

Carbon Capture and Storage: Where do we stand?

Technical Experts' Meeting on CCS Bonn, 21 October 2014 Juho Lipponen, IEA

Carbon capture and storage

Three points on carbon capture and storage:

- 1. Carbon Capture and Storage technologies exist and are in use
- 2. To fulfil its role, CCS needs further improvement
- 3. Drivers and supportive policies are essential

Carbon capture and storage defined

Capture

Separation of CO_2 produced during production of power or other products, followed by clean-up and compression of the CO_2

Transport

Movement of CO₂ by pipeline, truck, rail, ship, or barge to a storage facility

Storage

Injection of CO_2 into a suitable storage unit, selected to safely contain the injected CO_2 for long timescales

easier

Why do we need to capture CO₂?

- CO₂ is rarely emitted in pure form
- It is usually in a mixture of gases
- Yet, storage (and especially EOR) require (very nearly) pure CO₂
 - Gas-fired power plant: 3-4% CO₂ (P_{co2} 3-4 kPa)
 - Coal-fired power plant: 13-14% CO₂ (P_{co2} 13-14 kPa)
 - Blast furnace gas: 60-75% CO₂ (P_{co2} 60-75 kPa)
 - Coal gasification: 12-15% CO₂ (P_{co2} 250-1000 kPa)
 - Acid gas: 2-60% (P_{co2} 20-5000 kPa)
- Different % and partial pressures require different approaches
- The CO₂ capture step usually includes compression, if necessary

Four families of CO₂ capture routes

Post-process capture

- CO₂ is separated from a mixture of gases at the end of the production process
- Can be used in most sectors, especially power generation

Syngas/hydrogen capture

- Syngas, a mixture of hydrogen, carbon monoxide and CO₂, can be generated from fossil fuels or biomass. The CO₂ can be removed, leaving a combustible fuel, reducing agent or feedstock.
- Can be used for IGCC power plants or in DRI steel production

Oxyfuel combustion

- Pure (or nearly pure) oxygen is used in place of air in the combustion process to yield a flue gas of high-concentration CO₂. There is an initial separation step for the extraction of oxygen from air, which largely determines the energy penalty.
- Can be used in oxyfuel power generation or in oxyfuel cement production

Inherent separation

- Generation of concentrated CO₂ is an intrinsic part of the production process (e.g. gas processing and fermentation-based biofuels). Without CO₂ capture, the generated CO₂ is ordinarily vented to the atmosphere.
- CO₂ is captured every day in the gas processing, refining and chemicals sectors

What are the options for CO₂ storage?

Injection into deep unmineable coal seams or ECBM

- 3 Use of CO₂ in enhanced oil recovery
- 4 Depleted oil and gas reservoirs

> 1 km

Image: Global CCS Institute

Pore space – what is it?

- In porous rock, pore space exists in the rock matrix which can be occupied by CO₂ when injected into the subsurface.
- The term reservoir is not used literally. CO₂ does not sit in the subsurface in a "pool" but rather in small connected pores in the rock.
- Understanding and managing pressure increases in the reservoir is important.

Pore space is blue and grains of quartz are white in this photograph of a microscopic cross-section of rock (courtesy of CO2CRC)

The CO₂ storage resource is large

- The storage resource is distributed unevenly, with some regions having little or none, and some having an abundance
- Current estimates are high level resource estimates; data and methods are lacking to perform more detailed capacity (i.e., reserve) estimates

Technical Resource (GtCO ₂)		Global		USA	EU	South Africa
		IPCC, 2005	IEAGHG, 2009a,b	NETL, 2012	Vangkilde- Pederson, 2009	CSG, 2008
Storage type	DSF	$1,000 - 10^4$		2,102 - 20,043	96	150
	Depleted Gas	680 – 900	650	226	20	
	CO ₂ -EOR		140			
	ECBM	3 – 200		56 - 114	0.7	

1. CCS technologies exist and are in use

International Energy Agency

Actual and expected operation dates for CCS projects in 'Operate', 'Execute' and 'Define' stages

CCS projects in the power and industrial sectors and projects utilising dedicated geologic storage options

2. To fulfil its role, CCS needs further improvement

- Increased cost driven by need of additional capital investment
 - +80% on power investment / kW ("nth plant"; first ones even more)
 - Varying degree in other industrial applications
- Increased cost also driven by energy penalty
 - 10-12 %-point loss in power plant efficiency...
 - …leads to 25-30% increase in fuel demand per unit of output
- Penalty linked to energy requirements of capture
 - Separation work 2,5 to 3,5 GJ / t CO₂ today
 - Compression 0,5 GJ / t CO₂ today
- Hence critical to accelerate technical learning and economies of scale to reduce energy penalty and capital costs
- Examples of **improvement targets**: CSLF, US DOE:
 - "2020": gradual improvements, -30% energy penalty
 - "2030 and beyond": novel technologies, -50% energy penalty

iea

CCS can be a competitive option

Cost of CO₂ avoided

BARRIERS MUST BE OVERCOME TO REALIZE THE BENEFITS OF CCS

Costs of CO₂ avoided

- Power sector 60-80 USD / t CO₂
- Industry 20-120 USD / t CO₂

Levelised cost of electricity

- Coal-CCS nth plant: 100-120 USD / MWh
- Gas-CCS nth plant: 80-120 USD / MWh

FOR REFERENCE:

- Wind onshore: 45 -160 USD / MWh
- Solar PV: 120-250-400 USD / MWh

Strong policy drives investment

Clean energy investment* between 2004-2013 (USD):

3. Drivers and supportive policies are essential

* UNFCCC process critical for shaping policy environment for clean energy including CCS: Ambitious climate targets, Technology Mechanism, Green Climate Fund, CDM, incl. modalities and procedures etc.

THANK YOU!

juho.lipponen@iea.org

DOWNLOAD THE ROADMAP AT: http://www.iea.org/topics/ccs/ccsroadmap2013