

A call to action in a critical period

Andrew Purvis - General Manager, EMEA
UNFCCC Technical Expert Meeting on Carbon Capture and Storage
21 October 2014

Connecting Government and Business in support of CCS

THE GLOBAL CCS INSTITUTE

OUR VISION FOR CCS

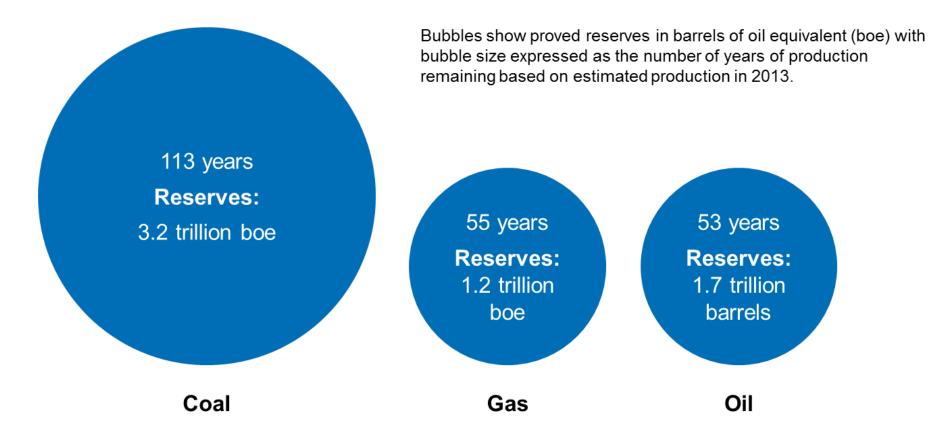
CCS is an integral part of a low–carbon future

OUR MISSION

 To accelerate the development, demonstration and deployment of CCS globally

OUR OBJECTIVES

- Knowledge sharing among proponents of CCS
- Fact—based advice and advocacy
- Create favourable conditions to implement CCS



What are the Key Questions

- What is the current state of play for CCS?
- What is needed to make CCS happen?
- What can the UN and UNFCCC systems could do to support CCS?

Fossil Fuels are not going away

Source: BP Statistical Review of World Energy (2014)

- 134 GW coal capacity added in 2013 at least double that of any other fuel
- In many industries CCS is the only option
- IEA predicts that 123Gt CO2 needs to be captured and stored between 2015 and 2050

CCS is technically viable and can be economically feasible

While progress in CCS has been slower than expected

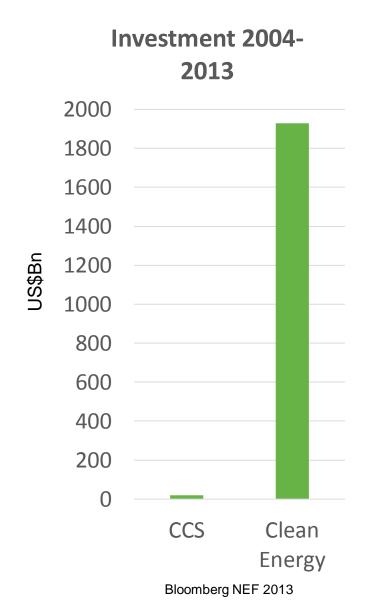
- CCS is pre-commercial
- 55 large-scale CCS projects
- 22 projects in the 'active' stage (12 operational)
- Cumulative capture by 'active' projects is 40MtCO2 per annum by 2017 (equivalent to 5GW of coal-based electricity)
- Most active CCS relies on EOR
- CCS requires a strong political will and commitment

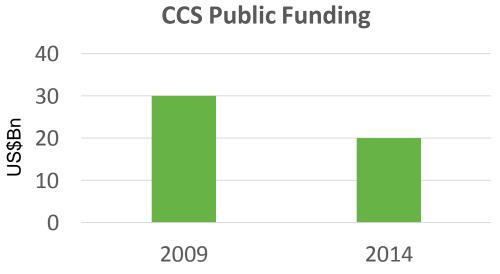
CCS is a crucial part of the solution

- Renewable technologies are not the sole answer:
- CCS is significantly less expensive than replacing coal power plants with renewable energy
 - Decarbonising power without CCS would cost 40% more than with CCS
 - A single CCS project can store millions of tonnes for many decades
- In many industrial processes there is no alternative to CCS
- CCS is important in all countries and regions

CCS is achievable

- CCS will likely remain pre-commercial pre-2020
 - Wide scale deployment possible 2020+
- EOR will play an important role in the short term, to facilitate:
 - Technology Development
 - Infrastructure development
 - Policy and Regulatory Developments
 - Reduced costs
 - Ultimately dedicated Geological Storage will be required




What is needed?

- Policy Support
- Political Will
- Policy Parity

Policy Parity in Figures

- CCS requires an additional investment of over US\$2.5 to US\$3 trillion from 2010 to 2050
- This is 6% of total investment to reduce emissions by 50% by 2050

The UN System and UNFCCC can support CCS

- Technology Mechanism and Financial Mechanism must equally support all clean energy technologies
 - CTCN and GFC relationship is critical
 - CCS should feature within the TECs current work plan
- Trans-boundary issues need to be resolved
- CCS needs a UN Institutional Champion organisation
- The Paris agreement needs to enable deployment of a suite of clean energy technologies (inc CCS) to move through the demonstration phase.

CCS is a crucial part of the solution

- Renewable technologies are not the sole answer:
- CCS is significantly less expensive than replacing coal power plants with renewable energy
 - Decarbonising power without CCS would cost 40% more than with CCS
 - A single CCS project can store millions of tonnes for many decades
- In many industrial processes there is no alternative to CCS
- CCS is important in all countries and regions

GLOBALCCSINSTITUTE.COM

E:Andrew.Purvis@GlobalCCSInstitute.com