BR CTF submission workbook

Submission Year	2014	Party	CANADA
Submission Version	v1.0	Submission Level	Submitted
Submission Key	CAN_2014_V1.0	Submission Status	Closed
Submitted By	Laura Coates	Workbook Created	26.09.2014 11:05:50
Submitted Date	26.09.2014 11:00:26		

Contents

Table 1s1 Table 1s2 Table 1s3 Table 1(a)s1 Table 1(a)s2 Table 1(a)s3 Table 1(b)s1 Table 1(b)s2 Table 1(b)s3 Table 1(c)s1 Table 1(c)s2 Table 1(c)s3 Table 1(d)s1 Table 1(d)s2 Table 1(d)s3 Table 2(a) Table 2(b) Table 2(c) Table 2(d) Table 2(e)I Table 2(e)II Table 2(f) Table 3 Table 4 Table 4(a)I_2011 Table 4(a)I_2012 No data was imported from KP-LULUCF CRF table 10 from the Table 4(a)II latest official GHG inventory submission. Table 4(b) Table 5 Table 6(a) Table 6(b) Greenhouse gas projections: Table 6(c) Scenario 'with additional measures' was not included. Table 7_2011 Table 7_2012 Table 7(a)_2011 Table 7(a) 2012 Table 7(b) 2011 Table 7(b) 2012 Table 8

Table 9

Table 1Emission trends: summary ⁽¹⁾(Sheet 1 of 3)

	Base year ^a	1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS EMISSIONS	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq
CO ₂ emissions including net CO ₂ from LULUCF	392,295.43	405,859.19	377,419.22	442,735.49	452,068.10	654,303.48	474,644.43	452,490.55	622,818.73
CO ₂ emissions excluding net CO ₂ from LULUCF	459,313.03	450,393.39	464,651.68	464,063.08	478,748.17	491,116.15	504,425.38	517,254.27	526,370.72
CH ₄ emissions including CH ₄ from LULUCF	75,331.34	78,883.50	79,133.25	86,094.97	88,400.41	104,802.77	93,631.44	92,511.97	106,878.92
CH ₄ emissions excluding CH ₄ from LULUCF	72,002.96	73,559.20	77,308.30	79,642.60	82,557.07	85,909.47	89,039.78	90,682.68	92,067.68
N ₂ O emissions including N ₂ O from LULUCF	51,126.25	51,063.66	49,590.61	53,431.51	56,547.67	65,475.92	59,149.33	56,205.81	60,199.43
N ₂ O emissions excluding N ₂ O from LULUCF	49,065.08	47,783.33	48,467.87	49,433.59	52,924.33	53,749.55	56,300.71	55,072.53	51,002.39
HFCs	767.25	835.33	655.97	NA, NO	NA, NO	479.41	851.53	1,397.69	1,934.68
PFCs	6,538.83	6,949.98	6,556.82	6,450.32	5,965.33	5,489.59	5,622.83	5,512.71	5,601.84
SF ₆	3,392.20	3,873.67	2,691.12	2,498.69	2,570.18	2,395.56	1,861.25	1,923.00	2,478.26
Total (including LULUCF)	529,451.29	547,465.33	516,046.99	591,210.98	605,551.68	832,946.73	635,760.80	610,041.74	799,911.86
Total (excluding LULUCF)	591,079.35	583,394.90	600,331.75	602,088.28	622,765.08	639,139.72	658,101.49	671,842.89	679,455.57
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ^a	1991	1992	1993	1994	1995	1996	1997	1998
SKELMOUSE ONS SOURCE MAD SIMK OM EGOMES	kt CO ₂ eq	$kt CO_2 eq$	kt CO ₂ eq						
1. Energy	469,186.20	460,063.71	477,701.94	477,948.42	494,644.59	508,788.47	524,737.56	539,053.97	548,804.37
2. Industrial Processes	55,978.49	57,415.95	55,229.88	55,034.20	56,955.01	57,472.54	59,089.28	58,523.34	55,369.90
3. Solvent and Other Product Use	178.71	169.94	141.76	159.40	175.40	212.58	216.64	230.11	401.45
4. Agriculture	46,728.50	46,378.90	47,634.68	49,063.17	50,988.99	52,669.69	54,228.77	54,053.38	54,611.44
5. Land Use, Land-Use Change and Forestry ^b	-61,628.06	-35,929.57	-84,284.75	-10,877.30	-17,213.40	193,807.01	-22,340.68	-61,801.15	120,456.29
6. Waste	19,007.45	19,366.39	19,623.49	19,883.09	20,001.09	19,996.44	19,829.24	19,982.10	20,268.41
7. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total (including LULUCF)	529,451.29	547,465.33	516,046.99	591,210.98	605,551.68	832,946.73	635,760.80	610,041.74	799,911.86

Note: All footnotes for this table are given on sheet 3.

¹ The common tabular format will be revised, in accordance with relevant decisions of the Conference of the Parties and, where applicable, with decisions of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol."

Table 1 Emission trends: summary ⁽¹⁾ (Sheet 2 of 3)

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS EMISSIONS	kt CO ₂ eq									
CO ₂ emissions including net CO ₂ from LULUCF	549,056.20	510,015.61	505,087.09	647,990.25	618,797.57	675,937.54	632,448.78	633,569.84	635,942.22	558,642.39
CO ₂ emissions excluding net CO ₂ from LULUCF	541,572.14	564,642.46	559,091.55	565,884.09	582,896.04	584,654.92	578,955.01	571,747.40	594,609.51	576,528.04
CH ₄ emissions including CH ₄ from LULUCF	98,033.46	95,527.37	98,266.52	107,128.93	104,648.09	107,554.40	103,757.79	104,764.35	102,796.18	98,308.76
CH ₄ emissions excluding CH ₄ from LULUCF	91,678.62	94,025.84	95,310.44	95,410.53	96,128.71	97,843.22	98,087.81	98,038.65	96,407.19	94,098.57
N ₂ O emissions including N ₂ O from LULUCF	52,734.05	49,546.19	48,705.06	53,729.79	54,079.64	57,622.28	53,829.90	52,302.00	53,340.78	54,415.48
N ₂ O emissions excluding N ₂ O from LULUCF	48,786.84	48,613.73	46,870.83	46,450.38	48,791.00	51,592.33	50,308.15	48,124.33	49,373.88	51,802.20
HFCs	2,413.69	2,936.12	3,507.83	3,915.58	4,421.71	4,795.35	5,296.47	5,105.86	5,483.71	5,550.65
PFCs	4,645.28	4,311.08	3,500.42	2,994.81	3,019.03	3,046.98	3,317.26	2,583.90	2,193.70	2,252.32
SF ₆	2,534.01	3,051.86	2,688.58	3,169.42	2,787.46	2,456.88	1,492.14	1,595.90	771.98	683.95
Total (including LULUCF)	709,416.69	665,388.23	661,755.50	818,928.79	787,753.49	851,413.42	800,142.33	799,921.85	800,528.58	719,853.55
Total (excluding LULUCF)	691,630.58	717,581.11	710,969.64	717,824.81	738,043.94	744,389.67	737,456.83	727,196.04	748,839.98	730,915.73
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt CO ₂ eq									
1. Energy	563,880.54	589,473.78	585,344.44	591,113.12	606,996.65	603,290.51	597,336.61	586,892.94	609,761.78	592,195.74
2. Industrial Processes	52,052.93	52,054.26	50,523.86	51,881.16	53,586.49	61,681.05	60,461.41	61,018.70	59,787.20	58,545.80
3. Solvent and Other Product Use	409.54	449.60	419.52	385.55	445.51	407.41	378.00	329.36	326.32	341.62
4. Agriculture	55,020.12	55,650.44	54,865.01	54,224.77	56,517.48	58,140.93	58,122.92	57,345.56	57,641.84	58,602.62
5. Land Use, Land-Use Change and Forestry ^b	17,786.11	-52,192.87	-49,214.14	101,103.98	49,709.55	107,023.75	62,685.50	72,725.80	51,688.60	-11,062.19
6. Waste	20,267.45	19,953.02	19,816.81	20,220.20	20,497.80	20,869.77	21,157.90	21,609.48	21,322.84	21,229.94

NA

NA

NA

NA

NA

709,416.69 665,388.23 661,755.50 818,928.79 787,753.49 851,413.42 800,142.33 799,921.85 800,528.58 719,853.55

NA

NA

NA

NA

NA

Note: All footnotes for this table are given on sheet 3.

7. Other

Total (including LULUCF)

Table 1 Emission trends: summary ⁽¹⁾ (Sheet 3 of 3)

GREENHOUSE GAS EMISSIONS	2009	2010	2011	Change from base to latest reported year
	kt CO ₂ eq	kt CO ₂ eq	kt CO ₂ eq	(%)
CO ₂ emissions including net CO ₂ from LULUCF	522,149.36	638,050.26	624,308.34	59.14
CO ₂ emissions excluding net CO ₂ from LULUCF	542,049.92	554,019.16	555,613.97	20.97
CH ₄ emissions including CH ₄ from LULUCF	97,147.64	102,222.51	102,018.82	35.43
CH ₄ emissions excluding CH ₄ from LULUCF	90,943.19	90,400.78	90,562.54	25.78
N2O emissions including N2O from LULUCF	51,019.46	54,629.21	53,338.12	4.33
N2O emissions excluding N2O from LULUCF	47,165.70	47,287.06	46,221.70	-5.80
HFCs	6,306.34	7,072.55	7,526.83	881.01
PFCs	2,171.97	1,607.49	1,450.89	-77.81
SF ₆	393.06	462.24	415.29	-87.76
Total (including LULUCF)	679,187.83	804,044.25	789,058.29	49.03
Total (excluding LULUCF)	689,030.17	700,849.29	701,791.22	18.73

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	$kt CO_2 eq$	kt CO2 eq kt CO2 eq (%) 570,137.09 571,601.41 21.83 533,262.13 54,271.29 -3.03 241.97 247.40 38.44 555,612.85 53,924.99 15.40 103,194.97 87,267.07 -241.60	(%)	
1. Energy	560,441.65	570,137.09	571,601.41	21.83
2. Industrial Processes	50,805.78	53,262.13	54,271.29	-3.05
3. Solvent and Other Product Use	260.49	241.97	247.40	38.44
4. Agriculture	56,134.71	55,612.85	53,924.99	15.40
5. Land Use, Land-Use Change and Forestry ^b	-9,842.34	103,194.97	87,267.07	-241.60
6. Waste	21,387.55	21,595.25	21,746.13	14.41
7. Other	NA	NA	NA	0.00
Total (including LULUCF)	679,187.83	804,044.25	789,058.29	49.03

Notes:

(1) Further detailed information could be found in the common reporting format tables of the Party's greenhouse gas inventory, namely

"Emission trends (CO₂)", "Emission trends (CH₄)", "Emission trends (N₂O)" and "Emission trends (HFCs, PFCs and SF₆)", which is included

in an annex to this biennial report.

(2) 2011 is the latest reported inventory year.

(3) 1 kt CO_2 eq equals 1 Gg CO_2 eq.

Abbreviation: LULUCF = land use, land-use change and forestry.

^a The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

 $^{\rm b}\,$ Includes net CO_2, CH_4 and N_2O from LULUCF.

Custom Footnotes

Table 1 (a) Emission trends (CO₂) (Sheet 1 of 3)

CREENHOUSE CAS SOURCE AND SINK CATECORIES	Base year ^a	1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt
1. Energy	425,363.31	415,288.45	429,926.09	427,677.61	441,799.39	453,252.01	465,803.91	478,093.25	486,668.45
A. Fuel Combustion (Sectoral Approach)	413,901.84	404,140.82	417,876.99	414,997.74	427,630.18	438,534.73	449,909.11	461,992.21	469,080.83
1. Energy Industries	142,311.03	141,360.01	150,281.05	141,758.11	144,333.16	148,974.80	149,035.14	157,548.96	173,072.93
2. Manufacturing Industries and Construction	63,604.18	60,075.92	59,104.09	58,982.46	62,517.39	64,513.94	66,614.49	67,294.25	63,608.05
3. Transport	139,058.13	134,294.45	137,837.69	140,865.56	147,733.95	151,482.44	155,243.04	160,991.16	164,256.89
4. Other Sectors	68,760.58	68,251.88	70,495.95	73,258.18	72,908.59	73,429.27	78,880.35	76,020.05	68,037.84
5. Other	167.92	158.57	158.21	133.42	137.10	134.28	136.09	137.79	105.13
B. Fugitive Emissions from Fuels	11,461.47	11,147.63	12,049.10	12,679.87	14,169.21	14,717.28	15,894.80	16,101.04	17,587.62
1. Solid Fuels	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE
2. Oil and Natural Gas	11,461.47	11,147.63	12,049.10	12,679.87	14,169.21	14,717.28	15,894.80	16,101.04	17,587.62
2. Industrial Processes	33,442.46	34,599.72	34,198.45	35,861.55	36,403.14	37,288.62	38,085.22	38,656.88	39,169.83
A. Mineral Products	8,392.68	7,482.91	7,219.98	7,147.51	8,157.36	8,830.32	8,580.26	9,198.85	9,319.97
B. Chemical Industry	4,510.01	4,510.58	4,239.37	5,298.50	5,652.58	5,291.39	5,475.14	5,442.86	6,059.77
C. Metal Production	12,907.61	15,070.20	15,456.01	15,686.32	14,662.53	14,974.75	15,012.98	14,876.07	15,146.39
D. Other Production	NA		NA	NA	NA	NA			NA
E. Production of Halocarbons and SF6		·							
F. Consumption of Halocarbons and SF6									
G. Other	7,632.16	7,536.03	7,283.10	7,729.22	7,930.67	8,192.16	9,016.84	9,139.10	8,643.69
3. Solvent and Other Product Use	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA
4. Agriculture									
A. Enteric Fermentation	-								
B. Manure Management	-								
C. Rice Cultivation	-								
D. Agricultural Soils	-								
E. Prescribed Burning of Savannas	-								
F. Field Burning of Agricultural Residues	-								
G. Other	-								
5. Land Use, Land-Use Change and Forestry	-67,017.60	-44,534.20	-87,232.46	-21,327.59	-26,680.07	163,187.33	-29,780.96	-64,763.72	96,448.01
A. Forest Land	-92,390.82	-68,903.45	-109,668.98		-43,668.12	147,589.49	-44,275.34	-78,624.53	83,086.03
	,	,	,	,	,	,	,	,	,
B. Cropland	11,372.68	10,185.54	8,712.97	7,400.95	5,784.61	4,336.84	3,459.94	2,625.11	1,454.46
C. Grassland								IE, NA, NE,	
D. Wetlands	NO 5,272.94			NO 5,469.91	NO 3,248.28	NO 3,220.32		NO 3,235.07	NO 3,516.52
E. Settlements	8,727.59		8,655.61	8,383.31	7,955.17	8,040.67	7,833.40	8,000.62	8,391.00
F. Other Land	NE, NO			0,565.51 NE, NO	NE, NO	NE, NO		8,000.02 NE, NO	NE, NO
G. Other	IE IE	,	IE, NO	IE, NO	IE, NO	IE, NO			
6. Waste	507.26		527.13	523.92	545.63	575.52		504.14	
A. Solid Waste Disposal on Land	NE			525.92 NE	NE	NE			
B. Waste-water Handling	INE.	NE	INL	NE	NL	NE	NE	INL	NE
C. Waste Incineration	507.26	505.22	527.13	523.92	545.63	575.52	536.25	504.14	532.43
D. Other	NA			525.92 NA		575.52 NA			552.45 NA
7. Other (as specified in the summary table in CRF)	NA			NA	NA	NA			
7. Other (as specified in the summary table in CRF) Total CO2 emissions including net CO2 from LULUCF	392,295.43					654,303.48			
Total CO2 emissions including net CO2 from LULUCF	459,313.03					491,116.15		432,490.33	
Memo Items:	439,513.03	450,595.59	404,031.08	404,005.08	470,740.17	471,110.13	504,425.58	517,254.27	520,570.72
	0.015.64	0 570 00	0.026.27	0 500 50	0.225.74	0.065.00	10 000 00	11.070.90	12 041 79
International Bunkers	9,015.64		9,026.37	8,500.59	9,225.74	9,865.83	10,828.33	11,070.80	12,041.78
Aviation	6,013.08	,	5,830.98	5,651.39	6,020.71	6,537.88	7,730.18	8,009.71	8,244.99
Marine	3,002.56		3,195.39	2,849.19	3,205.03	3,327.95	3,098.15	3,061.08	3,796.80
Multilateral Operations	IE		IE	IE	IE	IE			
CO2 Emissions from Biomass	33,303.01	32,527.51	33,015.48	33,235.87	37,883.92	37,422.48	37,034.83	37,114.26	38,911.95

Note: All footnotes for this table are given on sheet 3.

Table 1 (a) Emission trends (CO₂) (Sheet 2 of 3)

	1999	2000	2001	2002	2003	2004	2005	2006	2007
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt
1. Energy	501,640.02	524,581.14	519,896.67	526,153.09	541,508.96	537,193.93	532,080.64	522,051.36	545,509.50
A. Fuel Combustion (Sectoral Approach)	485,571.69	508,575.85	504,260.61	510,312.41	525,250.60	521,118.71	516,510.25	505,696.41	529,899.56
1. Energy Industries	180,943.07	193,046.66	197,173.13	196,154.66	201,576.64	195,501.48	190,442.71	184,026.10	190,831.48
2. Manufacturing Industries and Construction	64,475.36	67,950.44	64,654.61	66,153.79	68,266.84	69,124.67	68,056.67	68,788.39	76,870.03
3. Transport	168,616.02	169,732.80	168,083.21	170,026.86	173,044.67	178,392.92	182,490.40	182,184.93	185,670.09
4. Other Sectors	71,450.94	77,715.87	74,268.73	77,884.85	82,276.42	78,017.64	75,431.34	70,589.91	76,400.04
5. Other	86.30	130.08	80.94	92.25	86.02	81.99	89.14	107.08	127.93
B. Fugitive Emissions from Fuels	16,068.33	16,005.28	15,636.06	15,840.68	16,258.36	16,075.23	15,570.38	16,354.94	15,609.93
1. Solid Fuels	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE
2. Oil and Natural Gas	16,068.33	16,005.28	15,636.06	15,840.68	16,258.36	16,075.23	15,570.38	16,354.94	15,609.93
2. Industrial Processes	39,449.05	39,528.16	38,643.33	39,201.10	40,920.59	46,960.94	46,376.39	49,210.38	48,630.99
A. Mineral Products	9,524.81	9,807.95	9,158.95	9,350.79	9,383.53	9,848.14	9,896.17	9,917.97	9,759.19
B. Chemical Industry	5,860.43	5,731.80	5,169.16	5,200.14	5,173.98	5,760.68	5,345.25	5,541.57	5,186.22
C. Metal Production	15,376.70	15,349.05	14,758.99	14,765.88	14,938.99	14,770.58	15,053.40	16,298.18	16,195.92
D. Other Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Production of Halocarbons and SF6									
F. Consumption of Halocarbons and SF6									
G. Other	8,687.12	8,639.35	9,556.23	9,884.29	11,424.09	16,581.54	16,081.58	17,452.67	17,489.65
3. Solvent and Other Product Use	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA	IE, NA
4. Agriculture									
A. Enteric Fermentation									
B. Manure Management									
C. Rice Cultivation									
D. Agricultural Soils									
E. Prescribed Burning of Savannas									
F. Field Burning of Agricultural Residues									
G. Other									
5. Land Use, Land-Use Change and Forestry	7,484.06	-54,626.85	-54,004.46	82,106.16	35,901.54	91,282.62	53,493.77	61,822.44	41,332.70
A. Forest Land	-5,369.67	-65,904.78	-64,522.71	72,224.97	26,742.74	82,943.87	45,548.73	54,433.69	34,736.71
B. Cropland	873.40	-158.51	-868.21	-1,948.30	-2,746.00	-3,720.81	-4,283.29	-5,248.97	-5,837.25
C. Grassland	IE, NA, NE,	IE, NA, NE,	IE, NA, NE,		IE, NA, NE,				
	NO	NO	NO	NO	NO	NO	NO		NO
D. Wetlands	3,686.93	3,174.63	3,047.94		2,972.76	2,961.82	3,066.00		2,816.41
E. Settlements	8,293.40	8,261.80	8,338.53	8,867.72	8,932.05	9,097.75	9,162.32	9,624.74	9,616.83
F. Other Land	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
G. Other	IE	IE	IE		IE	IE			IE
6. Waste	483.06	533.17	551.55		466.48	500.05	497.98		469.02
A. Solid Waste Disposal on Land	NE	NE	NE	NE	NE	NE	NE	NE	NE
B. Waste-water Handling									
C. Waste Incineration	483.06	533.17	551.55		466.48	500.05	497.98		469.02
D. Other	NA	NA	NA		NA				
7. Other (as specified in the summary table in CRF)	NA	NA	NA	NA	NA	NA	NA		NA
Total CO2 emissions including net CO2 from LULUCF	549,056.20	510,015.61	505,087.09		618,797.57	675,937.54	632,448.78		635,942.22
Total CO2 emissions excluding net CO2 from LULUCF	541,572.14	564,642.46	559,091.55	565,884.09	582,896.04	584,654.92	578,955.01	571,747.40	594,609.51
Memo Items:									
International Bunkers	12,015.45	12,340.24	11,750.33	11,238.31	9,712.73	11,713.96	12,909.67	11,968.59	12,744.64
Aviation	8,602.94	8,877.17	8,016.35	8,411.14	8,081.65	9,072.94	9,917.10	9,586.71	9,824.85
Marine	3,412.52	3,463.07	3,733.99	2,827.17	1,631.09	2,641.02	2,992.57	2,381.88	2,919.80
Multilateral Operations	IE	IE	IE	IE	IE	IE	IE	IE	IE

Note: All footnotes for this table are given on sheet 3.

7	2008
	kt
)9.50	529,726.01
99.56	513,828.51
31.48	178,333.38
70.03	75,462.04
70.09	184,765.38
00.04	75,152.13
27.93	115.59
)9.93	15,897.50
, NE	NA, NE
)9.93	15,897.50
30.99	46,296.21
59.19	9,047.20
36.22 95.92	5,596.81 15,838.22
	15,838.22 NA
NA	NA
39.65	15,813.98
59.05 , NA	I5,815.98 IE, NA
., NA	IE, NA
32.70	-17,885.65
36.71	-24,080.51
37.25	-6,715.84
, NE,	IE, NA, NE,
NO	NO
16.41	2,865.38
16.83	10,045.31
, NO	NE, NO
IE	IE
59.02	505.82
NE	NE
59.02	505.82
NA	NA
NA	NA
42.22	558,642.39
)9.51	576,528.04
14.64	12,078.74
24.85	9,237.65
19.80	2,841.09
IE	IE
31.61	41,513.50

Table 1(a) Emission trends (CO₂) (Sheet 3 of 3)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	kt	kt	kt	%
1. Energy	501,501.96	510,574.37	511,466.86	20.24
A. Fuel Combustion (Sectoral Approach)	486,761.84	496,029.12	496,447.85	19.94
1. Energy Industries	163,020.73	162,908.31	151,834.10	6.69
2. Manufacturing Industries and Construction	72,285.20	76,775.62	79,580.81	25.12
3. Transport	178,378.84	187,022.25	190,083.66	36.69
4. Other Sectors	72,993.11	69,244.25	74,880.87	8.90
5. Other	83.97	78.69	68.41	-59.26
B. Fugitive Emissions from Fuels	14,740.12	14,545.25	15,019.01	31.04
1. Solid Fuels	NA, NE	NA, NE	NA, NE	0.00
2. Oil and Natural Gas	14,740.12	14,545.25	15,019.01	31.04
2. Industrial Processes	40,060.62	42,953.34	43,651.45	30.53
A. Mineral Products	7,018.41	7,613.50	7,738.58	-7.79
B. Chemical Industry	5,226.70	5,303.37	5,749.81	27.49
C. Metal Production	13,051.65	13,974.46	14,927.03	15.65
D. Other Production	NA	NA	NA	0.00
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	14,763.86	16,062.02	15,236.02	99.63
3. Solvent and Other Product Use	IE, NA	IE, NA	IE, NA	
4. Agriculture		y 1	, ,	
A. Enteric Fermentation				
B. Manure Management				
C. Rice Cultivation				
D. Agricultural Soils				
E. Prescribed Burning of Savannas				
F. Field Burning of Agricultural Residues				
G. Other				
5. Land Use, Land-Use Change and Forestry	-19,900.55	84,031.09	68,694.38	-202.50
A. Forest Land	-24,846.80		65,022.70	
B. Cropland	-7,123.49	-7,760.16	-8,149.32	
C. Grassland				
C. Grassiand	IE, NA, NE, NO	IE, NA, NE, NO	IE, NA, NE, NO	
D. Wetlands	2,795.25		2,668.72	
E. Settlements	9,274.48	9,308.27	9,152.27	4.87
F. Other Land	NE, NO	NE, NO	NE, NO	0.00
G. Other	IE	IE	IE	0.00
6. Waste	487.34	491.45	495.66	-2.29
A. Solid Waste Disposal on Land	NE	NE	NE	0.00
B. Waste-water Handling				
C. Waste Incineration	487.34	491.45	495.66	-2.29
D. Other	NA		NA	
7. Other (as specified in the summary table in CRF)	NA		NA	
Total CO2 emissions including net CO2 from LULUCF	522,149.36		624,308.34	
Total CO2 emissions excluding net CO2 from LULUCF	542,049.92		555,613.97	
Memo Items:				
International Bunkers	10,917.00	11,529.92	10,882.56	20.71
Aviation	8,699.99		9,102.74	
Marine	2,217.00		1,779.81	
Multilateral Operations			I,775.01	
· · · · · · · · · · · · · · · · · · ·				0.00

	· · · · · · · · · · · · · · · · · · ·	<i>,</i>	,	
Multilateral Operations	IE	IE	IE	0.00
CO2 Emissions from Biomass	40,277.42	41,464.82	42,156.47	26.58

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and forestry.

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

^b Fill in net emissions/removals as reported in CRF table Summary 1.A of the latest reported inventory year. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Custom Footnotes

Table 1(b) Emission trends (CH₄) (Sheet 1 of 3)

Base year ^a kt 1,681.83	kt	kt	kt	kt	kt	kt	kt	kt
1,681.83							Kt	Kt
	1,726.13	1,856.99	1,943.60	2,042.32	2,154.27	2,291.82	2,360.99	2,412.01
211.79	200.26	206.09	210.00	216.00	215.20	216.92	211.26	234.30
76.41	71.73	76.07	75.39	79.37	81.25	82.42	76.94	90.41
2.51	2.43	2.46	2.46	2.80	2.77	2.85	2.79	2.86
32.02	30.60	32.77	32.95	33.84	35.37	37.16	36.80	37.94
100.84	95.49	94.77	99.20	99.99	95.80	94.49	94.73	103.08
0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
1,470.04	1,525.87	1,650.91	1,733.60	1,826.32	1,939.07	2,074.90	2,149.72	2,177.71
104.69	106.72	83.70	79.16	81.23	74.22	71.03	74.72	64.11
1,365.34	1,419.15	1,567.21	1,654.43	1,745.09	1,864.85	2,003.87	2,075.01	2,113.60
4.72	4.37	3.97	3.89	3.98	3.86	3.97	3.81	3.62
NA	NA	NA	NA	NA	NA	NA	NA	NA
4.72	4.37	3.97	3.89	3.98	3.86	3.97	3.81	3.62
IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE
NE	NE	NE	NE	NE	NE	NE	NE	NE
896.30	910.31	948.32	959.88	996.54	1,047.80	1,064.56	1,062.87	1,067.24
767.20	782.47	818.30	830.65	865.18	909.96	925.45	923.58	925.07
			123.88		132.08			136.01
								NA, NO
								NA, NE
								NO
7.06	5.81	4.76	5.34	5.58		5.42	5.52	6.16
								NA
					899.68			705.30
					888.83			693.62
								5.61
								NE, NO
								0.94
								5.12
								NE
								IE
								901.30
								886.07
								15.16
								0.06
								NA
								NA
								5,089.47
								4,384.18
5, 20.71	5,502.02	5,001105	5,772.00	5,751.27	.,070175	.,200.00	1,010.22	.,
0.30	0.30	0.30	0.27	0.30	0.32	0.30	0.30	0.38
								0.06
								0.32
								IE
IL	IL	ш	пс	пс	п	IL	IL	IL
	32.02 100.84 0.01 1,470.04 104.69 1,365.34 4.72 NA 4.72 IE, NA, NE	32.0230.60100.8495.490.010.011,470.041,525.87104.69106.7211,365.341,419.154.724.374.724.374.724.374.724.3711,865.341,419.1512,1365.341,419.1514,1724.3715,NA,NE14.3715,NA,NE14.3716,NA,NE14.371767.20782.47122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02122.05122.02123.5415.21140.65236.6213.0911.24140.65236.6215.1415.211615.2117.0415.211830.36846.331915.211915.241015.2110.5415.2111.0415.2111.0415.2111.0415.2112.053.428.7113.502.823.502.82	32.0230.6032.77100.8495.4994.77100.8495.4994.770.011.010.011,470.041,525.871,650.911,1365.341,419.151,567.214.1365.341,419.151,567.214.724.373.974.724.373.975.741.527.213.976.7474.373.9774.724.373.9774.724.373.9775.7274.373.97767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.20782.47818.30767.21767.23376.25767.23767.24767.2477.04758.17.0577.055.814.7678.473.50.47.0578.473.50.47.0579.491.15.	32.0230.6032.7732.95100.8495.4994.7799.200.010.010.010.011,470.041,525.871,650.911,733.601,365.341,419.151,567.211,654.431,365.341,419.151,567.211,654.431,365.341,419.151,567.211,654.431,365.341,419.151,567.211,654.431,365.341,419.151,567.211,654.431,365.341,419.151,567.211,654.431,367.324.373.3973.891,4724.373.973.891,4724.373.973.891,4724.373.973.891,1651.4.724.373.971,1651.4.724.373.971,1651.4.724.373.971,1651.4.724.373.971,1651.4.741.8.831.8.81,17112.05122.02125.27122.05122.02125.27123.88122.05122.02125.27123.88122.05122.02125.27123.88122.05122.02125.27123.88122.05122.02125.27123.88133.04NA,NENA,NENA140.0523.6670.89307.26140.0523.5486.90307.26140.0523.5486.914.9515.041.5.211.5.351.5.50	33.2.033.6.032.7.732.9533.84100.8495.4994.7799.2099.990.010.010.010.000.001,470.441,52.871,65.011,73.601.826.321,365.341,419.151,567.211,654.431,745.091,365.341,419.151,567.211,654.431,745.094.724.373.973.893.984.724.373.973.893.9816.NAE.NA,NEE.NA,NEE.NA,NEE.NA,NE17.724.373.973.893.9818.NAE.NA,NEE.NA,NEE.NA,NEE.NA,NE19.7782.77818.30830.65865.1810.7782.47818.30830.65865.1810.7782.47818.30830.65865.1810.7782.47818.30830.65865.1810.7782.47818.30830.65865.1810.7782.47818.30830.65865.1810.7767.20782.47818.30830.653.78810.8NA,NDNA,NDNA,NDNA,ND10.8NA,NDNA,NDNA,NDNA,ND10.877.653.5874.609307.6210.893.554.60470.693.60310.8NA,NDNE,NONE,NONE,NO10.8NE,NONE,NONE,NONE,NO10.8NE,NONE,NONE,NO3.633<	32.0233.0433.2733.2933.8435.37100.8495.4994.7799.2099.9995.800.010.010.010.000.000.001,470.041,525.871,650.911,733.601,826.321,939.071,365.341,141.9151,567.211,654.431,745.091,864.854,724.373.973.893.983.8616.0014.724.373.973.893.983.8616.0016.0016.001.8001.8001.80016.011.8103.973.893.983.8616.011.8101.8101.8001.8001.80016.011.8101.8101.8001.8001.80016.011.8101.8101.8001.8001.80016.011.8101.8101.8001.8001.80016.011.2001.2001.2001.2001.20017.67.00782.47818.30830.65865.18909.6612.020122.02122.02123.88125.78132.0812.020122.02122.02123.88125.78132.0812.020122.02122.03123.031.0000.00012.020122.02123.02123.031.57.713.03122.04122.04125.0415.0415.0414.040.000.000.000.000.0015.04122.04125.	32.0233.06032.7732.9533.8435.3737.16100.8495.4994.7799.2099.9995.8094.490.010.010.010.000.000.001,470.041,52.871,650.911,733.001,82.231,939.072,074.90101.469106.7283.7079.1681.2374.2271.031,365.341,419.151,567.211,654.431,745.091,864.852,003.874.724.373.973.893.983.863.974.724.333.973.893.983.863.974.724.333.973.893.983.863.974.724.333.973.893.983.863.974.724.333.973.893.983.863.974.724.333.973.893.983.863.974.724.338.973.893.983.863.974.724.338.973.883.983.863.974.724.338.973.883.983.863.974.724.373.973.893.983.983.864.724.338.788.788.983.983.865.815.815.815.815.811.047.801.064.56767.20782.47818.30830.65865.189.99.631.064.5670.65.816.41 <td< td=""><td>32.0233.04032.7732.9533.8435.3737.1636.80100.8495.4994.7799.2099.9995.8094.4494.730.010.0011.0011.0001.0000.0000.0000.0001,470.041.525.771.650.911.733.601.826.321.939.072.074.902.149.721,365.341.419.151.567.211.654.431.745.991.864.852.003.872.075.014.724.333.973.893.983.863.973.81MANANANANANANANA4.724.333.973.893.983.863.973.81FE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEFE,NA,NET.NANANANANANANA707.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.1890.96433.77AN.NONA,NONA,NONA,NO</td></td<>	32.0233.04032.7732.9533.8435.3737.1636.80100.8495.4994.7799.2099.9995.8094.4494.730.010.0011.0011.0001.0000.0000.0000.0001,470.041.525.771.650.911.733.601.826.321.939.072.074.902.149.721,365.341.419.151.567.211.654.431.745.991.864.852.003.872.075.014.724.333.973.893.983.863.973.81MANANANANANANANA4.724.333.973.893.983.863.973.81FE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEE,NA,NEFE,NA,NET.NANANANANANANA707.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.18909.96925.45925.85767.20782.47818.30830.65865.1890.96433.77AN.NONA,NONA,NONA,NO

Note: All footnotes for this table are given on sheet 3.

Table 1(b) Emission trends (CH₄) (Sheet 2 of 3)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt	kt
1. Energy	2,390.43	2,496.83	2,532.35	2,504.20	2,517.08	2,551.08	2,525.37	2,534.45	2,501.75	2,431.68
A. Fuel Combustion (Sectoral Approach)	256.09	258.93	257.67	269.94	257.49	257.25	250.29	245.94	246.81	238.90
1. Energy Industries	113.78	117.58	121.49	122.19	121.00	118.47	111.41	107.91	109.55	101.84
2. Manufacturing Industries and Construction	3.02	3.10	2.93	3.16	3.31	3.65	3.60	3.59	3.68	3.49
3. Transport	37.42	35.40	33.76	34.30	32.83	32.24	32.80	31.20	30.99	29.09
4. Other Sectors	101.87	102.85	99.49	110.29	100.34	102.88	102.47	103.23	102.58	104.47
5. Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B. Fugitive Emissions from Fuels	2,134.34	2,237.89	2,274.68	2,234.26	2,259.58	2,293.83	2,275.08	2,288.51	2,254.95	2,192.78
1. Solid Fuels	52.88	46.16	47.26	41.44	36.73	40.90	47.71	41.98	46.12	44.69
2. Oil and Natural Gas	2,081.46	2,191.74	2,227.42	2,192.83	2,222.85	2,252.93	2,227.37	2,246.53	2,208.82	2,148.09
2. Industrial Processes	4.06	4.22	4.12	3.97	3.71	4.19	3.39	3.36	3.38	3.06
A. Mineral Products	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Chemical Industry	4.06	4.22	4.12	3.97	3.71	4.19	3.39	3.36	3.38	3.06
C. Metal Production	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE	IE, NA, NE				
D. Other Production		, ,	, ,		, ,	, ,	, ,	, ,		, ,
E. Production of Halocarbons and SF6										
F. Consumption of Halocarbons and SF6										
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
3. Solvent and Other Product Use										
4. Agriculture	1,067.17	1,091.66	1,126.08	1,139.22	1,142.57	1,174.99	1,199.04	1,165.44	1,133.44	1,100.74
A. Enteric Fermentation	925.91	947.19	977.24	985.98	988.66	1,022.98	1,044.82	1,013.67	987.58	963.13
B. Manure Management	136.74	140.41	145.38	149.78	149.76	150.92	152.82	150.26	144.66	136.07
C. Rice Cultivation	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO				
D. Agricultural Soils	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE	NA, NE				
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	4.52	4.07	3.46	3.46	4.15	1.08	1.40	1.51	1.20	1.54
G. Other	4.52 NA	4.07 NA	NA	NA	4.13 NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	302.61	71.50	140.77	558.02	405.68	462.44	270.00	320.27	304.24	200.48
A. Forest Land	290.09	60.59	129.91	546.84	393.72	450.23	257.40	308.40	292.65	188.34
B. Cropland	5.71	5.68	5.66	5.22	5.17	5.12	5.07	4.89	4.99	4.55
C. Grassland	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO				
D. Wetlands	1.64	NE, NO	0.00	0.00	0.65	0.92	1.50	0.15	NE, NO NO	0.47
E. Settlements	5.18	5.23	5.19	5.95	6.15	6.16	6.03	6.82	6.59	7.12
F. Other Land			3.19 NE					NE		
G. Other	NE	NE		NE	NE	NE	NE		NE	NE
	IE		IE	IE	IE 014.21	IE 028 04	IE	IE		IE
6. Waste	903.99	884.71	876.03	895.97	914.21	928.94	943.05	965.25	952.25	945.40
A. Solid Waste Disposal on Land	889.42	870.77	862.30	882.13	899.89	914.94	928.85	950.86	937.72	930.71
B. Waste-water Handling	14.51	13.87	13.66	13.76	14.23	13.92	14.11	14.30	14.43	14.58
C. Waste Incineration	0.06	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.10	0.11
D. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
7. Other (as specified in the summary table in CRF)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total CH4 emissions including CH4 from LULUCF	4,668.26	4,548.92	4,679.36	5,101.38	4,983.24	5,121.64	4,940.85	4,988.78	4,895.06	4,681.37
Total CH4 emissions excluding CH4 from LULUCF	4,365.65	4,477.42	4,538.59	4,543.36	4,577.56	4,659.20	4,670.85	4,668.51	4,590.82	4,480.88
Memo Items:										
International Bunkers	0.34	0.34	0.37	0.27	0.17	0.26	0.29	0.24	0.30	0.29
Aviation	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.04	0.04	0.05
Marine	0.28	0.29	0.31	0.23	0.14	0.22	0.26	0.20	0.25	0.25
Multilateral Operations	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
CO2 Emissions from Biomass										

CAN_BR1_v1.0

Note: All footnotes for this table are given on sheet 3.

Table 1(b) Emission trends (CH₄) (Sheet 3 of 3)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	kt	kt	kt	%
1. Energy	2,323.32	2,322.46	2,353.07	39.91
A. Fuel Combustion (Sectoral Approach)	227.06	228.01	227.06	7.21
1. Energy Industries	94.54	92.41	89.41	
2. Manufacturing Industries and Construction	3.26	3.27	3.28	
3. Transport	27.45	28.04	29.75	-7.09
4. Other Sectors	101.79	104.30	104.62	3.75
5. Other	0.00	0.00	0.00	-74.15
B. Fugitive Emissions from Fuels	2,096.26	2,094.44	2,126.00	44.62
1. Solid Fuels	41.02	48.25	47.33	-54.79
2. Oil and Natural Gas	2,055.24	2,046.19	2,078.67	52.25
2. Industrial Processes	2.63	2.65	2.65	-43.83
A. Mineral Products	NA	NA	NA	0.00
B. Chemical Industry	2.63	2.65	2.65	-43.83
C. Metal Production	IE, NA, NE	IE, NA, NE	IE, NA, NE	0.00
D. Other Production				
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	NE	NE	NE	0.00
3. Solvent and Other Product Use				
4. Agriculture	1,050.54	1,016.30	986.82	10.10
A. Enteric Fermentation	918.42	885.87	856.34	11.62
B. Manure Management	130.59	129.43	129.54	6.14
C. Rice Cultivation	NA, NO	NA, NO	NA, NO	0.00
D. Agricultural Soils	NA, NE	NA, NE	NA, NE	0.00
E. Prescribed Burning of Savannas	NO	NO	NO	0.00
F. Field Burning of Agricultural Residues	1.52	1.01	0.93	-86.83
G. Other	NA	NA	NA	0.00
5. Land Use, Land-Use Change and Forestry	295.45	562.94	545.54	244.20
A. Forest Land	284.16	551.83	535.12	280.45
B. Cropland	4.92	4.86	4.83	-63.11
C. Grassland	NE, NO	NE, NO	NE, NO	0.00
D. Wetlands	0.51	0.46	NO	-100.00
E. Settlements	5.85	5.80	5.59	25.71
F. Other Land	NE	NE	NE	0.00
G. Other	IE	IE	IE	0.00
6. Waste	954.14	963.39	969.96	14.67
A. Solid Waste Disposal on Land	939.35	948.44	954.87	15.00
B. Waste-water Handling	14.68	14.84	14.98	-0.44
C. Waste Incineration	0.11	0.11	0.12	-73.89
D. Other	NA	NA	NA	0.00
7. Other (as specified in the summary table in CRF)	NA	NA	NA	0.00
Total CH4 emissions including CH4 from LULUCF	4,626.08	4,867.74	4,858.04	
Total CH4 emissions excluding CH4 from LULUCF	4,330.63	4,304.80	4,312.50	25.78
Memo Items:				
International Bunkers	0.24	0.24	0.20	-33.80
Aviation	0.04	0.04	0.04	
Marine	0.19	0.20	0.16	
Multilateral Operations	IE	IE	IE	
CO2 Emissions from Biomass				

Abbreviations: CRF = common reporting format, LULUCF = land use, land-use change and fore

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

Table 1(c) Emission trends (N₂O) (Sheet 1 of 3)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ^a	1991	1992	1993	1994	1995	1996	1997	1998
OKEENHOUSE GAS SOURCE AND SHVK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt
1. Energy	27.43	27.50	28.32	30.50	32.12	33.22	34.86	36.71	37.04
A. Fuel Combustion (Sectoral Approach)	27.33	27.40	28.22	30.40	32.00	33.10	34.74	36.59	36.93
1. Energy Industries	2.81	2.76	2.93	2.82	2.89	2.98	2.97	3.10	3.49
2. Manufacturing Industries and Construction	2.00	1.95	1.97	1.96	2.16	2.22	2.26	2.26	2.27
3. Transport	20.26	20.46	21.04	23.26	24.55	25.48	27.05	28.79	28.79
4. Other Sectors	2.26	2.23	2.27	2.35	2.40	2.42	2.45	2.44	2.37
5. Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B. Fugitive Emissions from Fuels	0.10	0.10	0.10	0.10	0.12	0.11	0.12	0.12	0.12
1. Solid Fuels	NA, NE, NO	NA, NE, NO	NA, NE, NO I	NA, NE, NO					
2. Oil and Natural Gas	0.10	0.10	0.10	0.10		0.11	0.12	0.12	0.12
2. Industrial Processes	37.87	35.70	35.63	32.72	38.49	37.87	40.60	35.33	19.71
A. Mineral Products	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Chemical Industry	37.87	35.70	35.63	32.72	38.49	37.87	40.60	35.33	19.71
C. Metal Production	NA	NA	NA	NA	NA	NA	NA	NA	NA
D. Other Production									
E. Production of Halocarbons and SF6									
F. Consumption of Halocarbons and SF6									
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE
3. Solvent and Other Product Use	0.58	0.55	0.46	0.51	0.57	0.69	0.70	0.74	1.29
4. Agriculture	90.02	87.94	89.42	93.24	96.97	98.92	102.82	102.37	103.87
A. Enteric Fermentation									
B. Manure Management	10.19	10.38	10.91	11.08	11.54	12.07	12.15	12.19	12.38
C. Rice Cultivation									
D. Agricultural Soils	79.65	77.41	78.39	82.02	85.29	86.70	90.53	90.03	91.33
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	0.18	0.15	0.12	0.14	0.14	0.15	0.14	0.14	0.16
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
5. Land Use, Land-Use Change and Forestry	6.65	10.58	3.62	12.90	11.69	37.83	9.19	3.66	29.67
A. Forest Land	5.89	9.87	2.96	12.30	11.19	37.37	8.74	3.19	29.18
B. Cropland	0.59	0.51	0.46	0.41	0.35	0.30	0.29	0.29	0.27
C. Grassland	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO	NE, NO
D. Wetlands	0.01	0.02	0.03	0.01	0.00	0.00	NO	0.00	0.04
E. Settlements	0.16	0.18	0.17	0.17	0.15	0.16	0.16	0.17	0.18
F. Other Land	NE	NE	NE	NE	NE	NE	NE	NE	NE
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE
6. Waste	2.38	2.45	2.53	2.49	2.57	2.70	2.65	2.50	2.61
A. Solid Waste Disposal on Land									
B. Waste-water Handling	1.66	1.70	1.73	1.77	1.81	1.84	1.86	1.92	1.95
C. Waste Incineration	0.72	0.75	0.79	0.72	0.77	0.85	0.78	0.59	0.66
D. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA
7. Other (as specified in the summary table in CRF)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total N2O emissions including N2O from LULUCF	164.92	164.72	159.97	172.36	182.41	211.21	190.80	181.31	194.19
Total N2O emissions excluding N2O from LULUCF	158.27	154.14	156.35	159.46	170.72	173.39	181.62	177.65	164.52
Memo Items:									
International Bunkers	0.51	0.47	0.46	0.43	0.46	0.50	0.52	0.49	0.55
Aviation	0.17	0.15	0.16	0.16	0.17	0.18	0.22	0.22	0.23
Marine	0.34	0.32	0.30	0.27	0.29	0.31	0.30	0.27	0.31
Multilateral Operations	IE	IE	IE	IE	IE	IE	IE	IE	IE
CO2 Emissions from Biomass									

Note: All footnotes for this table are given on sheet 3.

Table 1(c) Emission trends (N₂O) (Sheet 2 of 3)

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt									
1. Energy	38.84	40.19	39.58	39.91	40.74	40.40	39.43	37.48	37.79	36.79
A. Fuel Combustion (Sectoral Approach)	38.73	40.07	39.46	39.79	40.62	40.28	39.31	37.35	37.67	36.66
1. Energy Industries	3.64	3.90	4.04	4.00	4.14	4.10	3.97	3.87	3.97	3.91
2. Manufacturing Industries and Construction	2.40	2.48	2.36	2.49	2.56	2.80	2.86	2.83	2.93	2.80
3. Transport	30.26	31.14	30.59	30.64	31.30	30.82	29.97	28.21	28.21	27.37
4. Other Sectors	2.43	2.56	2.47	2.66	2.61	2.56	2.50	2.44	2.55	2.58
5. Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B. Fugitive Emissions from Fuels	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13
1. Solid Fuels	NA, NE, NO									
2. Oil and Natural Gas	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13
2. Industrial Processes	9.44	6.90	6.76	8.12	7.61	13.98	12.61	7.91	8.50	11.93
A. Mineral Products	NA									
B. Chemical Industry	9.44	6.90	6.76	8.12	7.61	13.98	12.61	7.91	8.50	11.93
C. Metal Production	NA									
D. Other Production										
E. Production of Halocarbons and SF6										
F. Consumption of Halocarbons and SF6										
G. Other	NE									
3. Solvent and Other Product Use	1.32	1.45	1.35	1.24	1.44	1.31	1.22	1.06	1.05	1.10
4. Agriculture	105.19	105.57	100.70	97.75	104.91	107.96	106.27	106.04	109.16	114.47
A. Enteric Fermentation										
B. Manure Management	12.50	12.92	13.36	13.47	13.53	13.73	13.99	13.68	13.44	13.17
C. Rice Cultivation										
D. Agricultural Soils	92.58	92.54	87.26	84.18	91.28	94.20	92.24	92.32	95.69	101.27
E. Prescribed Burning of Savannas	NO									
F. Field Burning of Agricultural Residues	0.12	0.11	0.09	0.09	0.11	0.03	0.04	0.04	0.03	0.04
G. Other	NA									
5. Land Use, Land-Use Change and Forestry	12.73	3.01	5.92	23.48	17.06	19.45	11.36	13.48	12.80	8.43
A. Forest Land	12.20	2.55	5.46	23.01	16.56	18.94	10.83	12.97	12.30	7.91
B. Cropland	0.27	0.27	0.27	0.25	0.25	0.24	0.25	0.24	0.24	0.23
C. Grassland	NE, NO									
D. Wetlands	0.07	NO	0.00	0.00	0.03	0.04	0.06	0.01	NO	0.02
E. Settlements	0.19	0.19	0.19	0.22	0.23	0.22	0.22	0.26	0.25	0.27
F. Other Land	NE									
G. Other	NE									
6. Waste	2.58	2.71	2.80	2.82	2.69	2.78	2.76	2.75	2.76	2.81
A. Solid Waste Disposal on Land										
B. Waste-water Handling	1.99	2.03	2.08	2.09	2.08	2.12	2.10	2.12	2.17	2.15
C. Waste Incineration	0.59	0.69	0.72	0.73	0.60	0.66	0.66	0.63	0.59	0.66
D. Other	NA									
7. Other (as specified in the summary table in CRF)	NA	NA		NA	NA		NA			
Total N2O emissions including N2O from LULUCF	170.11	159.83	157.11	173.32	174.45	185.88	173.64	168.72	172.07	175.53
Total N2O emissions excluding N2O from LULUCF	157.38	156.82		149.84	157.39		162.28		159.27	167.10
Memo Items:										
International Bunkers	0.54	0.56	0.52	0.51	0.37	0.44	0.46	0.44	0.42	0.40
Aviation	0.24	0.25		0.24	0.23		0.28		0.28	
Marine	0.30	0.31		0.27	0.15					
Multilateral Operations	IE									
CO2 Emissions from Biomass										

CAN_BR1_v1.0

Note: All footnotes for this table are given on sheet 3.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
1.0	kt 22.7.1	kt	kt	%
1. Energy	32.74	34.81	34.58	26.05
A. Fuel Combustion (Sectoral Approach)	32.60	34.67	34.45	26.04
1. Energy Industries	3.65	3.84	3.69	
2. Manufacturing Industries and Construction	2.64	2.71	2.76	
3. Transport	23.82	25.64	25.39	
4. Other Sectors	2.50	2.48	2.61	15.23
5. Other	0.00	0.00	0.00	
B. Fugitive Emissions from Fuels	0.14	0.14	0.13	29.80
1. Solid Fuels	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00
2. Oil and Natural Gas	0.14	0.14	0.13	29.80
2. Industrial Processes	5.87	3.58	3.78	-90.02
A. Mineral Products	NA	NA	NA	0.00
B. Chemical Industry	5.87	3.58	3.78	-90.02
C. Metal Production	NA	NA	NA	0.00
D. Other Production				
E. Production of Halocarbons and SF6				
F. Consumption of Halocarbons and SF6				
G. Other	NE	NE	NE	0.00
3. Solvent and Other Product Use	0.84	0.78	0.80	38.44
4. Agriculture	109.91	110.55	107.10	18.98
A. Enteric Fermentation				
B. Manure Management	12.64	12.31	11.85	16.34
C. Rice Cultivation				
D. Agricultural Soils	97.23	98.21	95.22	19.56
E. Prescribed Burning of Savannas	NO	NO	NO	0.00
F. Field Burning of Agricultural Residues	0.04	0.03	0.02	-86.83
G. Other	NA	NA	NA	0.00
5. Land Use, Land-Use Change and Forestry	12.43	23.68	22.96	245.26
A. Forest Land	11.95	23.21	22.50	282.23
B. Cropland	0.24	0.24	0.24	-59.19
C. Grassland	NE, NO	NE, NO	NE, NO	0.00
D. Wetlands	0.02	0.02	NO	-100.00
E. Settlements	0.22	0.22	0.21	31.89
F. Other Land	NE	NE	NE	0.00
G. Other	NE	NE	NE	0.00
6. Waste	2.78	2.81	2.84	19.53
A. Solid Waste Disposal on Land				
B. Waste-water Handling	2.16	2.19	2.21	33.26
C. Waste Incineration	0.62	0.63	0.63	-12.12
D. Other	NA	NA	NA	0.00
7. Other (as specified in the summary table in CRF)	NA	NA	NA	0.00
Total N2O emissions including N2O from LULUCF	164.58	176.22	172.06	4.33
Total N2O emissions excluding N2O from LULUCF	152.15	152.54	149.10	-5.80
Memo Items:				
International Bunkers	0.34	0.37	0.33	-35.13
Aviation	0.24	0.26	0.26	51.38
Marine	0.10	0.12	0.08	-77.58
Multilateral Operations	IE	IE	IE	0.00
CO2 Emissions from Biomass				

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and fores

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition

that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 1 of 3)

CREENHOUSE CAS SOURCE AND SDUK CATEGORIES	Base year ^a	1991	1992	1993	1994	1995	1996	1997	1998
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt
Emissions of HFCsc - (kt CO2 eq)	767.25	835.33	655.97	NA, NO	NA, NO	479.41	851.53	1,397.69	1,934.68
HFC-23	0.07	0.07	0.06	NA, NO	NA, NO	0.00	0.00	0.00	0.00
HFC-32	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.00	0.00	0.00	0.00
HFC-41	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-43-10mee	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-125	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.02	0.03	0.07	0.11
HFC-134	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-134a	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.28	0.54	0.74	0.96
HFC-152a	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.00	0.02	0.04	0.04
HFC-143	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-143a	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.01	0.02	0.05	0.08
HFC-227ea	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	0.01	IE, NA, NO	IE, NA, NO	0.03
HFC-236fa	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-245ca	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO	IE, NA, NE, NO	IE, NA, NE, NO	
Unspecified mix of listed HFCsd - (kt CO ₂ eq)	NA, NO	NA, NO	NA, NO	NA, NO	NA, NO	NA, NE, NO			
Emissions of PFCsc - (kt CO2 eq)	6,538.83	6,949.98	6,556.82	6,450.32	5,965.33	5,489.59	5,622.83	5,512.71	5,601.84
CF_4	0.91	0.96	0.91	0.89	0.83	0.76	0.78	0.76	0.77
C ₂ F ₆	0.07	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.06
C 3F8	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00	0.00	0.00	0.00
C_4F_{10}	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO
c-C ₄ F ₈	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00	0.00	0.00
C ₅ F ₁₂	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00	0.00	0.00	0.00
C ₆ F ₁₄	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00	0.00	0.00	0.00
Unspecified mix of listed PFCs(4) - (Gg CO ₂ equivalent)	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO
Emissions of SF6(3) - (Gg CO2 equivalent)	3,392.20	3,873.67	2,691.12	2,498.69	2,570.18	2,395.56	1,861.25	1,923.00	2,478.26
SF ₆	0.14	0.16	0.11	0.10	0.11	0.10	0.08	0.08	0.10

Note: All footnotes for this table are given on sheet 3.

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 2 of 3)

CREENHOUSE CAS SOURCE AND SINK CATECORIES	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	kt	kt	kt	kt	kt	kt	kt	kt	kt	kt
Emissions of HFCsc - (kt CO2 eq)	2,413.69	2,936.12	3,507.83	3,915.58	4,421.71	4,795.35	5,296.47	5,105.86	5,483.71	5,550.65
HFC-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HFC-32	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.04	0.06	0.07
HFC-41	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-43-10mee	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HFC-125	0.15	0.18	0.21	0.24	0.28	0.31	0.36	0.33	0.34	0.39
HFC-134	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-134a	1.19	1.42	1.68	1.83	1.95	2.11	2.26	2.32	2.62	2.44
HFC-152a	0.10	0.26	0.39	0.52	0.67	0.83	0.64	0.30	0.18	0.13
HFC-143	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-143a	0.11	0.14	0.17	0.20	0.24	0.27	0.33	0.28	0.28	0.32
HFC-227ea	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00
HFC-236fa	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO	IE, NA, NO
HFC-245ca	IE, NA, NE, NO		IE, NA, NE, NO		IE, NA, NE, NO	IE, NA, NE, NO				IE, NA, NE, NO
Unspecified mix of listed HFCsd - (kt CO_2 eq)	NA, NO					NA, NO				
Emissions of PFCsc - (kt CO2 eq)	4,645.28	4,311.08	3,500.42	2,994.81	3,019.03	3,046.98	3,317.26	2,583.90	2,193.70	2,252.32
CF ₄	0.64	0.59	0.48	0.41	0.42	0.42	0.46	0.36	0.30	0.31
C_2F_6	0.05	0.05	0.04	0.03	0.03	0.03	0.04	0.03	0.02	0.02
C 3F8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C ₄ F ₁₀	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO
c-C ₄ F ₈	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00
C ₅ F ₁₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$C_{6}F_{14}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unspecified mix of listed PFCs(4) - (Gg CO_2 equivalent)	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO	NA, NE, NO
Emissions of SF6(3) - (Gg CO2 equivalent)	2,534.01	3,051.86	2,688.58	3,169.42	2,787.46	2,456.88	1,492.14	1,595.90	771.98	683.95
SF ₆	0.11	0.13	0.11	0.13	0.12	0.10	0.06	0.07	0.03	0.03

Note: All footnotes for this table are given on sheet 3.

CAN_BR1_v1.0

Table 1(d) Emission trends (HFCs, PFCs and SF₆) (Sheet 3 of 3)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	2009	2010	2011	Change from base to latest reported year
	kt	kt	kt	%
Emissions of HFCsc - (kt CO2 eq)	6,306.34	7,072.55	7,526.83	881.01
HFC-23	0.00	0.00	0.00	-98.82
HFC-32	0.09	0.11	0.12	100.00
HFC-41	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-43-10mee	0.00	0.00	0.00	100.00
HFC-125	0.46	0.52	0.57	100.00
HFC-134	0.00	0.00	0.00	100.00
HFC-134a	2.64	2.96	3.06	100.00
HFC-152a	0.32	0.66	0.83	100.00
HFC-143	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-143a	0.38	0.42	0.46	100.00
HFC-227ea	0.00	0.00	0.00	100.00
HFC-236fa	IE, NA, NO	IE, NA, NO	IE, NA, NO	0.00
HFC-245ca	IE, NA, NE, NO	IE, NA, NE, NO		0.00
Unspecified mix of listed HFCsd - (kt CO ₂ eq)	NA, NO	NA, NO	NA, NO	0.00
Emissions of PFCsc - (kt CO2 eq)	2,171.97	1,607.49	1,450.89	-77.81
CF_4	0.30	0.22	0.20	-78.18
C_2F_6	0.02	0.02	0.02	-74.59
C 3F8	0.00	0.00	0.00	100.00
C_4F_{10}	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00
c-C ₄ F ₈	0.00	0.00	0.00	100.00
C ₅ F ₁₂	0.00	0.00	0.00	100.00
$C_{6}F_{14}$	0.00	0.00	0.00	100.00
Unspecified mix of listed PFCs(4) - (Gg CO ₂ equivalent)	NA, NE, NO	NA, NE, NO	NA, NE, NO	0.00
Emissions of SF6(3) - (Gg CO2 equivalent)	393.06	462.24	415.29	-87.76
SF ₆	0.02	0.02	0.02	-87.76

Abbreviations : CRF = common reporting format, LULUCF = land use, land-use change and forestry.

^{*a*} The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the Conference of the Parties. For these Parties, this different base year is used to calculate the percentage change in the final column of this table.

^cEnter actual emissions estimates. If only potential emissions estimates are available, these should be reported in this table and an indication for this be provided in the documentation box. Only in these rows are the emissions expressed as CO2 equivalent emissions.

^dIn accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual inventories", HFC and PFC emissions should be reported for each relevant chemical. However, if it is not possible to report values for each chemical (i.e. mixtures, confidential data, lack of disaggregation), this row could be used for reporting aggregate figures for HFCs and PFCs, respectively. Note that the unit used for this row is kt of CO2 equivalent and that appropriate notation keys should be entered in the cells for the individual chemicals.)

Custom Footnotes

Documentation Box:

Table 2(a)

CAN_BR1_v1.0

Description of quantified economy-wide emission reduction target: base year^a

Party	Canada	anada					
Base year /base period	2005						
Emission reduction target	% of base year/base period	% of 1990 ^b					
	17.00	3.60					
Period for reaching target	BY-2020						

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Optional.

Table 2(b)

Description of quantified economy-wide emission reduction target: gases and sectors covered^a

Ga	uses covered	Base year for each gas (year):
CO ₂		2005
CH ₄		2005
N ₂ O		2005
HFCs		2005
PFCs		2005
SF ₆		2005
NF ₃		
Other Gases (specify)	
LULUCF Contribution	on	RL for FLFL/2005 for other subcategories
Sectors covered ^b	Energy	Yes
	Transport ^f	Yes
	Industrial processes ^g	Yes
	Agriculture	Yes
	LULUCF	No
	Waste	Yes
	Other Sectors (specify)	
	Oil and Gas	Yes
	Emissions Intensive Trade Exposed Industries	Yes
	Buildings	Yes
	Transportation (Economic Sector)	Yes
LULUCF Contribution		Yes
		Yes
	Electricity	Yes
	Agriculture (Economic Sector)	Yes

Abbreviations : LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b More than one selection will be allowed. If Parties use sectors other than those indicated above, the explanation of how these sectors relate to the sectors defined by the IPCC should be provided.

^f Transport is reported as a subsector of the energy sector.

^g Industrial processes refer to the industrial processes and solvent and other product use sectors.

Table 2(c)CAN_BR1_v1.0Description of quantified economy-wide emission reduction target: globalwarming potential values (GWP)^a

Gases	GWP values ^b
CO ₂	2nd AR
CH_4	2nd AR
N ₂ O	2nd AR
HFCs	2nd AR
PFCs	2nd AR
SF ₆	2nd AR
NF ₃	2nd AR
Other Gases (specify)	
LULUCF Contribution	2nd AR

Abbreviations: GWP = global warming potential

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Please specify the reference for the GWP: Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) or the Fourth Assessment Report of the IPCC.

Table 2(d)

Description of quantified economy-wide emission reduction target: approach to counting emissions and removals from the LULUCF sector^{*a*}

Role of LULUCF	LULUCF in base year level and target	Included
	Contribution of LULUCF is calculated using	Other (Based on LULUCF Convention reporting categories)

Abbreviation : LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

Table 2(e)ICAN_BR1_v1.0Description of quantified economy-wide emission reduction target: market-based mechanismsunder the Convention a

Market-based mechanisms	Possible scale of contributions
under the Convention	(estimated kt CO $_2$ eq)
CERs	
ERUs	
AAUs ⁱ	
Carry-over units ^j	
Other mechanism units under the Convention (specify) ^d	

Abbreviations : AAU = assigned amount unit, CER = certified emission reduction, ERU = emission reduction unit.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

 d As indicated in paragraph 5(e) of the guidelines contained in annex I of decision 2/CP.17 .

^{*i*} AAUs issued to or purchased by a Party.

^{*j*} Units carried over from the first to the second commitment periods of the Kyoto Protocol, as described in decision 13/CMP.1 and consistent with decision 1/CMP.8.

Table 2(e)II Description of quantified economy-wide emission reduction target: other market-based mechanisms^a

Other market-based mechanisms	Possible scale of contributions
(Specify)	(estimated kt CO $_2$ eq)

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

Table 2(f)

Description of quantified economy-wide emission reduction target: any other information^{*a,b*}

For further information, please see Canada's full First Biennial Report, 2014

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

b This information could include information on the domestic legal status of the target or the total assigned amount of emission units for the period for reaching a target. Some of this information is presented in the narrative part of the biennial report.

Custom Footnotes

For further information please see Canada's 6th National Communication

For Table 2(d) Contribution of LULUCF is calculated using: Accounting approaches for all subsectors: Difference between 2005 and 2020 except Forestland remaining Forestland which is measured against a Reference Level consistent with the Reference Level agreed for Canada in the Durban agreement on LULUCF

*LULUCF is included only in 2020, Included: Forest Land Remaining Forest Land; Cropland Remaining Cropland; Forest Land Converted to Other Land Categories; Other Land Categories Converted to Forest LandExcluded: Settlements; Wetlands; Grasslands. * A technical correction to the Reference Level will be used, consistent with the process allowed in the Durban agreement on LULUCF.

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)
Light Duty Vehicle GHG Regulations: Phase I	Other (Transportation (Economic Sector))	CO ₂ , CH ₄ , N ₂ C	To reduce GHG emissions from the on- road transportation sector	Regulatory	Implemented	The regulations apply increasingly stringent annual GHG emissions emission standards to new passenger automobiles and light trucks manufactured or imported into Canada for the years 2011–2016.	2011	Environment Canada	10,000.00
Light-duty Vehicle GHG Regulations: Phase 2	Other (Transportation (Economic Sector))	CO ₂ , CH ₄ , N ₂ C	• To reduce GHG emissions from the on- road transportation sector	Regulatory	Adopted		2017	Environment Canada	3,000.00
Heavy-duty Vehicle GHG Regulations	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ C	• To reduce GHG emissions from the on- road transportation sector	Regulatory	Implemented	These regulations will apply increasingly stringent annual GHG emissions standards to new on-road heavy-duty vehicles and engines imported or manufactured in Canada for the years 2014–2018.	2014	Environment Canada	3,000.00
Federal Renewable Fuels Regulations	Other (Transportation (Economic Sector))	CO ₂	To regulate renewable content in fuel	Regulatory	Implemented		2010	Environment Canada	2,000.00
Carbon Dioxide Standards for Aviation	Other (Transportation (Economic Sector))	CO ₂	To reduce GHG emissions from new airplanes	Regulatory	Planned	Canada is participating in the development of a new international CO2 standard for new airplanes at the International Civil Aviation Organization. Canada plans to adopt the standard once it has been finalized and approved by the International Civil Aviation Organization.	TBD	Transport Canada	NI
Canada's Action Plan to Reduce GHG Emissions from Aviation	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ C	• To reduce GHG emissions from the aviation sector	Voluntary Agreement	Implemented	A comprehensive voluntary approach that includes all segments of the Canadian aviation sector, from airlines and airports to air traffic navigation and aircraft manufacturers, the Action Plan sets an aspirational goal to improve fuel efficiency from a 2005 baseline by an average annual rate of at least 2% per year until 2020. The Action Plan forms the basis for the Government of Canada's response to the International Civil Aviation Organization's Assembly Resolution A37-19, which encouraged Member States to submit national action plans by June 2012 setting out measures each state is taking or will take to address international aviation emissions.	2012	Transport Canada	N
Regulatory Cooperation Council Locomotive Emissions Initiative	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ C	• To reduce GHG emissions from locomotives operating in Canada and the U.S		Adopted	The Emissions Initiative is a joint voluntary approach with the U.S. Environmental Protection Agency on the development of potential strategies to reduce GHG emissions from locomotives. Among other elements, a Canadian industry-government Memorandum of Understanding that includes measures, targets and actions to reduce GHG emission intensity from rail operations was concluded as part of this initiative. The initiative also involves work towards a Canada–U.S. industry-government voluntary action plan to reduce greenhouse gas emissions from locomotives.	TBD	Transport Canada	NI
Energy Efficiency Requirements for Marine Vessels	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ C	• To reduce GHG emissions from international shipping	Regulatory	Implemented	Canada has enacted national regulations to implement new energy efficiency requirements negotiated under Annex VI of the International Maritime Organization's Convention for the Prevention of Pollution from Ships. The regulations require all vessels of 400 gross tonnage and above to have a Ship Energy Efficiency Management Plan on board, stating how each vessel will increase energy efficiency and reduce greenhouse gas emissions. Additionally, under the regulations, new vessels of 400 gross tonnage and above must meet Energy Efficiency Design Index requirements that will increase energy efficiency by 30% by 2025. The Energy Efficiency Design Index requirements do not apply to domestic vessels voyaging only in Canadian waters, as it was found that applying the international standards to these vessels, which are smaller and use shorter routes, would result in increased emissions.	2013	Transport Canada	366.00

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	<i>Objective and/or</i> activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing en entities
Energy Efficiency Requirements for Canadian Marine Vessels that Serve Domestic Trade	Other (Transportation (Economic Sector))		To reduce GHG emissions from domestic shipping	Regulatory	Planned	New Canadian ships that serve domestic trade within Canada are currently exempt from the International Maritime Organization's Energy Efficiency Design Index requirements. A technical review found that when the international Energy Efficiency Design Index standard is applied to Canadian ships on domestic service, which are smaller and use shorter routes, the results would reduce the energy efficiency of these ships and increase their CO2 emissions. The technical review recommended ways to apply the Energy Efficiency Design Index to yield the intended results; Transport Canada plans to implement adjusted domestic Energy Efficiency Design Index standards in the future.	TBD	Transport Canada
Shore Power Technology for Ports Program	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ O	To reduce GHG emissions from docked ships	Economic	Implemented	The Shore Power Technology for Ports Program provides cost-shared funding for the deployment of marine shore power technology at Canadian ports. This technology allows ships to plug into the local electrical grid to power the vessel instead of using their auxiliary diesel engines when docked.	2011	Transport Canada
ecoTECHNOLOGY for Vehicles Program	Other (Transportation (Economic Sector))		To support the development of low- emission vehicle regulations, standards, codes, protocols, guidelines, and related instruments.	Other (Research)	Implemented	he ecoTECHNOLOGY for Vehicles program tests, evaluates, and provides expert technical information on the environmental and safety performance of advanced light-duty vehicle and heavy-duty vehicle technologies. The ecoTECHNOLOGY program shares technical findings to inform the development of vehicle emissions regulations; to guide the proactive development of new or revised safety regulations, standards, codes and guidelines; and to support the development of non-regulatory industry codes and standards to help integrate new vehicle technologies into Canada. The ecoTECHNOLOGY program is not expected to directly result in emission reductions; however, it will inform the development of Canada's light-duty vehicle and heavy-duty vehicle GHG emission regulations and help more low-emission vehicle technologies to enter the Canadian market.		Transport Canada
Truck Reservation System Program	Other (Transportation (Economic Sector))	CH ₄ , CO ₂ , N ₂ O	To reduce GHG emissions associated with port-related trucking activity at Canada's major container ports	Economic	Implemented	The Truck Reservation Systems Program provides funding to projects at Canada's major container ports for the deployment of technologies and practices that improve port- trucking efficiency and environmental performance (e.g., reducing truck idling, wait times at port terminals, and congestion on access roads). The Truck Reservation System Program is currently working with project proponents (notably Canadian Port Authorities), to gather more complete data on truck movements within port areas to better measure GHG emissions on an ongoing basis and also in certain regions to set a baseline. Specific GHG emission reduction targets will be set throughout the course of individual projections.	2013	Transport Canada

CAN_BR1_v1.0

		l	
nenting entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)		
		1	
ort Canada	NE		
rt Canada	7.00		
rt Canada	NE		
rt Canada	NE		

NE

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementi ent
British Columbia Renewable and Low Carbon Fuel Requirements Regulation	Other (Transportation (Economic Sector))		Reduce the carbon intensity and increase the renewable content of fuels sold in B.C.	Regulatory	Implemented	Regulation that targets a 10% decrease in carbon intensity of transport fuels sold in B.C. by 2020, and 5% renewable content in gasoline (4% in diesel).	2010	British Colu
British Columbia Clean Energy Vehicles Program	Other (Transportation (Economic Sector))		To reduce GHGs in transportation	Economic	Implemented	The \$14.3 million program provides incentives for eligible clean energy vehicles and includes deployment of charging point infrastructure for these vehicles.	2011	British Colu
Alberta Renewable Fuel Standard (Transportation (Economic Sector))			To accelerate the use of fuels derived from renewable sources	Regulatory	Implemented	Regulation requires an average of 2% renewable content in diesel fuel and 5% renewable alcohol in gasoline. The renewable fuel content must have at least 25% less GHG emissions than the equivalent petroleum fuel on a life-cycle basis.	2011	Alberta
Alberta GreenTRIP	Other (Transportation (Economic Sector))		To increase the accessibility and use of public transit in Alberta	Economic	Implemented	This is a \$2 billion one-time capital funding program that supports new and expanded public transit in Alberta. To date, 13 projects are receiving funding and only three projects have made estimates for their expected GHG reductions.	2010	Alberta
Manitoba Biofuel Production Incentive	Other (Transportation (Economic Sector))	CO ₂	To provide financial support for ethanol and biodiesel manufacturers in Manitoba in order to reduce transportation emissions	Regulatory	Implemented	The Ethanol Fund Grant Regulation started in 2008 and provides a portion of gas tax revenue to be credited to an Ethanol Fund Grant, which provides an eight-year grant to support ethanol manufacturers in Manitoba. The Biodiesel Fund Grant Regulation is a five-year grant program that provides an incentive of 14 cents per litre of biodiesel to support biodiesel production Manitoba. The program started April 1, 2010 and ends March 31, 2015.		Manitoba
Ontario Ethanol in Gasoline Regulation	Other (Transportation (Economic Sector))	CO ₂	To reduce GHG emissions from transport sector	Regulatory	Implemented	Ontario Regulation 535/05 (Ethanol in Gasoline), requires an annual average of 5% ethanol in gasoline (beginning with calendar year 2007).	2007	Ontario
Ontario The Big Move: Transforming Transportation in the Greater Toronto and Hamilton Area	Other (Transportation (Economic Sector))		To reduce GHG emissions from the transport sector	Economic	Implemented	 This 25-year Regional Transportation Plan aims to improve regional transportation, bolster global competitiveness, protect the environment and enhance quality of life. To date, \$16 billion has been committed with projects underway. Ontario's 2013-14 budget allocated \$3.4 billion towards public transit infrastructure in the province, a large portion of which was allocated to this plan. Emission reductions for Ontario's transportation sector are combined. Combined estimated mitigation impact of 3.9 Mt applies to initiatives related to: The Big Move Regional transportation plan and Growth Plan for the Greater Golden Horseshoe Passenger vehicle efficiency regulations Freight truck speed limiter regulation Municipal hybrid bus purchase and Green Commercial Vehicles Program Ontario ethanol regulation Other related transportation initiatives 		Ontario
Quebec Electric Vehicle Action Plan	Other (Transportation (Economic Sector))		To accelerate the deployment of electric vehicles and related infrastructure	Economic	Implemented	The Action Plan aims to have: •25% of the 2020 sales of new light passenger vehicle be for electric vehicles (plug-in hybrids or all-electric vehicles) •95% of public transit commuters use vehicles powered by electricity by 2030 •Increase employment in this field from 1500 to 5000 by 2020 The Action plan aims to accelerate the deployment of electric vehicles and related infrastructure, such as charging stations, at electrifying Quebec's public transportation system and at supporting Quebec businesses in this field.	2011	Quebec
Quebec Public Transit Policy	Other (Transportation (Economic Sector))		To reduce GHG emissions from the transport sector	Other (other)	Planned	Following the success of Quebec's first Public Transit Policy in 2006, which increased ridership by 11% in 2012, a new sustainable mobility policy is being developed and will address land- use planning and transportation, governance and public transit funding, electrification of transportation, regional and rural transportation as well as transit adapted to the needs of persons with disabilities or limited mobility.		Quebec

CAN_BR1_v1.0

NE

NE 1,000.00 50.00 NE

NE 3,900.00

NE

NE

Table 3	
Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects	

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)
British Columbia Flaring and Venting Reduction Guideline	Other (Oil and Gas)	CH ₄	To reduce flaring and venting in the oil and gas sector; goal is to eliminate all routine flaring by 2016	Regulatory	Implemented	Applies to the flaring, incineration and venting of natural gas at well sites, facilities and pipelines.	2010	British Columbia	NE
Alberta Carbon Capture and Storage Funding Act	Other (Oil and Gas)	Other (TBD)	To enable government support for carbon capture and storage projects.	Economic	Implemented	Enable Alberta to administer funding to support large-scale carbon capture and storage projects.	2008	Alberta	2,800.00
Oil and Gas Sector GHG Regulations	Other (Oil and Gas)	Other (TBD)	To reduce emissions from the oil and gas sectors in Canada	Regulatory	Planned	The Government of Canada is working with provinces to reduce emissions from the oil and gas sectors while ensuring Canadian companies remain competitive.	TBD	Environment Canada	NE
Reduction of CO2 Emissions from Coal- fired Generation of Electricity Regulations	Other (Electricity)	CO ₂	To reduce GHG emissions from the coal-fired electricity sector	Regulatory	Implemented		2015	Environment Canada	3,000.00
ecoENERGY for Renewable Power program	Other (Electricity)	CO ₂	To reduce GHG emissions by increasing renewable electricity supply in Canada	Economic	Implemented	The program offers an incentive of 1¢ per kilowatt-hour of electricity produced over a period of ten years from a qualifying low-impact renewable energy project built before March 31, 2011.	2007	Natural Resources Canada	6,240.00
British Columbia Clean Energy Act: Clean or renewable electricity requirement	Other (Electricity)		To maintain low carbon electricity supply	Regulatory	Implemented	Clean Energy Act commits that British Columbia will generate at least 93% of their electricity from clean or renewable sources.	2010	British Columbia	NE
Manitoba Coal and Petroleum Coke Heating Ban Regulation	Other (Electricity)		To reduce GHG emissions from coal and petroleum coke	Regulatory	Implemented	Ban on the use of petroleum coke for space heating effective December 31, 2012. Coal users must submit plans for converting away from coal in June of 2014, plans must be implemented by June 2017. Funds from Manitoba's emissions tax on coal are redirected to support transition from coal to biomass.	2013	Manitoba	NE
Manitoba Emissions Tax on Coal Act	Other (Electricity)	CO ₂	To reduce GHG emissions from coal in Manitoba	Regulatory	Implemented	This includes a tax on coal emissions; capital support for coal users to convert to cleaner energy; and support for developing biomass, which is a coal alternative. The Emissions Tax on Coal Act came into effect January 2012. The tax is payable by any individual who purchases more than a tonne of coal for use in Manitoba. Different grades of coal are subject to a different tax rate, approximately \$10-per-tonne of CO2 eq emissions. The tax will be extended to include petroleum coke.		Manitoba	NE
Manitoba Coal Fired Emergency Operations Regulation	Other (Electricity)	CO ₂	To restrict Manitoba Hydro's use of coal	Regulatory	Implemented	This regulation restricts Manitoba Hydro's use of coal to generate power to emergency operations. Manitoba Hydro's last remaining coal-fired facility is located at Brandon Unit # 5 in Brandon, Manitoba.	2009	Manitoba	NE
Manitoba Geothermal Energy Incentive Program	Other (Electricity)	CO ₂	To reduce the use of imported natural gas and promote heating and cooling of buildings with renewable geothermal heat pumps	Economic	Implemented	This program offers incentives to residential and commercial building owners for installing geothermal heat-pump systems. Incentives include provincial grants for new houses in natural gas service areas, provincial grants for district geothermal systems, and a Green Energy Equipment Tax Credit.	2009		NE

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementin enti
Ontario Coal Phase-Out	Other (Electricity)		To reduce GHG emissions from coal- fired electricity generation	Regulatory	Implemented	Ontario mandated the cessation of coal-fired electricity generation by the end of 2014 through a regulatory amendment (O.Reg. 496/07). Ontario has shut down 11 of 19 coal units across five generating stations, with 6 more units to be shut down at the end of 2013, one year ahead of schedule. The Ontario government estimates that this policy will reduce GHG emissions from the electricity sector by up to 30 Mt compared to 2003 levels. Ontario is replacing coal with increased conservation and cleaner energy sources like natural gas, nuclear, solar and wind. Emission reductions for Ontario's electricity sector are combined. The combined estimated mitigation impact of 31.6 Mt applies to initiatives related to Ontario's Long-Term Energy Plan: - coal phase-out - Feed-in-Tariff program - residential, commercial and industrial conservation programs - related electricity policies	2007	Ontario
Ontario Feed-in-Tariff	Other (Electricity)		To support the development of renewable and clean energy sources	Economic	Implemented	The Feed-in Tariff Program allows individuals and companies to sell renewable energy, like solar, wind, water, biomass, biogas and landfill gas, into the grid at set rates. As of May 2013 about 1,700 projects have been approved, representing over 4,500 megawatts of capacity. This includes over 200 large-scale projects that account for over 4,200 megawatts of capacity. The Feed-in Tariff program was re-launched in December 2012.	2009	Ontario
Quebec Energy Strategy	Other (Electricity)		To increase renewable electricity generation and energy efficiency	Economic	Implemented	The strategy provides for new renewable energy generation (hydroelectricity, wind and bioenergy) by 2015 and an increase in energy efficiency for all types of energy. A new strategy is currently being drafted.	2006	Quebec
New Brunswick – Electricity Act Renewable Portfolio Standard Regulation	Other (Electricity)		To achieve 40% of renewable energy	Regulatory	Planned		2014	New Brunsw
Nova Scotia Greenhouse Gas Emissions Regulations	Other (Electricity)	CO ₂ , Other (NH3), Other (F6S), PFCs, HFCs, N ₂ O	To reduce GHG emissions from coal energy	Regulatory	Implemented	Nova Scotia has implemented a mandatory declining cap on GHG emissions from Nova Scotia Power Inc., starting at an average of 9.6 Mt over 2010 and 2011 to 7.5 Mt by 2020. In September 2012, the Nova Scotia government and the Canadian federal government published a draft equivalency agreement on coal-fired electricity, which committed Nova Scotia to amend its GHG regulations to require additional reduction requirements for the 2021 to 2030 period. The agreement requires the GHG emissions cap to decline from 7.5 Mt in 2020 to 4.5 Mt in 2030.	2009	Nova Scotia
Efficiency Nova Scotia Corporation Act	Other (Electricity)		To use energy more efficiently	Regulatory	Implemented	The legislation created an independent electricity efficiency administrator called the Efficiency Nova Scotia Corporation. It established a fund that is dedicated to deliver electricity efficiency programs. The Efficiency Nova Scotia Corporation also manages energy efficiency and conservation programs outside of electricity saving measures. Funding comes from a levy on the Nova Scotia electricity rate-payer base and the Province of Nova Scotia.	2009	Nova Scotia
Nova Scotia Renewable Electricity Plan	Other (Electricity)		To increase the share of clean energy in the province's energy use	Regulatory	Implemented	The Regulations require 25% of electricity supply to be generated from renewable sources by 2015 and 40% by 2020. This will involve the adoption of a diverse mix of energy sources including wind, tidal, solar, hydro and bioenergy.	2010	Nova Scotia

CAN_BR1_v1.0

31,600.00

NE		

NE NE

2,500.00

1,300.00

Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)	Implementing entity or entities	Start year of implementation	Brief description ^e	Status of implementation ^d	Type of instrument ^c	Objective and/or activity affected	GHG(s) affected	Sector(s) affected ^b	me of mitigation action ⁶
NE	Prince Edward Island	2011	Prince Edward Island's Energy Accord was released in November 2010 and took effect in March 2011. The Accord is a five-year energy strategy developed by Prince Edward Island in collaboration and partnership with Maritime Electric Company Limited. Its goals are to lower and stabilize electricity rates and increase Prince Edward Island's reliance on locally owned wind power. The Accord contains a number of initiatives including support for an additional 40 megawatts in wind generation. New wind generation is expected to be operational by 2013, at which time 33% of the province's electricity supply would come from wind power.	Implemented	Voluntary Agreement			Other (Electricity)	gy Accord
NE	Newfoundland and Labrador	2007	Projects funded through the Green Fund include energy efficiency, small scale wind turbines, biofuels, and waste methane capture.	Implemented	Fiscal	To provide support for climate change initiatives	CO ₂ , Other (CH3), N ₂ O	Other (Electricity)	foundland and ador Green Fund
1,200.00	Newfoundland and Labrador/ Nalcor Energy in partnership with Emera	2017	Once developed, the 824 megawatt Muskrat Falls hydroelectric project will displace oil-fired electricity generation representing over 10% of the province's GHG emissions.	Planned	Economic	To increase the share of clean energy in the province's energy use	CO ₂ , Other (CH3), N ₂ O	Other (Electricity)	foundland and ador Muskrat Falls oelectricity Project
NE	Northwest Territories	2007	The program will support Aboriginal and community governments, non-for-profit organizations, commercial businesses, and residents to convert to renewable and clean energies. Technologies eligible for incentives include solar, hot water heating systems, and wind turbines.	Implemented	Fiscal	To support conversion to renewable and clean energies		Other (Electricity)	hwest Territories native Energy nologies Program
NE	Northwest Territories	2007		Implemented	Fiscal	To support upgrades to more energy efficient technologies		Other (Electricity)	hwest Territories gy Efficiency ntive Program
NE	Northwest Territories	2011	Eligible small businesses receive free energy audits and 25% of the cost of retrofit expenses up to a maximum of \$10,000.	Implemented	Fiscal	To support commercial energy and water efficiency		Other (Electricity)	hwest Territories mercial Energy ervation and iency Program
NE	Northwest Territories	2007	Non-profit Arctic Energy Alliance provides free information, advice, incentives and answers to questions from residents of the Northwest Territories on energy efficiency and hosts annual Energy Actions Awards. The Arctic Energy Alliance also conducts energy audits to educate residents on how to reduce home energy consumption.	Implemented	Education	To educate, raise awareness and help residents of the Northwest Territories adopt energy saving best practices		Other (Electricity)	hwest Territories c Energy Alliance
NE	British Columbia	2008	-	Implemented	Regulatory	To improve energy efficiency in new houses and buildings		Other (Buildings)	sh Columbia ling Green Code
NE	British Columbia	2008	This program provides incentives for homeowners to improve the energy efficiency of their homes. Since the program was launched in 2008, around \$110 million has been invested. This program will end on March 31, 2014.	Implemented	Economic	To support homeowners in improving energy efficiencies of their homes		Other (Buildings)	Smart BC: iency Incentive ram
2,900.00	Ontario	2012	The Building Code is phasing in higher energy efficiency requirements for new buildings over time, which plays a significant role in limiting greenhouse gas emissions while allowing businesses and residents the flexibility to move forward in a cost-efficient manner. Emission reductions for Ontario's buildings sector are combined. Combined estimated mitigation impact of 2.9 Mt applies to initiatives related to: - The Growth Plan for the Greater Golden Horseshoe -Natural gas demand side management programs -Building Code changes -Other related buildings and cross-cutting initiatives	Implemented	Regulatory	To reduce GHG emissions in the buildings sector		Other (Buildings)	rio Building Code
NE	Northwest Territories	2008	Through energy audits, building surveys and energy benchmarking, buildings are identified and retrofitted to improve their energy efficiency. The program tracks actual financial savings from retrofits and reinvests them into the Capital Asset Retrofit Fund.	Implemented	Other (Other)	To increase building energy system efficiencies in schools and other territorial buildings. Targets benchmarking of healthcare facilities and/or government buildings across the Northwest Territories		Other (Buildings)	hwest Territories tal Asset Retrofit

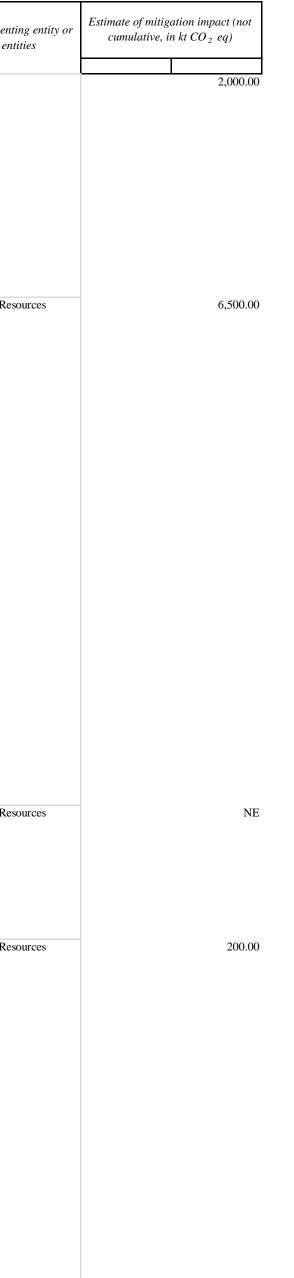
Table 3
Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	<i>Objective and/or</i> activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation cumulative, in kt (
Northwest Territories Initiatives for New Buildings	Other (Buildings)		To reduce energy consumption and ensure quality control for buildings in the north.	Other (Other)	Implemented	Initiatives include the development and use of A Good Building Practice for Northern Facilities guidebook. The Government of the Northwest Territories Public Works and Services conducts design reviews and engages in energy modelling workshops, public awareness activities related to energy use and conservation and information sharing with other groups and Territories.		Northwest Territories	
Northwest Territories Housing Corporation Energy Initiatives	Other (Buildings)		To achieve higher high energy efficiency and meet Natural Resources Canada's minimum standard		Implemented	Three key initiatives include: 1) A draft Retrofit Strategy; 2) The Northern Sustainable Housing Project for the design of a highly efficient building with reduced operating costs and greenhouse gas emissions and; 3) Promoting energy efficiency through the Homeownership Program "Solutions To Educate People"		Northwest Territories	
Yukon Government Green Building Standards	Other (Buildings)		To increase energy efficiency of new buildings within the City of Whitehorse	Regulatory	Implemented	Increased minimum insulation values, requirements for a Blower door test on all new construction, and requirements for heat-recovery ventilators.		Yukon	
Emission Intensive and Trade Exposed Sector Regulations		CO ₂ , Other (TBD)	To reduce GHG emissions from major- emitting industrial sectors	Regulatory	Planned		TBD	Environment Canada	
Pulp and Paper Green Transformation Program	Other (Emissions Intensive Trade Exposed Industries)	CO ₂ , CH ₄ , N ₂ O	To improve the environmental performance of Canada's pulp and paper industry in the areas of renewable energy production and energy efficiency	Fiscal	Implemented	Operating from June 2009 to March 2012, the \$1- billion Pulp and Paper Green Transformation Program provided funding to Canadian pulp and paper companies for capital projects with environmental benefits. Though not specifically designed as a climate change mitigation mechanism, through projects that improved energy efficiency, enabled fuel switching and added capacity to generate renewable electricity, the Pulp and Paper Green Transformation Program generated both direct and indirect GHG emission reductions.	2009	Natural Resources Canada	
Saskatchewan Management and Reduction of Greenhouse Gases Regulation	Other (Emissions Intensive Trade Exposed Industries)		To reduce GHG emissions from large final emitters	Regulatory	Planned	The regulation requires large final emitter facilities that emit over 50,000 tonnes of CO2 to reduce their emissions by 20% by 2020 from a 2006 baseline. Compliance options include payments into a non-profit technology fund only accessible to regulated emitters for low carbon investments. Monies not used can be held in the technology fund for 5 years and then transfers into the Climate Change Foundation which is accessible for climate change related research and development or education, and is available to anyone in the province upon approval of an application.	2013	Saskatchewan	
Ontario Greenbelt Plan	Other (Agriculture (Economic Sector))		To permanently protect prime agricultural land and environmentally concitive gross	Regulatory	Implemented	The Greenbelt Plan identifies 1.8 million acres of land where future urbanization should not occur by providing permanent protection for prime agricultural land and environmentally sensitive	2005	Ontario	
The Ontario Biogas Systems Financial Assistance Program	Other (Agriculture (Economic Sector))		sensitive areas To support the reduction of GHG emissions from farms	Fiscal	Implemented	areas. The program, completed in 2010, successfully led to more than 11 megawatts installed electrical capacity, enough power for 10,000 homes. It supported GHG emission reductions by direct avoidance of emissions from manure storage and offsetting emissions by replacing fossil fuel generated electricity or natural gas.	2008	Ontario	
The Ontario Ethanol Growth Fund	Other (Agriculture (Economic Sector))		To support the production of ethanol fuel	Fiscal	Implemented	The Fund has helped create an industry with domestic production that is currently at 885 million litres per year, projected to grow to over 1 billion litres per year. Ontario has seven ethanol facilities in place.	2005	Ontario	
British Columbia Landfill Gas Management Regulation	Other (Waste and Other)	CH ₄	To increase methane capture rate at landfills	Regulatory	Implemented	Requires larger municipal solid waste landfills (>1000 tonnes methane/year) to install approved landfill gas capture systems with a capture rate target of 75%. Regulations will take effect in 2016.	2009	British Columbia	
Manitoba Prescribed Landfills Methane Gas Capture Regulation	Other (Waste and Other)	CH ₄	To reduce methane emissions from landfills	Regulatory	Implemented		2009	Manitoba	

CAN_BR1_v1.0

1,360.00

ation impact (not n kt CO₂ eq) NE NE NE NE


NE

NE NE NE NE

195.00

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	<i>Objective and/or</i> activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities
Ontario Landfill Gas Collection	Other (Waste and Other)	CH ₄	To reduce GHG emissions from the waste sector	Regulatory	Implemented	In 2008, Ontario introduced regulations requiring all landfills larger than 1.5 million cubic metres to install landfill gas collection and flaring systems. Currently, most of the largest landfills are now collecting landfill gas in Ontario. Emission reductions for Ontario's agriculture and waste sectors are combined. Combined estimated mitigation impact of 2 Mt applies to initiatives related to: - Biogas Financial Assistance Program - Landfill gas capture regulation - Other policies and programs in the waste and agricultural sectors.		Ontario
ecoENERGY Efficiency	Cross-cutting	CH ₄ , CO ₂ , N ₂ O	To improve energy efficiency in Canada	Information Regul atory Education	Implemented	The ecoENERGY Efficiency program: -supports the development and implementation of energy codes, benchmarking tools, training and information materials to improve the energy efficiency of commercial and institutional buildings in Canada. -enables and promotes the construction and retrofit of energy efficient low-rise residential housing through the EnerGuide Rating System, the R-2000 Standard, and ENERGY STAR for New Homes initiatives; -introduces or raises energy efficiency standards for a range of products, and promotes energy-efficient products through the ENERGY STAR initiative; -aids the adoption and implementation of an energy management standard in Canada, accelerates energy-savings investments in industrial facilities and supports the exchange of best-practices information within Canada's industrial sector; and -provides Canadians with decision-making tools for buying more fuel efficient vehicles including introducing improved vehicle fuel consumption labels. It also provides Canadians and Canada's commercial/ institutional fleet sector with information to operate their vehicles to reduce fuel consumption by exposing drivers to fuel-efficient driving techniques.Note: The estimated mitigation impact of 6,500 kt in 2020 only includes energy efficiency impacts associated with policies and measures	2011	Natural Resources Canada
ecoENERGY Innovation Initiative	Cross-cutting	CO ₂	To support renewable and clean energy technologies	Fiscal	Implemented	that occurred since Canada's 5th National	2011	Natural Resources Canada
ecoENERGY Technology Initiative	Cross-cutting	CO ₂	To increase clean energy supply, reduce energy waste, and reduce pollution from conventional energy	Fiscal	Implemented	\$230 million investment in science and technology to accelerate the development and market readiness of technology solutions in clean energy. The ecoENERGY Technology Initiative also contributed \$7.2 million to the International Energy Agency Greenhouse Gas Research and Development Programme Weyburn-Midale CO2 Monitoring and Verification Project which studied CO2 geological storage in depleted oilfields. It was conducted in conjunction with two commercial CO2-enhanced oil recovery operations near Weyburn, Saskatchewan. Other carbon capture and storage funding through the ecoENERGY Technology Initiative includes Enhance Energy's Alberta Carbon Trunk Line (1.8 Mt of CO2 per year beginning in 2015) and Husky's Lloydminster pilot project (0.1 Mt of CO2 per year since 2011). The latter is expected to result in emissions reductions of up to 200 kt CO2 per year.	2007	Natural Resources Canada
Carbon Capture and Storage Investment in Canada's Federal Budget 2008	Cross-cutting	CO ₂	To support the SaskPower Boundary Dam clean energy technology project	Fiscal	Implemented	As part of Budget 2008, a one-time allocation of \$240 million was given towards the SaskPower Boundary Dam carbon capture and storage project which will capture and store up to 1,000 kt CO2 per year from 2014 onwards for the life of the plant.	2014	Government of Canada

CAN_BR1_v1.0

1,000.00

Table 3	
Progress in achievement of the quantified economy-wide emission reduction target: information on mitigation actions and their effects	

Name of mitigation actior	a Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)
Clean Energy Fund	Cross-cutting	CO ₂	To support clean energy technology research, demonstration and development	Fiscal	Implemented	The Government of Canada has allocated \$317.6 million over five years (2009/10–2013/14) for the demonstration of promising technologies, including large-scale carbon capture and storage projects, and renewable energy and clean energy systems demonstration and research and development projects. The Fund is expected to result in emissions reductions of up to 2,800 kt CO2 eq per year from 2015 to 2025, and possibly beyond.	2009	Natural Resources Canada	2,800.0
Sustainable Development Technology Canada– Sustainable Development Tech Fund	Cross-cutting	CO ₂ , CH ₄ , N ₂ O	 Support for renewable and clean energy technologies as part of a broader mandate to support the development, demonstration and commercialization of clean technologies. 	Economic	Implemented	The Government of Canada has allocated a total of \$915 million to Sustainable Development Technology Canada's Sustainable Development Tech Fund, including an injection of \$325 million in Budget 2013. To date, the Sustainable Development Tech Fund has allocated \$592 million to support 245 projects across Canada, leveraging an additional \$1.5 billion mostly from industry. GHG emissions reductions (as well as other positive environmental outcomes) are an indirect and long-term objective. It is estimated that Sustainable Development Technology Canada's efforts will have resulted in a total cumulative global GHG reduction of 135.8 Mt of CO2 eq by 2020. As of 2012, completed projects are estimated to have yielded a total of 2.1 Mt of CO2 eq.		Sustainable Development Technology Canada (Environment Canada and Natural Resources Canada)	N
ecoENERGY for Aboriginal and Northern Communities	Cross-cutting	CO2	Reduced GHG emissions in Aboriginal and northern communities	Fiscal	Implemented	The ecoENERGY for Aboriginal and Northern Communities Program is investing \$20 million over five years to support Aboriginal and northern communities, including off-grid communities, to reduce GHG emissions through the integration of proven renewable energy technologies such as residual heat recovery, biomass, geothermal, wind, solar and small hydro. The program provides funding support for the design and construction of renewable energy projects integrated with community buildings, and for the feasibility stages of larger renewable energy projects, thereby displacing natural gas, coal and diesel generation of electricity and heat. The objective of the ecoENERGY for Aboriginal and Northern Communities Program (2011––2016) is to reduce or displace natural gas, coal and diesel generation of electricity thereby reducing greenhouse gas emissions by a projected 1.5 Mt over a 20-year project lifecycle for all projects funded by March 31, 2016. Note: The program funds larger renewable energy projects at the feasibility stages. As a result, it is possible that not all of the funded projects will reach the implementation phase and realize greenhouse gas reductions. In some cases, greenhouse gas reductions may be not be realized until after 2020.		Aboriginal Affairs and Northern Development Canada	
British Columbia Carbon Γax	Cross-cutting	CH ₄ , CO ₂ , HFCs, N ₂ O, PFCs, SF ₆	To introduce a cost for GHG emissions from fossil fuels	Economic	Implemented	This revenue-neutral tax applies to virtually all fossil fuels, including: gasoline, diesel, natural gas, coal, propane, and home heating fuel. The carbon tax started at a rate based on \$10 per tonne of associated carbon or carbon-equivalent emissions, and will rise by \$5 each year over the next four years, reaching \$30 per tonne in 2012 where it will remain. The revenue generated by this tax is returned to individuals and businesses through reductions to other taxes and other tax credits.	2008	British Columbia	3,000.0
Carbon Neutral Government of British Columbia	Cross-cutting		To achieve carbon neutrality in government operations	Regulatory	Implemented	The Greenhouse Gas Reductions Targets Act required the provincial government, including provincial ministries and agencies, schools, colleges, universities, health authorities and Crown corporations, to become carbon neutral by 2010 and to make public a report every year detailing actions taken towards carbon neutrality. The province has since announced that it achieved carbon neutrality in 2010, 2011 and 2012. Emissions reductions offset market development, outreach, and demonstration.	2007	British Columbia	- NI

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementi ent
Alberta Industrial Regulations	Cross-cutting		To limit emissions intensity from the industrial sector	Regulatory	Implemented	Industrial facilities that emit more than 100,000 tonnes of CO2 eq are required to reduce their emissions intensity by 12% using a baseline based on past emissions. Regulated facilities have four compliance options: improve the GHG intensity of their operations; buy emissions performance credits from other regulated facilities that achieve reductions beyond their requirement; buy Alberta-based offsets; or pay \$15 per tonne of CO2 eq to the Climate Change and Emissions Management Fund. As of 2013, the regulation covers 106 facilities from 15 industrial sectors (about half of Alberta's GHG emissions).		Alberta
Alberta Climate Change Emissions Management Fund	Cross-cutting		To promote investments in green projects and technologies	Economic	Implemented	The Climate Change and Emissions Management Fund invests in projects and technology to reduce GHG emissions in Alberta, including renewable forms of energy and cleaner energy development. Funds come from companies who have chosen to pay for their excess emissions, one of the four compliance options under Alberta's Industrial Regulations. Since 2007, around \$400 million has been paid into the clean technology fund, and 182 million has been invested in 48 clean energy projects.		Alberta
SaskPower demonstration carbon capture and storage projects	Cross-cutting		To support the development of carbon capture and storage technology	Fiscal	Implemented	Saskatchewan has invested upwards of \$17 million in capture and storage projects and projects that reduce flaring. Together with industry and government partners, it has several capture and storage projects underway. The Weyburn-Midale project is the largest capture and storage demonstration site in the world. Saskatchewan is also implementing the approximately \$1 billion, 115 megawatt project at Boundary Dam, with a \$240 million federal government contribution. Once operational in 2014, the Boundary Dam Project is expected to capture up to 1 Mt of CO2 per year, thereby reducing emissions by 7.2% from 2002 levels.		Saskatchewa
Saskatchewan Go Green Fund in Environment	Cross-cutting		To reduce GHG emissions through green initiatives	Fiscal	Implemented	Launched as part of the Go Green Plan, this fund invests in projects which reduce or avoid GHG emissions, among other environmental priorities such as water conservation. The 2011 Saskatchewan budget included \$17 million in funding to the Go Green Fund and green initiatives funding for Energy and Resources. Previously funded initiatives include the High Wind and Storage Project, which aims to develop wind energy and energy storage technology, and AQUISTORE, which will develop technologies for carbon dioxide storage in saline aquifers.		Saskatchewa
Manitoba Biomass Energy Support Program	Cross-cutting	CO ₂	To reduce GHG emissions from coal to promote biomass energy	Economic	Implemented	This program provides up to \$400,000 in grants to encourage coal users to switch to biomass energy products and support the expansion and growth of the biomass energy production industry. It consists of two components: 1) a consumer support component that provides grants of up to \$12,000 to coal users to help offset the price differential between coal and biomass products; and 2) a capital component that provides grants of up to \$50,000 to help biomass users and processors develop high-quality, renewable biomass products for use in combustion heating systems.		Manitoba
Ontario Places to Grow Act	Cross-cutting		To reduce GHG emissions from land use and transportation	Regulatory	Implemented	The Growth Plan for the Greater Golden Horseshoe 2006, is designed to support greater density and transit alternatives. These help limit growing traffic congestion and urban sprawl. The Growth Plan for Northern Ontario, 2011, under the Places to Grow Act, 2005, includes policies to incorporate climate change mitigation and adaptation considerations into planning and decision making where appropriate.	2005	Ontario
Ontario Provincial Policy Statement	Cross-cutting		To provide policy direction in matters of provincial interest in land use planning and development	Information	Implemented	The Provincial Policy Statement guides municipalities in making land use planning decisions that influence transportation, energy demand, and encourages the development of compact communities and the reduction of emissions.	2005	Ontario

CAN_BR1_v1.0

Estimate of mitigation impact (not enting entity or entities cumulative, in kt CO $_2$ eq) 10,000.00 700.00 NE ewan NE lewan NE NE NE

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	Objective and/or activity affected	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementi enti
Ontario Next Generation Jobs Fund	Cross-cutting		To support the development of green technologies	Fiscal	Implemented	This fund supports projects related to the development of clean cars, clean fuels, and clean products and technology in Ontario. Projects must demonstrate environmental and economic benefits, including job creation and GHG emissions reduction.	2007	Ontario
Ontario Innovation Demonstration Fund	Cross-cutting		To support the development of green technologies	Fiscal	Implemented	The Innovation Demonstration Fund supports pilot demonstrations in emerging technologies with a preference towards environmental, alternative energy, bio-products, hydrogen and other green sectors. The Innovation Demonstration Fund helps companies mitigate technological risk and addresses the financing gap that exists between research and development and commercialization.	2006	Ontario
Ontario 50 Million Tree Program	Cross-cutting		To sequester carbon and improve adaptive capacity of the settled landscape	Fiscal	Implemented	This 18 year program, to invest \$79 million in the planting of 50 million trees on the settled landscape of southern Ontario that will sequester 6.6 Mt of CO2 by 2050 and help restore forest cover on this highly fragmented landscape.	2007	Ontario
Quebec 2013–2020 Climate Change Action Plan and Adaptation Strategy	Cross-cutting		To reduce GHG emissions by 25% compared to 1990 levels in 2020	Regulatory	Implemented	The 2013–2020 Climate Change Action Plan has an estimated \$3 billion budget over 8 years to finance 30 priorities in the following areas: transport, industry, buildings, land-use planning, research and development, government procurement, energy efficiency, bio-energy, agriculture and waste management. At the heart of the action plan is Québec's cap-and-trade system which allows for the funding of most of its GHG reduction measures through the government sale of emission allowances. This plan takes over from the 2006–2012 action plan.		Quebec
Quebec Duty on Non- Renewable Fossil Fuels Payable to the Green Fund	Cross-cutting	Other (TBD)	To reduce emissions from gasoline and other fossil fuels	Regulatory	Implemented	A levy that applies to distributors of gasoline and fossil fuel used for energy efficiency purposes. It is calculated based on GHG by type of energy and generates revenues of \$200 million a year that are directed to the provincial Green Fund to reduce GHG emissions and improve public transport.	2007	Quebec
Quebec's Cap-and-Trade System	Cross-cutting		Cap-and-trade system	Other (Economic)	Implemented	One of the key elements of Quebec's approach to climate change is a cap-and-trade system which became effective in January 2012, with a first compliance period starting January 2013. Covered entities primarily include electricity production and distribution and large industrial facilities. In 2015, the system will expand to cover the distribution of fuel used in the transportation, building, and small- and mediumsized business sectors. Quebec and California will formally link their emissions trading schemes in 2014. Quebec anticipates its auction of GHG emission allowances for the fall of 2013 and the first Quebec–California joint auction at the beginning of 2014.		Quebec
Development strategy for Quebec's environmental and green technology industry	Cross-cutting		To support research and development as well as businesses in the field of green technology	Other (Research)	Implemented	In relation to climate change, new energies, energy efficiency, and carbon capture and sequestration among other areas, the strategy aims to: support industrial research; help disseminate information on university research projects in green technology; support technology refinement and demonstration projects; and, improve environmental certification mechanisms and the implementation of measures to facilitate the execution of demonstration projects.	2008	Quebec
New Brunswick Energy Blue Print	Cross-cutting		To improve energy security, affordability and reliability, environmental responsibility, effective regulation	Other (Other)	Implemented	The Policy is a three year plan, with a ten year view and includes five key energy objectives. Thirteen of the 20 actions relate directly or indirectly to reducing GHG emissions.	2011	New Brunsv

CAN_BR1_v1.0

NE

NE

NE NE NE

NE

NE

1,300.00

Name of mitigation action ^a	Sector(s) affected ^b	GHG(s) affected	<i>Objective and/or activity affected</i>	Type of instrument ^c	Status of implementation ^d	Brief description ^e	Start year of implementation	Implementing entity or entities	Estimate of mitigation impact (not cumulative, in kt CO ₂ eq)
New Brunswick Energy Efficiency Regulation	Cross-cutting		To improve energy efficiency and energy conservation	Other (Education)	Implemented	Efficiency New Brunswick is a Crown Corporation Agency established in 2005. Its mandate is to provide advice and solutions to help residents use energy more efficiently, make better energy choices, manage energy expenses and lessen the impact of energy use on the environment, More specifically, the agency's mandate is to: • Promote energy efficiency measures in the residential, community and business sectors • Develop and deliver programs and initiatives in relation to energy efficiency; • Promote the development of an energy efficiency services industry; • Act as a central resource for the promotion of energy efficiency; and • Raise awareness of how energy efficiency measures can lead to a more reliable energy supply for New Brunswick.	2005	New Brunswick	300.00
New Brunswick's Air Quality Regulations	Cross-cutting		To limit GHG emissions from industrial sectors	Regulatory	Planned	This sets the context for all industrial sectors operating in the province and includes a strong industrial approvals program which generally incorporates facility level emission caps, as well as monitoring and reporting programs.	2014	New Brunswick	NE
Yukon Government Carbon-Neutrality	Cross-cutting		To achieve carbon neutrality	Regulatory	Adopted	The Government of Yukon's 2009 Climate Change Action Plan commits the Yukon Government to cap GHG emissions from its internal operations in 2010, reduce them by 20% by 2015 and become carbon neutral by 2020. It also committed the government to report on these emissions through the Climate Registry and to develop a carbon offset policy for internal operations.	2009	Yukon	NE
Yukon Government sector specific targets	Cross-cutting		To minimize growth in overall Yukon emissions	Regulatory	Implemented	Building Sector: -By 2016, increase the average energy efficiency of new buildings constructed outside of Whitehorse by 25% compared to 2011 standards -By 2020, reduce the emissions intensity of existing buildings across Yukon by 5% -By 2020, meet 20% of government buildings' space heating needs with clean energy sources Transportation Sector: -By 2015, reduce emissions from Yukon government light fleet operations by 5% -By 2015, reduce emissions in the transportation sector by 10% Electricity Sector -By 2020, reduce the emission intensity of on- grid diesel power generation by 20% -By 2016, reduce on-grid electrical usage by 5 gigwatts per hour through demand-side management programs Industrial Sector -By 2016, reduce the electrical energy intensity of industrial operations present in 2011 by 15% -By 2014, establish reporting protocols for stationary facilities emitting over 2.5 kt of GHG per year.	2012	Yukon	NE
Nunavut's Energy Strategy	Cross-cutting		To reduce fossil fuel consumption	Other (Other)	Adopted	As part of the Energy Strategy, the Nunavut Government stated a goal to reduce the Territory's dependency on imported fuel through conservation and development of renewable energy sources.	2006	Nunavut	NE

Note: The two final columns specify the year identified by the Party for estimating impacts (based on the status of the measure and whether an expost or ex ante estimation is available).

Abbreviations : GHG = greenhouse gas; LULUCF = land use, land-use change and forestry.

^{*a*} Parties should use an asterisk (*) to indicate that a mitigation action is included in the 'with measures' projection.

^b To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors, cross-cutting, as appropriate.

^c To the extent possible, the following types of instrument should be used: economic, fiscal, voluntary agreement, regulatory, information, education, research, other.

^d To the extent possible, the following descriptive terms should be used to report on the status of implementation: implemented, adopted, planned.

^e Additional information may be provided on the cost of the mitigation actions and the relevant timescale.

^{*f*} Optional year or years deemed relevant by the Party.

Custom Footnotes

Table 4**Reporting on progress**^{a, b}

CAN_BR1_v1.0

	Total emissions excluding LULUCF	Contribution from LULUCF ^d	Quantity of units from market based mechanisms under the Convention		Quantity of units from other market based mechanisms		
Year ^c	$(kt \ CO_2 \ eq)$	$(kt \ CO_2 \ eq)$	(number of units)	$(kt \ CO_2 \ eq)$	(number of units)	$(kt \ CO_2 \ eq)$	
(2005)	737,000.00						
2005	737,000.00						
2010	701,000.00	-2,000.00					
2011	702,000.00	-9,097.00					
2012							

Abbreviation : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b For the base year, information reported on the emission reduction target shall include the following: (a) total GHG emissions, excluding emissions and removals from the LULUCF sector; (b) emissions and/or removals from the LULUCF sector based on the accounting approach applied taking into consideration any relevant decisions of the Conference of the Parties and the activities and/or land that will be accounted for; (c) total GHG emissions, including emissions and removals from the LULUCF sector. For each reported year, information reported on progress made towards the emission reduction targets shall include, in addition to the information noted in paragraphs 9(a--c) of the UNFCCC biennial reporting guidelines for developed country Parties, information on the use of units from market-based mechanisms.

^c Parties may add additional rows for years other than those specified below.

d Information in this column should be consistent with the information reported in table 4(a)I or 4(a)II, as appropriate. The Parties for which all relevant information on the LULUCF contribution is reported in table 1 of this common tabular format can refer to table 1.

Custom Footnotes

2012 estimates are not yet available

Numbers rounded to the nearest Mt

Table 4(a)I

CAN_BR1_v1.0

Progress in achieving the quantified economy-wide emission reduction targets – further information on mitigation actions relevant to the contribution of the land use, land-use change and forestry sector in 2011^{a,b}

	Net GHG emissions/removals from LULUCF categories ^c	Base year/period or reference level value ^d	reported year	Cumulative contribution from LULUCF ^e	Accounting approach ^f
Total LULUCF	57,078.00	(kt CO 2 eq 66,174.00			Other (Based on
					LULUCF Convention reporting categories)
A. Forest land	53,297.00	57,858.00	-4,562.00		Other (Based on LULUCF Convention reporting categories)
1. Forest land remaining forest land	53,994.00	58,786.00	-4,792.00		Other (Based on LULUCF Convention reporting categories)
2. Land converted to forest land	-697.00	-928.00	230.00		Other (Based on LULUCF Convention reporting categories)
3. Other ^g					Other (Based on LULUCF Convention reporting categories)
B. Cropland	-7,973.00	-4,100.00	-3,874.00		Other (Based on LULUCF Conventior reporting categories)
1. Cropland remaining cropland	-13,240.00	-10,127.00	-3,113.00		Other (Based on LULUCF Convention reporting categories)
2. Land converted to cropland	5,267.00	6,027.00	-761.00		Other (Based on LULUCF Convention reporting categories)
3. Other ^g					Other (Based on LULUCF Convention reporting categories)
C. Grassland					Other (Based on LULUCF Convention reporting categories)
1. Grassland remaining grassland					Other (Based on LULUCF Convention reporting categories)
2. Land converted to grassland					Other (Based on LULUCF Conventior reporting categories)
3. Other ^g					Other (Based on
					LULUCF Conventior reporting categories)
D. Wetlands	2,403.00	3,053.00	-649.00		Other (Based on LULUCF Conventior reporting categories)
1. Wetland remaining wetland	1,935.00	2,164.00	-229.00		Other (Based on LULUCF Conventior reporting categories)
2. Land converted to wetland	468.00	889.00	-420.00		Other (Based on LULUCF Conventior reporting categories)
3. Other ^g					Other (Based on LULUCF Convention reporting categories)
E. Settlements	9,351.00	9,363.00	-12.00		Other (Based on LULUCF Convention reporting categories)
1. Settlements remaining settlements					Other (Based on LULUCF Convention reporting categories)
2. Land converted to settlements	9,351.00	9,363.00	-12.00		Other (Based on LULUCF Convention reporting categories)
3. Other ^g					Other (Based on LULUCF Conventior reporting categories)
F. Other land	NA	NA	NA		Other (Based on LULUCF Conventior reporting categories)
1. Other land remaining other land					Other (Based on LULUCF Conventior reporting categories)
2. Land converted to other land	NA	NA	NA		Other (Based on LULUCF Conventior reporting categories)
3. Other ^g					Other (Based on LULUCF Conventior reporting categories)
Harvested wood products	IE	IE	IE		Other (Based on LULUCF Convention reporting categories)

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Parties that use the LULUCF approach that is based on table 1 do not need to complete this table, but should indicate the approach in table 2. Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^c For each category, enter the net emissions or removals reported in the most recent inventory submission for the corresponding inventory year. If a category differs from that used for the reporting under the Convention or its Kyoto Protocol, explain in the biennial report how the value was derived.

^d Enter one reference level or base year/period value for each category. Explain in the biennial report how these values have been calculated.

^e If applicable to the accounting approach chosen. Explain in this biennial report to which years or period the cumulative contribution refers to.

^{*f*} Label each accounting approach and indicate where additional information is provided within this biennial report explaining how it was implemented, including all relevant accounting parameters (i.e. natural disturbances, caps).

^g Specify what was used for the category "other". Explain in this biennial report how each was defined and how it relates to the categories used for reporting under the Convention or its Kyoto Protocol.

Custom Footnotes

2012 historical estimates are not yet available

While the historical Forest Land remaining Forest Land (FLFL) values are consistent with information reported in Canada's National Inventory Report (NIR) 2013, they are not the same as numbers reported in the Common Reporting Format (CRF) tables of NIR2013 because of the treatment of harvested wood products (HWPs).

In the CRF tables, HWP carbon is assumed to be instantaneously oxidized at the time of harvest. In contrast, all estimates shown in this Table assume a pool of HWP staring in 1990 from domestically harvested wood and include emissions of carbon from the pool over time.

The historical FLFL numbers here correspond to numbers shown in Table 7.5 of NIR 2013. Values for 2012 onward use provincial/territorial projections for harvest and assume no natural disturbance impacts except a low background level of fire emissions.

CAN_BR1_v1.0

Progress in achieving the quantified economy-wide emission reduction targets – further information on mitigation actions relevant to the contribution of the land use, land-use change and forestry sector in 2012^{a, b}

	emissions/removals from LULUCF categories ^c	Base year/period or reference level value ^d (kt CO ₂ eq	Contribution from LULUCF for reported year	Cumulative contribution from LULUCF ^e	Accounting approach ^f
otal LULUCF		(ni CO 2 80	,		Other (Based on LULUCF Conventio reporting categories)
A. Forest land					Other (Based on LULUCF Conventio reporting categories)
1. Forest land remaining forest land					Other (Based on LULUCF Conventio reporting categories)
2. Land converted to forest land					Other (Based on LULUCF Conventio reporting categories)
3. Other ^g					Other (Based on LULUCF Convention reporting categories)
B. Cropland					Other (Based on LULUCF Convention reporting categories)
1. Cropland remaining cropland					Other (Based on LULUCF Conventio
2. Land converted to cropland					Conter (Based on LULUCF Convention
3. Other ^g					reporting categories) Other (Based on LULUCF Conventio
C. Grassland					reporting categories) Other (Based on LULUCF Conventio
1. Grassland remaining grassland					reporting categories) Other (Based on LULUCF Conventio
2. Land converted to grassland					reporting categories
3. Other ^g					LULUCF Convention reporting categories) Other (Based on
D. Wetlands					LULUCF Convention reporting categories) Other (Based on
					LULUCF Conventio reporting categories)
1. Wetland remaining wetland					Other (Based on LULUCF Convention reporting categories)
2. Land converted to wetland					Other (Based on LULUCF Conventio reporting categories)
3. Other ^g					Other (Based on LULUCF Conventio reporting categories)
E. Settlements					Other (Based on LULUCF Conventio reporting categories)
1. Settlements remaining settlements					Other (Based on LULUCF Conventio reporting categories)
2. Land converted to settlements					Other (Based on LULUCF Conventio reporting categories)
3. Other ^g					Other (Based on LULUCF Conventio reporting categories)
F. Other land					Other (Based on LULUCF Convention reporting categories)
1. Other land remaining other land					Other (Based on LULUCF Convention reporting categories)
2. Land converted to other land					Other (Based on LULUCF Conventio reporting categories)
3. Other ^g					Other (Based on LULUCF Conventio
					reporting categories) Other (Based on

Table 4(a)I

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

^b Parties that use the LULUCF approach that is based on table 1 do not need to complete this table, but should indicate the approach in table 2. Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^c For each category, enter the net emissions or removals reported in the most recent inventory submission for the corresponding inventory year. If a category differs from that used for the reporting under the Convention or its Kyoto Protocol, explain in the biennial report how the value was derived.

^d Enter one reference level or base year/period value for each category. Explain in the biennial report how these values have been calculated.

^e If applicable to the accounting approach chosen. Explain in this biennial report to which years or period the cumulative contribution refers to.

^{*f*} Label each accounting approach and indicate where additional information is provided within this biennial report explaining how it was implemented, including all relevant accounting parameters (i.e. natural disturbances, caps).

^g Specify what was used for the category "other". Explain in this biennial report how each was defined and how it relates to the categories used for reporting under the Convention or its Kyoto Protocol.

Custom Footnotes

2012 historical estimates are not yet available

While the historical Forest Land remaining Forest Land (FLFL) values are consistent with information reported in Canada's National Inventory Report (NIR) 2013, they are not the same as numbers reported in the Common Reporting Format (CRF) tables of NIR2013 because of the treatment of harvested wood products (HWPs).

In the CRF tables, HWP carbon is assumed to be instantaneously oxidized at the time of harvest. In contrast, all estimates shown in this Table assume a pool of HWP staring in 1990 from domestically harvested wood and include emissions of carbon from the pool over time.

The historical FLFL numbers here correspond to numbers shown in Table 7.5 of NIR 2013. Values for 2012 onward use provincial/territorial projections for harvest and assume no natural disturbance impacts except a low background level of fire emissions.

Table 4(b) **Reporting on progress^{a, b, c}**

	Unite of market has a due of minute		Ye	ear
	Units of market based mechanisms		2011	2012
	Kunda Durata ad umita	(number of units)		
	Kyoto Protocol units	$(kt CO_2 eq)$		
		(number of units)		
	AAUs	(kt CO2 eq)		
		(number of units)		
Kyoto Protocol	ERUs	(kt CO2 eq)		
rotocol Inits ^d		(number of units)		
mus	CERs	(kt CO2 eq)		
		(number of units)		
	tCERs	(kt CO2 eq)		
		(number of units)		
	lCERs	(kt CO2 eq)		
	Units from market-based mechanisms under the	(number of units)		
	Convention	$(kt CO_2 eq)$		
0.1				
Other units _{d,e}		(number of units)		
	Units from other market-based mechanisms	$(kt CO_2 eq)$		
		(number of units)		
Total		$(kt CO_2 eq)$		

Abbreviations: AAUs = assigned amount units, CERs = certified emission reductions, ERUs = emission reduction units, ICERs = long-term certified emission reductions, tCERs = temporary certified emission reductions. Note: 2011 is the latest reporting year.

^{*a*} Reporting by a developed country Party on the information specified in the common tabular format does not prejudge the position of other Parties with regard to the treatment of units from market-based mechanisms under the Convention or other market-based mechanisms towards achievement of quantified economy-wide emission reduction targets.

 b For each reported year, information reported on progress made towards the emission reduction target shall include, in addition to the information noted in paragraphs 9(a-c) of the reporting guidelines, on the use of units from market-based mechanisms.

^c Parties may include this information, as appropriate and if relevant to their target.

^d Units surrendered by that Party for that year that have not been previously surrendered by that or any other Party.

^e Additional rows for each market-based mechanism should be added, if applicable.

Custom Footnotes

Table 5

Summary of key variables and assumptions used in the projections analysis^a

Key underlying assur	nptions		Historical ^b Projected						cted		
Assumption	Unit	1990	1995	2000	2005	2010	2011	2015	2020	2025	2030
Oil Price	CAD\$2010/bbl	38.63	25.75	39.04	64.38	81.87	97.73	97.86	105.42	108.09	110.82
Natural Gas Price	CAD\$2010/GJ	2.71	2.49	5.85	10.45	4.77	4.28	4.46	5.29	5.90	6.34
Real GDP Chain-Weighted (CAD\$1997)*	%	0.20	2.80	5.20	2.90	3.20	2.50	2.60	1.60	1.50	1.70
Real GDP per capita (CAD\$1997)*	%	-1.30	1.80	4.30	2.00	2.00	1.30	1.50	0.60	0.60	0.90
Consumer Price Index (1992 = 100)*	%	4.80	2.20	2.70	2.20	1.80	2.90	2.00	2.20	2.00	2.10
Population*	%	1.50	1.00	0.90	1.00	1.20	1.20	1.10	1.00	0.90	0.80
Population of Driving Age (18 - 75)*	%	1.50	1.20	1.20	1.20	1.40	1.30	1.10	0.70	0.60	0.60
Labour Force*	%	1.30	0.80	1.70	0.80	1.10	0.90	1.00	0.70	0.50	0.50

^{*a*} Parties should include key underlying assumptions as appropriate.

^b Parties should include historical data used to develop the greenhouse gas projections reported.

Custom Footnotes

* Annual growth rate

Abbreviations: CAD = Canadian dollars; bbl = barrel; Gj = gigajoule; Mt CO2 eq = megatonne of carbon dioxide equivalent

For further detail on Macroeconomic assumptions, please see Chapter 5, Annex I— Baseline Data and Assumptions, in Canada's 6th National Communication Report.

Table 6(a)

Information on updated greenhouse gas projections under a 'with measures' scenario^a

			GHG emi	ssions and ren	novals ^b			GHG emissio	n projections
				$(kt CO_2 eq)$				(kt CC	O_2 eq)
	Base year (2005)	1990	1995	2000	2005	2010	2011	2020	2030
Sector ^{d,e}									
Energy									
Transport									
Industry/industrial processes									
Agriculture									
Forestry/LULUCF		-158,000.00	130,000.00	-120,000.00	-7,000.00	72,000.00	57,000.00	-128,000.00	-142,000.00
Waste management/waste									
Other (specify)	739,000.00	590,000.00	639,000.00	718,000.00	739,000.00	701,000.00	702,000.00	734,000.00	815,000.00
Transportation (Economic Sector)	168,000.00	128,000.00	137,000.00	155,000.00	168,000.00	167,000.00	170,000.00	176,000.00	179,000.00
Buildings	84,000.00	70,000.00	76,000.00	82,000.00	84,000.00	79,000.00	84,000.00	95,000.00	110,000.00
Electricity	121,000.00	94,000.00	98,000.00	129,000.00	121,000.00	99,000.00	90,000.00	82,000.00	59,000.00
Waste and Other	49,000.00	50,000.00	49,000.00	51,000.00	49,000.00	48,000.00	49,000.00	50,000.00	55,000.00
Agriculture (Economic Sector)	68,000.00	54,000.00	61,000.00	66,000.00	68,000.00	69,000.00	68,000.00	69,000.00	70,000.00
Oil and Gas	162,000.00	101,000.00	124,000.00	150,000.00	162,000.00	164,000.00	163,000.00	200,000.00	241,000.00
Emissions Intensive Trade Exposed Industries	87,000.00	93,000.00	94,000.00	85,000.00	87,000.00	75,000.00	78,000.00	90,000.00	101,000.00
LULUCF Contribution								-28,000.00	
Gas									
CO ₂ emissions including net CO ₂ from LULUCF	563,000.00	296,000.00	590,000.00	443,000.00	563,000.00	607,000.00	594,000.00	484,000.00	512,000.00
CO ₂ emissions excluding net CO ₂ from LULUCF	579,000.00	459,000.00	491,000.00	565,000.00	579,000.00	554,000.00	555,000.00	614,000.00	656,000.00
CH ₄ emissions including CH ₄ from LULUCF	104,000.00	75,000.00	105,000.00	96,000.00	104,000.00	102,000.00	102,000.00	87,000.00	88,000.00
CH ₄ emissions excluding CH ₄ from LULUCF	98,000.00	72,000.00	86,000.00	94,000.00	98,000.00	90,000.00	91,000.00	85,000.00	86,000.00
N ₂ O emissions including N ₂ O from LULUCF	54,000.00	51,000.00	66,000.00	50,000.00	54,000.00	54,000.00	53,000.00	50,000.00	52,000.00
N ₂ O emissions excluding N ₂ O from LULUCF	50,000.00	49,000.00	54,000.00	49,000.00	50,000.00	47,000.00	46,000.00	49,000.00	51,000.00
HFCs	5,000.00	800.00	500.00	3,000.00	5,000.00	7,000.00	8,000.00	13,000.00	19,000.00
PFCs	3,000.00	7,000.00	6,000.00	4,000.00	3,000.00	2,000.00	2,000.00	2,000.00	2,000.00
SF ₆	2,000.00	3,000.00	2,000.00	3,000.00	2,000.00	400.00	400.00	300.00	400.00
Other (specify)								-28,000.00	NE
LULUCF Contribution								-28,000.00	NE
Total with $LULUCF^{f}$	731,000.00	432,800.00	769,500.00	599,000.00	731,000.00	772,400.00	759,400.00	608,300.00	673,400.00
Total without LULUCF	737,000.00	590,800.00	639,500.00	718,000.00	737,000.00	700,400.00	702,400.00	735,300.00	814,400.00

Table 6(a)

CAN_BR1_v1.0

Information on updated greenhouse gas projections under a 'with measures' scenario^a

		GHG em	issions and ren	novals ^b			GHG emissio	on projections
			$(kt CO_2 eq)$				(kt CO ₂ eq)	
Base year (2005)	1990	1995	2000	2005	2010	2011	2020	2030

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} In accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", at a minimum Parties shall report a 'with measures' scenario, and may report 'without measures' and 'with additional measures' scenarios. If a Party chooses to report 'without measures' and/or 'with additional measures' scenarios they are to use tables 6(b) and/or 6(c), respectively. If a Party does not choose to report 'without measures' or 'with additional measures' scenarios then it should not include tables 6(b) or 6(c) in the biennial report.

^b Emissions and removals reported in these columns should be as reported in the latest GHG inventory and consistent with the emissions and removals reported in the table on GHG emissions and trends provided in this biennial report. Where the sectoral breakdown differs from that reported in the GHG inventory Parties should explain in their biennial report how the inventory sectors relate to the sectors reported in this table.

^c 20XX is the reporting due-date year (i.e. 2014 for the first biennial report).

 d^{d} In accordance with paragraph 34 of the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", projections shall be presented on a sectoral basis, to the extent possible, using the same sectoral categories used in the policies and measures section. This table should follow, to the extent possible, the same sectoral categories as those listed in paragraph 17 of those guidelines, namely, to the extent appropriate, the following sectors should be considered: energy, transport, industry, agriculture, forestry and waste management.

^e To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors (i.e. cross-cutting), as appropriate.

^f Parties may choose to report total emissions with or without LULUCF, as appropriate.

Custom Footnotes

Totals may not add up due to rounding

Remaining Cropland; Forest Land Converted to Other Land Categories, Land Converted to Forest Land. While the historical Forest Land remaining Forest Land (FLFL) values are consistent with information reported in Canada's National Inventory Report (NIR) 2013, they are not the same as numbers reported in the Common Reporting Format (CRF) tables of NIR2013 because of the treatment of harvested wood products (HWPs).

estimates shown in this Table assume a pool of HWP staring in 1990 from domestically harvested wood and include emissions of carbon from the pool over time. The historical FLFL numbers here correspond to numbers shown in Table 7.5 of NIR 2013. Values for 2012 onward use provincial/territorial projections for harvest and assume no natural disturbance impacts except a low background level of fire emissions.

The row "Total with LULUCF" is not accurate of Canadian total emissions and should not be reflected in this table. See Canada's first Biennial Report for accurately represented tables 6a and 6b

Please see section 5.2 "Comparing Activity Sector Categories to Economic Sectors" - for a description of how Canada's Economic Sectors differ from those defined by the IPCC

Table 6(b)

Information on updated greenhouse gas projections under a 'without measures' scenario^a

			GHG emi	ssions and ren	iovals ^b			GHG emission	projections	
		$(kt \ CO_2 \ eq)$								
	Base year (2005)	1990	1995	2000	2005	2010	2011	2020	2030	
Sector ^{d,e}										
Energy										
Transport										
Industry/industrial processes										
Agriculture										
Forestry/LULUCF		-158,000.00	130,000.00	-120,000.00	-7,000.00	72,000.00	57,000.00			
Waste management/waste										
Other (specify)	739,000.00	590,000.00	639,000.00	718,000.00	739,000.00	701,000.00	702,000.00			
Transportation (Economic Sector)	168,000.00	128,000.00	137,000.00	155,000.00	168,000.00	167,000.00	170,000.00			
Buildings	84,000.00	70,000.00	76,000.00	82,000.00	84,000.00	79,000.00	84,000.00			
Electricity	121,000.00	94,000.00	98,000.00	129,000.00	121,000.00	99,000.00	90,000.00			
Waste and Other	49,000.00	50,000.00	49,000.00	51,000.00	49,000.00	48,000.00	49,000.00			
Agriculture (Economic Sector)	68,000.00	54,000.00	61,000.00	66,000.00	68,000.00	69,000.00	68,000.00			
Oil and Gas	162,000.00	101,000.00	124,000.00	150,000.00	162,000.00	164,000.00	163,000.00			
Emissions Intensive Trade Exposed Industries	87,000.00	93,000.00	94,000.00	85,000.00	87,000.00	75,000.00	78,000.00			
LULUCF Contribution										
Gas				· · · · · · · · ·						
CO ₂ emissions including net CO ₂ from LULUCF	563,000.00	296,000.00	590,000.00	443,000.00	563,000.00	607,000.00	594,000.00	NE	NE	
CO ₂ emissions excluding net CO ₂ from LULUCF	579,000.00	459,000.00	491,000.00	565,000.00	579,000.00	554,000.00	555,000.00	702,000.00	NE	
CH ₄ emissions including CH ₄ from LULUCF	104,000.00	75,000.00	105,000.00	96,000.00	104,000.00	102,000.00	102,000.00	NE	NE	
CH ₄ emissions excluding CH ₄ from LULUCF	98,000.00	72,000.00	86,000.00	94,000.00	98,000.00	90,000.00	91,000.00	95,000.00	NE	
N ₂ O emissions including N ₂ O from LULUCF	54,000.00	51,000.00	66,000.00	50,000.00	54,000.00	54,000.00	53,000.00	NE	NE	
N ₂ O emissions excluding N ₂ O from LULUCF	50,000.00	49,000.00	54,000.00	49,000.00	50,000.00	47,000.00	46,000.00	50,000.00	NE	
HFCs	5,000.00	800.00	500.00	3,000.00	5,000.00	7,000.00	8,000.00	13,000.00	NE	
PFCs	3,000.00	7,000.00	6,000.00	4,000.00	3,000.00	2,000.00	2,000.00	2,000.00	NE	
SF ₆	2,000.00	3,000.00	2,000.00	3,000.00	2,000.00	400.00	400.00	400.00	NE	
Other (specify)										
LULUCF Contribution										
Total with LULUCF ^f	731,000.00	432,800.00	769,500.00	599,000.00	731,000.00	772,400.00	759,400.00	15,400.00	NE	
Total without LULUCF	737,000.00	590,800.00	639,500.00	718,000.00	737,000.00	700,400.00	702,400.00	862,400.00	NE	

Table 6(b) Information on updated greenhouse gas projections under a 'without measures' scenario^{*a*}

	GHG emissions and removals ^b							
	$(kt \ CO_2 \ eq)$							$O_2 eq$)
Base year (2005)	1990	1995	2000	2005	2010	2011	2020	2030

Abbreviations : GHG = greenhouse gas, LULUCF = land use, land-use change and forestry.

^{*a*} In accordance with the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", at a minimum Parties shall report a 'with measures' scenario, and may report 'without measures' and 'with additional measures' scenarios. If a Party chooses to report 'without measures' and/or 'with additional measures' scenarios they are to use tables 6(b) and/or 6(c), respectively. If a Party does not choose to report 'without measures' or 'with additional measures' or 'with additional measures' scenarios then it should not include tables 6(b) or 6(c) in the biennial report.

^b Emissions and removals reported in these columns should be as reported in the latest GHG inventory and consistent with the emissions and removals reported in the table on GHG emissions and trends provided in this biennial report. Where the sectoral breakdown differs from that reported in the GHG inventory Parties should explain in their biennial report how the inventory sectors relate to the sectors reported in this table.

^c 20XX is the reporting due-date year (i.e. 2014 for the first biennial report).

d In accordance with paragraph 34 of the "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part II: UNFCCC reporting guidelines on national communications", projections shall be presented on a sectoral basis, to the extent possible, using the same sectoral categories used in the policies and measures section. This table should follow, to the extent possible, the same sectoral categories as those listed in paragraph 17 of those guidelines, namely, to the extent appropriate, the following sectors should be considered: energy, transport, industry, agriculture, forestry and waste management.

^e To the extent possible, the following sectors should be used: energy, transport, industry/industrial processes, agriculture, forestry/LULUCF, waste management/waste, other sectors (i.e. cross-cutting), as appropriate.

^f Parties may choose to report total emissions with or without LULUCF, as appropriate.

Table 7Provision of public financial support: summary information in 2011^a

					Ye	ear				
		Cana	ıdian dollar -	CAD		USD^{b}				
Allocation channels	Core/		Climate-	specific ^d		Core/		Climate-	specific ^d	
	general ^c	Core/					Mitigation	Adaptation	Cross- cutting ^e	<i>Other</i> ^f
Total contributions through multilateral channels:	54,750,000.0	100,600,000.	51,350,000.0	225,650,000.		54,150,000.0	99,500,000.0	50,790,000.0	223,190,000.	
	0	00	0	00		0	0	0	00	
Multilateral climate change funds ^{<i>g</i>}	54,750,000.0	600,000.00		650,000.00		54,150,000.0	590,000.00		640,000.00	
	0					0				
Other multilateral climate change funds ^h		600,000.00					590,000.00			
Multilateral financial institutions, including regional	0.00	100,000,000.	10,000,000.0	225,000,000.		0.00	98,910,000.0	9,890,000.00	222,550,000.	
development banks		00	0	00			0		00	
Specialized United Nations bodies			41,350,000.0					40,900,000.0		
			0					0		
Total contributions through bilateral, regional and other		2,390,000.00	67,900,000.0	2,860,000.00			2,370,000.00	67,150,000.0	2,830,000.00	
channels			0					0		
Total	54,750,000.0	102,990,000.	119,250,000.	228,510,000.		54,150,000.0	101,870,000.	117,940,000.	226,020,000.	
	0	00	00	00		0	00	00	00	

Abbreviation: USD = United States dollars.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should provide an explanation on methodology used for currency exchange for the information provided in table 7, 7(a) and 7(b) in the box below.

^c This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

^d Parties should explain in their biennial reports how they define funds as being climate-specific.

^e This refers to funding for activities which are cross-cutting across mitigation and adaptation.

^f Please specify.

^g Multilateral climate change funds listed in paragraph 17(a) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

^h Other multilateral climate change funds as referred in paragraph 17(b) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

Custom Footnotes

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891

Each Party shall provide an indication of what new and additional financial resources they have provided, and clarify how they have determined that such resources are new and additional. Please provide this information in relation to table 7(a) and table 7(b).

Documentation Box:

New and additional: Canada's fast-start financing effort is the prime example of Canadian support that is fully new and additional. Canada provided \$1.2 billion in support to projects that were above and beyond what was planned prior to the Copenhagen Accord.

Over the past four years, Canada also responded to priorities identified by bilateral partners in the context of oppoing and longstanding development partnerships that include addressing climate change issues as part of

Table 7**Provision of public financial support: summary information in 2012**^a

					Y	ear					
		Canc	ıdian dollar -	CAD		USD ^b					
Allocation channels	Core/		Climate-	specific ^d		Core/		Climate-	specific ^d		
	general ^c	Mitigation	Adaptation	Cross- cutting ^e	<i>Other</i> ^f	general ^c	Mitigation	Adaptation	Cross- cutting ^e	<i>Other</i> ^f	
Total contributions through multilateral channels:	57,290,000.0	115,500,000.	30,130,000.0	201,970,000.		56,670,000.0	114,270,000.	29,790,000.0	199,770,000.		
	0	00	0	00		0	00	0	00		
Multilateral climate change funds ^{<i>g</i>}	57,290,000.0		990,000.00	2,300,000.00		56,670,000.0		970,000.00	2,280,000.00		
	0					0					
Other multilateral climate change funds ^h			990,000.00	1,300,000.00				970,000.00	1,290,000.00		
Multilateral financial institutions, including regional		100,000,000.		197,170,000.			98,910,000.0		195,020,000.		
development banks		00		00			0		00		
Specialized United Nations bodies		15,500,000.0	29,140,000.0	2,500,000.00			15,360,000.0	28,820,000.0	2,470,000.00		
		0	0				0	0			
Total contributions through bilateral, regional and other		9,160,000.00	81,430,000.0	5,020,000.00			9,070,000.00	80,550,000.0	4,970,000.00		
channels			0					0			
Total	57,290,000.0	124,660,000.	111,560,000.	206,990,000.		56,670,000.0	123,340,000.	110,340,000.	204,740,000.		

00

00

0

00

00

00

Abbreviation: USD = United States dollars.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should provide an explanation on methodology used for currency exchange for the information provided in table 7, 7(a) and 7(b) in the box below.

0

^c This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

^d Parties should explain in their biennial reports how they define funds as being climate-specific.

^e This refers to funding for activities which are cross-cutting across mitigation and adaptation.

^f Please specify.

⁸ Multilateral climate change funds listed in paragraph 17(a) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

^h Other multilateral climate change funds as referred in paragraph 17(b) of the "UNFCCC biennial reporting guidelines for developed country Parties" in decision 2/CP.17.

00

Custom Footnotes

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891

Each Party shall provide an indication of what new and additional financial resources they have provided, and clarify how they have determined that such resources are new and additional. Please provide this information in relation to table 7(a) and table 7(b).

Documentation Box:

New and additional: Canada's fast-start financing effort is the prime example of Canadian support that is fully new and additional. Canada provided \$1.2 billion in support to projects that were above and beyond what was planned prior to the Copenhagen Accord.

Over the past four years, Canada also responded to priorities identified by bilateral partners in the context of ongoing and longstanding development partnerships that include addressing climate change issues as part of

Table 7(a)Provision of public financial support: contribution through multilateral channels in 2011^a

		Total a	mount						
Donor funding	Core/gene	eral ^d	Climate-sp	pecific ^e	Status ^b	Funding source ^f	Financial	Type of support ^{f, g}	Sector
	Canadian dollar - CAD	USD	Canadian dollar - CAD	USD		1 mining source	instrument ^J	1 900 09 040000	Sector
Total contributions through multilateral channels	54,750,000.00	54,150,000.00	377,600,000.00	373,480,000.00					
Multilateral climate change funds ^g	54,750,000.00	54,150,000.00	1,250,000.00	1,230,000.00					
1. Global Environment Facility	54,750,000.00	54,150,000.00			Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. Least Developed Countries Fund									
3. Special Climate Change Fund									
4. Adaptation Fund									
5. Green Climate Fund									
6. UNFCCC Trust Fund for Supplementary Activities			650,000.00	640,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
7. Other multilateral climate change funds			600,000.00	590,000.00					
Global Alliance for Clean Cookstoves			600,000.00	590,000.00	Provided	ODA	Grant	Mitigation	Cross-cutting
Multilateral financial institutions, including regional development banks	0.00	0.00	335,000,000.00	331,350,000.00					
1. World Bank									
2. International Finance Corporation									
3. African Development Bank									
4. Asian Development Bank									
5. European Bank for Reconstruction and Development									
6. Inter-American Development Bank	0.00	0.00	200,000,000.00	197,820,000.00	Provided	ODA	Concessional Loan	Cross-cutting	Cross-cutting
7. Other			135,000,000.00	133,530,000.00					
Caribbean Development Bank			10,000,000.00	9,890,000.00	Provided	ODA	Grant	Adaptation	Cross-cutting
Clean Invetment Fund- Clean Technology Fund			100,000,000.00	98,910,000.00	Provided	ODA	Concessional Loan	Mitigation	Energy
Congo Basin Forest Fund			20,000,000.00	19,780,000.00	Provided	ODA	Grant	Cross-cutting	Forestry
Forest Carbon Partnership Facility- Carbon Fund			5,000,000.00	4,950,000.00	Provided	ODA	Grant	Cross-cutting	Forestry
Specialized United Nations bodies			41,350,000.00	40,900,000.00					
1. United Nations Development Programme									
2. United Nations Environment Programme									
3. Other			41,350,000.00	40,900,000.00					
International Fund for Agricultural Development			19,850,000.00	19,630,000.00	Provided	ODA	Grant	Adaptation	Agriculture
World Food Programme-Cambodia			4,000,000.00	3,960,000.00	Provided	ODA	Grant	Adaptation	Agriculture
World Food Programme-Productive Safety Net Programme-Ethiopia			17,500,000.00	17,310,000.00	Provided	ODA	Grant	Adaptation	Agriculture

Abbreviations: ODA = official development assistance, OOF = other official flows.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^c Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

^d This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

 e^{e} Parties should explain in their biennial reports how they define funds as being climate-specific.

^f Please specify.

^g Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

Amounts are rounded to the available level of confidence.

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891

"Funding source" refers to "type of funding" in Canada. Further information, & amp; nbsp; please consult Canada's Statistical Report on International Assistance. & amp; nbsp;

For further information, please refer to Canada's First Biennial Report.

While it is expected that contributions made to multilateral banks will mostly flow to mitigation projects, Canadian support to the International Finance Corporation, the Inter-American Development Bank, and the Asia Development Bank have been reported as supporting "cross-cutting" activities because both adaptation and mitigation projects can receive funding from these facilities.Please refer to Canada's 6th National Communications to the UNFCCC for a more detailed estimation of the expected sectorial breakdown of these contributions and Canadian climate finance overall. More information can also be found on www.climatechange.gc.ca, which should be consulted for the latest information.

CAN_BR1_v1.0

Table 7(a)
Provision of public financial support: contribution through multilateral channels in 2012 ^a

		Total a	mount					Type of support ^{f, g}	Sector ^c
Donor funding	Core/gene	eral ^d	Climate-sp	pecific ^e	Status ^b	Funding source ^f	Financial		
Donor January	Canadian dollar - CAD	USD	Canadian dollar - CAD	USD	Status	T unung source	instrument ^f	Type of support	Sector
Fotal contributions through multilateral channels	57,290,000.00	56,670,000.00	347,600,000.00	343,830,000.00					
Multilateral climate change funds ^g	57,290,000.00	56,670,000.00	3,290,000.00	3,250,000.00					
1. Global Environment Facility	57,290,000.00	56,670,000.00	0.00	0.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
2. Least Developed Countries Fund									
3. Special Climate Change Fund									
4. Adaptation Fund									
5. Green Climate Fund									
6. UNFCCC Trust Fund for Supplementary Activities			1,000,000.00	990,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
7. Other multilateral climate change funds			2,290,000.00	2,260,000.00					
Global Alliance for Clean Cookstoves			1,300,000.00	1,290,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
International Center for Tropical Agriculture-Adapation Research Fellowship			500,000.00	490,000.00	Provided	ODA	Grant	Adaptation	Agriculture
International Network for Bamboo and Rattan-Climate Resilience in Ethiopia			490,000.00	480,000.00	Provided	ODA	Grant	Adaptation	Cross-cutting
Multilateral financial institutions, including regional development banks			297,170,000.00	293,930,000.00					
1. World Bank									
2. International Finance Corporation			60,280,000.00	59,620,000.00	Provided	OOF	Concessional Loan	Cross-cutting	Energy
3. African Development Bank									
4. Asian Development Bank			82,390,000.00	81,490,000.00	Provided	ODA	Concessional Loan	Cross-cutting	Energy
5. European Bank for Reconstruction and Development									
6. Inter-American Development Bank			50,000,000.00	49,460,000.00	Provided	ODA	Concessional Loan	Cross-cutting	Energy
7. Other			104,500,000.00	103,360,000.00					
Caribbean Development Bank			4,500,000.00	4,450,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Clean Invetment Fund- Clean Technology Fund			100,000,000.00	98,910,000.00	Provided	ODA	Concessional Loan	Mitigation	Energy
Specialized United Nations bodies			47,140,000.00	46,650,000.00					
1. United Nations Development Programme			19,000,000.00	18,790,000.00					
Mexico			2,500,000.00	2,470,000.00	Provided	ODA	Grant	Cross-cutting	Cross-cutting
Canadian Climate Adaptation Facility			16,500,000.00	16,320,000.00	Provided	ODA	Grant	Adaptation	Cross-cutting
2. United Nations Environment Programme			15,500,000.00	15,360,000.00					
Climate and Clean Air Coalition			13,000,000.00	12,890,000.00	Provided	ODA	Grant	Mitigation	Cross-cutting
Climate Technology Center and Network			2,500,000.00	2,470,000.00	Provided	ODA	Grant	Mitigation	Cross-cutting
3. Other			12,640,000.00	12,500,000.00					
World Meteorological Organization-Haiti Weather Servicers and Global Framework for Climate Services			12,640,000.00	12,500,000.00	Provided	ODA	Grant	Adaptation	Cross-cutting

Abbreviations: ODA = official development assistance, OOF = other official flows.

^{*a*} Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^c Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

d This refers to support to multilateral institutions that Parties cannot specify as climate-specific.

^e Parties should explain in their biennial reports how they define funds as being climate-specific.

^f Please specify.

^g Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

Amounts are rounded to the available level of confidence.

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891

"Funding source" refers to "type of funding" in Canada. Further information, & amp; nbsp; please consult Canada's Statistical Report on International Assistance. & amp; nbsp;

For further information, please refer to Canada's First Biennial Report.

While it is expected that contributions made to multilateral banks will mostly flow to mitigation projects, Canadian support to the International Finance Corporation, the Inter-American Development Bank, and the Asia Development Bank have been reported as supporting "crosscutting" activities because both adaptation and mitigation projects can receive funding from these facilities. Please refer to Canada's 6th National Communications to the UNFCCC for a more detailed estimation of the expected sectorial breakdown of these contributions and Canadian climate finance overall. More information can also be found on www.climatechange.gc.ca, which should be consulted for the latest information.

CAN_BR1_v1.0

Table 7(b)

Provision of public financial support: contribution through bilateral, regional and other channels in 2011^a

	Total a	mount							
<i>Recipient country/</i> <i>region/project/programme</i> ^b	Climate-s	specific ^f	Status ^c	Funding source ⁸	Financial instrument ^g	Type of support ^{g, h}	Sector ^d	Additional information ^e	
	Canadian dollar -	USD							
Total contributions through bilateral, regional and other channels	73,150,000. 00	72,350,000. 00							
Argentina / Adaptation Research Initiative in Latin America and the Caribbean	1,260,000.0 0	1,250,000.0 0		ODA	Grant	Adaptation	Water and sanitation	Support to the Fondacion Bariloche for adaptation to water stress researce in the Comahue Region.	
Barbados, Guyana, Grenada, Jamaica, Trinidad and Tobago / Adaptation Research Initiative in Latin America and the Caribbean	1,500,000.0 0	1,480,000.0 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the University of the Wes Indies, Barbados, for sustainable water management under climate change in small island states of the Caribbean.	
Bolivia / Community-based eco- development and environmental health	430,000.00	430,000.00	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Université du Québec Montréal for building capacities in community-based eco-development and environmental health in connection with water and sanitation.	
Bolivia / Adaptation Research Initiative in Latin America and the Caribbean	1,080,000.0 0	1,070,000.0 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to Agua Sustentable for strengthening local capacity for adaptation to climate change in the Bolivian Altiplano.	
Cambodia, Mozambique, Kenya, Ghana, Zimbabwe / Partnership for Enhancing Food and Economic Security for the Rural Poor	1,380,000.0 0	1,360,000.0 0	Provided	ODA	Grant	Adaptation	Cross- cutting	Support to the Canadian Hunger Foundation for providing improved food and economic security for communities who are among the poorest and most vulnerable people i their societies.	
Caribbean countries / Support for the implementation of a disaster risk management framework	2,040,000.0	2,020,000.0	Provided	ODA	Grant	Adaptation	Cross- cutting	Supporting the implementation of the CARICOM's disaster risk management framework, including the improvement of the capacities of national governments and local communities to respond to and manage natural disasters.	
Chile, Colombia, Dominican Republic, Mexico / Nationally Appropriate Mitigation Action in the Waste and Landfill Sector	450,000.00	450,000.00	Provided	ODA	Grant	Mitigation	Other (Waste and landfill)	Support to the Center for Clean Air Policy for supporting the developmen of policy frameworks and projects fo waste management, including a series of measures for the whole waste stream that will reduce emissions of short-lived climate pollutants such as black carbon and methane.	

Chile / Adaptation Research Initiative in Latin America and the Caribbean	1,300,000.0 0	1,290,000.0 F 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Centro de Cabio Global, Pontificia Universidad Catolica de Chile, for vulnerability and adaptation to climate variability and change research in the Maipo Basin.
Chile, Nepal, Pakistan / Adaptation Research Initiative in Asia	1,530,000.0 0	1,510,000.0 H 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Kunming Institute of Botany of the Chinese Academy of Sciences, China, for building effective water governance in the Asian Highlands.
China / Adaptation Research Initiative in Asia	1,500,000.0 0	1,480,000.0 F 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Chinese Center for Agricultural Policy of the Chinese Academy of Sciences for water resources and adaptation to climate change research in North China Plains and Poyang Lake Region.
Colombia, Mexico / Technical Advice for Nationally Appropriate Mitigation Action in the Oil and Gas Sector	1,100,000.0 0	1,090,000.0 F 0	Provided	ODA	Grant	Mitigation	Energy	Support to the Petroleum Technology Alliance Canada for providing technical advice to countries to help them establish implementable mitigation actions in the Oil and Gas Sector, including actions that will significantly reduce emissions of short lived climate pollutants, notably black carbon and methane.
Congo Basin Region / Congo Basin Forest Partnership	140,000.00	140,000.00 H	Provided	ODA	Grant	Cross- cutting	Forestry	Support for the Congo Basin Forest Partnership.
Costa Rica, Dominican Republic, Honduras / Biodiversity Restoration and Community Development	50,000.00	50,000.00 F	Provided	ODA	Grant	Adaptation	Cross- cutting	Helping communities restore degraded forests and addressing livelihood issues of local landowners in areas with high levels of rural poverty.
Costa Rica, Guatemala, Nicaragua / Adaptation Research Initiative in Latin America and the Caribbean	1,480,000.0 0	1,460,000.0 F 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Centro Agronómico Tropical de Investigación y Enseñanza, Costa Rica, for research on the adaption of community-based water supply to a changing climate.
Costa Rica, Mexico, Peru / Technical advice for Nationally Appropriate Mitigation Action in the Low-Carbon Housing Sector	500,000.00	490,000.00 F	Provided	ODA	Grant	Mitigation	Other (Housing)	Support to the Energy Efficiency Exporters Alliance for providing technical advice to countries to help them establish mitigation actions in the Housing Sector.
Cuba / Integrated Coastal Zone Management Capacity-Building	70,000.00	70,000.00 I	Provided	ODA	Grant	Adaptation	Other (Coastal zone management	Enhancing municipal environmental management practices and the quality of life of the communities in coastal
Dominican Republic, Guatemala / Adaptation Research Initiative in Latin America and the Caribbean	1,490,000.0 0	1,470,000.0 F 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Centro del Agua del Trópico Húmedo para América Latina y el Caribe, Panamá, for water security and climate change research in Central America and the Caribbean.

Ethiopia / Improving Livelihoods,	1,500,000.0	1,480,000.0	Provided	ODA	Grant	Adaptation	Agriculture	Increasing agricultural productivity for
Agriculture, and National	0	0						smallholder farmers.
Development								
Ethiopia, Jamaica, Philippines /	1,440,000.0	1,420,000.0	Provided	ODA	Grant	Adaptation	Cross-	Support to the Canadian Urban
International Urban Partnerships	0	0					cutting	Institute's International Urban
Program								Partnerships Program for advancing
								sustainable economic growth and
								development in urban regions,
								consistent with the countries' national
								development agendas.
Haiti / rehabilitation of the Artibonite	190,000.00	190,000.00	Provided	ODA	Grant	Adaptation	Cross-	Supporting the rehabilitation of the
River watershed							cutting	Artibonite River watershed in the
								border zone between Haiti and the
								Dominican Republic.
Haiti /	2,930,000.0	2,900,000.0	Provided	ODA	Grant	Adaptation	Cross-	Support for climate change adaptation
	0	0					cutting	and local risk management.
Benin, Bolivia, Burkina Faso,	2,090,000.0	2,070,000.0	Provided	ODA	Grant	Adaptation	Agriculture	Support for the Unitarian Service
Ethiopia, Honduras, Mali, Nepal,	0	0					-	Committee - Seeds of Survival 2010-
Senegal, Timor-Leste / Unitarian								2015 program.
Service Committee - Seeds of								
Survival 2010-2015 program								

Honduras / Promoting food security and sustainable livelihoods	4,700,000.0	4,650,000.0 0	Provided	ODA	Grant	Adaptation	Agriculture	Enhancing food security through improved agricultural productivity, diversity and the promotion of sustainable natural resource management practices.
Honduras / Building capacity to assess infrastructure vulnerability	150,000.00	150,000.00	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to Engineers Canada for building capacity to assess infrastructure vulnerability.
India / Adaptation Research Initiative in Asia	1,500,000.0 0	1,480,000.0 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Ashoka Trust for Research in Ecology and the Environment for research on adaption to climate change in urbanizing watersheds.
Indonesia / Restoring Coastal Livelihoods in South Sulawesi	1,300,000.0 0	1,290,000.0 0	Provided	ODA	Grant	Adaptation	Other (Coastal zone management)	Enhancing the livelihood security and well-being of vulnerable coastal communities on the west coast of South Sulawesi.
Latin America and the Caribbean / Sustainable energy access for the Latin America and Caribbean Region	210,000.00	210,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Improving capacities for energy planning and regulation across countries in the region.
Mali / Rehabilitation of Agricultural Irrigation Infrastructures in the Zone of the Office du Niger	40,000.00	40,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Support to the Office du Niger for supporting the development and rehabilitation of the agricultural irrigation infrastructure.
Mexico / Support for clean energy and mitigation projects	340,000.00	340,000.00	Provided	ODA	Grant	Mitigation	Cross- cutting	Support for clean energy and mitigation projects through the Commission for Environmental Cooperation.
Nicaragua / Productive Rural Development Sector Program	1,100,000.0	1,090,000.0	Provided	ODA	Grant	Adaptation	Cross- cutting	Support to CUSO International and International Coach Federation for supporting sustainable economic growth in rural areas and increase access to safe, nutritious food for po communities.
Nigeria / Building Nigeria's response to climate change	610,000.00	600,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Supporting effective climate change governance.
Philippines / Improving Business Climate Program		690,000.00		ODA	Grant	Adaptation	Cross- cutting	Improving the investment climate for sustainable economic growth.
Thailand / Adaptation Research Initiative in Asia	1,230,000.0 0	1,220,000.0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Faculty of Social Science, Chiang Mai University, for inland aquaculture and adaptation to climate change research in northern Thailand.
Thailand / Adaptation Research Initiative in Asia	1,430,000.0 0	1,410,000.0 0		ODA	Grant	Adaptation	Water and sanitation	Support to the Thailand Developmen Research Institute for improving floo management planning.
Africa / African Model Forest Initiative	2,720,000.0 0	2,690,000.0 0		ODA	Grant	Cross- cutting	Forestry	Support for the African Model Fores Initiative through the International Model Forest Network.
Africa, Asia / Adaptation and climate resilience research	16,100,000. 00	15,920,000. 00		ODA	Grant	Adaptation	Cross- cutting	Support to the International Development Research Centre for adaptation and climate resilience research.

Global / Canadian International Food Security Research Fund	12,230,000. 00	12,100,000. 00		ODA	Grant	Adaptation	Agriculture	Support for the Canadian International Food Security Research Fund.
Cambodia / Adaptation Research Initiative in Asia	1,500,000.0 0	1,480,000.0 0	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Cambodia Development Resource Institute for improving water governance and climate change adaptation.
Asia, Latin America and the Caribbean / Adaptation Research Initiatives support	1,340,000.0 0	1,330,000.0 0	Provided	ODA	Grant	Adaptation	Cross- cutting	Launch costs, communications, research information services to partners, institutional risk assessments, economic analysis training, adaptation finance consultancy.
Congo Basin Region / Support for the implementation of the Central Africa Forests Commission (COMIFAC) Action plan	500,000.00	490,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	The project supports the implementation of the Central Africa Forests Commission (COMIFAC) Action Plan, including supporting a fair and sustainable management of natural resources in Congo Basin countries.

Abbreviations: ODA = official development assistance, OOF = other official flows; USD = United States dollars.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should report, to the extent possible, on details contained in this table.

^c Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

^d Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".

^e Parties should report, as appropriate, on project details and the implementing agency.

^f Parties should explain in their biennial reports how they define funds as being climate-specific.

^g Please specify.

^h Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891.

Table 7(b)

Provision of public financial support: contribution through bilateral, regional and other channels in 2012^a

	Total d	imount						
<i>Recipient country/</i> region/project/programme ^b	Climate-	specific ^f	Status ^c	Funding source ^g	Financial instrument ⁸	Type of support ^{g, h}	Sector ^d	Additional information ^e
region/project/programme	Canadian dollar -	USD		source	instrument	support		
Total contributions through bilateral,	95,610,000.0							
regional and other channels	0							
Cambodia, Mozambique, Kenya, Ghana, Zimbabwe / Partnership for Enhancing Food and Economic Security for the Rural Poor	730,000.00	720,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Support to the Canadian Hunger Foundation for providing improved food and economic security for communities who are among the poorest and most vulnerable people in their societies.
Caribbean countries / Support for the implementation of a disaster risk management framework	2,100,000.00			ODA	Grant	Adaptation	Cross- cutting	Supporting the implementation of the CARICOM's disaster risk management framework, including the improvement of the capacities of national governments and local communities to respond to and manage natural disasters.
Chile, Colombia, Dominican Republic, Mexico / Nationally Appropriate Mitigation Action in the Waste and Landfill Sector	2,700,000.00	2,670,000.00	Provided	ODA	Grant	Mitigation	Other (Waste and landfill)	Support to the Center for Clean Air Policy for supporting the development of policy frameworks and projects for waste management, including a series of measures for the whole waste stream that will reduce emissions of short- lived climate pollutants such as black carbon and methane.
Colombia, Mexico / Technical Advice for Nationally Appropriate Mitigation Action in the Oil and Gas Sector	1,900,000.00	1,880,000.00	Provided	ODA	Grant	Mitigation	Energy	Support to the Petroleum Technology Alliance Canada for providing technical advice to countries to help them establish implementable mitigation actions in the Oil and Gas Sector, including actions that will significantly reduce emissions of short lived climate pollutants, notably black carbon and methane.
Congo Basin Region / Congo Basin Forest Partnership	1,860,000.00	1,840,000.00	Provided	ODA	Grant	Cross- cutting	Forestry	Support for the Congo Basin Forest Partnership.

Costa Rica, Mexico, Peru / Technical advice for Nationally Appropriate Mitigation Action in the Low-Carbon Housing Sector	3,000,000.00	2,970,000.00	Provided	ODA	Grant	Mitigation	Other (Housing)	Support to the Energy Efficiency Exporters Alliance for providing technical advice to countries to help them establish mitigation actions in the Housing Sector.
Ethiopia / Improving Livelihoods, Agriculture, and National Development	5,340,000.00	5,280,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing agricultural productivity for smallholder farmers and supporting market-led approach to development for increased food consumption and higher incomes.
Haiti / rehabilitation of the Artibonite River watershed	480,000.00	470,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Supporting the rehabilitation of the Artibonite River watershed in the border zone between Haiti and the Dominican Republic.
Benin, Bolivia, Burkina Faso, Ethiopia, Honduras, Mali, Nepal, Senegal, Timor-Leste / Unitarian Service Committee - Seeds of Survival 2010-2015 program	2,210,000.00	2,190,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Support for the Unitarian Service Committee - Seeds of Survival 2010- 2015 program.
Honduras / Promoting food security and sustainable livelihoods	2,870,000.00	2,840,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Enhancing food security through improved agricultural productivity, diversity and the promotion of sustainable natural resource management practices.
Indonesia / Restoring Coastal Livelihoods in South Sulawesi	1,330,000.00	1,320,000.00	Provided	ODA	Grant	Adaptation	Other (Coastal management zone)	Enhancing the livelihood security and well-being of vulnerable coastal communities on the west coast of South Sulawesi.
Latin America and the Caribbean / Sustainable energy access for the Latin America and Caribbean Region	170,000.00	170,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Improving capacities for energy planning and regulation across countries in the region.
Africa / African Model Forest Initiative	3,160,000.00	3,130,000.00	Provided	ODA	Grant	Cross- cutting	Forestry	Support for the African Model Forest Initiative through the International Model Forest Network.
Africa, Asia / Capacity building in tracking climate finance	150,000.00	150,000.00		ODA	Grant	Adaptation	Cross- cutting	Support to the World Resources Institute for capacity building in tracking climate finance.
Africa, Asia / Adaptation and climate resilience research	16,050,000.0 0			ODA	Grant	Adaptation	Cross- cutting	Support to the International Development Research Centre for adaptation and climate resilience research.

Burkina Faso / Canada Fund for African Climate Resilience	2,500,000.00	2,470,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Improving food security through the sustainable development of agriculture. Support provided to the "union des producteurs agricoles" through the Canada Fund for African Climate Resilience.
Cameroon / Canada Fund for African Climate Resilience	2,720,000.00	2,690,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing access to sufficient, nutritious and safe food, and the economic well-being of producers in model forests, and improving climate resilience capacities. Support provided to CUSO International through the Canada Fund for African Climate Resilience.
Chile / Support for climate change research	330,000.00	330,000.00	Provided	ODA	Grant	Mitigation	Agriculture	Support to the Instituto de Investigaciones Agropecuarias for the development of a Nationally Appropriate Mitigation Action proposal based on atmospheric carbon capture by soils, and support for research on climate change adaptation.
Colombia / Environmental Education Program for Risk Management	320,000.00	320,000.00	Provided	ODA	Grant	Mitigation	Other (Risk management)	Support to the Corporación Autónoma Regional del Alto Magdalena for the implementation of an environmental education program for risk management to support climate change adaptation.
Cuba / Enhancing climate resilience capacities	640,000.00	630,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Enhancing municipal environmental management practices and the quality of life of the communities in coastal zones and strengthening local capacities to implement industrial agricultural techniques that reduce the need for imported energy and resources.
Democratic Republic of the Congo / Canada Fund for African Climate Resilience	1,750,000.00	1,730,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Reducing poverty and increasing food self-sufficiency. Support provided to the University of Guelph through the Canada Fund for African Climate Resilience.

Ethiopia / Canada Fund for African Climate Resilience	1,870,000.00	1,850,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing the food security of Ethiopian households. Support provided to the Canadian hunger foundation through the Canada Fund for African Climate Resilience.
Bolivia, Ethiopia, Ghana, Mali / Improving livelihood security and resilience	1,110,000.00	1,100,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Support to CARE Canada for improving livelihood security and resilience.
Ethiopia / Canada Fund for African Climate Resilience	1,870,000.00	1,850,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing the food security of Ethiopian households. Support provided to the Canadian hunger foundation through the Canada Fund for African Climate Resilience.
Ghana / Resilient and Sustainable Livelihoods Transformation in Northern Ghana	1,000,000.00	990,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Supporting climate resilient agriculture capacity building for smallholder farmers.
Ghana / Canada Fund for African Climate Resilience	2,080,000.00	2,060,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Implementing measures to ensure sustainable access to food and livelihoods. Support provided to Feed the Children through the Canada Fund for African Climate Resilience.
Ghana / Canada Fund for African Climate Resilience	2,100,000.00	2,080,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing resilience of the vulnerable households to climate change. Support provided to the Canadian Hunger Foundation through the Canada Fund for African Climate Resilience.
Guatemala / Reducing socio- environmental vulnerability to climate change	660,000.00	650,000.00	Provided	ODA	Grant	Adaptation	Forestry	Support to the International Union for Conservation of Nature for reducing socio-environmental vulnerability to climate change.
Cambodia, Indonesia, Lao People's Democratic Republic, Philippines, Thailand, Viet Nam / Disaster risk management	2,610,000.00	2,580,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Support to the Asian Development Bank to reduce the impact of disasters on vulnerable populations by providing support to governments and civil society to manage and reduce disaster risk.
Peru / Intergrating a Climate Change Adaptation Focus into the Development and Implementation of Public Investment Projects in Peru	300,000.00	300,000.00	Provided	ODA	Grant	Adaptation	Other (Capacity building)	Support to the United Nations Development Programme for climate change adaptation integration in the poorest communities.

Rwanda / Canada Fund for African Climate Resilience	2,240,000.00	2,220,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing access to sufficient, nutritious and safe food among those most vulnerable to climate change. Support provided to the Adventist Development and Relief Agency through the Canada Fund for African Climate Resilience.
Senegal / Canada Fund for African Climate Resilience	3,020,000.00	2,990,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Reducing poverty by improving the ability to adapt to climate change. Support provided to the "Cégep de la Gaspésie et des Îles" through the Canada Fund for African Climate Resilience.
United Republic of Tanzania / Canada Fund for African Climate Resilience	3,110,000.00	3,080,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Improving market-led agricultural production and market and processing knowledge. Support provided to World Vision Canada through the Canada Fund for African Climate Resilience.
Nicaragua / Productive Rural Development Sector Program	2,050,000.00	2,030,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Supporting sustainable economic growth in rural areas and increase access to safe, nutritious food for poor communities.
Haiti / Strengthening adaptive capacities	500,000.00	490,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	Support for climate change adaptation and local risk management.
Ethiopia / Canada Fund for African Climate Resilience	1,810,000.00	1,790,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Increasing economic, social and ecological resilience of smallholder Ethiopian farmers to climate change. Support provided to the Canadian Co- operative Association through the Canada Fund for African Climate Resilience.
Mexico / Technical support for GHG emissions inventory	130,000.00	130,000.00	Provided	ODA	Grant	Mitigation	Cross- cutting	Support to Eco Perth for technical support for GHG emission inventory.
Chile, Kenya, Mexico / Building the Capacity of Protected Area Agencies	3,300,000.00	3,260,000.00	Provided	ODA	Grant	Adaptation	Other (Cross- cutting)	Building the capacity of protected-area agencies to enhance the resilience to climate change of ecosystems and local communities that depend on them.
Honduras / Building Capacity to Assess Infrastructure Vulnerability	600,000.00	590,000.00	Provided	ODA	Grant	Adaptation	Other (Cross- cutting)	Support to Engineers Canada for building capacity to assess infrastructure vulnerability.

Congo Basin Countries / Technical	780,000.00	770,000.00	Provided	ODA	Grant	Mitigation	Other	Support to the International Institute for
advice to help identify and develop							(Capacity	Sustainable Development for capacity
Nationally Appropriate Mitigation							building)	building in 10 countries located in the
Actions								Congo Basin Region to help identify
								and develop Nationally Appropriate
								Mitigation Actions.

Congo Basin Countries / Support for the implementation of the Central Africa Forests Commission (COMIFAC) Action Plan	500,000.00	490,000.00	Provided	ODA	Grant	Adaptation	Cross- cutting	The project supports the implementation of the Central Africa Forests Commission (COMIFAC) Action Plan, including supporting a fair and sustainable management of natural resources in Congo Basin countries.
Bolivia / Community-based eco- development and environmental health	710,000.00	700,000.00	Provided	ODA	Grant	Adaptation	Water and sanitation	Support to the Université du Québec à Montréal for building capacities in community-based eco-development and environmental health in connection with water and sanitation.
Ethiopia, Jamaica, Philippines / International Urban Partnerships Program	870,000.00	860,000.00	Provided	ODA	Grant	Adaptation	Agriculture	Support to the Canadian urban Institute's International Urban Partnerships Program for advancing sustainable economic growth and development in urban regions, consistent with the countries' national development agendas.
Global / Canadian International Food Security Research Fund	10,080,000.0 0	9,970,000.00	Provided	ODA	Grant	Adaptation	Forestry	Support for the Canadian International Food Security Research Fund.

Abbreviations: ODA = official development assistance, OOF = other official flows; USD = United States dollars.

^a Parties should fill in a separate table for each year, namely 2011 and 2012, where 2014 is the reporting year.

^b Parties should report, to the extent possible, on details contained in this table.

^c Parties should explain, in their biennial reports, the methodologies used to specify the funds as provided, committed and/or pledged. Parties will provide the information for as many status categories as appropriate in the following order of priority: provided, committed, pledged.

- ^d Parties may select several applicable sectors. Parties may report sectoral distribution, as applicable, under "Other".
- ^e Parties should report, as appropriate, on project details and the implementing agency.
- ^{*f*} Parties should explain in their biennial reports how they define funds as being climate-specific.
- ^{*g*} Please specify.

^h Cross-cutting type of support refers to funding for activities which are cross-cutting across mitigation and adaptation.

Custom Footnotes

2011: information covers fiscal year (FY) period: April 1, 2011 to March 31, 2012. Exchange rates based on OECD/DAC Rates for FY 2011/12: 0.9891

2012: information covers fiscal year (FY) period: April 1, 2012 to March 31, 2013. Exchange rates based on OECD/DAC Rates for FY 2012/13: 0.9891.

Table 8Provision of technology development and transfer support^{a,b}

Recipient country and/or region	Targeted area	Measures and activities related to technology transfer	Sector ^c	Source of the funding for technology transfer	Activities undertaken by	Status	Addi
Global	Mitigation	Development and dissemination of the RETScreen Clean Energy Project analysis Software.	Energy	Private and Public	Public	Implemented	Canada has developed clean energy decision- are contained in Chap Communication and a www.retscreen.net
China, France, Japan, Russian Federation, Republic of Korea, South Africa, Switzerland, United States of America, European Atomic Energy Community	Adaptation	Canada supports international collaboration through the Generation IV- International Forum (GIF). Measures and activities include: workshops, reports and publications, ongoing collaborative R&D projects.	Energy	Public	Public	Planned	Sharing of knowledge through the GIF, has e individual costs and fi mutual R&D capabili
Global	Mitigation and Adaptation	As a member of the Advisory Board (AB) of the Climate Technology Centre and Network, Canada supported the operationalization and work of the Centre in 2013.	Other (Other)	Public	Public	Implemented	With other AB memb elaboration of the Clin Network's administra and network members CTCN will strengther transfer; foster collabo accelerate climate tech requests from develop
China, Mexico, Poland, Italy, Russian Federation, Australia, Republic of Korea	Mitigation and Adaptation	Forest GHG emissions mitigation and forest management. Adaptation: software training and scientific and technical mentoring and guidance.	Other (Other)	Public	Private and Public	Implemented	Both implemented and forest GHG emissions adaptation. The Canadian Forest for cooperation with inter mitigation and forest n Additional details are Canada's 6th Nationa
United Nations International Strategy for Disaster Reduction, southeast Asia, Southern Africa Regions	Mitigation and Adaptation	Canada led the development of the Global Early Warning System for Wildland Fire under the Global Observation of Forest Cover and Landcover Dynamics (GOFC- GOLD) Fire Implementation Team. Current activities include information sessions, website.	Other (Other)	Public	Public	Implemented	Both implemented and contained in Chapter 7 Communication.

^{*a*} To be reported to the extent possible.

^b The tables should include measures and activities since the last national communication or biennial report.

 $^{\ c}$ Parties may report sectoral disaggregation, as appropriate.

^d Additional information may include, for example, funding for technology development and transfer provided, a short description of the measure or activity and co-financing arrangements.

Custom Footnotes

CAN_BR1_v1.0

dditional information ^d
ped RETScreen, the world's foremost on-making software. Additional details hapter seven of Canada's 6th National d at the RETScreen website:
lge, resources and infrastructure as enabled GIF participants to reduce d financial risks while enhancing their bilities.
nbers, Canada actively engaged in the Climate Technology Centre and trative procedures, project prioritization ership. These will ensure that the nen capacity for climate technology aboration and access to information to echnology transfer; and manage loping countries and deliver responses.
and planned, this program will target ons mitigation and forest management
st Service undertakes a broad range of tternational partners to advance GHG st management adaptation goals. ure contained in Chapter seven of onal Communication.
and planned, additional details are er 7 of Canada's 6th National

Table 9

Provision of capacity-building support^a

Recipient country/region	Targeted area	Programme or project title	Description of programme or project ^{b,c}
International Partnership for Energy Efficiency Cooperation Members, G8 Countries, The European Commission, Australia, Brazil, China, India, Mexico, Republic of Korea	Multiple Areas	International Partnership for Energy Efficiency Cooperation	The International Partnership for Energy Efficiency Cooperation aims to promote information exchange on best practices and facilitate initiatives to improve energy efficiency. Canada transfers its policy, program and technology-related best practices via Committee discussions and through its participation in two task groups—the Super-efficient Equipment and Appliance Deployment Initiative and the Global Superior Energy Performance initiative. Canada's specific expertise related to minimum energy performance standards, energy labelling and industrial capacity building have been shared.
Mexico	Multiple Areas	Carbon Budget Model of the Canadian Forest Sector (CBMCFS3) Technology Transfer	Potential CBM-CFS3 Training Workshop. Guidance with estimation of Land Use, Land-use Change and Forestry (LULUCF) forest GHG emissions and removals, development of measuring reporting and verification system and related reducing emissions from deforestation and forest degradation (REDD+) activities.
China	Multiple Areas	Carbon Budget Model of the Canadian Forest Sector (CBMCFS3) Technology Transfer	CBM-CFS3 Training Workshop and project planning, scientific and technical guidance.
Association of Southeast Asia Nations, Southern Africa Development Community	Multiple Areas	GOFC-GOLD Global Early	Global and regional systems developed collaboratively with various government agencies; ongoing consultation and advice.
China, France, Japan, Russian Federation, Republic of Korea, South Africa, Switzerland, United States of America, The European Atomic Energy Community	Multiple Areas	Generation IV International Forum	The Generation IV International Forum is a treaty- supported international collaboration that includes several developing and developed countries The Forum supports the establishment and sharing of existing and new knowledge and infrastructure needed for the development of advanced nuclear-based clean energy systems with enhanced safety, improved sustainability, improved economics and enhanced proliferation resistance and physical protection.
Latin America, South-East Asia, Central and North Africa	Multiple Areas	International Model Forest Network	The International Model Forest Network (IMFN) is a global learning network whose members work toward a common goal: the sustainable management of forest-based landscapes through the Model Forest approach. The IMFN is comprised of 60 Model Forests around the world, which together cover more than 100 million hectares. Canada has hosted the IMFN Secretariat since its inception in 1995. During the reporting period, Canada provided targeted support for climate change initiatives in Model Forests which focused on: 1) Forest management through reforestation and applied research on climate change impacts on forests; 2) Capacity building through research extension and communications activities to increase awareness of the need to adapt to the impacts of climate change; and 3) The development and ground-truthing of policy options based on research conducted in Model Forests.

Table 9**Provision of capacity-building support**^a

Recipient country/region	Targeted area	Programme or project title	Description of programme or project ^{b,c}
Developing countries	Multiple Areas	Canada's support for the Climate Technology Centre and Network. As a member of the Advisory Board of the Climate Technology Centre and Network, Canada supported the operationalization and work of the Centre in 2013.	Canada has also made a \$2.5 million fast-start financing contribution to support the United Nations Framework Convention on Climate Change's Climate Technology Centre and Network. The Network will provide tailored advice and technical assistance to developing countries to support the implementation of technology actions for mitigation or adaptation objectives. Canada also sits on the Advisory Board of the Climate Technology Centre and Network, thereby supporting the operationalization and work of the Centre.
Non-Annex I members of the Global Superior Energy Performance Initiative	Technology Development and Transfer	Global Superior Energy Performance Initiative	Canada actively participates on Global Superior Energy Performance Initiative Energy Management Working Group, which aims to pursue continuous improvements in energy performance, primarily through sharing information, the development of tools, reporting mechanisms, common accreditation systems, resources and credentialing processes. To date, Canada's participation in the Initiative has been in-kind, including the implementation of three ISO 50001 Energy Management Systems Standard pilot projects, as well as commitments to share expertise and information.
Poland	Multiple Areas	Carbon Budget Model of the Canadian Forest Sector (CBMCFS3) Technology Transfer	Planning CBM-CFS3 Workshop and project meetings. Scientific and technical guidance.
Republic of Korea	Multiple Areas	Carbon Budget Model of the Canadian Forest Sector (CBMCFS3) Technology Transfer	Scientific and technical guidance.
Global	Multiple Areas	RETScreen Clean Energy Project Analysis Software	World's leading clean energy decision-making software and has helped significantly reduce costs associated with identifying and assessing potential clean energy projects. Provided to users free-of-charge and in multiple languages, and includes comprehensive training materials. More information available at www.retscreen.net.
Various	Technology Development and Transfer	Carbon Capture Use and Storage Action Group – Clean Energy Ministerial	The Carbon Capture Use and Storage Action Group aims to create greater political momentum to advance the level of carbon capture and storage deployment required to meet the global GHG mitigation challenge.

^{*a*} To be reported to the extent possible.

^b Each Party included in Annex II to the Convention shall provide information, to the extent possible, on how it has provided capacity-building support that responds to the existing and emerging capacity-building needs identified by Parties not included in Annex I to the Convention in the areas of mitigation, adaptation and technology development and transfer.

^c Additional information may be provided on, for example, the measure or activity and co-financing arrangements.