

Managing Climate information to serve the NAP Process

Dr. Hrin Nei Thiam Director General Department of Meteorology and Hydrology Permanent Representative of Myanmar with WMO

www.gfcs-climate.org/

First International Meteorological Congress (Vienna, 1873)

The 1947 Convention: from IMO to WMO...

Conference of IMO Directors (Washington D.C., 1947)

What is the global share of climate related disasters?

Share of occurrence of natural disasters by disaster type (1994-2013)

Where are they happening?

Climate-related vs. geophysical disasters: number of events by sub-group : 10 most disaster-affected countries (1994-2013)

Storms cause most economic losses

Figure 24

Breakdown of recorded economic damage (US\$) by disaster type (1994-2013)

Number of people affected

Floods are becoming killer events

Figure 9

Number of deaths per flood (1994-2013) in Asia

World Meteorological Organization

Weather • Climate • Water

Top Rated Disaster Deaths (Myanmar)

Year	Disaster type	Date	Total deaths
2008	Storm	2/5/2008	138366
1926	Storm	19/05/1926	2700
1968	Storm	10/5/1968	1070
1936	Storm	21/04/1936	1000
1902	Storm	4/5/1902	600
1930	Earthquake	5/5/1930	500
2004	Storm	19/5/2004	236
1975	Storm	0/5/1975	200
1967	Storm	23/10/1967	178
2011	Flood	19/10/2011	151

courtesy of EM-DAT

World Meteorological Organization

Weather • Climate • Water

Top Rated Disaster Affected (Myanmar)

	Year	Disaster type	Date	Total affected	
	2008	Storm	2/5/2008	2420000	
	1974	Flood	15/07/1974	1400000	
	1965	Storm	23/10/1965	500000	
	1991	Flood	13/07/1991	359976	
	2010	Storm	22/10/2010	260049	
	1976	Flood	0/6/1976	200000	
	1936	Storm	21/04/1936	150000	
	2010	Landslide	17/06/2010	145000	
	1997	Flood	21/08/1997	137418	
	1978	Storm	17/05/1978	132000	
courtesy of EM-DAT					

Weather • Climate • Water

World Meteorological Organization

Weather • Climate • Water

Top Rated Disaster Damages- (Myanmar)

Year	Disaster type	Date	Total affected
2008	Storm	2/5/2008	4000000
2004	Earthquake	26/12/2004	500000
1991	Flood	13/07/1991	79840
2010	Storm	22/10/2010	57000
1992	Flood	0/5/1992	55115
1979	Wildfire	0/2/1979	11000
1994	Storm	2/5/1994	10000
1967	Storm	16/5/1967	5000
2011	Earthquake	24/3/2011	3600
1967	Storm	23/10/1967	3200

courtesy of EM-DAT

Weather

· Climate
· Water

3.5

0.5

0.08

(inches)

DMH MYANMAR WRF(30 km) RAINFALL (inches) FORECAST(24 hr) Based on GFS 06:30 MST of (30-07-2015) Valid for 06:30 MST of (31-07-2015)

July Normal Rainfall (inch)for Sagaing and Magway Regions, Chin and Rakhine States

Some issues

Analysing climate risks and assessing climate vulnerabilities

- Are there institutional platforms and mechanisms to facilitate risk, vulnerability and impact assessments?
- Are the capacities available?
- Is the technical, scientific and the data required available?
 - Quality controlled
 - Is there a repository for data? Knowledge management and sharing?
 - Are there protocols/policies for data exchange?
 - Are there procedures for recording and exchange socio-economic data?
- Have the capacity needs for risk, vulnerability and impact assessments been identified?
- Have these capacities been prioritized in the NAP process?

What it used to be...

Seamless hydrometeorological and climate services

Examples of climate services

- Expected future temperature
- Precipitation scenarios
- Sea level changes
- Snow, glacier and sea ice coverage
- Seasonal tropical cyclone activity
- Growing seasons
- Potential impacts of climate change on the natural environment and major business and public sectors

Benefits

– Better water resources management

- as inputs to hydrological characterisation (e.g. precipitation, evaporation, etc)
- in planning, design, development and operation of water supplies
- in flood and floodplain management and control
- design and operation of irrigation and drainage systems;
- for studies associated with power generation, fisheries an conservation, navigation and recreation.

Improved disaster risk management

- Planning and emergency preparedness and response to extreme events
- Sitting of critical infrastructure such as hospitals, schools, etc

Improved support to planning and operations in the health sector

- Risk Assessment/health system risk management
- Epidemiological Surveillance & environmental Monitoring
- Health Services (heat health warning systems, malaria waning system, etc...)

Improved agricultural planning and management

- Better drought and flood management
- Improved food security

GFCS Pillars

Many countries lack the infrastructural, technical, human and institutional capacities to provide highquality climate services.

Simplified Schematic: Hazard / Risk Assessment (statistical and forward looking)

Some issues

Analysing climate risks and assessing climate Vulnerabilities in support of Element B of NAP

- Are there institutional platforms and mechanisms to facilitate risk, vulnerability and impact assessments?
- Are the capacities available?
- Is the technical, scientific and the data required available?
 - Quality controlled
 - Is there a repository for data? Knowledge management and sharing?
 - Are there protocols/policies for data exchange?
 - Are there procedures for recording and exchange socio-economic data?
- Have the capacity needs for risk, vulnerability and impact assessments been identified?
- Have these capacities been prioritized in the NAP process?

Summing-up

✓ 3 closely-related issues:

- Adaptation to climate variability and change
- Disaster risk reduction
- Sustainable development & societal benefits

✓ Requirements:

- Reinforcing developing countries' adaptive capabilities
- Multidisciplinary partnerships across all sectors
- Capacity building to be seen as an investment, not an expenditure

A key opportunity:

A Global Framework for Climate Services

Summary and outlook

- Already extensive data sets in various data collections available including information about damage and loss
- Merging different information sources and adding geographical information to allow regional searches
- Fewer data available with extended observation period → systematic collection of events desired

Summary and outlook

- Data access via webclient (NMHSs)
- Export- and statistical functions
- Particular attention to knowledge database within WMO Task Team on Definitions of Extreme Weather and Climate Events (TT-DEWCE)
- Possible spatial extention in future projects (e.g. South-East Asia)

Policy Implications

- Policy on protecting communities from effects of weather/climate disasters will give the highest returns on investment;
- Policies on early warnings need to be reviewed in terms of their effectiveness on the end user;
- Floods and storms should be prioritised since together they account for highest economic and human losses in the south-east Asia.

Thank you for your attention

www.gfcs-climate.org/