

Towards an Operational Capacity to Monitor Anthropogenic CO₂ **Emissions**

B. Pinty (*) DG GROW, I.2 Unit (*) detached from **DG JRC**

with contributions from many experts & major international institutions

Earth InfoDay, COP22 Marrakech, 08 November, 2016

Follow us on:

Commission

Political context & challenges

- Fighting Climate Change requires reducing the GHG emissions, in particular CO₂ (IPCC AR 5).
- Ambitious plans from the EU Member States for reduction targets at horizon 2030.
- CO₂ emission reporting is based on bottom up approach using national statistics (mainly on fuel consumption) in ex-Kyoto-Annex I countries.
 Independent datasets would help improving periodicity & reliability as well as reducing uncertainty of the self-reporting exercise.
- The impact of Nationally Determined Contributions (NDCs) on CO₂ budget needs to be estimated to help countries in evaluating the effectiveness of their CO₂ emission reduction strategies.

Needed Capabilities

Space

EP Resolution on COP21

	MENT 2014 - 2019 Plenary offling
30.9.2015	A8-0275/2015
REPORT	
"Towards a ı climate agr (2015/	new international eement in Paris 2112(INI))"
"Towards a i climate agr (2015/ (*) Associated of	new international eement in Paris 2112(INI))" ourmittees - Rule 54 of the Rules of Procedure

53. Points out that the <u>use of space-based</u> <u>assets should be considered</u> in the implementation of measures aimed at mitigating and adapting to climate change, particularly through the <u>monitoring and</u> <u>surveillance of GHG emissions</u>;

Urges the Commission to actively contribute to a global monitoring system for CO₂ and CH₄;

Calls on the Commission to promote efforts towards developing an **EU system of measuring GHG emissions** in an autonomous and non-dependent manner, **using and expanding the missions of the Copernicus programme**;

Copean Dependence

CO₂ Report

Support a set of recommendations for EC about: **"Need and opportunity for an independent European satellite-borne observation capacity for CO₂ to monitor the impacts of international climate agreements."**

> CO₂ report: 'Towards a European Operational Observing System to Monitor Fossil CO₂ Emissions'

> > http://www.copernicus.eu/main/towards-europeanoperational-observing-system-monitor-fossil-co2-emissions

- 1. What are the **critical uncertainties** and limitations of **current inventories** of anthropogenic CO₂ emissions based on fuel use statistics?
- 2. How could inventories be improved using independent space-borne measurements of atmospheric CO₂?
- 3. What are the **current capabilities** of space-borne and in-situ groundbased measurements of atmospheric CO_2 in Europe and worldwide?
- 4. How should these **capabilities be optimized into an operational system** for independent monitoring of anthropogenic CO₂ emissions and for improving current estimates at the global, European and country scales?
- 5. What are the critical elements and a possible road map for setting up such a system enabling first operational exploitation at the horizon of the 2030s?

Commission

Fossil fuel Emissions

CO₂ not yet significantly decreasing

CO₂ emissions from fossil-fuel use and cement production in the top 5 emitting countries and the EU

Source: EDGAR v4.3.2 FT2015 (JRC/PBL 2016: IEA 2014 (suppl. with IEA 2016 for China, BP 2016, NBS 2016, USGS 2016, WSA 2016, NOAA 2016)

Critical uncertainties in CO₂ inventories

Russian Federation

Souther non-Annex I

S China

Emissions uncertainties on the rise

Other Economies In Transition

Other big developing countries

International transport

- During the last decade, emerging countries have become the largest emitters.
- The global emissions uncertainty is increasing with time : we are losing our reference baseline.
- No reliable information about spatial & temporal patterns.
- This is a **limitation** to mitigation policy.

The top-down atmospheric approach

Commission

Improving emissions inventories

CO₂ emissions of subnational governments / regions need also to be mapped within a regionally complete picture (covering all human activities).

2008/03/20 00:00 UTC Biogenic + anthropogenic XCO_2 [ppm]

COSMO model simulation on Cray XE6 «Monte Rosa» at Swiss Supercomputing Center CSCS

Simulation: Yu Liu & Nicolas Gruber (ETH) Animation: Dominik Brunner (Empa)

Anthropogenic CO₂: EDGAR v4.2 (JRC) Biospheric CO₂: VPRM (MPI Jena)

Independent monitoring of fossil CO₂ emissions using inverse modeling and atmospheric measurements is feasible:

- Dense sampling of selected emissions hotspots, such as megacities and major industrial areas, large power plants.
- \Rightarrow This can be achieved with satellites measuring column CO_2
- Separate the fossil CO₂ component from the natural fluxes at regional scale, by measurements of additional trace species, such as radiocarbon (¹⁴C in CO₂), carbon monoxide and/or nitrogen dioxide.
- \Rightarrow This could be achieved in Europe by making ¹⁴C measurements at existing CO₂ monitoring tall towers (ICOS and national in-situ networks).

Increasing the density and spatial resolution of atmospheric CO₂ measurements is needed to quantify emissions.

Needed Capabilities

Fossil Fuel Data Assimilation System

Frequent maps of fossil fuel emissions Attribution to the different human activities, regional drivers Uncertainties & Trends

Specific measurements of atmospheric CO_2 from space needed for fossil CO_2 emissions monitoring in particular:

- to verify the trends of the emissions of emitting hot spots at global scale
- to detect newly upcoming hot spots (e.g. new oil production sites)
- to assess whether the global emission reduction promised by the "stocktake" is actually measurable in the atmosphere.
- to acquire uniform, homogeneous and indisputable global datasets made available to monitor man-made CO₂ emissions and therefore support the national/local emission reduction strategies.

Opportunity for a CO₂ Space Capacity

Commission

The Copernicus context

- The Copernicus programme constitutes the appropriate frame for supporting an operational European CO₂ space initiative through its space component and its Climate Change Service (C3S) and Atmosphere service (CAMS)components.
- The CO₂ initiative is integrated in the context of the Copernicus Space Component evolution plan (supported by ESA through EOEP-4 & 5 programmes.
- A CO₂ monitoring task force has been nominated to address the space component and the required ground-based infrastructure –an end-to end operational emission monitoring system- (involving a few DGs, ESA, Eumetsat, ECMWF & world class experts).
- > This task force is supporting the **consolidation of technical requirements**.

Conditioned by appropriate political & *financing decisions beyond* 2020.

Copernicus Climate Change Service

Surface air temperature and anomalies

climate.copernicus.eu

Average surface air temperature October 2016

- October 2016: 0.57°C higher relative to October average for 1981-2010
- 12 last months (November 2015 to October 2016):
 0.64°C higher relative to 1981-2010

12-month global temperature compared with 1981-2010 average

Average surface air temperature anomalies for the last 12 months (Nov 2015 until Oct 2016)

Copernicus Atmosphere Monitoring Service

Commission

Column-averaged dry-air mole fraction of CO₂

20161001 03 UTC

404.8 404.4 404.0 403.6 403.2 402.8 402.4 402.0 399.8 399.4 399.0 398.6 398.2 397.8 397.4 397.0

Opportunity for a CO₂ Space Capacity

The Copernicus context

- The Copernicus programme constitutes the appropriate frame for supporting an operational European CO₂ space initiative through its space component and its Climate Change Service (C3S) and Atmosphere service (CAMS)components.
- The CO₂ initiative is integrated in the context of the Copernicus Space Component evolution plan (supported by ESA through EOEP-4 & 5 programmes).
- A CO₂ monitoring task force has been nominated to address the space component and the required ground-based infrastructure –an end-to end operational emission monitoring system- (involving a few DGs, ESA, Eumetsat, ECMWF & world class experts).
- This task force is supporting the consolidation of technical requirements. Conditioned by appropriate political & financing decisions beyond 2020.

Space based CO₂ measurement objectives

Proposed Strategy

1.2. Advancing the EU space programmes and meeting new user needs

Commission

- Additional services will be considered to meet emerging needs in specific priority areas, including (i) climate change and sustainable development, to monitor CO2 and other greenhouse gas emissions, land use and forestry, and changes in the Arctic with Copernicus;
- In addition, the Commission will use EU space programmes to contribute to and benefit from international efforts through initiatives such as the Global Earth Observation System of Systems (GEOSS) and the Committee on Earth Observation Satellites (CEOS) with Copernicus or the Search and Rescue initiative (COSPAS-SARSAT) with Galileo. It will also support the EU's neighbourhood and development policies, as it already does in Africa with Copernicus and EGNOS, and the monitoring of sustainable development goals.

- 1. Limitations of current inventories to assess the effectiveness of mitigation policy.
- **2. Inverse modeling** with dense atmospheric CO_2 measurements makes it possible to improve the reporting on fossil fuel CO_2 emissions.
- 3. Current capabilities need to be expanded to refine **the four pillars** of a future operational CO_2 emission monitoring system by 2030.
- This system will require frequently updated bottom-up emission maps, an operational Fossil Fuel Data Assimilation System and adequate space-based and in-situ CO₂ observations, with a first space instrument launched before 2025.
- 5. The **Copernicus programme** provides the appropriate frame for such a system development.

Copernicus Atmosphere Monitoring Service

Commission

Column-averaged dry-air mole fraction of CO₂

20161001 03 UTC

404.8 404.4 404.0 403.6 403.2 402.8 402.4 402.0 399.8 399.4 399.0 398.6 398.2 397.8 397.4 397.0

