

THE COUNCIL

Solar for Irrigation Using a Decision Support Tool to Guide Action

Technical Expert Meeting on Mitigation UNFCCC June 21 2019

© Council on Energy, Environment and Water, 2019

CEEW – Among South Asia's leading policy research institutions

Energy Access

Industrial Sustainability & Competitiveness

Renewables

Low-Carbon Pathways

Technology, Finance, & Trade

Power Sector

Risks and Adaptation

Solar for irrigation in India

Setting the context

The need for irrigation (and energy)

- 132 million farmers
- 19 million electric pumps
- 9 million diesel pumps
- 48% net sown area remains unirrigated

Why solar-based irrigation?

DIZ Destacto la

operatio

Deployment status of solar pumps

6

The proposed KUSUM scheme is far more ambitious than the prevailing target

• 17.5 Lakh stand-alone solar pumps

But, is achieving the installation target the only right

approach?

Current and evolving scenario of solar-based irrigation

Current scenario

71

- High CAPEX: Constrains bottom-up demand, limits resources for top-down support
- Subsidy backed deployment: Important in the short run, but difficult to scaleup
- Emerging concerns with regards to sustainability
- Different actors and stakeholders have different objectives
- Various approaches to deploy solar pumps are emerging Impeding questions
- Are we making the best use of our resources?
- Are we ensuring that deployments are most likely to be sustainable?
- What do farmers think about the technology and adopting it?
- What are financiers' risk perceptions about financing solar pumps?
- Which deployment approaches are suitable in what context?

Multi-prong research to support sustainable deployment

Decision support tool

What determines SPIS sustainability?

Approach: Systematic review of literature; Semi-structured Interviews; On-field visits

german

cooperation

giz Destacto Resolizatati De Maratanale Desenventeit (2021

THE COUNCIL

10

Case for a data-driven decision support tool

111

- Use research (data and analytics) to inform decision and guide action
- Ensure interests and objectives of various stakeholder, viz. policymakers, financiers, enterprises, and researchers
- Consider economic affordability, social equity and environmental sustainability in a context
- Make best use of limited public resources—MNRE plans to scale up the adoption at a large scale through *KUSUM*

What is this tool and its objectives?

What is this tool?

- A comprehensive web-based analytical tool to assist stakeholders in their decision-making for the adoption of solar for irrigation
- Developed by aggregating and analysing district-wise data for more than 600 districts across India
- Uses more than 20 parameters affecting the deployment of solar for irrigation in varying scenarios.

It helps:

- Prioritise target districts in India or a state, based on their relative conditions
- Assess overall suitability of various approaches to deploy solar for irrigation
- Identify relevant policies where solar-based irrigation can be leveraged
- Understand district specific impetus factors and bottlenecks affecting the suitability of solar for irrigation

Previous version—approach, criteria and parameters

Previous version—snapshot

14

Moving to a new version

Previous version

- Only one scenario largely enterprise and financier focused
- Market led approach private ownership of pump
- Static weight assignment-Delphi approach
- Adobe flash based

Current version

- Specific interest & context of users: enterprises, bankers, policymakers and researchers
- Multiple deployment approaches & policy scenarios
- User defined weights & additional functionality of filter
- Web-based; compatible with modern devices

Decision support tool

Features and functionalities

Overall score at district level

Analysis at district level because:

- Wide intra-state variation for the chosen parameters
- Gaps in the availability of block-wise data

Deployment approaches used in the tool

- Individually owned off-grid solar pumps
 - Solar for irrigation has been largely promoted through this approach so far
 - Ownership of pumps provides easy and reliable access to irrigation

Solarisation of feeders

 Changing the source of power at the feeder level will ensure a rapid and cost-effective transition to solar-based irrigation at a large scale

• Solar-based water-as-a-service

 Has the potential to improve irrigation equity as it avoids a prohibitively high upfront cost of technology for small and marginal farmers

• Promote 1HP and sub-HP pumps

 Could help marginal farmers meet their needs and could also be put to use for lift irrigation

Example: Deployment approach

Individually owned off-grid solar pumps

Promoting purchase of pump w/ or w/o subsidy—subject to less external fluctuation; provides better control over irrigation

Affecting parameters

- Cultivators reporting use of diesel pump [percentile>50%]
 - Assesses irrigation demand
 - Most probable group to switch to solar power
- Water Availability Index [value>0.75]
 - Groundwater availability for irrigation
 - Determines long term economic viability
- Crop revenue per holding (INR) [percentile>50%]
 - Higher the revenue, higher the appetite for investment
- Medium and long term credit disbursed in a year (INR) [percentile>50%]
 - Enhances the likelihood of farmers taking loans for purchasing solar pumps

Leveraging solar pumps to promote policy objectives

- Pradhan Mantri Krishi Sinchayee Yojana
 - Har Khet ko Pani
 - Per Drop More Crop
- Doubling Farmers' Income
 - capital investment
 - crop diversification
 - crop intensity
- National Mission on Oilseeds and Oil Palm (NMOOP)
- Sub-Mission on Agricultural Mechanization Farm Power Availability
- Climate Resilient Farming for Small Farms

Examples: Policy objectives

Har Khet ko Pani – Pradhan Matri Krishi Sinchayee Yojana

Solar pumps to improve access to underground water

Affecting parameters

- Unirrigated net sown area as a share of net sown area [value>50%]
 - · Lack of access to irrigation and opportunity to expand irrigation cover

Per Drop More Crop– Pradhan Matri Krishi Sinchayee Yojana

Solar pumps to be deployed with efficient and precise water application devices like drip and sprinklers to promote efficient irrigation

Affecting parameters

- Area under crops suitable for drip and sprinkler as a share of gross cropped area [percentile>50%]
 - Improves the likelihood of adoption of such water saving technologies

25

Decision support tool

Demonstration

portal.ceew.in

Decision support tool

Few findings for India

National level findings from the tool

- Immense potential for individually owned off-grid solar pumps in states of West Bengal, Maharashtra, and Andhra Pradesh
 - In Bihar and Uttar Pradesh, low crop revenue and low disbursement of medium and long-term bank loans are the barriers
- Solar-based water-as-a-service model can improve affordability of irrigation for the smallholders in Uttarakhand, Himachal Pradesh, Kerala, Odisha and north eastern states
- Andhra Pradesh and Madhya Pradesh stand out among other states in their suitability for deployment through solarisation of feeders
- ²⁹ Kerala, West Bengal, and Andhra Pradesh show spitability for EEW

Decision Support Tool

Limitations

Limitations

- Choice of filters and weights has been kept same across states
 - Influence of parameters will vary with geographic locations and states in reality
- Only captures the potential of solar-based irrigation for groundwater sources
 - In future, it might incorporate variables corresponding to surface water availability to enhance its scope
- Would have been useful to integrate India's aquifer (hard rock) map to its political map to improve overall utility
 - Unavailability of useful format of map
- Certain deployment approaches and policy scenarios were dropped due to data unavailability

Thank you ceew.in

