

Integrating Climate Change Adaptation into Development

UNFCC African Regional Workshop on Adaptation in Accra, Ghana

September 21-23, 2006

Why is USAID promoting climate change adaptation?

- Many developing country economies are climate sensitive
- Climate change links several development challenges:
 - energy for development
 - agriculture/food security
 - poverty reduction
 - public health

USAID activities in Climate Change Adaptation

- 1. Pilot studies for integrating adaptation into planning
- 2. Guidance manual for adaptation

Pilot studies

- 1. Mali: rice and potato production in Sikasso region
- 2. South Africa: municipal water sources
- 3. Honduras: coastal zone development
- 4. Thailand: seasonal wetlands

Mali Situation: Rice and potato production is vulnerable to climate change

- 1. 1° C temperature rise by 2030; 2-3° C rise by 2060
- 2. Decreasing length of rainy season
- 3. Greater seasonal variability of rainfall

Impacts of climate change:

- 1. Greater seasonal drought risk in rice and maize production
- 2. Increased runoff from greater storm intensity
- 3. Higher temperatures negatively impacting cool-season potato production

1. Drought avoidance

- short duration crop varieties
- new drought-tolerant varieties
- increase rainfall capture

2. Mitigation for increased temperatures

 more heat-tolerant crops, possibly moving out of potato

3. Reversing degradation of natural resource base

- agroforestry
- soil fertility enhancement

4. Better access to seasonal climate forecasts

 farmer access to 10-day forecasts and seasonal projections

How can Mali use the adaptation recommendations?

- Improvements in the seed sector
- Enhanced access to credit for crop storage, fertilizers, and irrigation

- NRM management and crop/agroforestry diversification
- Integration of long-term weather forecasts into local-access media

Pilot studies

- 1. Mali: rice and potato production in Sikasso region
- 2. South Africa: municipal water sources
- 3. Honduras: coastal zone development
- 4. Thailand: seasonal wetlands

South Africa Situation: Polokwane Water Supply from Oliphants Basin

- To review vulnerability, South African organizations, analyzed:
- 1. Population/water demand scenarios (4) through 2050
- 2. Climate change scenarios
- 3. Impacts of climate on supply, demand, and yield

South Africa Situation: Vulnerability of the Polokwane Water Supply from Oliphants Basin

The issue is that water demand may triple by 2050 creating a vulnerability - insufficient water supply due to:

- Population growth
- 1. Competing water demand from industry and for environmental protection
- 2. Climate change

South Africa Situation: Polokwane Water Supply from Oliphants Basin

Climate models all show increased temperatures for the region, but disagree on precipitation.

- A number of the models project increased summer precipitation
- Many project a decrease in winter precipitation
- An overall reduction in precipitation is projected by some models
- We cannot conclude if the region will get wetter or drier on the whole
- Precipitation intensity is likely to increase, which will increase risk of flooding.

Scenarios for 2050

Scenario	S01	S02	S03
Change in Precipitation (%)	+ 25	+10	-10
Change in Temperature (C)	1.9	2.2	2.8

Scenarios for 2025

Scenario	S04	S05	S06
Change in Precipitation (%)	+ 12.5	+5	-5
Change in Temperature (C)	0.5	1	1.2

- Runoff is very sensitive to changes in precipitation.
- If conditions become drier, reservoirs become a lot less effective
 - Conservation will be needed even more than it is today
- If conditions become wetter, flooding can be a problem
 - More reservoirs may be needed to capture the runoff
- Government officials feel the best adaptation to climate change is to re-emphasize conservation although modifications in water supply systems could also be considered

- Water conservation
 - reduced leakage and pressure
 - technologies for increased water use efficiency
 - institutional changes to improve demand management
- Expanded water use
 - reuse and recycling

For further information

Bill Breed, Director Global Climate Change Team US Agency for International Development wbreed@usaid.gov