SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

The Ocean and Cryosphere in a Changing Climate

COP25, Madrid
5 December 2019

SROCC Report by the numbers

- 36 countries
- 104 authors
- 824 expert reviewers
- 6981 studies
- 31,176 comments
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

Proposals for Special Reports in the Sixth Assessment Cycle

IPCC governments and observer organisations made seven proposals for ocean and/or cryosphere-related Special Reports at the start of the Sixth Assessment Cycle:

- Impact of Climate Change on the Cryosphere (China)
- Climate Change and Ocean (China)
- Ocean and Climate Change (Monaco)
- Antarctic/Southern Ocean Region (South Africa)
- Oceans and Climate Change: Special Report on the Evidences, Impacts and Adaptation to the Climate Change of the Oceans (Spain)
- Global and Regional Consequences of Changes to the Frozen World (USA)
- Sea Level Rise and Glacial Melting (CAN Int)

Proposals for Special Reports in the Sixth Assessment Cycle by IPCC Governments and observer organisations

In April 2016 the IPCC Panel decided that during the IPCC Sixth Assessment Cycle an ocean and cryosphere-related Special Report is to be developed:

IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

SROCC joins:
The two other Special Reports on Global Warming of 1.5°C (SR15) and on Climate Change and Land (SRCCL)

and

The Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services (IPBES) Global Assessment Report on Biodiversity and Ecosystem Services

Report Structure

Chapter 1: Framing and Context of the Report
Chapter 2: High Mountain Areas
Chapter 3: Polar Regions
Chapter 4: Sea level rise and implications for low lying islands, coasts and communities
Chapter 5: Changing ocean, marine ecosystems, and dependent communities
Chapter 6: Extremes, abrupt changes and managing risks
+ Integrative cross-chapter box: Low-lying islands and coasts
The world’s ocean and cryosphere have been ‘taking the heat’ from climate change for decades.

Consequences for nature and humanity are sweeping and severe.
Background: Use of Scenarios in SROCC

- SROCC uses mainly RCP2.6 and RCP8.5 in its assessment, reflecting the available literature.
- RCP2.6 represents a low greenhouse gas emissions, high mitigation future, that in CMIP5 simulations gives a two in three chance of limiting global warming to below 2°C by 2100
- By contrast, RCP8.5 is a high greenhouse gas emissions scenario in the absence of policies to combat climate change, leading to continued and sustained growth in atmospheric greenhouse gas concentrations.

RCP: Representative Concentration Pathway
Observed changes in the mountain cryosphere

- Mass change of glaciers in all mountain regions is $-123 \pm 24 \text{ Gt/yr}$ in 2006–2015
- In nearly all high mountain areas, the depth, extent and duration of snow cover have declined over recent decades, particularly at lower elevation
- Permafrost temperatures, averaged across polar and high mountain regions, have increased to record high levels from 1980s to present
- Glacier, snow and permafrost decline has altered the frequency, magnitude and location of most related natural hazards such as landslides, avalanches, flooding, ground subsidence and wildfires.

- Lower-elevation vegetation and wildlife have changed abundance, extended upslope and established in new areas.
- Changes in cryosphere also alters the land and freshwater habitats of mountain vegetation and wildlife.
- Changes have contributed to declines in many regions and in agricultural yields including the Hindu Kush Himalaya and the tropical Andes.
Future: glaciers, snow cover and permafrost are projected to continue decline in most regions

Glaciers, snow cover and permafrost are projected to continue decline in most regions

- Projected **decreases in low elevation winter snow depth**, compared to 1986–2005, are likely 10–40% by **2031–2050** (all RCPs), and 50–90% for RCP8.5 by **2081–2100**

- **Widespread permafrost thaw** is projected for this century and beyond. By 2100, projected near-surface permafrost area shows a **decrease of 24 ± 16% for RCP2.6 and 69 ± 20% for RCP8.5**
Hazards are projected to occur in new locations and different seasons

- In many high mountain areas, glacier retreat and permafrost thaw are projected to further decrease the stability of slopes, and the number and area of glacier lakes will continue to increase
- Floods due to glacier lake outburst or rain-on-snow, landslides and snow avalanches, are projected to occur also in new locations or different seasons

In all emissions scenarios, average annual and summer runoff from glaciers are projected to peak at or before the end of the 21st century then decline

Components of runoff:
- Source of water:
 - Glacier
 - Snow (outside glacier)
 - Rain
 - Groundwater
Projected risks for high mountain ecosystems

- Future cryosphere changes will continue to alter terrestrial and freshwater ecosystems with **major shifts in species distributions resulting in changes in ecosystem structure and functioning, and eventual loss of globally unique biodiversity.**
- Warm-adapted plant and animal species migrate upslope. **Cold- and snow-adapted species decrease and risk eventual extinction**, especially without conservation.
- Permafrost thaw and decrease in snow will **affect mountain hydrology and wildfire**, with impacts on vegetation and wildlife.

Projected risks for people

- **Hazards for people**, through landslides, snow avalanches or floods will increase.
- The retreat of the cryosphere will continue to **adversely affect recreational activities, tourism and cultural assets**.
- **Disaster risks** to human settlements and livelihood options are expected to increase.
- **Changing water availability and water quality** affects households, agriculture, energy systems, and people both **in the region and beyond**.
Limiting global warming helps people to adjust to changes.

Significant risk reduction and adaptation strategies help avoid increased impacts.

Integrated water management and transboundary cooperation provide opportunities to reduce the impacts.
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate
Arctic sea ice is shrinking and its loss is projected to continue depending on global warming

- September Arctic sea ice extent has decreased between 1979 and 2018
- Summertime Arctic ship-based transportation has increased over the past two decades
- At global warming of 1.5°C, the Arctic Ocean will rarely be free of sea ice in September.
- At 2°C warming, this would occur on average in one to three times in ten years

Arctic permafrost is warming, and widespread thaw is projected this century

- Permafrost temperatures have increased to record high levels
- Widespread permafrost thaw is projected for this century
- Arctic and boreal permafrost contain almost twice the carbon in the atmosphere
- It is uncertain whether northern permafrost regions are currently releasing additional net methane and CO₂
Arctic spring snow cover extent has decreased and is projected to decrease further

- Arctic June snow cover has declined since 1967
- Feedbacks from the loss of spring snow cover and summer sea ice have contributed to amplified Arctic warming
- Strong reductions in greenhouse gas emissions in the coming decades are projected to reduce further changes after 2050

Shrinking Arctic cryosphere affects water, wildfire, ecosystems, human activities and infrastructure

- Food and water security have been negatively impacted by changes in cryosphere in many Arctic regions
- About 20% of Arctic land permafrost is vulnerable to abrupt permafrost thaw and ground subsidence
- The majority of Arctic infrastructure is located in regions at risk from permafrost thaw by 2050
The Greenland and Antarctic ice sheets are losing mass

- **Mass loss** from the **Antarctic ice sheet** over the period 2007–2016 **tripled** relative to 1997–2006
- For **Greenland**, mass loss **doubled** over the same period
- **Acceleration of ice flow** is observed in the Amundsen Sea Embayment of West Antarctica and in Wilkes Land, East Antarctica
- Ice sheets are projected to **lose mass** at an **increasing rate**

The polar regions will be profoundly different in future compared with today, and the degree and nature of that difference will depend strongly on the rate and level of global warming.

This will challenge adaptation responses regionally and worldwide.
Sea Level Rise

Global mean sea level is rising

Rates of global mean sea level rise 2006–2015
3.6mm/yr (range 3.1–4.1)
Of which:
- Glaciers and ice sheets
 1.8mm/yr (range 1.7–1.9)
- Ocean
 1.4mm/yr (range 1.1–1.7)

- It has accelerated in recent decades due to mass loss from the Greenland and Antarctic ice sheets, as well as continued glacier mass loss and ocean thermal expansion
- Regional differences, within ±30% of the global mean sea-level rise, result from land ice loss and variations in ocean warming and circulation
- Extreme wave heights, which contribute to extreme sea level events, have increased in the Southern and North Atlantic Oceans
- Anthropogenic climate change has increased precipitation, winds, and extreme sea level events, associated with some tropical cyclones
Sea level is projected to continue to rise at an increasing rate

- Greenland ice sheet mass loss
- Antarctic ice sheet mass loss
- Glacier mass loss

Ocean heat content (0–2000 m depth) as 10^21 Joules (right axis)

Primary drivers of global mean sea level
Values as sea level equivalent
Changes relative to 1986–2005

Projected (RCP8.5)
Projected (RCP2.6)

Global mean sea level

Sea level rise is projected to continue over centuries

Processes controlling the timing of future ice-shelf loss and the extent of ice sheet instabilities could increase Antarctica’s contribution to sea level rise to values substantially higher than the likely range on century and longer time-scales (low confidence)

Projected mean sea level rise

Rates
- 15 (16-20 mm yr$^{-1}$)
- 4 (2-6 mm yr$^{-1}$)
Global mean sea level rise will cause the frequency of extreme sea level events at most locations to increase.

Many low-lying coastal cities and small islands will be exposed to risks of flooding and land loss annually by 2050.

Depending on location, the height of a HCE varies widely but can cause severe impacts, depending on frequency and the level of exposure and adaptation.

Black dots: Locations where HCEs already recur annually.

White dots: Locations where HCEs recur annually after 2100.

HCEs = Historical Centennial extreme sea level Events.
The ocean is projected to transition to unprecedented conditions

- **Ocean heat content (0−2000 m depth)** as 10^21 Joules (right axis)
- **Global mean sea surface temperature**
- **Marine heatwave days**
- **Ocean oxygen**
- **Surface pH**

Changes relative to 1986–2005
- Historical (observed)
- Historical (modelled)
- Projected (RCP2.6)
- Projected (RCP8.5)
Observed regional hazards and impacts in the ocean

Physical changes

<table>
<thead>
<tr>
<th>Region</th>
<th>Temperature</th>
<th>Oxygen</th>
<th>Ocean pH</th>
<th>Sea ice extent</th>
<th>Sea level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Atlantic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>North Pacific</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>South Atlantic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>South Pacific</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Southern Ocean</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Tropical Atlantic Ocean</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tropical Pacific Ocean</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Legend:
- Increase
- Decrease
- Increase and decrease

Ecosystems

- Upper water column
- Coral
- Coastal wetlands
- Kelp forest
- Rocky shores
- Deep sea
- Polar bentho
- Sea ice-associated

Human systems and ecosystem services

- Fisheries
- Tourism
- Habitat services
- Transportation/shipping
- Cultural services
- Coastal carbon sequestration

Legend:
- High
- Medium
- Low
- No assessment

*Eastern Boundary Upwelling Systems (Benguela Current, Canary Current, California Current, and Humboldt Current); (Box 5.3)
Observed regional hazards and impacts in the ocean

<table>
<thead>
<tr>
<th>Physical changes</th>
<th>Arctic</th>
<th>North Atlantic</th>
<th>North Pacific</th>
<th>South Atlantic</th>
<th>South Pacific</th>
<th>Southern Ocean</th>
<th>Temperate Indian Ocean</th>
<th>Tropical Atlantic</th>
<th>Tropical Indian Ocean</th>
<th>Tropical Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Ocean pH</td>
<td></td>
</tr>
<tr>
<td>Sea ice extent</td>
<td></td>
</tr>
<tr>
<td>Sea level</td>
<td></td>
</tr>
</tbody>
</table>

Ecosystems										
Upper water column										
Coral										
Coral reef										
Seagrasses										
Rocky shores										
Deep sea										
Polar benthos										
Sea ice-associated										

Human systems and ecosystem services										
Fisheries										
Tourism										
Recreation										
Transportation/shipping										
Cultural services										
Coastal carbon sequestration										

Attribution confidence
- High
- Medium
- Low
- No assessment

*Eastern Boundary Upwelling Systems (Benguela Current, Canary Current, California Current, and Humboldt Current). (Box 5.1)

Interpretation of the burning embers

Level of added impacts/risks
- Very high: Purple. Very high probability of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks.
- High: Red. Significant and widespread impacts/risks.
- Moderate: Yellow. Impacts/risks are detectable and attributable to climate change with at least medium confidence.
- Undetectable: White. Impacts/risks are undetectable.

Confidence level for transition
- Very high
- High
- Medium
- Low
- Transition range
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

Marine heatwaves have already resulted in large-scale coral bleaching events causing worldwide reef degradation. Vulnerable Ecosystems identified in AR5, SR1.5, SROCC

Assessing risk of global warming

Even in a 1.5°C warmer world... high risk of losing 70 to 90% of Coral Reefs and associated services for humankind... even more at 2°C

Future risks for ocean and coastal ecosystems

Ecosystems would benefit from ambitious mitigation

Global mean sea surface temperature change relative to pre-industrial levels (°C)
Risks to ocean and coastal ecosystems increase with the level of warming

- Projected ecosystem responses include **losses of species habitat and diversity**, and **degradation of ecosystem functions**
- Warm-water **corals** are at **high risk already** today
- Most **coastal ecosystems**, including seagrass meadows and kelp forests, are at moderate to high risk at 1.5°C, and **risk increases at 2°C**
- Ecosystems would benefit from **keeping warming at or below 1.5°C**

Future changes, impacts and risks for ocean ecosystems

- Physical and biogeochemical changes in the ocean affect primary production, i.e. the base of the oceanic food web
- Marine animals such as fish and invertebrates are directly and indirectly affected by the abiotic and biotic changes in the ocean
Ocean warming and changes in net primary production alter biomass, production and structure of marine ecosystems.

- In recent decades, Arctic net primary production has increased in ice-free waters and is projected to further increase.
- Cascading effects on polar zooplankton have affected food web structure and function and fisheries.
- The habitat of Antarctic krill, a key prey species for penguins, seals and whales is projected to contract southwards.
- Under high emissions scenario, net primary production in tropical oceans will decline 7-16% by 2100.
Future changes in animal biomass including fish and invertebrates

Percent change Average by 2081–2100, relative to 1986–2005

Baseline Value in normalized index (1986–2005)

Loss of habitat range and foraging success for ice-associated marine mammals and seabirds

Regional sea ice declines and loss of multi-year ice

Acidification

Stratification

Ocean warming

Effect Positive Mixed Negative Confidence High Medium Low
Expansion of sub-Arctic fish communities

Regional sea ice declines and loss of multi-year ice
- Shipping
- Local food provisioning
- Small-scale fishing and hunting
- Polar bears
- Walrus
- Ice-associated marine mammals
- Phytoplankton
- Ice algae bloom
- Industrial fishing

Acidification
- Crabs
- Pteropods
- Phytoplankton

Stratification
- Bowhead whales
- Benthos
- Phytoplankton

Ocean warming
- Crabs
- Sub-Arctic Gadid
- Sub-Arctic flatfish
- Arctic Char

Expansion of sub-Arctic fish communities

Disrupted access to hunting and fishing areas for Arctic residents including Indigenous populations

Regional sea ice declines and loss of multi-year ice
- Shipping
- Local food provisioning
- Small-scale fishing and hunting
- Polar bears
- Walrus
- Ice-associated marine mammals
- Phytoplankton
- Ice algae bloom
- Industrial fishing

Acidification
- Crabs
- Pteropods
- Phytoplankton

Stratification
- Bowhead whales
- Benthos
- Phytoplankton

Ocean warming
- Crabs
- Sub-Arctic Gadid
- Sub-Arctic flatfish
- Arctic Char

Disrupted access to hunting and fishing areas for Arctic residents including Indigenous populations
Future changes in maximum fisheries catch potential (in shelf seas)

Percent change Average by 2081–2100, relative to 1986–2005

Future changes in marine species distribution and production

- Life is specialized on **limited temperature ranges**
- Changes in the ocean cause **shifts in fish populations** and **catch potential**
- These have **positive and negative impacts** on catches, economic benefits, livelihoods, and local culture
- Global warming and biogeochemical changes have already contributed to **reduced fisheries catches** in many regions
- Communities (e.g., Arctic, Small Island Developing States) that depend highly on seafood may face **risks to nutritional health and food security**
Sea level rise risk and responses

Risk for illustrative geographies based on mean sea level changes

Levels of risk:
- Very high
- High
- Moderate
- Undetectable

Assessment data (Chapter 4)
Interpolation
No-to-moderate response
Maximum potential response
Response capacities and adaptation limits differ between locations and regions.

Various adaptation responses to sea level rise are already being implemented:

- Hard protection
- Sediment-based protection
- Ecosystem-based adaptation (corals, wetlands)
- Costal advance
- Coastal accommodation
- Retreat
Hard Protection

- **Effectiveness**: multiple metres of Sea level Rise
- **Advantages**: predictable levels of safety
- **Co-benefits**: multifunctional dikes (e.g. recreation, other land use)
- **Drawbacks**: destruction of habitat
- **Economic Efficiency**: high if the value of assets behind protection is high
- **Governance Challenges**: often unaffordable for poorer areas

Coastal Advance

- **Effectiveness**: multiple metres of sea level rise
- **Advantages**: predictable levels of safety
- **Co-benefits**: generates land and land sale revenues
- **Drawbacks**: groundwater salinisation, enhanced erosion and loss of coastal ecosystems and habitat
- **Economic Efficiency**: very high if land prices are high
- **Governance Challenges**: often unaffordable for poorer areas
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

Ecosystem-based Adaptation
(coral and wetland conservation or restoration)

- **Effectiveness:** effective up to 0.5–1 cm y$^{-1}$ sea level rise
- **Advantages:** opportunity for community involvement
- **Co-benefits:** habitat gain, biodiversity
- **Drawbacks:** corals: long–term effectiveness depends on ocean warming, acidification and emission scenarios; wetlands: safety levels less predictable, a lot of land required
- **Economic Efficiency:** limited evidence on benefit–cost ratios
- **Governance Challenges:** permits difficult to obtain, lack of finance, lack of enforcement of conservation policies

Time dependent risk reduction ... time-limited benefits

- Schematic illustration of risk reduction and the delay of a given risk level through responses to sea level rise and/or mitigation
- The amount of risk reduction and delay depends on sea level and response scenarios and varies between contexts and localities

COP25 / 5 December 2019
SBSTA-IPCC special event: Unpacking the new scientific knowledge and key findings in the Special Report on the Ocean and Cryosphere in a Changing Climate

Time dependent risk reduction ... time-limited benefits

- Schematic illustration of risk reduction and the delay of a given risk level through responses to sea level rise and/or mitigation
- The amount of risk reduction and delay depends on sea level and response scenarios and varies between contexts and localities
Benefits of responses to sea level rise and mitigation

• Risk may continue to increase at different rates, exemplified by sea level rise, also depending on the **capacity of responses**, i.e. local adaptation and/or retreat, as well as depending on **mitigation efforts**

• Risk reduction through adaptation may therefore be **time limited**, …emphasizing the urgency of sufficient action
Options for risk reduction through adaptation

Actions to reduce Hazards
Examples include:
- Mangroves to alleviate coastal storm energy

Limits to Adaptation
- E.g. physical, ecological, technological, economic, political, institutional, psychological, and/or socio-cultural

Governance and policy

Actions to reduce Vulnerability
Examples include:
- Hazard-proof housing and infrastructure

Actions to reduce Exposure
Examples include:
- Risk sensitive land use planning

Photo: Kelly-Marie Davidson, PML
The temporal scales of climate change impacts and their societal consequences operate on time horizons which are longer than those of governance arrangements including planning cycles, public and corporate decision making cycles, and financial instruments. Examples include:

- Sea level rise and low-lying islands and coasts

Impacts from climate-related changes in the ocean and cryosphere increasingly challenge current governance efforts to develop and implement adaptation responses from local to global scales. In some cases, pushing governance systems to their limits.
Governance arrangements are, in many contexts, **too fragmented across administrative boundaries and sectors** to provide integrated responses to the increasing and cascading risks from climate-related changes.

Challenges to implementing responses to ocean and cryosphere change

- Financial, technological, institutional and other **barriers exist** for implementing responses to current and projected negative impacts of climate-related changes.
- **Adaptive capacity** continues to **differ** between as well as within communities and societies.
- People with **highest exposure and vulnerability** to current and future hazards from ocean and cryosphere changes are often also those with **lowest adaptive capacity**.
Strengthening response options

- **Reducing other pressures** such as pollution and habitat modification will help species adjust to changes in their environment.
- Policy frameworks for integrated water management, fisheries management and networks of protected areas **offer opportunities for people and species to adapt**.
- **Nature-based adaptation** such as ecosystem restoration can be locally most effective when **community supported, science based** and connect with **local knowledge and indigenous knowledge**.
- Such approaches bring **multiple benefits** for biodiversity, humans and, in some circumstances, climate mitigation.

Key enablers for implementing effective responses include:

- **Intensifying cooperation and coordination** across scales, jurisdictions, sectors, policy domains and planning horizons.
- **Regional and transboundary cooperation**, including treaties and conventions.
- **Investments in education and capacity building** including engagement of local communities and Indigenous peoples.
- **Addressing social vulnerability and equity**.
SROCC reveals the benefits of ambitious mitigation and effective adaptation for sustainable development

and, conversely, the escalating costs and risks of delayed action
SROCC: Knowledge for action

- Highlights the urgency of prioritizing timely, ambitious and coordinated action to address widespread and enduring changes in the ocean and cryosphere.
- Shows that protecting and restoring ecosystems and careful management of natural resources can reduce risks and provide multiple societal benefits.
- Empowers people, communities and governments to tackle the unprecedented transitions in all aspects of society.
- Provides evidence of the benefits of combining scientific with local and indigenous knowledge.
- Focuses, for the first time, on the importance of education and climate literacy.

The more decisively and earlier we act, the more able we will be to address unavoidable changes, manage risks, improve our lives and achieve sustainability for ecosystems and people around the world – today and in the future.
Our ocean and cryosphere –
They sustain us.
They are under pressure.
Their changes affect all our lives.

The time for action is now.

More Information:
Website: http://ipcc.ch
IPCC Secretariat: ipcc-sec@wmo.int
IPCC Press Office: ipcc-media@wmo.int

Find us on:
@IPCC_CH
@IPCC
@IPCC
www.vimeo.com/ipcc
www.youtube.com/c/ipccgeneva