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Preface 
 
General Circulation Models (GCMs) suggest that rising concentrations of greenhouse 
gases will have significant implications for climate at global and regional scales. Less 
certain is the extent to which meteorological processes at individual sites will be 
affected. So–called “downscaling” techniques are used to bridge the spatial and 
temporal resolution gaps between what climate modellers are currently able to provide 
and what impact assessors require.  

This manual describes a decision support tool for assessing local climate 
change impacts using a robust statistical downscaling technique. SDSM (Statistical 
DownScaling Model) 3.1 facilitates the rapid development of multiple, low–cost, 
single–site scenarios of daily surface weather variables under current and future 
climate forcing. Additionally, the software performs ancillary tasks of data quality 
control and transformation, predictor variable pre–screening, automatic model 
calibration, basic diagnostic testing, statistical analyses and graphing of climate data.  

In addition, the manual describes the UKSDSM archive, a set of daily 
predictor variables prepared for model calibration and downscaling at sites across the 
UK. This archive contains variables describing atmospheric circulation, thickness, 
stability and moisture content at several levels in the atmosphere, under climate 
conditions observed between 1961 and 2000. Equivalent predictor variables are 
provided for four GCM experiments of transient climate change between 1961 and 
2099. Users seeking to apply SDSM to regions outside the UK may obtain predictor 
variables online by visiting: http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios 

Application of SDSM is illustrated with respect to the downscaling of daily 
maximum temperature and precipitation scenarios for Blogsville, UK, under current 
(1961–90) and future (2080–99) climate forcing. 
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0 TECHNICAL INFORMATION 
 
 
SDSM version 3.1 runs on PC-based systems and has been tested on Windows 
98/NT/2000/XP.  Note, on older machines, some statistical analyses may take longer 
to perform and/or may exhaust available memory when large data sets are processed. 
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1. INTRODUCTION 
 
Even if global climate models in the future are run at high resolution there will 
remain the need to ‘downscale’ the results from such models to individual sites or 
localities for impact studies (DOE, 1996; p34). 
 
General Circulation Models (GCMs) indicate that rising concentrations of greenhouse 
gases will have significant implications for climate at global and regional scales. 
Unfortunately, GCMs are restricted in their usefulness for local impact studies by 
their coarse spatial resolution (typically of the order 50,000 km2) and inability to 
resolve important sub–grid scale features such as clouds and topography.  

As a consequence, two sets of techniques have emerged as a means of deriving 
local–scale surface weather from regional–scale atmospheric predictor variables  
(Figure 1.1). Firstly, statistical downscaling is analogous to the “model output 
statistics” (MOS) and “perfect prog” approaches used for short–range numerical 
weather prediction. Secondly, Regional Climate Models (RCMs) simulate sub–GCM 
grid scale climate features dynamically using time–varying atmospheric conditions 
supplied by a GCM bounding a specified domain. Both approaches will continue to 
play a significant role in the assessment of potential climate change impacts arising 
from future increases in greenhouse–gas concentrations. 

Figure 1.1 A schematic illustrating the general approach to downscaling. 
 
Statistical downscaling methodologies have several practical advantages over 

dynamical downscaling approaches. In situations where low–cost, rapid assessments 
of localised climate change impacts are required, statistical downscaling (currently) 
represents the more promising option. In this manual we describe a software package, 
and accompanying statistical downscaling methodology, that enables the construction 
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of climate change scenarios for individual sites at daily time–scales, using grid 
resolution GCM output. The software is named SDSM (Statistical DownScaling 
Model) and is coded in Visual Basic 6.0. 

As far as the authors are aware, SDSM is the first tool of its type freely offered 
to the broader climate change impacts community. Most statistical downscaling 
models are generally restricted in their use to specialist researchers and/or research 
establishments. Other software, although more accessible, produces relatively coarse 
regional scenarios of climate change (both spatially and temporally). For example, 
SCENGEN blends and re–scales user–defined combinations of GCM experiments, 
and then interpolates monthly climate change scenarios onto a 5º latitude × 5º 
longitude global grid. “Weather generators” — such as WGEN, LARS–WG or 
CLIGEN (see bibliography) — are widely used in the hydrological and agricultural 
research communities, but do not directly employ GCM output in the scenario 
construction processes. 

Following a brief overview of downscaling techniques, we describe the 
structure and operation of SDSM with respect to seven tasks: 1) quality control and 
data transformation; 2) screening of potential downscaling predictor variables; 3) 
model calibration; 4) generation of ensembles of current weather data using observed 
predictor variables; 5) statistical analysis of observed data and climate change 
scenarios; 6) graphing model output; 7) generation of ensembles of future weather 
data using GCM–derived predictor variables. The key functions of SDSM will be 
illustrated using observed and climate model data for Blogsville, UK, comparing 
downscaled daily precipitation and temperature series for 1960–89 with 2080–99. 
 
1.1 Downscaling techniques 
 
The general theory, limitations and practice of downscaling have been discussed in 
detail elsewhere (see bibliography). Reviews typically group downscaling 
methodologies into four main types: a) dynamical climate modelling, b) synoptic 
weather typing, c) stochastic weather generation, or d) regression–based approaches. 
Each family of techniques is briefly described below. 

 
1.1.1 Dynamical 
 
Dynamical downscaling involves the nesting of a higher resolution Regional Climate 
Model (RCM) within a coarser resolution GCM. The RCM uses the GCM to define 
time–varying atmospheric boundary conditions around a finite domain, within which 
the physical dynamics of the atmosphere are modelled using horizontal grid spacings 
of 20–50 km. The main limitation of RCMs is that they are as computationally 
demanding as GCMs (placing constraints on the feasible domain size, number of 
experiments and duration of simulations). The scenarios produced by RCMs are also 
sensitive to the choice of boundary conditions (such as soil moisture) used to initiate 
experiments. The main advantage of RCMs is that they can resolve smaller–scale 
atmospheric features such as orographic precipitation or low–level jets better than the 
host GCM. Furthermore, RCMs can be used to explore the relative significance of 
different external forcings such as terrestrial–ecosystem or atmospheric chemistry 
changes. 
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1.1.2 Weather typing 
 
Weather typing approaches involve grouping local, meteorological data in relation to 
prevailing patterns of atmospheric circulation. Future regional climate scenarios are 
constructed, either by re–sampling from the observed data distributions (conditional 
on the circulation patterns produced by a GCM), or by first generating synthetic 
sequences of weather patterns using Monte Carlo techniques and re–sampling from 
observed data. The main appeal of circulation–based downscaling is that it is founded 
on sensible linkages between climate on the large scale and weather at the local scale. 
The technique is also valid for a wide variety of environmental variables as well as 
multi–site applications. However, weather typing schemes are often parochial, a poor 
basis for downscaling rare events, and entirely dependent on stationary circulation–
to–surface climate relationships. Potentially, the most serious limitation is that 
precipitation changes produced by changes in the frequency of weather patterns are 
seldom consistent with the changes produced by the host GCM (unless additional 
predictors such as atmospheric humidity are employed). 

 
1.1.3 Stochastic weather generators 
 
Stochastic downscaling approaches typically involve modifying the parameters of 
conventional weather generators such as WGEN or LARS–WG. The WGEN model 
simulates precipitation occurrence using two–state, first order Markov chains: 
precipitation amounts on wet days using a gamma distribution; temperature and 
radiation components using first–order trivariate autoregression that is conditional on 
precipitation occurrence. Climate change scenarios are generated stochastically using 
revised parameter sets scaled in direct proportion to the corresponding parameter 
changes in a GCM. The main advantage of the technique is that it can exactly 
reproduce many observed climate statistics and has been widely used, particularly for 
agricultural impact assessment. Furthermore, stochastic weather generators enable the 
efficient production of large ensembles of scenarios for risk analysis. The key 
disadvantages relate to the arbitrary manner in which precipitation parameters are 
adjusted for future climate conditions, and to the unanticipated effects that these 
changes may have on secondary variables such as temperature. 

 
1.1.4 Regression 
 
Regression–based downscaling methods rely on empirical relationships between local 
scale predictands and regional scale predictor(s). Individual downscaling schemes 
differ according to the choice of mathematical transfer function, predictor variables or 
statistical fitting procedure. To date, linear and non–linear regression, artificial neural 
networks, canonical correlation and principal components analyses have all been used 
to derive predictor–predictand relationships. The main strength of regression 
downscaling is the relative ease of application, coupled with their use of observable 
trans–scale relationships. The main weakness of regression–based methods is that the 
models often explain only a fraction of the observed climate variability (especially in 
precipitation series). In common with weather typing methods, regression methods 
also assume validity of the model parameters under future climate conditions, and 
regression–based downscaling is highly sensitive to the choice of predictor variables 
and statistical transfer function (see below). Furthermore, downscaling future extreme 
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events using regression methods is problematic since these phenomena, by definition, 
tend to lie at the limits or beyond the range of the calibration data set. 
 
1.2 Relative skill of statistical and dynamical downscaling 
 
Given the wide range of downscaling techniques (both dynamical and statistical) there 
is an urgent need for model comparisons using generic data sets and model 
diagnostics. Until recently, these studies were restricted to statistical–versus–
statistical or dynamical–versus–dynamical model comparisons. However, a growing 
number of studies are undertaking statistical–versus–dynamical model comparisons 
and Table 1.1 summarises relative strengths and weaknesses that have emerged. 

 
 Statistical downscaling Dynamical downscaling 
Strengths • Station–scale climate information from 

GCM–scale output 
• Cheap, computationally undemanding 

and readily transferable 
• Ensembles of climate scenarios permit 

risk/ uncertainty analyses 
• Applicable to ‘exotic’ predictands such 

as air quality and wave heights 

• 10–50 km resolution climate 
information from GCM–scale output 

• Respond in physically consistent ways 
to different external forcings 

• Resolve atmospheric processes such as 
orographic precipitation 

• Consistency with GCM 

Weakness • Dependent on the realism of GCM 
boundary forcing 

• Choice of domain size and location 
affects results 

• Requires high quality data for model 
calibration 

• Predictor–predictand relationships are 
often non–stationary 

• Choice of predictor variables affects 
results 

• Choice of empirical transfer scheme 
affects results 

• Low–frequency climate variability 
problematic 

• Always applied off-line, therefore, 
results do not feedback into the host 
GCM 

• Dependent on the realism of GCM 
boundary forcing 

• Choice of domain size and location 
affects results 

• Requires significant computing 
resources 

• Ensembles of climate scenarios seldom 
produced 

• Initial boundary conditions affect 
results 

• Choice of cloud/ convection scheme 
affects (precipitation) results 

• Not readily transferred to new regions 
or domains 

• Typically applied off-line, therefore 
results do not always feedback into the 
host GCM 

 
Table 1.1 Main strengths and weakness of statistical and dynamical downscaling. 
 

The consensus of model inter–comparison studies is that dynamical and 
statistical methods display similar levels of skill at estimating surface weather 
variables under current climate conditions. However, because of recognised inter–
variable biases in host GCMs, assessing the realism of future climate change scenarios 
produced by statistical downscaling methods is problematic. This is because 
uncertainties exist in both GCM and downscaled climate scenarios. For example, 
precipitation changes projected by the U.K. Meteorological Office coupled ocean–
atmosphere model HadCM2, are over–sensitive to future changes in atmospheric 
humidity. Overall, the greatest obstacle to the successful implementation of both 
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statistical and dynamical downscaling is the realism of the GCM output used to drive 
the schemes. 

However, because of the parsimony and “low–tech” advantages of statistical 
downscaling methods over dynamical modelling (Table 1.1), a multiple regression–
based method was chosen as the basis of the decision support tool, SDSM. 
 
1.3 Manual outline 
 
The rest of this manual is organised in six main parts:  
 

Section 2 provides a brief overview of the key operations in SDSM. For a 
complete description of the model specification, interested readers should refer to the 
articles listed in the Bibliography (see below). Descriptions of the UKSDSM and 
Canadian Climate Impacts Scenarios (CCIS) data archives and file nomenclature are 
also provided in Section 2. 

 
Sections 3 to 11 provide guidance on the practical implementation of the key 

functions in SDSM for downscaling regional climate change scenarios. Application of 
SDSM is illustrated using a case study for Blogsville, UK. 

 
Section 12 provides a few cautionary remarks concerning the limitations of 

SDSM and appropriate usage. Users are strongly recommended to consider the issues 
raised here, before developing local scenarios using SDSM. 

 
Next, a comprehensive Bibliography is supplied with follow–up references for 

more detailed discussions of the technical basis of SDSM, example applications and 
comparisons with other downscaling methods. 

 
Enhancements to SDSM since version 2.2 are listed in Appendix 1. 
 
A trouble–shooting guide and outline of the most common pitfalls is provided 

in the form of a Frequently Asked Questions (FAQs) section in Appendix 2. 
 
Finally, definitions of commonly used technical terms related to statistical 

downscaling are provided in a Glossary. 
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2 OVERVIEW OF SDSM STRUCTURE AND UKSDSM ARCHIVE 
 
Downscaling is justified whenever GCM (or RCM) simulations of variable(s) used for 
impacts modelling are unrealistic at the temporal and spatial scales of interest, either 
because the impact scales are below the climate model’s resolution, or because of 
model deficiencies. Downscaling may also be used to generate scenarios for exotic 
variables that can not be obtained directly from GCMs and RCMs. However, the host 
GCM must have demonstrable skill for large–scale variables that are strongly 
correlated with local processes. In practice, the choice of downscaling technique is 
also governed by the availability of archived observational and GCM data because 
both are needed to produce future climate scenarios. 

The SDSM software reduces the task of statistically downscaling daily 
weather series into seven discrete processes (denoted by heavy boxes in Figure 2.1):  

 
1) quality control and data transformation;  
2) screening of predictor variables;  
3) model calibration;  
4) weather generation (observed predictors);  
5) statistical analyses; 
6) graphing model output; 
7) scenario generation (climate model predictors). 
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Figure 2.1 SDSM Version 3.1 climate scenario generation. 
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Full technical details of SDSM (and downscaling prototypes) are provided in 
the Bibliography. Within the taxonomy of downscaling techniques, SDSM is best 
described as a hybrid of the stochastic weather generator and regression–based 
methods. This is because large–scale circulation patterns and atmospheric moisture 
variables are used to linearly condition local–scale weather generator parameters (e.g., 
precipitation occurrence and intensity). Additionally, stochastic techniques are used to 
artificially inflate the variance of the downscaled daily time series to better accord 
with observations. To date, the downscaling algorithm of SDSM has been applied to a 
host of meteorological, hydrological and environmental assessments, as well as a 
range of geographical contexts including Europe, North America and Southeast Asia. 

The following sections outline the software’s seven core operations, along 
with the UKSDSM data archive and recommended file protocols. 

 
2.1 Key functions of SDSM 
 
As noted previously, SDSM performs seven key functions. The following paragraphs 
outline the purpose of each. Full technical explanation and User guidance are 
provided in Sections 3 to 10. Next and Back arrows (at the top of each screen) guide 
the User sequentially from one function to the next. 
 
2.1.1 Quality control and data transformation 
 
Few meteorological stations have 100% complete and/or fully accurate data sets. 
Handling of missing and imperfect data is necessary for most practical situations. 
Simple Quality Control checks in SDSM enable the identification of gross data 
errors, missing data codes and outliers prior to model calibration. 

In many instances it may be appropriate to transform predictors and/or the 
predictand prior to model calibration. The Transform facility takes specified data 
files and applies selected transformations (e.g., logarithm, power, inverse, lag, 
binomial, etc). 
 
2.1.2 Selection of downscaling predictor variables 
 
 Identifying empirical relationships between gridded predictors (such as mean sea 
level pressure) and single site predictands (such as station precipitation) is central to 
all statistical downscaling methods.  

The main purpose of the Screen Variables operation is to assist the user in the 
selection of appropriate downscaling predictor variables. This remains one of the most 
challenging stages in the development of any statistical downscaling model since the 
choice of predictors largely determines the character of the downscaled climate 
scenario. The decision process is also complicated by the fact that the explanatory 
power of individual predictor variables varies both spatially and temporally. Screen 
Variables facilitates the examination of seasonal variations in predictor skill. 
 
2.1.3 Model calibration 
 
The Calibrate Model operation takes a user–specified predictand along with a set of 
predictor variables, and computes the parameters of multiple linear regression 
equations via the efficient dual simplex algorithm (forced entry method).  
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The User specifies the model structure: whether monthly, seasonal or annual 
sub–models are required; whether the process is unconditional or conditional. In 
unconditional models a direct link is assumed between the predictors and predictand 
(e.g., local wind speeds may be a function of regional airflow indices). In conditional 
models, there is an intermediate process between regional forcing and local weather 
(e.g., local precipitation amounts depend on the occurrence of wet–days, which in turn 
depend on regional–scale predictors such as humidity and atmospheric pressure). 
 
2.1.4 Weather generator 

 
The Weather Generator operation generates ensembles of synthetic daily weather 
series given observed (or NCEP re–analysis) atmospheric predictor variables. The 
procedure enables the verification of calibrated models (using independent data) and 
the synthesis of artificial time series representing current climate conditions.  

The User selects a calibrated model and SDSM automatically links all 
necessary predictors to regression model weights. The User must also specify the 
period of record to be synthesised as well as the desired number of ensemble 
members. Synthetic time series are written to specific output files for later statistical 
analysis and/or impacts modelling. 
 
2.1.5 Data analysis 

 
SDSM provides a means of interrogating both derived SDSM scenarios and observed 
climate data with the Analyse Data screen.  

In both cases, the User must specify the sub–period, and output file name. For 
model output, the ensemble member or mean, must also be specified. In return, SDSM 
displays a suite of diagnostics (chosen from the Statistics screen). The default 
statistics are monthly/seasonal/annual means, maxima, minima, sums and variances. 

 
2.1.6 Graphical analysis 
 
Two means of graphical analysis are provided by SDSM 3.1 through the Compare 
Results screen and the Time Series Plot screen. 

 The Compare Results screen enables the User to plot monthly statistics 
produced by the Analyse Data screen. Having specified the necessary input file, 
either bar or line charts may be chosen for display purposes. The graphing option 
allows simultaneous comparison of two data sets and hence rapid assessment of 
downscaled versus observed, or current versus future climate scenarios. 

The Time Series Plot screen allows the User to produce a time series plot of 
chosen data file(s) - up to a maximum of five files can be plotted simultaneously on 
the same chart.  The data can be analysed as monthly, seasonal, annual or water year 
periods for statistics such as Sum, Mean, Maximum, Winter/Summer ratios, Partial 
Duration Series, Percentiles and Standardised Precipitation Index. 
 
2.1.7 Scenario generation 
 
Finally, the Generate Scenario operation produces ensembles of synthetic daily 
weather series given atmospheric predictor variables supplied by a climate model 
(either for current or future climate experiments), rather than observed predictors. 
This function is identical to that of the Weather Generator operation in all respects 



©Wilby & Dawson, 2004 Page 15 of 67 

except that it may be necessary to specify a different convention for model dates and 
source directory for predictor variables. The input files for both the Weather 
Generator and Generate Scenario options need not be the same length as those used 
to obtain the regression weights during the calibration phase. 
 
2.2 UKSDSM data archive 
 
As Figure 2.1 indicates, the SDSM procedure commences with the preparation of 
coincident predictor and predictand data sets. Although the predictand is typically an 
individual daily weather series, obtained from meteorological observations at single 
stations (e.g., daily precipitation, maximum or minimum temperature, hours of 
sunshine, wind speed, etc.), the methodology is applicable to other environmental 
variables (e.g., air quality parameters, wave heights, snow cover, etc.). In any event, 
these data must be supplied by the User in SDSM format (see Section 2.4.2). This is 
single column, text only, beginning 1st January 1961, if necessary padded with the 
Missing Data Identifier. 

Assembly of the candidate predictor suite is, by comparison, a far more 
involved process entailing data extraction, re–gridding and normalisation techniques. 
For this reason, SDSM is supplied with a prepared set of daily predictor variables for 
selected grid boxes covering the British Isles (Figure 2.2) and globally for all land 
areas via the web (Section 2.5). The User simply locates the required grid box and 
data source from the UKSDSM archive. As Figure 2.2 shows the UK is represented 
by nine grid boxes each measuring 2.5º latitude by 3.75º longitude, corresponding to 
the grid co–ordinate system of the Hadley Centre’s coupled ocean–atmosphere GCMs 
(see below). Of the nine cells, six are land, and three are ocean. To obtain more 
realistic estimates of forcing over land areas that are represented by ocean grid boxes 
in the GCM, data from the two nearest land cells were averaged. For example, 
predictor variables for Southwest England (SW) are the average of data from the 
Wales (WA) and Southern England (SE) grid boxes.  
  

 
Figure 2.2 Location and nomenclature of the UK grid boxes in the SDSM archive. 
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For model calibration, the source is the National Centre for Environmental 
Prediction (NCEP) re–analysis data set. The data were re–gridded to conform to the 
grid system of HadCM3 (Figure 2.2). All predictors (with the exception of the 
geostrophic wind direction, see below) were normalised with respect to the 1961 to 
1990 average. However, daily predictors are also supplied for the period 1961–2000. 
 For downscaling future climate scenarios four sets of GCM output are 
available: HadCM2, HadCM3, CGCM2, CSIRO.  Three emission scenarios are 
available: the Hadley Centre’s coupled ocean–atmosphere models HadCM2 and 
HadCM3, the greenhouse gas only experiment with CO2 compounded annually by 1% 
per year (HadCM2 only), the two SRES scenarios A2 and B2 produced by greenhouse 
gas, sulphate aerosol, and solar forcing (HadCM3, CSIRO, CGCM2). 
 
2.3 UKSDSM predictors 
 
Table 2.1 lists the daily predictor variables held in the UKSDSM data archive. Ideally, 
candidate predictor variables should be physically and conceptually sensible with 
respect to the predictand, strongly and consistently correlated with the predictand, and 
accurately modelled by GCMs. For precipitation downscaling, it is also recommended 
that the predictor suite contain variables describing atmospheric circulation, thickness, 
stability and moisture content. In practise, the choice of predictor variables is 
constrained by data availability from GCM archives. The predictors in Table 2.1, 
therefore, represent a compromise between maximum overlap between NCEP and 
HadCM2/HadCM3, as well as a range of choice for downscaling. It is envisaged that 
the list will be extended as further data are released from the Hadley Centre.  
 

 
Daily variable 

 
Code 

 
NCEP 
1961–
2000 

 
HadCM2 

GG 
1961–
2099 

 
HadCM3 

SRES 
1961–
2099 

 
CGCM2 

SRES 
1961–
2099 

 
CSIRO 
SRES 
1961–
2099 

Precipitation (mm) prec  × × × × 
Maximum temperature (ºK) tmax  × × × × 
Minimum temperature (ºK) tmin  × × × × 
Mean temperature temp ×  × × × 
Mean sea level pressure mslp ×  × × × 
500 hPa geopotential height p500 ×  × × × 
850 hPa geopotential height p850 ×  × × × 
Near surface relative humidity rhum ×  × × × 
Relative humidity at 500 hPa height r500 ×  × × × 
Relative humidity at 850 hPa height r850 ×  × × × 
Near surface specific humidity shum ×  × × × 
Geostrophic airflow velocity **_f × × × × × 
Vorticity **_z × × × × × 
Zonal velocity component **_u × × × × × 
Meridional velocity component **_v × × × × × 
Wind direction **th × × × × × 
Divergence **zh × × × × × 

 
Table 2.1 Daily variables held in the UKSDSM data archive (denoted by ×). Bold 
type indicates variables that have not been normalised and are provided for 
comparative purposes. Italics indicate secondary (airflow) variables derived from 
pressure fields (surface, 500 and 850 hPa). 
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2.4 SDSM file protocols 
 
For convenience, the SDSM file protocol is described in two parts. Firstly, the file 
name system and file structure of the UKSDSM archive. Secondly, the meta–data and 
output files produced by SDSM more generally. 
 
2.4.1 UKSDSM file structure and nomenclature 
 
Figure 2.3 shows how the directory structure of the UKSDSM data archive relates to 
ancillary file systems in SDSM. The UKSDSM archive is organised into three levels. 
At the highest level are the data sources: presently NCEP, HadCM2, HadCM3, 
CSIRO or CGCM2. At the second level, are the nine cells shown in Figure 2.2. At the 
third level, are files containing individual predictor variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 

Figure 2.3 SDSM file structure with example file names  
(see Table 2.2 for definitions of file name extension). 

 
Each file in the archive complies with a generic nomenclature of the form 
 
 [source] [variable] [grid box] . dat  
 
The source is denoted by characters 1–4, the variable name by characters 5–8, and 
the grid box by characters 9–10. All files have the extension .dat, for example, the file 
name 
 
 nceprhumee.dat 

SDSM 

Archive Scenarios 

NCEP GCM GCM 

9 grid boxes 
( e.g. EE) 

Calibration Results 

Station 
(Blogsville) 

Current 
climate 

  

nceprhumee.dat.gz 
nceptempee.dat.gz 

. 

. 

tmax.dat
tmax.par

tmax.sim 
tmax.out 
tmax.txt 
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indicates that the source is NCEP [ncep], the variable is near surface relative humidity 
[rhum], and the grid box is Eastern England [ee]. Similarly, the file name 
 
 h3b2p8_zsw.dat 
 
indicates that the source is HadCM3, SRES scenario B2 [h3b2], the variable is 
vorticity computed at the 850 hPa geopotential height [p8_z], and the grid box is 
Southwest England [sw]. Alternatively, the file name 
 
 h2ggp_thsb.dat 
 
indicates that the source is HadCM2, greenhouse gas only experiment [h2gg], the 
variable is surface wind direction [p_th], and the grid box is Scottish Boarders [sb]. 
 
2.4.2 SDSM file name protocol 
 
With the above prerequisites in mind, Table 2.2 lists the file name extensions 
employed by SDSM, and Figure 2.3 shows the associated directory structures.  

All input and output files are text only format. Individual predictor and 
predictand files (one variable to each file, time series data only) are denoted by the 
extension *.dat. The *.PAR file records meta–data associated with the model 
calibration, model weights, and measures of “goodness–of–fit” (percentage explained 
variance and standard error of the model). The *.SIM file records meta–data 
associated with every downscaled scenario (e.g., number of predictor variables, 
ensemble size, period, etc.), and the *.OUT file contains an array of daily downscaled 
values (one column for each ensemble member, and one row for each day of the 
scenario). Finally, *.TXT files are created whenever statistical analyses are 
undertaken in SDSM. These files record summary statistics for individual ensemble 
members or for the ensemble mean, and are accessed by bar/line chart options. The 
data format also enables convenient export to other graphing software and 
spreadsheets. 
 

Extension Explanation Directory 
*.DAT Observed daily predictor and predictand files employed by 

the Calibrate and Weather Generator operations (input). 
SDSM/Scenarios/
Calibration 

*.PAR Meta–data and model parameter file produced by the 
Calibrate operation (output) and used by the Weather 
Generator and Generate Scenario operations (input). 

SDSM/Scenarios/
Calibration 

*.SIM Meta–data produced by the Weather Generator and 
Generate Scenario operations (output). 

SDSM/Scenarios/
Results 

*.OUT Daily predictand variable file produced by the Weather 
Generator and Generate Scenario operations (output). 

SDSM/Scenarios/
Results 

*.TXT Summary statistics produced by the Analyse operations 
(output). 

SDSM/Scenarios/
Results 

 
Table 2.2 SDSM file names and recommended directory structure. 
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2.5 Obtaining SDSM predictors online 
 
SDSM predictors may be obtained for any global land area courtesy of a data portal 
maintained by the Canadian Climate Impacts Scenarios Group. The web-site is 
accessed from: http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios 
 Having registered by e-mail address, the User then selects predictors from the 
available GCMs (currently HadCM3 and CGCM2), given the latitude and longitude 
of the nearest grid-box(es) to the study region. All data files, including NCEP 
predictors, may then be downloaded directly to Users’ PC for immediate deployment 
by SDSM. 
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3. GETTING STARTED 
 
To launch SDSM, click on the Start button on the Windows desktop, then on 
Programs, and then on SDSM (which will appear as a small rain cloud on the list of 
available programs). The following screen will appear: 
 

 

  
 

Figure 3.1 The SDSM “splash” screen. 
 
 Click on Start to continue to the SDSM main menu (Figure 3.2). If further 
information is required at any time, click on the Help button at the top of each screen 
(the User may then search the Help Contents by key word or task).  
 

 
 

Figure 3.2 Main menu of SDSM. 
 

Before downscaling, the User should check the date ranges, type and integrity 
of all input data. To establish the working environment click on the spanner symbol at 
the top of the main menu (or at the top of any other screen) to access the Settings 
screen (Figure 3.3). 
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3.1 Settings 
 
The Settings screen may be accessed throughout SDSM. The following global 
preferences are available: 
 

Year Length: The default (366) allows 29 days in February every fourth year 
(i.e., leap years) and should be used with observational data. The alternatives allow 
for different numbers of days in GCM data. For example, CGCM2 and CSIRO have 
365 days and no leap years, whereas HadCM2 and HadCM3 have model years 
consisting of 360 days. Failure to set this parameter correctly can lead to system errors 
due to insufficient data or the production of non-sensible output. 

 
Standard Start/End Date: Enter the global default start and end date for all 

input data. These dates will appear throughout the operation of SDSM, but may be 
updated from any screen.  

 
Allow Negative Values: The default allows simulation of negative values by 

the downscaling model (e.g., for minimum temperature); deselection truncates values 
at zero (e.g., for sunshine hours). 

 
Event Threshold: For some variables it is necessary to specify an event 

threshold. For example, when calibrating daily precipitation models, the parameter 
might be set to 0.3 mm/day to treat trace rain days as dry days. Similarly, the 
threshold for sunny versus cloudy days might be set at 1.0 hours/day to discriminate 
between overcast and sunny conditions. 

 
Missing Data Identifier: This is the code assigned to missing data in all input 

series. Whenever SDSM encounters this code the value will be skipped (e.g., during 
model calibration, or calculation of summary statistics). The default is –999. 

 
Random Number Seed: Ensures that the random sequences produced by 

Weather Generator (Section 7) and Generate Scenario (Section 11) are different 
each time the model is run.  If replicate experiments are preferred, the check box 
should be deselected. 

 

 
Figure 3.3 The Settings screen. 
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3.2 Advanced settings 
 
The advanced settings are accessed from the Settings screen by clicking on the 
Advanced button at the top of the screen. The Advanced Settings screen allows the 
User to change and save further downscaling model preferences (Figure 3.4): 

 
Model Transformation: Specifies the transformation applied to the 

predictand in conditional models. The default (None) is used whenever the predictand 
is normally distributed (this is often the case for daily temperature). The alternatives 
(Fourth root, Natural log and Inverse Normal) are used whenever data are skewed (as 
in the case of daily precipitation). Note that the Inverse Normal transformation 
employs conditional resampling of the observed predictand (see Wilby et al. 2003).  
The transformation type is recorded in *.PAR and *.SIM files to ensure that data are 
consistently handled during subsequent scenario and data analysis routines.  

 
Variance Inflation: Controls the magnitude of variance inflation in 

downscaled daily weather variables. This parameter changes the variance by 
adding/reducing the amount of “white noise” applied to regression model estimates of 
the local process. The default value produces approximately normal variance inflation 
(prior to any transformation). Larger values increase the variance of downscaled 
properties.  Variance inflation is de–activated by setting the parameter to zero. Note 
that for Fourth root and Natural log Model Transformations (see above), this 
parameter also affects changes in the mean estimate. 

 
Bias Correction: Compensates for any tendency to over– or under–estimate 

the mean of conditional processes by the downscaling model (e.g., mean daily rainfall 
totals). The default value is 1.0, indicating no bias correction. 

 
Settings File: Locates standard and advanced settings held in a User defined 

reference file and directory. A new or updated settings file is created whenever the 
Save button is clicked at the top of the screen. The C:\SDSM.INI settings file is 
automatically loaded whenever SDSM is run.  

 

 
 

Figure 3.4 The Advanced Settings screen 
 

Press Reset at any time to reload the original settings, or Back to return to the 
Settings screen, followed by Back again to return to the last open screen. 
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4. QUALITY CONTROL AND DATA TRANSFORMATION 
 
Few meteorological stations have complete and/or fully accurate data sets. Handling 
of missing and imperfect data is necessary for most practical situations. In some cases 
it is also necessary to transform data prior to model calibration. SDSM performs both 
quality control and data transformation. 
 
4.1 Quality control 
 
To check an input file for missing data and/or suspect values, click on the Analyse 
button at the top of the Main Menu, then select Quality Control from the drag down 
menu. The following screen will appear: 

 

 
 

Figure 4.1 The Quality Control screen 
 
 Click on the Select File button. An Open file window will appear – browse 
through until you have located the directory and file to be checked – in this example 
the Blogsville maximum daily temperature, TMAX.DAT. Click on the required data 
file then on Open. To activate the quality control procedure, click on the Check File 
button at the top of the screen. The following confirmation will appear: 
 

 
 

Figure 4.2 The Quality check complete dialogue box. 
 

Click on the OK button to view the quality control information. In this 
example, there are 10957 values with no missing data (i.e., no missing value codes of 
–999 were detected). The data range from –6.7 to 34.8 ºC, with mean 13.1871ºC (see 
Figure 4.3). Click on the Reset button to clear the screen entries, or to perform a new 
quality check. Click on Home to return to the Main Menu, or on Next to proceed to 
Screen Variables (Section 5). 
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Figure 4.3  Results of the Quality Control check for TMAX.DAT 
 

 
4.2 Data transformation 
 
To transform data, click on the Transform button at the top of the Main Menu. 
Alternatively click on the Transform button at the top of the Quality Control screen. 
In either case, the following screen will appear: 

 
Figure 4.4 The Transform Data File screen 

 
Click on the Select Input File button. An Open file window will appear. 

Browse through until you have located the directory and file to be transformed – for 
example the surface vorticity over Eastern England, ncepp__zee.dat. Click on the 
required file. If there is more than one column of input data (as in the case of an 
ensemble simulation produced by the Weather Generator or Generate Scenario 
functions, see Sections 7 and 11) enter the appropriate number in the Columns in 
Input File box. To enable transformed data with multiple columns to be handled by 
the Analyse Data function (Section 8), check the box under Create SIM File. 
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If the User wishes to extract a single ensemble member from a multi-column 
data file check the Extract box on this screen.  Enter the number of the ensemble 
member required and the data will be written to the selected Save File. Note, in this 
case, no transformation is applied to this extracted member. 

Select the Transformation by checking the appropriate button. Available 
transformations include: natural logarithms and log10, squares, cubes, fourth powers, 
inversion, lag interval and binomial, together with the inverse transformations of the 
above where appropriate. If Wrap is selected (for Lag n) the last value is used as the 
first value in the lag transformation; otherwise the Missing Data Identifier is 
inserted. The Backward change button is used to compute variable changes between 
successive days. All transformations can be applied to standard predictor variables 
prior to Model Calibration (Section 6), to produce non–linear regression models 
(e.g., use power transformations for polynomial models). 

For the Eastern England data, select Lag n, enter “–1” in the box, and check 
the Wrap box (which will produce a lag–1 series of the variable with no missing 
data). Click on the Select Output File button. An Open file window will appear – 
browse through until the required directory is located, enter the Filename for 
transformed data, in this case ncepzlagee.dat (i.e., vorticity on previous days), then 
click on Save. Note that, the name used for transformed files MUST comply fully 
with the protocol described in Section 2.4.1. 

To activate the procedure, click on the Transform button at the top of the 
screen. The following confirmation will appear: 

 

 
 

Figure 4.4 The Transformation complete dialogue box 
 

Click on the OK button to return to the Transform Data File screen. Click on 
the Reset button to clear the screen entries, or to perform a new transformation. Click 
on Back to return to the previous screen, then on Home to return to the Main Menu. 
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5. SELECTION OF DOWNSCALING PREDICTOR VARIABLES 
 
Identifying empirical relationships between gridded predictors (such as mean sea level 
pressure) and single site predictands (such as station precipitation) is central to all 
statistical downscaling methods and is often the most time consuming step in the 
process. The purpose of the Screen Variables screen is to assist the User in the 
choice of appropriate downscaling predictor variables for model calibration (Section 
6). SDSM performs three supporting tasks: seasonal correlation analysis, partial 
correlation analysis, and scatterplots. Ultimately, however, the User must decide 
whether or not the identified relationships are physically sensible for the site(s) and 
predictands in question. 

To investigate potentially useful predictor–predictand relationships, click on 
the Analyse button at the top of any screen, then select Screen Variables from the 
drag down menu. The following screen will appear:  

 

 
 

Figure 5.1 Illustration of the Screen Variables screen using daily maximum 
temperatures for Blogsville, 1961–1990. 

 
 
5.1 Setup 
 
The first step in the Screen Variables operation is the selection of the predictand and 
predictor files. The predictand file (e.g., observed daily maximum temperature, daily 
precipitation totals, etc.) must be supplied by the User, in SDSM format (see Section 
2.4). Click on the Select Predictand File button. An Open file window will appear – 
browse through until the appropriate directory has been located. Click on the 
predictand data file – for example, the maximum daily temperature at Blogsville, 
TMAX.DAT, located in C:\SDSM\Blogsville\Calibration.  

Follow a similar procedure, locate and select the desired Predictor Variables 
by choosing the correct drive from the pull down window in the centre of the screen. 
The directories available on this drive will then appear in the window directly above 
the drive window. Browse through again until the appropriate directory is located. All 
*.DAT files in this directory are then listed in the window above. To select a 
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predictor, simply click on the file name – it will be highlighted in blue. A brief 
definition of the chosen variable is given in the Predictor Description window. To 
deselect a file, click on it again, and it will no longer be highlighted. The number of 
predictor variables chosen is shown beneath this window (up to a maximum of 12).  

The Data menu on the left–hand side of the Screen Variables screen allows 
the start and end dates of the analysis period to be changed. The default dates are held 
in the Settings screen (see Section 3.1), in this case 1961–1990. If the start and end 
dates lie outside the permissible range, the User will be prompted to enter new values. 
The User must also choose the seasonal subset from the pull down window under 
Select analysis period. The available options are Annual (no seasonal sub–setting), 
Winter (December–February), Spring (March–May), Summer (June–August), 
Autumn (September–November), and individual months.  

Two more actions are necessary before the analysis can take place. Firstly, the 
type of Process must be specified. If the predictor–predictand process is not regulated 
by an intermediate process (as in the case of maximum temperature) then click on 
Unconditional, otherwise select Conditional (as with precipitation where amounts 
depend on wet–day occurrence). Secondly, amend the Significance Level as required. 
This value is used to test the significance of predictor–predictand correlations. The 
default is p<0.05 (5%). 

Once the above have been specified, SDSM is ready to analyse the chosen 
predictor–predictand relationship(s), for specified sub–period(s). 
 
5.2 Temporal variations in predictor strength 
 
The Analyse button is used to investigate the percentage of variance explained by 
specific predictand–predictor pairs. The strength of individual predictors often varies 
markedly on a month by month basis (e.g., Figure 5.2). The User should, therefore, be 
judicious concerning the most appropriate combination(s) of predictor(s) for a given 
season and predictand. The local knowledge base is also invaluable when determining 
sensible combinations of predictors. 

 
Figure 5.2 The Results screen for the Blogsville example. The strongest correlation 

in each month is shown in red, indicating that the relationship between maximum 
temperature and p500 and p__u are most important. Blanks represent insignificant 

relationships at the chosen Significance Level. 
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For the Blogsville example, select maximum daily temperatures as the 
predictand (TMAX), and the following predictor files: p500, p__u, p__v, and p__z (see 
Table 2.1). In addition, use the Transform facility (Section 4.2) to create lagged 
values (one–day) for the surface airflow indices. The predictand does not depend on 
an intermediate occurrence process, so Unconditional is checked under the Process 
option. Use the default dates for the Data option (i.e., 1961–1990), and choose 
Annual under Select Analysis Period. Use the default Significance Level (i.e., 0.05) 
then click on the Analyse button at the top of the Screen Variables menu. The results 
in Figure 5.2 suggest that p500 is a potentially useful predictor for April through 
October maximum temperature, and p__u for December through March. 
 
5.3 Correlation matrix 
 
The Correlation button is used to investigate inter–variable correlations for specified 
sub–periods (annual, seasonal or monthly). SDSM also reports partial correlations 
between the selected predictors and predictand. These statistics help to identify the 
amount of explanatory power that is unique to each predictor. 

For the Blogsville example, use the same predictand, predictors and set–up as 
in Section 5.2. Then click on the Correlation button at the top of the Screen 
Variables menu. The results are shown in Figure 5.3. 

 

 
 

Figure 5.3 The Results screen for the Blogsville example. Partial correlations 
indicate that p500 and p__z have the strongest association with TMAX once the 

influence of all other predictors has been removed. 
 
 
5.4 Scatterplot 
 
The Scatter button is used for visual inspections of inter–variable behaviour for 
specified sub–periods (annual, seasonal or monthly). The resultant scatterplot(s) 
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indicate the nature of the association (linear, non–linear, etc.), whether or not data 
transformation(s) may be needed, and the importance of outliers. 
 For the Blogsville example, select TMAX as the predictand, p__u as the 
predictor file, and February under Select analysis period (following the results in 
Figure 5.2). Check that all other predictors have been deselected, and that 
Unconditional is selected under Process. (Note that if Conditional is selected, all 
values less than or equal to the Event Threshold in Settings are excluded from the 
plot). Click on the Scatter button at the top of the Screen Variables menu. The 
results are shown in Figure 5.4. 
 

 
 

Figure 5.4 The Scatterplot for the Blogsville example, showing the association 
between TMAX and p__u in February. The results suggest that during February, 

higher maximum daily temperatures are associated with stronger westerly airflows. 
 
 The presentation quality of the Scatterplot may be customized, as required, by 
doubling clicking on any of the axis legends, titles or data points. Additional windows 
enable changes to be made to chart font, style, size, colour, etc.  

To incorporate the Scatterplot in a Word document, first use the Copy button 
at the top of the screen, then in Word use Paste Special (Picture). 
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6. MODEL CALIBRATION 
 
The Calibrate Model process constructs downscaling models based on multiple 
linear regression equations, given daily weather data (the predictand) and regional–
scale, atmospheric (predictor) variables. The parameters of the regression model are 
written to a standard format file with the extension *.PAR, along with meta–data 
recording details of the calibration period, model type, predictors used, etc. 

The User specifies the model structure: whether monthly, seasonal or annual 
sub–models are required; whether the process is unconditional or conditional. In 
unconditional models a direct link is assumed between the predictors and predictand 
(e.g., local wind speeds may be a function of regional airflow indices). In conditional 
models, there is an intermediate process between regional forcing and local weather 
(e.g., local precipitation amounts depend on wet–/dry–day occurrence, which in turn 
depend on regional–scale predictors such as humidity and atmospheric pressure). 
Furthermore, it is possible to apply standard transformations to the predictand in 
conditional models (see Section 3.2), and/or to specific predictors (see Section 4.2). 

To access the model building facility, click the Analyse button at the top of 
any screen, then select Calibrate Model from the drag down list. Alternatively, click 
on the Next button at the top of the Screen Variables screen. The following screen 
will appear: 

 

 
 

Figure 6.1 The Calibrate Model screen. 
 
6.1 File handling 
 
To begin model building, click on the Select Predictand File button in the top left–
hand corner. An Open file window appears; browse through until the correct directory 
and file are reached, then click on the appropriate file name – for example, the 
maximum daily temperature at Blogsville, TMAX.DAT. The name of the file will then 
appear beneath the button. 



©Wilby & Dawson, 2004 Page 31 of 67 

Follow a similar procedure to locate and select the desired predictor variables 
by choosing the correct drive from the pull down window in the centre of the screen. 
The directories available on this drive will then appear in the window directly above 
the drive window. For example, locate the C:\SDSM\Blogsville\NCEP directory. All 
*.DAT files in this directory are then listed in the window above. To select a 
predictor, simply click on the file name – it will be highlighted in blue. To deselect a 
file, click on it again, and it will no longer be highlighted. The number of predictor 
variables chosen is shown beneath this window. 
 The Data menu on the left–hand side of the Calibrate Model screen allows 
the start and end dates of the analysis period to be changed. The default dates are held 
in the Settings screen (Section 3.1), in this case 1961–1990. If the start and end dates 
lie outside the permissible range, the User will be prompted to enter new values. 
Ideally, the model should be calibrated using part of the available data, withholding 
the remainder for independent model validation (see Sections 7 and 8). 
 To specify the name of the output parameter (*.PAR) file, click on the Output 
File button in the upper right–hand corner. An Output PAR file window appears. For 
maximum convenience, make sure that the parameter file is saved in the same 
directory as the predictand files, in this case, C:\SDSM\Blogsville\Calibration. Enter 
an appropriate file name in the File name box then click on the Save button. The 
name of the parameter file will then be displayed beneath the Output File button, for 
example, TMAX.PAR. 
 
6.2 Model type 
 
To determine the temporal resolution of the downscaling model check either 
Monthly, Seasonal or Annual under the Model Type box. In Monthly models, 
different model parameters are derived for each month. In Seasonal models, all 
months in the same season (e.g., December, January and February for winter) have the 
same model parameters. In Annual models, all months have the same parameters (i.e., 
there is no attempt to specify intra–annual variations in parameter values).  
 Next, indicate whether the downscaling process should be Unconditional or 
Conditional by checking the appropriate option in the Process box. Note that for 
conditional processes in which the distribution of predictand values is skewed, it is 
possible to apply one of several transformations in Advanced Settings (see Section 
3.2). For example, the Fourth root might be selected for daily precipitation amounts. 
Finally, click the Calibrate button at the top of the screen.  
 
6.3 Blogsville example 
 
For the Blogsville example, five predictor files (p500, p__u, vlag, p__z and zlag) 
might be selected to downscale daily maximum temperatures, TMAX (see Figure 5.3). 
There is clearly a seasonal cycle in the regional forcing (Figure 5.2), so Monthly is 
checked in the Model Type box. The Unconditional option is checked in the Process 
box because a direct link is assumed to exist between the regional–scale predictors 
and local temperature. The date range in the Data menu is set at 1961 to 1975, 
ensuring that the second half of the data (i.e., 1976 to 1990) is retained for model 
validation. 

 Once the appropriate selections have been made, click on the Calibrate 
button. The process may take several seconds, and on completion a dialogue box will 
report the percentage of explained variance (R–squared value) and the Standard Error 
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for the model. Figure 6.2 shows the results for the Blogsville example. In this case, 
about 55% of the variance in the local predictand is explained by regional forcing, and 
the standard error of the model is 2.2ºC. 
 

 
 

Figure 6.2. The Calibration Completed dialogue box. 
 

Click on the OK button to return to the Calibrate Model screen, then on 
Home to return to the Main Menu, on Back to return to Screen Variables, or on 
Next to proceed to the Weather Generator. 
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7. WEATHER GENERATOR 
 
The Weather Generator operation produces ensembles of synthetic daily weather 
series given observed (or NCEP re–analysis) atmospheric predictor variables and 
regression model weights produced by the Calibrate Model operation (see Section 
6). The Weather Generator enables the verification of calibrated models (assuming 
the availability of independent data) as well as the synthesis of artificial time series 
representative of current climate conditions. The Weather Generator can also be 
used to reconstruct predictands or to infill missing data. 

To access this facility, click the Analyse button at the top of any screen, then 
select Weather Generator from the drag down list. Alternatively click on the Next 
button at the top of the Calibrate Model screen. The following screen will appear: 

 
Figure 7.1 The Weather Generator screen. 

 
7.1 File handling 
 
The first step in the synthesis process is the selection of the appropriate parameter file. 
Click on the Select Parameter File button, in the top left–hand corner. An Open file 
window appears; browse through until the correct directory and file are reached, then 
click on the appropriate file name – for example, the parameters for maximum daily 
temperature at Blogsville, are held in TMAX.PAR. The name of the file will then 
appear beneath the button. 

Next, specify the location of the predictor variable files by choosing the 
correct directory and drive from the window in the bottom left–hand corner of the 
screen under Select Predictor Directory. 

 To write synthetic data to a results file, it is necessary to select an appropriate 
directory and output file name. Click on the Select Output File button in the top 
right–hand corner. An Open file window appears; browse through until the correct 
directory is reached, then enter a suitable file name – for example, TMAX.OUT. The 
name of the file will then appear beneath the button.  
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Click on the View Details button, and the (predictand followed by predictor) 
files used in model calibration are listed in the window below. The Record Start date 
and available Record Length (number of days) are also displayed. The User must 
specify the (sub–) period required for weather generation using the Synthesis Start 
and Sythesis Length boxes, respectively. 

The default values for Synthesis Start and Sythesis Length are used to 
simulate the period of record used for model calibration. If, however, model 
verification is to be undertaken using a set of independent data withheld from the 
calibration process, then the two values should be amended accordingly. If simulation 
of observed data based on the complete predictor record is needed, then the Record 
Start and Record Length values should be used.  
 
7.2 Ensemble size 

 
Decide how many ensembles of synthetic data are needed, up to a maximum of 100, 
and enter the appropriate value in the Ensemble Size box at the bottom right–hand 
corner of the screen (the default is 20). Individual ensemble members are considered 
equally plausible local climate scenarios realised by a common set of regional–scale 
predictors.  The extent to which ensemble members differ depends on the relative 
significance of the deterministic and stochastic components of the regression models 
used for downscaling. For example, local temperatures are largely determined by 
regional forcing whereas precipitation series display more “noise” arising from local 
factors. The former will yield similar looking ensemble members; the latter, large 
differences between individual members. 

Once the above selections have been completed, click the Synthesize button at 
the top of the menu. After a few seconds, the follow dialogue box will appear: 

 

 
 

Figure 7.2 The synthesis completed dialogue box. 
 
 Click on OK to return to the Weather Generator, then on Back to return to 
the Calibrate Model screen, or on Next to proceed to Analyse Model Output. 
 
7.3 Blogsville example 
 
Selections for Blogsville are illustrated in Figure 7.1. In this example, the Weather 
Generator synthesized 20 runs of 15 years daily maximum temperature, using five 
regional–scale predictors. The data were synthesized using independent predictors 
withheld from model calibration (i.e., for the period 1976–1990).  
 Figure 7.3 shows the first few values of 12 ensemble members held in the 
TMAX.OUT file written to C:\SDSM\Blogsville\Results. Figure 7.4 shows the 
corresponding TMAX.SIM file, which contains meta–data associated with the 
synthesis. In both cases, the files have been opened in WordPad. 
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Figure 7.3 An example of the format of the simulated data file (*.OUT). 
 

 
 
Figure 7.4 The *.SIM file produced by the Weather Generator operation for the 
Blogsville example. The output is (in line order): [1] the number of predictor 
variables; [2] the number of regression models used (1=annual, 4=seasonal, 
12=monthly); [3] the maximum number of days in a year (here a calendar year is 
used, so there are up to 366 days in leap years); [4] the start date of the data used for 
model calibration; [5] the number of days simulated; [6] whether or not the predictand 
is a conditional (#TRUE#) or unconditional (#FALSE#) variable; [7] the number of 
ensemble members; [8] the variance inflation parameter (see Advanced Settings); [9] 
the transformation code for conditional variables (1=none, 2=fourth root, 3=natural 
log, 4=inverse normal); [10] the bias correction parameter (see Advanced Settings); 
[11] the predictand file name; [12 onward] the predictor file name(s).  
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8 ANALYSIS OF OBSERVED AND DOWNSCALED DATA 
 
8.1  Overview 
 
Statistical tests of observed and downscaled weather data are handled in slightly 
different ways by SDSM but both are performed in the Analyse Data screen. 
Common diagnostic tests are available for both observed and synthetic data. These 
statistics include the variable mean, maximum, minimum, variance, peaks 
above/below thresholds, percentiles, percent wet–days, and wet–/dry–day spell–
lengths, computed on a calendar month, seasonal or annual basis. 
 

To evaluate either downscaled data or observed data, click on the Analyse 
button at the top of any screen, then select Analyse Data from the drag down list. The 
following screen will appear: 

 

 
 

Figure 8.1 An example of the Analyse Data screen 
 

The first step in the analysis is to select the Data Source – click on either 
Modelled, for downscaled data analysis, or Observed for observed data analysis. 

The second step is the selection of an appropriate data file. Click on the Select 
Input File button, on the left–hand side. An Open file window appears; browse 
through until the correct directory and file are reached, then click on the appropriate 
file name – for example, actual maximum daily temperatures at Blogsville, are held in 
TMAX.DAT. The name of the file will then appear beneath the button. If using 
Modelled output click on View Details to check basic information about the 
downscaling experiment (such as the number of predictors, start date, etc.) 

Next, specify the (sub–) period required for analysis using the Analysis start 
date and Analysis end date windows, under the Analysis Period header. The default 
values are the Standard Data Start Date and Standard Data End Date held in the 
global Settings (Section 3.1). The default Use Ensemble Mean box produces mean 
diagnostics for all ensemble members and the standard deviation of the ensembles 
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(see Figure 8.4). However, diagnostics for individual members may be extracted by 
deselecting Use Ensemble Mean and entering the required Ensemble Member (in 
this case, integers 1 to 100) in the Ensemble Member box. 
 To save the analysis results, it is necessary to select an appropriate directory 
and file name. Click on the Save Summary File As button on the right–hand side. An 
Open file window appears; browse through until the correct directory is reached, then 
enter a suitable file name – for example, TMAXOBS.TXT. The name of the file will 
then appear beneath the button. 

The final step is to select the required diagnostics. Click on the Statistics 
button at the top of the menu. The following screen will appear: 
 

 
 

Figure 8.2 The Statistics Selection screen. 
 
 The screen is divided into two areas. The first, headed Generic Tests, lists 
statistics that may be applied to any variable (mean, maximum, minimum, sum, 
variance, median, count, peaks over/below threshold, percentile, inter–quartile range, 
autocorrelation, skewness and maximum N-day total). The second, headed 
Precipitation Only, lists statistics that are only applicable to daily precipitation series 
(percentage wet, mean dry–/wet–spell length, maximum dry–/wet–spell length, 
standard deviation of dry-/wet-spell, peaks over threshold as a percentile, peaks over 
threshold as a percentage of total rainfall). Note that the definition of a wet–day can 
be adjusted using the Event Threshold under Settings. The default is zero (i.e., wet–
days are defined as all days with non–zero precipitation totals). Note, sum is averaged 
by the number of years in the data set providing the monthly/seasonal/annual mean 
sum. 

By checking the appropriate boxes, the User selects up to eight statistics for 
analysis. The defaults are the mean, maximum, minimum, sum, and variance. Click 
on Back to return to the Analyse Data screen. 

Once all the above selections have been completed, click on the Analyse 
button at the top of the menu. After a few seconds, the Results screen will appear:  
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Figure 8.3 Default statistics for observed daily maximum temperatures at Blogsville 

during the validation period 1976–1990. 
 

The Results screen lists the name of the input file, along with the start and end 
dates of the analysis. Monthly, seasonal and annual mean statistics are listed beneath 
for the chosen tests. Comparison of the results obtained from the Weather Generator 
(see below) gives an indication of model skill. See Section 9 for visual comparisons of 
monthly statistics. 

 
 

Figure 8.4  Example output of Analyse Data (Modelled) showing the mean 
and standard deviation of diagnostics for a 20 member ensemble 
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9 GRAPHING MONTHLY STATISTICS 
 
The Compare Results operation enables the User to plot monthly statistics produced 
by the Analyse Model Ouput/ Other Data operations (Section 8). Graphing options 
allow the comparison of two sets of results and hence rapid assessment of downscaled 
versus observed, or current versus future climate scenarios. 

To access this facility, click the Analyse button at the top of any screen, then 
select Compare Results from the drag down list. The following screen will appear: 

 

 
 

Figure 9.1 An illustration of the Compare Results screen. 
 
9.1 Line chart 
 
To choose a results (*.TXT) file, click on Select First File button. An Open file 
window appears; browse through until the correct directory and file are reached, then 
click on the appropriate file name – for example, observed statistics for maximum 
daily temperature at Blogsville, are held in TMAXOBS.TXT. The name of the file 
will then appear beneath the button, along with a list of available statistics. Repeat the 
process by clicking on the Select Second File button. Then click on the required 
statistic listed under Select Statistic. Finally, to show a line chart click on the Line 
button at the top of the screen: 
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Figure 9.2 Example of the Line chart using observed (TMAXOBS) and downscaled 
(TMAX) monthly mean maximum daily temperatures at Blogsville 1976–1990. 

 
9.2 Bar chart  
 
Alternatively, having selected the required files and statistics from each list (as in 
Section 9.1), click on the Bar button at the top of the Compare Results screen to 
produce a bar chart: 

 

 
Figure 9.3 Example of the Bar chart using observed (TMAXOBS) and downscaled 
(TMAX) monthly absolute maximum daily temperatures at Blogsville 1976–1990. 

 
9.3 Customizing charts 
 
To change (or remove) tick marks, y-axis labels, chart titles or y-axis 
maximum/minimum, in either the Line or Bar chart, click on the Settings button at 
the top of the screen. The following screen will appear: 
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Figure 9.4 An illustration of the Chart Settings screen. 
 
 Enter the required values/text then click on the Make Changes button (to 
change text) and/or click on the Apply Ticks button to change tick marks. Similarly, 
click on the Clear Ticks, Show Legend, or Clear Legend buttons as required. Then 
click on the Back button to return to the plot. 
 To change the colour scheme of the lines or bars, double click on the object 
required. A Color palette will appear. Select the desired colour, then OK to return to 
the chart. Similarly, to change the Font, double click on title and/or y-axis title. To 
change the position of the title, single click then drag to the required location on the 
chart. 
 By applying the above design preferences, it is possible to change the bar chart 
in Figure 9.3 into the following: 
 

 
 

Figure 9.5 The same as Figure 9.3 but with customised bar colour scheme, tick 
marks, scale and legend. 

 
Finally, to incorporate Line or Bar charts in a Word document, first use the 

Copy button at the top of the screen, then in Word use Paste Special (Picture). 
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10 TIME SERIES PLOT 
 
10.1 Time Series Chart 
 
The Time Series Plot page (Figure 10.1) allows the user to produce a time series plot 
of chosen data file(s). Up to a maximum of five files can be plotted simultaneously on 
the same chart. 
 

 
 

Figure 10.1  Time Series Plot screen 
 
File Selection 
 
Using the Drive, Directory and File Selection boxes, the User can select up to five 
files to plot.  Note, two File Selection windows are provided to allow the User to 
select files from different directories.  Only a maximum of five files from the two File 
Selection windows can be selected in total. 
 
Data 
 
Allows the User to select the period that they wish to analyse. Note, if an attempt is 
made to plot a period longer than the available data set (as defined in the global 
Settings), an error message will appear. 
 
Save Results To 
 
The User can choose to save a summary of the calculated results to a data file.  This 
option will not work if plotting Raw Data as no summary statistics are calculated for 
this option.   The default format text file that is comma separated (*.CSV) that can be 
opened in a spreadsheet for further analysis.  Clicking on the Clear button deselects 
the selected file.   
 
Time Period 
 
Allows the User to select from Raw Data, Month, Season, Annual or Water Year.  
Raw Data simply graphs the data from the chosen file(s) as a time series plot for the 
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selected period (set by the User under Fit Start and Fit End).   No statistics are 
derived for Raw Data. Note, the Water Year runs from October to September and is 
referred to by the year in which it starts. Season is referred to by the year in which it 
falls. Winter (December, January, February) is referred to by the year in which the 
January, February fall 
 
When selecting a Month, Season, Annual or Water Year Time Period, SDSM 
calculates the chosen statistics (from the list below Select Statistic) for the specified 
period and plots them on a line graph.  For example, if the User chooses a Time 
Period of January, and selects Sum, SDSM will plot the annual series of January 
Sums for the selected fit period (i.e., the sum for January 1961, sum for January 1962, 
and so on) as a line chart. 
 
Select Statistic 
 
The User selects the summary statistics to be plotted by clicking in the appropriate 
check button in this section (default is Sum).  SDSM calculates the chosen statistic for 
the selected Time Period, repeated across the range of the fit period, and plots these 
calculated statistics on a time series chart. 
 
Note, Winter/Summer ratio is calculated as the sum of the winter data (December, 
January, February), divided by the sum of the following summer data (June, July, 
August).  It is referenced to the year in which the summer period falls. 
 
PDS is the Partial Duration Series and is calculated as the sum of data values less than 
or equal to the chosen threshold for the selected Time Period.  The default is the 
threshold value set in the main Settings screen.  This value can be adjusted by 
entering the required threshold in the text box (this will not affect the threshold value 
set in the main Settings screen and applied elsewhere). 
 
Percentile calculates the specified percentile for the chosen Time Period.  The 
default is 90% but this can be adjusted by entering the required value in the text box. 
 
SPI is the Standardised Precipitation Index.  This is calculated for monthly time series 
only, so the Time Period selection is ignored when SPI is chosen.  It is derived by first 
calculating the monthly sums of the data, then calculating a moving average of these 
monthly sums (smoothing) across the time period entered by the User in the adjacent 
text box.  The default moving average period is 3 months.  The smoothed data are 
then normalised by subtracting the mean of all the data in the fit range and dividing by 
the standard deviation of the smoothed data for each month. 
 
POT is the Peaks Over Threshold.  This counts the number of events greater than the 
user specified threshold for the chosen time period. 
 
Plot 
 
By clicking the Plot button the selected statistics are displayed as a time series graph.  
A graph, such as that shown in Figure 10.2 will be displayed. 
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Figure 10.2  Time series plot of raw data from PRCP.DAT file 
 

 
10.2 Adjusting chart appearance 
 
The appearance of the time series chart can be adjusted in several ways.  For example, 
by clicking on the Settings button, the User is presented with a settings form that 
allows various adjustments to be made (Figure 10.3). 
 

 
 

Figure 10.3  An example of the Time Series Chart Settings form 
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The following points explain how each of these options work: 
 
Lines 

 
The User can adjust the width and legend text of each line in the chart.  After making 
the required changes the User must click the Make Changes button to apply the 
changes to the chart. 
 
Legend 
 
The User can choose to show the legend on the chart or remove the legend by clicking 
the appropriate buttons at the bottom of this screen. 
 
Y-axis ticks 
 
These refer to the tick lines drawn across the chart on the y-axis.  The default is no 
tick lines (except for the line y=0).  If the User wishes to apply y-axis tick lines, enter 
the number required in the text box here and click the Make Changes button.  
Clicking the Clear Y Ticks button removes these tick lines. 
 
Y-axis range 
 
The User can adjust the extent of the Y-axis by entering appropriate minimum and 
maximum values on this page and clicking the Make Changes button. 
 
X-axis labels 
 
For analysed data year markers are shown on the X-axis.  For raw data it is possible to 
apply a number of data markers (a counter) on the X-axis. X-axis label spacing can be 
specified by entering an appropriate value in the X-axis labels gap text box.  This 
specifies the interval between successive X-axis labels/markers.  The default for 
analysed data is 1 (i.e. year markers appear every year).  The default for raw data is 0 
(i.e. no markers appear).  If the User enters 0, no markers are applied to the X-axis. 
Note that when plotting SPI data series the X-axis labels are determined by the total 
number of months available.  In this case it may be better to remove the labels entirely 
to avoid overcrowding on the X-axis. The User implements chart settings by clicking 
the Make Changes button.  X-axis labels are removed by clicking the Clear X 
Labels button. 

 
Labels 
 
The User can adjust the text appearing on the X- and Y-axis and also the chart title by 
typing in the appropriate text on this screen and clicking the Make Changes button. 
The User can also make adjustments to the chart directly.  For example, by double-
clicking on the lines the User can adjust their colour.  Double clicking on the title and 
axis labels allows the User to change the text font.  The axis labels, chart title or 
legend are removed by clicking on them and hitting delete or backspace. To 
incorporate the Chart in a Word document, first use the Copy button at the top of the 
window then, in Word, use Paste Special (Picture). 
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11 SCENARIO GENERATION 
 
The Generate Scenario operation produces ensembles of synthetic daily weather 
series given daily atmospheric predictor variables supplied by a GCM (either for 
current or future climate experiments). The GCM predictor variables must be 
normalised with respect to a reference period (or control run) and available for all 
variables used in model calibration (see Section 2.2). 

The procedure is identical to that of the Weather Generator operation in all 
respects except that it may be necessary to specify a different convention for model 
dates and source directory for predictor variables. As in the case of the Weather 
Generator (see Section 7), input files for Generate Scenario need not be the same 
length as those used to obtain the regression weights during calibration. 

To access this facility, click on the Analyse button at the top of any screen, 
then select Generate Scenario from the drag down list. The following screen appears: 
 

 
 

Figure 11.1 The Generate Scenario screen, showing selections for the Blogsville 
example using HadCM2 predictors for the current (1960–1989) period. 

 
11.1 Check settings 
 
Before starting scenario generation, it may be necessary to change some of the options 
in the Settings menu. Click on the Settings button at the top of the screen and check 
the appropriate Year Length box. Also, amend the Standard Start/End Date in line 
with the GCM data time–slices. For example, HadCM2 and HadCM3 have year 
lengths of 360 days, and for the Blogsville example, the period 1960–1989 was used 
to represent current climate forcing. Once necessary changes have been made to the 
Settings, click on Back to return to the Generate Scenario screen. 
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11.2 Setup 
 
The first step in scenario generation is the selection of the appropriate downscaling 
model parameter file. Click on the Select Parameter File button, in the top left–hand 
corner. An Open file window appears; browse through until the correct directory and 
file are reached, then click on the appropriate file name – for example, the parameters 
for maximum daily temperature at Blogsville, are held in TMAX.PAR. The name of 
the file will then appear beneath the button.  

Next, click on the View Details button, and the (predictand followed by 
predictor) files used in model calibration are listed in the window below. Then select 
the appropriate drive location and directory for the GCM predictors under the GCM 
Directory header. For best practice, GCM predictors originating from different 
experiments or time–slices (e.g., 1960–1989 or 2080–2099) should be held in separate 
folders. This is because SDSM will load only files with the same predictor names 
(i.e., characters 5 to 8) as those used in model calibration (see Table 2.1).  

As in the Weather Generator (Section 7), decide how many ensembles 
members are needed, up to a maximum of 100, and enter the appropriate integer in the 
Ensemble Size box on the left–hand side of the screen (the default is 20). 

 Finally, to save the scenario data to a results file, it is necessary to select an 
appropriate directory and file name. Click on the Select Output File button in the top 
right–hand corner. An Open file window appears; browse through until the correct 
directory is reached, then enter a suitable file name – for example, TMAXCCF.OUT 
(maximum temperature, current climate forcing). The name of the file will then 
appear beneath the button.  

Once all the above selections have been completed, click on the Generate 
button at the top of the screen. After a few seconds, a dialogue box will appear 
(Figure 11.2). Click on OK to return to the Generate Scenario screen. 

 

 
 

Figure 11.2 The Scenario Generated dialogue box. 
 
11.3 Blogsville example (temperature) 
 
For the Blogsville example, the Generate Scenario operation was applied twice. First 
predictors from the HadCM2 GS experiment for the period 1960–1989 were used to 
emulate current climate forcing. Figure 11.3 shows the Results screen for this 
scenario, using the Analyse Model Output operation (see Section 8). 
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Figure 11.3 Example results for Blogsville using GCM predictors (1960–1989). 
 
 Using the Compare Results operation, it is possible to compare the frequency 
of “hot” days at Blogsville downscaled using observed (NCEP) and GCM (HadCM2) 
predictor variables. For example, Figure 11.4 shows the respective monthly mean 
frequencies produced by each set of predictors with an ensemble size of 20. It is 
evident that the downscaling forced by GCM predictors introduces a slight cool bias 
in early summer, and slightly over–estimates the number of hot–day in late summer. 
(Note that results for individual SDSM runs or ensemble members will differ slightly 
— even when using the same model parameters and predictors — due to the 
stochastic component of the downscaling.) 
 

 
 

Figure 11.4 Monthly frequency of “hot” days (>25ºC) at Blogsville for the current 
climate downscaled using observed (NCEP) predictors (1961–1990) and GCM 

(HadCM2) predictors (1960–1989). 
 

The second example of the Generate Scenario operation uses HadCM2 
predictors for the period 2080–2099. As before, Figure 11.5 shows the Results screen 
for this scenario, obtained from the Analyse Model Output operation. 
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Figure 11.5 Example results for the Blogsville using GCM predictors (2080–2099). 
 

Once again, by using the Compare Results operation, it is possible to 
compare the frequency of “hot” days at Blogsville under current (1960–1989) and 
future (2080–2099) climate forcing. For example, Figure 11.6 shows a significant 
increase in the frequency of hot–days in summer, most noticeably in the month of 
August. The downscaling also indicates that hot–days could begin to appear as early 
as May by the end of the 21st century. 

 

 
 

Figure 11.6 Monthly frequency of “hot” days (>25ºC) at Blogsville downscaled using 
HadCM2 predictors under current (1960–1989) and future (2080–2099) forcing. 

 
11.4 Blogsville example (precipitation) 
 
Precipitation downscaling is necessarily more problematic than temperature, because 
daily precipitation amounts at individual sites are relatively poorly resolved by 
regional–scale predictors, and because precipitation is a conditional process (i.e., both 
the occurrence and amount processes must be specified). Figure 11.7 shows a *.SIM 
file used to downscale daily precipitation using observed (NCEP) predictors. 



©Wilby & Dawson, 2004 Page 50 of 67 

 
 

Figure 11.7 The *.SIM file for downscaling precipitation at Blogsville 1961–1990. 
 

Figure 11.7 shows that four predictors were employed (line 1), to simulate 12 
months (line 2), using calendar years (line 3), beginning in 01/01/1961 (line 4) and 
lasting 10957 days (line 5). The model was conditional (#TRUE#, line 6), had 20 
ensemble members (line 7), variance inflation (line 8), a fourth root transformation of 
the predictand (line 9) and bias correction (line 10). The four predictors were p__v, 
p__z, p500, and shum, (lines 12 onwards).  

With the above specifications, the Weather Generator was used to downscale 
observed (NCEP) predictors, and Generate Scenario to downscale GCM (HadCM2) 
predictors representing the current climate. (Note that a Year Length of 366 days 
should be checked in Settings when working with NCEP, and 360 when using 
HadCM2 predictors). Downscaled scenarios were evaluated, firstly using the Analyse 
Data, and then Compare Results. Figure 11.8 shows, for example, that the 
downscaling produced similar monthly mean 24–hour totals under observed (NCEP) 
and GCM (HadCM2) forcing for the current climate.  

 

 
 

Figure 11.8 Monthly mean daily precipitation totals at Blogsville for the current 
climate downscaled using observed (NCEP) predictors (1961–1990) and GCM 

(HadCM2) predictors (1960–1989). 
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The Generate Scenario operation was implemented for a second time using 

HadCM2 predictors representing future (2080–2099) climate forcing. Figures 11.9 
and Figure 11.10 compare selected outputs of this scenario with equivalent results 
from the current (1960–1989) climate downscaling using HadCM2 predictors. 

 

 
 

Figure 11.9 Monthly maximum daily precipitation totals at Blogsville downscaled 
using HadCM2 predictors under current (1960–1989) and future (2080–2099) forcing. 
 

 
 

Figure 11.10 Monthly mean dry–spell lengths at Blogsville downscaled using 
HadCM2 predictors under current (1960–1989) and future (2080–2099) forcing. 

 
 The exemplar results presented in Figures 11.9 and 11.10 indicate a shift 
towards more intense summer storms, inter–spaced by longer dry–spells in late 
summer and autumn. Conversely, maximum winter intensities do not change 
significantly, but the average duration of dry–spells marginally decreases. 
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12 CAUTIONARY REMARKS 
 
SDSM is a Windows–based decision support tool for the rapid development of 
single–site, ensemble scenarios of daily weather variables under current and future 
regional climate forcing. Version 3.1 performs the tasks required to statistically 
downscale climate model output, namely: quality control of input data; screening of 
candidate predictor variables; model calibration; synthesis of current weather data; 
generation of future climate scenarios; basic statistical and time series analyses; and 
graphing results. SDSM provides a robust and parsimonious technique of scenario 
construction that complements other methods (e.g., direct use of climate model 
output, dynamical downscaling, sensitivity analysis, etc.). Prospective Users should, 
however, consider the relative strengths and weaknesses of each category of 
downscaling to determine whether SDSM is most appropriate for the task in hand.  
 

As far as the authors are aware, no comparable tool exists in the public 
domain. Nonetheless, the authors strongly caution that the software should not be 
used uncritically as a “black box”. This is a very real danger when employing 
regression–based modelling techniques. Rather, the downscaling should be based 
upon physically sensible linkages between large–scale forcing and local 
meteorological response. Therefore, good practice demands rigorous evaluation of 
candidate predictor–predictand relationships using independent data. Furthermore, the 
local knowledge base is an invaluable source of information when determining 
sensible combinations of predictors. 

 
Daily precipitation amounts at individual stations continue to be the most 

problematic variable to downscale, and research is ongoing to address this limitation. 
This arises because of the generally low predictability of daily precipitation amounts 
at local scales by regional forcing factors. The unexplained behaviour is currently 
modelled stochastically within SDSM by artificially inflating the variance of the 
downscaled series to accord better with daily observations. Even so, the model can 
produce unrealistic behaviour if the stochastic component is not properly handled. 
This, again, underlines the importance of independent testing of all model parameters 
against data withheld from model calibration.  

 
Ultimately, however, the plausibility of all SDSM scenarios depends on the 

realism of the climate model forcing. Systematic biases in the mean and variance of 
GCM predictors can be reduced through normalisation with respect to a control period 
(as in the case of all SDSM predictors). Biases in large–scale patterns of atmospheric 
circulation in GCMs (e.g. shifts in the dominant storm track relative to observed data) 
or unrealistic inter–variable relationships are much harder to accommodate. Where 
possible, Users should not, therefore, restrict themselves to the use of a single GCM 
or emission scenario for downscaling. By applying multiple forcing scenarios (via 
different GCMs, ensemble members, time–slices, or emission pathways) better insight 
may be gained into the magnitude of these uncertainties. 
 

Finally, the authors welcome constructive suggestions about the design or 
application of SDSM, particularly from the wider climate change impacts community.  
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APPENDIX 1: EHNHANCEMENTS SINCE VERSION 2.2 
 

SDSM 3.1 includes a number of enhancements to version 2.2, sponsored by the 
Environment Agency of England and Wales. Most relate to the interrogation of 
downscaled scenarios; the underlying model algorithms are unchanged. 

 

A1.1 Analyse Data 

The Analyse Observed and Analyse Modelled Data screens of version 2.2 have been 
merged into a single Analyse Data screen.  This screen allows the User to analyse 
either observed or modelled data through a single interface by means of a simple 
check button. 

 

A1.2 Statistics 

A number of additional statistics have been added to the Analyse Data option in 
SDSM 3.3.  These include; 

Count – a simple count of the number of data points in the fit period; 

Maximum N-day total – calculates the maximum sum of data over an N-day period 
(entered by the user) for each month, season, or annual period.   

SD Dry/Wet-spell length – calculates the standard deviation of the dry/wet-spell 
lengths. 

Peaks over threshold – calculates the number of days over the threshold.  The 
threshold is entered as a percentile and is applied to the entire period. 

POT as % of total – calculates the ratio of the sum of the peaks over a threshold 
(defined by a percentile as above) to the total rainfall in the period. For example, this 
is useful for exploring changes in the contribution of heavy rainfall events to total 
precipitation. 

 

A1.3 Transform 

An additional option has been added to the Data Transformation screen that allows the 
user to extract a single ensemble member from a modelled data file.  The user selects 
which ensemble member they wish to extract and SDSM produces a single column 
text file of the specified member. 

 

A1.4 Time Series Plot 

An additional screen has been incorporated into SDSM that enables the User to plot 
various time series chart for up to five data sets simultaneously.  Apart from plotting 
raw data on a line chart for a selected file(s), the User can also select to plot particular 
statistics for the data file(s) over different time periods.  For example, the User can 
chose to plot mean, sums, maximums, Winter/Summer ratios, partial duration series, 
percentiles or standard precipitation indices for either monthly, seasonal, annual or 
water year periods. 
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APPENDIX 2: FREQUENTLY ASKED QUESTIONS 
 
The following generic and specific questions are arranged in the order in which they 
might typically be encountered during a downscaling procedure. 
 
 
Q. Do I need to perform any re–gridding or normalisation of the 
predictor variables? 
No. These tasks have already been performed for the UKSDSM data set released with 
the software and available to non-profit organisations on request. All UK data have 
been re–gridded to a standard co–ordinate system (2.5º latitude × 3.75º longitude), 
and normalised with respect to the 1961–1990 climatology. The User must simply 
select the nearest grid box(es) to the site in question. For all other regions (including 
the UK), gridded predictor variables are available online courtesy of the Canadian 
Climate Impacts Scenarios Group. The web-site is accessed from: 
http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios 
 
 
Q. Can I use observational data that lie outside the standard period 
1961 to 2000? 
No. Observed predictor variables for SDSM archives are obtained from NCEP and 
normalised only for the period 1961 to 2000. Station meteorological data prior to 1st 
January 1961 or after 31st December 2000 will have no pre-prepared predictor 
variables. The software also assumes that meteorological data provided by the User 
commences on 1st January 1961 (i.e., has the same start date as the predictors). If this 
is not the case, the User should pad the station data with the Missing Data Identifier.  
 
 
Q. How important is the selection of predictor variables? 
Identifying sensible predictor–predictand relationships is the most critical procedure 
in all statistical downscaling methods. The Screen Variables screen is designed to 
assist the User in the choice of appropriate downscaling predictor variables for model 
calibration via seasonal correlation analysis, partial correlation analysis, and 
scatterplots. Ultimately, however, the User must decide whether or not the identified 
relationships are physically sensible for the site(s) in question. 
 
 
Q. How can I determine if I have chosen the correct predictor 
variables for the predictands that I require?  
The correlation statistics and P values indicate the strength of the association between 
two variables. Higher correlation values imply a higher degree of association. Smaller 
P values indicates that this association is less likely to have occurred by chance. A P 
value <0.05 is routinely used as the cut-off, so a P value of 0.37 would indicate that 
the predictor–predictand correlation is likely to be due to chance. However, even if P 
<0.05 the result can be statistically significant but *not* be of practical significance 
— there's a difference!  

Even if a high correlation and low P value is returned, the Scatterplot 
indicates whether this result is due to a few outliers, or is a potentially useful 
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downscaling relationship. The Scatterplot may also reveal that one (or both) of the 
variables should by modified using the Transform operation, to linearise the 
relationship. 
 
 
Q. How do I build “memory” (autocorrelation) into the model? 
There are TWO ways of incorporating memory in the downscaling model. Firstly, it is 
possible to use the Transform facility to create lagged predictands. For example, 
TMAXlag1 (i.e., the value of TMAX on preceding days) is used as a predictor of 
TMAX when calibrating the model. Secondly, the Transform facility is to create a 
selection of lagged predictor variables. For example, if V is correlated with PRCP, 
then consider Vlag-1, Vlag-2, Vlag-3, etc. It is better practise to employ lagged 
predictors, not lagged predictands in the model calibration. This makes greater 
physical sense and avoids many problems when it comes to generating synthetic data. 
 
 
Q. What does the Event Threshold parameter (in Settings) do? 
The Event Threshold parameter specifies the boundary between the two states in a 
Conditional process model. For example, if the Conditional process is precipitation, 
changing the Event Threshold from 0 to 0.3 will result in more “dry” days and fewer 
“wet” days (a simple way of classifying “trace” rainfall days as dry days). Therefore, 
different values for the Event Theshold will yield different results in Screen 
Variables (correlation values and scatterplots are both affected), will produce 
different parameters in Calibrate Model, and different results from the two Analyse 
Data operations. Note, however, that the Weather Generator and Generate 
Scenario operations will still produce values in the range 0 to 0.3 even if the 
threshold is set at 0.3 

 
 
Q. What are the advantages and disadvantages of using the monthly, 
seasonal or annual Model Type in Calibrate Model? 
The Model Type button in Calibrate Model determines whether individual 
downscaling models will be calibrated for each calendar month, climatological season 
or entire year. The monthly button should be selected whenever the predictand is 
known to have a strong seasonal cycle, noting that even the annual button can produce 
the same result provided that one or more predictor variables have strong seaonality. 
Annual models are more parsimonious in the sense that they have only one set of 
regression weights instead of twelve in the case of the monthly models. Seasonal 
models might be used in situations where data are too sparse at the monthly level for 
model calibration, for example, a low incidence of summer precipitation. 
 
 
Q. I am trying to model precipitation and have chosen the fourth root 
transformation in Advanced Settings. What else must I do? 
Nothing! The fourth root button in Advanced Settings tells the software that this 
transformation is to be used throughout (including calibration, weather generation and 
scenario generation). If checked, there's no need to apply any further transformations 
as this is all backed out automatically. So when calibrating the model with fourth root 
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checked, you should supply the model with untransformed rainfall data, making sure 
that the Conditional process button is checked in the Calibrate Model screen. 
 
 
Q. Is it OK to model precipitation as an unconditional process? 
As a general rule, precipitation should be modelled as a Conditional process. It does 
not make much sense to neglect the occurrence process (i.e., sequences of wet or dry 
days are first modelled, then the amounts if it is a wet day). If you are being swayed 
by higher R-sq values of an unconditional model during calibration, beware, the result 
is probably seriously biased by the large number of zero values entered in the multiple 
regression. Remember, daily precipitation amount is the most problematic daily 
variable to downscale. 
 
 
Q. When I use the Weather Generator I get unrealistically large 
maximum daily (precipitation) values. What’s going wrong? 
Unrealistically large values generally imply that the variance inflation and/or bias 
correction in Advanced Settings are too high. 

 
 
Q. Why do I get slightly different results every time I run the 
Weather Generator (with the same inputs)? 
Even with the same inputs (i.e., *.PAR file, Settings and data period) the Weather 
Generator (and Generate Scenario) operation is not expected to produce identical 
results if the Random Number Seed is checked in Settings. This is because of the 
stochastic (random) component that is applied to each downscaled series to 
compensate for the fact that the deterministic component of the model (due to the 
chosen predictor variables) does not explain all of the observed variance. Differences 
between individual runs and/or Ensemble Members is likely to be greater for poorly 
determined predictands such as precipitation than in better constrained predictands 
such as temperature. 
 
 
Q. Does SDSM produce realistic results for multiple sites? Also, what 
if I’m interested in preserving relationships between variables? 
Both of these questions are the subject of ongoing research. However, results from 
previous studies suggest that regression–based downscaling does preserve some of the 
observed inter–site correlations provided that models calibrated on a site by site basis 
are forced by a common set of predictors. In other words, inter–site correlations are 
implicitly reproduced by virtue of correlated predictor variables, rather than by the 
model structure. Alternatively, inter-site behaviour may be reproduced by employing 
a conditional resampling approach in which case SDSM is used to downscale a 
predictand at a benchmark site. This series is, in turn, used to resample observations at 
dependant locations using events occurring on the same date, See Wilby et al. (2003) 
for more details. 
 Preliminary tests of inter–variable correlations produced by SDSM (e.g., 
between downscaled precipitation and temperature series) indicate that inter–annual 
variations in the strength of relationships are preserved, but there can be differences 
between the model and observations in individual months. Once again, it is suspected 



©Wilby & Dawson, 2004 Page 62 of 67 

that inter–variable relationships are implicitly preserved by virtue of commonality in 
the predictor variables used to downscale each predictand. 
 However, if required, it is relatively straightforward to explicitly condition one 
predictand on another (e.g., daily precipitation occurrence might be used to condition 
maximum temperatures). In this case, the conditioning variable (precipitation 
occurrence) would be entered as a predictor during model calibration. 
 
 
Q. I’ve calibrated my model. How do I now produce values of PRCP, 
TMAX or TMIN using GCM data? 
Provided you have produced a *.PAR file via Calibrate Model, the software will 
automatically know what predictors are needed.  Of course you may need to transform 
some of the GCM files if this was done for calibration. For example, if Z.DAT was 
transformed to ZSQUARED.DAT and then used to train the model, the same 
transformation should be applied to the equivalent GCM file (i.e., Z.GCM to 
ZAQUARED.GCM). In which case, be sure to maintain the same nomenclature of the 
file but with the *.GCM extension. 
 
 
Q. Why do I keep getting an error message when I use GCM data? 
The most likely explanation is that the Year Length in Settings has not been set 
correctly with respect to the number of days in the GCM simulation. For example, 
HadCM2 and HadCM3 have year lengths of 360 days, whereas CGCM1 has 365 days 
in every year (i.e., no leap years). 
 
 
Q. What’s the best way of handling SDSM files outside the software? 
All SDSM output files are written in ASCII format and, therefore, accessible by any 
word processor. Model results (*.OUT files) are tab–delimited if the number of 
Ensemble Members is greater than one, and, as such, can be imported into Excel for 
further analysis or graphing. 
 
 
Q. I’ve looked at the predictor variable files and the values only 
range between +/-5. Is there something wrong with the data? 
No. All predictor variables (NCEP and GCM) are normalised using their respective 
1961–1990 means and standared deviations. The result is that each predictor variable 
is dimensionless, and will typically vary between –5 and +5. 



©Wilby & Dawson, 2004 Page 63 of 67 

GLOSSARY 
 

Where appropriate, the following definitions were drawn from the Glossary of terms 
in the Summary for Policymakers, A Report of Working Group I of the 
Intergovernmental Panel on Climate Change, and the Technical Summary of the 
Working Group I Report.  

Terms in italics are found elsewhere in this Glossary. 

Aerosols Airborne solid or liquid particles, with a typical size between 0.01 and 
10µm that reside in the atmosphere for at least several hours. Aerosols influence the 
climate directly through scattering and absorbing radiation, and indirectly through the 
formation and optical properties of clouds. 

Airflow (index) Trigonometric measures of atmospheric circulation obtained from 
surface pressure or geopotential height fields. Commonly derived indices include 
vorticity, zonal flow, meridional flow, and divergence. Certain indices have been used 
to replicate subjective classifications of daily weather patterns, or as predictor 
variables in statistical downscaling schemes. 

Anthropogenic Resulting from, or produced by, human beings. 

Atmosphere The gaseous envelope surrounding the Earth, comprising almost entirely 
of nitrogen (78.1%) and oxygen (20.9%), together with several trace gases, such as 
argon (0.93%) and greenhouse gases such as carbon dioxide (0.03%). 

Black box Describes a system or model for which the inputs and outputs are known, 
but intermediate processes are either unknown or unprescribed. See regression. 

Climate The “average weather” described in terms of the mean and variability of 
relevant quantities over a period of time ranging from months to thousands or millions 
of years. The classical period is 30 years, as defined by the World Meteorological 
Organisation (WMO). 

Climate change Statistically significant variation in either the mean state of the 
climate, or in its variability, persisting for an extended period (typically decades or 
longer). Climate change may be due to natural internal processes or to external 
forcings, or to persistent anthropogenic changes in the composition of the atmosphere 
or in land use. 

Climate model A numerical representation of the climate system based on the 
physical, chemical and biological properties of its components, their interactions and 
feedback processes, and accounting for all or some its known properties. 

Climate prediction An attempt to produce a most likely description or estimate of the 
actual evolution of the climate in the future, e.g. at seasonal, inter–annual or long–
term time scales. 

Climate projection A projection of the response of the climate system to emission or 
concentration scenarios of greenhouse gases and aerosols, or radiative forcing 
scenarios, often based on simulations by climate models. As such climate projections 
are based on assumptions concerning future socio–economic and technological 
developments. 

Climate scenario A plausible and often simplified representation of the future 
climate, based on an internally consistent set of climatological relationships, that has 
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been constructed for explicit use in investigating the potential consequences of 
anthropogenic climate change. 

Climate variability Variations in the mean state and other statistics (such as standard 
deviations, the occurrence of extremes, etc.) of the climate on all temporal and spatial 
scales beyond that of individual weather events. 

Conditional process A mechanism in which an intermediate state variable governs 
the relationship between regional forcing and local weather. For example, local 
precipitation amounts are conditional on wet–day occurrence (the state variable), 
which in turn depends on regional–scale predictors such as atmospheric humidity and 
pressure. 

Deterministic A process, physical law or model that returns the same predictable 
outcome from repeat experiments when presented with the same initial and boundary 
conditions, in contrast to stochastic processes.  

Domain A fixed region of the Earth’s surface and over-lying atmosphere represented 
by a Regional Climate Model. Also, denotes the grid box(es) used for statistical 
downscaling. In both cases, the downscaling is accomplished using pressure, wind, 
temperature or vapour information supplied by a host GCM. 

Divergence If a constant volume of fluid has its horizontal dimensions increased it 
experiences divergence and, by conservation of mass, its vertical dimension must 
decrease. 

Downscaling The development of climate data for a point or small area from regional 
climate information. The regional climate data may originate either from a climate 
model or from observations. Downscaling models may relate processes operating 
across different time and/or space scales. 

Dynamical See Regional Climate Model. 

Emission scenario A plausible representation of the future development of emissions 
of substances that are potentially radiatively active (e.g. greenhouse gases, aerosols), 
based on a coherent and internally consistent set of assumptions about driving forces 
and their key relationships. 

Ensemble (member) A set of simulations (members) in which a deterministic climate 
model is run for multiple climate projections, each with minor differences in the 
initial or boundary conditions. Conversely, weather generator ensemble members 
differ by virtue of random outcomes of successive model simulations. In either case, 
ensemble solutions can be grouped and then compared with the ensemble mean to 
provide a guide to the uncertainty associated with specific aspects of the simulation. 

External forcing A set of factors that influence the evolution of the climate system in 
time (and excluding natural internal dynamics of the system). Examples of external 
forcing include volcanic eruptions, solar variations and human–induced forcings such 
as changing the composition of the atmosphere and land use change. 

Extreme weather event An event that is rare within its statistical reference 
distribution at a particular place. Definitions of “rare” vary from place to place (and 
from time to time), but an extreme event would normally be as rare or rarer than the 
10th or 90th percentile. 

General Circulation Model (GCM) A three–dimensional representation of the 
Earth’s atmosphere using four primary equations describing the flow of energy (first 



©Wilby & Dawson, 2004 Page 65 of 67 

law of thermodynamics) and momentum (Newton’s second law of motion), along 
with the conservation of mass (continuity equation) and water vapour (ideal gas law). 
Each equation is solved at discrete points on the Earth’s surface at fixed time intervals 
(typically 10–30 minutes), for several layers in the atmosphere defined by a regular 
grid (of about 200km resolution). Couple ocean–atmosphere general circulation 
models (O/AGCMs) also include ocean, land–surface and sea–ice components. See 
climate model. 

Geopotential height The work done when raising a body of unit mass against gravity 
(i.e., acceleration due to gravity at a given level in the atmosphere multiplied by 
distance) divided by the value of gravity at the Earth’s surface. 

Greenhouse gas Gaseous constituents of the atmosphere, both natural and 
anthropogenic, that absorb and emit radiation at specific wavelengths within the 
spectrum of infrared radiation emitted by the Earth’s surface, the atmosphere and 
clouds. The primary greenhouse gases are water vapour (H2O), carbon dioxide (CO2), 
nitrous oxide (N2O), methane (CH4), and ozone (O3). 

Grid The co–ordinate system employed by GCM or RCM to compute three–
dimensional fields of atmospheric mass, energy flux, momentum and water vapour. 
The grid spacing determines the smallest features that can be realistically resolved by 
the model. Typical resolutions for GCMs are 200km, and for RCMs 20–50km. 

Meridional flow An atmospheric circulation in which the dominant flow of air is 
from north to south, or from south to north, across the parallels of latitude, in contrast 
to zonal flow. 

NCEP The acronym for the National Center for Environmental Prediction. The 
source of re–analysis (climate model assimilated) data widely used for dynamical and 
statistical downscaling of the current climate.   

Normalisation A statistical procedure involving the standardisation of a data set (by 
subtraction of the mean and division by the standard deviation) with respect to a 
predefined control period. The technique is widely used in statistical downscaling to 
reduce systematic biases in the mean and variance of climate model output. 

Parameter A numerical value representing a process or attribute in a model. Some 
parameters are readily measurable climate properties; others are known to vary but are 
not specifically related to measurable features. Parameters are also used in climate 
models to represent processes that poorly understood or resolved. 

Partial Duration Series Events above a defined threshold that are recorded as a time 
series or as a frequency distribution. Essentially a ‘peaks over threshold’ approach to 
describing the occurrence of extreme events. 

Predictand A variable that may be inferred through knowledge of the behaviour of 
one or more predictor variables. 

Predictor A variable that is assumed to have predictive skill for another variable of 
interest, the predictand. For example, day–to–day variations in atmospheric pressure 
may be a useful predictor of daily rainfall occurrence. 

Radiative forcing The change in net vertical irradiance (expressed as Watts per 
square metre) at the tropopause due to an internal change or a change in the external 
forcing of the climate system, such as, for example, a change in the concentration of 
carbon dioxide, or the output of the Sun. 
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Random See stochastic. 

Re–gridding A statistical technique used to project one co–ordinate system onto 
another, and typically involving the interpolation of climate variables. A necessary 
pre–requisite to most statistical downscaling, because observed and climate model 
data are seldom archived using the same grid system. 

Regional Climate Model (RCM) A three–dimensional, mathematical model that 
simulates regional scale climate features (of 20–50 km resolution) given time–
varying, atmospheric properties modelled by a General Circulation Model. The RCM 
domain is typically “nested” within the three–dimensional grid used by a GCM to 
simulate large–scale fields (e.g. surface pressure, wind, temperature and vapour). 

Regression A statistical technique for constructing empirical relationships between a 
dependent (predictand) and set of independent (predictor) variables. See also black 
box, transfer function. 

Relative humidity A relative measure of the amount of moisture in the air to the 
amount needed to saturate the air at the same temperature expressed as a percentage. 

Resolution The grid separation of a climate model determining the smallest physical 
feature that can be realistically simulated. 

Scenario A plausible and often simplified description of how the future may develop 
based on a coherent and internally consistent set of assumptions about driving forces 
and key relationships. Scenarios may be derived from projections, but are often based 
on additional information from other sources, sometimes combined with a “narrative 
story–line”. 

Specific humidity The ratio of the mass of water vapour (in grams) to the mass of 
moist air (in kilograms) in a given volume of air. 

Station The individual site at which meteorological measurements are systematically 
observed and recorded. 

Stochastic A process or model that returns different outcomes from repeat 
experiments even when presented with the same initial and boundary conditions, in 
contrast to deterministic processes. See weather generator. 

Transfer function A mathematical equation that relates a predictor, or set of 
predictor variables, to a target variable, the predictand. The predictor(s) and 
predictand represent processes operating at different temporal and/or spatial scales. In 
this case, the transfer function provides a means of downscaling information from 
coarse to finer resolutions.  

Tropopause The boundary between the lowest part of the atmosphere, known as the 
troposphere, and the highly stratified region of the atmosphere, known as the 
stratosphere. The tropopause is typically located 10km above the Earth’s surface. 

Uncertainty An expression of the degree to which a value (e.g. the future state of the 
climate system) is unknown. Uncertainty can result from a lack of information or 
from disagreement about what is known or knowable. It can also arise from poorly 
resolved climate model parameters or boundary conditions. 

Unconditional process A mechanism involving direct physical or statistical link(s) 
between a set of predictors and the predictand. For example, local wind speeds may 
be a function of regional airflow strength and vorticity.  
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Vorticity Twice the angular velocity of a fluid particle about a local axis through the 
particle. In other words, a measure of rotation of an air mass.  

Weather generator A model whose stochastic (random) behaviour statistically 
resembles daily weather data at single or multiple sites. Unlike deterministic weather 
forecasting models, weather generators are not expected to duplicate a particular 
weather sequence at a given time in either the past or the future. Most weather 
generators assume a link between the precipitation process and secondary weather 
variables such as temperature, solar radiation and humidity. 

Weather pattern An objectively or subjectively classified distribution of surface 
(and/or upper atmosphere) meteorological variables, typically daily mean sea level 
pressure. Each atmospheric circulation pattern should have distinctive meteorological 
properties (e.g. chance of rainfall, sunshine hours, wind direction, air quality, etc). 
Examples of subjective circulation typing schemes include the European 
Grosswetterlagen, and the British Isles Lamb Weather Types. 

Zonal flow An atmospheric circulation in which the dominant flow of air follows the 
lines of latitude (e.g. the westerlies), in contrast to meridional flow. 


