

María José González National Project Coordinator URUGUAY

Technical expert meeting on mitigation (TEM-M 2018) Bonn Climate Conference 1-2 May 2018

Sectors that Generate **WASTE and EFFLUENTS**

slaughterhouses

poultry dairy farms

BIOGAS

FEEDLOT

POULTRY

ALTERNATIVE FUEL

SYNTHETIC DIESEL/

SYNTHESIS GAS

feedlots

SLAUGHTER HOUSES

SWINE

SUGAR ALCOHOL

BREWERIES MALTING

DAIRY

SMALL

COMMUNITIES

FARM

INDUSTRIAL POULTRY

FOOD OIL **INDUSTRY**

WINERIES

DAIRY **FARMS**

MEAT **PRODUCTS PROCESSING**

CAPACITY BUILDING

GREATER KNOWLEDGE

NEW TECHNOLOGIES

ENHANCED POLITICAL and REGULATORY FRAMEWORK and ECONOMIC INSTRUMENTS

Strategy with Biovalor

TECHNOLOGIES DEVELOPMENT PLAN of low carbon technologies for waste valorization

Generate technical information for the definition of specifications according to each technology

Implement pilot projects to validate the technologies to the national reality

Generate local capabilities to the design, operation and maintenance of the different technologies

Identify regulatory and economical instruments that promote the selected technologies

RINCON DE ALBANO PROJECT

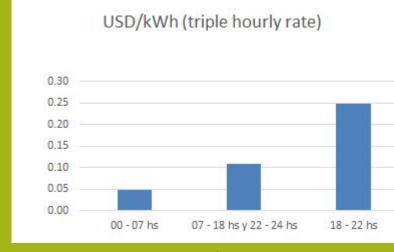
Project description	Anaerobic digestión – diary farm – 500 cows
Kind of waste	Manure
Total investment	USD 200.000 total USD 100.000 Biovalor support
Total waste	23.725 ton/year
Energy	40.000 kWh/year
Emisions reduction	276.389 kg CO _{2eq} /year

ONTILCOR PROJECT

Project description	Waste as alternative fuel Boiler of slaugtherhouse combusting ruminal contents
Kind of waste	Ruminal content
Total investment	USD 939.000 total USD 75.000 Biovalor support
Total waste	5.280 ton/year
Emisions reduction	446.516 kg CO2eq/year

Electric microgeneration decree

Power < 150 kW


Feed-in grid maximum is the same as power you consumed Triple hourly rate – energy management to feed in higher price hours

For big scale project in cleaner production, exoneration on economic activities tax

Government commitment to renewables energy sources and green economy

Energy Mix and National Energy Policy, BIOVALOR, PAGE, future National Waste Act

Scale factor: analyse of different business model to biogas – Only economic aspect

Dairy farm 500 cows Local biogás

- Not profitable
- Energy Saved: 12.000 USD/year

Swine farm 4000 pigs Local biogás

- Profitable
- Energy Saved: 20.000 USD/year + energy sell to energy company 500 USD/year

Very small diary farm + diary industry

- Self-sustaining without recovering of investment
- Fat residues disposal saved: 30.000 USD/year
- Energy saves: 128.000 USD/year

Small farmers each biogás and transport of biogas

- Not profitable
- Only incomes from electric energy sale

Biogas from wasterwater treatment to boiler

- Profitable
- Energy saved: 188.000 USD/year

- Investments risks, doubt on technologies
 Need of incentives to factor in the environmental aspects
- Controversial: Low feed-in tariff on electric renewable energy 50-60 USD/MWh spot electric prices
- Other aspects
 Normative regarding liquid biofuels alternatives
 Low environmental controls for small producers
 (more controls for industries)

2 DIAS

25 ORADORES

350 ASISTENTES

2 TALLERES

AREA DEMO

COMUNIDAD

"Hacia una Economía Circular en Uruguay"

Idea Validation

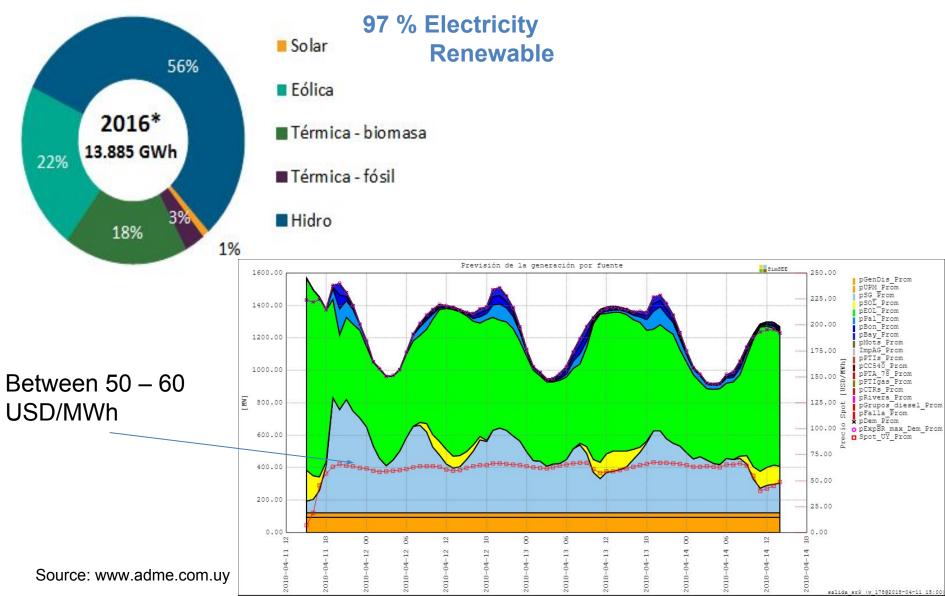
Project Implementation

Uruguay Data

- Total extension of 176.000 Km²
- Total population 3.440.157 in 2014
- GDP per capita 16.908 USD (2017)
- Main productive activities agriculture (soy and cereals), cattle and related industries (meat and wool processing mainly), forestry, dairy industry and tourism
- Unemployment rate 7,9 % (2017)
- 98% of population has access to drinking water and 99 % has access to electricity

GEF PROJECT

"Toward a green economy in Uruguay: stimulating sustainable production practices and low emission technologies in prioritized sectors"


Objective:

Transform the different kinds of waste generated in the agro-industry production chains in Uruguay into various types of energy and/or other byproducts with the aim of reducing GHG emissions, while contributing to the development of a low carbon sustainable production model supported by an adequate technology development and transfer.

Barriers and enablers

