grassland	CO ₂	0.4			0.0	
4.E.2 Land Converted to Settlements	CO ₂	0.5			0.0	
4.F.2 Land Converted to Other Land	CO ₂	0.1			0.0	
4.G Harvested Wood Products	CO ₂	2.1			0.0	
4(III).Direct and indirect N2O emissions from N	N₂O					
mineralization/immobilization		0.0			0.0	
4(IV) Biomass Burning	CH₄	0.0			0.0	
4(IV) Biomass Burning	N ₂ O	0.0			0.0	
5.A Solid Waste Disposal	CH₄	295.4	5.3	Х	5.1	Х
5.D Wastewater Treatment and Discharge	CH₄	130.0	2.3	Х	2.3	Х
5.D Wastewater Treatment and Discharge	N ₂ O	9.8	0.2		0.2	

Annex 2: Assessment of uncertainty

A2.1: Description of methodology used for identifying uncertainties

Uncertainty analysis constitutes a key activity in the annual inventory cycle. The realisation of such an analysis is foreseen in the reporting guidelines under the Convention and represents a specific function to be performed by a National System (Decision 24/CP.19).

Uncertainty information is not intended to dispute the validity of the inventory estimates, but to help prioritize efforts to improve the accuracy of inventories and guide decisions on methodological choice. This will be achieved with the correct application of the analytic calculating methods at least for the key categories.

There are two methods for the uncertainty estimation suggested by the 2006 IPCC Guidelines; a basic method (Tier 1) which is mandatory and an analytic one (Tier 2).

The Tier 2 methodology is based on Monte Carlo analysis. The principle of Monte Carlo analysis is to select random values of emission factor and activity data from within their individual probability density functions, and to calculate the corresponding emission values. This procedure is repeated many times, and the results of each calculation run build up the overall emission probability density function. Monte Carlo analysis can be performed at the source category level, for aggregations of source categories or for the inventory as a whole. This analysis is suitable for a composite system such as the calculation of GHG emissions in national level. but its application requires significant resources and time.

The application of the Tier 1 methodology for uncertainty analysis is based on the following equations.

A. Uncertainty of total emissions

$$\begin{split} u_{i,g} &= \sqrt{u_{AD,i}^2 + u_{EF,i,g}^2} \\ U_{i,g} &= \frac{u_{i,g} \cdot E_{i,g}}{\sum_{i,g} E_{i,g}} \\ U_{tot} &= \sqrt{\sum_{i,g} U_{i,g}^2} \end{split}$$

where. i is the index referring to emission sources, g is the index referring to GHG, ui.g is the combined uncertainty for emissions of g-gas and i-source, uAD.i is the uncertainty of activity data of the i-source, uEF.i.g is the uncertainty of the emission factor of g-gas and i-source, Ui.g is the uncertainty of the calculated emissions of g-gas and i-source, Ei.g are the emissions of g-gas and i-source and Utot is the uncertainty of total emissions. Uncertainty estimations on activity data (uAD.i) and on the emission factors (uEF.i.g) are based on IPCC defaults using expert judgement and reasoning details and detailed explanation regarding their choice for each sector is presented in reasoning details and detailed explanation regarding their choice for each sector is presented in Table A2.1.

B. Uncertainty in trend in emissions

$$\begin{split} A_{i,g} &= \frac{0,01 \cdot E_{i,g,t} + \sum_{i,g} E_{i,g,t} - \left(0,01 \cdot E_{i,g,0} + \sum_{i,g} E_{i,g,0}\right)}{0,01 \cdot E_{i,g,0} + \sum_{i,g} E_{i,g,0}} \cdot 100 - \frac{\sum_{i,g} E_{i,g,t} - \sum_{i,g} E_{i,g,0}}{\sum_{i,g} E_{i,g,0}} \cdot 100 \\ B_{i,g} &= \frac{E_{i,g,t}}{\sum_{i,g} E_{i,g,0}} \\ TREF_{i,g} &= A_{i,g} \cdot u_{EF,i,g} \\ TRAD_{i} &= B_{i,g} \cdot u_{AD,i} \cdot \sqrt{2} \\ U_{TR} &= \sqrt{\sum_{i,g} TREF_{i,g}^{2} + TRAD_{i,g}^{2}} \end{split}$$

where, t is the index referring to the inventory year, 0 is the index referring to the base year, Ai,g is the difference (%) of emissions of g-gas and i-source in response to a 1% increase of emissions in the base year and inventory year, Ei,g,t emissions of g-gas and i-source in the inventory year, Ei,g, 0 emissions of g-gas and i-source in the base year, Bi,g the difference (%) of emissions of g-gas and i-source in response to a 1% increase of emissions in the inventory year, TREFi,g the contribution of EF uncertainty of g-gas and i-source to the uncertainty in the trend of emissions, TRADi the contribution of AD uncertainty i-source to the uncertainty in the trend of emissions and UTR is the uncertainty in the trend of emissions.

The uncertainty analysis for the Cyprus' GHG inventory is based on Tier 1 methodology with 1990 as base year for CO₂, CH4, N2O and 1995 for F-gases emissions.

Moreover:

- For the estimation of uncertainties per gas, a combination of the information provided by the IPCC and critical evaluation of information from indigenous sources was applied.
- 100% of emissions are used for the uncertainty analysis.
- The uncertainty analysis was carried out both without and with the LULUCF sector.

In Tables A2.2 and A2.3, the analytical calculations of the emissions estimates uncertainty are presented, without the sector of LULUCF for 1990 and 2021.

Table A2.1. Reasoning for activity data and emission factor uncertainty value

IPCC Source	Reasoning for activity data	Reasoning for emission factor uncertainty
category	uncertainty	
Stationary Combustion	5% corresponds to the IPCC default uncertainty range for AD obtained from national energy balances. After 2005 that AD are crosschecked with PS AD from verified EUETS reports (source specific QA/QC), the uncertainty of AD is reduced to 3%.	 CO₂: According to IPCC guidelines the use of default carbon content per fuel corresponds to 95% confidence intervals and the % uncertainty is estimated < 5%. 1990–2004 5%; PS data from verified EU-ETS reports are used for the calculation of EFs for the majority of fuels after 2005. We estimate the EF uncertainty to be 3%. CH₄: In IPCC guidelines is mentioned that the default uncertainty for stationary combustion EF is 50-150%. We select the mean 100%. N₂O: Although in IPCC GPG is mentioned that EF from Table 2.16 may be expected to limit uncertainties to within an order of magnitude. In order to be conservative we select 300% as uncertainty.

IPCC Source category	Reasoning for activity data uncertainty	Reasoning for emission factor uncertainty
Road transport	5% corresponds to the IPCC default uncertainty range for AD obtained from national energy balances.	IPCC defaults are used: 5% for CO ₂ ; 40% for CH ₄ and 50% for N ₂ O
Navigation	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	IPCC defaults are used: 5% for CO ₂ ; 100% for CH ₄ and 300% for N ₂ O
Civil Aviation	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	IPCC defaults are used: 5% for CO_2 ; 100% for CH_4 and 300% for N_2O
Not specified - Mobile	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	IPCC defaults are used: 5% for CO ₂ ; 100% for CH ₄ and 300% for N ₂ O
Oil and Natural gas	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	In IPCC guidelines is mentioned that the EF used may be expected to limit uncertainties to within an order of magnitude. However, in order to be conservative the value 300% is selected for all gases
Cement Production	Plant level production data (2%).	Plant level production data (2%)
Lime Production	Plant level production data (2%).	In IPCC guidelines is mentioned that the EF used may be expected to range between 1-5%. In order to be conservative the value 5% is selected.
Other process uses of carbonates	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	In IPCC guidelines is mentioned that the EF used may be expected to range between 1-5%. In order to be conservative the value 5% is selected.
Non-Energy Products from Fuels and Solvent Use	Activity data obtained from national energy balance. 5% corresponds to the IPCC default uncertainty range.	In IPCC guidelines is mentioned that the EF used may be expected to range between 1-5%. In order to be conservative the value 5% is selected.
Refrigeration and Air Conditioning Equipment	Activity data obtained from national statistics (population, inventory of fluorinated and ozone depleting containing equipment): 5%	Expert judgement; 500%
Foam Blowing	Activity data obtained from national statistics (population): 5%	Expert judgement; 500%
Fire Extinguishers	Activity data obtained from national statistics (population): 5%	Expert judgement; 500%
Aerosols/MDIs	Activity data obtained from national statistics (population): 5%	Expert judgement; 500%
SF ₆ from electrical equipment	Activity data obtained from national statistics (population): 5%	Expert judgement; 500%
N ₂ O from product uses	Uncertainty given by Statistical Service for the population data: 5%	Expert judgement; 500%
Enteric fermentation	Uncertainty given by Statistical Service for the livestock population data: 5%	$\pm 20\%$ proposed by 2006 IPCC guidelines using the Tier 2 method.
Manure management	Uncertainty given by Statistical Service for the livestock population data: 5%	Conservative IPCC values: 30% for CH ₄ and 100% for N ₂ O
Indirect N ₂ O	Uncertainty given by Statistical	Conservative IPCC values: 50% for N ₂ O

IPCC Source category	Reasoning for activity data uncertainty	Reasoning for emission factor uncertainty
emissions	Service for the livestock population data: 20%	
Agricultural soils – direct emissions	Uncertainty given by Statistical Service for the livestock population data: 20%	In IPCC guidelines is mentioned that the EF used may be expected to range between 3-30%. In order to be conservative the value 30% is selected.
Agricultural soils – indirect emissions	Uncertainty given by Statistical Service for the livestock population data: 20%	50% (According to Good Practice Guidance. Page 4.75)
Field burning of agricultural Residues	Uncertainty given by Statistical Service for the livestock population data: 20%	20% (According to Good Practice Guidance. Page 4.82. Table 4.20)
Urea application	Uncertainty given by Statistical Service for the livestock population data: 20%	50% (According to Good Practice Guidance)
Solid waste disposal	IPCC proposes 10-30%. 30% chosen as Cyprus is a country collecting data on regular basis	Estimated based on information from 2006 IPCC guidelines (vol. 5, pg. 3.27, table 3.5) using highest values to be conservative: 30%
Composting	IPCC proposes 10-30%. 30% chosen as Cyprus is a country collecting data on regular basis	Estimated based on information from 2006 IPCC guidelines using highest values to be conservative: 100%
Wastewater handling	Domestic: 30% Industrial: 100%	Estimated 30% based on information in 2006 IPCC guidelines

Table A2.2. Analytical calculations of uncertainty, with LULUCF 2022

i <u>abie A2.2.Anaiyucai ca</u>	···	is of uncert	unity, with	ECECT .	-022						
IPCC category	Gas	Base year emissions or removals	Year x emissions or removals	Activity data uncertainty	Emission factor/estimation parameter uncertainty	Combined uncertainty	Contribution to Variance by Category in Year x	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor/estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
		Input data	Input data	Input data Note A	Input data Note A	$\sqrt{E^2 + F^2}$	$\frac{(G*D)^2}{(\sum D)^2}$	$\frac{D}{\Sigma C}$	I*F Note C	$J * E * \sqrt{2}$ Note D	$K^2 + L^2$
		Gg CO₂ equivalent	Gg CO ₂ equivalent	%	%	%		%	%	%	%
1A1a. Public electricity and heat production	CH4	1.96	3.34	3%	100%	1.0004	0.0000	0.0006	0.0000	0.0000	7.02946E-10
1A1b. Petroleum refining	CH4	0.06	0.00	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	0
1A1c. Manufacture of solid fuels and other energy		0.09	0.06								
industries	CH4			5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	2.62909E-12
1A2b. Non-ferrous metals	CH4	0.00	0.00	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	1.66672E-16
1A2c. Chemicals	CH4	0.00	0.02	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	6.76297E-14
1A2d. Pulp, paper and		0.01	0.00								
print	CH4	0.07	0.16	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	4.9869E-16
1A2e. Food processing, beverages and tobacco	CH4	0.07	0.16	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	7.75739E-12
1A2f. Non-metallic		0.85	3.20	2.0			5.5550			,,,,,,,	
minerals	CH4	0.04	0.10	3%	100%	1.0004	0.0000	0.0006	0.0000	0.0000	6.62757E-10
1A2g. Other	CH4	0.04	0.10	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	1.3229E-12
1A3a. Domestic aviation	CH4	0.01	0.00	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	9.8349E-18
1A3b. Road transportation	CH4	7.84	2.53	5%	40%	0.4031	0.0000	0.0006	0.0000	0.0000	1.84209E-09
1A3d. Domestic navigation	CH4	0.00	0.01	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	9.63636E-15

1A4a.		0.47	2.21			ĺ		Ì			
Commercial/institutional	CH4	0.47	2,21	5%	100%	1.0012	0.0000	0.0005	0.0000	0.0000	1.31626E-09
1A4b. Residential	CH4	2.13	6.85	5%	100%	1.0012	0.0000	0.0015	0.0000	0.0001	1.06067E-08
1A4c.		0.21	0.41								
Agriculture/forestry/fishing	CH4	0.04	0.07	5%	100%	1.0012	0.0000	0.0001	0.0000	0.0000	2.07748E-11
1A5a. Stationary	CH4			5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	8.4237E-13
1A5b. Mobile	CH4	0.00	0.01	5%	100%	1.0012	0.0000	0.0000	0.0000	0.0000	5.86739E-14
1B2a. Oil	CH4	0.45	0.00	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	0
3A1a. Dairy cattle	CH4	61.99	141.03	5%	20%	0.2062	0.0000	0.0248	0.0000	0.0018	3.08529E-06
3A1b. Non-dairy cattle	CH4	51.50	69.44	5%	50%	0.5025	0.0000	0.0126	0.0000	0.0009	7.92643E-07
3A2. Sheep	CH4	64.96	79.19	5%	50%	0.5025	0.0000	0.0143	0.0000	0.0010	1.01896E-06
3A3. Swine	CH4	11.67	13.00	5%	50%	0.5025	0.0000	0.0026	0.0000	0.0002	3.3012E-08
3A4a. Goats	CH4	28.84	32.75	5%	50%	0.5025	0.0000	0.0067	0.0000	0.0005	2.23782E-07
3A4b. Horses	CH4	0.23	0.36	5%	50%	0.5025	0.0000	0.0001	0.0000	0.0000	2.11436E-11
3A4c. Mules and Asses	CH4	1.41	0.37	5%	50%	0.5025	0.0000	0.0001	0.0000	0.0000	2.264E-11
3B1a. Dairy cattle	CH4	11.65	23.00	5%	30%	0.3041	0.0000	0.0041	0.0000	0.0003	8.2082E-08
3B1b. Non-dairy cattle	CH4	7.71	9.03	5%	30%	0.3041	0.0000	0.0016	0.0000	0.0001	1.33899E-08
3B2. Sheep	CH4	2.27	2.77	5%	30%	0.3041	0.0000	0.0005	0.0000	0.0000	1.24823E-09
3B3. Swine	CH4	88.60	36.59	5%	30%	0.3041	0.0000	0.0073	0.0000	0.0005	2.63754E-07
3B4a. Goats	CH4	1.15	1.31	5%	30%	0.3041	0.0000	0.0003	0.0000	0.0000	3.58051E-10
3B4b. Horses	CH4	0.03	0.05	5%	30%	0.3041	0.0000	0.0000	0.0000	0.0000	3.57327E-13
3B4c. Mules and Asses	CH4	0.15	0.04	5%	30%	0.3041	0.0000	0.0000	0.0000	0.0000	2.73944E-13
3B4d. Poultry	CH4	2.36	2.21	5%	30%	0.3041	0.0000	0.0004	0.0000	0.0000	7.79765E-10
3F. Field burning of agricultural residues	CH4	2.37	0.50	20%	20%	0.2828	0.0000	0.0001	0.0000	0.0000	9.00537E-10
4.A.1 Forest Land	CH	0.03		20%	2070	0.2020	0.0000	0.0001	0.0000	0.0000	J.00337E-10
remaining Forest Land	CH4			10%	230%	2.3022	0.0000	0.0001	0.0000	0.0000	5.10999E-11
5A1. Managed waste disposal sites	CH4	0.00	202.17	30%	30%	0.4243	0.0001	0.0331	0.0000	0.0140	0.00019684
5A2. Unmanaged waste	C114	295.37	376.60	3070	30%	0.4243	0.0001	0.0331	0.0000	0.0140	0.00013004
disposal sites	CH4			30%	30%	0.4243	0.0004	0.0720	0.0000	0.0305	0.000932966
5B1. Composting	CH4	0.00	19.12	30%	100%	1.0440	0.0000	0.0022	0.0000	0.0009	8.44813E-07
5D1. Domestic wastewater	CH4	102.92	24.08	30%	30%	0.4243	0.0000	0.0043	0.0000	0.0018	3.37667E-06
5D2. Industrial wastewater	CH4	27.10	34.97	30%	30%	0.4243	0.0000	0.0060	0.0000	0.0026	6.56061E-06

	1	7	l			i i		1	1	_	ı
1A1a. Public electricity and	602	1675.77	3049.92	20/	20/	0.0424	0.0003	0.5663	0.0000	0.0340	0.000577240
heat production	CO2	85.72	0.00	3%	3%	0.0424	0.0003	0.5663	0.0000	0.0240	0.000577348
1A1b. Petroleum refining	CO2			5%	5%	0.0707	0.0000	0.0000	0.0000	0.0000	0
1A2b. Non-ferrous metals	CO2	4.38	1.95	5%	5%	0.0707	0.0000	0.0004	0.0000	0.0000	8.03046E-10
1A2c. Chemicals	CO2	2.20	11.80	5%	5%	0.0707	0.0000	0.0018	0.0000	0.0001	1.6844E-08
1A2d. Pulp, paper and		4.82	1.98								
print	CO2			5%	5%	0.0707	0.0000	0.0003	0.0000	0.0000	4.53888E-10
1A2e. Food processing,		72.57	49.34								
beverages and tobacco	CO2	1		5%	5%	0.0707	0.0000	0.0122	0.0000	0.0009	7.47865E-07
1A2f. Non-metallic		379.83	404.23								
minerals	CO2			3%	3%	0.0424	0.0000	0.0750	0.0000	0.0032	1.0132E-05
1A2g. Other	CO2	38.01	88.29	5%	5%	0.0707	0.0000	0.0143	0.0000	0.0010	1.02347E-06
1A3a. Domestic aviation	CO2	26.05	1.07	5%	5%	0.0707	0.0000	0.0002	0.0000	0.0000	2.56523E-10
1A3b. Road transportation	CO2	1191.19	2139.19	5%	5%	0.0707	0.0003	0.3673	0.0000	0.0260	0.000674582
1A3d. Domestic navigation	CO2	2.20	5.82	5%	5%	0.0707	0.0000	0.0009	0.0000	0.0001	3.89655E-09
1A4a.		75.21	103.36								
Commercial/institutional	CO2			5%	5%	0.0707	0.0000	0.0188	0.0000	0.0013	1.76955E-06
1A4b. Residential	CO2	299.70	269.99	5%	5%	0.0707	0.0000	0.0577	0.0000	0.0041	1.66656E-05
1A4c.		55.48	72.17								
Agriculture/forestry/fishing	CO2			5%	5%	0.0707	0.0000	0.0148	0.0000	0.0010	1.0928E-06
1A5a. Stationary	CO2	10.99	20.17	5%	5%	0.0707	0.0000	0.0037	0.0000	0.0003	6.71715E-08
1A5b. Mobile	CO2	0.00	2.96	5%	5%	0.0707	0.0000	0.0009	0.0000	0.0001	3.82596E-09
2A1. Cement production	CO2	667.66	938.19	2%	2%	0.0283	0.0000	0.1608	0.0000	0.0045	2.0673E-05
2A2. Lime production	CO2	5.33	5.96	2%	5%	0.0539	0.0000	0.0007	0.0000	0.0000	4.08556E-10
2A4. Other process uses of		44.08	16.13								
carbonates	CO2			5%	5%	0.0707	0.0000	0.0031	0.0000	0.0002	4.75318E-08
2D1. Lubricant use	CO2	4.13	4.90	5%	5%	0.0707	0.0000	0.0008	0.0000	0.0001	3.48008E-09
2D2. Paraffin wax use	CO2	0.06	0.08	5%	5%	0.0707	0.0000	0.0000	0.0000	0.0000	1.53881E-12
2D3. Other	CO2	0.00	0.40	5%	5%	0.0707	0.0000	0.0001	0.0000	0.0000	4.36572E-11
3H. Urea application	CO2	1.82	0.18	20%	50%	0.5385	0.0000	0.0000	0.0000	0.0000	1.96714E-10
4.A.1 Forest Land		1.55									
remaining Forest Land	CO2			15%	60%	0.6185	0.0002	0.0325	0.0000	0.0069	4.7392E-05
4.A.2 Land converted to		-0.10									
Forest Land	CO2	100.05		15%	40%	0.4272	0.0001	0.0291	0.0000	0.0062	3.8176E-05
4.B.1 Cropland remaining Cropland	CO2	-133.97		15%	65%	0.6671	0.0001	0.0244	0.0000	0.0052	2.67902E-05
1	,		l		3370	0.0071	0.0001	3.0211	5.5000	0.005E	=:0.0022 00

4.B.2 Land converted to									l		1
Constant	602	-0.27		450/	050/	0.0640	0.0000	0.0044	0.0000	0.0003	F 6330FF 00
	CO2	22.42		15%	95%	0.9618	0.0000	0.0011	0.0000	0.0002	5.62305E-08
4.C.1 Grassland remaining	coa	-23.42		1.50/	250/	0.3909	0.0000	0.0040	0.0000	0.0008	7 075075 07
	CO2	0.36		15%	35%	0.3808	0.0000	0.0040	0.0000	0.0008	7.07507E-07
4.C.2 Land converted to Grassland	CO2	0.36		15%	50%	0.5220	0.0000	0.0004	0.0000	0.0001	6 12025 00
4.D.2 Land converted to	COZ	0.00		15%	50%	0.5220	0.0000	0.0004	0.0000	0.0001	6.1302E-09
	CO2	0.00		15%	50%	0.5220	0.0000	0.0001	0.0000	0.0000	3.69937E-10
4.E.2 Land converted to	COZ	0.46		13/0	30%	0.3220	0.0000	0.0001	0.0000	0.0000	3.03337L-10
	CO2	0.10		15%	350%	3.5032	0.0000	0.0006	0.0000	0.0001	1.57264E-08
4.F.2 Land converted to	002	0.11		25/0	33070	0.5002	0.0000	0.0000	0.000	0.0001	2.57201200
	CO2			15%	30%	0.3354	0.0000	0.0000	0.0000	0.0000	0
4.G Harvested Wood		2.14									
Products	CO2			15%	50%	0.5220	0.0000	0.0037	0.0000	0.0008	6.14017E-07
2F1. Refrigeration and air		0.00	401.36								
conditioning	HFCs(1)			5%	500%	5.0002	0.0496	0.0676	0.0000	0.0048	2.28575E-05
2F2. Foam blowing agents	HFCs(1)	0.00	1.28	5%	500%	5.0002	0.0000	0.0002	0.0000	0.0000	2.65848E-10
2F3. Fire protection	HFCs(1)	0.00	9.35	5%	500%	5.0002	0.0000	0.0017	0.0000	0.0001	1.52946E-08
2F4. Aerosols	HFCs(1)	0.00	2.96	5%	500%	5.0002	0.0000	0.0005	0.0000	0.0000	1.43617E-09
1A1a. Public electricity and		3.45	6.31								
heat production	N2O			3%	300%	3.0001	0.0000	0.0012	0.0000	0.0001	2.51859E-09
	N2O	0.10	0.00	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	0
1A1c. Manufacture of solid		0.12	0.08								
fuels and other energy				50/	2000/	2 2224	0.0000	0.000	0.000	0.0000	4 407555 40
industries	N2O	0.00	0.00	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	4.40755E-12
1A2b. Non-ferrous metals	N2O	0.00	0.00	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	1.71742E-16
1A2c. Chemicals	N2O	0.00	0.30	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	1.75505E-13
1A2d. Pulp, paper and		0.01	0.00								
	N2O			5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	1.72433E-15
1A2e. Food processing,		0.14	0.22								
	N2O			5%	300%	3.0004	0.0000	0.0001	0.0000	0.0000	1.54893E-11
1A2f. Non-metallic		1.28	4.17								
minerals	N2O	0.00	0.00	3%	300%	3.0001	0.0000	0.0008	0.0000	0.0000	1.11827E-09
1A2g. Other	N2O	0.08	0.20	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	5.49055E-12
1A3a. Domestic aviation	N2O	0.19	0.01	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	1.4095E-14
1A3b. Road transportation	N2O	10.14	12.01	5%	50%	0.5025	0.0000	0.0023	0.0000	0.0002	2.5898E-08
	N2O	0.03	0.09	5%	300%	3.0004	0.0000	0.0000	0.0000	0.0000	8.63155E-13
1A4a. Commercial/institutional	N2O	0.12	0.33	5%	300%	3.0004	0.0000	0.0001	0.0000	0.0000	2.5244E-11
1A4b. Residential	N2O	0.62	1.05	5%	300%	3.0004	0.0000	0.0002	0.0000	0.0000	2.59834E-10

1A4c.		1.94	0.16					1				Ì
Agriculture/forestry/fishing	N2O	1.51	0.10	5%	300%	3.0004	0.0000		0.0000	0.0000	0.0000	4.85712E-12
1A5a. Stationary	N2O	0.39	0.05	5%	300%	3.0004	0.0000	(0.0000	0.0000	0.0000	3.43183E-13
1A5b. Mobile	N2O	0.00	0.01	5%	300%	3.0004	0.0000		0.0000	0.0000	0.0000	1.89201E-14
2G3. N2O from product		3.93	6.25									
uses	N2O			5%	500%	5.0002	0.0000	(0.0011	0.0000	0.0001	6.3414E-09
3B1a. Dairy cattle	N2O	4.50	7.36	5%	100%	1.0012	0.0000	(0.0013	0.0000	0.0001	8.89605E-09
3B1b. Non-dairy cattle	N2O	2.91	3.43	5%	100%	1.0012	0.0000		0.0006	0.0000	0.0000	1.90038E-09
3B2. Sheep	N2O	12.18	14.84	5%	100%	1.0012	0.0000	(0.0027	0.0000	0.0002	3.58041E-08
3B3. Swine	N2O	0.69	0.72	5%	100%	1.0012	0.0000	(0.0001	0.0000	0.0000	1.03107E-10
3B4a. Goats	N2O	7.98	9.10	5%	100%	1.0012	0.0000	(0.0019	0.0000	0.0001	1.72868E-08
3B4b. Horses	N2O	0.05	0.08	5%	100%	1.0012	0.0000	(0.0000	0.0000	0.0000	9.83097E-13
3B4c. Mules and Asses	N2O	0.24	0.06	5%	100%	1.0012	0.0000	(0.0000	0.0000	0.0000	6.76777E-13
3B4d. Poultry	N2O	6.99	5.51	5%	100%	1.0012	0.0000	(0.0010	0.0000	0.0001	4.83044E-09
3B5. Indirect N2O		23.02	26.86									
emissions	N2O			20%	50%	0.5385	0.0000		0.0050	0.0000	0.0014	2.02177E-06
3D. Agricultural soils	N2O	56.90	50.55	5%	3%	0.0583	0.0000		0.0094	0.0000	0.0007	4.4592E-07
3F. Field burning of		0.58	0.12									
agricultural residues 4.A.1 Forest Land	N2O	0.02		20%	20%	0.2828	0.0000		0.0000	0.0000	0.0000	5.42183E-11
remaining Forest Land	N2O	0.02		10%	220%	2.2023	0.0000		0.0000	0.0000	0.0000	1.40071E-11
4.B.2 Land converted to	1420	0.01		10/0	22070	2.2023	0.0000	,	0.0000	0.0000	0.0000	1.400712 11
Cropland	N2O			15%	175%	1.7564	0.0000		0.0000	0.0000	0.0000	1.77127E-11
4.E.2 Land converted to Settlements	N2O	0.00		15%	380%	3.8030	0.0000		0.0001	0.0000	0.0000	6.21324E-10
4.F.2 Land converted to	INZU			13%	360%	3.0030	0.0000		0.0001	0.0000	0.0000	0.21324L-10
Other Land	N2O	0.00	6.73	30%	100%	1.0440	0.0000		0.0012	0.0000	0.0005	2.7242E-07
5B1. Composting	N2O	0.00	6.92	30%	30%	0.4243	0.0000	(0.0027	0.0000	0.0011	1.31084E-06
5D1. Domestic wastewater	N2O	9.52	14.98	100%	30%	1.0440	0.0000	(0.0000	0.0000	0.0001	4.4817E-09
5D2. Industrial wastewater	N2O	0.28	0.27	5%	500%	5.0002	0.0001	(0.0030	0.0000	0.0002	4.40462E-08
2G1. Electrical equipment	SF6	2.73	17.84				0.05122763					0.002591136
Total		1.85	3.42	3%	100%	1.0004	0.0000	0.	0006	0.0000	0.0000	7.02946E-10
		ΣC	ΣD		Percentage uncerta inventor	•	0.226335207				Trend uncertainty:	0.050903205

Annex 3: Detailed methodological descriptions for individual source or sink categories

A.3.1. Fuel combustion (1A)

The fuel consumption data published by the National Statistical Service in 2019 for the period 1990–2019 are presented in Table A3.1.3. In green are sectors/consumers that have been added for the first time in 2019 and in red are the revisions.

Due to the unavailability of consumption data for several years, using the data as is would create issues of inconsistency and incomparability. Therefore, it was decided to complete the period using the following assumptions. The resulting data used for the estimation of the emissions will be presented at the methodological issues Section of the appropriate sector in Chapter 3. The following pages present the assumptions made to allocate consumption to activities where data was not available.

LPG

- (a) 2006-2009 consumption from Not elsewhere specified (Industry) has been moved to Non-metallic minerals.
- (b) There is available data for all the consumers of LPG during the period 2006-2015. Since there is no particular trend during this period, it was decided to use the same ratio as 2006 to distribute the consumption that was allocated to residential to all sectors for the period 1990-2005 (Table A3.1.1).

Table A3.1.1. Contribution of different activities to LPG consumption (2006) used to allocate consumption to different sectors for 1990-2005

Activity	Consumption
Non-ferrous metals	1.9%
Non-metallic minerals	1.9%
Food, beverages and tobacco	5.6%
Commercial and public services	24.1%
Residential	64.8%
Agriculture/forestry	1.9%

Jet kerosene

Information on fuel consumption for domestic flights is not available from national statistics. To estimate the emissions from available information on fuel consumption from EUROCONTROL was used (Table A3.1.2) for 2005-2023.

Table A3.1.2. International and domestic flights' fuel consumptions, EUROCONTROL data (2005-2023)

Fuel consumption (kt)	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Domestic	3.9	3.3	2.9	2.8	2.3	2.5	0.8	0.6	0.4	0.3
International	263	265	261	270	255	260	270	260	243	244
	2015	2016	2017	2018	2019	2020	2021	2022	2023	
Domestic	0.4	0.2	0.4	0.3	0.1	0.2	0.4	0.4	0.4	
International	238	278	317	327	320	101	175	250	303	

Table A3.1.3. Fuel consumption according to the National Energy balance 2023 in kt (1990–2023)

(a) 1990-2004

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Crude oil															
Refinery intake (Observed)	636	763	727	781	906	828	760	1043	1082	1180	1173	1156	1086	971	279
Refinery losses	10	16	3	3	4	2	2	5	6	4	1	5	4	3	
Refinery gas															
Refinery fuel	18	17	17	13	24	13	12	16	16	20	19	19	21	21	9
LPG															
Non-ferrous metals															
Non-metallic minerals															
Food, beverages and tobacco															
Not elsewhere specified (Industry)															
Commercial and public services															
Residential	49	49	55	51	50	51	51	52	50	49	53	53	54	58	56
Agriculture/forestry															
Not elsewhere specified (Other)															
Non-biogasoline = GASOLINE															
Road	163	170	172	169	180	183	186	191	195	203	206	219	228	252	282
International aviation	236	280	272	231	237	260	249	245	258	264	268	314	302	323	295
Not elsewhere specified (Other)															
Other kerosene															
Residential	12	12	17	16	17	17	18	20	21	20	24	24	31	31	24
Oil and gas extraction															
Not elsewhere specified (Industry)															
Residential	12	12	17	16	17	17	18	20	21	20	24	24	31	31	24
Not elsewhere specified (Industry)															
Road															
Non-bio gas/diesel oil = DIESEL															
International marine bunkers	24	20	21	14	12	15	25	27	35	46	50	47	33	36	27
Main activity producer electricity plants			11	3	2	8	6	6	12	21	19	4	2	5	8
Autoproducer electricity plants															
Road	210	202	246	255	261	285	298	314	334	340	350	355	341	351	354
Chemical and petrochemical															
Non-ferrous metals	0.52	0.60	0.67	0.75	0.75	0.82	0.82	0.90	0.97	0.97	0.97	1.05	0.97	0.97	0.90
Non-metallic minerals															
Mining and Quarrying															
Food, beverages and tobacco															
Construction															
Not elsewhere specified (Industry)	98	109	132	137	141	153	161	169	180	185	191	193	185	190	171

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Commercial and public services															
Residential															
Agriculture/forestry															
Fishing															
Not elsewhere specified (Other)															
Total fuel oil															
International marine bunkers	34	36	38	36	50	54	65	71	63	108	143	145	105	88	27
Refinery fuel	11	12	13	13	14	17	16	14	15	16	16	-			
Main activity producer electricity plants	540	561	645	697	727	662	703	743	811	856	902	897	932	1095	1046
Autoproducer electricity plants															
Autoproducer CHP Plants														2	5
Chemical and petrochemical															
Non-metallic minerals	37	124	118	100	110	97	111	70	68	68	70	54	55	62	68
Food, beverages and tobacco															
Paper, pulp and printing															
Construction															
Not elsewhere specified (Industry)															
Commercial and public services															
White spirit and SPB															
Not elsewhere specified (Industry)				1		1	1	1		1		1			
Lubricants															
International marine bunkers							1	1	1	1	1	1	1	1	1
Non-energy use: Road				6	8	8	9	8	5	5	5	5	6	6	7
Non-energy use: Not elsewhere specified (Industry)				2	3	3	3	3	2	2	2	2	2	2	3
Bitumen															
Construction															
Non-energy use: Not elsewhere specified (Industry)	33	23	50	59	57	54	57	62	75	86	83	81	84	70	65
Pet-coke															
Non-metallic minerals		93	85	114	112	125	147	152	150	154	141	133	139	137	146
Other products (liquid)															
Refinery fuel													16	16	
Not elsewhere specified (Industry)	40	5						1							6
Bituminous Coal															
Non-metallic minerals	97	97	26	31	27	20	18	19	26	30	49	53	53	53	57
Lignite															
Not elsewhere specified (Other)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Waste (non-biomass fraction)															
Industrial waste (non-renewable) (TJ)															
Non-metallic minerals	0	0	0	0	0	0	0	0	0	0	0	18	0	15	71
Municipal waste (non-renewable) TJ															
Non-metallic minerals															

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
RENEWABLES															
Solid biofuels (TJ)															
Charcoal production plants (Transformation)	112	112	112	112	405	388	328	288	314	281	248	253	235	209	184
Chemical and petrochemical															
Non-metallic minerals											41	70	90	211	127
Food, beverages and tobacco															
Commercial and public services															
Residential															
Agriculture/Forestry															
Not elsewhere specified (Other)	145	120	118	117	85	91	136	70	64	88	78	80	74	67	61
Charcoal (kt)															
Commercial and public services															
Residential															
Not elsewhere specified (Other)	1	1	1	1	2	7	7	7	8	7	5	5	7	7	8
Biogases (TJ)															İ
Main activity producer CHP plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Autoproducer CHP plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commercial and public services	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture/Forestry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Municipal waste (renewable)															
Non-metallic minerals															

(b) 2005-2023

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Crude oil																			
Refinery intake (Observed)																			
Refinery losses																			
Refinery gas																			
Refinery fuel																			
LPG																			
Non-ferrous metals		1	1		1	1	1	1			1	1	0.57	0.59	0.66	0.76	0.76	0.72	0.64
Chemical and Petrochemical													0.21	0.22	0.24	0.29	0.27	0.03	0.03
Non-metallic minerals						1	1	1	1	1	1	1	0.38	0.39	0.43	0.71	0.65	0.53	0.46
Food, beverages and tobacco		3	3	3	3	3	4	5	4	4	5	4	5.52	5.76	6.38	5.72	5.29	5.75	5.05
Paper, pulp and printing													0.29	0.30	0.33	0.14	0.13	0.05	0.04
Wood and wood products													0.003	0.003	0.003	0.006	0.01	0.003	0.003
Not elsewhere specified (Industry)		1	1	1	1				0	1	0	0	2.424	0.237	0.263	0.137	0.129	0.132	0.12
Commercial and public services		13	13	14	13	13	14	14	12	10	11	11	13.17	13.8	15.5	11.1	9.7	11.5	10.74
Residential	53	35	36	34	36	34	38	37	33	31	34	35	32.46	28.45	32.15	31.31	33.46	35.2	33.60

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	2003	2000	2007	2000	2009	2010	2011	2012	2013	2014	2013	2010	7	2010	2019	2020	2021	2022	2023
Agriculture/forestry		1	1	1	1	1	1	1	1		1	2	2.424	2.53	2.86	2.58	2.41	2.80	2.59
Not elsewhere specified (Other)		1	1	1	-	1	-	-	1	1	1	1	1.315	0.912	1.25	1.27	1.13	1.19	1.14
Road									1	1	1	0.441	0.477	0.399	0.458	0.399	0.458	0.501	0.42
Non-biogasoline = GASOLINE												0.441	0.477	0.377	0.430	0.377	0.430	0.501	0.42
Road	303	323	352	373	383	390	385	372	349	341	345	354	351	342	337	284	305	310	325
Jet Kerosene								<u> </u>											0 = 0
International aviation	291	300	287	286	265	270	294	264	235	231	233	263	298	308	295	90.4	149.7	251.3	291
Domestic aviation							-						2	1.77	1.31	1.38	1.52	2.93	2.64
Not elsewhere specified (Other)					1	1	2	1	2	2	1	1	1	1	1	1.5	1.3	1.5	0.94
Other kerosene																			
Residential	13	16	16	14	19	14	16	17	12	9	14	14	14	9	13	13	11	12	8
Oil and gas extraction										2									
Not elsewhere specified (Other)	3														0.026	0.045	0.009	NO	NO
Non-metallic minerals													0.06	0.05	0.02	0.02	0	NO	NO
Food, beverages and tobacco													0.03	0.02	0.1	0.01	0.001	0.002	NO
Not elsewhere specified (Industry)										2				0.005	0.005	0.002	0	NO	NO
Commercial and Public Services													0.03	1.64	2.22	2.26	2.02	2.07	2.01
Biodiesel																			
Road																27.2	27.50	26.21	24.02
Water-borne navigation			1	16	17	17	18	18	17	11	11	10	9.697	10.1	12.15	0.034	0.075	0.125	0.115
Chemical and petrochemical																0.034	0.029	0.003	0.003
Non-ferrous metals																0.001	0.001	NO	NO
Non-metallic minerals																0.095	0.219	0.058	0.053
Mining and Quarrying																0.298	0.245	0.398	0.365
Food, beverages and tobacco																0.004	0.006	0.028	0.025
Paper, pulp and printing																0.001	0.001	NO	0
Machinery																0.008	0.011	0.014	0.013
Textiles and Leather																0.001	0.000	NO	0
Wood and wood products																0.001	0.001	0.001	0.001
Commercial and public services																0.105	0.169	0.146	0.133
Not elsewhere specified (Industry)																0.003	0.002	0.013	0.012
Not elsewhere specified (Other)																		0.222	0.339
																0.214	0.197		
Non-bio gas/diesel oil = DIESEL																			
International marine bunkers	67	106	104	88	73	53	58	69	83	80	75	95	101	118	124	119	113	123	87
Main activity producer electricity plants	16	7	16	23	92	158	112	214	236	124	89	150	255	246	259	342	289	320	289
Autoproducer electricity plants			1				2	2	2	1	2	2	2	1.75	1.91	1.5	1.6	1.4	3.7
Road	346	323	337	330	321	329	313	272	231	224	241	274	292	304	315	283	304	291	306
Chemical and petrochemical								1	0	1	1	1	0.15	1.036	1.377	1.24	1.5	1.3	1.2

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Non-ferrous metals	0.82	0.82	0.75	0.67	0.67	0.52	0.60	0.75	0.00	0.00	0.00	0.75	0.11	0.10	0.059	0.317	0.152	0.010	0.012
Non-metallic minerals								3	1	1	2	2	2	1	2	2.17	4.86	2.932	3.044
Transport Equipment												_	0.005	0.006	0.001	0.001	0.001	0.058	0.055
Machinery													0.257	0.224	0.248	0.278	0.272	0.314	0.352
Mining and Quarrying								5	2	1	3	2	4	4	7	5	5.39	8.254	9.34
Food, beverages and tobacco								3	2	2	4	3	5	4	4	4.65	5.39	5.572	5.245
Textiles and Leather													0.027	0.023	0.018	0.017	0.01	0.175	0.006
Construction								5	5	6	6	7	9	7	8	8	9	9	9
Not elsewhere specified (Industry)	47	24	20	18	18	14	16	3	1	1	2	2	2	2.18	2.245	2.05	2.399	3.069	3.709
Commercial and public services		19	18	20	19	23	20	16	17	13	13	15	18	10	16	12	14	15	16
Residential	83	98	89	78	83	70	80	76	62	57	65	65	65	53	60	60	49	55	45
Agriculture/forestry	27	28	28	23	20	19	22	21	21	19	22	21	22	21	22	24	23	21	19
Fishing				3	4	4	3	3	2	2	2	2	2	2	2	1	1.6	1.7	1.6
Not elsewhere specified (Other)		4	6	13	5	5	6	5	5	9	6	6	6	6	6	5.4	4.8	4.9	5.2
Total fuel oil																			
International marine bunkers	225	190	171	165	146	134	141	128	157	153	169	193	154	154	156	158	141	165	148
Refinery fuel																	8		
Main activity producer electricity plants	1104	1137	1174	1219	1163	1053	1058	896	649	793	858	883	778	804	771	603	680	658	674
Autoproducer electricity plants			4	3	2	2	2		2	4									
Autoproducer CHP Plants	6	7	14	12	11	8	2	2	2	0			1		0.032	0.125	0.036	0.032	
Chemical and petrochemical	0		17	12	11	- 0				0	1	1	1	1	1	1	0.36	1.83	2.46
Non-metallic minerals	37	35	38	38	30	25	15	13	8	7	8	10	13	15	15	13	13	13	10.8
Mining	31	33	36	30	30	23	13	13		,	0	10	0.2	0.1	0.1	0	0	0	0
Food, beverages and tobacco								9	8	8	9	9	12	11	11	10	10	10	5.6
Paper, pulp and printing									0	1	1	1	1	1	0.5	0.7	0.81	0.31	0.4
Construction								1	1	3	2	3	2	2	2	2	3	3	4.2
Not elsewhere specified (Industry)	28	19	27	25	17	20	34	2	2	3	1	2	1	0.4	0.4	1	0.6	1.4	0.7
Commercial and public services	1	2.	2.	2	2	2.	2	4	4	2.	3	4	4	3	4	2	3	4	4.5
White spirit and SPB	•	_	_	_	_	_	_			_	J	•				_	J		
Not elsewhere specified (Industry)	1	1	1																
Lubricants																			
International marine bunkers	1	1	1	1															
Non-energy use: Road	2	2	2	2	2	2	2	1	1	1	1	1	1	1	2	2	3	3	3
Non-energy use: Not elsewhere	4	4	4	4	4	4	4	4	3	3	3	3	2	2	5	5	5	5	5
specified (Industry)																			
Bitumen	60	60	57		7.4	02	C1	26	24	21	21	27	26	27	2.4	21	42	22	27
Construction	69	69	57	66	74	83	64	36	24	21	21	37	36	37	34	31	42	33	37
Non-energy use: Not elsewhere specified (Industry)																			
Pet-coke																			

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Non-metallic minerals	154	146	143	152	144	116	100	94	135	162	128	123	109	74	56	63	13	15	29
Other products (liquid)																			
Refinery fuel																			
Not elsewhere specified (Industry)																			
Bituminous Coal																			
Non-metallic minerals	52	54	49	40	21	26	12	0	0	4	6	0	5	23	28	22	66	52	48
Lignite																			
Not elsewhere specified (Other)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Waste (non-biomass fraction)																			
Industrial waste (non-renewable)																			
<u>(TJ)</u>																		ı	
Non-metallic minerals	138	73	288	239	276	299	4	0	0	279	221	94	90	157	165	289	266	219	188
Municipal waste (non-renewable)																			1
<u>TJ</u>																			
Non-metallic minerals								24	45	37	295	569	812	805	1123	1168	1426	1729	1128
RENEWABLES																			
Solid biofuels (TJ)																			
Charcoal production plants (Transformation)	174	135	274	211	47	48	45	82	71	58	94	163	172	112	93	80	91	142	77
Chemical and petrochemical										42	52	21	22	18	18	14	11	11	5
Non-metallic minerals	38	61	133	281	304	347	306	29	28	116	95	55	86	78	126	205	279	314	264
Food, beverages and tobacco										44	7	36	51	67	99	69	48	180	130
Commercial and public services			14	15	15	15	13	16	16	16	15	15	17	17	17	132	126	166	106
Residential		74	95	123	500	260	339	419	353	249	551	531	691	709	766	644	610	634	538
Agriculture/Forestry		5																	11
Not elsewhere specified (Other)	58																		
Charcoal (kt)																			
Commercial and public services		5	7	7	6	6	6	6	6	6	7	7	7	6	6	5	6	6	6
Residential		5	6	6	5	5	6	6	6	6	6	8	9	9	8	10	9	10	9
Not elsewhere specified (Other)	10																		
Biogases (TJ)																			
Main activity producer CHP plants	0	0	0	0	13	21	92	91	118	116	130	130	145	143	136	131	127	108	95
Autoproducer CHP plants	0	0	9	78	131	148	180	192	171	176	179	182	178	204	208	206	208	210	199
Food, beverages and tobacco					15	30	67	70	68	67	69	68	68	66	65	66	67	65	67
Commercial and public services	0	0	0	0	11	12	11	11	11	12	12	16	17	44	56	20	24	27	37
Agriculture/Forestry	0	0	6	0	54	93	165	182	166	172	151	163	96	442	464	471	469	111	109
Municipal waste (renewable)																			
Non-metallic minerals								88	150	161	325	427	419	442	463	1378	1482	1121	1128

The share of domestic flights to the total fuel consumption is presented in Table A3.1.4. It can be noticed that there is a decreasing trend in the share of domestic flights to the total fuel consumption. The trend for these years can be represented by the equation y=-0.0014x+0.0154. This equation was used to estimate the share of domestic flights to the total for the years 1990–2004 (Table A3.1.5), years for which data is not available for domestic flights. By multiplying the share by the total fuel consumption reported all under international flights by the Statistical Service for 1990–2004, the fuel consumption of domestic flights was estimated. The international flights consumption for 1990–2004 was revised by subtracting the estimated fuel consumption for domestic flights. The resulting fuel consumption for domestic and international flights for the years 1990–2004 is presented in Table A3.1.5. Fuel consumption obtained from the Statistical Service is in kt, and converted to TJ using the default NCV proposed by the 2006 IPCC Guidelines, i.e. 44.1 TJ/Gg (Table 1.2, pg.1.18, vol.2).

Table A3.1.4. Share of domestic flights to the total fuel consumption, EUROCONTROL data (2005–2023)

	2005	2006	2007	2008	2009	2010	2011	2012	2013	
Share of domestic to total	1.45%	1.22%	1.11%	1.04%	0.90%	0.94%	0.29%	0.22%	0.18%	
	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Share of domestic to total	0.14%	0.16%	0.09%	0.12%	0.09%	0.04%	0.16%	0.23%	0.14%	0.11%

Table A3.1.5. Share of domestic flights to the total fuel consumption, consumption for domestic and international flights (1990–2004)

	1990	1991	1992	1993	1994	1995	1996	1997
Share of domestic to total	3.50%	3.36%	3.22%	3.08%	2.94%	2.80%	2.66%	2.52%
Domestic consumption (TJ)	364	415	386	314	307	321	292	272
International consumption (TJ)	10043	11933	11609	9873	10144	11145	10689	10532
TOTAL (TJ)	10408	12348	11995	10187	10452	11466	10981	10805
	1998	1999	2000	2001	2002	2003	2004	
Share of domestic to total	2.38%	2.24%	2.10%	1.96%	1.82%	1.68%	1.54%	
Domestic consumption (TJ)	271	261	248	271	242	239	200	
International consumption (TJ)	11107	11382	11571	13576	13076	14005	12809	
TOTAL (TJ)	11378	11642	11819	13847	13318	14244	13010	

Other kerosene

- (a) Other kerosene consumption was recorded for non-elsewhere specified (industry) only for 2005. For the same year the consumption of residential sector was much lower than other years. The consumption from non-elsewhere specified (industry) of 2005 was moved to residential.
- (b) Oil and gas extraction consumption reported only for 2014 was moved to Not elsewhere specified (Industry).

Diesel

According to the energy balance, the consumers of gas-diesel oil are Main activity producer electricity plants, Road, Chemical and petrochemical, Non-ferrous metals, Non-metallic minerals, Mining and Quarrying, Food, beverages and tobacco, Construction, Not elsewhere specified (Industry), Commercial and public services, Residential, Agriculture/Forestry and Not elsewhere specified (Other). Consumption data for Chemical and petrochemical, Non-ferrous metals, Non-metallic minerals, Mining and Quarrying, Food, beverages and tobacco, Construction is only available for 2012 to 2017.

(a) For the years 2006–2011 all consumption from industrial activities (incl. autoproducers) was included in Not elsewhere specified (Industry). The consumption was allocated to the industrial sectors according to the ratio of 2012 (Table A3.1.6).

Table A3.1.6. Contribution of different activities to gas-diesel oil consumption (2012) used to allocate consumption to Chemical and petrochemical, Non-ferrous metals, Non-metallic minerals, Mining and Quarrying, Food, beverages and tobacco, Construction, Not elsewhere specified (Industry) for 2006–2011

Activity	Consumption
Chemical and petrochemical	5%
Non-ferrous metals	5%
Non-metallic minerals	14%
Mining and Quarrying	24%
Food, beverages and tobacco	14%
Construction	24%
Not elsewhere specified (Industry)	14%

- (b) The contribution of fishing consumption to the total for the years 2005–2007 is assumed the same as 2008.
- (c) For 2005, consumption is available for Main activity producer electricity plants, road, Residential and Agriculture/forestry. Due to the large increase of the Not elsewhere specified (Industry) compare to 2006–2011, it is assumed that consumption by Commercial and public services, and Not elsewhere specified (Other) is included in the Not elsewhere specified (Industry). The assumed contribution of each sector to the consumption allocated to Not elsewhere specified (Industry) is based on the 2012 consumption ratio for these sectors (Table A3.1.7).

Table A3.1.7. Contribution of different activities to gas-diesel oil consumption (2012) used to allocate consumption to Chemical and petrochemical, Non-ferrous metals, Non-metallic minerals, Mining and Quarrying, Food, beverages and tobacco, Construction, Not elsewhere specified (Industry), Commercial and public services, Not elsewhere specified (Other) from Not elsewhere specified (Industry) for 2005

Activity	Consumption
Chemical and petrochemical	2%
Non-ferrous metals	2%
Non-metallic minerals	7%
Mining and Quarrying	12%
Food, beverages and tobacco	7%
Construction	12%
Not elsewhere specified (Industry)	7%
Commercial and public services	38%
Not elsewhere specified (Other)	12%

(d) To estimate the consumption for the years 1990–2004, the consumption ratio compared to Not elsewhere specified (Industry) is assumed to be the same as 2012 (Table A3.1.8).

Table A3.1.8. Contribution of different activities to gas-diesel oil consumption (2012) used to allocate consumption to from Not elsewhere specified (Industry) for 1990–2004

Activity	Consumption
Chemical and petrochemical	0.7%
Non-ferrous metals	0.7%
Non-metallic minerals	2.11%
Mining and Quarrying	3.52%
Food, beverages and tobacco	2.11%
Construction	3.52%
Not elsewhere specified (Industry)	2.11%
Commercial and public services	11.27%
Residential	53.52%
Agriculture/ forestry	14.79%
Fishing	2.11%
Not elsewhere specified (Other)	3.52%

- (e) Consumption for Water-borne navigation activities is available for the years 1998–2015⁸⁸ (Table A3.1.9). The consumption for the period 1990–1997 was estimated assuming that the contribution of the activity to road transport consumption is the same as 1998; the consumption for 2016 was estimated assuming that the contribution of the activity to road transport consumption is the same as 2015.
- (f) The consumption for Water-borne navigation activities was subtracted from Road transport. Therefore road transport consumption was revised for the whole reporting period.

Table A3.1.9. Consumption diesel for Water-borne navigation activities

_			p	JUL 101 11 44						
	Year	1998	1999	2000	2001	2002	2003	2004	2005	2006
	t	1097.05	1236.84	531.915	430.208	561.862	430.478	596.723	730.847	558.887
	kt	1.10	1.24	0.53	0.43	0.56	0.43	0.60	0.73	0.56
	% of road	0.33%	0.36%	0.15%	0.12%	0.16%	0.12%	0.17%	0.21%	0.17%

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015
t	626.709	757.997	1491.21	946.597	886.776	625.631	472.399	558.96	558.96
kt	0.63	0.76	1.49	0.95	0.89	0.63	0.47	0.56	0.56
% of road	0.19%	0.23%	0.46%	0.29%	0.28%	0.23%	0.20%	0.25%	0.26%

RFO

- (a) All consumption allocated to Autoproducer electricity and Autoproducer CHP Plants was moved to Not elsewhere specified (Industry).
- (b) The consumption for food, beverages and tobacco, is only available for 2012–2021. For 2005–2012 consumption is also reported for non metallic minerals and commercial and public services.
- (c) All consumption during 1990–2004 except Refinery fuel and Main activity producer electricity plants was allocated to non-metallic minerals, food, beverages and tobacco, not elsewhere specified (industry) and commercial and public services.

Bitumen

All bitumen consumption allocated to Non-energy use: Not elsewhere specified (Industry) during 1990–2004 has been moved to construction.

Pet-coke

Pet-coke in Cyprus is consumed only for cement production. According to the information received from the cement installations, pet-coke was consumed in 1990. The energy balance shows that pet-coke was not imported in 1990. To reduce the inconsistency and the impact on the times series, it was decided to move the "other liquid fuels" consumption of 1990 to cement as pet-coke.

Solid biofuels

- (a) All consumption of solid biofuels for the period 1990–1999 is reported as non-elsewhere specified (other).
- (b) For 2001–2005 consumption is reported as non-elsewhere specified (other) and non-metallic minerals.
- (c) Consumption in agriculture is reported only for 2006.

The consumption of agriculture of 2006 was moved to commercial and public services for which consumption is reported for 2007–2015. All the consumption reported as non-elsewhere specified (other) for 1990–2005 was distributed to commercial and public services, and residential sector according to the consumption ratio the two sectors had in 2007 (Table A3.1.10).

⁸⁸ Mr. George Ioannou, Statistical Service, Estimation based on fuel expenses assuming that all fuel is road diesel

Table A3.1.10. Contribution of different activities to solid biofuels consumption (2007) used to allocate consumption to commercial and public services, and residential for 1990–2005

Activity	Consumption				
Commercial and public services	12.8%				
Residential	87.2%				

Charcoal

All charcoal consumption for the period 1990-2005 was reported as non-elsewhere specified (other). For the period 2006-2016, the charcoal consumption is allocated to commercial and public services, and residential sectors using the ratio of 50:50. This ratio was used to allocate charcoal consumption to the two sectors for the period 1990-2005.

Biogases

Biogas consumption is available in Cyprus after 2006, when the first anaerobic digester of the country started it operation. The biogas in Cyprus is consumed onsite to produce electricity and heat through a combined heat power (CHP) generator. Therefore, the biogas consumed by "Main activity producer CHP plants" (2009-2012) and "Autoproducer CHP plants" (2007-2021) was moved to agriculture.

A.3.2. Solid waste management (5A)

Historical solid waste production

The IPCC Waste Model requires MSW and non-MSW activity data to be reported annually going back to the year 1950.

MSW activity data in Cyprus were only recorded between the years of 1996-2016, while the previously reported period of 1990-1995 was linearly extrapolated from the trend observable in years 1996-2009.

In an attempt to determine the historical waste per capita data going back to the year 1950, as recommended during the TERT review, a linear extrapolation from the small sample size of recorded data would not have sufficed, or otherwise been applicable. Therefore, a more pertinent indicator of waste activity was required, and, as such, the national GDP was used to correlate the annual waste activity against the corresponding years.

The methodology used to determine the historical waste per capita data was applied as follows:

- (a) The 1960-2014 GDP data⁸⁹ was extrapolated backwards, to expand the range to the year 1950.
- (b) Waste activity data from 1996-2009 was fitted exponentially to the respective GDP value of each year to provide for a correlation between waste per capita and GDP.
- (c) Hence, a hind cast of the annual waste activity was calculated going back to 1950 using the derived relation of waste per capita to GDP.

Regarding non-MSW, the first reference year which data are available is 2014 in accordance with the provisions of the Waste Statistics Regulation (EC) No 2150/2002. No data are available for Cyprus before 2004. The methodology applied is may differ between years, due to the amendment of the Regulation (data 2010 and onwards) and moreover due to improved methods of reporting waste following Eurostat's recommendations. Data revisions were applied from 2012 onwards.

An estimation of the activity data for the years 2013 and 2015 was made by obtaining the average of the years before and after; i.e. 2012 and 2014, 2014 and 2016 respectively.

An extrapolation of the trend available from the years 2012-2016 was used to estimate activity data for 2017, 2018 and 2019.

To estimate the activity data for the years prior to 2012, the annual change of the Gross Domestic Product at Constant market prices of 2005 was used, as published by the Statistical Service in the Statistical Abstract.

GDP data alongside the calculated waste activity derived from the methodology of the model is summarized annually in Table A3.2.1. The aforementioned methodology is described analytically below in conjunction with the relevant data.

Table A3.2.1. Data used for fitting and extrapolating GDP and waste activity is tabulated by

Waste Food (Gg) Wood (Gg) Textile Sludge GDP (€m) (kg/capita) (Gg) (Gg) 1950 1052.30 457.96 0.626018 0.369484 0.000489 0.006176 1951 1103.00 458.65 0.657707 0.388187 0.000513 0.006489 1952 459.37 0.691037 0.407859 0.000539 0.006818 1156.20 1953 1211.90 460.13 0.726013 0.428502 0.000567 0.007163 1270.20 460.92 0.762704 0.000595 0.007525 1954 0.450157 1955 1331.40 461.76 0.801312 0.472944 0.0006250.007905 1956 1395.60 462.64 0.841909 0.496905 0.008306 0.000657 1957 1462.80 463.56 0.884498 0.522042 0.000690 0.008726 1958 1533.30 464.52 0.929286 0.548476 0.000725 0.009168

_

⁸⁹ Maria Matsi, Economic Officer, Directorate of Economic Research and EU Affairs, Ministry of Finance. Tel. no.: +357 22 60 1231. Email: mmatsi@mof.gov.cy

1050	1.07.10	165.51	0.076275	0.576210	0.000762	0.000622
1959	1607.10	465.54	0.976275	0.576210	0.000762	0.009632
1960	1468.85	463.64	0.898945	0.530569	0.000701	0.008869
1961	1632.00	465.88	1.011266	0.596862	0.000789	0.009977
1962	1778.72	467.91	1.111163	0.655822	0.000867	0.010962
1963	1888.76	469.44	1.184439	0.699070	0.000924	0.011685
1964	1709.19	466.95	1.081607	0.638378	0.000844	0.010671
1965	2090.23	472.24	1.391912	0.821524	0.001086	0.013732
1966	2217.79	474.03	1.482377	0.874917	0.001157	0.014625
1967	2519.44	478.28	1.715745	1.012654	0.001339	0.016927
1968	2635.50	479.92	1.798601	1.061557	0.001404	0.017744
1969	2880.77	483.42	1.983157	1.170484	0.001548	0.019565
1970	2970.01	484.69	2.046553	1.207901	0.001597	0.020191
1971	3349.95	490.17	2.346766	1.385090	0.001831	0.023152
1972	3571.12	493.39	2.512662	1.483004	0.001961	0.024789
1973	3606.71	493.91	2.537952	1.497931	0.001980	0.025039
1974	2997.38	485.09	2.171150	1.281440	0.001694	0.021420
1975	2428.01	476.98	1.824566	1.076881	0.001424	0.018001
1976	2870.37	483.27	2.231031	1.316782	0.001741	0.022011
1977	3323.12	489.78	2.648844	1.563381	0.002067	0.026133
1978	3577.15	493.48	2.868085	1.692779	0.002238	0.028296
1979	3930.26	498.66	3.182215	1.878183	0.002483	0.031395
1980	4162.94	502.11	3.382458	1.996369	0.002639	0.033370
1981	4289.95	504	3.488906	2.059195	0.002723	0.034420
1982	4546.16	508.04	3.710514	2.189991	0.002895	0.036607
1983	4802.38	511.7	3.932122	2.320787	0.003068	0.038793
1984	5227.76	518.18	4.314268	2.546334	0.003367	0.042563
1985	5478.50	522.03	4.531619	2.674617	0.003536	0.044707
1986	5675.59	525.09	4.700727	2.774427	0.003668	0.046376
1987	6078.52	531.38	5.059956	2.986448	0.003948	0.049920
1988	6583.83	539.39	5.518732	3.257224	0.004306	0.054446
1989	7117.07	547.96	6.005091	3.544279	0.004686	0.059244
1990	7650.30	556.68	6.491450	3.831334	0.005066	0.064043
1991	7703.95	557.56	6.537297	3.858393	0.005101	0.064495
1992	8428.25	569.64	7.215691	4.258790	0.005631	0.071188
1993	8487.37	570.64	7.266668	4.288877	0.005670	0.071691
1994	8987.76	579.15	7.721924	4.557575	0.006026	0.076182
1995	11386.80	600.13	10.533582	6.217050	0.008220	0.103921
1996	11528.90	605	10.666696	6.295616	0.008324	0.105234
1997	11833.40	612	10.956066	6.466406	0.008549	0.108089
1998	12556.50	616	11.669128	6.887264	0.009106	0.115124
1999	13184.10	620	12.283061	7.249614	0.009585	0.121181
2000	13970.60	629	13.062295	7.709528	0.010193	0.128868
2001	14522.80	650	13.599840	8.026794	0.010612	0.134172
2002	15063.40	655	14.125657	8.337137	0.011023	0.139359
2003	15458.60	671	14.506239	8.561762	0.011320	0.143114
2004	16235.60	685	15.273959	9.014879	0.011919	0.150688
2005	17023.50	688	16.052997	9.474677	0.012527	0.158374
2006	17826.00	694	16.847185	9.943417	0.013146	0.166209
2007	18734.70	704	17.752119	10.477520	0.013853	0.175137
2008	19418.00	729	18.424091	10.874126	0.014377	0.181766
2009	19026.60	730	18.060062	10.659272	0.014093	0.178175
2010	19461.13	696	18.482155	10.908396	0.014422	0.182339
2011	19542.22	694	18.559495	10.954043	0.014483	0.183102
2012	18868.53	681	17.941000	10.589000	0.014000	0.177000
2013	17625.57	635	14.927000	9.679000	0.013500	0.358000
2014	17312.53	618	11.913000	8.769000	0.013000	0.539000
2015	17904.43	640	11.173500	7.092000	0.013000	0.605500
2016	19081.39	651	10.434000	5.415000	0.013000	0.672000

2017	20175.42	641	10.023500	4.920500	0.012500	0.441500
2018	21314.90	661	9.613000	4.426000	0.012000	0.211000
2019	22495.12	665	7.544500	2.213000	0.006000	0.105500
2020	21732.34	625	5.476000	0.000000	0.000000	0.000000
2021	23886.30	650	4.525264	0.000000	0.000000	0.000000
2022	25094.50	673	3.229305	0.000000	0.000000	0.000000
2023		674	1.933347	0.000000	0.000000	0.000000

(a) Reliable national GDP data is available, courtesy of the Statistical Service of Cyprus (CYSTAT), starting from 1960 – marked by the establishment of the Republic of Cyprus, and using constant market prices of 2005.

GDP data between the years of 1950-59 was extrapolated exponentially to allow for the waste activity to be fitted to that period as well, as shown in Figure; not much growth was to be expected during those years due to the British rule and Cyprus Emergency, and the fitted model is shown to be in accord. The GDP data appear to effectively gauge the socio-political economics of the time period, as they factor in any fluctuations in the market that may economically influence waste activity, as well as by modelling the situation in the aftermath of a war, such as the Turkish invasion of 1974.

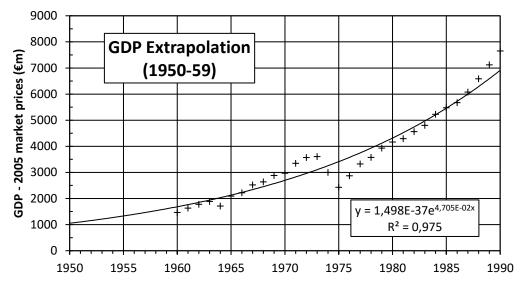


Figure A.3.2.1. GDP data 1960-2014 (CYSTAT) extrapolated for the years of 1950-59.

(b) As illustrated in Figure, the waste activity data showing a linear trend between the years 1996-2009 was used to fit waste per capita to GDP exponentially, and, by association, correlate waste activity with each corresponding year.

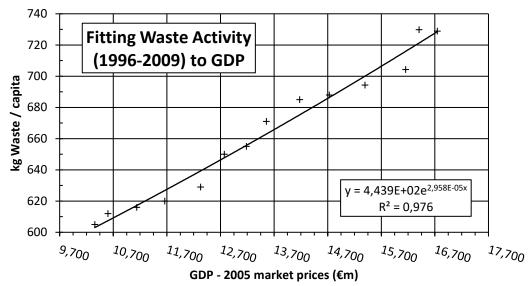


Figure A.3.2.2. Plotting the linear period of waste activity data from 1996-2009 against their corresponding annual GDP, and fitting to an exponential model.

(c) The GDP data from 1950-2014 could now be normalized to waste activity data by relation to the exponential fit determined from plotting waste activity to GDP for 1996-2009 in Figure. Hence, the waste activity data can be hind cast for each year going back to 1950 through a correlation to the annual GDP, as in Figure A.3.2.3.

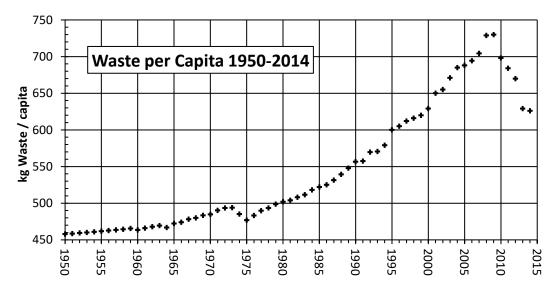


Figure A.3.2.3. Waste per capita derived from annual GDP data and hind casts.

Annex 4: The national energy balance for the most recent inventory year (2021)

The national energy balance prepared by the Statistical Service of Cyprus according to the requirements of Regulation (EC) No 1099/2008 of the European Parliament and of the Council of 22 October 2008 on energy statistics (OJ L 304, 14.11.2008, p. 1–62) is presented in the tables that follow.

Table A.4.1. Energy balance 2023 - Liquid Fuels (LPG, Non-bio gasoline, Non-bio jet kerosene, Other kerosene, Road diesel, Heating and other gas oil, Total gas/diesel oil, Biodiesel), in kt

Flow	LPG	Non-bio gasoline	Non-bio jet kerosene	Other kerosene	Road Diesel	Heating and other gas oil	Total gas/diesel oil	Biodiesel
Indigenous production								
Receipts from other sources								
Solid fuels								
Natural gas								
Renewables								
Backflows	-	-	-	-	-	-	-	-
Of which: backflows for direct export or sale	-	-	-	-	-	-	-	-
Primary product receipts	-	-	-	1	8.846	ı	8.846	8.846
Refinery gross output	-	-	-	1	-	ı	-	-
Recycled products	-	-	-	-	-	-	-	-
Refinery fuel	-	-	-	-	-	-	-	-
Imports (Balance)	57.583	348.519	313.391	7.479	409.054	429.214	838.268	18.611
Exports (Balance)	0.000	-	-	-	-	ı	-	-
International marine bunkers	0.000	-	-	-	-	87.129	87.129	-
Interproduct transfers	0.000	-	-2.712	2.712	-26.867	26.867	-	-
Products transferred	0.000	-	-	-	-	-	-	-
Direct use	-0.868							
Stock changes	56.715	-29.387	-11.923	0.710	-16.147	8.168	-7.979	-2.373
Refinery intake (Calculated)	1.591							
Gross inland deliveries (Calculated)	55.124	319.132	298.756	10.901	374.886	377.120	752.006	25.084
Statistical difference		-5.459	4.187	0.844	8.670	2.116	10.786	0.001
Gross inland deliveries (Observed)	3.133	324.591	294.569	10.057	366.216	375.004	741.220	25.083
Refinery intake (Observed)	4.001							
Opening stock level (National territory)		75.243	31.370	3.959	118.174	82.686	200.860	1.664

Closing stock level (National territory)	0.000	104.630	43.293	3.249	134.321	74.518	208.839	4.037
Average net calorific value of Production	0.000							
Average net calorific value of Imports	0.000							
Average net calorific value of Exports								
Average net calorific value of Average	47,300.000	44,300.000	44,100.000	43,800.000	42,588.673	42,755.576	42,673.120	37,000.000
Refinery fuel used for Electricity generation	-	-	-	-	-	-	-	-
Refinery fuel used CHP production	-	-	-	-	-	-	-	-
Refinery fuel used Heat production	-	-	-	-	-	-	-	-
Stock changes at Main activity plants	-	-	-	-	-	-	-	-
Refinery losses		-	-		-	-	0.000	-
Gross deliveries to Petrochemical industry	-	-	-	-	-	-	-	-
Energy use in Petrochemical industry	-	-	-	-	-	-	-	-
Non-energy use in Petrochemical industry	-	-	-	-	-	-	-	-
Net deliveries of Total products		-	-		-	-	0.000	-
Net deliveries to the Petrochemical industry								
Gross inland deliveries for energy use	55.124	324.591	294.569	10.057	366.216	375.004	741.220	25.083
Transformation sector	0.000	0.000	0.000	0.000	0.000	291.853	291.853	0.000
Main activity producer electricity	-	-	-	-	-	289.854	289.854	-
Autoproducer electricity	-	-	-	-	-	1.999	1.999	-
Main activity producer CHP	=	=	-	-	-	-	-	-
Autoproducer CHP Plants	-	-	-	-	-	-	-	-
Main activity producer heat	=	=	-	-	-	-	-	-
Autoproducer heat	-	-	-	-	-	-	-	-
Gas works (and other conversion to gases)	-	-	-	-	-	-	-	-
Natural gas blending plants	-	=	-	-	-	-	-	-
Coke ovens (Transformation)	-	=	-	-	-	=	-	-
Blast furnaces (Transformation)	-	-	-	-	-	-	-	-

Petrochemical industry	-	-	-	-	-	-	-	-
Patent fuel plants (Transformation)	-	-	-	-	-	-	-	-
Not elsewhere specified (Transformation)	-	-	-	-	-	-	-	-
Energy sector	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Coal mines	-	-	-	-	-	-	1.810	-
Oil and gas extraction	-	-	-	-	-	-	-	-
Coke ovens (Energy)	-	-	-	-	-	-	1.810	-
Blast furnaces (Energy)	-	-	-	-	-	-	-	-
Gas works (Energy)	-	-	-	-	-	-	-	-
Electricity, CHP and Heat	-	-	-	-	-	-	-	-
Non elsewhere specified (Energy)	-	-	-	-	-	-	-	-
Distribution losses	-	-	-	-	-	-	-	-
Total final energy consumption	55.124	324.591	294.569	10.057	366.216	83.151	449.367	25.083
Transport sector	0.424	324.591	293.631	0.000	331.467	0.000	331.467	24.139
International aviation	-	-	290.993	-	-	-	-	-
Domestic aviation	-	-	2.638	-	-	-	-	-
Road	0.424	324.591	-	-	329.532	-	329.532	24.024
Rail	-	-	-	-	-	-	-	
Domestic navigation	-	-	-	-	1.935	-	1.935	0.115
Pipeline transport	-	-	-	-	-	-	-	-
Non elsewhere specified (Transport)	-	-	-	-	-	-	-	-
Industry sector	6.637	0.000	0.000	0.000	7.902	22.741	30.643	0.472
Iron and steel	-	-	-	-	0.004	0.003	0.007	-
Chemical and petrochemical	0.029	-	-	-	0.055	1.210	1.265	0.003
Non-ferrous metals	0.636	-	-	-	0.008	0.004	0.012	-
Non-metallic minerals	0.464	-	-	-	0.948	2.149	3.097	0.053
Transport equipment	0.033	_	_	-	0.001	0.054	0.055	-

Machinery	0.170	-	-		0.218	0.147	0.365	0.013
Mining and Quarrying	0.095	-	-	-	6.096	3.609	9.705	0.365
Food, beverages and tobacco	5.049	-	-	-	0.316	4.954	5.270	0.025
Paper, pulp and printing	0.040	-	-	-	-	0.165	0.165	-
Wood and wood products	0.003	-	-	-	0.013	0.025	0.038	0.001
Construction	-	-	-	-	-	8.936	8.936	-
Textiles and leather	0.002	-	-	-	-	0.006	0.006	-
Not elsewhere specified (Industry)	0.116	-	-	-	0.243	1.479	1.722	0.012
Other sectors	48.063	0.000	0.938	10.057	26.847	60.410	87.257	0.472
Commercial and public services	10.741	-	-	2.011	1.804	14.330	16.134	0.133
Residential	33.597	-	-	8.046	-	45.311	45.311	-
Agriculture/forestry	2.588	-	-		18.650		18.650	-
Fishing	-	-	-		1.575		1.575	-
Not elsewhere specified (Other)	1.137	-	0.938	-	4.818	0.769	5.587	0.339
1 () /								
Gross inland deliveries for non energy use	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Gross inland deliveries for non energy use								
Gross inland deliveries for non energy use Transformation Sector	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity	0.000 - -	0.000 - -	0.000 - -	0.000 - -	0.000 - -	0.000 - -	0.000 - -	
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP	0.000 - - -	0.000 - -	0.000 - - -	- - -	0.000 - - -	0.000 - - -	0.000 - - -	
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP Autoproducer CHP Plants								
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP Autoproducer CHP Plants Main activity producer heat		0.000 - - - - -						
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP Autoproducer CHP Plants Main activity producer heat Autoproducer heat								
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP Autoproducer CHP Plants Main activity producer heat Autoproducer heat Gas works (and other conversion to gases)		0.000 - - - - - -						
Gross inland deliveries for non energy use Transformation Sector Main activity producer electricity Autoproducer electricity Main activity producer CHP Autoproducer CHP Plants Main activity producer heat Autoproducer heat Gas works (and other conversion to gases) Natural gas blending plants	0.000 - - - - - - -				0.000 			

Patent fuel plants (Transformation)	-	-	-	-	-	-	-	-
Not elsewhere specified (Transformation)	-	-	-	-	-	-	-	-
Energy sector	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Coal mines	-	-	-	-	-	-	-	-
Oil and gas extraction	-	-	-	-	-	-	-	-
Coke ovens (Energy)	-	=	ı	-	-	-	-	-
Blast furnaces (Energy)	-	-	-	-	-	-	-	-
Gas works (Energy)	-	-	-	-	-	-	-	-
Electricity, CHP and Heat	-	-	-	-	-	-	-	-
Non elsewhere specified (Energy)	-	-	-	-	-	-	-	-
Distribution losses	-	-	-	-	-	-	-	-
Total final non energy use consumption	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Transport sector	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
International aviation	-	-	-	-	-	-	-	-
Domestic aviation	-	-	-	-	-	-	-	-
Road	-	-	-	-	-	-	-	-
Rail	-	-	-	-	-	-	-	-
Domestic navigation	-	-	-	-	-	-	-	-
Pipeline transport	-	-	ı	-	-	-	-	-
Non elsewhere specified (Transport)	-	-	ı	-	-	-	-	-
Industry sector	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Iron and steel	-	=	ı	-	-	-	-	-
Chemical and petrochemical	=	-	-	-	=	-	-	-
Non-ferrous metals	-	=	-	-	-	=	-	-
Non-metallic minerals	-	-	-	-	-	-	-	-
Transport equipment	-	-	-	-	-	-	-	-
Machinery	-	-	-	-	-	-	-	-

Mining and Quarrying	-	-	-	-	-	-	-	-
Food, beverages and tobacco	-	-	-	-	-	-	-	-
Paper, pulp and printing	-	-	-	-	-	-	-	-
Wood and wood products	-	-	-	-	-	-	-	-
Construction	-	1	-	1	1	-	-	-
Textiles and leather	-	-	-	-	-	-	-	-
Not elsewhere specified (Industry)	-	-	-	-	-	-	-	-
Other sectors	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Commercial and public services	-	1	-	1	1	-	-	-
Residential	-	-	-	-	-	-	-	-
Agriculture/forestry	-	1	-	1	1	-	-	-
Fishing	-	-	-	-	-	-	-	-
Not elsewhere specified (Other)	-	-	-	-	-	-	-	-

Table A.4.2. Energy balance 2023 - Liquid Fuels (Non-bio gas/diesel oil, Total fuel oil, Lubricants, Bitumen, Pet-coke), in kt

Flow	Non bio-gas Diesel Oil	Total fuel oil	Lubricants	Bitumen	Pet-Coke
Indigenous production					
Receipts from other sources					
Solid fuels					
Natural gas					
Renewables					
Backflows	-	0.000	-	-	-
Of which: backflows for direct export or sale	-	0.000	-	-	-
Primary product receipts	-	0.000	-	-	-
Refinery gross output	-	0.000	-	-	-
Recycled products	-	6.721	-	-	-
Refinery fuel	-	0.000	-	-	-
Imports (Balance)	819.657	873.923	8.314	39.437	21.041
Exports (Balance)	-	0.000	-	-	-
International marine bunkers	87.129	147.806	-	-	-
Interproduct transfers	-	0.000	-	-	-
Products transferred	-	0.000	-	-	-
Direct use					
Stock changes	-5.606	-24.448	-0.114	-1.528	8.292
Refinery intake (Calculated)					
Gross inland deliveries (Calculated)	726.922	708.390	8.200	37.909	29.333
Statistical difference	10.785	5.359	0.000	0.625	0.591
Gross inland deliveries (Observed)	716.137	703.031	8.200	37.284	28.742
Refinery intake (Observed)					
Opening stock level (National territory)	199.196	114.206	0.603	3.789	14.308

Closing stock level (National territory)	204.802	138.654	0.717	5.317	6.016
Average net calorific value of Production					
Average net calorific value of Imports					
Average net calorific value of Exports					
Average net calorific value of Average	42,871.995	40,421.748	40,200.000	40,200.000	32,423.000
Refinery fuel used for Electricity generation	-	0.000	-	-	-
Refinery fuel used CHP production	-	0.000	-	-	-
Refinery fuel used Heat production	-	0.000	-	-	-
Stock changes at Main activity plants	-	0.000	-	-	-
Refinery losses	-	0.000			-
Gross deliveries to Petrochemical industry			-	-	
Energy use in Petrochemical industry	-	0.000	-	-	-
Non-energy use in Petrochemical industry	-	0.000	-	-	-
Net deliveries of Total products	-	0.000			-
Net deliveries to the Petrochemical industry					
Gross inland deliveries for energy use	716.137	703.031	0.000	0.000	28.742
Transformation sector	291.853	674.255	0.000	0.000	0.000
Main activity producer electricity	289.854	674.255	-	-	-
Autoproducer electricity	1.999	-	-	-	-
Main activity producer CHP	-	0.000	-	-	-
Autoproducer CHP Plants	-	0.000	-	-	-
Main activity producer heat	-	0.000	-	-	-
Autoproducer heat	-	0.000	-	-	-
Gas works (and other conversion to gases)	-	0.000	-	-	-
Natural gas blending plants	-	0.000	-	-	-
Coke ovens (Transformation)	-	0.000	-	-	-
Blast furnaces (Transformation)	-	0.000	-	-	-

Petrochemical industry	-	0.000	-	-	-
Patent fuel plants (Transformation)	-	0.000	-	-	-
Not elsewhere specified (Transformation)	-	0.000	-	-	-
Energy sector	0.000	0.000	0.000	0.000	0.000
Coal mines	-	0.032	-	-	-
Oil and gas extraction	-	0.000	-	-	-
Coke ovens (Energy)	-	0.000	-	-	-
Blast furnaces (Energy)	-	0.000	-	-	-
Gas works (Energy)	-	0.000	-	-	-
Electricity, CHP and Heat	-	0.000	-	-	-
Non elsewhere specified (Energy)	-	0.032	-	-	-
Distribution losses	-	0.000	-	-	-
Total final energy consumption	424.284	28.776	0.000	0.000	28.742
Transport sector	307.328	0.000	0.000	0.000	0.000
International aviation	-	0.000	-	-	-
Domestic aviation	-	0.000	-	-	-
Road	305.508	0.000	-	-	-
Rail	-	0.000	-	-	-
Domestic navigation	1.820	0.000	-	-	-
Pipeline transport	-	0.000	-	-	-
Non elsewhere specified (Transport)	-	0.000	-	-	-
Industry sector	30.171	24.310	0.000	0.000	28.742
Iron and steel	0.007	0.000	-	-	-
Chemical and petrochemical	1.262	2.461	-	-	-
Non-ferrous metals	0.012	0.004	-	-	-
Non-metallic minerals	3.044	10.849	-	-	28.742
Transport equipment	0.055	0.000	-	-	-

Machinery	0.352	0.000	-	-	-
Mining and Quarrying	9.340	0.000	-	-	-
Food, beverages and tobacco	5.245	5.614	-	-	-
Paper, pulp and printing	0.165	0.426	-	-	-
Wood and wood products	0.037	0.000	-	-	-
Construction	8.936	4.234	-	-	-
Textiles and leather	0.006	0.000	-	-	-
Not elsewhere specified (Industry)	1.710	0.722	-	-	-
Other sectors	86.785	4.466	0.000	0.000	0.000
Commercial and public services	16.001	4.466	-	-	-
Residential	45.311	0.000	-	-	-
Agriculture/forestry	18.650	0.000	-	-	-
Fishing	1.575	0.000	-	-	-
Not elsewhere specified (Other)	5.248	0.000	-	-	-
Gross inland deliveries for non energy use	0.000	0.000	8.200	37.284	0.000
Transformation Sector	0.000	0.000	0.000	0.000	0.000
Main activity producer electricity	-	-	-	-	-
Autoproducer electricity	-	-	-	-	-
Main activity producer CHP	-	-	-	-	-
Autoproducer CHP Plants	-	-	-	-	-
Main activity producer heat	-	-	-	-	-
Autoproducer heat	-	-	-	-	-
Gas works (and other conversion to gases)	-	-	-	-	-
Natural gas blending plants	-	-	-	-	-
Coke ovens (Transformation)	-	-	-	-	-
Blast furnaces (Transformation)	-	-	-	-	-
Petrochemical industry	-	-	-	-	-

Patent fuel plants (Transformation)	-	-	-	-	-
Not elsewhere specified (Transformation)	-	-	-	-	-
Energy sector	0.000	0.000	0.000	0.000	0.000
Coal mines	-	-	-	-	-
Oil and gas extraction	1	-	-	-	-
Coke ovens (Energy)	1	-	-	-	-
Blast furnaces (Energy)	1	-	-	-	-
Gas works (Energy)	-	-	-	-	-
Electricity, CHP and Heat	1	-	-	-	-
Non elsewhere specified (Energy)	-	-	-	-	-
Distribution losses	-	-	-	-	-
Total final non energy use consumption	0.000	0.000	8.200	37.284	0.000
Transport sector	0.000	0.000	2.934	0.000	0.000
International aviation	-	-			-
Domestic aviation	-	-	-	-	-
Road	-	-	2.934	-	-
Rail	-	-	-	-	-
Domestic navigation	-	-	-	-	-
Pipeline transport	1	-	-	-	-
Non elsewhere specified (Transport)	1	-	-	-	-
Industry sector	0.000	0.000	5.266	37.284	0.000
Iron and steel	1	-	-	-	-
Chemical and petrochemical	-	-	-	-	-
Non-ferrous metals	-	-	-	-	-
Non-metallic minerals	-	-	-	-	-
Transport equipment	1	-	-	-	-
Machinery	-	-	-	-	-

Mining and Quarrying	-	-	-	-	-
Food, beverages and tobacco	-	-	-	-	-
Paper, pulp and printing	-	-	-	-	-
Wood and wood products	-	-	-	-	-
Construction	-	-	-	37.284	-
Textiles and leather	-	-	-	-	-
Not elsewhere specified (Industry)	-	-	5.266	-	-
Other sectors	0.000	0.000	0.000	0.000	0.000
Commercial and public services	-	-	-	-	-
Residential	-	-	-	-	-
Agriculture/forestry	-	-	-	-	-
Fishing	-	-	-	-	-
Not elsewhere specified (Other)	-	-	-	-	-

Table A.4.3. Energy balance 2023 – Industrial waste (non-renewable), Municipal waste (renewable), Municipal waste (non-renewable), Solid biofuels, Charcoal, Biogases, in TJ

(renewable), Municipal v	Industrial	, ,	Municipal	Dioga:	, m 13	
	Waste (non- renewable)	Municipal Waste (renewable)	Waste (non- renewable)	Solid Biofuels	Charcoal	Biogases
Indigenous production	188.526	127.428	201.342	1,065.043	1.119	508.433
Total imports (balance)	_	938.486	1,423.232	68.273	13.655	-
Total exports (balance)	-	-	-	-	-	-
Stock changes (national territory)	-	62.452	109.180	-1.623	-	-
Inland consumption (calculated)	189	1,128	1,734	1,132	15	508
Statistical differences	0.201	-	-	-0.075	-	0.105
Transformation sector	-	-	-	77.244	-	294.444
Main activity producer electricity	-	-	-	-	-	=
Main activity producer CHP	-	-	-	-	-	94.949
Main activity producer heat	-	-	-	-	-	-
Autoproducer electricity	-	-	-	-	-	-
Autoproducer CHP	-	-	-	-	-	199.495
Autoproducer heat	-	-	-	-	-	-
Patent fuel plants (Transformation)	_	_		_	-	-
BKB plants (Transformation)	-	-	-	-	-	-
Gas works (Transformation)	_	-	-	_	-	-
Blast furnaces (Transformation)	_	_	-	-	-	-
Natural gas blending plants	_	-	-	-	-	-
For blending with Motor						
gasoline/Diesel/Kerosene Charcoal production plants	-	-	-	-	-	-
(Transformation)	-	-	-	77.244	-	-
Not elsewhere specified (Transformation)	-	-	-	-	-	-
Energy sector	-	-	-	-	-	-
Gasification plants for Biogas	-	-	-	-	-	-
Own use in electricity, CHP and heat	-	-	-	-	-	-
Coal mines	-	-	-	-	-	-
Patent fuel plants (Energy)	-	-	-	-	-	-
Coke ovens (Energy)	-	-	-	-	-	-
Oil refineries	-	-	-	-	-	-
BKB plants (Energy)	-	-	-	-	-	-
Gas works (Energy)	-	-	-	-	-	-
Blast furnaces (Energy)	-	-		-	-	-
Charcoal production plants (energy)	-	-			-	-
Not elsewhere specified (Energy)	-	-		-	-	-
Distribution losses	-	-	-	-	-	-
Total final consumption	188.325	1,128.366	1,733.754	1,054.524	14.774	213.884
Final energy consumption	188.325	1,128.366	1,733.754	1,054.524	14.774	213.884
Industry sector	188.325	1,128.366	1,733.754	399.068	-	67.437
Iron and steel	-	-	-	-	-	-
Chemical and petrochemical	-	-	-	5.311	-	-

Non-ferrous metals						
	-	-	-	-	-	-
Non-metallic minerals	188.325	1,128.366	1,733.754	263.791	-	-
Transport equipment	-	-	-	-	-	-
Machinery	-	-	-	-	-	-
Mining and quarrying	-	-	-	-	-	-
Food, beverages and tobacco	-	-	-	129.966	-	67.437
Paper, pulp and printing	-	-	-	-	-	-
Wood and wood products	-	-	-	-	-	-
Construction	-	-	-	-	-	-
Textiles and leather	-	-	-	-	-	-
Not elsewhere specified (Industry)	-	-	-	-	-	-
Transport sector		-	-	-	-	-
Rail	-	-	-	-	-	-
Road	-	-	-	-	-	-
Domestic navigation	-	-	-	-	-	-
Not elsewhere specified (Transport)	-	-	-	-	-	-
Other sectors	-	-	-	655.456	14.774	146.447
Commercial and public services	-	-	-	106.425	5.910	37.081
Residential	-	-	-	538.432	8.864	=
Agriculture/Forestry	-	-	-	10.599	-	109.366
Fishing	-	-	-	-	-	-
Not elsewhere specified (Other)	-	-	-	-	-	-

Annex 5: Indirect greenhouse gases and SO₂

The role of carbon monoxide (CO), nitrogen oxides (NO_x) and non-methane organic volatile compounds (NMVOC) is important for climate change as these gases act as precursors of tropospheric ozone. In this way, they contribute to ozone formation and alter the atmospheric lifetimes of other greenhouse gases. For example, CO interacts with the hydroxyl radical (OH), the major atmospheric sink for methane, to form carbon dioxide. Therefore, increased atmospheric concentration of CO limits the number of OH compounds available to destroy methane, thus increasing the atmospheric lifetime of methane.

These gases are generated through a variety of anthropogenic activities. Emissions for indirect greenhouse gases and SO_2 are presented in the tables that follow. The emissions have been estimated by the Department of Labour Inspection that is the competent authority for the preparation of air pollutants inventories under Directive 2001/81/EC.

Sectors which are not presented in the tables are reported NO or IE or NA.

Table A5.1.NO_x emissions 1990-2023 (as Gg NO_x)

able A3.1.11C	1990	1991	1992	1993	1994	1995	1996	1997
1A1a	3.2129	3.3323	3.8327	4.1307	4.3188	3.9313	4.1767	4.4168
1A1b	0.1300	0.1400	0.1400	0.1400	0.1700	0.1600	0.1500	0.1600
1A10	0.0024	0.0024	0.0021	0.0021	0.0021	0.0021	0.0021	0.0019
1A2b	0.0024	0.0024	0.0021	0.0891	0.0902	0.0902	0.0902	0.0015
1A2c	0.0310	0.0290	0.0300	0.0301	0.0310	0.0344	0.0365	0.0387
1A2d	0.0140	0.0250	0.0300	0.0301	0.0226	0.0236	0.0363	0.0258
1A2e	0.2320	0.2470	0.0103	0.2685	0.0220	0.2900	0.3007	0.3114
1A2f	1.6213	1.5288	1.6518	1.8062	1.8862	1.8070	1.9436	1.8704
1A2gvii	0.4039	0.4046	0.4046	0.4053	0.4066	0.4072	0.4079	0.4085
1A2gviii	0.4940	0.4979	0.4963	0.4988	0.5037	0.5065	0.5069	0.5091
1A3ai(i)	0.4940	0.4979	0.4903	0.3215	0.3253	0.3003	0.3330	0.3368
1A3aii(i)	0.0069	0.0069	0.0084	0.0087	0.0092	0.0097	0.0095	0.0100
1A3ah(1)	2.7423	2.6300	2.4228	2.2961	2.3488	2.2079	2.3870	2.3474
1A3bii	3.3178	3.2882	4.0723	4.2232	4.3715	4.6312	4.2228	4.2392
1A3biii	3.0051	2.8121	3.4485	3.4648	3.4351	3.6713	3.6034	3.7758
1A3bii	0.0349							
1A3dii		0.0336 0.0255	0.0327 0.0310	0.0304	0.0309 0.0329	0.0302 0.0359	0.0289 0.0376	0.0298 0.0396
1A3dii 1A4bi	0.0265	0.0233	0.0310	0.0322	0.0329		0.0376	0.0396
	0.2191					0.3052		
1A4ci	0.1577	0.1696	0.2046	0.2079	0.2364	0.2247	0.2359	0.2475
1A4cii	0.2121	0.2281	0.2751	0.2796	0.3178	0.3022	0.3171	0.3328
1A4ciii	0.1331	0.1480	0.1793	0.1860	0.1915	0.2078	0.2186	0.2295
1B2aiv	0.1525	0.1621	0.1694	0.1838	0.1897	0.1987	0.1825	0.2502
1B2c	0.0404	0.0429	0.0448	0.0486	0.0502	0.0526	0.0483	0.0662
2G	0.0069	0.0069	0.0075	0.0021	0.0021	0.0061	0.0064	0.0072
3B1a	0.0164	0.0169	0.0175	0.0188	0.0202	0.0216	0.0200	0.0186
3B1b	0.0131	0.0130	0.0132	0.0144	0.0147	0.0154	0.0173	0.0143
3B2	0.0202	0.0205	0.0199	0.0192	0.0178	0.0174	0.0176	0.0171
3B3	0.0048	0.0052	0.0060	0.0064	0.0063	0.0066	0.0069	0.0073
3B4d	0.0248	0.0248	0.0242	0.0240	0.0255	0.0267	0.0291	0.0366
3B4e	0.000267	0.0003	0.0002	0.0002	0.0002	0.0003	0.0003	0.0004
3B4f	0.0014	0.0013	0.0011	0.0010	0.0009	0.0008	0.0008	0.0007
3B4gi	0.0091	0.0088	0.0085	0.0110	0.0107	0.0108	0.0113	0.0105
3B4gii	0.0218	0.0199	0.0232	0.0272	0.0256	0.0264	0.0283	0.0293
3B4giii	0.0015	0.0011	0.0013	0.0010	0.0012	0.0016	0.0015	0.0014
3B4giv	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3Da1	0.5160	0.4920	0.6320	0.5640	0.5440	0.4960	0.5240	0.3760
3Da2a	0.4006	0.4076	0.4249	0.4477	0.4515	0.4693	0.4850	0.4955
3Da2b	0.0011	0.0012	0.0012	0.0012	0.0013	0.0013	0.0013	0.0013
3Da3	0.1865	0.1880	0.1826	0.1785	0.1780	0.1812	0.1913	0.2185
3F	0.0794	0.0771	0.0809	0.0811	0.0701	0.0630	0.0569	0.0520
5C1biii	0.0010	0.0010	0.0010	0.0011	0.0011	0.0011	0.0011	0.0011
5C2	0.0015	0.0015	0.0016	0.0016	0.0016	0.0017	0.0017	0.0017
TOTAL	17.8848	17.6629	19.8535	20.3585	20.9428	20.8062	20.9841	21.3659

	1998	1999	2000	2001	2002	2003	2004	2005
1A1a	4.8215	5.0901	5.3539	5.3139	5.5342	5.9476	6.1958	6.5557
1A1b	0.1700	0.1900	0.2100	0.2000	0.1700	0.0800	0.0400	NO
1A2a	0.0017	0.0017	0.0017	0.0009	0.0009	0.0006	0.0004	0.0002

1A2b	0.0945	0.0945	0.0945	0.0967	0.0967	0.0967	0.0967	0.0966
1A2c	0.0408	0.0430	0.0451	0.0473	0.0473	0.0432	0.0430	0.0408
1A2d	0.0279	0.0279	0.0290	0.0290	0.0279	0.0258	0.0258	0.0236
1A2e	0.3179	0.3265	0.3351	0.3394	0.3437	0.3523	0.3566	0.3624
1A2f	1.7690	1.7775	1.8309	1.7914	1.8520	1.8292	1.9781	1.9405
1A2gvii	0.4163	0.4177	0.4242	0.4274	0.4291	0.4307	0.4323	0.4340
1A2gviii	0.5099	0.5101	0.5103	0.5106	0.5107	0.5108	0.5110	0.5131
1A3ai(i)	0.3406	0.3444	0.3483	0.3521	0.3559	0.3597	0.3636	0.3744
1A3aii(i)	0.0103	0.0108	0.0116	0.0127	0.0126	0.0127	0.0132	0.0350
1A3bi	2.2447	2.0965	1.9542	1.8157	1.7667	1.7366	1.6655	1.5254
1A3bii	4.3911	4.3561	4.0694	4.2821	3.9172	3.9388	3.8277	3.6401
1A3biii	3.7126	3.7565	4.1497	4.0817	3.8281	3.8991	3.8287	3.7180
1A3biv	0.0307	0.0336	0.0345	0.0396	0.0436	0.0493	0.0499	0.0470
1A3dii	0.0421	0.0475	0.0204	0.0165	0.0216	0.0165	0.0229	0.0281
1A4bi	0.3515	0.3638	0.3714	0.3759	0.3891	0.3721	0.4222	0.5312
1A4ci	0.2612	0.2707	0.2771	0.2798	0.2906	0.2783	0.2427	0.2522
1A4cii	0.3513	0.3640	0.3727	0.3763	0.3908	0.3743	0.3091	0.3072
1A4ciii	0.2444	0.2512	0.2594	0.2603	0.2495	0.2563	0.2306	0.1957
1B2aiv	0.2599	0.2831	0.2816	0.2774	0.2607	0.2328	0.0669	NO
1B2c	0.0688	0.0749	0.0745	0.0734	0.0690	0.0616	0.0177	NO
2G	0.0073	0.0102	0.0193	0.0059	0.0055	0.0040	0.0059	0.0052
3B1a	0.0174	0.0176	0.0172	0.0178	0.0192	0.0195	0.0191	0.0180
3B1b	0.0125	0.0115	0.0114	0.0114	0.0123	0.0119	0.0126	0.0124
3B2	0.0167	0.0162	0.0171	0.0207	0.0205	0.0184	0.0194	0.0187
3B3	0.0074	0.0071	0.0072	0.0078	0.0084	0.0083	0.0079	0.0073
3B4d	0.0390	0.0419	0.0459	0.0518	0.0557	0.0494	0.0458	0.0399
3B4e	0.0004	0.0005	0.0005	0.0006	0.0006	0.0007	0.0006	0.0006
3B4f	0.0006	0.0006	0.0005	0.0005	0.0004	0.0004	0.0003	0.0003
3B4gi	0.0119	0.0102	0.0078	0.0085	0.0085	0.0085	0.0115	0.0092
3B4gii	0.0291	0.0294	0.0306	0.0306	0.0318	0.0317	0.0269	0.0272
3B4giii	0.0015	0.0014	0.0018	0.0016	0.0017	0.0016	0.0012	0.0009
3B4giv	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
3Da1	0.4080	0.4160	0.3400	0.3240	0.3120	0.3880	0.3960	0.2560
3Da2a	0.4934	0.4889	0.5016	0.5469	0.5801	0.5550	0.5402	0.4998
3Da2b	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0015
3Da3	0.2265	0.2357	0.2551	0.2937	0.3082	0.2747	0.2650	0.2388
3F	0.0489	0.0447	0.0355	0.0348	0.0327	0.0351	0.0275	0.0214
5C1biii	0.0012	0.0012	0.0012	0.0012	0.0012	0.0003	NO	NO
5C2	0.0018	0.0018	0.0018	0.0018	0.0018	0.0019	0.0019	0.0019
TOTAL	21.8039	22.0686	22.3556	22.3611	22.0100	22.3161	22.1241	21.7806

	2006	2007	2008	2009	2010	2011	2012	2013
1A1a	6.7618	6.9844	6.3209	7.4322	6.3266	9.7045	10.9561	6.3250
1A1b	NO	NO						
1A2a	NO	NO	0.0086	0.0081	0.0107	0.0098	NO	NO
1A2b	0.0965	0.0967	0.0943	0.0593	0.0602	0.0721	0.0414	0.0676
1A2c	0.0406	0.0309	0.0188	0.0304	0.0407	0.0598	0.0504	0.0337
1A2d	0.0229	0.0196	0.0229	0.0210	0.0205	0.0189	0.0190	0.0206
1A2e	0.3668	0.3728	0.3615	0.3542	0.3463	0.3589	0.3770	0.3427
1A2f	2.0215	1.9912	2.1254	1.8067	1.5821	1.4641	0.6743	0.9229
1A2gvii	0.4356	0.4370	0.3443	0.2941	0.3173	0.2876	0.1714	0.1084
1A2gviii	0.5164	0.5049	0.1336	0.0877	0.0708	0.1141	0.0658	0.0939
1A3ai(i)	0.3714	0.3793	0.3923	0.3815	0.3806	0.3705	0.3583	0.3409
1A3aii(i)	0.0295	0.0264	0.0258	0.0219	0.0180	0.0046	0.0026	0.0004
1A3bi	1.4075	1.4012	1.3143	1.2276	1.1948	1.1138	1.0371	0.9245
1A3bii	3.2510	2.7366	2.6461	2.4690	2.5285	2.3502	2.0027	1.7212
1A3biii	3.4661	3.6634	3.5264	3.3673	3.4398	3.2037	2.8059	2.2854
1A3biv	0.0506	0.0529	0.0491	0.0457	0.0407	0.0364	0.0332	0.0294
1A3dii	0.0215	0.0241	0.0290	0.0568	0.0356	0.0330	0.0230	0.0171
1A4bi	0.5289	0.4777	0.4700	0.4497	0.3830	0.4216	0.4155	0.3546
1A4ci	0.2626	0.2414	0.2351	0.2083	0.2052	0.2144	0.2000	0.1970
1A4cii	0.3049	0.3161	0.3070	0.2750	0.2712	0.2803	0.2690	0.2649
1A4ciii	0.1896	0.1942	0.1916	0.2557	0.2555	0.1918	0.1922	0.1286
1B2aiv	NO	NO						
1B2c	NO	0.0066						
2G	0.0032	0.0034	0.0033	0.0036	0.0039	0.0032	0.0035	0.0027
3B1a	0.0175	0.0173	0.0173	0.0170	0.0171	0.0176	0.0176	0.0181
3B1b	0.0121	0.0119	0.0117	0.0114	0.0115	0.0118	0.0111	0.0108
3B2	0.0190	0.0181	0.0186	0.0209	0.0229	0.0248	0.0242	0.0218
3B3	0.0076	0.0078	0.0076	0.0075	0.0074	0.0069	0.0062	0.0056
3B4d	0.0418	0.0446	0.0386	0.0340	0.0373	0.0352	0.0329	0.0295

3B4e	0.0006	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0003
3B4f	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
3B4gi	0.0089	0.0080	0.0082	0.0081	0.0072	0.0077	0.0082	0.0080
3B4gii	0.0221	0.0239	0.0226	0.0218	0.0216	0.0204	0.0184	0.0157
3B4giii	0.0009	0.0006	0.0005	0.0004	0.0004	0.0003	0.0002	0.0002
3B4giv	0.0001	0.0001	0.0000	NO	NO	NO	NO	NO
3Da1	0.3520	0.2400	0.2560	0.2120	0.2160	0.2000	0.2080	0.2240
3Da2a	0.5054	0.5141	0.4953	0.4857	0.5024	0.4963	0.4711	0.4408
3Da2b	0.0015	0.0015	0.0016	0.0016	0.0016	0.0017	0.0017	0.0017
3Da3	0.2473	0.2543	0.2332	0.2255	0.2470	0.2472	0.2353	0.2118
3F	0.0163	0.0090	0.0053	0.0043	0.0045	0.0050	0.0052	0.0043
5C1biii	NO							
5C2	0.0019	0.0020	0.0020	0.0021	0.0021	0.0022	0.0022	0.0023
TOTAL	21.4045	21.1085	19.7398	19.9092	18.6323	21.3915	20.7418	15.183780

	2014	2015	2016	2017	2018	2019	2020	2021
1A1a	6.9664	4.8595	4.0555	3.6551	3.6261	3.9056	2.9249	2.9358
1A1b	NO							
1A2a	0.0001	NO	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1A2b	0.0969	0.0401	0.0237	0.0416	0.0274	0.0320	0.0260	0.0226
1A2c	0.0435	0.0383	0.0412	0.0391	0.0396	0.0476	0.0508	0.0684
1A2d	0.0213	0.0176	0.0181	0.0153	0.0175	0.0154	0.0191	0.0076
1A2e	0.4602	0.3776	0.4087	0.4174	0.3846	0.4572	0.4425	0.4548
1A2f	1.1183	1.0547	1.0094	1.0680	0.9937	0.9569	1.0051	1.0428
1A2gvii	0.1073	0.0910	0.1021	0.1218	0.1389	0.1637	0.2002	0.2108
1A2gviii	0.1086	0.0454	0.0503	0.0693	0.2007	0.2353	0.0702	0.1278
1A3ai(i)	0.3471	0.3499	0.4056	0.4691	0.4857	0.4738	0.1536	0.2650
1A3aii(i)	0.0002	0.0009	0.0008	0.0004	0.0003	0.0002	0.0001	0.0008
1A3bi	0.9477	1.0116	1.1476	1.3125	1.4259	1.3858	1.6156	1.7051
1A3bii	1.6009	1.6813	1.8172	1.8230	1.8083	1.5090	1.6420	1.7191
1A3biii	2.0697	2.0308	2.1790	2.1643	1.6943	2.6481	1.7231	1.7613
1A3biv	0.0283	0.0265	0.0232	0.0216	0.0199	0.0177	0.0133	0.0132
1A3dii	0.0199	0.0221	0.0163	0.0231	0.0224	0.0294	0.0133	0.0271
1A4bi	0.3042	0.3596	0.3793	0.3771	0.3582	0.3963	0.3627	0.3122
1A4ci	0.1812	0.1998	0.2021	0.2123	0.1975	0.2071	0.2107	0.2020
1A4cii	0.2437	0.2687	0.2619	0.2753	0.2559	0.2730	0.2785	0.2606
1A4ciii	0.1283	0.1279	0.1279	0.1186	0.1145	0.1224	0.0948	0.1034
1B2aiv	NO							
1B2c	NO							
2G	0.0011	0.0020	0.0019	0.0021	0.0018	0.0019	0.0016	0.0017
3B1a	0.0185	0.0191	0.0208	0.0220	0.0233	0.0256	0.0289	0.0284
3B1b	0.0115	0.0110	0.0117	0.0122	0.0133	0.0130	0.0147	0.0154
3B2	0.0225	0.0207	0.0212	0.0224	0.0217	0.0226	0.0229	0.0244
3B3	0.0054	0.0055	0.0054	0.0054	0.0055	0.0053	0.0055	0.0054
3B4d	0.0281	0.0283	0.0299	0.0312	0.0304	0.0304	0.0316	0.0312
3B4e	0.0003	0.0003	0.0002	0.0002	0.0002	0.0003	0.0004	0.0003
3B4f	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0003	0.0004
3B4gi	0.0072	0.0067	0.0068	0.0066	0.0064	0.0070	0.0068	0.0073
3B4gii	0.0193	0.0162	0.0162	0.0166	0.0169	0.0174	0.0173	0.0173
3B4giii	0.0002	0.0002	0.0002	0.0003	0.0002	0.0003	0.0002	0.0002
3B4giv	NO							
3Da1	0.3160	0.2640	0.3000	0.2800	0.3480	0.3480	0.3760	0.3200
3Da2a	0.4437	0.4382	0.4549	0.4718	0.4816	0.4921	0.5205	0.5257
3Da2b	0.0017	0.0017	0.0017	0.0017	0.0017	0.0018	0.0018	0.0018
3Da3	0.2092	0.2023	0.2106	0.2211	0.2144	0.2189	0.2246	0.2298
3F	0.0035	0.0046	0.0033	0.0028	0.0033	0.0032	0.0037	0.0036
5C1biii	NO							
5C2	0.0022	0.0022	0.0022	0.0022	0.0022	0.0023	0.0023	0.0023
TOTAL	15.8853	13.6275	13.3584	13.3251	12.9840	14.0680	12.1067	12.4568

	2022	2023			
1A1a	2.7949	2.8897			
1A1b	NO	NO			
1A2a	0.0000	0.0000			
1A2b	0.0235	0.0235			
1A2c	0.1033	0.1033			
1A2d	0.0060	0.0060			
1A2e	0.3971	0.3971			
1A2f	1.0052	1.0764			
1A2gvii	0.1861	0.1861			
1A2gviii	0.2932	0.2932			

1A3ai(i)	0.3620	0.4542			
1A3aii(i)	0.0023	0.0011			
1A3bi	1.6032	1.7570			
1A3bii	1.5844	1.5706			
1A3biii	1.6452	1.4696			
1A3biv	0.0127	0.0116			
1A3dii	0.0497	0.0635			
1A4bi	0.3423	0.2969			
1A4ci	0.1899	0.1681			
1A4cii	0.2426	0.2142			
1A4ciii	0.1054	0.1006			
1B2aiv	NO	NO			
1B2c	NO	NO			
2G	0.0016	0.0015			
3B1a	0.0279	0.0283			
3B1b	0.0148	0.0149			
3B2	0.0239	0.0246			
3B3	0.0049	0.0047			
3B4d	0.0308	0.0284			
3B4e	0.0003	0.0003			
3B4f	0.0004	0.0004			
3B4gi	0.0062	0.0066			
3B4gii	0.0175	0.0178			
3B4giii	0.0002	0.0001			
3B4giv	NO	NO			
3Da1	0.1600	0.1600			
3Da2a	0.5056	0.4977			
3Da2b	0.0018	0.0018			
3Da3	0.2263	0.2197			
3F	0.0034	0.0032			
5C1biii	NO	NO			
5C2	0.0024	0.0024			
TOTAL	11.9782	12.0960			

Table A5.2.CO emissions 1990–2023 (Gg)

	1990	1991	1992	1993	1994	1995	1996	1997
1A1a	0.34	0.35	0.41	0.44	0.46	0.42	0.44	0.47
1A2a	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
1A2b	0.0105	0.0108	0.0113	0.0115	0.0116	0.0116	0.0116	0.0122
1A2c	0.0036	0.0037	0.0039	0.0039	0.0040	0.0044	0.0047	0.0050
1A2d	0.0018	0.0021	0.0023	0.0025	0.0029	0.0030	0.0032	0.0033
1A2e	0.0298	0.0318	0.0332	0.0345	0.0359	0.0373	0.0387	0.0401
1A2f	1.8930	1.7847	1.9300	2.1101	2.2055	2.1117	2.2723	2.1874
1A2gvii	0.1334	0.1336	0.1336	0.1338	0.1342	0.1345	0.1347	0.1349
1A2gviii	0.0636	0.0641	0.0639	0.0642	0.0648	0.0652	0.0652	0.0655
1A3ai(i)	0.1224	0.1039	0.1258	0.1298	0.1377	0.1448	0.1423	0.1494
1A3aii(i)	0.0027	0.0023	0.0028	0.0028	0.0030	0.0032	0.0031	0.0033
1A3bi	26.6474	25.4693	23.6037	22.1037	22.4397	21.1206	20.4807	19.5224
1A3bii	6.8313	6.9897	7.2838	7.0123	7.1242	6.9449	6.4370	6.1907
1A3biii	1.0449	0.9797	1.2268	1.2234	1.2231	1.2802	1.2445	1.2681
1A3biv	4.5538	4.4485	4.3877	4.1377	4.2636	4.1806	4.0220	3.8158
1A3dii	0.0137	0.0131	0.0160	0.0166	0.0170	0.0185	0.0194	0.0204
1A4bi	0.3902	0.3215	0.3052	0.3810	0.2942	0.3062	0.2785	0.2701
1A4ci	0.0479	0.0515	0.0622	0.0632	0.0718	0.0683	0.0717	0.0752
1A4cii	0.0706	0.0759	0.0916	0.0931	0.1058	0.1006	0.1056	0.1108
1A4ciii	0.0153	0.0170	0.0206	0.0214	0.0220	0.0239	0.0252	0.0264
1B2aiv	0.0572	0.0608	0.0635	0.0689	0.0711	0.0745	0.0684	0.0938
1B2c	0.0090	0.0095	0.0100	0.0108	0.0112	0.0117	0.0107	0.0147
2D3c	0.0024	0.0024	0.0024	0.0024	0.0024	0.0024	0.0024	0.0024
2G	0.2114	0.2114	0.2299	0.0637	0.0637	0.1860	0.1974	0.2203
3F	2.3012	2.2351	2.3451	2.3506	2.0330	1.8270	1.6511	1.5093
5C1biii	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
5C2	0.0262	0.0268	0.0276	0.0283	0.0289	0.0295	0.0300	0.0304
TOTAL	44.8253	43.4041	42.3908	40.5096	40.8310	39.1089	37.7648	36.2419

	1998	1999	2000	2001	2002	2003	2004	2005
1A1a	0.51	0.54	0.57	0.57	0.59	0.63	0.66	0.70
1A2a	0.0002	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000
1A2b	0.0122	0.0122	0.0122	0.0124	0.0124	0.0124	0.0124	0.0124
1A2c	0.0053	0.0055	0.0058	0.0061	0.0061	0.0056	0.0055	0.0053

[337]

1A2d	0.0036	0.0036	0.0037	0.0037	0.0036	0.0033	0.0033	0.0030
1A2e	0.0409	0.0420	0.0431	0.0437	0.0442	0.0453	0.0459	0.0561
1A2f	2.0685	2.0780	2.1413	2.0954	2.1668	2.1390	2.3103	2.2666
1A2gvii	0.1375	0.1379	0.1401	0.1411	0.1417	0.1422	0.1428	0.1433
1A2gviii	0.0656	0.0656	0.0657	0.0657	0.0657	0.0657	0.0657	0.0803
1A3ai(i)	0.1543	0.1626	0.1736	0.1910	0.1885	0.1909	0.1972	0.2007
1A3aii(i)	0.0034	0.0036	0.0038	0.0042	0.0041	0.0042	0.0043	0.0111
1A3bi	18.2305	16.8615	14.9171	14.0976	13.3887	12.8052	12.3487	11.5621
1A3bii	5.8925	5.6208	5.0920	5.0741	4.5087	4.5130	4.0226	3.7203
1A3biii	1.2228	1.2013	1.2403	1.1740	1.0788	1.0839	1.0526	1.0150
1A3biv	3.5560	3.3479	3.0716	3.0568	2.8605	2.9108	2.6244	2.3876
1A3dii	0.0217	0.0245	0.0105	0.0085	0.0111	0.0085	0.0118	0.0145
1A4bi	0.2375	0.2315	0.1977	0.2318	0.1926	0.1636	0.1371	0.2081
1A4ci	0.0794	0.0823	0.0842	0.0850	0.0883	0.0846	0.0738	0.0766
1A4cii	0.1169	0.1211	0.1240	0.1252	0.1301	0.1246	0.1029	0.1023
1A4ciii	0.0281	0.0289	0.0299	0.0302	0.0289	0.0297	0.0267	0.0227
1B2aiv	0.0975	0.1062	0.1056	0.1040	0.0978	0.0873	0.0251	NO
1B2c	0.0153	0.0166	0.0166	0.0163	0.0153	0.0137	0.0039	NO
2D3c	0.0024	0.0024	0.0027	0.0022	0.0024	0.0022	0.0027	0.0021
2G	0.2242	0.3139	0.5896	0.1817	0.1701	0.1226	0.1822	0.1588
3F	1.4189	1.2973	1.0301	1.0080	0.9477	1.0183	0.7972	0.6213
5C1biii	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	NO	NO
5C2	0.0309	0.0312	0.0316	0.0319	0.0322	0.0326	0.0330	0.0335
TOTAL	34.1788	32.3400	29.7024	28.3559	26.7750	26.2417	24.8911	23.4009

	2006	2007	2008	2009	2010	2011	2012	2013
1A1a	0.72	0.74	0.25	0.47	0.46	0.57	0.56	0.43
1A2a	NO	NO	0.0011	0.0010	0.0014	0.0013	NO	NO
1A2b	0.0124	0.0124	0.0121	0.0076	0.0077	0.0093	0.0053	0.0087
1A2c	0.0052	0.0040	0.0024	0.0039	0.0052	0.0354	0.0398	0.0479
1A2d	0.0029	0.0025	0.0029	0.0027	0.0026	0.0024	0.0024	0.0027
1A2e	0.0575	0.0589	0.0674	0.0664	0.0678	0.0535	0.0499	0.0486
1A2f	2.3613	2.3250	2.3739	1.9567	1.6389	1.5843	1.4405	2.1005
1A2gvii	0.1438	0.1443	0.1137	0.0971	0.1048	0.0950	0.0566	0.0358
1A2gviii	0.0981	0.1129	0.0176	0.0113	0.0210	0.0147	0.0085	0.0121
1A3ai(i)	0.1953	0.1839	0.1831	0.1610	0.2039	0.2206	0.2192	0.1950
1A3aii(i)	0.0094	0.0085	0.0077	0.0058	0.0058	0.0038	0.0023	0.0004
1A3bi	10.7247	9.6605	8.5108	7.6975	7.4667	6.6192	6.1445	5.4228
1A3bii	3.0862	2.0458	1.8044	1.6264	1.5868	1.3172	1.0902	0.9397
1A3biii	0.9394	0.9055	0.8667	0.8337	0.8549	0.7994	0.7024	0.5699
1A3biv	1.9859	2.1729	1.8758	1.6302	1.4689	1.2652	1.1520	1.0311
1A3dii	0.0111	0.0124	0.0150	0.0294	0.0186	0.0173	0.0122	0.0092
1A4bi	0.1846	0.3202	0.2931	0.2098	0.1556	0.1550	0.2908	0.2471
1A4ci	0.0803	0.0738	0.0721	0.0636	0.0627	0.0657	0.0608	0.0599
1A4cii	0.1015	0.1052	0.1022	0.0915	0.0903	0.0933	0.0895	0.0882
1A4ciii	0.0220	0.0225	0.0222	0.0296	0.0296	0.0222	0.0223	0.0149
1B2aiv	NO							
1B2c	NO	0.0295						
2D3c	0.0019	0.0018	0.0017	0.0029	0.0039	0.0038	0.0029	0.0016
2G	0.0993	0.1034	0.1006	0.1119	0.1195	0.0974	0.1060	0.0831
3F	0.4738	0.2617	0.1549	0.1249	0.1317	0.1437	0.1513	0.1233
5C1biii	NO							
5C2	0.0340	0.0346	0.0355	0.0364	0.0374	0.0384	0.0394	0.0396
TOTAL	21.3498	19.3161	16.8893	15.2702	14.5453	13.2293	12.2501	11.5394

	2014	2015	2016	2017	2018	2019	2020	2021
1A1a	0.58	0.4440	0.4478	0.3656	0.3172	0.3779	0.3603	0.4004
1A2a	0.0000	NO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1A2b	0.0125	0.0052	0.0031	0.0054	0.0035	0.0041	0.0033	0.0029
1A2c	0.0238	0.0279	0.0148	0.0130	0.0130	0.0125	0.0113	0.0136
1A2d	0.0027	0.0023	0.0023	0.0020	0.0023	0.0020	0.0025	0.0010
1A2e	0.0725	0.0511	0.0712	0.0812	0.0665	0.0725	0.0654	0.0725
1A2f	2.6854	2.4266	2.4349	2.5460	2.3702	2.2447	2.4795	2.4644
1A2gvii	0.0354	0.0300	0.0337	0.0402	0.0459	0.0541	0.0661	0.0696
1A2gviii	0.0140	0.0058	0.0065	0.0121	0.0301	0.0331	0.0105	0.0250
1A3ai(i)	0.2017	0.1862	0.2315	0.2651	0.2845	0.2784	0.0906	0.1403
1A3aii(i)	0.0003	0.0005	0.0006	0.0004	0.0005	0.0003	0.0004	0.0006
1A3bi	5.2157	5.0420	4.9533	4.7393	4.4500	4.2182	3.4662	3.6157
1A3bii	0.8503	0.8486	0.8665	0.8158	0.7911	0.6399	0.6097	0.6166
1A3biii	0.5205	0.4975	0.5343	0.5209	0.4108	0.6282	0.4097	0.4193
1A3biv	0.9802	0.9306	0.7917	0.7339	0.6895	0.6177	0.4744	0.4697

1A3dii	0.0108	0.0121	0.0090	0.0128	0.0125	0.0165	0.0076	0.0153
1A4bi	0.2140	0.3169	0.4199	0.3843	0.2685	0.2428	0.2118	0.2252
1A4ci	0.0551	0.0607	0.0621	0.0652	0.0607	0.0633	0.0644	0.0621
1A4cii	0.0811	0.0894	0.0872	0.0916	0.0852	0.0909	0.0927	0.0867
1A4ciii	0.0149	0.0148	0.0148	0.0137	0.0133	0.0142	0.0110	0.0120
1B2aiv	NO	NO	NO	NO	NO	NO	NO	NO
1B2c	NO	NO	NO	NO	NO	NO	NO	NO
2D3c	0.0007	0.0006	0.0006	0.0008	0.0011	0.0008	0.0007	0.0008
2G	0.0331	0.0615	0.0577	0.0644	0.0570	0.0590	0.0499	0.0536
3F	0.1013	0.1336	0.0952	0.0809	0.0961	0.0923	0.1061	0.1047
5C1biii	NO	NO	NO	NO	NO	NO	NO	NO
5C2	0.0392	0.0387	0.0388	0.0391	0.0395	0.0400	0.0406	0.0409
TOTAL	11.7498	11.2269	11.1775	10.8936	10.1087	9.8034	8.6346	8.9130

	2022	2023			
1A1a	0.4124	0.3492			
1A2a	0.0000	0.0000			
1A2b	0.0030	0.0030			
1A2c	0.0133	0.0133			
1A2d	0.0008	0.0008			
1A2e	0.0614	0.0614			
1A2f	2.4388	2.6143			
1A2gvii	0.0614	0.0614			
1A2gviii	0.0387	0.0387			
1A3ai(i)	0.1906	0.2446			
1A3aii(i)	0.0012	0.0009			
1A3bi	3.5647	3.5921			
1A3bii	0.5657	0.5206			
1A3biii	0.3919	0.3478			
1A3biv	0.4464	0.4236			
1A3dii	0.0282	0.0360			
1A4bi	0.3253	0.2033			
1A4ci	0.0586	0.0519			
1A4cii	0.0807	0.0713			
1A4ciii	0.0122	0.0117			
1B2aiv	NO	NO			
1B2c	NO	NO			
2D3c	0.0001	0.0001			
2G	0.0503	0.0469			
3F	0.0998	0.0936			
5C1biii	NO	NO			
5C2	0.0413	0.0421			
TOTAL	8.8868	8.8286			

Table A5.3.NMVOCs emissions 1990-2023 (Gg)

	1990	1991	1992	1993	1994	1995	1996	1997
1A1a	0.0520	0.0540	0.0621	0.0669	0.0700	0.0637	0.0677	0.0715
1A1b	0.4100	0.4900	0.4600	0.5000	0.5700	0.5300	0.4900	0.6700
1A2a	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1A2b	0.0040	0.0041	0.0043	0.0043	0.0044	0.0044	0.0044	0.0046
1A2c	0.0014	0.0014	0.0015	0.0015	0.0015	0.0017	0.0018	0.0019
1A2d	0.0007	0.0008	0.0009	0.0009	0.0011	0.0012	0.0012	0.0013
1A2e	0.0113	0.0120	0.0126	0.0131	0.0136	0.0141	0.0147	0.0152
1A2f	0.0398	0.0378	0.0377	0.0425	0.0419	0.0406	0.0419	0.0402
1A2gvii	0.0418	0.0419	0.0419	0.0419	0.0421	0.0421	0.0422	0.0423
1A2gviii	0.0241	0.0243	0.0242	0.0243	0.0245	0.0247	0.0247	0.0248
1A3ai(i)	0.0126	0.0107	0.0130	0.0134	0.0142	0.0149	0.0147	0.0154
1A3aii(i)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003
1A3bi	2.8649	2.7616	2.5818	2.4368	2.4917	2.3689	2.3477	2.2410
1A3bii	0.6388	0.6524	0.6871	0.6649	0.6764	0.6830	0.6456	0.6393
1A3biii	0.4798	0.4504	0.5757	0.5678	0.5726	0.5874	0.5661	0.5669
1A3biv	1.7787	1.7540	1.7513	1.6684	1.7370	1.7093	1.6506	1.5586
1A3bv	1.4897	1.4433	1.3769	1.3317	1.3411	1.2891	1.2547	1.2327
1A3dii	0.0051	0.0049	0.0060	0.0062	0.0064	0.0070	0.0073	0.0077
1A4bi	0.0485	0.0397	0.0375	0.0471	0.0359	0.0375	0.0339	0.0328
1A4ci	0.0103	0.0111	0.0134	0.0136	0.0154	0.0147	0.0154	0.0162
1A4cii	0.0218	0.0234	0.0283	0.0287	0.0327	0.0311	0.0326	0.0342
1A4ciii	0.0066	0.0073	0.0089	0.0092	0.0095	0.0103	0.0108	0.0113
1B2aiv	0.1271	0.1351	0.1412	0.1532	0.1581	0.1656	0.1521	0.2085

1B2av	0.7159	0.7083	0.7588	0.7662	0.7843	0.8057	0.8188	0.8397
1B2c	0.0015	0.0016	0.0017	0.0018	0.0019	0.0019	0.0018	0.0025
2C1	0.0003	0.0002	0.0003	0.0003	0.0003	0.0003	0.0002	0.0002
2D3a	0.5472	0.5611	0.5763	0.5917	0.6048	0.6167	0.6272	0.6367
2D3b	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
2D3c	0.0325	0.0325	0.0325	0.0325	0.0325	0.0325	0.0325	0.0325
2D3d	1.7387	1.4241	1.5170	1.5202	1.7083	1.4102	1.4097	1.5604
2D3f	0.2002	0.2003	0.2003	0.2004	0.2005	0.2006	0.2007	0.2008
2D3g	0.4134	0.4239	0.4354	0.4470	0.4569	0.4659	0.4738	0.4810
2D3h	0.2920	0.2920	0.2920	0.2920	0.2920	0.2920	0.2920	0.2920
2D3i	0.0867	0.0889	0.0914	0.0938	0.0959	0.0978	0.0994	0.1009
2G	0.0185	0.0185	0.0202	0.0056	0.0056	0.0163	0.0173	0.0193
2H2	0.2599	0.2902	0.3244	0.3288	0.3350	0.3498	0.3534	0.3439
3B1a	0.4020	0.4147	0.4286	0.4600	0.4946	0.5288	0.4900	0.4572
3B1b	0.2873	0.2841	0.2841	0.3156	0.3275	0.3440	0.3807	0.3288
3B2	0.0490	0.0499	0.0482	0.0465	0.0431	0.0423	0.0426	0.0414
3B3	0.1921	0.2065	0.2373	0.2538	0.2517	0.2619	0.2765	0.2900
3B4d	0.1111	0.1111	0.1084	0.1073	0.1138	0.1192	0.1301	0.1637
3B4e	0.0020	0.0018	0.0017	0.0016	0.0015	0.0019	0.0023	0.0027
3B4f	0.0071	0.0064	0.0058	0.0052	0.0047	0.0043	0.0039	0.0035
3B4gi	0.1057	0.1025	0.0983	0.1277	0.1246	0.1261	0.1316	0.1224
3B4gii	0.3232	0.2953	0.3438	0.4027	0.3783	0.3913	0.4196	0.4334
3B4giii	0.0033	0.0035	0.0048	0.0050	0.0049	0.0065	0.0051	0.0060
3B4giv	0.0263	0.0198	0.0238	0.0183	0.0217	0.0287	0.0275	0.0244
3De	0.0495	0.0506	0.0560	0.0594	0.0546	0.0523	0.0507	0.0499
3F	0.0173	0.0168	0.0176	0.0176	0.0152	0.0137	0.0124	0.0113
5A	0.1669	0.1699	0.1731	0.1768	0.1806	0.1846	0.1893	0.1941
5C1biii	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
5C2	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007
5D1	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
TOTAL	14.128	13.744	13.957	13.924	14.404	14.046	13.918	14.084

	1998	1999	2000	2001	2002	2003	2004	2005
1A1a	0.0781	0.0824	0.0867	0.0861	0.0896	0.0963	0.1004	0.1062
1A1b	0.6900	0.7500	0.6900	0.7300	0.6800	0.7300	0.2500	NO
1A2a	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
1A2b	0.0046	0.0046	0.0046	0.0047	0.0047	0.0047	0.0047	0.0047
1A2c	0.0020	0.0021	0.0022	0.0023	0.0023	0.0021	0.0021	0.0020
1A2d	0.0014	0.0014	0.0014	0.0014	0.0014	0.0013	0.0013	0.0012
1A2e	0.0155	0.0159	0.0163	0.0165	0.0167	0.0172	0.0174	0.0227
1A2f	0.0376	0.0396	0.0405	0.0386	0.0423	0.0448	0.0516	0.0489
1A2gvii	0.0431	0.0432	0.0439	0.0442	0.0444	0.0446	0.0447	0.0449
1A2gviii	0.0248	0.0249	0.0249	0.0249	0.0249	0.0249	0.0249	0.0326
1A3ai(i)	0.0159	0.0168	0.0179	0.0197	0.0195	0.0197	0.0204	0.0305
1A3aii(i)	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0012
1A3bi	2.0956	1.9386	1.7308	1.6267	1.5454	1.4696	1.3592	1.2105
1A3bii	0.6504	0.6472	0.6165	0.6258	0.5663	0.5660	0.5203	0.4867
1A3biii	0.5404	0.5193	0.5118	0.4681	0.4198	0.4042	0.3763	0.3500
1A3biv	1.4401	1.3375	1.2244	1.1915	1.0239	1.0387	0.9271	0.8538
1A3bv	1.1938	1.1490	1.0864	1.0502	1.0191	1.0260	1.0344	1.0097
1A3dii	0.0082	0.0092	0.0040	0.0032	0.0042	0.0032	0.0044	0.0054
1A4bi	0.0286	0.0278	0.0234	0.0278	0.0227	0.0191	0.0156	0.0221
1A4ci	0.0171	0.0177	0.0181	0.0183	0.0190	0.0182	0.0159	0.0165
1A4cii	0.0361	0.0374	0.0383	0.0387	0.0545	0.0385	0.0318	0.0316
1A4ciii	0.0121	0.0124	0.0128	0.0129	0.0124	0.0127	0.0115	0.0097
1B2aiv	0.2166	0.2359	0.2347	0.2312	0.2173	0.1940	0.0558	NO
1B2av	0.8621	0.8918	0.9084	0.9627	1.0075	1.1418	1.2437	1.3311
1B2c	0.0025	0.0028	0.0028	0.0027	0.0026	0.0023	0.0007	NO
2C1	0.0003	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
2D3a	0.6452	0.6525	0.6598	0.6666	0.6742	0.6820	0.6908	0.7005
2D3b	0.0075	0.0075	0.0084	0.0069	0.0075	0.0071	0.0085	0.0068
2D3c	0.0325	0.0325	0.0366	0.0298	0.0324	0.0308	0.0368	0.0293
2D3d	1.4476	1.4578	1.6020	1.4785	2.2579	2.8364	3.5522	3.8150
2D3f	0.2009	0.2012	0.2021	0.2005	0.2004	0.2001	0.1998	0.1930
2D3g	0.4874	0.4930	0.4985	0.5036	0.5093	0.5152	0.5219	0.5292
2D3h	0.2920	0.3273	0.3355	0.3801	0.3075	0.2884	0.3399	0.3446
2D3i	0.1023	0.1034	0.1046	0.1057	0.1069	0.1081	0.1095	0.1110
2G	0.0197	0.0275	0.0518	0.0159	0.0149	0.0107	0.0160	0.0139
2H2	0.3154	0.3168	0.2911	0.2805	0.2746	0.2747	0.2529	0.2569
3B1a	0.4273	0.4314	0.4217	0.4370	0.4705	0.4773	0.4678	0.4410
3B1b	0.2850	0.2688	0.2730	0.2588	0.2842	0.2840	0.3047	0.2937

3B2	0.0406	0.0394	0.0416	0.0501	0.0497	0.0447	0.0471	0.0454
3B3	0.2951	0.2815	0.2851	0.3129	0.3357	0.3330	0.3189	0.2951
3B4d	0.1745	0.1875	0.2052	0.2315	0.2490	0.2211	0.2049	0.1785
3B4e	0.0030	0.0034	0.0038	0.0042	0.0046	0.0050	0.0047	0.0045
3B4f	0.0032	0.0029	0.0026	0.0023	0.0021	0.0019	0.0017	0.0016
3B4gi	0.1389	0.1191	0.0908	0.0990	0.0990	0.0990	0.1337	0.1070
3B4gii	0.4304	0.4358	0.4536	0.4536	0.4709	0.4687	0.3977	0.4025
3B4giii	0.0065	0.0069	0.0073	0.0071	0.0078	0.0073	0.0054	0.0050
3B4giv	0.0266	0.0251	0.0318	0.0284	0.0298	0.0293	0.0215	0.0161
3De	0.0508	0.0507	0.0443	0.0481	0.0509	0.0625	0.0571	0.0534
3F	0.0106	0.0097	0.0077	0.0076	0.0071	0.0076	0.0060	0.0047
5A	0.1990	0.2039	0.2089	0.2140	0.2196	0.2253	0.2313	0.2375
5C1biii	0.0004	0.0004	0.0004	0.0004	0.0004	0.0001	NO	NO
5C2	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
5D1	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
TOTAL	13.660	13.495	13.210	13.053	13.509	14.142	14.046	13.709

	2006	2007	2008	2009	2010	2011	2012	2013
1A1a	0.1095	0.1132	0.1176	0.1108	0.1009	0.1800	0.2855	0.0640
1A1b	NO							
1A2a	NO	NO	0.0004	0.0004	0.0005	0.0005	NO	NO
1A2b	0.0047	0.0047	0.0046	0.0029	0.0029	0.0035	0.0020	0.0033
1A2c	0.0020	0.0015	0.0009	0.0015	0.0020	0.0176	0.0201	0.0247
1A2d	0.0011	0.0010	0.0011	0.0010	0.0010	0.0009	0.0009	0.0010
1A2e	0.0233	0.0240	0.0287	0.0283	0.0292	0.0214	0.0191	0.0191
1A2f	0.0488	0.0489	0.0620	0.0533	0.0517	0.0355	0.0301	0.0351
1A2gvii	0.0451	0.0452	0.0356	0.0304	0.0328	0.0298	0.0177	0.0112
1A2gviii	0.0420	0.0500	0.0067	0.0043	0.0097	0.0056	0.0032	0.0046
1A3ai(i)	0.0256	0.0193	0.0193	0.0164	0.0225	0.0242	0.0249	0.0222
1A3aii(i)	0.0010	0.0008	0.0008	0.0005	0.0004	0.0004	0.0002	0.0000
1A3bi	1.0900	0.9480	0.8032	0.7240	0.6857	0.6013	0.5543	0.4836
1A3bii	0.4122	0.3220	0.2865	0.2520	0.2482	0.2013	0.1643	0.1373
1A3biii	0.3116	0.2293	0.2094	0.1876	0.1824	0.1600	0.1379	0.1105
1A3biv	0.6679	0.8861	0.7833	0.6883	0.6145	0.5340	0.4828	0.4241
1A3bv	0.9914	1.1845	1.1670	1.1403	1.1160	1.0872	1.0389	1.0020
1A3dii	0.0042	0.0047	0.0056	0.0110	0.0069	0.0064	0.0044	0.0033
1A4bi	0.0191	0.0365	0.0332	0.0228	0.0165	0.0160	0.0334	0.0283
1A4ci	0.0185	0.0172	0.0171	0.0145	0.0143	0.0155	0.0131	0.0129
1A4cii	0.0313	0.0325	0.0316	0.0283	0.0279	0.0288	0.0276	0.0272
1A4ciii	0.0094	0.0097	0.0095	0.0127	0.0127	0.0095	0.0096	0.0064
1B2aiv	NO							
1B2av	0.8722	0.9500	1.0874	1.1192	1.1003	1.0844	0.9899	0.8577
1B2c	NO	0.0084						
2C1	NO							
2D3a	0.7110	0.7243	0.7419	0.7615	0.7828	0.8025	0.8237	1.2035
2D3b	0.0061	0.0057	0.0054	0.0091	0.0122	0.0119	0.0093	0.0049
2D3c	0.0265	0.0246	0.0233	0.0396	0.0529	0.0516	0.0403	0.0213
2D3d	4.0272	4.3205	3.3507	3.1421	3.4997	1.1160	1.1342	0.9821
2D3f	0.1100	0.1110	0.0789	0.0602	0.0605	0.0600	0.0539	0.0265
2D3g	0.5371	0.5472	0.5604	0.5753	0.5914	0.6062	0.6223	2.0852
2D3h	0.3628	0.3195	0.4469	0.3260	0.2464	0.3347	0.2658	0.2072
2D3i	0.1127	0.1148	0.1176	0.1207	0.1241	0.1272	0.1306	0.0029
2G	0.0087	0.0091	0.0088	0.0098	0.0105	0.0086	0.0093	0.0073
2H2	0.2380	0.2385	0.2351	0.2116	0.2099	0.2082	0.1862	0.1607
3B1a	0.4293	0.4251	0.4240	0.4160	0.4201	0.4317	0.4323	0.4430
3B1b	0.2864	0.2776	0.2853	0.2751	0.2786	0.2924	0.2922	0.2896
3B2	0.0460	0.0438	0.0452	0.0507	0.0556	0.0602	0.0586	0.0530
3B3	0.3105	0.3196	0.3119	0.3095	0.3089	0.2887	0.2594	0.2376
3B4d	0.1870	0.1995	0.1726	0.1522	0.1666	0.1573	0.1470	0.1318
3B4e	0.0042	0.0040	0.0037	0.0035	0.0032	0.0030	0.0027	0.0025
3B4f	0.0014	0.0013	0.0012	0.0010	0.0009	0.0009	0.0010	0.0012
3B4gi	0.1054	0.0957	0.1003	0.0998	0.0916	0.0980	0.1072	0.1058
3B4gii	0.3346	0.3640	0.3523	0.3428	0.3482	0.3320	0.3056	0.2636
3B4giii	0.0031	0.0026	0.0012	NO	NO	NO	NO	NO
3B4giv	0.0157	0.0107	0.0097	0.0072	0.0069	0.0052	0.0042	0.0045
3De	0.0509	0.0375	0.0333	0.0268	0.0283	0.0309	0.0325	0.0265
3F	0.0036	0.0020	0.0012	0.0009	0.0010	0.0011	0.0011	0.0009
5A	0.2437	0.2505	0.2576	0.2650	0.2724	0.2795	0.2859	0.2931
5C1biii	NO							
5C2	0.0007	0.0008	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009
5D1		0.0003		0.0003		0.0004	0.0004	

TOTAL	12.894	13.379	12.2808	11.658	11.853	9.373	9.067	9.843
	2014	2015	2016	2017	2018	2019	2020	2021
1A1a	0.0766	0.0828	0.0852	0.0762	0.0784	0.0757	0.0608	0.0676
1A1b	NO	NO	NO	NO	NO	NO	NO	NO
1A2a	0.0000	NO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1A2b	0.0047	0.0020	0.0012	0.0020	0.0013	0.0016	0.0013	0.0011
1A2c	0.0118	0.0140	0.0070	0.0061	0.0061	0.0057	0.0050	0.0059
1A2d 1A2e	0.0010 0.0295	0.0009	0.0009	0.0007	0.0009	0.0008	0.0009	0.0004
1A2f	0.0293	0.0197	0.0298	0.0349	0.0277	0.0293	0.0261	0.0296
1A2gvii	0.0410	0.0094	0.0380	0.0412	0.0383	0.0388	0.0393	0.0418
1A2gviii	0.0053	0.0022	0.0025	0.0051	0.0120	0.0130	0.0042	0.0107
1A3ai(i)	0.0237	0.0212	0.0278	0.0313	0.0324	0.0288	0.0093	0.0163
1A3aii(i)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0001
1A3bi	0.4631	0.4420	0.4276	0.4027	0.3735	0.3517	0.2843	0.2925
1A3bii	0.1236	0.1239	0.1296	0.1203	0.1149	0.0911	0.0928	0.0948
1A3biii	0.1033	0.0915	0.0985	0.0884	0.0681	0.0930	0.0614	0.0620
1A3biv	0.3964	0.3791	0.3125	0.2902	0.2702	0.2381	0.1718	0.1631
1A3bv	1.0119	0.9671	0.9638	0.9493	0.9380	0.9315	0.8698	0.7567
1A3dii	0.0038	0.0042	0.0031	0.0044	0.0042	0.0056	0.0025	0.0051
1A4bi	0.0243	0.0371	0.0502	0.0456	0.0310	0.0273	0.0237	0.0258
1A4ci	0.0118	0.0131	0.0150	0.0157	0.0147	0.0145	0.0147	0.0152
1A4cii 1A4ciii	0.0251 0.0064	0.0276	0.0269	0.0283	0.0263	0.0281	0.0286	0.0268
1B2aiv	0.0064 NO	NO	NO	NO	0.0057 NO	0.0061 NO	0.0047 NO	NO
1B2av	0.7972	0.7822	0.6591	0.5892	0.4478	0.4193	0.3559	0.3821
1B2c	NO	NO	NO	NO	NO	NO	NO	NO
2C1	NO	NO	NO	NO	NO	NO	NO	NO
2D3a	1.1925	1.2378	0.9291	0.9011	0.9794	1.0068	1.8700	1.4268
2D3b	0.0023	0.0020	0.0020	0.0026	0.0033	0.0026	0.0024	0.0024
2D3c	0.0098	0.0086	0.0089	0.0111	0.0145	0.0112	0.0103	0.0103
2D3d	0.8677	1.0721	1.1182	1.2681	1.4052	1.4971	1.4389	1.5295
2D3f	0.0262	0.0527	0.0261	0.0132	0.0262	0.0267	0.0265	0.0269
2D3g	2.0662	2.0397	0.0645	0.9791	0.3118	0.1231	0.2009	0.1872
2D3h	0.2618	0.2526	0.2650	0.2655	0.2273	0.2458	0.1560	0.1604
2D3i	0.0029	0.1548	0.2332	0.2131	0.3030	0.1910	0.2503	0.2967
2G 2H2	0.0029	0.0054	0.0051	0.0056	0.0049	0.0051	0.0044	0.0047
3B1a	0.1561 0.4543	0.1535 0.4698	0.1572 0.5112	0.1668 0.5406	0.1655 0.5718	0.6281	0.1609 0.7084	0.1475 0.6981
3B1b	0.3046	0.4098	0.3075	0.3258	0.3462	0.3459	0.7064	0.4003
3B10 3B2	0.0545	0.0502	0.0514	0.0543	0.0526	0.0548	0.0555	0.0592
3B3	0.2277	0.2344	0.2319	0.2312	0.2385	0.2282	0.2352	0.2344
3B4d	0.1258	0.1268	0.1337	0.1396	0.1357	0.1361	0.1413	0.1394
3B4e	0.0022	0.0020	0.0017	0.0017	0.0018	0.0030	0.0026	0.0028
3B4f	0.0013	0.0014	0.0015	0.0017	0.0018	0.0019	0.0017	0.0018
3B4gi	0.0980	0.0915	0.0950	0.0941	0.0926	0.1019	0.0990	0.1063
3B4gii	0.3320	0.2813	0.2890	0.3000	0.3136	0.3225	0.3207	0.3209
3B4giii	NO	NO	NO	NO	NO	NO	NO	NO
3B4giv	0.0047	0.0048	0.0047	0.0058	0.0049	0.0059	0.0043	0.0046
3De	0.0218	0.0287	0.0205	0.0174	0.0206	0.0198	0.0228	0.0225
3F	0.0008	0.0010	0.0007	0.0006	0.0007	0.0007	0.0008	0.0008
5A 5C1b:::	0.2982 NO	0.3016	0.3054	0.3095	0.3133	0.3170	0.3206	0.3229
5C1biii 5C2	NO 0.0009	NO 0.0009	NO 0.0009	NO 0.0009	NO 0.0009	NO 0.0009	NO 0.0009	NO 0.0009
5D1	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009	0.0009
TOTAL	9.687	9.930	7.660	8.600	8.043	7.871	8.499	8.132
TOTAL	7.007	7.730	7.000	0.000	0.043	7.071	0.477	0.132
1.1.1	2022	2023						
1A1a 1A1b	0.0664 NO	0.0670 NO	+	+	+	+	1	+
1A1b 1A2a	0.0000	0.0000		-	+	+		
1A2a 1A2b	0.0000	0.0000	1			+	1	1
1A2b	0.0011	0.0011	1	1		+		+
1A2d	0.0030	0.0030	+	+	+	+	1	+
1A2u	0.0003	0.0003			+	+		
1A2f	0.0248	0.0248	1	1	1	1		
1A2gvii	0.0193	0.0193	1	1	1	1		
1A2gviii	0.0148	0.0148				1		
1A3ai(i)	0.0209	0.0258			1		İ	1
17 3 3a1(1)	0.0207							

1A3bi	0.2858	0.2824			
1A3bii	0.0855	0.0781			
1A3biii	0.0569	0.0480			
1A3biv	0.1500	0.1358			
1A3bv	0.7574	0.7642			
1A3dii	0.0094	0.0120			
1A4bi	0.0383	0.0230			
1A4ci	0.0147	0.0131			
1A4cii	0.0249	0.0220			
1A4ciii	0.0052	0.0050			
1B2aiv	NO	NO			
1B2av	0.3880	0.4061			
1B2c	NO	NO			
2C1	NO	NO			
2D3a	0.8503	0.8808			
2D3b	0.0003	0.0003			
2D3c	0.0011	0.0011			
2D3d	1.5430	1.6967			
2D3f	0.0239	0.0367			
2D3g	0.0760	0.1112			
2D3h	0.1623	0.1632			
2D3i	0.1055	0.1297			
2G	0.0044	0.0041			
2H2	0.1604	0.1604			
3B1a	0.6856	0.6935			
3B1b	0.3843	0.3873			
3B2	0.0581	0.0597			
3B3	0.2134	0.2009			
3B4d	0.1378	0.1268			
3B4e	0.0030	0.0030			
3B4f	0.0019	0.0019			
3B4gi	0.0907	0.0959			
3B4gii	0.3233	0.3296			
3B4giii	NO	NO			
3B4giv	0.0044	0.0026			
3De	0.0214	0.0201			
3F	0.0007	0.0007			
5A	0.3248	0.3224			
5C1biii	NO	NO			
5C2	0.0009	0.0009			
5D1	0.0006	0.0006			
TOTAL	7.187	7.421			

Table A5.4.SO_x emissions 1990–2023 (as Gg SO₂)

	1990	1991	1992	1993	1994	1995	1996	1997
1A1a	21.6153	22.4186	25.8482	27.8109	29.0674	26.4977	28.1351	29.7495
1A1b	0.5900	0.6000	0.6200	0.6200	0.7500	0.7000	0.6600	0.7200
1A2a	0.0055	0.0055	0.0050	0.0050	0.0050	0.0050	0.0050	0.0045
1A2b	0.1900	0.1950	0.2050	0.2075	0.2100	0.2100	0.2100	0.2200
1A2c	0.0650	0.0675	0.0699	0.0700	0.0723	0.0800	0.0850	0.0900
1A2d	0.0325	0.0375	0.0425	0.0450	0.0525	0.0550	0.0575	0.0600
1A2e	0.5400	0.5750	0.6000	0.6250	0.6500	0.6750	0.7000	0.7250
1A2f	0.4825	0.4549	0.4927	0.5382	0.5628	0.5392	0.5805	0.5586
1A2gvii	0.2476	0.2480	0.2480	0.2484	0.2492	0.2496	0.2500	0.2504
1A2gviii	1.1500	1.1590	1.1554	1.1611	1.1726	1.1791	1.1800	1.1850
1A3ai(i)	0.0263	0.0260	0.0257	0.0254	0.0250	0.0247	0.0244	0.0241
1A3aii(i)	0.0004	0.0003	0.0004	0.0004	0.0005	0.0005	0.0005	0.0005
1A3bi	0.7470	0.7457	0.6395	0.6443	0.6781	0.6101	1.1165	1.1762
1A3bii	2.3925	2.3541	3.0220	3.1761	3.2979	3.7039	3.4796	3.6226
1A3biii	1.5426	1.4437	1.7653	1.7762	1.7697	1.9122	1.8863	2.0007
1A3biv	0.0238	0.0232	0.0226	0.0212	0.0216	0.0208	0.0194	0.0182
1A3dii	0.0028	0.0027	0.0032	0.0034	0.0034	0.0037	0.0039	0.0041
1A4bi	1.4175	1.5237	1.8377	1.8679	2.1227	2.0182	2.1181	2.2226
1A4ci	0.2462	0.2648	0.3194	0.3246	0.3690	0.3508	0.3682	0.3863
1A4cii	0.1231	0.1324	0.1597	0.1623	0.1845	0.1754	0.1841	0.1932
1A4ciii	0.0083	0.0092	0.0112	0.0116	0.0119	0.0129	0.0136	0.0143
1B2aiv	0.3940	0.4188	0.4376	0.4748	0.4901	0.5134	0.4714	0.6464
1B2c	0.0575	0.0612	0.0639	0.0693	0.0716	0.0750	0.0688	0.0944
2G	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3F	0.0173	0.0168	0.0176	0.0176	0.0152	0.0137	0.0124	0.0113

5C1biii	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003
5C2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TOTAL	31.9181	32.7839	37.6128	39.9065	41.8535	39.6264	41.6308	43.9785

	1998	1999	2000	2001	2002	2003	2004	2005
1A1a	32.5070	34.3284	32.7969	29.8277	30.3351	32.8993	31.3996	34.0730
1A1b	0.7500	0.8500	0.6600	0.9800	1.0600	0.7200	0.3200	NO
1A2a	0.0040	0.0040	0.0040	0.0020	0.0020	0.0015	0.0010	0.0005
1A2b	0.2200	0.2200	0.2200	0.2250	0.2250	0.2250	0.2250	0.2249
1A2c	0.0950	0.1000	0.1050	0.1100	0.1100	0.1005	0.1000	0.0950
1A2d	0.0650	0.0650	0.0675	0.0675	0.0650	0.0600	0.0600	0.0550
1A2e	0.7400	0.7600	0.7800	0.7900	0.8000	0.8200	0.8300	0.8402
1A2f	0.5286	0.5304	0.5468	0.5347	0.5519	0.5442	0.5873	0.5754
1A2gvii	0.2552	0.2560	0.2600	0.2620	0.2630	0.2640	0.0093	0.0013
1A2gviii	1.1870	1.1875	1.1880	1.1885	1.1888	1.1890	1.1895	1.1893
1A3ai(i)	0.0238	0.0235	0.0231	0.0228	0.0225	0.0222	0.0219	0.0206
1A3aii(i)	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0007	0.0017
1A3bi	1.1727	1.1091	1.0792	0.9910	0.9993	0.9160	0.3942	0.0326
1A3bii	4.0276	4.1651	3.6515	4.0042	3.6603	3.5085	1.2834	0.0211
1A3biii	1.9893	2.0266	2.0131	2.0510	1.8798	1.8499	0.6798	0.0110
1A3biv	0.0167	0.0156	0.0139	0.0137	0.0127	0.0096	0.0042	0.0006
1A3dii	0.0044	0.0049	0.0021	0.0017	0.0022	0.0017	0.0024	0.0029
1A4bi	2.3457	2.4304	2.4883	2.5126	2.6094	2.4990	2.4356	0.5662
1A4ci	0.4078	0.4225	0.4326	0.4368	0.4537	0.4345	0.3789	0.0787
1A4cii	0.2039	0.2113	0.2163	0.2184	0.2268	0.2172	0.1794	0.0357
1A4ciii	0.0152	0.0156	0.0161	0.0163	0.0156	0.0161	0.0145	0.0123
1B2aiv	0.6714	0.7314	0.7274	0.7167	0.6735	0.6015	0.1729	NO
1B2c	0.0980	0.1068	0.1062	0.1046	0.0983	0.0878	0.0252	NO
2G	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3F	0.0106	0.0097	0.0077	0.0076	0.0071	0.0076	0.0060	0.0047
5C1biii	0.0003	0.0003	0.0003	0.0003	0.0003	0.0001	NO	NO
5C2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TOTAL	47.3398	49.5748	47.4071	45.0860	45.2632	46.9960	40.3208	37.8427

	2006	2007	2008	2009	2010	2011	2012	2013
1A1a	27.5192	25.5145	20.5216	16.0816	20.3445	19.3755	14.7525	12.0961
1A1b	NO							
1A2a	NO	NO	0.0080	0.0075	0.0099	0.0091	NO	NO
1A2b	0.2247	0.2250	0.0878	0.0552	0.0560	0.0671	0.0386	0.0630
1A2c	0.0945	0.0720	0.0175	0.0283	0.0379	0.0520	0.0425	0.0257
1A2d	0.0533	0.0457	0.0213	0.0196	0.0191	0.0176	0.0177	0.0192
1A2e	0.8502	0.8639	0.3339	0.3271	0.3194	0.3332	0.3508	0.3185
1A2f	0.6002	0.5908	0.7006	0.6364	0.6065	0.5148	0.4625	0.6377
1A2gvii	0.0013	0.0013	0.0011	0.0002	0.0002	0.0002	0.0001	0.0001
1A2gviii	1.1906	1.1581	0.1244	0.0817	0.0643	0.0634	0.0613	0.0612
1A3ai(i)	0.0204	0.0207	0.0211	0.0201	0.0218	0.0220	0.0214	0.0197
1A3aii(i)	0.0014	0.0013	0.0012	0.0011	0.0010	0.0003	0.0002	0.0000
1A3bi	0.0344	0.0373	0.0398	0.0082	0.0083	0.0083	0.0080	0.0075
1A3bii	0.0195	0.0191	0.0185	0.0036	0.0036	0.0034	0.0029	0.0025
1A3biii	0.0105	0.0122	0.0116	0.0023	0.0023	0.0022	0.0019	0.0016
1A3biv	0.0006	0.0008	0.0008	0.0001	0.0001	0.0001	0.0001	0.0001
1A3dii	0.0022	0.0025	0.0015	0.0030	0.0019	0.0018	0.0013	0.0010
1A4bi	0.5654	0.4904	0.2687	0.2636	0.2183	0.2416	0.2371	0.1936
1A4ci	0.0803	0.0736	0.0356	0.0320	0.0315	0.0326	0.0312	0.0307
1A4cii	0.0354	0.0367	0.0178	0.0160	0.0157	0.0163	0.0156	0.0154
1A4ciii	0.0119	0.0122	0.0060	0.0080	0.0080	0.0060	0.0060	0.0040
1B2aiv	NO							
1B2c	NO	0.0001						
2G	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.0001	0.0000
3F	0.0036	0.0020	0.0012	0.0009	0.0010	0.0011	0.0011	0.0009
5C1biii	NO							
5C2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TOTAL	31.3198	29.1801	22.2402	17.5964	21.7717	20.7689	16.0531	13.4987

	2014	2015	2016	2017	2018	2019	2020	2021
1A1a	15.0454	11.3598	14.5972	14.7243	15.3730	14.1945	10.0698	8.4090
1A1b	NO	NO	NO	NO	NO	NO	NO	NO
1A2a	0.0001	NO	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1A2b	0.0902	0.0374	0.0221	0.0388	0.0255	0.0298	0.0242	0.0211
1A2c	0.0381	0.0326	0.0371	0.0354	0.0358	0.0435	0.0467	0.0631
1A2d	0.0198	0.0164	0.0168	0.0142	0.0163	0.0144	0.0178	0.0071

1A2e	0.4268	0.3512	0.3781	0.3850	0.3558	0.4239	0.4109	0.4216
1A2f	0.7607	0.7272	0.6809	0.7191	0.6656	0.6365	0.6610	0.6948
1A2gvii	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1A2gviii	0.0476	0.04226	0.04684	0.06415	0.18627	0.21868	0.06516	0.11784
1A3ai(i)	0.0200	0.0201	0.0233	0.0268	0.0281	0.0275	0.0090	0.0145
1A3aii(i)	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1A3bi	0.0075	0.0077	0.0082	0.0086	0.0087	0.0085	0.0080	0.0086
1A3bii	0.0023	0.0025	0.0027	0.0027	0.0028	0.0023	0.0025	0.0026
1A3biii	0.0014	0.0015	0.0016	0.0017	0.0014	0.0022	0.0015	0.0015
1A3biv	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
1A3dii	0.0011	0.0013	0.0009	0.0014	0.0013	0.0018	0.0008	0.0017
1A4bi	0.1586	0.1938	0.2104	0.2082	0.1961	0.2180	0.2020	0.1713
1A4ci	0.0283	0.0312	0.0305	0.0320	0.0298	0.0317	0.0324	0.0303
1A4cii	0.0141	0.0156	0.0152	0.0160	0.0149	0.0158	0.0162	0.0151
1A4ciii	0.0040	0.0040	0.0040	0.0037	0.0036	0.0038	0.0030	0.0032
1B2aiv	NO							
1B2c	NO							
2G	0.0001	0.00006	0.00007	0.00003	0.00029	0.00026	0.00010	0.00003
3F	0.0008	0.0010	0.0007	0.0006	0.0007	0.0007	0.0008	0.0008
5C1biii	NO							
5C2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TOTAL	16.6673	12.8459	16.0770	16.2828	16.9461	15.8743	11.5719	9.9846

	2022	2023				
1A1a	9.6458	8.4609				
1A1b	NO	NO				
1A2a	0.0000	0.0000				
1A2b	0.0219	0.0219				
1A2c	0.0962	0.0962				
1A2d	0.0056	0.0056				
1A2e	0.3683	0.3683				
1A2f	0.6633	0.7077				
1A2gvii	0.0001	0.0001				
1A2gviii	0.27287	0.27287				
1A3ai(i)	0.0201	0.0250				
1A3aii(i)	0.0001	0.0001				
1A3bi	0.0085	0.0092				
1A3bii	0.0025	0.0025				
1A3biii	0.0015	0.0013				
1A3biv	0.0001	0.0001				
1A3dii	0.0030	0.0039				
1A4bi	0.1858	0.0358				
1A4ci	0.0282	0.0249				
1A4cii	0.0141	0.0124				
1A4ciii	0.0033	0.0032				
1B2aiv	NO	NO				
1B2c	NO	NO				
2G	0.00006	0.00006			-	
3F	0.0007	0.0007			-	
5C1biii	NO	NO			-	
5C2	0.0001	0.0001				
TOTAL	11.3424	10.0528				

Annex 6: Implementation of recommendations and adjustments

A6.1. EU review Process

Table A6.1.Summary of Recommendations from the TERT and status of implementation

CRT category/ issue	mary of Recommendations from the TERT and status of in Review recommendation	Status of implementation
1A2b Non- ferrous metals	The TERT noted that Cyprus reports identical CH4 and N2O emissions for years 2022 as for year 2021 under subcategory 1.A.2.b for Biomass and Other Fossil Fuels. Please could you provide explanation for the use of identical values? In NIR (January 2024 submission) no information was provided.	Resolved in March 2024 submission
1A2d Pulp, paper and print	The TERT noted that Cyprus has NO for CO2 and CH4 emissions for year 2022 under subcategory 1.A.2.d for Biomass. Please could you provide explanation for the use of NO for consumption in year 2022 while for years 2020 and 2021 you have value 0.04 TJ?	Resolved
1A3b Road transportation	Follow up from previous year, CY-1A3b-2023-0004. For category 1.A.3.b.iii Heavy duty trucks and buses, Other Fossil Fuel, all gases, all years (where relevant), the TERT had noted that the notation key NO was used in the CRF tables (March 2023 submission). In response to a question raised during the 2023 review, Cyprus answered that everything is included in Cars since for this category there are not enough activity data, hence, Cyprus accepted the recommendation of the TERT to change the notation key from NO to IE. The TERT checked the January 2024 CRF tables and found that although the notation key for emission values has changed to IE, the notation key NO is still used for activity data. In order to improve the consistency of the inventory, could Cyprus please provide an explanation for the usage of the notation key NO or else change to IE similarly to emissions?	Resolved in March 2024 submission
2A4 Other process uses of carbonates	We compared the information on methods and emission factors used as included in Annex IX (available on the share point) with the information included in the latest XML and identified the following differences: Method for CO2 from other process uses of carbonates in Annex IX: CS, T1; Method in the XML: CS, T2. Note that consistency of this information is important for the preparation of the EU GHG NIR because we will use the information included in the XML in the relevant tables of the EU NIR. Please correct the information on methods/emission factors in the XML file in the March submission. If the information in the XML file is already up-to-date, please submit a corrected Annex IX. You may also make updates directly in the table of methods and emission factors on the sharepoint under the following	Resolved in March 2024 submission

	link: https://eea1.sharepoint.com/teams/esdreviewimprovements /EUInventoryMethodology/Shared%20Documents/Forms/ AllItems.aspx?id=%2Fteams%2Fesdreviewimprovements %2FEUInventoryMethodology%2FShared%20Documents %2FAnnexes%202024	
2F1 Refrigeration and air conditioning	For Cyprus as an island, besides land based transport also maritime transport is of relevance. Are emissions from refrigeration and AC equipment on ships included in Category 2.F.1.d transport or 2.F.1.e. MACs? If so, would you please briefly explain the assumptions made for estimating emissions?	Partly resolved. investigate and report in future submissions about this issue.
2F4 Aerosols	THe TERT noted that for HFC-134a emissions from MDIs, the product life factor is reported as "NE". Would you please clarify why the PLF is not reported?	Unresolved. it is in our plans in future submissions to introduce a methodology reflecting national circumstances related to estimating emissions from MDIs (2F4).
2G Other product manufacture and use	The TERT noted that in Table2(II)B-Hs2 for SF6 emissions from stocks of sub category 2.G.1 Electrical equipment identical values are reported for 2021 and 2022. Would you please check and clarify?	Resolved in March 2024 submission
2G Other product manufacture and use	The TERT noted that in CRF Table2(II)B-Hs2 neither emissions nor notation keys are reported for 2.G.2 (grey cells). However, it seems that emission sources might exist in Cyprus, e.g. electron microscopes and particle accelerators for cancer treatment in hospitals (https://www.cyi.ac.cy/index.php/cyi-news/state-of-the-art-scanning-electron-microscope-sem-installed-at-starc.html; https://www.goc.com.cy/en/). Such units typically contain SF6, which also leads to SF6 emissions. Would you please inform about investigations carried out regarding SF6 from other product use?	Partly resolved. Investigate and report in future submissions about this issue.
3 Agriculture	We compared the information on methods and emission factors used as included in Annex IX (available on the share point) with the information included in the latest Xml and identified the following differences: 3.B.1 CH4 Emissions: Farming (CH4) - Annex IX: T2 / D; XML: T1,T2 / D; 3.D.1 Agricultural Soils: Direct N2O Emissions From Managed Soils (N2O) - Annex IX: T1 / D; XML: T1,T2 / CS,D; 3.G.1 Limestone CaCO3: Farming (CO2) - Annex IX: NA / Empty cell; XML: NA / NA. Note that consistency of this information is important for the preparation of the EU GHG NIR because we will use the information included in the XML in the relevant tables of the EU NIR. Please correct the information on	Resolved in March 2024 submission

	methods/emission factors in the XML file in the March submission. If the information in the XML file is already up-to-date, please submit a corrected Annex IX. You may also make updates directly in the table of methods and emission factors on the sharepoint under the following link: https://eea1.sharepoint.com/:x:/r/teams/esdreviewimprove ments/EUInventoryMethodology/_layouts/15/Doc.aspx?so urcedoc=%7BCF27B356-D788-4C9C-966C-F10A0F5240A3%7D&file=Art11_AnnexIX_Methods%20 Emission%20Factors%20and%20Methodological%20Des criptions_Autumn2023.xlsx&action=default&mobileredire ct=true	
3A Enteric fermentation	For CH4 emissions from category 3A1 Enteric Fermentation Dairy Cattle, the previous TERT in 2022 and 2023 recommended that Cyprus uses year specific values for the digestibility of feed in its emissions calculations or provides clear justification for the use of a constant value across the time series. During the previous review, Cyprus indicated that efforts will be made with the Department of Rural Development and the Agricultural Research Institute, in order to obtain the data. The TERT noted this year that the digestibility reported by Cyprus is still constant over time. Could you please inform how the recommendation has been treated or implemented?	Partly resolved. Investigate and report in future submissions about this issue.
3D1 Direct N2O emissions from managed soils	For category 3.D.1.5 Mineralization of Soil Organic Matter, for N2O, the TERT noted that the emissions for 2022 are identical to the emissions for 2021. Could you please provide information if updated data will be included in the 15th march submission?	Resolved in March 2024 submission
3D1 Direct N2O emissions from managed soils	For category 3.D.1.1 Direct N2O emissions from inorganic fertilizers and 3.D.1.2.a Direct N2O emissions from animal manure, the TERT noted that Cyprus updated the emission factor for the whole period (from 1% to 0.3%). The impact of this recalculation is above the threshold of 0.05 % of the total emissions of the country. Please could you provide information on the reason for this recalculation?	Resolved.
3D2 Indirect N2O emissions from	For category 3.D.2.2 Indirect N2O from Nitrogen Leaching and Run-off, the TERT noted that the emissions for 2022 are identical to the emissions for 2021. Could you please provide information if	Resolved in March 2024 submission

managed soils	updated data will be included in the 15th march submission?	
4.B.1. Cropland remaining cropland	Thank you for sharing your improvement plan. It was not possible to find information on your 2025 January submission to assess the status of this partially resolved issue from 2024 QAQC (i.e. tier 1 in living biomass in perennial crops). Could you please comment on whether the improvement plan has allowed to increase the tier methods used for the pools raised on the above mentioned observation?	Unresolved. Until now tier 1 methodology is applied. We are currently analysing different options for moving to tier 2 level. As a first step we are planning to use regionspecific stock change factors in living biomass while in the long-term planning there is the development of country-specific ones.
LULUCF – Blank cells	Cyprus reports blank cells for the full time series in table 4, row 30 Other, table 4(I), row 68 Other, table 4(IV) for units in column E and row 72 Other. And for 2001 two blank cells in table 4A settlements converted to forests. Can you please check and add values or NKs as appropriate?	Resolved
5C Incineration and open burning of waste	The TERT noted that, in CRF 5C1 – Incineration of waste, the notation key "NO" is reported whereas there is a UNFCCC observation (FCCC/ARR/2023/CYP (W.1) recommending to "estimate and report emissions from waste incineration without energy recovery". In annex VIII, Cyprus indicated that "this will be addressed in future submissions". As page 240 of the 2023 NIR it was indicated that "incineration [] of waste does not take place in Cyprus, could you please provide further information on waste incinerated without energy recovery (type of waste, origin, type of installation, period concerned). Moreover, could you indicate if you plan to report these emissions in your March 2024 submission? If not, please provide the reason for non-implementation, your action plan for the implementation of this improvement and a rough estimate to demonstrate that missing emissions are below the threshold of significance (0.05% of total national emissions).	Partly resolved. Investigate and report in future submissions about this issue.
5C Incineration and open	The TERT noted that, in CRF 5C2 – open burning of waste, the notation key "NO" is reported with a short legal justification in the NIR 2023 (Fire Prevention of Outdoors Law of 1988 (220/1988) as	Partly resolved. Investigate and report in future submissions about this issue.

burning of waste	amended by 109(I)2002 prohibits any open burning of waste). The TERT also noted that there is a UNFCCC observation (FCCC/ARR/2023/CYP (W.5)) recommending to "provide a justification for the use of this "NO" notation key in its NIR". In annex VIII, Cyprus indicated that "NIR 2024 for the March 2024 submission". Could you please confirm that the March 2024 NIR will include a justification over the complete time series and specifically will provide evidence that the Fire prevention law addresses orchard, olive and vineyard waste and domestic and municipal green waste (park and garden).	
5D Wastewater treatment and discharge	The TERT noted that in CRF 5D2 – Industrial wastewater treatment, CH4 emissions reported for year 2022 are identical to the values reported for year 2021. The TERT imagines that activity data were not yet available and agrees that the impact is far below the threshold of significance. Anyway, could you please confirm that you are planning to update your 2022 estimate in your March 2024 submission?	Resolved

A6.2. UNFCCC/KP review Process

Table A6.2.Summary of Recommendations from the ERT and status of implementation

CRT category / issue	Review recommendation	Status of implementation
"Uncertainty analysis (G.11, 2022) (G.8, 2020) (G.20, 2019) (G.14, 2017) (G.6, 2016) (G.6, 2015)"	The Party included the LULUCF sector in its uncertainty analysis, associated elements being presented in NIR's Section 1.5, in Chapter 6 in the uncertainties related subsectoral sections and in Annex 2.Conduct an uncertainty analysis for LULUCF after the LULUCF reporting has been completed.	Resolved
1.A Fuel combustion – sectoral approach – solid biomass – CO2, CH4 and N2O	The Party reported in NIR table 3.29 (p.96) that the apparent consumption for solid biomass in 2017 is 1,838 TJ, however it reported in CRF table 1.A(b) that the apparent consumption for solid biomass in 2017 is 1,535.59 TJ. The ERT noted that both these figures differed to the apparent consumption for solid biomass reported by the IEA in 2017 of 1,037 TJ. No further explanation has been provided in the NIR. During the review, the Party clarified that the figure reported in CRF table 1.A(b) is correct, as it is the solid biomass consumption reported by the IEA of 1,037 TJ adjusted for charcoal production (indigenous production is 73.49 TJ and the imports 390.049 TJ). The Party indicated that there is, however, an issue with the sign of	Resolved.

	the stock change in the CRF table 1.A(b), which should be '+' instead of '-', and that this will be fixed in the next submissions. The Party has not reported the correct sign for the stock change in CRF table 1.A(b), and it has not reported the revised figures in table 3.29 or the impact of the correction in the NIR. Revise the estimates of CO2, CH4 and N2O emissions from solid biomass in 2017 on the basis of the correct AD and report the impact of the correction in the NIR. Revise the estimates of CO2, CH4 and N2O emissions from solid biomass in 2017 on the basis of the correct AD and report the impact of the correction in the NIR.	
1.A.3.b.ii Light-duty trucks – liquid fuels – N2O	The Party reported in its NIR in section 3.2.5.1 (p. 80) that the N2O emissions from diesel consumption by light-duty trucks were estimated using the COPERT V model on the entire timeseries, but did not explain how the previous recommendation has been implemented and how the N2O emissions were estimated and reported for 1990-1995 years. During the review the Party indicated that in this submission the N2O emissions from light-duty vehicles have been estimated for 1990 – 1995 period by extrapolation of the existing trend, as calculated by the COPERT V model for the rest of the timeseries. The Party mentioned that there is a fault that has not yet been corrected in the COPERT V model that generated the above issue for the 1990-1995 period and that it will provide the necessary explanation in the next NIR, if the COPERT issue will persist. The Party did not explain how it has estimated its N2O emissions from diesel consumption by light-duty trucks for 1990–1995 in the NIR. Correct the estimates of N2O emissions from diesel consumption by light-duty trucks for 1990–1999.	Resolved.
1.A.3.d Domestic navigation – liquid fuels – CO2, CH4 and N2O	The Party reported in its NIR (Domestic waterborne navigation in section 3.2.5.2, p.85) that the fuel consumption for the period 1990-1997 was estimated assuming that the contribution of domestic water-borne navigation activities to road transport remained the same as 1998 (0.33 per cent). During the review, the Party clarified that there was no update on the status of this recommendation since no further data was obtained. Also, the Party clarified that in the energy balance, only one value was available for total transport (equal to the road transport one) without breakdown, and that total was excluding international navigation. That is why, before 1998, the consumption of domestic navigation was calculated with the contribution to road transport (equal to total transport due to the lack of disaggregated data). Regarding the emissions	Resolved. COPERT produced emissions for the entire timeseries of N2O from light-duty trucks running on diesel.

	for the period 1990-1997 the ERT considers the issue is resolved as no further data was obtained and recalculations are not needed as they wouldn't have significant impacts. The rationale of using the contribution of domestic navigation to road transport is not clear enough. The ERT suggest that including in the NIR the clarification that road transport equals to total transport due to the lack of breakdown would fully resolve this issue. Report in the NIR on any progress achieved in improving the consistency of the time series.	
1.A Fuel combustion – sectoral approach – biomass, other fossil fuels – CO2, CH4, N2O	"The Party reported in its NIR (section 3.2) that biodiesel consumption has been reported for the first time with data included for the years 2020 and 2021. The ERT noted that the Party provided that the emissions from biodiesel have been calculated for both fossil and biogenic parts, and that this is achieved in the sectoral approach energy CRF tables through use of the "biomass" and "other fossil fuels" sub-categories, however the methodology for splitting the biodiesel AD between fossil and biogenic parts was not clear in the NIR. The ERT also noted that where the Party has included AD in the ""other fossil fuels" category of the sectoral approach energy CRF tables the accompanying notes did not clearly specify the cases where the AD relates to the fossil component of biodiesel.	Resolved. The clarification that ERT suggested be added in the NIR has been included.
1.A Fuel combustion — sectoral approach — biomass, other fossil fuels — CO2	During the review, the Party clarified that it has assessed the origins of all biofuels to separate fossil and biogenic feedstocks in line with the 2006 IPCC guidelines. The fuels used to replace biodiesel include hydrotreated vegetable oil (HVO) and fatty acid methyl esters (FAME). The Party provided that HVO is produced through the hydro-treatment of the triglyceride-containing feedstocks (vegetable oil or animal fat) therefore it is 100% biogenic, and that FAME is produced by reacting animal fats with methanol therefore it contains both biogenic origin (animal fats) and fossil origin (methanol) parts. The Party provided that it uses country specific information where available to separate the HVO and FAME quantities, determine the total carbon content of the FAME, then separate the biogenic and fossil carbon components of the FAME.	Resolved. A note has been added to the attachment in the intro of energy sector of the NIR.
1.A.2.d Pulp, paper and print – biomass, other fossil fuels CH4	Update the NIR with information about the method that has been used to split the reporting of biofuel AD between fossil and biogenic parts. This could be achieved by attaching the document provided to the ERT during the review titled "Note on fossil carbon content in fuels" to the NIR and referring to it in each section of the	Resolved

	NIR where the use of biofuels is described. Update the notes in the sectoral approach energy CRF tables in cases where the "other fossil fuels" category has been used for biofuels to clearly specify that the AD is for the fossil component of biofuels."	
1.A Fuel combustion – sectoral approach – biomass, other fossil fuels – CH4,and N2O	"The Party reported in its NIR (section 3.2) that biodiesel consumption has been reported for the first time with data included for the years 2020 and 2021. The ERT noted that the Party provided that the emissions from biodiesel have been calculated for both fossil and biogenic parts, and that this is achieved in the sectoral approach energy CRF tables through use of the "biomass" and "other fossil fuels" sub-categories. The ERT additionally noted that some sub-categories in CRF Table 1.A(a) (sheet 2) and CRF Table 1.A(a) (sheet3) for the years 2020 and 2021 appear to primarily relate to biodiesel however have CO2 IEF values that are outside of the lower and upper limits provided by the IPCC Guidelines for biodiesel (70.8 – 84.3 tCO2/TJ): 1.A.2.g.i manufacturing of machinery (in 2021 "other fossil fuels" is 25.14 tCO2/TJ and "biomass" is 53.10 tCO2/TJ; and in 2020 the "other fossil fuels" is 42.15 tCO2/TJ and "biomass is 89.02 tCO2/TJ), 1.A.2.g.iii mining (excluding fuels) and quarrying (in 2021 "other fossil fuels" is 22.47 tCO2/TJ and "biomass" is 47.46 tCO2/TJ, and in 2020 "other fossil fuels" is 13.44 tCO2/TJ and "biomass" is 28.38 tCO2/TJ), 1.A.2.g.iv wood and wood products (in 2021 "other fossil fuels" is 4,004 tCO2/TJ, and in 2020 "other fossil fuels is 4,004 tCO2/TJ, and "biomass" is 8,456.66 tCO2/TJ), 1.A.2.g.vi. textile and leather (in 2021 there is no data, in 2020 "other fossil fuels is 4,004 tCO2/TJ, and "biomass" is 8,456.66 tCO2/TJ), 1.A.3.d. domestic navigation (in 2021 "biomass" is 155.04 tCO2/TJ, and in 2020 "biomass" is 155.04 tCO2/TJ, and in 2020 "biomass" is 248.73 tCO2/TJ).	Resolved
1.A.2.a Iron and steel – all fuels – CO2, CH4, N2O	During the review, the Party clarified that incorrect EF values have been used, leading to an overestimation in emissions, and these will be corrected in the next submission. The Party has advised that it calculates CO2 emissions for biodiesel using a carbon content factor that it has determined based upon the composition of FAME in Cyprus (the carbon content factor is 76.5%, with the fossil part of the resulting carbon content being 5.4%).	Resolved
1.A.2.g Other (manufacturing industries and construction) –	Update the CO2 EF values used to estimate the CO2 emissions for biodiesel in CRF Table 1.A(a)	Resolved

liquid fuels – CO2, CH4, N2O	(sheet 2) and CRF Table 1.A(a) (sheet3) for the years 2020 and 2021 and include the related information in the next NIR."	
1.A.3.b Road transportation – gas diesel oil – CO2, N2O and CH4	"The Party reported in its NIR (section 3.2) that biodiesel consumption has been reported for the first time with data included for the years 2020 and 2021, and that CH4 emissions have been calculated using the EFs provided by the 2006 IPCC Guidelines. The ERT noted that the Party provided that the emissions from biodiesel have been calculated for both fossil and biogenic parts, and that this is achieved in the sectoral approach energy CRF tables through use of the "biomass" and "other fossil fuels" sub-categories. The ERT additionally noted that the category 1.A.2.d pulp, paper and print in CRF Table 1.A(a) (sheet 2) for the years 2020 and 2021 appears to primarily relate to biodiesel however has a CH4 IEF value (0.22 kg CH4/TJ) below the lower limit provided by the IPCC Guidelines for biodiesel (1 kg CH4/TJ).	Resolved
1.B.2.a Oil – secondary liquid fuels CO2 and CH4	During the review, the Party clarified that an incorrect EF value has been used, however the impact is insignificant, and this will be corrected in the next submission.	Resolved
1.B.2.a Oil –and 1.B.2.b Natural Gas -CO2, CH4, N2O	Update the CH4 EF value used to estimate the CH4 emissions for the category 1.A.2.d pulp, paper and print in CRF Table 1.A(a) (sheet 2) for the years 2020 and 2021 in line with the 2006 IPCC GL and include the related information in the next NIR."	With the EUROCONTROL data, it should be possible to have a TIER 2 metohodolgy. This will be implemented for the 2025 submission
1.B.2.a Oil –and 1.B.2.b Natural Gas -CO2, CH4, N2O	"The Party reported in its NIR (section 3.2) that biodiesel consumption has been reported for the first time with data included for the years 2020 and 2021, and that CH4 and N2O emissions have been calculated using the EFs provided by the 2006 IPCC Guidelines. The ERT noted that the Party provided that the emissions from biodiesel have been calculated for both fossil and biogenic parts, and that this is achieved in the sectoral approach energy CRF tables through use of the "biomass" and "other fossil fuels" sub-categories. The ERT additionally noted that the CH4 and N2O EF values reported for biodiesel in the NIR (3.8 kg CH4/TJ and 5.7 kg N2O/TJ) appear to corresponded to the EF values listed for motor gasoline (mobile combustion) in the 2006 IPCC GL (vol. 2, chap. 3, table 3.2.2, p.21). The ERT also noted that these EF values appear to have been used in CRF Table 1.A(a) (sheet 2) for the	This will be addressed in future submissions

	years 2020 and 2021 for the stationary combustion categories 1.A.2.b non-ferrous metals, 1.A.2.c chemicals, 1.A.2.d pulp, paper and print, 1.A.2.e food processing, beverages and tobacco, 1.A.2.f non-metallic minerals, 1.A.2.g.i manufacturing of machinery, 1.A.2.g.ii manufacturing of transport equipment, 1.A.2.g.iii mining (excluding fuels) and quarrying, 1.A.2.g.iv wood and wood products, 1.A.2.g.vi textile and leather, 1.A.2.g.viii other, and in CRF Table 1.A(a) (sheet 3) for the years 2020 and 2021 for the mobile combustion categories 1.A.3.b road transportation and 1.A.3.d domestic navigation.	
2. General (IPPU) – all gases	During the review, the Party clarified that the motor gasoline (mobile combustion) EF values has been incorrectly used instead of those corresponding to biodiesel to calculate CH4 and N2O emissions for biodiesel in CRF Table 1.A(a) (sheet 2) and CRF Table 1.A(a) (sheet 3) for the years 2020 and 2021, leading to an overestimation in emissions, and this will be corrected in the next submission.	This will be addressed in future submissions
2.G Other product manufacture and use – N2O and SF6	Update the CH4 and N2O EF values used to estimate the CH4 and N2O emissions for biodiesel in CRF Table 1.A(a) (sheet 2) and CRF Table 1.A(a) (sheet 3) for the years 2020 and 2021 in line with the relevant stationary or mobile combustion chapter of the 2006 IPCC GL and include the related information in the next NIR. At a minimum the information in the NIR should specify where the EF values have been sourced from (for example the 2006 IPCC GL source table), and in cases where there is not default value available for biodiesel, the fuel type that has been used as a substitute."	Resolved
2.A.1 Cement production – CO2	"The Party reported its NIR that the emissions for sub-category 1.A.2.a. iron and steel are included in sub-category 1.A.2.b non-ferrous metals for the years 1990–2018 and included in 1.A.2.a. iron and steel for the years 2019 – 2021. The ERT noted that this is not in accordance with the UNFCCC reporting guidelines, which provide that recalculations should ensure the consistency of the time series and shall be carried out to improve accuracy and/or completeness. The ERT also noted that for 2019 the Party reports in the NIR (table 3.3, p. 64) the notation key "IE" which is inconsistent with what the Party reports in the CRF Table 1.A(a) (sheet 2).	Resolved

		Т
2.A.4 Other process uses of carbonates – CO2	During the review, the Party clarified that separate data for the years 1990–2018 is not available, however further analysis could be undertaken to see the share of each sub-category compared to their total and recalculate emissions separately using the share and a trend.	Partially resolved
3.A Enteric fermentation – CH4	Review and select an appropriate approach from the 2006 IPCC guidelines to recalculate the emissions for historical years where no separate AD is available and include the related information in the next NIR."	Partially resolved
3.D.a.2.c Other organic fertilizers applied to soils – N2O	"The ERT noted that that there is no clear information in the NIR regarding the recalculations that have occurred between the 2022 and 2023 submissions in the category 1.A.2 manufacturing industries and construction for the years 1990–2004.	Further improvements in future submissions. No data for now to apply a TIER 2 methodology on certain identified key categories
3.A.1 Cattle – CH4	During the review, the Party clarified that the recalculation was due to the correction of a mistake detected after the 2022 submission in the AD of the diesel consumption for the subcategory 1.A.2.g.iii mining (excluding fuels) and quarrying for the years 1990–2004. The Party informed the ERT that the impact is significant for the emissions from the diesel consumption for this sub-category only, and these recalculations will be described in the next NIR.	Resolved
3.D.b.1 Atmospheric deposition – N2O	Explain the rationale and the impact of the recalculations for the sub-category 1.A.2.g.iii mining (excluding fuels) and quarrying for the years 1990–2004 in the next NIR."	Resolved
5.C.1 Waste incineration – CO2, CH4 and N2O	"The ERT noted that the Party did recalculations for diesel emissions from the transport sector for the categories: 1.A.3.b.i cars, 1.A.3.b.ii light duty trucks and 1.A.3.b.iii heavy duty trucks and busses and the gases CO2, N2O and CH4 for the years 1990 –2021. The ERT also noted that to an extent in 1994, CH4 emissions in NIR 2023 were lower than the NIR 2022 by 55%. In Section 3.2 and Chapter 10 of the NIR 2023, there is no explanation of why the recalculations were done. This is not in accordance with the 2006 IPCC Guidelines (vol. 1, chap. 5, Section 5.2.1) and the UNFCCC reporting guidelines paragraph 17, according to which the Parties need to provide transparent explanations regarding the performed recalculations and their impact on the GHG	Resolved

	emissions. The ERT also noted that the 1.A.3.b road transportation is a key category.	
During the review, the Party clarified that it continually does activity data refinement or error correction as it receives activity data for COPERT model from diverse sources to derive the vehicle fleets.		This will be addressed in future submissions. A note is added to NIR2024.
5.D.1 Domestic wastewater – CH4 and N2O	Provide detailed explanation regarding the performed recalculations, following guidance given in 2006 IPCC Guidelines (Chapter 5, Section 5.2.1), in its next NIR."	Resolved.
5.B Biological treatment of solid waste – CH4	"1.A.3.A - Domestic (civil) aviation (for CO2 emissions) is identified as a key category by trend in the 2021 inventory and it is estimated using Tier 1 method. The ERT noted that this is not in accordance with 2006 IPCC Guidelines of using higher-tier method for key categories. In the NIR, page 81, it is stated that it is currently not possible to move to higher Tier and that it will be assessed again for future submissions.	Resolved.
5.C.2 Open burning of waste – CO2	During the review process, the Party clarified that these emissions were calculated using EUROCONTROL data and that there was no more detailed data available.	Further improvements in future submissions. No data for now to apply a TIER 2 methodology on certain identified key categories
5.D Wastewater treatment and discharge – CH4	Understanding that EUROCONTROL information should allow the use of higher-tier methods and considering that 1.A.3.A - Domestic (civil) aviation (for CO2 emissions) is a key category, make further efforts in order to apply a Tier 2 estimation."	Resolved.
5.D.2 Industrial wastewater – CH4	"The Party reported in section 3.2.3.2 of its NIR (p. 70) that oil and gas extraction have taken place since 2020, however in section 3.3 (p. 100) it states that no primary production of fuels or processing takes place in Cyprus and therefore NO is used in the CRF table 1.B.2 for categories 1.B.2.a oil and 1.B.2.b natural gas for "exploration" and "production". The ERT noted that this is not in accordance with the 2006 IPCC Guidelines (vol. 2, chap. 4), because all exploration or extraction activities are associated with fugitive emissions and the notation key NO	Resolved.

	means that an activity or process does not exist within a country (vol. 1, chap. 8, table 8.1).	
4. General (LULUCF)	CF) Report the areas converted to a different land use under the relevant land-use conversion category for 20 consecutive years before reporting them under the corresponding land remaining category.	
4. General (LULUCF) – CO2, CH4 and N2O		
4. General (LULUCF) – CO2, CH4 and N2O		
4.A Forest land – CO2	Revise the reporting of the area of settlements converted to forest land and ensure consistency among the areas reported in the NIR, CRF table 4.1 and CRF table 4.A.	Resolved
4.A Forest land – CO2, CH4 and N2O	*	
4.B.1 Cropland remaining cropland – CO2	Assume that the growth and harvest of orchards in the country cancel each other out and therefore carbon stocks for living biomass are in equilibrium, and report "NA" in CRF table 4.B.	Resolved
4.B.1 Cropland remaining cropland – CO2	maining Correct the errors in NIR table 6.9 (p.193)	
Assume that the growth and harvest of woody grassland in the country cancel each other out and therefore carbon stocks for living biomass are in equilibrium, and report "NA" in CRF table 4.C.		Resolved
Report only emissions for newly constructed dams and flooded mines and construction sites, attributable to instantaneous oxidation of biomass for the year of conversion		Resolved
4(V) Biomass burning – Provide the missing estimates of emissions from forest fires for land converted to forest land for 2011		Resolved

4(V) Biomass burning – CO2, N2O and CH4	Estimate and report wildfire emissions under the category for the land use on which they occur, noting that (1) data from the Department of Forests should be used to assign wildfires to forest land and grassland, (2) once the Party obtains data on the total area affected by wildfires, it should be able to deduce the areas affected by wildfires on land other than forest land and grassland and (3) default IPCC parameters from the 2019 Refinement to the 2006 IPCC Guidelines (vol. 4, tables 2.5–2.6) should be applied to estimate emissions from wildfires on cropland.	It will be resolved in future submissions
4.B.1 Cropland remaining cropland – CO2 Either implement its improvement plan and apply higher-tier methods using country-specific or regional-specific data for estimating emissions/removals from biomass on woody cropland remaining woody cropland or explain in its next NIR why it was unable to do so, and in that case report woody cropland as a subcategory of cropland (alongside annual cropland)		It will be resolved in future submissions

Annex 7: Key actions of the National Inventory Improvement Plan

Table A7.1 presents the key actions identified for the improvement of the national inventory, after the preparation of the 2024 submission.

Table A7.1.Key actions of the National Inventory Improvement Plan

1 avi	e A7.1. Key actions of the National Inventory Im	•
~	Description	Planned Implementation
	neral	
1	Improve QA/QC plan	Continuous
2	Improve implementation of QA/QC procedures	Continuous
3	Improve descriptive information in NID (e.g.	Continuous
	inter-annual variations) to improve transparency	
4	Implement Tier 2 methodologies for key	Continuous
	categories	
Sec	tor 1. Energy	
1	1.A.3.b Road transportation: Development of	To be assessed for 2025 submission
	country-specific EFs	
Sec	tor 2. IPPU	
1	2.F Product uses as substitutes for ozone	Collection of the necessary data is ongoing.
	depleting substances: Continue efforts to collect	Further improvements in future submissions
	AD and report emissions fully in accordance	
	with the 2006 IPCC Guidelines - Emissions	
	from blowing agents (2.F.2), fire protection	
	(2.F.3) and aerosols (2.F.4)	
2	2.G. SF6 and PFCs from other product use:	Further improvements in future submissions.
	Explore whether SF6 is used in particle	
	accelerators (used e.g. in hospitals for cancer	
	treatment, research) and PFCs and SF6 are used	
	in naval and military applications.	
Sec	tor 3. Agriculture	
1	3A. Improvement of DE time series for the	In view of the difficulty to find reasonably
	improvement of estimation of CH ₄ emissions	good data on time series for feeding plans and
	from enteric fermentation dairy cattle.	in the absence of historical data, we in future
		submissions to explore some modelling
		approach which could be used to derive DE

		from other related variables.	
2	3A. Enhance data collection to apply Tier 2	Further improvements in future submissions.	
	methodology in the estimation of the identified		
	key categories, i.e., methane emissions from		
	enteric fermentation from non-dairy cattle.		
3.	3D. Implement a tier 2 methodology to estimate	In progress.	
	emissions for categories 3.D.a.1 and 3.D.A.2		
	considering desk studies or expert judgment as		
	alternatives given in the national circumstances.		
Sec	Sector 5. Waste		
1	5.D Wastewater treatment and discharge: Move	Further improvements in future submissions	
	to higher-tier methods		

References

All references used in the national inventory report are presented as footnotes to the text.