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Global Stocktake Submission: “Country” of Permafrost 

Submission from Stockholm University, Sweden.  

Supported by the International Cryopshere Climate Initiative, the Bolin Centre for Climate Research, 

the Woodwell Climate Research Centre and the Permafrost Carbon Network. 

The above-named Observer and supporting institutions appreciate the opportunity to raise, for 

Parties and the Co-chairs, an essential missing element in the Global Stocktake (GST) process 

on progress towards fulfilment of the Paris Agreement goals: the need to include estimated 

permafrost emissions in assessing said progress. Current and future permafrost emissions have 

clear implications for needed emissions reductions to 2100, as well as the need for negative 

emissions once anthropogenic carbon neutrality is achieved. These emissions estimates, which 

are dependent on global mean temperature rise, should be taken into account in any valid 

Stocktake process. The submitting Observer and supporting organisations offer to arrange 

presentations or other inputs to the GST process to address this omission. 

Background 

Permafrost is ground that remains frozen through the year.  It underlies 15% of the Northern 

Hemisphere land area, primarily Arctic tundra and taiga forest; it also affects many high 

mountain regions globally, with the largest extent in the Tibetan Plateau. Permafrost holds 

large amounts of organic carbon formed over tens of thousands of years. Observations 

confirm that permafrost is rapidly warming, and releasing part of that thawed carbon into the 

atmosphere as both carbon dioxide (CO2) and methane (CH4). Significantly for GST 

purposes, thawed permafrost can continue emitting carbon into the atmosphere for 

centuries. 

Unlike direct emissions from human activity, permafrost emissions are regulated almost 

entirely by global mean temperature levels, but cannot be considered fully “natural” as they 

are a direct consequence of rising temperatures caused by anthropogenic emissions. 

Permafrost thaw is projected to add as much greenhouse gas forcing as a large current emitter, 

depending on just how much the planet warms. 

Today, at approximately 1.2°C of warming above pre-industrial (WMO, 2021), permafrost 

emissions are about the same as Japan’s annually, 0.3-0.6 Pg per year (NOAA, 2019).  This 

scale of emissions should be considered a minimum estimate of emissions from the “Country 

of Permafrost” for at least the next century.  Some members of the scientific community 

believe even this to be an under-estimate, due to improvements in understanding of abrupt 

permafrost thaw events (primarily involving rapid land subsidence, lake formation and 

impacts of wildfires on tundra and permafrost forest emissions). 
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At today’s 1.2°C, we are already committed to losing about 25% of pre-industrial surface 

permafrost. Scientists anticipate that 40% of permafrost area will be lost, even if we hold 

temperatures close to 1.5°C globally. Over 70% of the pre-industrial surface permafrost will 

thaw should temperatures exceed 4°C.  

Emissions Estimates and Related Adaptation Needs 

Projected permafrost emissions under scenarios of Very Low and Low Emissions (SSP1-1.8 

and SSP2-2.6) would equal carbon emissions of around 200 (range 100-400) Gt eCO2
* by 

2100. Surface permafrost will largely disappear below the Arctic Circle, and from nearly all 

mountain regions globally, with extensive infrastructure damage in the Arctic and Tibetan 

Plateau. 

Should temperatures reach between 2-3°C in 2100 (SSP3), permafrost thaw will add carbon 

dioxide and methane emissions totaling around 300 (150-600) Gt eCO2 by 2100. Permafrost 

soils will disappear in extensive regions above the Arctic Circle, as well as below, and nearly 

all existing infrastructure built on vulnerable permafrost soils will require repair or 

replacement. In adaptation terms, extensive coastal and riverine erosion due to permafrost 

thaw, sea ice-free conditions and more violent storms will require extensive replacement of 

coastal and riverside Arctic infrastructure, especially in Russia, Canada and the U.S. state of 

Alaska. 

These permafrost emissions will continue for one–two centuries, approximately doubling the 

cumulative 2100 carbon emissions by 2300. Over time permafrost emissions would cease, 

assuming stabilized global temperature. However, this does mean that subsequent generations, 

until approximately 2300 and perhaps beyond, will need to implement and continue carbon 

dioxide removal strategies equal to these long-term permafrost emissions until they cease, in 

order to hold temperatures steady.  

Conclusion 

Although there remains uncertainty regarding the scale of emissions, these are not dissimilar 

to the uncertainty levels surrounding reported emissions from national entities. Measurement 

of emissions through both remote satellite observation, and on-the-ground monitoring sites 

continue to improve in both scale, and accuracy. It is the opinion of this Submission therefore 

that estimates are sufficiently accurate to be include in this GST process, with a mind towards 

improving this estimate in future Stocktake rounds. The submitting Observers, perhaps in 

                                                      

 

** CO2-e) -- carbon emissions coming from permafrost as both CO2 and methane, with their climate 

forcing converted to the same impacts that would come from these emissions as CO2 alone. 
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concert with the IPCC, would welcome the opportunity to present the scientific basis of these 

estimates at future GST technical meetings and dialogues, and/or to organize special sessions 

together with the Secretariat and IPCC AR6 authors at the upcoming SB meetings in June. 

These finding also have relevance for the Second Periodic Review, as the means to reduce 

emissions is to keep as much permafrost soil as possible in its current frozen state, holding 

global temperature increases to 1.5°C, which also minimizes negative emissions efforts 

required by future generations. This will greatly decrease the amount of additional carbon 

entering the atmosphere from permafrost thaw, and minimize the long-term burden of 

negative emissions laid on future generations. 
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