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Outline
Observed state of the global Climate — latest evidence
What do we know of GHG in the atmosphere

How can we address our knowledge gaps

‘We cannot manage what we do not measure’



Difference from 1961-1990 average (°C)
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Global average temperature anomaly (1850-2014)
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, 2014 Global Temperature Anomalies v
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Global average temperature for Jan-Dec 2014 was 0.57 °C above
the 1961-1990 average of 14 °C (Combined NOAA-NASA-UK Data sets)
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Data used: Combined NOAA-NASA-UK Data sets

Comparing
2014 to
earlier years,
ranks 2014
as the
warmest year
on record



Heat Content (10% Joules)

NOAA/MNESDIS 50 KM GLOBAL ANALYSIS: SST Anomaly (degrees G, 12/29/2014

(white regions indicate sea—ice
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Updated from Levitus e al. (2012)
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Averaged Global Sea
Surface Temperature for
Jan-Dec 2014 were
estimated 0.48°C( above
the 1961-1990 long term
average, a record high
value.

(*) Source: Hadley Centre SST Data set.
The uncertainty estimate is +/-0.07°C

In 2014, the yearly
average of the ocean heat
content estimated for the
700-m and 2000-m layers
were higher than, any
earlier year in the record
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What do we know about Greenhouse Gases In the
atmosphere

Everything we learn about state of the greenhouse gases in the global

atmosphere is based on the high quality long-term globally
harmonized observation
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Atmospheric CO, - The Primary
Driver of Climate Change

Atmospheric CO, continues to
increase every year

The trend is largely driven by
fossil fuel emissions

The growth rate increases decadally

Interannual variability is largely
driven by the Earth System

The Earth System captures 50% of
emissions (terrestrial biosphere and
ocean uptake) — for how long?
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Complexity of carbon cycle
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Identification of sinks needs dedicated
measurements

CO, uptake by oceans lead to ocean
acidicfication

Knowledge of terrestrial and ocean
sinks is essential for definition of
anthropogenic contribution



Ocean
acidification
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A global challenge

Society is attempting to advance efforts to reduce CO,
emissions and will likely do so even more in the future

Mitigation efforts will vary by nation, region, & emission sector
(energy, industry, etc.), and will be diverse in their approach

The complexity of the carbon cycle is such that tracking
the adequacy of aggregate measures to achieve the
Convention global goal will require monitoring system
enhancements

Emission reduction approaches all require independent,
scientific monitoring to support verification and policy
decisions.




Gaps in the current integrated
observing system

Insufficient density of the observations over the ground,
sea and in the free atmosphere

Insufficient measurements of isotopes and co-emitted
gases for source attribution

Incompatible observations on different scales (e.g. global
and local observations) and in different media (e.qg.
atmospheric observations vs. pCO2 observations)

Insufficient complexity and performance of transport
models on global/regional and local scales



CO, and Other GHGs
Data Integration —— Products
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Conclusions

There Is a strong need for :

Development of the observing system in all domain

Maximum benefits can be obtained in the short term
through investment in observation in the atmospheric
domain due to its role in mixing, transport and radiative
forcing (increase of spatial coverage and complexity)

development of the modeling tools to deliver products on
the temporal and spatial scales relevant to decision making

collaboration between the “spheres”
Inter-agencies coordination
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