Climate scenarios for impact assessment and adaptation planning

Arun Shrestha

International Centre for Integrated Mountain Development

Kathmandu, Nepal

LEG regional training workshop on national adaptation plans (NAPs) for Asian countries 10-14 August 2015, Yangon, Myanmar

Acknowledgement

- HICAP Project
- Arthur Lutz, Future Water
- Walter Immerzeel, Future Water & Utrecht University

°CICERO Center for International Climate and Environmental Research - Oslo

International Centre for Integrated Mountain Development (ICIMOD)

ICIMOD

FOR MOUNTAINS AND PEOPLE

Programmes

- Adaptation to change
- Transboundary
 Landscape
- River Basins
- Cryosphere and Atmosphere
- Mount Information System

- Intergovernmental International organization working in the Hindu Kush-Himalayan Region
- Established in 1983

Contents

- Introduction
- Downscaling techniques
- Results of GCM downscaling
- Conclusions

INTRODUCTION

Himalayan Climate Change Adaptation Programme

ICIMOD

- 1. Climate change scenarios
- 2. Water availability and demand scenarios
- 3. Ecosystem services
- 4. Food security
- 5. Vulnerability and adaptation
- 6. Women in adaptation
- 7. Communications and outreach

CLIMATE CHANGE SCENARIOS

Climate change scenarios

FOR MOUNTAINS AND PEOPLE

Different approach to climate change projections 5th assessment report (AR5) IPCC

Climate change scenarios

FOR MOUNTAINS AND PEOPLE

Use two representative concentration pathways (RCP)

- RCP8.5 (8.5 W/m2 in 2100) → extreme
- RCP4.5 (4.5 W/m2 in 2100) \rightarrow less extreme

Forcing regional and global circulation models until 2050

- RCM Bjerknes Center for Climate Research
- 4 GCMs spanning entire range of possible futures:
 - Dry & cold
 - Dry & warm
 - Wet & cold
 - Wet & warm

Total 2 RCPs x 5 models = 10 sets of climate projections

DOWNSCALING APPROACHES

Downscaling GCMs

FOR MOUNTAINS AND PEOPLE

Goal: Connect global scale predictions to regional climate

- Dynamic downscaling: Nesting regional climate model (RCM) into existing GCM
 - RCM boundary conditions are obtained from GCM

- Statistical downscaling
 - Linking local variables to variables in GCM using statistical regressions or empirical relations

Statistical downscaling techniques

- Delta change approach
 - Changes in climate projected by GCM superimposed on high resolution reference climate data
 - Simple: Assume linear change
- More sophisticated:
 - Advanced delta method (e.g. van Pelt, HESS, 2012)
 - Quantile mapping (e.g. *Themeßl, Climatic Change, 2011*)

APPROACH

Selection of GCMs

- 43 model runs analysed for RCP 4.5
- 41 model runs analysed for RCP 8.5
- For each model run average annual difference in precipitation (%) and temperature (K) determined for total study area (2021-2050 relative to 1961-1990) RCP 8.5

Selection of GCMs

- Ensemble of models is selected for 4 combinations:
 - Dry, cold
 - Dry, warm
 - Wet, cold
 - Wet, warm
- Selection based on the 10th and 90th percentile values to:
 - include all 4 corners of the projected changes in temperature and precipitation
 - avoid including outliers, which can be unreliable

Climate change scenarios

FOR MOUNTAINS AND PEOPLE

Selected models for HICAP with average delta values for entire domain:

Description	RCP	dP (%)	dT (K)	Selected Model
DRY, COLD	RCP45	-1.8	1.4	GISS-E2-R-r4i1p1_rcp45
DRY, WARM	RCP45	-1.8	2.3	IPSL-CM5A-LR-r4i1p1_rcp45
WET, COLD	RCP45	8.9	1.4	CCSM4-r5i1p1_rcp45
WET, WARM	RCP45	8.9	2.3	CanESM2-r4i1p1_rcp45
DRY, COLD	RCP85	-1.1	1.7	GFDL-ESM2G-r1i1p1_rcp85
DRY, WARM	RCP85	-1.1	2.7	IPSL-CM5A-LR-r4i1p1_rcp85
WET, COLD	RCP85	12.1	1.7	CSIRO-Mk3-6-0-r3i1p1_rcp85
WET, WARM	RCP85	12.1	2.7	CanESM2-r4i1p1_rcp85

Delta change approach

- Final products are monthly delta change grids for the future relative to a reference period
 - Reference period 1961-2000
 - Future period 2021-2050
- Delta change grids reflect the change in temperature (K) and precipitation (%) over 60 years
- Seasonal changes are included by calculating monthly delta values

Basin-averaged $\Delta T RCP4.5 - 4$ GCM mean

Basin-averaged $\Delta T RCP8.5 - 4$ GCM mean

ICIMOD

FOR MOUNTAINS AND PEOPLE

5

∆T (K)

Upper Brahmaputra

Lower Brahmaputra

Upper Salween

Upper Mekong

Large variation between GCMs

2 GCMs RCP8.5

Basin-averaged $\Delta P RCP4.5 - 4$ GCM mean

ICIMOD

FOR MOUNTAINS AND PEOPLE

Upper Mekong

Basin-averaged $\Delta P RCP8.5 - 4$ GCM mean

FOR MOUNTAINS AND PEOPLE

Lower Ganges

Upper Mekong

Large variations between GCMs

ICIMOD

FOR MOUNTAINS AND PEOPLE

2 GCMs RCP8.5

Strong variation within basins

ICIMOD

Strong variation within basins

ICIMOD

Conclusions

- Simple delta change method efficient way to assess climate change for HICAP domain
- Consistent increase in temperature projected for entire domain, stronger for RCP8.5 than RCP4.5
- Precipitation projections have large uncertainty
 - Large variations between GCMs
 - Large seasonal variations in projected changes
 - Large spatial variations in projected changes
 - Uncertainty RCP8.5 larger than RCP4.5