# Agriculture, Food security and Climate change

Structured Expert Dialogue 3/12/2014, Lima, COP 20

Alexandre Meybeck, FAO





## A Triple Challenge

 Food Security and Nutrition: more food, in quantity, quality and diversity, everywhere for everyone

• Adapt to Climate Change

Contribute to mitigate Climate Change





### A growing demand

- World's population will increase by one-third by 2050
- In some countries, population will double, or more.
- FAO estimates that global agricultural production will have to increase by 60% to satisfy increased demand, driven by population growth and diet changes





# What effects of climate change on these ?









### Pollinators

 80% of flowering plant species are highly dependent on animal vectors for successful reproduction





# *Rift Valley Fever* (RVF) Impact of climate change



- Floods
  - Hatching of aedes eggs
- High temperatures
  - Increase feeding frequency
  - Increase egg production
  - Decrease the duration of development cycle
- Mosquito density increase





# Combining biophysical and socioeconomic futures

- With high population growth and low income growth avrage kilocalorie availability declines in al regions by 2050.
- CC increases the number of malnourished children by about 10% as compared to no CC.
- Trade flow changes.
- Models do not take into account effects of increased variability and extreme events; nor of adaptation.

(HLPE, 2012)



Main effects of climate change on agricultural production

• Decrease of production in certain areas

• Changes in the geography of productions

Increased variability of production





### Impact on Food and Nutrition Security

• Impacts on the most vulnerable countries

 Impacts on the most vulnerable people, including small holders

Impacts on food security and nutrition





### Agriculture can contribute to mitigate

 Reduce emissions per kg of output (decorrelate production growth and emissions growth)

• Enhance agricultural soil carbons sinks





# Concept of CSA first presented by FAO in 2010.

An approach to address these 3 interlinked challenges by appropriate:

- practices
- policies & institutions

finances









### CSA Food systems

#### More efficient and more resilient

- More food, in quantity, quality and diversity
- 2. Adapt to Climate Change
- Contribute to mitigate Climate Change

More <u>resource efficient</u> <u>systems</u>: use less land, water, inputs to produce more food sustainably

#### More resilient systems

to changes and shocks





# Increasing the general resilience of food systems

- Consider adaptation to CC as part of the broader need to build a more resilient food system
- In the perspective of having to produce more food
- Consider the needs and rights of farmers
- Protect vulnerable groups and communities from major price swings
- Lack of sustainability in food production is a key threat to resilience

(HLPE, 2012)









# Methane emissions from livestock





#### How much ?

#### Agriculture accounts for 50% of global methane emissions Within agriculture, 78% of methane emissions are from livestock



Estimated Global Anthropogenic Methane Emissions by Source

#### Methane emissions are energy losses

Total enteric methane emissions at global level equivalent to 144 Mt oil/year

= final energy consumption of France...

Total manure methane emissions at global level equivalent to 29 Mt oil/year

→There is a strong link between GHG emission intensity and natural resource use efficiency





A wide range of technical interventions to improve natural resource use efficiency & productivity and reduce emissions

#### Enteric CH<sub>4</sub> At animal <u>AND</u> herd level

- Improved feeding practices and feed processing
- Supplement feeding
- Improved herd management and animal husbandry (genetics, health, reproduction)

#### Manure CH<sub>4</sub>

- Manure storage and separation
- Manure covers
- Nutrient and energy recovery through anaerobic digestion
- Nutrient balance in the diet





#### Why focus on livestock methane ?

- **Opportunity for high impact**. 78% of agricultural and 40% of global methane emissions; expected to grow
- Low cost and wide range of co-benefits (climate, productivity, profitability, food security, nutritional benefits, human health benefits, adaptation (green energy), etc.)
- Technologies are available: Existing, cost-effective reduction opportunities (esp. for low productive systems) using relatively common practices >> number of barriers need to be overcome





#### Investment proposals for climate smart livestock in Zambia



Overall potential for livestock production growth : 17 to 28% Overall reduction of GHG emissions: 32% to 38%, including carbon sequestration in grasslands

Technical packages designed with national livestock sector stakeholders, modelled in GLEAM as contribution to EPIC programme for climate smart agriculture investment proposals in Zambia





## CLIMATE-SMART AGRICULTURE on the GROUND

# Preserving the Agro-forestry system on Mount Kilimanjaro



Tanzania **120 000**ha agroforestry Include coffee crops that will ICREA income by

vears

In the slopes of

Kilimanjaro,

Kihamba landscape, Tanzania

www.fao.org/climat

# Sustainable grazing for better livelihoods in China



Yak grazing in Qinghai, China



the average annual mitigation potential is

63 000

tonnes

CO2

N

### Climate-smart agriculture for smallholder farmers in Kenya and Tanzania





Woman harvesting in Kenya

www.fao.org

**300** energy-efficient cooking stoves to reduce deforestation

# Andean agriculture: the importance of genetic diversity











Varieties of potato for sale at the local market, Reru

www.fao.org/climatechange

AV - AN



A landscape approach for policy making, planning, and monitoring in the Kagera river basin



A panoramic view of Lake Burera, Rwandar 4 \*\* www.fao.org/c A farmer in

with

beehives

acre pastures

heads of cattle

Sustainably manages his

lanc

GANDA

Promoting the development of urea deep placement in Nigeria through South/South cooperation



BANGLADESH rice systems



decreased

urea use by

Rice farmer examines his crop in Kiroka, Tanzania

www.fao.org/climate

# Thank you!



